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Air Data Sensor Fault Detection and Diagnosis in the Presence of Atmospheric
Turbulence: Theory and Experimental Validation With Real Flight Data

Peng Lu , Member, IEEE, Erik-Jan van Kampen , Member, IEEE,

Coen de Visser , Member, IEEE, and Qiping Chu

Abstract— Managing air data sensor fault detection and
diagnosis (FDD) in the presence of atmospheric turbulence is
challenging since the effects of faults and turbulence are coupled.
Existing FDD approaches cannot decouple the faults from the
turbulence. To address this challenge, this brief first proposes
a novel kinematic model that incorporates the effects of the
turbulence. This model is valid inside the entire flight envelope,
and there is no need to design a linear parameter varying
system. Then, the double-model adaptive estimation algorithm
is extended to achieve unbiased state estimation even in the
presence of unknown disturbances. The proposed approach is
validated using generated turbulence data with various scale
lengths and intensities. More importantly, the proposed approach
is successfully validated using the real flight test data of a business
jet when it is experiencing atmospheric turbulence.

Index Terms— Air data sensor (ADS) fault detection,
atmospheric turbulence, disturbances, double-model adaptive
estimation (DMAE), fault detection and diagnosis (FDD), real
flight data.

I. INTRODUCTION

A IR data sensor (ADS) faults have a significant effect on
aircraft safety. ADSs are installed outside the fuselage

and can readily be affected by weather conditions. ADS faults
can result in fatal accidents, such as the Airbus A330 flight
AF 447 [1] and the B2 bomber [2]. Moreover, these sensor
faults can also inappropriately trigger emergency systems
onboard the aircraft, such as the maneuvering characteristics
augmentation system on the Boeing 737 MAX, which led to
fatal accidents. To increase aircraft safety, ADS faults must be
detected and diagnosed in time.

ADS faults have been addressed by a number of
studies [3]–[7]. Earlier methods mainly replace the ADS with
other systems, such as a flush air data system [8] and a
virtual air data system [9]. Recent studies concentrate on
the detection and diagnosis of ADS faults using model-
based approaches [4]. The challenges of applying model-based
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approaches to detect and diagnose ADS faults are model uncer-
tainties and external disturbances (atmospheric turbulence).
To manage model uncertainties, various approaches, such as
H-infinity filters [10], [11], sliding mode observers [12], [13],
and observer-based approaches [14], have been proposed.
Observers are usually designed based on linear time-invariant
systems, whereas the aircraft dynamic model is time-varying.
Therefore, linear parameter-varying (LPV) systems must
be designed. Alwi and Edwards [15], Varga et al. [5],
Chen et al. [16], and Efimov et al. [17] all designed LPV
aircraft models for fault detection. Alternatively, the kinematic
model of the aircraft can be used to resolve the issue of model
uncertainties [6], [18]. The kinematic model uses the measured
forces to avoid calculation using uncertain aerodynamic para-
meters. The kinematic model is valid within the entire flight
envelope, and therefore, an LPV system does not need to be
designed. However, none of these approaches have considered
the effects of atmospheric turbulence.

Validation of sensor fault detection and diagnosis (FDD)
approaches on large commercial aircraft is challenging.
To bridge the gap between academic research and indus-
trial practice, several research groups have validated their
approaches using real flight data [11], [19], [20]. The industry
has also implemented fault diagnosis approaches on their
aircraft [21], [22]. Lu et al. [23] managed to validate inertial
measurement unit FDD using real flight data in the presence of
turbulence. However, validation of ADS FDD in the presence
of atmospheric turbulence has not been achieved using real
flight data.

This brief addresses the aircraft ADS FDD in the presence
of atmospheric turbulence. The effects of the atmospheric
turbulence are analyzed, and a novel kinematic model is
proposed, which incorporates the effects of the turbulence.
The double-model adaptive estimation (DMAE) approach is
extended to address the situation when the effects of faults and
external disturbances are coupled. The proposed approach is
extensively validated under various turbulence situations using
simulated and real flight test data.

The main contributions of this brief are as follows.
1) A novel aircraft kinematic model that explicitly

takes the effects of turbulence into consideration is
proposed.

2) A covariance adaptation technique is proposed for the
DMAE approach to manage ADS FDD in the presence
of atmospheric turbulence.

3) The proposed approach is validated using real flight test
data in the presence of atmospheric turbulence for the
first time.

1063-6536 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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II. NOVEL AIRCRAFT KINEMATIC MODEL

INCORPORATING THE EFFECTS OF

ATMOSPHERIC TURBULENCE

Van Eykeren and Chu [18] and Lu et al. [6] proposed to
use an aircraft kinematic model to resolve aircraft ADS FDD.
However, their model does not take the effects of atmospheric
turbulence into account. This section will present a novel
kinematic model that will be used for ADS FDD in the
presence of turbulence.

The dynamics of the ground velocity of the aircraft
expressed in the body frame V B

g are as follows:

V̇ B
g = A + Tbeg − ω × V B

g (1)

where A = [Ax , Ay, Az]T denotes the specific force vector,
ω = [p, q, r ]T is the angular velocity vector, Tbe is the
transformation matrix from inertial frame to body frame, and
g = [0, 0, 9.81]T .

Since V B
g = V B

a + V B
w , where V B

a = [ua, va, wa]T and
V B
w = [uw, vw,ww]T are the air velocity and wind velocity

vectors, respectively, the air velocity dynamics can be derived
as follows:

V̇ B
a = A + Tbeg − ω × V B

a − (
V̇ B
w + ω × V B

w

)
. (2)

The effects of the atmospheric turbulence are denoted by

d = −V̇ B
w − ω × V B

w := [du, dv , dw]T . (3)

It is seen that the turbulence has a significant effect on the
airspeed dynamics. Since the air velocity vector is not directly
measurable, we will reformulate (2) using the true airspeed V ,
angle of attack α, and angle of sideslip β that are directly
measured by the ADSs.

The dynamics of [V , α, β]T can be obtained using those
of [ua, va , wa]T by the following relationships:

V̇ = u̇acαcβ + v̇asβ + ẇasαcβ (4)
α̇ = (ẇacα − u̇asα)/(V cβ) (5)
β̇ = (−u̇acαsβ + v̇acβ − ẇasαsβ)/V (6)

where c• denotes cos • and s• denotes sin • for simplicity.
Therefore, the following dynamics of [V , α, β]T are

obtained:

V̇ = (Ax − gsθ + rva − qwa + du)cαcβ
+ (Ay + gsφcθ + pwa − rua + dv )sβ
+ (Az + gcφcθ + qua − pva + dw)sαcβ (7)

α̇ = [(Az + gcφcθ + qua − pva + dw)cα

− (Ax − gsθ + rva − qwa + du)sα]/(V cβ) (8)

β̇ = [−(Ax − gsθ + rva − qwa + du)cαsβ

+ (Ay + gsφcθ + pwa − rua + dv )cβ

− (Az + gcφcθ + qua − pva + dw)sαsβ]/V (9)

where du, dv , and dw are defined in (3), and φ, θ , and ψ are the
roll, pitch, and yaw angles. Using the following relationships:

ua = V cαcβ (10)

va = V sβ (11)

wa = V sαcβ. (12)

Equations (7)–(9) can be simplified into

V̇ = (Ax − gsθ + du)cαcβ + (Ay + gsφcθ + dv )sβ

+ (Az + gcφcθ + dw)sαcβ (13)

α̇ = [(Az + gcφcθ + dw)cα − (Ax − gsθ + du)sα]/V cβ

+ q − (pcα + rsα)tβ (14)

β̇ = [−(Ax − gsθ + du)cαsβ + (Ay + gsφcθ + dv )cβ

− (Az + gcφcθ + dw)sαsβ]/V + psα − rcα (15)

where t• denotes tan • for simplicity. Since the above equa-
tions involve the Euler angles, the following kinematics are
also necessary to obtain the state estimates:

φ̇ = p + qsφtθ + rcφtθ (16)

θ̇ = qcφ − rsφ (17)

ψ̇ = q
sφ

cθ
+ r

cφ

cθ
. (18)

Equations (13)–(18) are the proposed novel kinematic
model. However, for aircraft ADS FDD, we still need to
formulate the process model and measurement model. In the
kinematic model, Ax , Ay, Az, p, q, and r are obtained using
the measurements from the inertial measurement unit and
serve as the input. By this means, uncertain aerodynamic
parameters are not required. Furthermore, the kinematic model
is valid during the entire flight envelope, and there is no need
to design an LPV system.

Defining u0 = [Ax, Ay, Az, p, q, r ]T , u0 can be obtained
from the measurements of the inertial measurement unit
defined as

u = [Axm, Aym, Azm, pm, qm, rm ]T (19)

= [Ax , Ay, Az, p, q, r ]T + [wAx , wAy , wAz , wp, wq , wr ]T

:= u0 + w (20)

where w = [wAx , wAy , wAz , wp, wq , wr ]T denotes the noise
in the inertial measurement unit with covariance matrix Q =
E[wwT ]. Now, we are ready to rewrite (13)–(18) into the
following process model form:

ẋ = f̄ (x, u)+ G(x)w + E(x)d (21)

where x = [V , α, β, φ, θ, ψ]T ∈ R
n with n = 6, and u and w

are defined in (19) and (20) respectively. d , defined in (3), will
be treated as unknown disturbances. The nonlinear function f̄
is given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Axm − gsθ)cαcβ + (Aym + gsφcθ)sβ

+ (Azm + gcφcθ)sαcβ

[(Azm + gcφcθ)cα − (Axm − gsθ)sα]/V cβ + qm

− (pmcα + rmsα)tβ

[(gsθ − Axm)cαsβ + (Aym + gsφcθ)cβ

− (Azm + gcφcθ)sαsβ]/V + pmsα − rmcα

pm + qmsφtθ + rmcφtθ

qmcφ − rmsφ

qmsφ/cθ + rmcφ/cθ

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 15:17:40 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1. Block diagram of the DMAE approach at time step k.

The noise and turbulence distribution matrices are derived as

G(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−cαcβ −sβ −sαcβ 0 0 0
sα

V cβ
0

−cα

V cβ
cαtβ −1 sαtβ

cαsβ

V

−cβ

V

sαsβ

V
−sα 0 cα

0 0 0 −1 −sφtθ −cφtθ
0 0 0 0 −cφ sφ

0 0 0 0
−sφ

cθ

−cφ

cθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cαcβ sβ sαcβ

− sα

V cβ
0

cα

V cβ

−cαsβ

V

cβ

V
− sαsβ

V
0 0 0
0 0 0
0 0 0.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The measurement model for the ADS FDD is

y = x + F f + ν (22)

where y = [Vm, αm , βm , φm , θm, ψm ]T ∈ R
m with m = 6

is the measurement vector, f = [ fV , fα, fβ ]T ∈ R
n f with

n f = 3 is the ADS fault vector, ν = [νV , να, νβ, νφ, νθ , νψ ]T

is the output sensor noise vector with covariance R = E[ννT ],
and F = [I3×3, O3×3]T is the ADS fault distribution matrix.

In summary, (21) and (22) are the novel kinematic model
that will be used to detect and diagnose ADS faults. It is
observed from these equations that the effects of the ADS
faults and atmospheric turbulence are coupled, and the exis-
tence condition of disturbance decoupled observers, unknown
input observers, or Kalman filters is not satisfied [24], [25].
This poses a significant challenge to ADS FDD in the presence
of atmospheric turbulence.

III. EXTENDED DOUBLE-MODEL ADAPTIVE ESTIMATION

FOR FDD IN THE PRESENCE OF DISTURBANCES

A. Design of the DMAE for ADS FDD

The DMAE approach is a framework, which runs two
Kalman filters in parallel: a no-fault (fault-free) filter and an
augmented fault filter [6]. These two filters are based on two
modes of the system: fault-free ( f = 0) and faulty ( f �= 0).
Let index i number the two filters where i = 1 means the fault-
free filter and i = 2 denotes the augmented fault filter. The
block diagram is shown in Fig. 1. It is seen that both filters use

Fig. 2. Flowchart of the selective reinitialization performed by the DMAE.

the same measurement history vector Yk = [yT
1 , yT

2 , . . . , yT
k ]T

and the input vector uk−1, while each hypothesizes a different
fault scenario (fault-free or faulty).

The state vectors of the no-fault filter xn f ∈ R
n and fault

filter xa f ∈ R
n+n f are as follows:

xn f = x, xa f =
[

x
f

]
(23)

where x is defined in (21). Since the no-fault filter assumes
that f = 0, its measurement model reduces to

y = x + ν = Hnf xn f + ν (24)

where Hnf = I6×6. The measurement model for the aug-
mented fault filter is

y = x + F f + ν = Haf xa f + ν (25)

where Haf = [I6×6, F].
Both filters will generate a state estimate x̂0

i,k and an
innovation γi,k at time step k (see the Appendix for the details).
The filter that produces the most well-behaved innovation
contains the model that best matches the true fault scenario.
A hypothesis test will be performed using the innovation γi,k

and the innovation covariance matrix Ci,k of the filters to
assign a conditional probability to both filters.

Let a denote the parameter that specifies a fault scenario,
namely a ∈ {a1, a2}, where a1 and a2 denote no-fault and
fault scenario, respectively. Define the hypothesis conditional
probability pi,k as the probability that a is assigned ai for
i = 1, 2, conditioned on the measurement history up to time
step k as follows:

pi,k = Pr[a = ai |Y (k) = Yk], i = 1, 2. (26)

The conditional probability of the two filters can be computed
recursively as in [25].

To increase the robustness of the DMAE with respect to
model uncertainties and disturbances, a selective reinitializa-
tion [25] is performed. The flowchart is presented in Fig. 2.
Superscript “0” denotes the variables before the reinitial-
ization. x̂t contains the first n elements of x̂0

nf and x̂0
af .

Pt contains the first n rows and n columns of Pnf and Paf .
imax,k denotes the index of the filter with the larger conditional

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 15:17:40 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. uw , vw , and ww for the four simulated turbulence scenarios. Note the differences in magnitudes. (a) uw , vw , and ww for case 1. (b) uw , vw , and
ww for case 2. (c) uw , vw , and ww for case 3. (d) uw , vw , and ww for case 4.

probability. The principle is to reinitialize the state estimation
and covariance matrix of the filter with the lower conditional
probability using those of the filter with a higher conditional
probability. x f

0 and P f
0 are the reinitialization parameters.

Note that the two filters have different dimensions of state
vectors and covariance matrices.

A fault is detected if paf > pnf . The fault estimate f̂k

is obtained using the augmented fault filter. The probability-
weighted fault estimate f̂ wk is computed by

f̂ wk = f̂k pa f,k. (27)

B. Extension of the DMAE With Covariance Adaptation for
ADS FDD in the Presence of Atmospheric Turbulence

Both filters of the DMAE are designed based on
the unscented Kalman filter (UKF) since the kinematic model
is nonlinear. The specific design steps are included in the
Appendix. It is seen from (21) and (22) that faults and dis-
turbances have coupled effects, and the existence condition of
disturbance observers or unknown input observers or Kalman
filters is not satisfied. Consequently, this poses a significant
challenge for ADS FDD in case of turbulence. This section
will extend the DMAE such that it can address fault detection
even in the presence of atmospheric turbulence.

Since d is unknown in (21), it is difficult for the UKF to
obtain an unbiased estimate of x . If d is treated as a stochastic
process driven by white noise with covariance matrix Qd ,
then the UKF can yield the unbiased minimum variance
estimate of x . However, the optimality of the estimate can be
compromised by a poor choice of Qd . Moreover, the dynamics
of atmospheric turbulence are changing significantly. Thus,
it is unreasonable to choose a fixed Qd . In this section,
we will present a method that can adaptively update Qd to
achieve unbiased estimates of x . Lu et al. [25] also proposed
an adaptive method to tune the Qd . However, their approach
is based on a linear discrete-time system and is not directly
applicable to the nonlinear system considered in this brief.

The fault is modeled as a stochastic process ḟ = w f with
covariance Q f = E[w fw

T
f ]. The innovation of the augmented

fault filter at time step k is given as follows:

γa f,k = yk − Haf,k x̂a f,k|k−1 (28)

= Haf,kxa f,k + νk − Haf,k x̂a f,k|k−1. (29)

Fig. 4. Fault estimation using the ATSUKF.

The theoretical innovation covariance is computed as follows:

Ca f,k = E
{
γa f,kγ

T
a f,k

}
(30)

= Haf,k Pa f,k|k−1 H T
af,k + Rk (31)

= Haf,k
(
P∗

a f,k|k−1 + Qa f,k−1
t
)
H T

a f,k + Rk (32)

where
t = tk−tk−1, P∗
a f,k|k−1 = ∑2(n+n f )

i=0 W (c)
i [X ∗

a f,i,k|k−1−
x̂a f,k|k−1][X ∗

a f,i,k|k−1 − x̂a f,k|k−1]T with X ∗
a f,i,k|k−1 computed

similarly as in (39). Qa f,k−1 is defined as follows:[
Gk−1 Qk−1GT

k−1 + Ek−1 Qd,k−1 ET
k−1 O

O Q f,k−1

]
.

The innovation covariance can be also approximated using
the innovation sequence as follows:

Ĉa f,k =
k∑

j=k−N+1

γa f, jγ
T
a f, j

/
N. (33)

Comparing (32) and (33) while neglecting the terms with
small magnitudes, Qd can be estimated using the following:

Ek−1 Qd,k−1 ET
k−1
t = Ĉa f,k − Gk−1 Qk−1GT

k−1
t

− Fk Q f,k−1 FT
k 
t− Rk . (34)

As Ek−1 is not invertible, Qd cannot be directly solved from
above. However, it is not necessary to solve Qd since we only
need to compute Ek−1 Qd,k−1 ET

k−1
t in (41).
Define Q0

d as follows:

Ĉa f,k − Gk−1 Qk−1GT
k−1
t − Fk Q f,k−1 FT

k 
t − Rk .

Then, we can approximate Ek−1 Qd,k−1 ET
k−1
t using the

main diagonal elements of Q0
d . To preserve the properties of

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 15:17:40 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 5. pnf and paf using the DMAE without covariance adaptation for the four simulated turbulence scenarios. (a) pnf and paf for case 1. (b) pnf and paf
for case 2. (c) pnf and paf for case 3. (d) pnf and paf for case 4.

Fig. 6. Fault estimation using the DMAE without covariance adaptation for the four simulated turbulence scenarios. (a) Fault estimation for case 1. (b) Fault
estimation for case 2. (c) Fault estimation for case 3. (d) Fault estimation for case 4.

a variance, the following is used:

Ek−1 Qd,k−1 ET
k−1
t

= diag
[
max

(
Q0

d,11, 0
)
,max

(
Q0

d,22, 0
)
,max

(
Q0

d,33, 0
)
,

max
(
Q0

d,44, 0
)
,max

(
Q0

d,55, 0
)
,max

(
Q0

d,66, 0
)]

where Q0
d, j j denotes the j th row, j th column element of Q0

d ,

and max(Q0
d,11, 0) denotes the maximum value between

Q0
d,11 and 0. In addition, note that the last three rows of Ek−1

are zero. Therefore, Ek−1 Qd,k−1 ET
k−1
t is approximated by

diag
[
max

(
Q0

d,11, 0
)
,max

(
Q0

d,22, 0
)
,max

(
Q0

d,33, 0
)
, 0, 0, 0

]
.

IV. SIMULATION VALIDATION

A. Turbulence Scenarios

The turbulence velocities (V B
w = [uw, vw,ww]T ) are gener-

ated using the Dryden model [26], the power spectral density
functions of which are given as follows:

�u(ωo) = 2σ 2
u Lu

πV

1

1 + (Luωo/V )2
(35)

�v(ωo) = σ 2
v Lv
πV

1 + 3(Lvωo/V )2

(1 + (Lvωo/V )2)2
(36)

�w(ωo) = σ 2
wLw
πV

1 + 3(Lwωo/V )2

(1 + (Lwωo/V )2)2
(37)

where V is the true airspeed and ωo is the observed angular
frequency. Lu , Lv , and Lw are the scale lengths and σu , σv ,
and σw are the intensities of the turbulence.

It is assumed that the turbulence field is isotropic [26];
therefore, Lu = Lv = Lw and σu = σv = σw.

TABLE I

SCENARIOS WITH DIFFERENT SCALE LENGTHS AND INTENSITIES

Four turbulence scenarios with various scale lengths and
intensities, as presented in Table I, are generated for validation.

The turbulence data are recursively generated using differen-
tial equations. Especially, uw is generated using the following
differential equation:

u̇w = −uw
V

Lu
+ σuw

′
√

2V

πLu

where w′ ∼ N(0, 1). vw can be generated using the following
second-order differential equation [26]:

[
v̇w
v̇∗
w

]
=

⎡
⎣ 0 1

− V 2

L2
v

−2
V

Lv

⎤
⎦[
vw
v∗
w

]
+

⎡
⎢⎢⎢⎣

σv

√
3V

πLv

(1 − 2
√

3)σv

√
V 3

πL3
v

⎤
⎥⎥⎥⎦w′′

where w′′ ∼ N(0, 1) and v∗
w is an intermediate variable.

ww can be generated as similar as vw .
The generated uw, vw , and ww of the four cases are shown

in Fig. 3. Note that the scale length and intensity of case 4 are
close to those of a thunderstorm [26].

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 15:17:40 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 7. Results using the DMAE with covariance adaptation for four
simulated turbulence scenarios. (a) pnf and paf for four cases. (b) Fault
estimation for case 1. (c) Fault estimation for case 2. (d) Fault estimation
for case 3. (e) Fault estimation for case 4. (f) Weighted fault estimation for
case 4.

B. ADS FDD Validation in the Presence of Turbulence

The novel DMAE with covariance adaptation will be val-
idated using the four different turbulence scenarios given
in Table I. For comparison, existing approaches and the DMAE
without covariance adaptation will also be validated. The ADS
faults are denoted by the red solid lines in Fig. 6. The source
code is available at.1

Existing disturbance observers or unknown input observers
cannot decouple the faults from the turbulence since the
existence condition to design a decouple observer is not
satisfied [25]. For example, the unknown input observer [27]
diverges due to the fact that a decoupled unknown input
observer cannot be designed. Unknown input Kalman filters
also cannot decouple the faults from the turbulence. For
example, the fault estimation using the adaptive three-step
unscented Kalman filter [20] is shown in Fig. 4. It is seen
that the faults and turbulence are coupled, and it is difficult
to distinguish the faults from the results. Results using other
methods are similar and are omitted.

The fault detection using the DMAE without covariance
adaptation is shown in Fig. 5. It is seen that the false alarm rate
increases as the turbulence intensity increases. The estimated
faults ( f̂ = [ f̂V , f̂α, f̂β ]T ) are presented in Fig. 6. It is

1https://github.com/lplp8899/ADS_FDD_Turbulence

Fig. 8. Main diagonal elements of Q0
d for simulated turbulence cases.

(a) Q0
d for turbulence case 1. (b) Q0

d for turbulence case 2. (c) Q0
d for

turbulence case 3. (d) Q0
d for turbulence case 4.

seen that the fault estimation is coupled with the turbulence.
As the intensity of the turbulence increases, it is difficult to
distinguish the fault from the turbulence.

On the contrary, the FDD using the proposed DMAE with
covariance adaptation can successfully decouple the fault from
the turbulence even when the intensity of the turbulence
increases. The fault detection using the proposed approach for
four turbulence scenarios is the same and is shown in Fig. 7(a).
It is seen that there are no false alarms. The fault estimates
for the four scenarios are shown in Fig. 7(b)–(e), respectively.
As can be seen, all faults are estimated and decoupled from
the turbulence.

The fault estimates when there are no faults (during 0 <
t < 10 s, 20 < t < 30 s, and 40 < t < 50 s) become
noisier as the turbulence intensity increases. However, the fault
shape can be recovered readily using the probability-weighted
fault estimates denoted by f̂w . For example, the probability-
weighted fault estimates for case 4 are shown in Fig. 7(f).

The first three main diagonal elements of Q0
d for the four

cases are shown in Fig. 8(a)–(d), respectively. It is seen that
the magnitude of Q0

d will increase as the intensity increases.
Moreover, Q0

d increases significantly when a fault occurs.

V. REAL FLIGHT TEST DATA VERIFICATION

To bridge the gap between academic research and real
practice, we performed several flight tests to collect flight data
when the aircraft is flying in turbulence. The Cessna Citation II
aircraft, which is owned by the Delft University of Technology
and the Dutch Aerospace Lab, is used.

Real flight data when the aircraft [shown in Fig. 9(a)] was
experiencing atmospheric turbulence are shown in Fig. 9(b).
The turbulence occurred at around t > 20 s when the aircraft
is descending. It is seen that the vertical acceleration Az and α
oscillate significantly due to the occurrence of the turbulence.

The DMAE with and without covariance adaptation will
be validated using these flight data. The original real data do
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Fig. 9. Real flight tests performed using the Cessna Citation II aircraft.
(a) Cessna Citation II aircraft for the real flight tests. (b) Response of the
aircraft during the presence of turbulence.

Fig. 10. ADS FDD using the DMAE without covariance adaptation in
the presence of real atmospheric turbulence. (a) pnf and paf for consecutive
ADS FDD. (b) Fault estimation for consecutive ADS FDD.

Fig. 11. Consecutive ADS FDD using the DMAE with covariance adaptation
in the presence of real atmospheric turbulence. (a) pnf and paf for consecutive
ADS FDD. (b) Fault estimation for consecutive ADS FDD. (c) Q0

d for
consecutive faults.

not contain ADS faults, and we add the same faults as in
the simulation to the real flight data. It should be noted that
injecting ADS faults online to manned aircraft is extremely
dangerous as the air data information is critical to flight
safety. However, it was demonstrated in [23] that if states and
faults are estimated in an unbiased sense, then the difference
of performing fault diagnosis online and offline using the
kinematic model is negligible.

Fig. 12. Simultaneous ADS FDD using the DMAE with covariance
adaptation in the presence of real turbulence. (a) pnf and paf for simultaneous
ADS FDD. (b) Fault estimation for simultaneous ADS FDD. (c) Q0

d for
simultaneous faults.

The fault detection using the DMAE without covariance
adaptation is shown in Fig. 10(a). Many false alarms appear
after t > 20 s, which is the occurrence time of the turbulence.
The fault estimation is also significantly affected by the
turbulence, as shown in Fig. 10(b).

The fault detection using the proposed DMAE with covari-
ance adaptation is shown in Fig. 11(a). All faults are detected,
and no false alarm is observed, which demonstrates the fault
detection performance of the proposed approach. The fault
estimates are shown in Fig. 11(b). All faults are estimated and
decoupled from the turbulence. The first three main diagonal
elements of Q0

d are displayed in Fig. 11(c). The results are
similar to those in simulation. The magnitude of Q0

d increases
when faults occur.

To further demonstrate the performance of the proposed
approach, simultaneous faults are also addressed. The detec-
tion of simultaneous faults is shown in Fig. 12(a). The
estimates of the simultaneous faults are shown in Fig. 12(b).
Again, all simultaneous faults are estimated and decoupled
from the effect of the turbulence. The first three main diagonal
elements of Q0

d are displayed in Fig. 12(c). Q0
d increases

significantly when faults occur or disappear.

VI. CONCLUSION

This brief addressed the ADS FDD when the aircraft is
experiencing turbulence. The proposed double-model adaptive
estimation with covariance adaptation can decouple and esti-
mate faults from turbulence.

To bridge the gap between academic research and industrial
practice, the proposed approach is validated using real flight
test data when the aircraft is flying in atmospheric turbulence.
An interesting future work would be to generate faults during
the flight. However, this is particularly dangerous as the air
data information is critical to flight safety and the validation
on unmanned aerial vehicles is recommended. Due to the
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challenge that the effects of faults and turbulence are coupled,
currently, the approach can only address bias faults. Address-
ing any types of faults in the presence of turbulence is still
under investigation.

APPENDIX

Both the no-fault filter and augmented fault filter estimate
the states using the UKF. In this appendix, we use the no-fault
filter as the example. For readability, subscript “nf” is omitted,
and all variables in this appendix refer to the no-fault filter.
Given state estimates x̂k−1 and error covariance matrix Pk−1
at time step k − 1, we can compute sigma points as follows:

Xk−1 = [x̂k−1, x̂k−1 − γ
√

Pk−1, x̂k−1 + γ
√

Pk−1] (38)

where Xi,k−1 are the sigma points of the states x with
dimension n (6 for the no-fault filter and 9 for the augmented
fault filter) at step k − 1. γ = (n + λ)1/2. λ = α2

0(n + κ)− n
with κ = 0 and α0 = 0.8.

Once the sigma points are obtained, we can derive the state
estimation x̂0

k and its error covariance matrix P0
k at time step k

using the following time update and measurement update.
1) Time Update: Based on the computed sigma points,

the predicted mean x̂k|k−1 and its error covariance matrix
Pk|k−1 are computed as follows:

X ∗
i,k|k−1 = Xi,k−1 +

∫ tk

tk−1

f̄ (Xi,k−1, u(τ ))dτ (39)

x̂k|k−1 =
2 n∑
i=0

W (m)
i X ∗

i,k|k−1 (40)

Pk|k−1 = P∗
k|k−1 + Gk−1 Qk−1GT

k−1
t

+ Ek−1 Qd,k−1 ET
k−1
t (41)

where P∗
k|k−1 = ∑2n

i=0 W (c)
i [X ∗

i,k|k−1 − x̂k|k−1][X ∗
i,k|k−1−

x̂k|k−1]T , and 
t = tk − tk−1. Q and Qd are the
covariance matrices of w [as defined in (20)] and
d [as defined in (3)], respectively. Pk|k−1 for the fault
filter is given in (31). Redraw sigma points as follows
[28, p. 233]:

Xk|k−1 = [x̂k|k−1, x̂k|k−1 − γ
√

Pk|k−1, x̂k|k−1

+ γ√
Pk|k−1]

then

Yi,k|k−1 = HkXi,k|k−1 (42)

ŷk =
2n∑

i=0

W (m)
i Yi,k|k−1 (43)

Pxy,k =
2n∑

i=0

W (c)
i [Xi,k|k−1 − x̂k|k−1][Yi,k|k−1 − ŷk]T

(44)

Pyy,k =
2n∑

i=0

W (c)
i [Yi,k|k−1 − ŷk][Yi,k|k−1 − ŷk]T + R

(45)

where W (m)
i and W (c)

i are the weights associated with
the i th point with respect to x̂k−1 and Pk−1 and are
calculated according to [29].

2) Measurement Update:

Kk = Pxy,k P−1
yy,k (46)

γk = yk − ŷk (47)

x̂0
k = x̂k|k−1 + Kkγk (48)

P0
k = Pk|k−1 − Kk Pyy,k K T

k (49)

where yk is the measurement vector. γk is the innovation, and
Kk is the Kalman gain of the UKF.

x̂0
k and P0

k are the state estimate and error covariance matrix
at time step k. They are used by the selective reinitialization
block shown in Figs. 1 and 2 to obtain x̂k and Pk for the
no-fault filter. Then, x̂k and Pk are regarded as the prior
knowledge for step k + 1, as denoted in (38).
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