
Enhancing Proof Assistant Error
Messages with Hints: A User Study

Master’s Thesis

Maria Khakimova

Enhancing Proof Assistant Error
Messages with Hints: A User Study

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Maria Khakimova

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2025 Maria Khakimova.

Cover picture: A drawing of Gellig, one of my partner’s chickens.

Enhancing Proof Assistant Error
Messages with Hints: A User Study

Author: Maria Khakimova
Student id: 5277736
m.

Abstract

Proof assistants are tools that allow programmers to write formal proofs. However,
despite the improvements made in recent years, there is still a limited number of published
user studies in improving the usability of dependently-typed proof assistants. This is espe-
cially true for investigating the effects of enhancing error messages on novice programmers,
even though it is a popular topic for imperative languages.

This thesis aimed to help fill this gap in knowledge by using Agda as a research vector.
We implemented hint enhancements for the error messages displayed upon three common
mistakes: forgetting whitespace, using confusable Unicode characters, and supplying too
few arguments to a function. A between-participants user study was then conducted
with 70 students to determine the effects that these error messages had on the usability of
Agda.

Results showed statistically significant improvements in the number of compiling
submissions, and the rated “helpfulness” of the error messages (when compared to the
original messages without hints). However, we were not able to determine if there was
any statistically significant impact on the overall speed at which students resolved the
errors. Furthermore, while we identified decreases in the ratings of “incorrect” hints, they
did not appear to significantly influence the success rate, or time taken to fix an error. We
concluded that enhancing error messages with hints is a promising avenue for improving
the usability of dependently-typed proof assistants.

Thesis Committee:

Chair: Dr. J.G.H. Cockx, Faculty EEMCS, TU Delft
Committee Members: Dr. C. Brandt, Faculty EEMCS, TU Delft

J. Reinders, Faculty EEMCS, TU Delft
S. Juhošová, Faculty EEMCS, TU Delft

m.khakimova@student.tudelft.nl

Preface

Somehow, I can’t quite believe that this is the end of the long journey that was my education
at TU Delft. Writing my thesis1,2 has been so hectic that I haven’t really been able to sit down
and process that fact, but now that I’m writing this preface it’s…huh.

Of course, there are many people that I would like to thank for helping me through all of
this:

• my wonderful supervisors, Jesper Cockx, Sára Juhošová, and Jaro Reinders, who have
supported me, and given much useful advice throughout this process,

• my partner, Eliott Afriat, for providing moral support whenever I asked for it (as well as
introducing me to Toby, who is perhaps the best cat in the world), and most importantly

• my parents, for everything. Words cannot express just how much they have helped me
throughout my entire education.

On a slightly different note, I would also like to thank this little chicken doodle that has
kept me sane through writing all of my thesis drafts:

The chicken doodle that used to be on the cover page for this thesis

Despite being hectically sketched with a mouse, she has bought me much joy throughout
the thesis process3.

Maria Khakimova
Delft, the Netherlands

June 17, 2025

1And of course, still working on PrescriptIO to make sure that it was in a good state for another user study.
2I have just realised that I cannot add footnotes to footnotes without trickery, and I am devastated.
3While I did not choose this thesis topic simply because Agda was named after a chicken, I did enjoy the fact

that it gave me the excuse to draw more chickens.

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Dependently-Typed Proof Assistants . 1
1.2 Enhancing Error Messages . 3
1.3 Research Questions and Methodology . 3
1.4 Thesis Overview . 5

2 Existing Agda Hints 7
2.1 Identifying Existing Hints in Agda . 7
2.2 Trends in Hint Structure . 8
2.3 How to Proceed With this Information . 11
2.4 Limitations . 11

3 Implementation 13
3.1 General Design and Implementation Decisions 13
3.2 Missing Space . 15
3.3 Unicode Confusables . 18
3.4 Too Few Args . 24

4 Experimental Setup 29
4.1 Recruitment . 29
4.2 Deploying the Survey . 29
4.3 The Experiment . 30
4.4 Pilot Study . 33

5 Results 35
5.1 Statistical Significance: The Mann-Whitney U Test 35
5.2 Programming Question Response Rate . 36
5.3 Subjective Opinions of the Error Messages . 36
5.4 Novices’ Performance . 41

6 Discussion 49

v

Contents

6.1 What Does The Data Say? . 49
6.2 Threats to Validity . 52

7 Related Work 55
7.1 Usability of Proof Assistants . 55
7.2 What Errors do Novice Programmers Make? 56
7.3 Enhancing Error Messages . 57
7.4 Improving Error Messages in Functional Languages 58

8 Conclusion 59
8.1 Advice for User Studies . 59
8.2 Further Work . 60

Bibliography 63

Acronyms 69

A Full List of Identified Hints in Agda 71
A.1 Directions . 71
A.2 Suggestions . 72
A.3 Questions . 74

B User Study: Brightspace Announcement 75

C User Study: Informed Consent 77

D Results: “Longest Intervals” Longer than 2 Minutes 79

vi

List of Figures

2.1 The number of existing hints found per hint type 8
2.4 The distribution of hints found with and without framing phrases 10

4.3 The WebLab interface on a programming question 31
4.4 The Likert scale, as displayed in WebLab . 32

5.1 The number of participants who received the survey variants 36
5.2 The total number of programming question submissions, those with timing data

and those without . 36
5.3 The distribution of the number of programming question submissions per question 36
5.4 Overview of novices’ perceptions of the helpfulness of the error messages 37
5.6 Perceptions of the error message helpfulness: all submissions (“Correct” hints) . 38
5.8 Perceptions of the error message helpfulness: unsuccessful submissions (“Correct”

hints) . 39
5.10 Perceptions of the error message helpfulness: all submissions (“Incorrect” hints) 40
5.12 Perceptions of the error message helpfulness: unsuccessful submissions (“Incor-

rect” hints) . 41
5.14 Aggregated number of responses per question . 42
5.16 Number of responses per question (“Correct” hints) 43
5.18 Number of responses per question (“Incorrect” hints) 44
5.20 Box plot comparing the times spent per question (“Correct” hints) 46
5.23 Box plot comparing the times spent per question (“Incorrect” hints) 47

vii

List of Tables

2.2 The distributions of the identified information orderings among different hint types 9
2.3 The distributions of the identified framing phrases among different hint types . . 9
2.5 The distributions of the identified structural presentations among different hint

types . 10

4.1 The lecture structure in CSE3100: Functional Programming 29
4.2 The five groups of questions used in the user study 31
4.5 The ten programming questions used in the user study 33

5.5 Aggregated results of the single-tailed MWU tests (perceived helpfulness) 37
5.7 Single-tailed MWU results: are “correct” hints more helpful (all submissions)? . 38
5.9 Single-tailed MWU results: are “correct” hints more helpful (unsuccessful sub-

missions)? . 39
5.11 Single-tailed MWU results: are “incorrect” hints more misleading (all submissions)? 40
5.13 Single-tailed MWU results: are “incorrect” hints more misleading (unsuccessful

submissions)? . 41
5.15 Aggregated results of the single-tailed MWU tests (success rate) 42
5.17 Single-tailed MWU results: do “correct” hints increase the success rate? 43
5.19 Single-tailed MWU results: do “incorrect” hints decrease the success rate? 44
5.21 Comparison of the mean and median times spent per question (“Correct” hints) 46
5.22 Single-tailed MWU results: do “correct” hints decrease the time spent? 46
5.24 Comparison of mean and median times spent per question (“Incorrect” hints) . 48
5.25 Single-tailed MWU results: do “incorrect” hints increase the time spent? 48

6.1 A comparison of how = (U+003D) and ᐀ (U+1400) are presented in WebLab . . 50

ix

Chapter 1

Introduction

Encountering error messages is an unavoidable part of programming, with Java program-
mers spending 13%-25% of their time reading compiler error messages [1]. Error messages
communicate information to developers, aiding them in understanding the roots of the errors
and bringing them closer to a working program. This feedback is especially important to
novice programmers, as they have limited experience with the language.

Unfortunately, error messages are known to cause significant frustration to novice pro-
grammers, and are frequently considered to be a “barrier to progress” [2]. Inscrutable or
frustrating error messages can cause students to lose confidence [3] and potentially demo-
tivate them from learning the language. Additionally, confusing error messages can lead
developers “down the wrong path to correcting the problem” [4], which novices are most
vulnerable to. Such error messages can also indirectly affect educators, forcing them to explain
the same error message to multiple students [3].

When considering that novices do read error messages [5], and that the difficulty of
reading error messages has been found to predict performance in programming tasks [1], it is
clear that making error messages novice-friendly is an important task. To address this concern,
multiple researchers have tried to use Human-Computer Interaction (HCI) guidelines to
enhance error messages in imperative languages like Java, C++, and Python [6, 7, 8, 2, 9, 10,
11, 5, 12, 13, 14, 15]. However, there has been limited research into enhancing error messages
provided in dependently-typed languages or proof assistants.

1.1 Dependently-Typed Proof Assistants

Dependent types are types which can “depend on elements of other types” [16], allowing for
more expressive types, as well as assisting in compiler optimisation and error detection [17].
For example, in a dependently-typed language like Agda, we can define a dependent type
Vec␣A␣b as follows1:

data␣Vec␣(A␣:␣Set␣a)␣:␣ℕ␣→␣Set␣a␣where

␣␣[]␣␣:␣Vec␣A␣zero

␣␣_∷_␣:␣∀␣(x␣:␣A)␣(xs␣:␣Vec␣A␣n)␣→␣Vec␣A␣(suc␣n)

Here, the type Vec␣A␣n would refer to a vector with elements of type A and a given length
n. Using this definition, we can write functions like append, which has the following type
signature verifying that the length of the final vector is correct:

1This definition of a vector comes from the Agda standard library: https://agda.github.io/agda-stdlib/
v2.2/Data.Vec.Base.html

1

https://agda.github.io/agda-stdlib/v2.2/Data.Vec.Base.html
https://agda.github.io/agda-stdlib/v2.2/Data.Vec.Base.html

1. Introduction

Vec␣A␣m␣→␣Vec␣A␣n␣→␣Vec␣A␣(m␣+␣n)

Furthermore, the expressive types permitted by a dependently typed system allow such
languages to be used as proof assistants [18].

Proof assistants have successfully been applied in many projects. For example, the Com-
pCert project used the dependently-typed Rocq Prover (formerly known as Coq) to implement
the formally verified C compiler CompCert C [19]. This was done to prevent the risk of mis-
compilation, where a compiler inserts bugs into programs during compilation. Furthermore,
ACL22 has been used in industrial projects by companies such as Motorola, AMD, Intel, and
Oracle to verify both software and hardware [20].

1.1.1 What is Agda?

We have selected Agda as a research vehicle for investigating the effects of enhancing error
messages in dependently-typed proof assistants. This was due to our familiarity with the
language, as well as it being commonly used in education (particularly at TU Delft).

Agda is a dependently-typed functional programming language and proof assistant that is
based on intuitionistic type theory [21]. It allows programmers to interactively work together
with its compiler to produce formal proofs [22], be that abstract mathematical proofs, or
the formal verification of software. The proofs that users can write about their programs in
Agda can ensure that software is correct by construction, as opposed to writing tests which
famously show the presence of bugs, but not their absence [23].

However, Agda, as well as other dependently-typed languages, has not experienced
widespread usage [24], and is known to have a steep learning curve and to not be accessible
to novice programmers [25, 26]. Researchers have attributed this to the mathematics-oriented
design [25], the complexity of the underlying theories behind proof assistants [24, 26], and
their experimental nature [24]. However, the quality of error messages also plays a role in
novices’ experience with Agda, with a recent user study finding that unclear error messages
were the most prominent obstacle encountered by novice programmers [25].

In addition to complex type errors induced by the dependent type system, Agda has
syntax features that are not frequently present in other languages. For example, students
tend to find issues with the unconventional importance of whitespace [25]: given a mixfix
operator _,_, (a,␣b) and (a␣,␣b) are not equivalent. This is because in the first case a, gets
parsed as a variable name.

Additionally, Agda has Unicode support which is used in most library code. While it
is not unique in this regard, with languages like APL [27], Julia [28], Raku [29], and the
now-discontinued Fortress [30] also supporting non-standard Unicode, these are languages
that the majority of novices in Agda are not likely to have learnt or worked with previously.
This can lead programmers typing visually identical identifiers, such as ! (U+0021) instead
of ǃ (U+01C3), with one being in scope and the other not. This type of confusion has already
been noted in many Rust projects [31].

While research has been done to improve error messages in a dependently-typed core
calculus through modifying a higher-order unification algorithm with replay graphs [24],
no user studies have been conducted to test if programmers prefer the new error messages
over originals. Additionally, no studies have been conducted in enhancing error messages in
dependently-typed languages by using modern HCI guidelines.

We believe that improving the usability of dependently-typed languages like Agda is vital
for their widespread adoption. By improving the quality of error messages from a novice
standpoint, we aim to make it a more enjoyable language to learn, increasing its usage and
thereby the presence of formally verified software.

2ACL2 is a proof assistant based on first-order logic.

2

1.2. Enhancing Error Messages

1.2 Enhancing Error Messages

In 2019, Becker et al. conducted a literature review on research into the effectiveness of error
messages and their enhancements. Based on the results of their survey, they identified nine
guidelines for designing and enhancing error messages:

• Increase Readability,
• Reduce Cognitive Load,
• Provide Context,
• Use a Positive Tone,
• Show Examples,
• Show Solutions or Hints,
• Allow Dynamic Interaction,
• Provide Scaffolding,
• Use Logical Argumentation, and
• Report Errors at the Right Time.

While there is a lot of empirical evidence supporting the enhancements of error messages
[2, 9, 10, 11, 5, 32], there are several gaps identified in the literature:

• There is limited research that isolates the effect of one enhancement on the usability of
error messages.

• None of the research that we were able to identify into improving or enhancing error
messages in dependently-typed languages (including proof assistants) conducts a user
study to empirically measure the effects of the improved error messages on users.

The focus of this study will thus be to enhance Agda’s error messages with one recommen-
dation from Becker et al.’s guidelines, and to evaluate the obtained enhanced error messages
(EEMs) with a user study.

Out of the potential enhancements, we decided to provide hints or solutions to the pro-
grammer. Although there is a lot of empirical evidence that supports the positive impact of
hint error message enhancements [7, 14, 6, 8], some researchers also warn against providing
hints, with worries that they can lead users “down the wrong path” [4]. Furthermore, de-
spite Becker et al.’s comprehensive literature review finding the greatest number of papers
providing empirical evidence for showing solutions or hints, all of the studies combined the
addition of hints with other enhancements. Therefore, it is difficult to isolate the effect that
augmenting error messages with hints has on the usability of the error messages.

1.3 Research Questions and Methodology

The goal of this thesis is to investigate how hint-based enhancements to Agda’s error messages
help novices learn and use themmore effectively. Hence, we investigate the following research
questions:

• RQ1 Which kinds of hints or solutions provided in Agda’s error messages are valued by novices?
• RQ2 To what extent does providing novices with solutions or hints in Agda’s error messages

improve their ability to fix errors?

RQ2 is further split into the following sub-questions:

• RQ2.1 How does enhancing Agda’s error messages with hints influence the probability that
novices are able to resolve the error?

3

1. Introduction

• RQ2.2 How does enhancing Agda’s error messages with hints affect the time novices spend
fixing the error?

In order to analyse the usefulness of enhancing error messages with hints, it is necessary
to have samples of such error messages. We could obtain these in three ways:

1. use existing Agda error messages that are already augmented with hints,
2. design “ideal” hints for error messages that do not have them, without implementing

them in Agda, or
3. design hints for errormessages that do not have them, and implement them as extensions

to Agda.

Aswill be discussed in Chapter 2, there are already errormessages incorporating hints that
novices can encounter frequently. The helpfulness of these hints could thus be investigated
by having two versions of Agda — the original version, and one with the hints removed. This
type of study would allow us to analyse if more resources should be allocated to enhancing
error messages in Agda and other dependently-typed languages. However, it would not
help in advancing the quality of Agda’s error messages. As such, there would be no tangible
benefits to novice Agda users in the short-term. Most importantly, this would make the user
study test the effect of removing hints instead of adding them, which might have different
results. This would mean that the findings of such a user study would not directly support
enhancing error messages with hints.

The second option was to create “ideal” error messages without implementing them in
Agda. This was an appealing option because it would remove the restrictions imposed by the
structure of the Agda compiler, as well as those placed by time limitations. We could have
then studied their helpfulness by having the participants give a walkthrough of what they
thought the error was, and how they would go about solving it.

However, this option was also dismissed, as it would not allow participants in the user
study to respond to the error messages in a representative manner. People do not normally
give cognitivewalkthroughswhile coding, and the process could influence how they approach
fixing the code. For example, they might make fewer small exploratory changes. Furthermore,
if the hint misled the participants, they would not encounter the next error message caused
by their attempted “fix”. Additionally, we wanted the enhanced error messages to be realistic
within the confines of what the Agda compiler allowed. While this would mean that the
quality of the hints would not reach the ceiling of what is possible, this would allow this
thesis to give better advice for how to proceed with enhancing error messages in the future.

Thus, the final option was chosen, and the enhanced error messages were both designed
and implemented in Agda. Although this would limit the number of error messages we
would be able to enhance with hints and investigate, this method would allow the user study
to collect the most representative data.

This thesis answers the research questions as follows:

1. We examine HCI literature to determine whether it supports including solutions or hints
in error messages as a method of enhancing such messages for novice programmers.

2. We investigate the Agda codebase to see if Agda already implements hints or solutions
in error messages, using the findings to make our hint additions as consistent with prior
work as possible.

3. We select several error messages that lack hints, and enhance them with potential
solutions/hints in the Agda codebase:

Hint Mistake Explanation Error Type

Missing Space Forgetting whitespace between variables or operators [NotInScope]

Unicode Confusables Using the wrong visually confusable Unicode character [NotInScope]

Too Few Args Not enough arguments passed to a function [UnequalTerms]

4

1.4. Thesis Overview

4. We evaluate the usefulness of the enhanced error messages by conducting a user study
where novice Agda programmers are asked to fix errors in pre-written code and reflect
on the enhanced error messages.

We provide the following contributions:

1. We provide an overview of the existing hints in Agda’s error messages in Chapter 2.
2. We implement hint enhancements for the selected enhanced error messages (see Chap-

ter 3), which are made available at

• Missing Whitespace: https://github.com/mkhakimova42/agda/pull/3
• Unicode Confusables: https://github.com/mkhakimova42/agda/pull/2
• Too Few Args: https://github.com/mkhakimova42/agda/pull/1

3. We create a user study design, with recommendations for consecutive user studies in
Chapter 4.

4. We provide a discussionwith recommendations about if and how error messages should
be enhanced with hints in Agda and similar dependently-typed languages in Chapter 6.

1.4 Thesis Overview
The thesis is structured as follows. In Chapter 2 we conduct a brief survey of error messages
in Agda that are already augmented with hints, and discuss the trends in formatting these
hints. Then, in Chapter 3 we discuss the error messages that we selected to enhance with
hints, and how they were enhanced. This is followed up by Chapter 4, where we present the
design of the user study, the results of which are displayed in Chapter 5. Chapter 6 provides
a discussion of the results, as well as the potential threats to validity. We present a survey of
the related work in Chapter 7, and give our conclusions, as well as advice for future work, in
Chapter 8.

5

https://github.com/mkhakimova42/agda/pull/3
https://github.com/mkhakimova42/agda/pull/2
https://github.com/mkhakimova42/agda/pull/1

Chapter 2

Existing Agda Hints

One of the important principles for error message design is consistency in how error messages
are presented (e.g. if error messages do not anthropomorphise the compiler1, this rule should
be applied to all errormessages) [33]. This serves to reduce cognitive load on the programmers,
allowing them to more efficiently process the information [3]. Work on enhancing error
messages in Agda (in addition to all other languages) should thus strive to maintain as much
consistency with existing error messages as possible.

The purpose of this section is to understand the current state of error message hint
augmentations in Agda. We identified error messages that were augmented with hints from a
subset of the Agda codebase, as described in Section 2.1. We then categorised the hints based
on:

• the type of hint, and
• the structural presentation of the hint.

We analyse the patterns in these categories in Section 2.2, and provide advice for future
work with hints in Agda’s error messages in Section 2.3. Furthermore, we briefly discuss the
limitations of this investigation in Section 2.4.

2.1 Identifying Existing Hints in Agda

To identify hints within existing error messages, we needed to determine what criteria to use
to classify text within an error message as a “hint”. For the purpose of this survey, we used
the following criteria:

• A hint has to be an addition to the base error message.
• A hint needs to provide a (potential) solution to the programmer. This can either be

done through directing the programmer to do something, or asking them if they “meant”
or “wanted” to do something else.

Agda is a massive project, with many unique error messages — as an approximation, we
identified 1692 test cases in the test/Fail directory that test error messages. A thorough
investigation of all the hints that can be presented was thus out of scope. Therefore, we used
heuristics to attempt to get as many existing hints as possible. Although we cannot guarantee
that our list is comprehensive, it should still give an idea of the general patterns in howAgda’s
hints are structured.

In Agda, there are “error” and “warning” messages, both of which are relevant to our
investigation. Many of Agda’s warnings are classified as “error warnings”: errors that only get

1The compiler can be anthropomorphised in sentences like “I give up!” or “I do not understand…”.

7

2. Existing Agda Hints

displayed aswarnings to allow type-checking to continue [34]. Furthermore, warningmessages
can be treated as errors with the use of flags [34]. Therefore, we looked for occurrences of
both, combing over the modules where they are defined:

• Agda.Interaction.Options.Errors

• Agda.Syntax.Concrete.Definitions.Errors

• Agda.TypeChecking.Errors

• Agda.TypeChecking.Serialise.Instances.Errors

• Agda.Interaction.Options.Warnings

• Agda.TypeChecking.Monad.Base.Warning

• Agda.TypeChecking.Warnings

• Agda.TypeChecking.Pretty.Warning

• Agda.Syntax.Parser.Monad

Furthermore, since parseErrors are designed to have the error message passed to them,
we also looked for all instances of parseError in the Agda project.

2.2 Trends in Hint Structure

The full list of the identified hints can be viewed in Appendix A. For the analysis of the results
to be more specific to hint context, all the hints were categorised based on their type. The type
of hint was categorised into three groups:

• Directions: directions to the programmer,
• Suggestions: tentative suggestions to the programmer, and
• Questions: questions directed at the programmer.

Figure 2.1 shows the distribution of the types among the recorded hints.

Figure 2.1: The number of existing hints found per hint type

This section looks at three aspects of the hints:

• the order of the presented information (see Section 2.2.1),
• the framing phrases that were used (see Section 2.2.2), and
• the structural presentation of the hints (see Section 2.2.3).

8

2.2. Trends in Hint Structure

2.2.1 Information Order

One factor that differed between error message hints was the order in which information
is presented. Error messages oscillating between different orders can potentially make it
less clear where the programmer needs to look to get the information they are looking for.
Therefore, we believed that keeping this order consistent is desirable.

We identified eight different orderings of information in the Agda hints. Table 2.2 shows
the distribution of these information orderings among the different hint types.

Information Order Directions Suggestions Questions Total Percentage Use

Instruction → Purpose 10 4 0 14 34%
Instruction → Purpose → Instruction 1 0 0 1 2%
Purpose → Instruction 2 0 0 2 5%
Purpose → Expectation 2 0 0 2 5%
Conditional → Instruction 2 0 0 2 5%
Instruction → Conditional 0 1 0 1 2%
Instruction 0 10 2 12 29%
Expectation 0 2 0 2 5%
Assumption 0 0 5 5 12%

Total 17 17 7 41

Table 2.2: The distributions of the identified information orderings among different hint types

It can be seen that the information order is not consistent among the hints. “Instruction →
Purpose” was the most common information order. However, it is only used 34% of the time.
Just “Instruction” (29%) and “Assumption” (12%) should also be noted for being the most
popular within the Suggestions and Questions categories respectively.

2.2.2 Framing Phrases

Another feature of the hints that we identified were framing phrases that encompassed or
served as a preamble to the content of the hint. Keeping this usage of framing phrases (if
any) consistent would allow programmers to quickly identify if a solution is being presented.

We distinguished between 11 different framing phrases over 24 hints, which can be seen
in Table 2.3.

Framing Phrases Directions Suggestions Questions Total Percentage Use

however, … 1 0 0 1 5%
suggestion: … 0 3 0 3 14%
hint: … 0 2 0 2 10%
possible solution: … 0 1 0 1 5%
possible fix: … 0 4 0 4 19%
consider … 0 1 0 1 5%
it could also mean that you need to … 0 1 0 1 4%
maybe … instead 0 1 0 1 4%
you may want to … 0 2 0 2 5%
you can … 0 1 0 1 5%
perhaps you … 0 0 3 3 10%
did you … 0 0 4 4 19%

Total 1 16 7 24

Table 2.3: The distributions of the identified framing phrases among different hint types

From Table 2.3 we can see that there is no overlap between the framing phrases used for
the different hint types. Additionally, we can observe that there are two framing phrases that
were the most popular within certain hint types:

9

2. Existing Agda Hints

• “possible fix: ...”, which makes up 31% of the framing phrases in the Suggestions
hints; and

• “did you ...”, which makes up 57% of the framing phrases in the Questions hints.

However, framing phrases are not always used. This is highly dependent on the category
of hint, as is visualised in Figure 2.4.

Figure 2.4: The distribution of hints found with and without framing phrases

We can see that framing phrases are almost always used for hints that are presented
as Suggestions or Questions, indicating that some form of framing phrase has to be used.
However, Directions hints tend to not have framing phrases, so future hints of this type
should avoid them to be consistent with existing messages.

2.2.3 Structural Presentation

Another aspect of the hints that can be used to unify them is their structural presentation.
Based on the identified hints, we split the structural presentations into the following categories:

• The hint is presented as a separate sentence from the error message.
• The hint is a direct continuation from the base error message, with no delimiting punc-

tuation.
• The hint is within parentheses.

The distribution of these categories can be seen in Table 2.5.

Structural Presentation Directions Suggestions Questions Total Percentage Use

New sentence 10 10 2 22 54%
Sentence continuation 2 1 0 3 7%
Parenthetical 5 6 5 16 39%

Total 17 17 7 41

Table 2.5: The distributions of the identified structural presentations among different hint types

We can see that the structural presentation is dependent on the “type” of error message:
Directions and Suggestions hints aremostly (59% of the time) presented as separate sentences
to the base hint, whilst Questions hints are usually (71% of the time) parenthetical.

10

2.3. How to Proceed With this Information

2.3 How to Proceed With this Information
The results show a lack of consistency between the existing hints regarding the information
order, framing phrases used, and their structural presentation. As there is no clear winner for
the most popular style of hint, we cannot give a definitive answer as to which format(s) new
hints should use. However, we can provide the following (very) tentative advice for keeping
a new hint consistent with prior hints:

• All new hints should follow the “Instruction → Purpose” order of information.
• A new hint of the Directions type should be a separate sentence with no framing phrases.
• A new hint of the Suggestions type should be a separate, capitalised sentence with

“Possible fix:” as a framing preamble.
• A new hint of the Questions type should be within parentheses, and be enclosed in the

“did you ... ?” framing phrase.

However, it should be noted that this advice is specifically for how to keep new hints
consistent with existing hints. We make no statement as to which of these hint formats or types
are best to use in any other measures. Furthermore, we strongly recommend that further
work be done to unify the syntax patterns and structural presentations of the existing hints in
Agda to reduce cognitive load on programmers.

2.4 Limitations
There are several factors to take into account when considering the representativeness of
this investigation. These exist both in the identification of the hints, and the analysis of the
findings.

Unfortunately, we cannot guarantee that all the hints that exist in the Agda codebase were
identified. Despite trying to examine as many error messages as possible, we only looked at a
subset of the code. Modules outside the Error and Warning modules that were investigated
can potentially also have their own error messages (with accompanying hints) that were
not identified. Furthermore, the identification was done manually, by reading over every
error message. This allows for human error to influence the number of identified hits. As the
sample size of the hints was very small, this could dramatically influence the results of the
survey.

Furthermore, not everyone may agree with our definition of “hints” that were used in
the identification process. One of the necessary criteria to be considered a “hint” was that
it was secondary information. However, this meant that two similar error messages that
arguably contain the same information are treated differently. For example, despite conveying
similar information to the user, Listings 2.1 and 2.2 are categorised differently: Listing 2.1 is
augmented with a hint, whilst Listing 2.2 is not.
Universe Prop is disabled
loooooooooooooooooomoooooooooooooooooon

error message

(use options --prop and --no-prop to enable/disable Prop)
loomoon

hint

Listing 2.1: Error message content from NeedOptionProp in Agda.TypeChecking.Errors

Option --rewriting needed to add and use rewrite rules
looomooon

error message

Listing 2.2: Error message content from NeedOptionRewriting in Agda.TypeChecking.Errors

The small sample size of existing hints exacerbates these issues, and can reduce both
the validity and reliability of the results. Additionally, this means that any future work on
adding hints to error messages in Agda is going to significantly change the distributions of
the identified features within the hints.

11

2. Existing Agda Hints

Finally, the results looked at the number of distinct hints that were implemented in the
codebase, and were not influenced by how common they were. Unfortunately, identifying
which hints were most commonly displayed was out of scope for this survey. This means that
the distributions of hint formatting features that we obtained may not be representative of
what a programmer actually experiences.

12

Chapter 3

Implementation

To be able to investigate the usability of EEMs enhanced with hints in Agda, it is necessary to
have samples of such error messages.

All the “enhanced” error messages were implemented in a personal fork of the Agda
project1, with the goal of merging them into the Agda repository. The hints were added to ex-
isting error messages by modifying the Agda.TypeChecking.Pretty.Warning and Agda.Type-

Checking.Pretty.Call modules. Whilst the Agda.TypeChecking.Pretty.Warning module
provides “pretty” string representations of errors to programmers, Agda.TypeChecking.Pret-
ty.Call is used to provide additional context to errors.

Three error messages were selected that would get augmented with hints:

Hint Mistake Explanation Error Type

Missing Space Forgetting whitespace between variables or operators [NotInScope]

Unicode Confusables Using the wrong visually confusable Unicode character [NotInScope]

Too Few Args Not enough arguments passed to a function [UnequalTerms]

These were error messages that were found to be confusing by novices taking the CSE3100
Functional Programming course2 at TU Delft, a course which covers both Haskell and Agda.
We also believed these error messages to give the best outcome for the user study without
having tomake toomany changes to theAgda compiler. Thismade themgood for investigating
if further hint enhancements to error messages in Agda is worthwhile, and what direction
such work should take.

The two [NotInScope] errors are raised during scope checking, wherein the scope checker
verifies that all the variables, functions, and operators used are in scope. Meanwhile, the
[UnequalTerms] error message is raised during the process of type-checking code, where the
constraints of the types are verified and enforced.

This section will discuss the design and implementation details for the hints for each of
the error messages. It will go over why each error message was selected, what we wanted
the hint to look like, and what it looks like in the implementation. Furthermore, we provide
a discussion of the shortcomings of our implementation, with recommendations for future
work into implementing these hints.

3.1 General Design and Implementation Decisions

Before the design and implementation of each individual hint is discussed, we first explore a
few general decisions that we made. In this subsection, we will first review how we used the
results of Chapter 2 to inform the hint structure that we used. This will be followed up by a

1
https://github.com/mkhakimova42/agda

2
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=67585

13

https://github.com/mkhakimova42/agda
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=67585

3. Implementation

discussion of why we did not re-run the type-checker for each potential suggestion, even if it
would have guaranteed that “incorrect” hints would not be presented.

3.1.1 Maintaining Consistency with Existing Hints

In Chapter 2 we identified that a significant portion (41%) of existing hints were presented
as directions to the programmer. However, literature warns against this presentation, as we
“cannot know the actual intent of the programmer” [3]. Hence, we decided to look at the
other two options: presenting the hint as a suggestion (statement) or a question.

Although we identified significantly fewer hints structured as questions as opposed to
suggestions, we also looked at the other hints that were presented in similar contexts to
decide between these two presentations. From Appendix A, we can see that the most relevant
existing hints are:

• (did you forget space around the ':'?)

• (did you forget space around the '->'?)

• (did you mean [SUGGESTION] ?)
• (did you supply too many arguments?)

The first three were the only hints that we identified that accompany [NotInScope] errors,
making them useful guidelines for our additional [NotInScope] hints. Furthermore, the last
hint was a direct parallel to the [UnequalTerms] hint that we want to propose for too few
arguments being supplied to a function. This overwhelming majority use of structuring the
hints as (did you ... ?) questions led us to consider using the same format for our new
hints. This allowed them to stay consistent with hints that programmers are used to seeing in
this context.

Based on this information, we decided to structure all of our hints to have the parenthetical
did you ... ? format. To stay consistent with other error messages of this format, the
information order we used was just “Assumption”. The rest of the error message was kept
the same, as the goal was to investigate the effect of enhancing error messages with hints, and
not enhanced error messages in general.

3.1.2 Not Re-Running the Type-Checker for Suggestions

Ideally, the hint would be presented only in situations when applying the fix suggested by
the hint would “fix” the code3. However, given the scope of the research, and the limitations
of the Agda compiler, we were not able to do this.

When there is only one error in the code, it would be possible to determine if the fix was
useful (assuming that there was a way to have Agda type-check all of the generated code
with the potential fixes): if the type checking succeeds, then the fix is useful, and should be
proposed to the programmer.

Unfortunately, there may be situations when error that we are enhancing is not the only
problem in the code, and fixing it makes the compiler display another error message. The
previous strategy would then not work, as type-checking would still fail, even if the fix is
correct. Thus, the hint would not get displayed in this situation. Furthermore, since the Agda
compiler only knows one error4 at a time, the number of error messages cannot be used as a
heuristic to determine if the fix “improved” the situation either. Checking if the error that is
encountered changes does not make for a good heuristic either, as that can also be a result of
the applied fix causing the error.

3Although even this is arguable, as we cannot know the intentions of the programmer [3]
4Note that this does not apply to warnings unless the -W error or --warning=error option is used [34].

14

3.2. Missing Space

The Trade-Off

As a result of not being able to accurately verify the usefulness of all the hints with the type-
checker, we had to consider the following trade-off between the following options:

• We do not re-run the type-checker on suggestions: the hint is displayed too frequently,
even in cases where the suggestion does not fix the error.

• We re-run the type-checker on suggestions: the hint is displayed too infrequently, not
appearing in cases where the suggestion would fix the error.

Not Re-Running the Type-Checker If the error message is too frequent and displays irrele-
vant suggestions, the programmer might be led down the wrong path to solving the error,
which may lead to significantly more confusion if the programmer trusts the hint to be correct.
This effect may be stronger in novice programmers, who may not trust their ability to write
Agda code. This in turn can make programmers ignore the hints in the long run, making the
enhancement pointless.

Re-Running the Type-Checker If the hint is not presented frequently enough, the program-
mer may not attempt the actions that are usually suggested to them by hints. This can happen
even when they are the “correct” fix, as they are used to the hint giving that guidance. The
sporadic presentation of the hints from the point of view of the programmer can exacerbate
this, as before the error is resolved they cannot tell that there is another error in the code. This
can make programmers spend much longer trying to fix the code.

Furthermore, thiswould require the type-checker to be re-run for each potential suggestion.
Running the Agda type-checker is slow5, especially on large projects that use external libraries.
However, even when using heuristics to determine if a suggestion is plausible, there can
still be several proposed solutions. Re-running the type-checker for of these solutions can
dramatically increase the amount of time a programmer has to wait to type-check their code,
decreasing the usability of the overall system. Since novice programmers commonly repeat
errors, and are good indication that the student is struggling [35, 2], this increased compilation
time might disproportionately affect novice programmers6.

Conclusion In the end, we chose to display the hints too frequently, as we hypothesised
that the novices would be able to recover from the incorrect hint without too much difficulty,
and the experimental setup would allow us to test this claim. This means that all of the EEMs
can potentially display irrelevant suggestions which can lead programmers “down the wrong
path”, as Marceau et al. warned [4].

Although there may be a work-around for both the efficiency and effectiveness of an
implementation that does re-run the type-checker, implementing and testing this was out of
scope for this project. We leave to future work.

3.2 Missing Space
When a programmer forgets mandatory spaces around mixfix operators, they can encounter a
[NotInScope] error thrown by the type-checker7. In prior research, Juhošová et al. identified
this to be a common mistake made by novice Agda programmers [25].

5While type-checking usually takes several seconds for larger files, this can go up to the order of minutes in
extreme cases.

6Although it should be noted that novices are also less likely to work on larger files.
7It should be noted that [NotInScope] is not the only type of error that can arise from this mistake, with

other possibilities like [NoParseForLHS], or [CannotApply]. However, for the purposes of investigating if this
enhancement is useful, we will be focusing on the [NotInScope] instance of the hint. The same applies to the
other error messages discussed in this section

15

3. Implementation

Consider the following function from the Data.Product.Base module in the Agda stan-
dard library [36]:

swap␣:␣A␣×␣B␣→␣B␣×␣A

swap␣(x␣,␣y)␣=␣(y␣,␣x)

Notice the spaces around the ,. These are necessary for the comma to get interpreted as
the defined mixfix operator. Now consider that the programmer forgets a space, as is custom
with using commas in regular text and most programming languages:

swap␣:␣A␣×␣B␣→␣B␣×␣A

swap␣(x␣,␣y)␣=␣(y,␣x)

In popular programming languages like Java and Python, one would not expect omitting
space prior to a comma to affect the code’s output. However, attempting to load an Agda file
with this code will result in the following error message:

/home/m/Documents/error/examples/swap.agda:8,17-19:␣error:␣[NotInScope]

Not␣in␣scope:

␣␣y,␣at␣/home/m/Documents/error/examples/swap.agda:8,17-19

when␣scope␣checking␣y,

Without the space before the comma, y, gets interpreted as one name, instead of a variable
y followed by an operator ,. This is due to a fundamental design decision in Agda, wherein
names are allowed to use almost all Unicode characters, excluding whitespace and the special
characters .;{}()@" [37]. This feature is used frequently in Agda code, including the Agda
standard library. Take as an example the following code from Algebra.Properties.Group

[38]:

x∙y⁻¹≈ε⇒x≈y␣:␣∀␣x␣y␣→␣(x␣∙␣y␣⁻¹)␣≈␣ε␣→␣x␣≈␣y

x∙y⁻¹≈ε⇒x≈y␣x␣y␣x∙y⁻¹≈ε␣=␣begin

␣␣x␣␣␣␣␣␣␣␣␣≈⟨␣inverseˡ-unique␣x␣(y␣⁻¹)␣x∙y⁻¹≈ε␣⟩

␣␣y␣⁻¹␣⁻¹␣␣␣≈⟨␣⁻¹-involutive␣y␣⟩

␣␣y␣␣␣␣␣␣␣␣␣∎

As we can see, the names use non-standard Unicode characters very liberally. This leads
to the unusually strong requirement to place whitespace between all names and operators,
which might surprise novice Agda programmers. Looking at the example above, x∙y⁻¹≈ε is a
variable of type (x ∙ y ⁻¹) ≈ ε, and the two cannot be used interchangeably. This type of
naming convention is common in the Agda community [39].

However, this behaviour can be interpreted as being inconsistent. Whitespace is not
necessary around reserved special characters, as they cannot be used within a valid name.
This means that (x) is equivalent to (x), whilst [x] and [x] have different meanings
(given a user or library-defined operator [_]). This can be confusing to novices who are not
used to such behaviour.

Whilst this behaviour is unusual amongst popular programming languages, Agda is not
the only language that imposes strict whitespace usage. For example, MetaMath8 is even
stricter than Agda, requiring space even around normal brackets (). If one were to attempt to
prove that 2 + 2 = 4, the goal would be the following:

|-␣(␣2␣+␣2␣)␣=␣4

However, assume that the programmer omits spaces as such:

8
https://us.metamath.org/

16

https://us.metamath.org/

3.2. Missing Space

|-␣(2␣+␣2)␣=␣4

Upon encountering this proof step, the metamath-lamp9 proof assistant interprets (2 as
one identifier, and displays the following error:

The␣symbol␣'(2'␣is␣not␣declared.

However, such languages are not mainstream, and Agda novices are unlikely to have
encountered them before tackling Agda. Therefore, it is likely that they will not be familiar
with such restrictions.

3.2.1 Designing the Hint

Before implementing the EEM in Agda, it first had to be designed. Taking the previous
example:

swap␣:␣A␣×␣B␣→␣B␣×␣A

swap␣(x␣,␣y)␣=␣(y,␣x)

Recall that the error message displayed to the programmer was the following:

/home/m/Documents/error/examples/swap.agda:8,17-19:␣error:␣[NotInScope]

Not␣in␣scope:

␣␣y,␣at␣/home/m/Documents/error/examples/swap.agda:8,17-19

when␣scope␣checking␣y,

Asdecided in Section 3.1.1, the hintwas to be structured as (did you mean ... ?), leaving
the base error message unchanged. The enhanced error message thus added line 4 to the
original error message, resulting in the following being displayed to the programmer:

/home/m/Documents/error/examples/swap.agda:8.17-19:␣error:␣[NotInScope]

Not␣in␣scope:

␣␣y,␣at␣/home/m/Documents/error/examples/swap.agda:8.17-19

␣␣␣␣(did␣you␣forget␣whitespace␣in␣␣'y␣,'?)

when␣scope␣checking␣y,

If there are multiple viable hints, they get appended to the hint as such:

(did␣you␣forget␣whitespace␣in

␣␣␣␣␣␣␣'x␣xx'␣or

␣␣␣␣␣␣␣'xx␣x'?)

3.2.2 Implementing the EEM

We have implemented the hint in the Agda.TypeChecking.Pretty.Warning module, which
can be seen in https://github.com/mkhakimova42/agda/pull/3. The changes include a new
function, didYouMeanInfixwhich is called by prettyWarningwhen thewarning type is NotIn-
ScopeW. This results in it being appended to the standard [NotInScope] error, similar to how
the other (did you ... ?) hints are displayed.

Our implementation only uses one heuristic. When the (unqualified) name that is not
in scope can be broken down completely into (unqualified) names that are in scope10, all
possible “breaks” are displayed as a hint. This is done according to the design described in
Section 3.2.1.

9
https://lamp-guide.metamath.org/

10This is sometimes known as a Word Break problem [40].

17

https://github.com/mkhakimova42/agda/pull/3
https://lamp-guide.metamath.org/

3. Implementation

3.2.3 Limitations of the Implementation

The main limitation of our implementation was the frequency at which the hint got presented.
Ideally, the hint would be presented only in situations when the [NotInScope] error was
caused by missing whitespace, and adding the space as dictated would resolve it. However,
as discussed in Section 3.1.2, we were not able to re-run the type-checker to guarantee that the
error would improve the situation. This meant that all possible solutions that satisfy scope
checking are presented, even if they do not satisfy type checking.

3.3 Unicode Confusables

Novice programmers can often get tripped up by both Agda’s support for Unicode characters
in the names of functions and variables, and the ease of entering these characters in text
editors with interactive support for Agda. Since the set of Unicode characters contains many
homoglyphs (i.e. characters that are visually similar or identical to each other11), it can often
be difficult to identify if an incorrect character was accidentally entered. This is a relatively
common complaint from both students at TU Delft learning Agda, and users on the internet
[41]. Similar complaints have also been bought up in other languages that offer similar
Unicode support [42].

As an example, look at the two following equals signs, which can look identical to each
other in certain fonts:

= ＝

003D FF1D

EQUALS SIGN FULLWIDTH EQUALS SIGN

Both of these symbols can be easily typed in Emacs agda-mode: the equals sign by typing
=, and the fullwidth equals sign by typing \=. However, they are interpreted as different
characters, and cannot be used interchangeably. It is therefore very easy to type one in place
of the other accidentally, leading to an error in the code.

Such characters are very common, and widely used in Agda. A common complaint with
both the Agda built-ins12 and standard library is that they both use ∷ instead of :: for list cons
[41, 43]. With certain fonts, these can look indistinguishable from each other, especially if the
programmer is not expecting it. This can be confusing to Agda novices coming from Scala
or Rocq which use :: for the same operation [44, 45]. With the prevalence of both Unicode
confusables and the usage of Unicode in important Agda libraries, this is a frequent hurdle
for novices (and programmers) to overcome.

However, there are other ways of accidentally inputting the wrong character. It is easy
to accidentally enter a cyrillic c13 if the programmer has both Russian JCUKEN and English
QWERTY keyboard layouts installed, as the two are located on the same key. In Rust, devel-
opers found that hundreds of projects used a fullwidth exclamation mark (U+FF01) in place
of a normal exclamation mark (U+0021) using a CJK input method [31]. If the programmer
accidentally switches inputs, they will almost certainly notice that incorrect characters are
being entered and delete them. However, if the incorrect input started on a homoglyph, it
is likely that the programmer will keep that symbol as it looks “correct”. Since Agda sup-
ports Unicode in variable and function names, this will not be highlighted as an issue until
type-checking is run again, and the name is found to be out of scope.

11In the context of Unicode, these are often referred to as Unicode confusables.
12
https://agda.readthedocs.io/en/v2.7.0.1/language/built-ins.html

13
с (U+0441) as opposed to c (U+0063).

18

https://agda.readthedocs.io/en/v2.7.0.1/language/built-ins.html

3.3. Unicode Confusables

It is no surprise then that efforts have already been made to provide useful information
for this scenario. In Emacs agda-mode, typing M-x describe-char or C-u C-x = gives infor-
mation about the character the cursor is positioned over [46]. For example, for the fullwidth
equals＝we get the following:

␣␣␣␣␣␣␣␣␣␣␣␣character:␣＝␣(displayed␣as␣＝)␣(codepoint␣65309,␣#o177435,␣#xff1d)
␣␣␣␣␣␣␣␣␣␣␣␣␣␣charset:␣unicode␣(Unicode␣(ISO10646))

code␣point␣in␣charset:␣0xFF1D

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣script:␣cjk-misc

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣syntax:␣w␣␣␣␣which␣means:␣word

␣␣␣␣␣␣␣␣␣␣␣␣␣category:␣.:Base,␣c:Chinese,␣h:Korean,␣j:Japanese,␣|:line␣breakable

␣␣␣␣␣␣␣␣␣␣␣␣␣to␣input:␣type␣"\F="␣or␣"\="␣or␣"\eq"␣with␣Agda␣input␣method

␣␣␣␣␣␣␣␣␣␣buffer␣code:␣#xEF␣#xBC␣#x9D

␣␣␣␣␣␣␣␣␣␣␣␣file␣code:␣#xEF␣#xBC␣#x9D␣(encoded␣by␣coding␣system␣utf-8-unix)

␣␣␣␣␣␣␣␣␣␣␣␣␣␣display:␣by␣this␣font␣(glyph␣code):

␣␣␣␣ftcrhb:-PfEd-AR␣PL␣UMing␣TW␣MBE-light-normal-normal-*-27-*-*-*-*-0-iso10646-1␣

(#x57AB)ãÑ

Character␣code␣properties:␣customize␣what␣to␣show

␣␣name:␣FULLWIDTH␣EQUALS␣SIGN

␣␣general-category:␣Sm␣(Symbol,␣Math)

␣␣decomposition:␣(wide␣61)␣(wide␣'=')

However, this is not a perfect solution. The programmer needs to both know that this
command exists, and think to check that for the two characters that have been confused. If the
wrong confusable character was used within a larger string, this can be challenging to identify.
Furthermore, this option is only available in Emacs. Thus, programmers who use a different
coding environment (e.g. VS Code, or Vim) will not have easy access to this information14.

The best way to provide this information such that the code can be fixed easily is thus
through a hint within the error message. Rust is a famous example that already provides a
hint if it thinks that the programmer incorrectly inputted a Unicode confusable. Implementing
such a hint has also been considered several times in Agda [49, 43], although the issue has
been put into the icebox15 each time.

3.3.1 Designing the Hint

Currently, typing a Unicode confusable in place of the expected character causes the standard
[NotInScope] error. For example, consider the following case where the latin c is used on the
left hand side, but the cyrillic c was typed on the right:

add3␣:␣Nat␣→␣Nat␣→␣Nat␣→␣Nat

add3␣a␣b␣c␣=␣a␣+␣b␣+␣с

Upon loading the file, the following error message is displayed:

/home/m/Documents/error/examples/cyrillic-c.agda:4,22-23:␣error:␣[NotInScope]

Not␣in␣scope:

␣␣с␣at

/home/m/Documents/error/examples/cyrillic-c.agda:4,22-23

when␣scope␣checking␣с

14There do exist VS Code extensions that can provide the code point of a Unicode character [47, 48], but no
references are made to them in the Agda documentation. A novice programmer would have to actively seek them
out to obtain this information.

15This milestone is described as containing “Issues there are no plans to fix for upcoming releases” in the Agda
repository.

19

3. Implementation

The goal was thus to add a hint to this error message that tells the programmer that they
used a different c to the one in scope, with the relevant information as to how to fix it.

The Inspiration

We took the Rust error message as inspiration for this hint. Consider the following case, where
the programmer typed a Greek question mark instead of a semicolon:

fn␣main()␣{

␣␣println!("Hello,␣world!");

}

Compilation of this code fails with the following error:

error:␣unknown␣start␣of␣token:␣\u{37e}

␣-->␣greek_question_mark.rs:2:30

␣␣|

2␣|␣␣␣␣␣println!("Hello,␣world!");

␣␣|␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣^

␣␣|

help:␣Unicode␣character␣';'␣(Greek␣Question␣Mark)␣looks␣like␣';'␣

(Semicolon),␣but␣it␣is␣notãÑ

␣␣|

2␣-␣␣␣␣␣println!("Hello,␣world!");

2␣+␣␣␣␣␣println!("Hello,␣world!");

␣␣|

error:␣aborting␣due␣to␣1␣previous␣error

Here we can see that the following information is provided to the user:

• the reason the compilation failed: the wrong Unicode character was used,
• the location of the wrong Unicode character,
• information about the wrong Unicode character: the hex code and the name, and
• a suggestion for the correct Unicode character, with its name.

However, this error message is only presented for parse errors, and not when a name is
not in scope due to a confusable character. Nevertheless, there is a warning that displays
upon the usage of identifiers that look alike:

fn␣main()␣{

␣␣let␣α␣=␣5;

␣␣c␣=␣𝛼

}

This code compiles with two errors and three warnings, of which the following warning
is most relevant:

20

3.3. Unicode Confusables

warning:␣found␣both␣`α`␣and␣`𝛼`␣as␣identifiers,␣which␣look␣alike

␣-->␣alpha_warning_with_err.rs:3:9

␣␣|

2␣|␣␣␣␣␣let␣α␣=␣5;

␣␣|␣␣␣␣␣␣␣␣␣-␣other␣identifier␣used␣here

3␣|␣␣␣␣␣c␣=␣𝛼

␣␣|␣␣␣␣␣␣␣␣␣^␣this␣identifier␣can␣be␣confused␣with␣`α`

␣␣|

␣␣=␣note:␣`#[warn(confusable_idents)]`␣on␣by␣default

This hint is always displayed16, even if the code compiles without issue. However, when
it is displayed in conjunction with a “cannot find value in this scope”, pointing at the same
location, it can potentially be inferred that the error was due to the mixed script confusable.

This is not desirable for Agda because using confusable characters is baked into the Agda
programming community. For example, Unicode considers × (U+00D7) to be confusable with
x (U+0078) [50], but the Agda standard library frequently uses both17. Therefore, constantly
presenting such a warning can often be irrelevant, increasing cognitive load and reducing the
usability of the error and warning messages.

Our Hint

In designing the hint, we prioritised the following information to display to the user:

• the location of the confusable character(s) within the name,
• what the confusable characters are (with their identifiers), and
• how to input both the correct and incorrect characters with Emacs agda-mode.

This was a situation where colour-coding the error message would have been very useful,
for example to indicate what characters are “wrong” and which are “correct”. However, this
was not done asmany supported text editors (like VS Code) did not support the colour-coding
of error messages that was present in Emacs. Since this also applied to the WebLab editor that
was used in the user study to investigate the impact of the enhanced error messages (refer to
Chapter 4), the study would not have been able to draw any conclusions about the usefulness
of this change.

With these considerations in mind, the following hint was implemented:

(did␣you␣accidentally␣use␣a␣confusable␣character?

␣␣␣You␣typed:␣␣␣␣[TYPED␣STRING]

␣␣␣In␣scope:␣␣␣␣␣[IN␣SCOPE␣STRING]

␣␣␣(diff)␣␣␣␣␣␣␣␣[DIFF]

␣␣␣␣␣␣␣␣␣␣Character␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Character␣name␣␣␣␣␣␣agda-mode␣input␣␣␣␣␣Emacs␣input

␣␣␣---->␣␣ [TYPED␣CHAR]␣(0x[HEX␣CODE])␣␣␣␣␣␣[CHARACTER␣NAME]␣␣␣␣[INPUT␣OR␣BLANK]␣␣␣␣C-x␣8␣RET␣[HEX␣CODE]

␣␣␣␣␣␣vs␣␣ [IN␣SCOPE␣CHAR]␣(0x[HEX␣CODE])␣␣␣[CHARACTER␣NAME]␣␣␣␣[INPUT␣OR␣BLANK]␣␣␣␣C-x␣8␣RET␣[HEX␣CODE]

␣␣␣OR

␣␣␣You␣typed:␣...␣␣␣)

Therefore, given the following code:

id␣:␣Set␣→␣Set

id␣bαp␣=␣b𝕒ρ

16Assuming that #[warn(confusable_idents)] is on, which it is by default.
17For example, both are used in the same file in Data.Nat.Properties: https://agda.github.io/

agda-stdlib/v2.2/Data.Nat.Properties.html

21

https://agda.github.io/agda-stdlib/v2.2/Data.Nat.Properties.html
https://agda.github.io/agda-stdlib/v2.2/Data.Nat.Properties.html

3. Implementation

The (did you accidentally use a confusable character?) hint is appended to the
standard list of hints:
/home/m/Documents/error/examples/alpha.agda:2.10-13:␣error:␣[NotInScope]

Not␣in␣scope:

␣␣b𝕒ρ␣at␣/home/m/Documents/error/examples/alpha.agda:2.10-13

␣␣␣␣(did␣you␣accidentally␣use␣a␣confusable␣character?

␣␣␣␣␣␣␣You␣typed:␣␣␣␣b𝕒ρ

␣␣␣␣␣␣␣In␣scope:␣␣␣␣␣bαp

␣␣␣␣␣␣␣(diff)␣␣␣␣␣␣␣␣-^^

␣␣␣␣␣␣␣␣␣␣␣␣␣␣Character␣␣␣␣␣␣␣␣Character␣name␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣agda-mode␣input␣␣Emacs␣input

␣␣␣␣␣␣␣---->␣␣ '𝕒 '␣(0x1d552)␣␣␣␣MATHEMATICAL␣DOUBLE-STRUCK␣SMALL␣A␣␣␣␣\ba␣␣␣␣␣␣␣␣␣␣␣␣␣␣C-x␣8␣RET␣1d552

␣␣␣␣␣␣␣␣␣␣vs␣␣ 'α '␣(0x3b1)␣␣␣␣␣␣GREEK␣SMALL␣LETTER␣ALPHA␣␣␣␣␣␣␣␣␣␣␣␣␣␣\Ga␣␣␣␣␣␣␣␣␣␣␣␣␣␣C-x␣8␣RET␣3b1

␣␣␣␣␣␣␣---->␣␣ 'ρ '␣(0x3c1)␣␣␣␣␣␣GREEK␣SMALL␣LETTER␣RHO␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣\Gr␣␣␣␣␣␣␣␣␣␣␣␣␣␣C-x␣8␣RET␣3c1

␣␣␣␣␣␣␣␣␣␣vs␣␣ 'p '␣(0x70)␣␣␣␣␣␣␣LATIN␣SMALL␣LETTER␣P␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣C-x␣8␣RET␣70

␣␣␣)

when␣scope␣checking␣b𝕒ρ

3.3.2 Implementing the Hint

The hint was implemented in the Agda.TypeChecking.Pretty.Warning by adding a new
function, didYouMeanConfusableUnicodewhich is called by prettyWarningwhen thewarning
type is NotInScopeW. The code can be seen in https://github.com/mkhakimova42/agda/pull/
2.

The hint is displayed whenever there is at least one (unqualified) name in scope where
all of the characters (in order) are either exactly the same as each other or are confusable
with each other (with at least one character that is not equal between the two strings 18).
To determine if characters are confusable, we used the text-icu package19 that uses the
confusablesWholeScript.txt20 file for spoof-checking [51].

The Emacs input keybindings are displayed following the standard input pattern: C-x
8 RET [codepoint hexadecimal] [52]. However, the process for obtaining the agda-mode
keybindings is more complicated. The agda-mode Unicode input keybindings are currently
defined in the agda-input.el file21. However, we found an initiative by Chonavel to move
them into a JSON file [53], in order to make the keybindings system-wide [54]. Although
this feature is now in the “later” milestone22, we used the JSON file that came from it due to
ease of parsing.

3.3.3 Limitations of the Implementation

Unfortunately, there were several limitations of our implementation of the Unicode Con-
fusables hint. This subsection will discuss several of these limitations: those related to the
displayed keybindings, which strings are considered confusable, hint frequency, and display
issues arising from non-standard Unicode characters. From this, we also give recommenda-
tions for future work into this particular error message enhancement.

Reliability of the Keybindings File

It should be noted that we did not use a primary source for our agda-mode keybindings.
Instead, we used the JSON file created by Chonavel [53] in 2024. This means that the key-
bindings file may not represent the actual keybindings, and this discrepancy may grow as

18This check is necessary because the existing (did you mean ... ?) hints are computed on unqualified
names.

19
https://hackage.haskell.org/package/text-icu-0.8.0.5

20
http://unicode.org/Public/security/latest/confusablesWholeScript.txt

21
https://github.com/agda/agda/blob/master/src/data/emacs-mode/agda-input.el

22This milestone contains “features that the development team might eventually implement, but not for the
next release” [55].

22

https://github.com/mkhakimova42/agda/pull/2
https://github.com/mkhakimova42/agda/pull/2
https://hackage.haskell.org/package/text-icu-0.8.0.5
http://unicode.org/Public/security/latest/confusablesWholeScript.txt
https://github.com/agda/agda/blob/master/src/data/emacs-mode/agda-input.el

3.3. Unicode Confusables

agda-input.el gets updated. In fact, we have already identified and rectified a couple of
these errors in the pull request, highlighting this issue. In future work, we recommend that
the original agda-input.el file be used for providing the keybindings in the hint (unless they
have been moved to a different location).

Is < Confusable with ⟨?

The package used to determine if two characters are confusable used the confusablesWho-
leScript.txt23 file for spoof-checking [51]. However, there are many characters that are
important to Agda developers that are not covered by confusablesWholeScript.txt, such
as:

• :: (two U+003A characters) and ∷ (U+2237), as identified by Michael Nahas [43],
• < (U+003C) with ⟨ (U+27E8), as identified by Frederik Hanghøj Iversen [49], and
• = (U+003D) with＝ (U+FF1D), the latter of which can be accidentally inserted with

agda-mode input by typing \=.

However, in future work on this hint it should be possible to remedy these issues, as a
different confusablesWholeScript.txt can be used, tailored to the needs of Agda users. We
also recommend that a survey of the commonly confused characters in Agda be conducted,
such that a proper confusablesWholeScript.txt can be created for this purpose.

Confusability is Only Checked Against Names in Scope

The current implementation of the hint only checks the name that is not in scope against names
that are in scope. However, there is also a chance that the programmer used a confusable
character instead of a reserved name24. Since these are stored in a different place to the names
in scope, the hint is not shown when such an error is made (e.g. when 𝜆 (U+1D706) is typed
instead of λ (U+03BB)). In future work on this hint, we recommend that reserved names are
also checked against.

Hint Frequency

Ideally, the hint would be presented when substituting the typed name for either a name that
is in scope (with the differences between the two being only the confusable characters) would
fix the error. However, as discussed in Section 3.1.2, we cannot determine if a change fixed
that particular error.

This results in the hint appearing too frequently, as there is a chance that the error will
not be resolved correctly upon applying the fix. However, the chances of this happening are
slim, and likely indicate that the programmer needs to pick variable and function names that
are visually distinguishable from each other.

The limitations detailed prior also contributed to the error message not appearing fre-
quently enough. This can lead the programmer to discount the possibility of confusable
character when error does not display hint, as they are used to the hint getting displayed
when it is relevant. However, further work on refining the error messages, as discussed in
those sections, should be enough to remedy these issues.

Misaligned Display

Unfortunately, the diff arrows can get misaligned when upon the presence of characters that
do not have the standard width (e.g. fullwidth characters). For example, if we take this
extreme example:

23
http://unicode.org/Public/security/latest/confusablesWholeScript.txt

24
https://agda.readthedocs.io/en/latest/language/lexical-structure.html

23

http://unicode.org/Public/security/latest/confusablesWholeScript.txt
https://agda.readthedocs.io/en/latest/language/lexical-structure.html

3. Implementation

id␣:␣Set␣→␣Set

id␣a＝bＡc3ａdefc␣=␣a＝bAc3adefc

The diff (using JuliaMono25) looks like this, with the relevant characters underlined for
clarity:

You␣typed:␣␣␣␣a＝bac3adefc
In␣scope:␣␣␣␣␣a＝bＡc3ａdefc

(diff)␣␣␣␣␣␣␣␣---^--^----

We can see the misalignment getting progressively worse with each consecutive fullwidth
character. This significantly hinders the readability of the hint in cases where non-standard
with characters are used.

Whilst it could be possible to follow Rust’s example and display 2 upticks for full-width
characters, that would not fully resolve the problem. The extent of the misalignment is highly
font-dependent — in some mono fonts fullwidth characters take up the same space as two
normal characters, whilst in others they take slightly less space. Since we cannot predict what
font the programmer will use, this is difficult to account for. Furthermore, this would not
fix the issue that the two strings get misaligned with each other as well. The best way to
remedy this would be to colour code the confusable characters (as was done above), but with
the current state of the supported text editors, this would leave many programmers with
incomplete information.

3.4 Too Few Args
Another frequent mistake or typo programmers can make (in any language) is accidentally
supplying the wrong number of arguments to a function [57, 58]. However, while there is
already a hint for when too many arguments are passed to a function, the same does not
apply to when there are too few. Instead, the following error message is frequently presented:

addThree␣:␣Nat␣→␣Nat␣→␣Nat␣→␣Nat

addThree␣a␣b␣c␣=␣a␣+␣b␣+␣c

num␣:␣Nat

num␣=␣addThree␣1␣2

/home/m/Documents/error/examples/not-enough-args.agda:7.7-19:␣error:␣

[UnequalTerms]ãÑ

Nat␣→␣Nat␣!=<␣Nat

when␣checking␣that␣the␣inferred␣type␣of␣an␣application

␣␣Nat␣→␣Nat

matches␣the␣expected␣type

␣␣Nat

Unfortunately, this error message can be confusing to novice programmers, especially
when they are not comfortable parsing Agda types.

3.4.1 Designing the Hint

Before creating a design for the hint, we looked at other similar hints for inspiration. This
subsection covers these sources of inspiration, before continuing on to the design of the error
message.

25This is the font recommended by the Programming Language Foundations in Agda book [56].

24

3.4. Too Few Args

The Inspiration

Recall that Agda already has a hint when too many arguments are passed to a function: (did
you supply too many arguments?). This was used as the base for the design of this hint.

Haskell and Rust also already incorporate a hint for when too few arguments are supplied
to a function. An example of such an error message in Haskell can be seen below:

main␣::␣IO␣()

main␣=␣do

␣␣putStr␣$␣show␣$␣addThree␣1␣2

addThree␣::␣Int␣->␣Int␣->␣Int␣->␣Int

addThree␣a␣b␣c␣=␣a␣+␣b␣+␣c

addThree.hs:3:12:␣error:␣[GHC-39999]

␣␣␣␣•␣No␣instance␣for␣‘Show␣(Int␣->␣Int)’␣arising␣from␣a␣use␣of␣‘show’

␣␣␣␣␣␣␣␣(maybe␣you␣haven't␣applied␣a␣function␣to␣enough␣arguments?)

␣␣␣␣•␣In␣the␣first␣argument␣of␣‘($)’,␣namely␣‘show’

␣␣␣␣␣␣In␣the␣second␣argument␣of␣‘($)’,␣namely␣‘show␣$␣addThree␣1␣2’

␣␣␣␣␣␣In␣a␣stmt␣of␣a␣'do'␣block:␣putStr␣$␣show␣$␣addThree␣1␣2

␣␣|

3␣|␣␣␣putStr␣$␣show␣$␣addThree␣1␣2

␣␣|␣␣␣␣␣␣␣␣␣␣␣␣^^^^

We looked at Haskell’s error message for inspiration as Agda novices are likely to have
prior experience with Haskell, and might already be familiar with the hint. Additionally, as
the function types are displayed similarly, a clear parallel could be drawn between the two.

Here, we can see that the error message has the hint (maybe you haven't applied a

function to enough arguments?). However, it does not present information about what
function is missing the arguments, or what the arguments should be.

Rust’s error message for the same mistake is more informative:

fn␣main()␣{

␣␣println!("{}",␣add_three(1,␣2));

}

fn␣add_three(a:␣u32,␣b:␣u32,␣c:u32)␣->␣u32␣{

␣␣return␣a␣+␣b␣+␣c

}

25

3. Implementation

error[E0061]:␣this␣function␣takes␣3␣arguments␣but␣2␣arguments␣were␣supplied

␣-->␣add_three.rs:2:17

␣␣|

2␣|␣␣␣␣␣println!("{}",␣add_three(1,␣2));

␣␣|␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣^^^^^^^^^------␣argument␣#3␣of␣type␣`u32`␣is␣missing

␣␣|

note:␣function␣defined␣here

␣-->␣add_three.rs:5:4

␣␣|

5␣|␣fn␣add_three(a:␣u32,␣b:␣u32,␣c:u32)␣->␣u32␣{

␣␣|␣␣␣␣^^^^^^^^^␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣-----

help:␣provide␣the␣argument

␣␣|

2␣-␣␣␣␣␣println!("{}",␣add_three(1,␣2));

2␣+␣␣␣␣␣println!("{}",␣add_three(1,␣2,␣/*␣u32␣*/));

␣␣|

error:␣aborting␣due␣to␣1␣previous␣error

Rust was used as inspiration due to its reputation for having useful hints. This error
message provides the following information:

• the function that is missing argument(s): its name and location of definition,
• the position of the missing argument(s), and
• the required type(s) of the missing argument(s).

The Hint

When designing the hint, it was important to consider the practical limitations given by the
scope of the project and the Agda compiler.

Unfortunately, it was not possible to include all the desirable features that we identified in
our inspiration. It was infeasible to provide the location of the function definition within the
scope of the project. Furthermore, given the current structure of the Agda compiler, we were
not able to find a way to consistently give correct information about the location or type of
the missing argument(s). This meant that the resulting error message was closest to the one
implemented in Haskell and Agda, only with the name of the function that is missing the
arguments present:

addThree␣:␣Nat␣→␣Nat␣→␣Nat␣→␣Nat

addThree␣a␣b␣c␣=␣a␣+␣b␣+␣c

num␣:␣Nat

num␣=␣addThree␣1␣2

/home/m/Documents/error/examples/not-enough-args.agda:7.7-19:␣error:␣

[UnequalTerms]ãÑ

Nat␣→␣Nat␣!=<␣Nat

when␣checking␣that␣the␣inferred␣type␣of␣an␣application

␣␣Nat␣→␣Nat

matches␣the␣expected␣type

␣␣Nat

(did␣you␣supply␣too␣few␣arguments␣to␣addThree␣?)

26

3.4. Too Few Args

3.4.2 Implementing the EEM

The error message is shown when the CheckTargetType26 function in the Agda.TypeCheck-

ing.Pretty.Call module is called and the inferred type of the application is a function type.
Wehave implemented itmodifying CheckTargetType (see https://github.com/mkhakimova42/
agda/pull/1).

3.4.3 Limitations of the Implementation

There are several limitations of our hint implementation that should be considered. This
subsection discusses shortcomings in the amount of detail that is displayed in the hint, as
well as in the frequency of the hints. We also provide advice for future work on this hint.

The Amount of Detail in the Hint

Unfortunately, the hint that we implemented does not provide as much detail as we would
have liked, as it is missing

• the location where the function that is missing argument(s) is defined,
• the position of the missing argument(s), and
• the type(s) of the expected argument(s),

In future work, we recommend that this information be presented in this hint.

Hint Frequency

While it would be ideal to have the error message present only when fixing the error would
make it type-check, this was not possible, as discussed in Section 3.1.2. Unfortunately, this
resulted in the hint showing up too frequently, even when the proposed fix is not applicable.

However, there are also cases where the hint does not show up when needed. One such
case is when the programmer forgets to supply the function with any arguments, since
CheckTargetType does not get called when no arguments were supplied to the function:

addThree␣:␣Nat␣→␣Nat␣→␣Nat␣→␣Nat

addThree␣a␣b␣c␣=␣a␣+␣b␣+␣c

num␣:␣Nat

num␣=␣addThree

/home/m/Documents/error/examples/not-enough-args.agda:7.7-15:␣error:␣

[UnequalTerms]ãÑ

Nat␣→␣Nat␣→␣Nat␣→␣Nat␣!=<␣Nat

when␣checking␣that␣the␣expression␣addThree␣has␣type␣Nat

While it might be useful to ask the programmer if they intended to supply addThree with
arguments in this case, the hint does not appear.

Additionally, sometimes the inferred type of the expression can be simplified in a function
type (and therefore wouldwarrant the hint), but the hint is not displayed as this simplification
cannot be done from CheckTargetType. This leads to situations like the following:

26This is the function that provides the additional context “when checking that the inferred type of an

application ... matches the expected type ...”.

27

https://github.com/mkhakimova42/agda/pull/1
https://github.com/mkhakimova42/agda/pull/1

3. Implementation

+-assoc␣:␣∀␣(m␣n␣p␣:␣ℕ)␣→␣(m␣+␣n)␣+␣p␣≡␣m␣+␣(n␣+␣p)

+-assoc␣zero␣n␣p␣=␣refl

+-assoc␣(suc␣m)␣n␣p␣=

␣␣begin

␣␣␣␣(suc␣m␣+␣n)␣+␣p

␣␣≡⟨␣cong␣suc␣(+-assoc␣m␣n)␣⟩

␣␣␣␣suc␣m␣+␣(n␣+␣p)

␣␣∎

/home/m/Documents/error/examples/args-not-simplified.agda:12,16-27:␣error:␣

[UnequalTerms]ãÑ

(p₁␣:␣ℕ)␣→␣m␣+␣n␣+␣p₁␣≡␣m␣+␣(n␣+␣p₁)␣!=<␣m␣+␣n␣+␣p␣≡␣m␣+␣(n␣+␣p)

when␣checking␣that␣the␣expression␣+-assoc␣m␣n␣has␣type

m␣+␣n␣+␣p␣≡␣m␣+␣(n␣+␣p)

In future work, we strongly recommend that better heuristics be used to display the hint.

28

Chapter 4

Experimental Setup

In order to answer the research questions detailed in the introduction, we conducted a user
study. In it, we asked participants to resolve errors in existing code with the help of the
original and enhanced error messages, and then rate the helpfulness of the error messages
they received. This chapter will detail the structure of the user study: how the participants
were recruited, how the survey was deployed, and what the survey consisted of. Additionally,
Section 4.4 describes the pilot study used to validate the structure and deployment method
of the user study. The user study was approved by the TU Delft Human Research Ethics
committee.

4.1 Recruitment

The participants of the user study were students of the 2024/2025 edition of the CSE3100
Functional Programming course at TU Delft1. This is a 10-week Bachelor course that is taught
in English, where students received 8 lectures on Haskell, and then 4 on Agda.

The course content for the Agda lectures can be seen in table Table 4.1.

Lecture 1 Lecture 2 Lecture 3 Lecture 4

Agda
basics

Dependent
Types

The Curry-Howard
Correspondence

Equational Reasoning in
Agda

Table 4.1: The lecture structure in CSE3100: Functional Programming

These participants were recruited halfway through Lecture 4. An announcement was
made then about the user study, and they were given 10 minutes of lecture time, with the
option to continue into the 15-minute mid-lecture break, to complete it on their own laptops.
Additionally, an announcement was posted on the course Brightspace page — an online
learning environment used by TU Delft [59]. This announcement can be seen in Appendix B.
The survey remained open for 11 days, between the 31st of March and the 10th of April.

Before gaining access to the questions of the user study, the participants had to agree to
the informed consent form, which can be seen in Appendix C.

4.2 Deploying the Survey

The user study was held on the CS3100: Functional Programming WebLab page2, which
was already used for the prior coding assignments in the course. It was chosen as students

1
https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=67585

2
https://eip.pages.ewi.tudelft.nl/eip-website/weblab.html

29

https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=67585
https://eip.pages.ewi.tudelft.nl/eip-website/weblab.html

4. Experimental Setup

were already familiar with the environment, with many courses that students would have
previously taken in the Computer Science & Engineering Bachelor programme using WebLab.
This resulted in a low risk of confusion about the WebLab interface influencing the results.

Additionally,WebLab allows for the setup of different programming environments (through
the use of Docker images) for different assignments. This meant that we could easily have
different participants receiving different versions of Agda for the same question, allowing us
to test the influence of the enhanced error messages in comparison to the original ones.

4.3 The Experiment

To evaluate the usefulness of the enhanced error messages, participants of the study were
given 10 programming questions to solve. In the programming questions, the participants
were given existing code with one error in it3., and they were expected to fix the error using
the error message(s) that they received from the compiler. After each programming question
they were asked to rate the error message that they received on a Likert scale.

This section will provide an overview of the programming questions that were created,
the Likert scale used, as well as general design decisions for the user study.

4.3.1 Programming Questions

The goal of the programming questions was to answer our research questions and sub-
questions:

• RQ1 Which kinds of hints or solutions provided in Agda’s error messages are valued by novices?
• RQ2 To what extent does providing novices with solutions or hints in Agda’s error messages

improve their ability to fix errors?
– RQ2.1 How does enhancing Agda’s error messages with hints influence the probability

that novices are able to resolve the error?
– RQ2.2 How does enhancing Agda’s error messages with hints affect the time novices spend

fixing the error?

The programming questions featured pre-written code that contained one error that would
cause the enhanced error message to display, which was partially inspired by Becker, Goslin,
and Glanville [11]. This was meant to simulate being in the middle of coding, or debugging
someone else’s code. The goal of the exercise was to try to compile the code, read the error
message that gets displayed, and then fix the error, re-compiling the code as needed until the
error was resolved, and the code compiled. The timestamps of the submissions were then
used to determine the time spent on each question, and the compilation status was used to
determine the success rate of each question.

Since there were cases where the enhanced error messages can provide both correct and
incorrect suggestions, the user study investigated the effect of both. To do this, we created
five groups of questions for the user study, which can be seen in Table 4.2.

To allow each student to see both the enhanced and original error message for each type of
error message, two different programming questions were created for each group, resulting
in 10 questions.

These questions were created by taking inspiration from the existing WebLab exercises,
to keep consistent with both the content and difficulty of the course. This meant that we
did not import the Agda standard library, despite its prevalence in Agda code. Instead, the
exercises come with student-visible code that has the needed functionality. The syntax of this

3A [NotInScope] or [UnequalTerms] error that evokes one of the enhanced error messages discussed in
Chapter 3.

30

4.3. The Experiment

Question Group Hint Suggestion Actual Solution

Missing Space:
Correct

Add whitespace in given
place

Add whitespace in given place

Missing Space:
Incorrect

Add whitespace in given
place

Fix a different typo in same location

Unicode
Confusables:
Correct5

Use a different Unicode
character in given place

Use a different Unicode character in
given place

Too Few Args:
Correct

Supply one more argument
to given function

Supply one more argument to given
function

Too Few Args:
Incorrect

Supply one more argument
to given function

Use a different function / variable in
place of the given function

Table 4.2: The five groups of questions used in the user study

“library” code is also often different from that in the Agda standard library, with less Unicode
(excluding printable ASCII) characters, as WebLab does not support Emacs or agda-mode
Unicode insertion methods. This is consistent with how the assignments in the CSE3100:
Functional programming course were structured.

Additionally, some exercises were adapted from code from the Agda standard library6,
the Iowa Agda library7, and the Programming Language Foundations in Agda book8.

An example of a programming question in the WebLab environment can be seen in
Figure 4.3. The full list of all the programming questions, with their accompanying original
and enhanced error messages, as well as the expected “corrected” code, are made publicly
available in the accompanying repository [60].

Figure 4.3: The WebLab interface on a programming question

The same instructions as can be seen on the left of Figure 4.3 were given for each question.
It was requested that students “mark [the] question as completed” upon abandon in order
to log the amount of time that was spent on the question before abandoning. If this was not
done for a submission, its timing data would have to be discarded.

6
https://agda.github.io/agda-stdlib/

7
https://github.com/cedille/ial

8
https://plfa.github.io/

31

https://agda.github.io/agda-stdlib/
https://github.com/cedille/ial
https://plfa.github.io/

4. Experimental Setup

4.3.2 Opinions on the Error “Helpfulness”

After each programming question, the participants were asked to rate the “helpfulness” of
the error message they just received. This was done to answer RQ1: Which kinds of hints or
solutions provided in Agda’s error messages are valued by novices?

A five-point bipolar Likert scale was chosen to collect this information. The two poles
were that the error message was “very helpful” and “very misleading”, allowing us to see
the extent to which incorrect hints are detrimental, and if correct hints are ever considered
detrimental. The odd number ensured that there was a midpoint “neutral” option, allowing
participants to say that they did not find the error message helpful or misleading.

A 6th “(N/A): Did not read the error message” option was added to ensure that people
who did not read the error message did not skew the results. Additionally, it served to
distinguish the neutral “neither helpful nor misleading” from simply not reading the question,
minimising confusion about the meaning of that option.

The full Likert scale as seen in WebLab can thus be seen in Figure 4.4.

Figure 4.4: The Likert scale, as displayed in WebLab

4.3.3 Experiment Design

A between-subjects design was chosen for the experiment, with two variants of the survey
being created. This meant that participants could not use their prior experience with the code
to fix the mistake instead of the error message, reducing learning effects. This also came with
the benefit of reducing the time taken for the survey, leading to less fatigue and potentially
increasing the participation rate. However, this resulted in a smaller sample size, making the
results less generalisable.

Two variants of the survey were created, which were then randomly assigned to the
participants using WebLab’s “Variants” feature. An overview of these variants can be seen in
table Table 4.5.

For each category of question, each student received one exercise with the original error
message, and one with the enhanced error message. This was done to diminish the influence
of interpersonal differences on the results per error message category.

The participant-visible names of each question were also replaced by 9-digit random
numbers, to reduce the chances of participants recognising a pattern in the name and what
the error is / which type of error message they will receive.

Since participants were not forced to complete the survey, there was a high chance that
many participants would not answer all the questions. This was exacerbated by the length
of the survey, which could lead to fatigue. To prevent this from disproportionately affecting

32

4.4. Pilot Study

Question Hint Correctness Displayed Error Message

Variant A Variant B

Missing Space (A) Correct Enhanced Original
Missing Space (B) Correct Original Enhanced
Missing Space (C) Incorrect Enhanced Original
Missing Space (D) Incorrect Original Enhanced
Unicode Confusables (A) Correct Enhanced Original
Unicode Confusables (B) Correct Original Enhanced
Too Few Args (A) Correct Enhanced Original
Too Few Args (B) Correct Original Enhanced
Too Few Args (C) Incorrect Enhanced Original
Too Few Args (D) Incorrect Original Enhanced

Table 4.5: The ten programming questions used in the user study

certain questions, all the questionswere randomly shuffled for each participant. This gave each
participant a different question order, resulting in most questions having similar participation
rates. This also served to diminish the influence of fatigue and learning effects on the results.

4.4 Pilot Study
Before conducting the experiment, a pilot experiment was performed on 4 people with varying
levels of experience with Agda. Three of the participants had higher levels of experience
with Agda than the students, and one was an Agda novice. Half of the participants received
Variant A, and the other half Variant B. The purpose of this pilot was to:

• identify if there were any issues with the WebLab setup,
• proof-check for mistakes,
• ensure the difficulty level was at the right level, and
• get an estimate of how long the full survey tok.

The difficulty was judged to be appropriate by the participants, but the length was unex-
pectedly long. On average, the more experienced participants took 16 minutes, whilst the
Agda novice took 35 minutes.

This justified the initial decision of shuffling the exercises, as it would even out the distri-
bution of responses for each question even if participants drop the user survey due to it taking
too much time. Furthermore, we also added a line to the description of each question urging
participants to continue to the next question if they could not complete it “within a reasonable
amount of time (1-2 minutes)” to increase the number of participants who completed the full
survey. This can be seen on the left side of figure Figure 4.3.

33

Chapter 5

Results

The following chapter will present the aggregated and processed results of the user study.
First, we will discuss the test that we will use to test for the statistical significance of our
results in Section 5.1. We then present the participation rates of our survey in Section 5.2.
Section 5.3 will present the data that was collected to answer RQ1, which will be followed by
Section 5.4 detailing the results relevant to RQ2. The unprocessed (anonymised) results can
be viewed in the accompanying repository [60].

5.1 Statistical Significance: The Mann-Whitney U Test
To test for significance in the differences between the enhanced and original error messages,
Mann-Whitney U (MWU) tests were used. This is a statistical test to “compare two indepen-
dent groups that do not require large normally distributed samples” [61]. As we did not have
large sample sizes, and our data was not normally distributed, this was an appropriate choice.

In a Mann-Whitney U test, there are two hypotheses:

• the null hypothesis H0, which states that there is no difference in the distributions of
the two groups, and

• the alternative hypothesis H1, which is against H0.

The alternative hypothesis depends on if a two- or one-tailed test is chosen. In a two-tailed
test, H1 stipulates that the distributions of the two groups differ, although no comment is
made on which direction that difference is in. This would have been useful if we wanted to
test if there was any difference between the enhanced error messages (EEMs) and original
error messages (OEMs).

However, a single-tailed test has an alternative hypothesis that suggests the direction of the
difference between the two group (either positive or negative). In our case, this would have
allowed us to test if EEMs are better or worse than OEMs (but not both at the same time).
Since knowing the direction of the difference was valuable to evaluating the usefulness of the
EEMs, this was the more appropriate choice.

We thus decided to perform a single-tailed test, where we varied the direction of H1

depending on whether we were analysing the results for “correct” or “incorrect” EEMs. This
allowed us to test the following:

• Were the “Correct” EEMs were more useful than the OEMs?
• Were the “Incorrect” EEMs were less useful than the OEMs?

5.1.1 Reporting the p Values

To determine if the evidence for the alternate hypothesis was statistically significant, all
analyses used a significance level of p ă 0.05, as was proposed by Fisher [62]. The tables

35

5. Results

with the reported p values have the rows for which the difference was statistically significant
highlighted to aid readability.

We also reported the actual p values as equalities, unless the p value was less than 0.001,
in which case we reported it as p ă 0.001. This is in accordance with the common guidance
on p value reporting [63].

5.2 Programming Question Response Rate

To put the results into context, it can be useful to discuss the response rate of the survey. Out of
the 70 participants who started the survey by opening a submission, the random assignment
of variants led to similar response rates between the variants. This can be seen in Figure 5.1.

Figure 5.1: The number of participants who received the survey variants

However, we cannot guarantee that all the participants gave legitimate responses to every
question. Many submissions were abandoned: the participants opened the submission, but
made no changes to the code within WebLab, giving no timing data. This distribution of
abandoned submissions can be seen in Figure 5.2.

Figure 5.2: The total number of programming question submissions, those with timing data and those
without

As we can see in Figure 5.3, the number of responses per question varies a lot. This is both
when looking at all the attempts, and just the ones with some timing data.

Figure 5.3: The distribution of the number of programming question submissions per question

5.3 Subjective Opinions of the Error Messages

This section will present the results of how helpful the novices found the EEMs. This infor-
mation is necessary to answer RQ1. We used the following alternative hypotheses (H1) for
the Mann-Whitney U tests:

36

5.3. Subjective Opinions of the Error Messages

• When a “correct” hint is presented, enhanced error messages are rated as more helpful
than the corresponding original error messages.

• When a “incorrect” hint is presented, enhanced error messages are rated as more
misleading than the corresponding original error messages.

We first look at the results from a general perspective, identifying trends between the
helpfulness of the “correct” and “incorrect” hints when compared to the OEM in Section 5.3.1.
Then, we provide amore detailed overview of the results for the “correct” hints in Section 5.3.2,
and the “incorrect” hints in Section 5.3.3.

5.3.1 General Trends in Novice Perception

A visualisation of the aggregated results for all the submissions can be seen in Figure 5.4.
Furthermore, Table 5.5 presents the results of the single-tailed Mann-Whitney U test on this
data.

Figure 5.4: Overview of novices’ perceptions of the helpfulness of the error messages

EEM Hint Type U Statistic p Value Statistical Significance (p ă 0.05)

Correct 2595.5 ă0.001 ✓
Incorrect 3405.5 0.016 ✓

Table 5.5: Aggregated results of the single-tailed MWU tests (perceived helpfulness)

From Figure 5.4 and Table 5.5 we can see that we have strong evidence to reject both null
hypotheses:

• The EEMs with “Correct” hints are more helpful than their corresponding OEM.
• The EEMs with “Incorrect” are rated more misleading than their corresponding OEMs.

5.3.2 Per-Question Results for “Correct” Hints

Recall that the hypotheses used for the Mann-Whitney U tests in this subsection were the
following:

• Null hypothesis (H0): There is no difference between the percieved helpfulness of the
EEMs and the OEMs.

• Alternative hypothesis (H1): When a “correct” hint is presented, EEMs are rated as
more helpful than the corresponding OEMs.

37

5. Results

The main goal of this part of the investigation was the general perception of the EEMs.
However, we also believed that it could be beneficial to investigate how the students who
could not resolve the error rated the “helpfulness” of the error message1. Therefore, after dis-
cussing the trends in the general population, this section will also look at these “unsuccessful”
submissions.

All Submissions

Figure 5.6: Perceptions of the error message helpfulness: all submissions (“Correct” hints)

Question U Statistic p Value Statistical Significance (p ă 0.05)

Unicode Confusables (A) 14.5 ă0.001 ✓
Unicode Confusables (B) 94 0.093 ×
Missing Space (A) 30 ă0.001 ✓
Missing Space (B) 34.5 ă0.001 ✓
Too Few Args (A) 163.5 0.001 ✓
Too Few Args (B) 94 0.008 ✓

Table 5.7: Single-tailed MWU results: are “correct” hints more helpful (all submissions)?

1This includes the people who “abandoned” the questionwithout resubmitting, and participants who changed
and submitted their code at least once.

38

5.3. Subjective Opinions of the Error Messages

From Figure 5.6 we can identify a general trend of the “correct” EEMs being rated as more
helpful than their OEM counterparts. Furthermore, the results in Table 5.7 indicate that we
have sufficient evidence to reject the null hypothesis for all the programming exercises apart
from Unicode Confusables (B).

Unsuccessful Submissions

Figure 5.8: Perceptions of the error message helpfulness: unsuccessful submissions (“Correct” hints)

Question U Statistic p Value Statistical Significance (p ă 0.05)

Unicode Confusables (A) 5.5 0.500 ×
Unicode Confusables (B) 8.5 0.364 ×
Missing Space (A) 2 0.645 ×
Missing Space (B) 0 0.333 ×
Too Few Args (A) 18 0.047 ✓
Too Few Args (B) 6 0.919 ×

Table 5.9: Single-tailed MWU results: are “correct” hints more helpful (unsuccessful submissions)?

From Figure 5.8, we can see a different distribution of the data. Now, only three EEMs are
rated as more helpful than the OEM. From Table 5.9, we can conclude that this difference is
only statistically significant for Too Few Args (A).

39

5. Results

However, it should be noted that the sample size for these submissions were mostly very
small, making it difficult to draw valid conclusions from this data.

5.3.3 Per-Question Results for “Incorrect” Hints

The hypotheses used for the “incorrect” hints were the following:

• Null hypothesis (H0): There is no difference between the perceived helpfulness of the
EEMs and the OEMs.

• Alternative hypothesis (H1): When a “incorrect” hint is presented, EEMs are rated as
more misleading than the corresponding OEMs.

Similar towhatwas done in Section 5.3.2, wewill provide the results for all the submissions,
as well as the subset of unsuccessful submissions.

All Submissions

Figure 5.10: Perceptions of the error message helpfulness: all submissions (“Incorrect” hints)

Question U Statistic p Value Statistical Significance (p ă 0.05)

Missing Space (C) 238.5 0.069 ×
Missing Space (D) 279 0.005 ✓
Too Few Args (C) 146.5 0.852 ×
Too Few Args (D) 180 0.175 ×

Table 5.11: Single-tailed MWU results: are “incorrect” hints more misleading (all submissions)?

From Figure 5.10 we can see a general trend of EEMs with incorrect hints being rated as less
“helpful” and more “misleading”. The only exception to this is Too Few Args (C), which was
still rated as more helpful than the OEM.

40

5.4. Novices’ Performance

Given the results in Table 5.11, we could only accept the alternate hypothesis H1 for one
question: Missing Space (D). For the other questions, there is no evidence suggesting that
the “incorrect” EEMs are perceived as more misleading than the OEMs by Agda novices.

Unsuccessful submissions

Figure 5.12: Perceptions of the error message helpfulness: unsuccessful submissions (“Incorrect”
hints)

Question U Statistic p Value Statistical Significance (p ă 0.05)

Missing Space (C) 4.5 0.500 ×
Missing Space (D) 62 0.079 ✓
Too Few Args (C) 22.5 0.909 ×
Too Few Args (D) 13.5 0.455 ×

Table 5.13: Single-tailed MWU results: are “incorrect” hints more misleading (unsuccessful submis-
sions)?

In Figure 5.12, we can see that the “incorrect” EEMs typically received a similar number of
“(very) helpful” votes. However, more participants also rated them as “(very) misleading”.
The exception to this is again Too Few Args (C), which participants found more helpful.

When comparing the statistical significance of the results from just the unsuccessful
submissions in Table 5.13 to all the submissions in Table 5.11, we can see that our conclusions
are the same: we can only reject the null hypothesis for Missing Space (D).

5.4 Novices’ Performance
To answerRQ2, aswell as the sub-questionsRQ2.1 andRQ2.2, we used two objectivemeasures
for novice performance:

• the proportion of participants that were able to successfully locate and resolve the error
(the success rate), and

41

5. Results

• the time spent by participants to successfully resolve the error.

This section will thus discuss the data collected for both of these measures, with the results
of the accompanying Mann-Whitney U tests.

5.4.1 Success Rate

The success rate is defined as the number of successful attempts opposed to non-successful
attempts. This includes both cases where participants “abandoned” the question without
making a submission, and those for which there is evidence of re-submissions.

The following alternate hypotheses are used for the one-tailed Mann-Whitney U analyses
in this section:

• Participants who receive an “incorrect” enhanced error message have a lower success
rate than participants who received the original Agda error message.

• Participants who receive an “correct” enhanced error message have a higher success rate
than participants who received the original Agda error message.

In this subsection, we will discuss both the general trends in the success rates, before
discussing the differences in the question success rates for the “correct” and “incorrect” EEMs.

General Trends in Success Rate

Figure 5.14: Aggregated number of responses per question

EEM Hint Type U Statistic p Value Statistical Significance (p ă 0.05)

Correct 10670 ă0.001 ✓
Incorrect 3311.5 0.424 ×

Table 5.15: Aggregated results of the single-tailed MWU tests (success rate)

In general, there was no visible change in success rates for the “incorrect” hints. This gives no
evidence in favour of the alternate hypothesis for “incorrect” hints. However, the increase in
success rates for the “correct” hints was statistically significant, giving very strong evidence
in favour of the “correct” EEM alternate hypothesis.

42

5.4. Novices’ Performance

Per-Question Results for “Correct” Hints

Figure 5.16: Number of responses per question (“Correct” hints)

Question U Statistic p Value Statistical Significance (p ă 0.05)

Unicode Confusables (A) 386 ă0.001 ✓
Unicode Confusables (B) 234 0.063 ×
Missing Space (A) 221 0.030 ✓
Missing Space (B) 171 0.449 ×
Too Few Args (A) 751.5 0.028 ✓
Too Few Args (B) 162 0.771 ×

Table 5.17: Single-tailed MWU results: do “correct” hints increase the success rate?

Recall that the hypotheses were the following:

• Null hypothesis (H0): There is no difference between the success rates of participants
receiving the EEMs and the OEMs.

• Alternative hypothesis (H1): Participants who receive an “correct” EEM have a higher
success rate than participants who received the OEM.

From Figure 5.16, we can see that students who received EEMs had higher success rates for
every question apart from Too Few Args (B). However, when considering the MWU results

43

5. Results

in Table 5.17 we only have evidence supporting our H1 for half of the questions: one from
each category of hints.

Per-Question Results for “Incorrect” Hints

Figure 5.18: Number of responses per question (“Incorrect” hints)

Question U Statistic p Value Statistical Significance (p ă 0.05)

Missing Space (C) 175 0.301 ×
Missing Space (D) 238 0.484 ×
Too Few Args (C) 230 0.398 ×
Too Few Args (D) 171 0.523 ×

Table 5.19: Single-tailed MWU results: do “incorrect” hints decrease the success rate?

The hypothesis for the “incorrect” EEMs were that:

• Null hypothesis (H0): There is no difference between the success rates of participants
receiving the EEMs and the OEMs.

• Alternative hypothesis (H1): Participants who receive an “incorrect” EEM have a lower
success rate than participants who received the OEM.

In Figure 5.18, we can observe minor decreases in the percentage of successful submissions
for three of the four questions (with a slight increase for Too Few Args (D)). However, the
Mann-Whitney U results in Table 5.19 indicate that none of them were statistically significant.
Thus, we maintain the null hypothesis for all the questions.

5.4.2 Timing

Before analysing the timing data, it was first necessary to clean the data to prevent inadvertent
skews in the results. Therefore, this section will first discuss how the data was cleaned. We
then present per-question results for the “correct” and “incorrect” hints, as due to differences

44

5.4. Novices’ Performance

in sample sizes and the ranges of times taken per question, we cannot provide reliable
aggregated data.

When presenting the mean and median times in tables, we highlight the columns in
which the difference between EEM and OEM timings are in the expected direction2. This is the
direction corresponding to the alternate hypothesis.

Data Cleaning

Since the user study was open for 11 days, and no strict order to the questions was enforced,
participants were free to stop a question at any point and return to it later. Whilst this likely
increased participation rates per question and helped give more useful data for the success
rates, this occasionally resulted in that data saying that a participant took 9 hours to answer
a question. This is (almost certainly) not representative of the time the participant actually
took to answer the question. Therefore, such data had to be removed from the data set before
performing statistical analyses and drawing conclusions.

However, we decided that using the total “time spent” on a question was not a good
heuristic for cleaning the data. This is because there may be people who genuinely spent a
long time on a question, with evidence of continuous modifications. This data point would
be legitimate, and removing it could inadvertently skew the data.

Hence, two heuristics were used to determine which data to remove:

1. Did the person work on another question before finishing the current question?
2. Does the longest time interval between code compilations exceed the limit?

Determining if Another Question was Edited We determined if another question was
worked on before finishing the current question using the revision timestamps. For each
questionQ1, if there was another questionQ2 that had a revision timestamp between the start
and end times of Q1, then Q1 was removed from the dataset.

The Cut-off of Longest Time Intervals Between Code Compilations Whilst the mean
interval length between saved revisions was 8.5 minutes, the median was only 0.4 minutes.
Furthermore, 95% of the intervals were below 2 minutes. When looking at the list of the
interval times longer than 2 minutes for successfully answered questions (this list can be seen
in Appendix D), a relatively continuous increase in intervals can be seen between 2 and 10
minutes, after which a jump to 19 minutes occurs. The cut-off was therefore determined to be
11 minutes, leading to the removal of 4 timing entries.

Per-Question Results for “Correct” Hints

We used the following hypotheses for the times taken with “correct” EEMs:

• Null hypothesis (H0): There is no difference in the time taken to resolve the error
between participants who received the EEMs and the OEMs.

• Alternative hypothesis (H1): The participants who receive a “correct” EEM take less
time to resolve the error than those who got the OEM.

The timing data for the “correct” hints is visualised in Figure 5.20. Additionally, the mean
and median times that were spent on each question can be seen in Table 5.21, and we present
the results of the Mann-Whitney U test in Table 5.22.

2This is done to increase the ease of reading the results.

45

5. Results

Figure 5.20: Box plot comparing the times spent per question (“Correct” hints)

Mean Time (minutes) Median Time (minutes)
Question OEM EEM Difference (EEM – OEM) OEM EEM Difference (EEM – OEM)

Unicode Confusables (A) 1.25 1.14 -0.10 1.29 1.00 -0.29
Unicode Confusables (B) 3.00 0.92 -2.08 2.24 0.87 -1.38
Missing Space (A) 0.88 1.21 0.33 0.42 0.46 0.04
Missing Space (B) 1.02 0.38 -0.64 0.57 0.36 -0.21
Too Few Args (A) 2.44 2.33 -0.11 2.33 2.25 -0.08
Too Few Args (B) 1.21 1.49 0.28 1.02 0.85 -0.17

Table 5.21: Comparison of the mean and median times spent per question (“Correct” hints)

Question U Statistic p Value Statistical Significance (p ă 0.05)

Unicode Confusables (A) 39 0.546 ×
Unicode Confusables (B) 109 0.001 ✓
Missing Space (A) 99 0.771 ×
Missing Space (B) 199.5 0.003 ✓
Too Few Args (A) 110 0.425 ×
Too Few Args (B) 138 0.129 ×

Table 5.22: Single-tailed MWU results: do “correct” hints decrease the time spent?

From Figure 5.20 and Table 5.21 we can see that the mean and median times spent are

46

5.4. Novices’ Performance

mostly smaller for the novices using the EEMs, even though occasional increases are also
observed. However, the results of Table 5.22 indicate that there is only evidence in favour of
the alternate hypothesis for two of the six programming questions.

Per-Question Results for “Incorrect” Hints

For the “incorrect” hints, we had the following hypotheses:

• Null hypothesis (H0): There is no difference in the time taken to resolve the error
between participants who received the EEMs and the OEMs.

• Alternative hypothesis (H1): The participants who receive a “incorrect” EEM take
more time to resolve the error than those who got the OEM.

The results are visualised in Figure 5.23, with details of the means and medians written in
Table 5.24. Table 5.25 shows the results of our test for statistical significance.

From Figure 5.23 and Table 5.24 we can see that the “incorrect” hint is correlated with a
longer mean and median time spent on identifying an error. However, the Mann-Whitney U
analysis indicates that this difference is only statistically significant for one Missing Space

question: for the rest, the null hypothesis is maintained.

Figure 5.23: Box plot comparing the times spent per question (“Incorrect” hints)

47

5. Results

Mean Time (minutes) Median Time (minutes)
Question OEM EEM Difference (EEM – OEM) OEM EEM Difference (EEM – OEM)

Missing Space (C) 0.77 1.07 0.30 0.60 1.08 0.48
Missing Space (D) 1.70 1.69 -0.01 1.00 1.39 0.38
Too Few Args (C) 1.89 2.26 0.37 1.57 2.10 0.53
Too Few Args (D) 1.94 2.51 0.57 1.82 2.10 0.28

Table 5.24: Comparison of mean and median times spent per question (“Incorrect” hints)

Question U Statistic p Value Statistical Significance (p ă 0.05)

Missing Space (C) 82.5 0.030 ✓
Missing Space (D) 46 0.549 ×
Too Few Args (C) 42.5 0.298 ×
Too Few Args (D) 72 0.277 ×

Table 5.25: Single-tailed MWU results: do “incorrect” hints increase the time spent?

48

Chapter 6

Discussion

The purpose of this section is to interpret and discuss the results of our user study. Section 6.1
provides such a discussion of our results. Then, we provide a discussion of the limitations of
the study in Section 6.2.

6.1 What Does The Data Say?
In order to answer our research questions, we collected both subjective and objective data
on the effects of the EEMs. We first discuss our results on the novices’ subjective perceptions
of the error messages in Section 6.1.1. Then, Section 6.1.2 provides a discussion of how the
EEMs impacted the novices’ objective performance.

6.1.1 Subjective Opinions of the Error Messages

One of the goals of this thesis was to answer RQ1: Which kinds of hints or solutions provided in
Agda’s error messages are valued by novices? This section will discuss what conclusion for this
research question can be drawn from the results.

The Effect of “Correct” Hints

There is very strong evidence that the EEMs with the “correct” hints are valued higher than
OEMs without hints. This was observed both when looking at the results for the EEMs as a
whole, and individually. Out of the categories of hints, the strongest evidence was for the
Missing Space and the Too Few Args hints.

The weakest evidence for an EEM being perceived as more helpful than the OEM was
for Unicode Confusables (B). Although a higher proportion of participants rated it as more
helpful than the OEM, this was not statistically significant. This might be partly because the
original error message for this programming question was already rated highly —the greatest
proportion of participants rated it as “helpful” or “very helpful” out of all the “correct” hints.

The difference in WebLab and agda-mode syntax highlighting might have also influenced
the rating of the error message. In Emacs, attempting to type-check the code given in Unicode

Confusables (B) removes all syntax highlighting aside from colouring the problematic loca-
tion in red. However, the syntax highlighting in WebLab does not depend on type-checking.
Therefore, the different equals signs are highlighted in slightly different colours1 when view-
ing the code in WebLab. While this difference is difficult to see in the default WebLab display,
it becomes more apparent when using the popular extension Dark Reader2,3. This difference
can be seen in Table 6.1.

1Dark magenta versus black.
2
https://darkreader.org/

3Magenta versus white.

49

https://darkreader.org/

6. Discussion

WebLab Display Type Correct Equals Sign Incorrect Equals Sign

Default

Dark Reader (dynamic
theme generation)

Table 6.1: A comparison of how = (U+003D) and ᐀ (U+1400) are presented in WebLab

This could have indicated to programmers that a different equals sign was used on the
problematic line, providing similar information to what was given in the hint.

The Effect of “Incorrect” Hints

There is strong evidence that in general, EEMs that presented “incorrect” hints are valued
less than the OEMs without the hints. However, it is more difficult to see this difference
in valuation for the individual question, as it is only statistically significant for the Missing
Space (D) question.

Concerningly, the incorrect EEM in Too Few Args (C) appears to be higher than the OEM
among the participants who could not resolve the error, with 57% of them rating it as “helpful”
or “very helpful”. This was the programming question where the line seen in Listing 6.1 had
to be replaced by Listing 6.2, but the EEM proposes supplying more arguments to foldr.

intersperse␣x␣(y␣::␣ys)␣=␣y␣::␣x␣::␣foldr␣x␣ys

Listing 6.1: Error-containing line from Too Few Args (C)

intersperse␣x␣(y␣::␣ys)␣=␣y␣::␣x␣::␣intersperse␣x␣ys

Listing 6.2: Expected fix to error-containing line in Too Few Args (C)

This suggests that the participants were misled by the error message due to unjustified
trust in the hint being correct.

Conclusion

To answer RQ1, when correct hints are provided by EEMs, they are all valued higher than the
OEMs without hints. However, whilst this is supported with the strongest evidence for the
Missing Space hints, the evidence is also strongest that the “incorrect” Missing Space EEMs
were valued lower than OEMs. Furthermore, incorrect hints are generally valued lower than
not having any hint at all.

6.1.2 Novices’ Performance

The second research question that the thesis aimed to answer was RQ2: To what extent
does providing novices with solutions or hints in Agda’s error messages improve their ability to fix
errors? This section will discuss the conclusions made from the results of the success rate and
timing data, before giving an overall conclusion about the effects of the EEMs on the novices’
performance at solving pre-existing errors.

50

6.1. What Does The Data Say?

Success Rate

The success rates of participants were collected and analysed to answer RQ2.1: How does
enhancing Agda’s error messages with hints influence the probability that novices are able to resolve
the error?

The Effect of “Correct”Hints Overall, there is very strong evidence that EEMswith “correct”
hints improve the likelihood that novices are able to resolve the error. Individually, this
increase was statistically significant for one question from each of the hint categories:

• Unicode Confusables (A)

• Missing Space (A)

• Too Few Args (A)

When combined with the fact that the success rate was higher for all the participants who
got the correct EEMs, this indicates that all of the implemented hints have the potential to
increase success rate when correct.

The Effect of “Incorrect” Hints There was no evidence that the “incorrect” EEMs decreased
the likelihood of the novice Agda programmers fixing errors in pre-written code.

Conclusion To answer RQ2.1, there is strong evidence that, for the implemented hints, en-
hancing Agda’s error messages with hints improves the probability that novice programmers
are able to locate and fix the errors without drawbacks.

Timing

The other research sub-question was RQ2.2: How does enhancing Agda’s error messages with
hints affect the time novices spend fixing the error? To answer this, programmers were timed on
how long they took before successfully completing the programming question. However,
only individual per-question conclusions could be drawn from this data due to the differences
in sample sizes and time ranges for each question.

The Effect of “Correct” Hints There is strong evidence that the “correct” EEMs the partici-
pants took less time to fix the error in two questions:

• Unicode Confusables (B)

• Missing Space (B)

Curiously, there was no overlap between these and the questions for which a statistically
significant increase in success rate was observed with the EEM. This indicates that the two
chosen measures of “performance” are not tightly linked.

However, there might be another reason for this discrepancy. All the questions where
EEMs led to an increase in success rate were when Group A (those who received Variant
A) got the EEM. However, the EEMs led to a decrease in time spent per question only when
Group B (those who got Variant B) received the EEM. This might indicate that the discrepancy
between success and timing was due to interpersonal differences between the two groups.

For the other questions, there is no evidence of EEMs leading to quicker error fixes. In
fact, half of the questions led to higher mean and/or median times spent resolving the error.

Therefore, whilst EEMs might decrease the time spent fixing an error with certain types of
hints, we cannot make the general conclusion that EEMs lead to an improvement in this area.

51

6. Discussion

The Effect of “Incorrect” Hints Only the Missing Space (C) programming question bears
statistically significant evidence of an incorrect EEM increasing the time spent fixing an error.
Therefore, we also cannot make incorrect EEMs lead to more time spent on fixing errors.

Conclusion Unfortunately, it is difficult to draw general conclusions answering RQ2.2.
However, there is evidence that supports correct EEMs leading to decreases in time spent on
questions with Unicode Confusables and Too Few Args questions, and that incorrect EEMs
lead to increases in time spent on Missing Space questions.

6.2 Threats to Validity
Although we have obtained valuable insights from the user study, certain limitations must be
acknowledged to contextualise the findings. The following section will cover the threats to
validity stemming from the recruitment process (see Section 6.2.1), the environment used for
the study (see Section 6.2.2), and the creation of the programming questions (see Section 6.2.3).
Recognising these limitations will allow for a more nuanced interpretation of the results.

6.2.1 Recruitment

One factor that might decrease the representativeness of the results to the general population
of Agda novices were the demographics of the participants. All of the “Agda novices” used
in the study were English-speaking4 students taking the Computer Science & Engineering
Bachelors programme at TU Delft5, a university in the Netherlands. Furthermore, TU Delft
has significantly more male students, with only 29.9% of students being female [65]. All of
the participants had at least 6 weeks of experience with Haskell, as well as at least 2.5 years of
programming in other imperative languages such as Java. The demographics of the partici-
pants who took part in the study were further narrowed bymost of the recruitment happening
during the lecture, with 62% of participants starting their submissions during that time slot.
Since lectures were not mandatory, this meant that all of the participants were students who
were internally motivated to attend one of the last lectures of the course. Unfortunately, this
particular demographic might not be representative of the wider population of Agda novices.

Another problem was that several programming questions included in the user study
were inspired by the content of the fourth lecture of the course: “Equational Reasoning in
Agda”. However, as the lecture was conducted during the fourth lecture, this meant that the
participants were much less prepared to solve the programming questions on that topic. Four
of the ten programming questions were affected:

• Missing Space (B)

• Missing Space (D)

• Unicode Confusables (A)

• Unicode Confusables (B)

This amounts to 50% of the Missing Space questions, 100% of the Unicode Confusables

questions, and 0% of the Too Few Args questions. This might decrease the validity of the
comparisons between the different types of hints.

Additionally, although all the participants took the same course, their levels of experience
with Agda might have been different at the time of the study. As the study was held open for
11 days after the final content lecture of the course, the participants who completed the study
later likely had more experience with Agda. They would have also likely had more experience

4Most of these students were also not native English speakers [64]
5
https://www.tudelft.nl/en/onderwijs/opleidingen/bachelors/computer-science-and-engineering/

bachelor-of-computer-science-and-engineering

52

https://www.tudelft.nl/en/onderwijs/opleidingen/bachelors/computer-science-and-engineering/bachelor-of-computer-science-and-engineering
https://www.tudelft.nl/en/onderwijs/opleidingen/bachelors/computer-science-and-engineering/bachelor-of-computer-science-and-engineering

6.2. Threats to Validity

with the equational reasoning questions, as they had the time to do the assignments on the
topic. This could result in differences in subjective experiences and objective performance
arising from these differences in experience, as opposed to the influence of the error messages.

It should also be noted that since the user study was handed out without monitoring
the participants, there is a chance that participants may have collaborated. In that case, the
work might be influenced by the error message that their neighbour received. Although this
should have been mostly mitigated by the shuffling of the exercises, there was an issue with
shuffling on WebLab (this is discussed in Section 6.2.2) that may have increased the impact
of this factor on the validity of the results.

6.2.2 Problems with WebLab

Unfortunately, the WebLab exercise shuffling did not work properly during the user study.
Whilst all the participants were supposed to receive a shuffled list of questions from the start,
in reality most participants received an un-shuffled list with Too Few Args (A) as the first
question. It was only after the submission for that question was opened that the order of the
questions was shuffled. This led to Too Few Args (A) having a 100% response rate, skewing
response rates towards this question significantly.

Another issue that impacts the analysis of the success rate is with the “Abandoned”
category. Unfortunately, with theway the timestampswere saved it was impossible to separate
people who opened a question with no intention to solve it, versus those who made some
sort of attempt before abandoning without saving any changes to the code. This might mean
that the real success rate was higher than identified.

WebLab’s User Interface

WebLab’s User Interface (UI) is another factor that could decrease the representativeness of
the results to real-world coding situations. Studies have found that a good user interface can
significantly impact the rate at which programmers code [66]. However, WebLab’s UI does
not provide adequate support for programming in Agda, especially when compared to the
recommended editors: Emacs, VsCode, NeoVim, or Vim.

One of the main differences between the recommended WebLab and the recommended
text editors is the lack of interactive agda-mode. The main loss is the lack of support for
inserting unicode that is not printable ASCII beyond pasting it into the editor. This was
problematic for the Unicode Confusables category of programming questions, as this meant
that the way to “fix” the error was to replace an unusual character with an easy-to-type
one. However, this is not representative of the typical Agda experience. As mentioned in
Section 3.3, many errors with Unicode confusables must be fixed by doing the opposite. This
may reduce the representativeness of the results regarding the Unicode Confusables hints.

Furthermore, WebLab uses different syntax highlighting for Agda than the recommended
text editors. Normally, the syntax highlighting depends on the type-checking of an Agda
file, and if the type-checking fails then the syntax highlighting is not shown6. In fact, this
is a common complaint with the recommended UI for Agda [25]. However, the syntax
highlighting used by WebLab is static, and does not depend on the type-checking. Thus,
the highlighting remains even when a type error is present, increasing the readability of the
code. This can also lead to differences in typed characters being visible, where they normally
wouldn’t be, as was discussed in Section 6.1.1. This affects the representativeness of the data
obtained from all the programming questions.

While WebLab gives row information for the code, it does not supply the column infor-
mation. However, the column number is a vital part of the base Agda error messages that

6Some editors like Emacs highlight the problem area in red, but others like VS Code lead to no highlighting at
all.

53

6. Discussion

communicates the location of the error. Thus, the lack of column information may have
decreased the usefulness of all the error messages. For example, in Unicode Confusables

(A), there was an error on the following line:

␣␣+assoc␣:␣∀␣(a␣b␣c␣:␣ℕ)␣→␣a␣+␣(b␣+␣c)␣≡␣(a␣+␣b)␣+␣с

Both the original and enhanced error messages say that the location of the error is at row
20 and columns 50-51, and that some character с is out of scope. However, there are three
instances of a character that looks like с on the line. When using a text editor that displays the
column information, it is easy to identify which с is being referred to, but it is significantly
harder to do so without it.

However, since the hints in the EEMs sometimes provided additional context information
that could be inferred from the column number, like the name of the function that is missing
arguments, this could have skewed also the results in favour of the EEMs.

6.2.3 The Programming Questions

In addition to the demographics not being representative of the general Agda novice popula-
tion, and the UI not being representative of what Agda programmers use, the programming
exercises themselves might have been unrepresentative of the errors Agda novices face. The
participants of the user study were made to find errors in code that they did not write. They
did not know the code as well as they normally would, and did not know what the intentions
of the programmer were. Whilst this may simulate debugging someone else’s code, this is
not a case representative of the standard novice experience. Furthermore, despite attempts at
making the errors as organic as possible, they were still created specifically for the user study.

Despite a respectable sample size of participants, there was a limited number of program-
ming questions that tested the effectiveness of the EEMs. There might be other situations
where the EEMs are better or worse than the OEMs that the user study did not account for.

Another limitation of the programming questions in the user study was that the setup
only allowed us to investigate the detrimental effect of error messages appearing too frequently.
However, as discussed in Chapter 3, it can also be problematic if an error message does not
appear frequently enough.

All of this could make it difficult to extrapolate the results of the study to the usefulness
of the implemented hints in the real world.

54

Chapter 7

Related Work

Although dependently-typed proof assistants are valuable tools for both programmers and
mathematicians, their usability remains a challenge, particularly for novice users. In contrast
to imperative languages, where substantial effort has gone into designing and enhancing error
messages to improve programmers’ experiences, there is limited research into how proof
assistants communicate errors to users. This gap is especially impactful for novice users, who
often struggle with cryptic feedback due to lack of experience.

Given the limited research directly addressing the enhancement of error messages in
proof assistants, this section draws on several adjacent bodies of work. We begin by reviewing
the small but growing literature on the usability of proof assistants, including proposals for
improving their usability. We then turn to research on the types of errors novice programmers
commonly make. Building on this, we examine general recommendations for enhancing error
messages, including the use of hints. Finally, we consider existing approaches within proof
assistants that aim to improve user feedback.

7.1 Usability of Proof Assistants
Several studies have been conducted on evaluating the usability of proof assistants. One such
study, conducted by Kadoda, evaluated 17 different proof assistants (including a dependently-
typed proof assistant: LEGO) [67]withGreen andPetre’s CognitiveDimensions questionnaire
[68]. Based on these results, they proposed a checklist of features that were necessary for a
proof assistant with high learnability. The features that were found to have the highest impact
on learnability were

• assistance,
• abstraction gradient,
• visibility and juxtaposability,
• perceptual cues,
• meaningful error messages,
• role expressiveness, and
• consistency.

Furthermore, many studies have been done to evaluate the usability of KeY, a (not
dependently-typed) formal verification tool for Java [69]. In 2012, Beckert et al. used Green
and Petre’s Cognitive Dimensions questionnaire to evaluate KeY with users that mostly had
experience levels varying from “average” to “expert”. In this study they found that the most
complaints with KeY stemmed from the presentation of information, be that documentation
or the proofs themselves, as well as the time performance of KeY. This was followed-up by a
study that compared KeY with Isabelle (a higher-order logic (HOL) theorem prover) using
focus groups [71]. They identified that convenient interaction with the proof assistant, as well

55

7. Related Work

as understandable proof states and processes were desirable traits of proof assistants. Later,
Hentschel et al. performed a user study that juxtaposed two different user interfaces (UIs)
for KeY: the standard KeY UI that had a focus on proof objects, and a Symbolic Execution
Debugger (SED) UI that had a view “akin to an interactive debugger”. The findings of this
study demonstrated the value of a good UI in lowering the barrier to formal verification.
This echoes the results of the study conducted by Gray et al. in the imperative language Rust,
where participants using the “better” UI were 3.3x faster at localising faults than those who
used the standard UI [66]. A more recent formative user study with intermediate and expert
users of KeY was also carried out in 2020, with the recommendations from the study focusing
on proof writing, presentation, and user interaction.

Finally, Juhošová et al. have conducted a questionnaire-based user study whose aim was
to identify the obstacles that new users of Agda faced [25]. The results showed that novices
struggled the most with Agda’s ecosystem and IDE design, incomplete supporting material,
and “inaccessible support for new users”. Particularly relevant for this thesis is that novice
Agda programmers appeared to struggle with unclear error messages.

7.2 What Errors do Novice Programmers Make?

Identifying the recurring errors made by novices is important for effectively enhancing error
messages, as it allows the enhancements to be made for errors that are actually encountered.
However, studies have shown that educators do not have a good understanding of which
error messages are actually encountered frequently [73]. Therefore, empirical evidence of
error frequencies are vital for identifying which error messages should be enhanced.

We were not able to identify any literature that identified the common errors made by
novices of dependently-typed proof assistants. However, such studies have been done for
novices of other languages. McCall et al. discusses the 10 most common categories of error
messages encountered by novices using the BlueJ Java IDE [58], using data from the Blackbox
Project [74]. Furthermore, Marie-Hélène Ng Cheong Vee et al. investigated the error paths
taken by both “novice” and “mature” users of Eiffel, resulting in a list of the common types
of errors encountered, as well as the strategies used by novices to deal with the errors they
encountered [75]. In a multinational study that used Java and C++1 found that novice errors
stemmed from a “fragile grasp of both basic programming principles and the ability to
systematically carry out routine programming tasks”. Additionally, in investigating error
message frequencies between different languages, Jadud demonstrated the distributions of
most common types of errors in BlueJ, COBOL, Helium, LOGO, and SOLO [35]. However,
they only provided a list of the most common Java syntax errors.

Unfortunately, it is difficult to apply the results of these studies to enhancing errormessages
in Agda. The different type systems of these languages mean that the types of error messages
encountered cannot be accurately mapped to the errors in Agda. Furthermore, the definition
of “novices” used in these papers differs from what we mean by Agda novices. Agda is
not a common first programming language, with courses usually requiring (or strongly
recommending) prior knowledge of a functional programming language like Haskell [76, 77,
78]. However, Java, the most commonly used language in the listed studies, is the second
most popular “first programming language” as of 2024 [79]. All of these factors reduce the
applicability of the studies to our research.

Although not performed on novices, there has been one study investigating user errors
in proof assistants. In investigating HOL proof assistants, Aitken et al. provided a model of
interaction with proof assistants [80]. They categorised the errors encountered during proofs
into

1Although the use of language was left up to the participating institution (of the seven total), only these two
languages ended up being used.

56

7.3. Enhancing Error Messages

• syntax errors,
• knowledge errors,
• memory errors, and
• judgements errors.

Although the goal of the study was to provide a taxonomy for ITP errors, this study
also looked at the frequency of each category of error, concluding that the programming
environment was not a significant source of errors.

7.3 Enhancing Error Messages

A number of other attempts to provide enhanced feedback have been reported in the liter-
ature. In 2019, Becker et al. provided a comprehensive literature study of the state of error
message research, with a focus on error message enhancements [3]. Based on the literature,
they presented a list of recommendations, wit historical, anecdotal, and empirical evidence
supporting the different types of enhancements:

• Increase Readability,
• Reduce Cognitive Load,
• Provide Context,
• Use a Positive Tone,
• Show Examples,
• Show Solutions or Hints,
• Allow Dynamic Interaction,
• Provide Scaffolding,
• Use Logical Argumentation, and
• Report Errors at the Right Time

In a variety of different user studies of the Decaf Java editor, researchers have consistently
showed statistically significant (albeit not overwhelming) support for the enhancements of
error messages. In a controlled study, researchers found that enhanced error messages

• reduced the number of errors made by novice programmers, particularly for high-
frequency errors,

• reduced the number of struggling students, and
• resulted in more positive experiences with the error messages [8, 2].

This was supported by the results of follow-up studies [9, 10]. In a later study Becker et al.
found that although the implemented EEMs in Decaf increased the number of errors that
got resolve, there was no significant effect on students’ scores or the number of compiling
submissions [11].

Furthermore, researchers found that enhancing error messages in Athene, a tool for C++,
was also correlated with small but statistically significant improvements in novice students’
performances in error message quizzes [5]. This was found both in settings with low and
high cognitive load.

Nevertheless, the effect of EEMs are not always visible. The study conducted by Denny et
al. has found no effect (either positive or negative) arising from enhancing Java’s syntax error
messages [12], and Pettit et al. found a similar lack of impact stemming from C++ EEMs [13].
However, they were measuring the number of compiling submissions, for which Becker et
al. were also unable to find statistically significant differences. Becker et al. postulated that
this could indicate that the results of these studies are not as contradictory as might initially
appear, as “signals” of the effects might be measurable but weak. This could explain why

57

7. Related Work

improvements are visible at lower levels (like error frequencies), but not at higher levels
(such as compiling submissions).

7.3.1 Empirical Evidence for EEMs with Hints

Unfortunately, research for the error message enhancements mixed hints with other en-
hancements. This makes it difficult to distinguish the impact that a specific enhancement by
itself. Nevertheless, there are some studies that focused their enhancements on hints to the
programmer.

In 2010, Hartmann et al. implemented hint-based error message enhancements for Java and
Arduino, and evaluated the usefulness of the enhancements based on the errors novices made
[6]. However, the focus of the study was on if the method returned hints that were deemed
“useful” by the authors of the study. Therefore, they did not evaluate if the novices themselves
found the EEMs more useful than the OEMs. Later, Watson et al. also used sourced feedback
to augment Java’s error messages with hints. However, the study also incorporated other error
message enhancements, such as elaborating the feedback and presenting dynamic levels of
support based on the programmer’s behaviour [7]. Nevertheless, the findings suggested that
novice students perceived the EEMs as significantly more helpful than the OEMs. A study
with enhancing error messages with hints in Python also found that the hints were useful in
high-certainty situations, when the hint is very unlikely to present incorrect information, as
they “contributed to [novice] students” progress while still encouraging the students to solve
problems by themselves” [14].

7.4 Improving Error Messages in Functional Languages
Although much in improving and enhancing error messages has been done in imperative
languages, the same cannot be said for functional languages, especially dependently-typed
proof assistants. However, this does not mean that there is no research on this topic. This
section will briefly cover the recent efforts that have gone into enhancing error messages in
purely functional languages like Haskell, or even proof assistants like Agda.

One such project that aims at enhancing errormessages for novice programmers is Helium,
an alternate Haskell compiler. In his PhD. thesis, Heeren details the principles that were used
in the generation of error messages in Helium, which used a constraint-based type-inference
algorithm [81]. Later, Chen et al. discussed a method for counter-factual type-inference
algorithm that could generate more informative error messages with suggestions. They
evaluated both the usefulness and efficiency of the approach with a prototype in Haskell [82].
Furthermore, Eremondi et al. proposed a method that used replay graphs and counter-factual
solving to improve the error messages in dependently-typed languages [24].

However, none of this research evaluated the usefulness of the enhanced error messages
with actual users. Such user studies are vital to measure the actual impacts that these “en-
hancements” had on the usability of the language(s) [70]. The lack thereof therefore indicates
the gap in the research that our thesis aimed to fill.

58

Chapter 8

Conclusion

The goal of this thesis was to investigate the effects of enhancing Agda’s error messages with
hints on Agda novices: their performances on programming exercises, and their opinions on
the helpfulness of the hints. To do this, we implemented hint enhancements to three error
messages:

• Missing Space: forgetting whitespace between names and/or operators,
• Unicode Confusables: accidentally using a Unicode confusable character, and
• Too Few Args: supplying a function with too few arguments.

To investigate the usefulness of these EEMs, we then performed a user study that validated

• novices’ perceptions of the helpfulness of hint,
• the time taken for novice Agda programmers to find a resolve an error in pre-written

code, and
• their success rate in finding and resolving the errors.

Out of the hints for Agda’s error messages implemented for the user study, they were all
found to increase satisfaction with the helpfulness of the error message, and rate of success
in fixing the error. Furthermore, while the hints that displayed incorrect suggestion were
occasionally rated as more misleading than the original error messages without the hints, the
incorrect information did not have any impact on the probability that they could fix the error.
The evidence for the correct or incorrect enhanced error messages affecting the time spent
resolving a question was inconclusive.

In conclusion, Agda’s error messages that were enhanced with hints were both valued
better by novice Agda programmers, and increased novices abilities to fix errors. We can
therefore recommend both further enhancing error messages in dependently-typed proof
assistants like Agda with hints, and conducting more research into this topic.

8.1 Advice for User Studies
We recommend doing a longitudinal study on the impacts of the enhanced error messages.
For example, if investigating their effects on novices, this could be done over the period of an
entire course on some dependently-typed proof assistant. Although this type of investigation
has been done to investigate the impact of EEMs on imperative languages [13, 9], we were not
able to identify such longitudinal studies in dependently-typed proof assistants. In addition
to error message usability, this would also give the opportunity to investigate the effect of
EEMs on the language’s learnability:

• Do people who learnt the language with the EEMs perform better on exams?

59

8. Conclusion

• Do they make fewer errors?

The errors encountered by the participants of such a study would be more representative
of errors faced by all novices, as they are not artificially made. Furthermore, doing such a
user study on EEMs with hints would also allow the trade-off between showing a hint too
frequently and too infrequently to be investigated.

Since it is highly unlikely for all the hints that could provide useful information to always
point in the correct direction, we also believe that it would be valuable to investigate how
often the correct / incorrect suggestions are actually displayed to properly judge the extent to
which the effect of incorrect error messages is detrimental.

8.2 Further Work

In addition to our advice for future user studies in enhancing error messages, we also provide
recommendations for future work.

8.2.1 Does Enhancing Error Messages Help Experienced Programmers?

Our study, as well as most studies into the usability of EEMs [3], focused on the impacts of
EEMs on novices’ experiences, but they are not the only programmers who could benefit from
enhanced error messages. EEMs could potentially reduce cognitive load, thereby increasing
the usability of the language even for experienced users. Therefore, we believe that inves-
tigating the effects of EEMs on a wider population of proof assistant programmers may be
beneficial.

8.2.2 Which Error Messages Should Be Enhanced?

In our research, we selected the error messages based on anecdotal evidence for common
novice errors. Despite there being empirical evidence of error message frequencies for im-
perative languages like Python and Java, as well as proof assistants that are not dependently
typed, there hasn’t been any research into this for dependently-typed proof assistants (to the
extent of our knowledge). An empirical study into this could therefore be valuable, as it
would help guide further work by giving concrete evidence of which errors are common and
should be improved.

Furthermore, it may be the case that common errors are not the errors that need to be
focused on in EEM research. Research by McCall et al. has identified that error frequency may
be a poor indicator for the errors that novice programmers struggle with [58]. Therefore, an
investigation of the severity of errors in dependently-typed proof assistants may be warranted,
to ensure that the greatest impact on novice usability is attained.

8.2.3 Other Methods of Enhancing Error Messages for Dependently-Typed Proof
Assistants

The heuristics that we used in this thesis to determine when the hint should be presented
were selected due to being easy to implement, while still allowing to test the usefulness of
providing such a hint. However, they were not always the best heuristics. This was particularly
the case for the implemented Too Few Args hint, where it would be presented at the wrong
time very frequently. Future work can focus on implementing and investigating the usability
of more algorithms for enhancing error messages, like what was suggested by Eremondi,
Swierstra, and Hage [24].

Furthermore, while we investigated the impacts of enhancing error messages with hints,
this is not the only type of enhancement that can be made. There are other recommended

60

8.2. Further Work

enhancements to error messages that could be valuable to investigate, such as those compiled
by Becker et al. [3]:

• Increase Readability,
• Reduce Cognitive Load,
• Provide Context,
• Use a Positive Tone,
• Show Examples,
• Allow Dynamic Interaction,
• Provide Scaffolding,
• Use Logical Argumentation, and
• Report Errors at the Right Time.

Investigating (and comparing) the effects of these enhancements on the usability of
dependently-typed proof assistants can be a valuable avenue of research. This may be partic-
ularly apt for allowing dynamic interaction, as programming in many proof assistants (such
as Agda) is already interactive.

61

Bibliography

[1] T. Barik, J. Smith, K. Lubick, et al., “Do Developers Read Compiler Error Messages?” In
2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), May 2017,
pp. 575–585. doi: 10.1109/ICSE.2017.59.

[2] B. A. Becker, “An Effective Approach to Enhancing Compiler Error Messages,” in Pro-
ceedings of the 47th ACMTechnical Symposium on Computing Science Education, ser. SIGCSE
’16, New York, NY, USA: Association for Computing Machinery, Feb. 17, 2016, pp. 126–
131, isbn: 978-1-4503-3685-7. doi: 10.1145/2839509.2844584.

[3] B. A. Becker, P. Denny, R. Pettit, et al., “Compiler Error Messages Considered Unhelpful:
The Landscape of Text-Based Programming Error Message Research,” in Proceedings of
the Working Group Reports on Innovation and Technology in Computer Science Education,
ser. ITiCSE-WGR ’19, New York, NY, USA: Association for Computing Machinery,
Dec. 18, 2019, pp. 177–210, isbn: 978-1-4503-7567-2. doi: 10.1145/3344429.3372508.

[4] G. Marceau, K. Fisler, and S. Krishnamurthi, “Mind your language: On novices’ inter-
actions with error messages,” in Proceedings of the 10th SIGPLAN Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software, ser. Onward! 2011,
New York, NY, USA: Association for Computing Machinery, Oct. 22, 2011, pp. 3–18,
isbn: 978-1-4503-0941-7. doi: 10.1145/2048237.2048241.

[5] J. Prather, R. Pettit, K. H. McMurry, et al., “On Novices’ Interaction with Compiler Error
Messages: A Human Factors Approach,” in Proceedings of the 2017 ACM Conference on
International Computing Education Research, ser. ICER ’17, New York, NY, USA: Associa-
tion for Computing Machinery, Aug. 14, 2017, pp. 74–82, isbn: 978-1-4503-4968-0. doi:
10.1145/3105726.3106169.

[6] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer, “What would other pro-
grammers do: Suggesting solutions to error messages,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’10, New York, NY, USA:
Association for Computing Machinery, Apr. 10, 2010, pp. 1019–1028, isbn: 978-1-60558-
929-9. doi: 10.1145/1753326.1753478.

[7] C. Watson, F. W. B. Li, and J. L. Godwin, “BlueFix: Using Crowd-Sourced Feedback
to Support Programming Students in Error Diagnosis and Repair,” in Advances in
Web-Based Learning - ICWL 2012, E. Popescu, Q. Li, R. Klamma, H. Leung, and M.
Specht, Eds., Berlin, Heidelberg: Springer, 2012, pp. 228–239, isbn: 978-3-642-33642-3.
doi: 10.1007/978-3-642-33642-3_25.

[8] B. A. Becker, “An Exploration Of The Effects Of Enhanced Compiler Error Messages
For Computer Programming Novices,” Technological University Dublin, Nov. 1, 2015.

63

https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/2048237.2048241
https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/1753326.1753478
https://doi.org/10.1007/978-3-642-33642-3_25

Bibliography

[9] B. A. Becker, G. Glanville, R. Iwashima, C. McDonnell, K. Goslin, and C. Mooney,
“Effective compiler error message enhancement for novice programming students,”
Computer Science Education, vol. 26, no. 2–3, pp. 148–175, Jul. 2, 2016, issn: 0899-3408.
doi: 10.1080/08993408.2016.1225464.

[10] B. A. Becker and C. Mooney, “Categorizing Compiler Error Messages with Principal
Component Analysis,” May 29, 2016. [Online]. Available: http://hdl.handle.net/
10197/7889 (visited on 05/30/2025).

[11] B. A. Becker, K. Goslin, and G. Glanville, “The Effects of Enhanced Compiler Error
Messages on a Syntax Error Debugging Test,” in Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’18, New York, NY, USA: Asso-
ciation for Computing Machinery, Feb. 21, 2018, pp. 640–645, isbn: 978-1-4503-5103-4.
doi: 10.1145/3159450.3159461.

[12] P. Denny, A. Luxton-Reilly, and D. Carpenter, “Enhancing syntax error messages ap-
pears ineffectual,” in Proceedings of the 2014 Conference on Innovation & Technology in
Computer Science Education, ser. ITiCSE ’14, New York, NY, USA: Association for Com-
puting Machinery, Jun. 21, 2014, pp. 273–278, isbn: 978-1-4503-2833-3. doi: 10.1145/
2591708.2591748.

[13] R. S. Pettit, J. Homer, and R. Gee, “Do Enhanced Compiler Error Messages Help Stu-
dents? Results Inconclusive.,” in Proceedings of the 2017 ACM SIGCSE Technical Sympo-
sium on Computer Science Education, ser. SIGCSE ’17, New York, NY, USA: Association
for Computing Machinery, Mar. 8, 2017, pp. 465–470, isbn: 978-1-4503-4698-6. doi:
10.1145/3017680.3017768.

[14] P. M. Phothilimthana and S. Sridhara, “High-Coverage Hint Generation for Massive
Courses: Do Automated Hints Help CS1 Students?” In Proceedings of the 2017 ACM
Conference on Innovation and Technology in Computer Science Education, ser. ITiCSE ’17,
New York, NY, USA: Association for Computing Machinery, Jun. 28, 2017, pp. 182–187,
isbn: 978-1-4503-4704-4. doi: 10.1145/3059009.3059058.

[15] Emillie Thiselton and Christoph Treude, “Enhancing Python Compiler Error Messages
via Stack,” presented at the 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2019. doi: 10.1109/ESEM.2019.
8870155.

[16] A. Bove and P. Dybjer, “Dependent Types atWork,” in Language Engineering and Rigorous
Software Development: International LerNet ALFA Summer School 2008, Piriapolis, Uruguay,
February 24 - March 1, 2008, Revised Tutorial Lectures, A. Bove, L. S. Barbosa, A. Pardo, and
J. S. Pinto, Eds., Berlin, Heidelberg: Springer, 2009, pp. 57–99, isbn: 978-3-642-03153-3.
doi: 10.1007/978-3-642-03153-3_2.

[17] H. Xi, “Dead Code Elimination through Dependent Types,” in Practical Aspects of
Declarative Languages, G. Gupta, Ed., Berlin, Heidelberg: Springer, 1998, pp. 228–242,
isbn: 978-3-540-49201-6. doi: 10.1007/3-540-49201-1_16.

[18] A. Bove, P. Dybjer, and U. Norell, “A Brief Overview of Agda – A Functional Language
with Dependent Types,” in Theorem Proving in Higher Order Logics, S. Berghofer, T.
Nipkow, C. Urban, and M. Wenzel, Eds., Berlin, Heidelberg: Springer, 2009, pp. 73–78,
isbn: 978-3-642-03359-9. doi: 10.1007/978-3-642-03359-9_6.

[19] X. Leroy, S. Blazy, Z. Dargaye, et al. “CompCert - Context and motivations.” (Jul. 4,
2023), [Online]. Available: https://compcert.org/motivations.html (visited on
06/12/2025).

64

https://doi.org/10.1080/08993408.2016.1225464
http://hdl.handle.net/10197/7889
http://hdl.handle.net/10197/7889
https://doi.org/10.1145/3159450.3159461
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/3017680.3017768
https://doi.org/10.1145/3059009.3059058
https://doi.org/10.1109/ESEM.2019.8870155
https://doi.org/10.1109/ESEM.2019.8870155
https://doi.org/10.1007/978-3-642-03153-3_2
https://doi.org/10.1007/3-540-49201-1_16
https://doi.org/10.1007/978-3-642-03359-9_6
https://compcert.org/motivations.html

Bibliography

[20] W. A. Hunt, M. Kaufmann, J. S. Moore, and A. Slobodova, “Industrial hardware and
software verification with ACL2,” Philosophical Transactions of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, vol. 375, no. 2104, p. 20 150 399, Sep. 4, 2017.
doi: 10.1098/rsta.2015.0399.

[21] U. Norell, “Dependently Typed Programming in Agda,” in Advanced Functional Pro-
gramming: 6th International School, AFP 2008, Heijen, The Netherlands, May 2008, Revised
Lectures, P. Koopman, R. Plasmeijer, and D. Swierstra, Eds., Berlin, Heidelberg: Springer,
2009, pp. 230–266, isbn: 978-3-642-04652-0. doi: 10.1007/978-3-642-04652-0_5.

[22] J. Harrison, J. Urban, and F. Wiedijk, “History of Interactive Theorem Proving,” in
Handbook of the History of Logic, ser. Computational Logic, J. H. Siekmann, Ed., vol. 9,
North-Holland, Jan. 1, 2014, pp. 135–214. doi: 10.1016/B978-0-444-51624-4.50004-6.

[23] E. W. Dijkstra, “The Humble Programmer,” Commun. ACM, vol. 15, no. 10, pp. 859–866,
Oct. 1, 1972, issn: 0001-0782. doi: 10.1145/355604.361591.

[24] J. Eremondi, W. Swierstra, and J. Hage, “A framework for improving error messages in
dependently-typed languages,” Open Computer Science, vol. 9, no. 1, pp. 1–32, Jan. 1,
2019, issn: 2299-1093. doi: 10.1515/comp-2019-0001.

[25] S. Juhošová, A. Zaidman, and J. Cockx, “Pinpointing the Learning Obstacles of an
Interactive Theorem Prover,” 2025.

[26] T. Ringer, K. Palmskog, I. Sergey, M. Gligoric, and Z. Tatlock, “QED at Large: A Survey
of Engineering of Formally Verified Software,” Foundations and Trends® in Programming
Languages, vol. 5, no. 2–3, pp. 102–281, 2019, issn: 2325-1107, 2325-1131. doi: 10.1561/
2500000045. arXiv: 2003.06458 [cs].

[27] “Unicode - APL Wiki.” (), [Online]. Available: https://aplwiki.com/wiki/Unicode
(visited on 02/07/2025).

[28] “Unicode Input · The Julia Language.” (), [Online]. Available: https://docs.julialang.
org/en/v1/manual/unicode-input/ (visited on 02/07/2025).

[29] “Unicode | Raku Documentation.” (), [Online]. Available: https://docs.raku.org/
language/unicode (visited on 02/07/2025).

[30] E. Allen, D. Chase, J. Hallett, et al., “The Fortress language specification,” Sun Microsys-
tems, vol. 139, no. 140, p. 116, 2005. [Online]. Available: http://www.eecis.udel.edu/
~cavazos/cisc879-spring2008/papers/fortress.pdf (visited on 02/07/2025).

[31] David Tolnay, workingjubilee, est31, Jieyou Xu, and Noratrieb. “Warn on Fullwidth
Exclamation Mark (U+FF01) in comment · Issue #134810 · rust-lang/rust,” GitHub.
(Dec. 2024), [Online]. Available: https://github.com/rust-lang/rust/issues/
134810 (visited on 05/07/2025).

[32] T. Barik, D. Ford, E. Murphy-Hill, and C. Parnin, “How should compilers explain
problems to developers?” In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2018, NewYork,NY,USA:Association for ComputingMachinery, Oct. 26,
2018, pp. 633–643, isbn: 978-1-4503-5573-5. doi: 10.1145/3236024.3236040.

[33] V. J. Traver, “On Compiler Error Messages: What They Say and What They Mean,”
Advances in Human-Computer Interaction, vol. 2010, no. 1, p. 602 570, 2010, issn: 1687-5907.
doi: 10.1155/2010/602570.

[34] “Command-line options—Agda 2.7.0.1 documentation.” (), [Online]. Available: https:
//agda.readthedocs.io/en/v2.7.0.1/tools/command-line-options.html (visited
on 05/06/2025).

65

https://doi.org/10.1098/rsta.2015.0399
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1016/B978-0-444-51624-4.50004-6
https://doi.org/10.1145/355604.361591
https://doi.org/10.1515/comp-2019-0001
https://doi.org/10.1561/2500000045
https://doi.org/10.1561/2500000045
https://arxiv.org/abs/2003.06458
https://aplwiki.com/wiki/Unicode
https://docs.julialang.org/en/v1/manual/unicode-input/
https://docs.julialang.org/en/v1/manual/unicode-input/
https://docs.raku.org/language/unicode
https://docs.raku.org/language/unicode
http://www.eecis.udel.edu/~cavazos/cisc879-spring2008/papers/fortress.pdf
http://www.eecis.udel.edu/~cavazos/cisc879-spring2008/papers/fortress.pdf
https://github.com/rust-lang/rust/issues/134810
https://github.com/rust-lang/rust/issues/134810
https://doi.org/10.1145/3236024.3236040
https://doi.org/10.1155/2010/602570
https://agda.readthedocs.io/en/v2.7.0.1/tools/command-line-options.html
https://agda.readthedocs.io/en/v2.7.0.1/tools/command-line-options.html

Bibliography

[35] M. C. Jadud, “An exploration of novice compilation behaviour in BlueJ,” Ph.D. disser-
tation, University of Kent, 2006, 268 pp. doi: 10.22024/UniKent/01.02.86458.

[36] “Data.Product.Base,” Documention for the Agda standard library. (), [Online]. Avail-
able: https://agda.github.io/agda-stdlib/v2.2/Data.Product.Base.html (visited
on 04/17/2025).

[37] “Lexical Structure — Agda 2.7.0.1 documentation.” (), [Online]. Available: https://
agda.readthedocs.io/en/v2.7.0.1/language/lexical-structure.html#keywords-

and-special-symbols (visited on 04/17/2025).
[38] “Algebra.Properties.Group.” (), [Online]. Available: https://agda.github.io/agda-

stdlib/v2.2/Algebra.Properties.Group.html (visited on 04/17/2025).
[39] “Names,” The Agda Wiki. (Dec. 14, 2018), [Online]. Available: https://wiki.portal.

chalmers.se/agda/ReferenceManual/Names (visited on 04/18/2025).
[40] “Word Break II,” LeetCode. (2025), [Online]. Available: https://leetcode.com/

problems/word-break-ii/description (visited on 05/06/2025).
[41] HemanGandhi. “Hownot to LearnAgda.” (), [Online]. Available: https://hemangandhi.

github.io/blog-posts/agda.html (visited on 01/17/2025).
[42] “Warning against Unicode confusables - Internals & Design,” Julia Programming

Language. (Jan. 9, 2024), [Online]. Available: https://discourse.julialang.org/t/
warning-against-unicode-confusables/108734 (visited on 02/07/2025).

[43] Michael Nahas, Jesper Cockx, Andreas Abel, and Nils Anders Danielsson. “Unicode
identifier visually similar to ASCII one (source of confusion/obfuscation) · Issue #5629 ·
agda/agda,” GitHub. (Nov. 21), [Online]. Available: https://github.com/agda/agda/
issues/5629 (visited on 05/07/2025).

[44] gkepka, S. Layland, A. Korsakov, et al. “Collections Types,” Scala Documentation. (),
[Online]. Available: https://docs.scala-lang.org/scala3/book/collections-
classes.html (visited on 06/13/2025).

[45] Rocq. “Library Corelib.Init.Datatypes,” Rocq Core Library. (), [Online]. Available:
https://rocq-prover.org/doc (visited on 06/13/2025).

[46] “Emacs Mode — Agda 2.7.0.1 documentation.” (), [Online]. Available: https://agda.
readthedocs.io/en/v2.7.0.1/tools/emacs-mode.html#ok-but-how-can-i-find-

out-what-to-type-to-get-the-character (visited on 05/07/2025).
[47] zeithaste. “Unicode code point of current character - Visual Studio Marketplace.”

(May 8, 2024), [Online]. Available: https://marketplace.visualstudio.com/items?
itemName=zeithaste.cursorCharCode (visited on 06/01/2025).

[48] Josip Medved. “Unicode Code Point - Visual Studio Marketplace.” (May 25, 2025),
[Online]. Available: https://marketplace.visualstudio.com/items?itemName=
medo64.code-point (visited on 06/01/2025).

[49] Frederik Hanghøj Iversen, Andreas Abel, and G. Allais. “Suggest replacements for
various unicode characters · Issue #2898 · agda/agda,” GitHub. (Jan. 2018), [Online].
Available: https://github.com/agda/agda/issues/2898 (visited on 05/07/2025).

[50] Unicode, Inc. “Unicode Utilities: Confusables.” (), [Online]. Available: https://util.
unicode.org/UnicodeJsps/confusables.jsp?a=a&r=None (visited on 06/01/2025).

[51] Ben Hamilton. “Data.Text.ICU.Spoof,” Hackage. (2015), [Online]. Available: https:
//hackage.haskell.org/package/text-icu-0.8.0.5/docs/Data-Text-ICU-

Spoof.html (visited on 05/07/2025).
[52] X. Lee. “Emacs: Insert Unicode Character.” (Sep. 2, 2024), [Online]. Available: http:

//xahlee.info/emacs/emacs/emacs_n_unicode.html (visited on 06/01/2025).

66

https://doi.org/10.22024/UniKent/01.02.86458
https://agda.github.io/agda-stdlib/v2.2/Data.Product.Base.html
https://agda.readthedocs.io/en/v2.7.0.1/language/lexical-structure.html#keywords-and-special-symbols
https://agda.readthedocs.io/en/v2.7.0.1/language/lexical-structure.html#keywords-and-special-symbols
https://agda.readthedocs.io/en/v2.7.0.1/language/lexical-structure.html#keywords-and-special-symbols
https://agda.github.io/agda-stdlib/v2.2/Algebra.Properties.Group.html
https://agda.github.io/agda-stdlib/v2.2/Algebra.Properties.Group.html
https://wiki.portal.chalmers.se/agda/ReferenceManual/Names
https://wiki.portal.chalmers.se/agda/ReferenceManual/Names
https://leetcode.com/problems/word-break-ii/description
https://leetcode.com/problems/word-break-ii/description
https://hemangandhi.github.io/blog-posts/agda.html
https://hemangandhi.github.io/blog-posts/agda.html
https://discourse.julialang.org/t/warning-against-unicode-confusables/108734
https://discourse.julialang.org/t/warning-against-unicode-confusables/108734
https://github.com/agda/agda/issues/5629
https://github.com/agda/agda/issues/5629
https://docs.scala-lang.org/scala3/book/collections-classes.html
https://docs.scala-lang.org/scala3/book/collections-classes.html
https://rocq-prover.org/doc
https://agda.readthedocs.io/en/v2.7.0.1/tools/emacs-mode.html#ok-but-how-can-i-find-out-what-to-type-to-get-the-character
https://agda.readthedocs.io/en/v2.7.0.1/tools/emacs-mode.html#ok-but-how-can-i-find-out-what-to-type-to-get-the-character
https://agda.readthedocs.io/en/v2.7.0.1/tools/emacs-mode.html#ok-but-how-can-i-find-out-what-to-type-to-get-the-character
https://marketplace.visualstudio.com/items?itemName=zeithaste.cursorCharCode
https://marketplace.visualstudio.com/items?itemName=zeithaste.cursorCharCode
https://marketplace.visualstudio.com/items?itemName=medo64.code-point
https://marketplace.visualstudio.com/items?itemName=medo64.code-point
https://github.com/agda/agda/issues/2898
https://util.unicode.org/UnicodeJsps/confusables.jsp?a=a&r=None
https://util.unicode.org/UnicodeJsps/confusables.jsp?a=a&r=None
https://hackage.haskell.org/package/text-icu-0.8.0.5/docs/Data-Text-ICU-Spoof.html
https://hackage.haskell.org/package/text-icu-0.8.0.5/docs/Data-Text-ICU-Spoof.html
https://hackage.haskell.org/package/text-icu-0.8.0.5/docs/Data-Text-ICU-Spoof.html
http://xahlee.info/emacs/emacs/emacs_n_unicode.html
http://xahlee.info/emacs/emacs/emacs_n_unicode.html

Bibliography

[53] L. Chonavel. “Move unicode keybindings into JSON file by lawcho · Pull Request #7094
· agda/agda,” GitHub. (Feb. 7, 2024), [Online]. Available: https://github.com/agda/
agda/pull/7094 (visited on 03/03/2025).

[54] L. Chonavel, N. A. Danielsson, and J. Marozas. “Generate a ‘.XCompose‘ file · Issue
#7083 · agda/agda,” GitHub. (May 2, 2024), [Online]. Available: https://github.com/
agda/agda/issues/7083 (visited on 06/01/2025).

[55] agda. “Later · Milestone,” GitHub. (), [Online]. Available: https://github.com/agda/
agda/milestone/38 (visited on 06/01/2025).

[56] Philip Wadler, Wen Kokke, and Jeremy G. Siek. “Programming Language Founda-
tions in Agda – Getting Started.” (), [Online]. Available: https://plfa.github.io/
GettingStarted/ (visited on 02/06/2025).

[57] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying and correcting Java
programming errors for introductory computer science students,” in Proceedings of the
34th SIGCSE Technical Symposium on Computer Science Education, ser. SIGCSE ’03, New
York, NY, USA: Association for Computing Machinery, Jan. 11, 2003, pp. 153–156, isbn:
978-1-58113-648-7. doi: 10.1145/611892.611956.

[58] D. McCall and M. Kölling, “A New Look at Novice Programmer Errors,” ACM Trans.
Comput. Educ., vol. 19, no. 4, 38:1–38:30, Jul. 11, 2019. doi: 10.1145/3335814.

[59] “Brightspace,” TU Delft. (), [Online]. Available: https : / / www . tudelft . nl / en /
student/my-study-me/study-tools/brightspace (visited on 05/09/2025).

[60] M. Khakimova, J. Cockx, S. Juhošová, and J. Reinders, Enhancing Proof Assistant Error
Messages with Hints: A User Study (dataset), 4TU.ResearchData, 2025. doi: 10.4121/
79e7c4eb-81dc-492a-9ac4-69f33166de8e.

[61] N.Nachar, “TheMann‐WhitneyU: ATest for AssessingWhether Two Independent Sam-
ples Come from the Same Distribution,” Tutorials in Quantitative Methods for Psychology,
vol. 4, no. 1, 2008. doi: 10.20982/tqmp.04.1.p013.

[62] R. A. Fisher, “Statistical Methods for Research Workers,” in Breakthroughs in Statistics:
Methodology and Distribution, S. Kotz and N. L. Johnson, Eds., New York, NY: Springer,
1992, pp. 66–70, isbn: 978-1-4612-4380-9. doi: 10.1007/978-1-4612-4380-9_6.

[63] H. Aguinis, M. Vassar, and C. Wayant, “On reporting and interpreting statistical signif-
icance and p values in medical research,” BMJ Evidence-Based Medicine, vol. 26, no. 2,
pp. 39–42, Apr. 2021, issn: 2515-446X. doi: 10.1136/bmjebm-2019-111264. PMID:
31732498.

[64] M. Van Der Veldt. “TUDelft students speakmore than three languages,” Delta. (Feb. 26,
2019), [Online]. Available: https://delta.tudelft.nl/en/article/tu-delft-
students-speak-more-three-languages (visited on 06/15/2025).

[65] “Facts and Figures,” TU Delft. (), [Online]. Available: https://www.tudelft.nl/en/
about-tu-delft/strategy/diversity-inclusion/facts-and-figures-1 (visited on
04/15/2025).

[66] G. Gray, W. Crichton, and S. Krishnamurthi. “An Interactive Debugger for Rust Trait
Errors.” arXiv: 2504.18704 [cs]. (Apr. 25, 2025), pre-published.

[67] G. F. Kadoda, “Formal software development tools: An investigation into usability,”
Ph.D. dissertation, Loughborough University, Jan. 1, 1997. [Online]. Available: https:
//repository.lboro.ac.uk/articles/thesis/Formal_software_development_

tools_an_investigation_into_usability/9407444/1 (visited on 05/05/2025).
[68] T. R. G. Green and M. Petre, “Usability Analysis of Visual Programming Environments:

A ‘Cognitive Dimensions’ Framework,” Journal of Visual Languages & Computing, vol. 7,
no. 2, pp. 131–174, Jun. 1, 1996, issn: 1045-926X. doi: 10.1006/jvlc.1996.0009.

67

https://github.com/agda/agda/pull/7094
https://github.com/agda/agda/pull/7094
https://github.com/agda/agda/issues/7083
https://github.com/agda/agda/issues/7083
https://github.com/agda/agda/milestone/38
https://github.com/agda/agda/milestone/38
https://plfa.github.io/GettingStarted/
https://plfa.github.io/GettingStarted/
https://doi.org/10.1145/611892.611956
https://doi.org/10.1145/3335814
https://www.tudelft.nl/en/student/my-study-me/study-tools/brightspace
https://www.tudelft.nl/en/student/my-study-me/study-tools/brightspace
https://doi.org/10.4121/79e7c4eb-81dc-492a-9ac4-69f33166de8e
https://doi.org/10.4121/79e7c4eb-81dc-492a-9ac4-69f33166de8e
https://doi.org/10.20982/tqmp.04.1.p013
https://doi.org/10.1007/978-1-4612-4380-9_6
https://doi.org/10.1136/bmjebm-2019-111264
http://www.ncbi.nlm.nih.gov/pubmed/31732498
https://delta.tudelft.nl/en/article/tu-delft-students-speak-more-three-languages
https://delta.tudelft.nl/en/article/tu-delft-students-speak-more-three-languages
https://www.tudelft.nl/en/about-tu-delft/strategy/diversity-inclusion/facts-and-figures-1
https://www.tudelft.nl/en/about-tu-delft/strategy/diversity-inclusion/facts-and-figures-1
https://arxiv.org/abs/2504.18704
https://repository.lboro.ac.uk/articles/thesis/Formal_software_development_tools_an_investigation_into_usability/9407444/1
https://repository.lboro.ac.uk/articles/thesis/Formal_software_development_tools_an_investigation_into_usability/9407444/1
https://repository.lboro.ac.uk/articles/thesis/Formal_software_development_tools_an_investigation_into_usability/9407444/1
https://doi.org/10.1006/jvlc.1996.0009

Bibliography

[69] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and M. Ulbrich, Eds.,
Deductive Software Verification – The KeY Book (Lecture Notes in Computer Science).
Cham: Springer International Publishing, 2016, vol. 10001, isbn: 978-3-319-49811-9
978-3-319-49812-6. doi: 10.1007/978-3-319-49812-6.

[70] B. Beckert and S. Grebing, “Evaluating the usability of interactive verification systems,”
presented at the CEUR Workshop Proceedings, vol. 873, 2012, pp. 3–17.

[71] B. Beckert, S. Grebing, and F. Böhl, “A Usability Evaluation of Interactive Theorem
Provers Using Focus Groups,” in Software Engineering and Formal Methods, C. Canal and
A. Idani, Eds., Cham: Springer International Publishing, 2015, pp. 3–19, isbn: 978-3-319-
15201-1. doi: 10.1007/978-3-319-15201-1_1.

[72] M. Hentschel, R. Hähnle, and R. Bubel, “An empirical evaluation of two user interfaces
of an interactive program verifier,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’16, New York, NY, USA: Associ-
ation for Computing Machinery, Aug. 25, 2016, pp. 403–413, isbn: 978-1-4503-3845-5.
doi: 10.1145/2970276.2970303.

[73] N. C. C. Brown and A. Altadmri, “Novice Java Programming Mistakes: Large-Scale
Data vs. Educator Beliefs,” ACM Trans. Comput. Educ., vol. 17, no. 2, 7:1–7:21, May 3,
2017. doi: 10.1145/2994154.

[74] N. C. C. Brown, M. Kölling, D. McCall, and I. Utting, “Blackbox: A large scale repository
of novice programmers’ activity,” in Proceedings of the 45th ACM Technical Symposium
on Computer Science Education, ser. SIGCSE ’14, New York, NY, USA: Association for
ComputingMachinery, Mar. 5, 2014, pp. 223–228, isbn: 978-1-4503-2605-6. doi: 10.1145/
2538862.2538924.

[75] Marie-Hélène Ng Cheong Vee, Bertrand Meyer, and Keith L. Mannock. “Empirical
study of novice errors and error paths.” (2005), pre-published.

[76] “CSE 3100: Functional Programming,” Course browser searcher. (), [Online]. Available:
https://www.studiegids.tudelft.nl/a101_displayCourse.do?course_id=67585

(visited on 05/30/2025).
[77] A. Bove, P. Dybjer, and U. Norell, “A Brief Overview of Agda – A Functional Language

with Dependent Types,” in Theorem Proving in Higher Order Logics, S. Berghofer, T.
Nipkow, C. Urban, and M. Wenzel, Eds., vol. 5674, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 73–78, isbn: 978-3-642-03358-2 978-3-642-03359-9. doi: 10.1007/
978-3-642-03359-9_6.

[78] “AdvancedProgrammingParadigms.” (), [Online]. Available: https://www.msengineering.
ch/theory-modules/2024-2025-tsm-advprpa (visited on 05/30/2025).

[79] JetBrains Academy. “Computer Science Learning Curve Survey 2024 Report,” JetBrains.
(2024), [Online]. Available: https://lp.jetbrains.com/cs-learning-curve-report-
2024/ (visited on 05/29/2025).

[80] S. Aitken and T. Melham, “An analysis of errors in interactive proof attempts,” In-
teracting with Computers, vol. 12, no. 6, pp. 565–586, Jul. 2000, issn: 09535438. doi:
10.1016/S0953-5438(99)00023-5.

[81] B. J. Heeren, “Top quality type error Messages,” Sep. 20, 2005. [Online]. Available:
https://dspace.library.uu.nl/handle/1874/7297.

[82] S. Chen and M. Erwig, “Counter-factual typing for debugging type errors,” in Pro-
ceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’14, New York, NY, USA: Association for Computing Machinery,
Jan. 8, 2014, pp. 583–594, isbn: 978-1-4503-2544-8. doi: 10.1145/2535838.2535863.

68

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-15201-1_1
https://doi.org/10.1145/2970276.2970303
https://doi.org/10.1145/2994154
https://doi.org/10.1145/2538862.2538924
https://doi.org/10.1145/2538862.2538924
https://www.studiegids.tudelft.nl/a101_displayCourse.do?course_id=67585
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://www.msengineering.ch/theory-modules/2024-2025-tsm-advprpa
https://www.msengineering.ch/theory-modules/2024-2025-tsm-advprpa
https://lp.jetbrains.com/cs-learning-curve-report-2024/
https://lp.jetbrains.com/cs-learning-curve-report-2024/
https://doi.org/10.1016/S0953-5438(99)00023-5
https://dspace.library.uu.nl/handle/1874/7297
https://doi.org/10.1145/2535838.2535863

Acronyms

HCI Human-Computer Interaction

EEM Enhanced Error Message

OEM Original Error Message

MWU Mann-Whitney U

69

Appendix A

Full List of Identified Hints in Agda

The following appendix displays all of the error message hints (without the base error
message) that were found after manually investigating all occurrences of parseError and
analysing the following files:

• Agda.Interaction.Options.Errors

• Agda.Syntax.Concrete.Definitions.Errors

• Agda.TypeChecking.Errors

• Agda.TypeChecking.Serialise.Instances.Errors

• Agda.Interaction.Options.Warnings

• Agda.TypeChecking.Monad.Base.Warning

• Agda.TypeChecking.Warnings

• Agda.TypeChecking.Pretty.Warning

The appendix contains the following groups of hints:

• Directions (see Appendix A.1),
• Suggestions (see Appendix A.2), and
• Questions (see Appendix A.3).

A.1 Directions

A.1.1 Agda.TypeChecking.Errors

• NoBindingForBuiltin

– use {-# BUILTIN [SUGGESTION]1 name #-} to bind builtin natural numbers

to the type 'name'

– use {-# BUILTIN [SUGGESTION]name #-} to bind it to 'name'

• ModuleDefinedInOtherFile

– However, according to the include path this module should be defined in

[SUGGESTION]

• ClashingDefinition

– In data definitions separate from data declaration, the ':' and type must

be omitted.

• NeedOptionPatternMatching

1Note: [SUGGESTION] here is used as a placeholder for variables that are determined at compile time

71

A. Full List of Identified Hints in Agda

– (use option --pattern-matching to enable it)

• NeedOptionProp

– (use options --prop and --no-prop to enable/disable Prop)

• NeedOptionTwoLevel

– (use option --two-level to enable SSet)

• NeedOptionUniversePolymorphism

– (use option --universe-polymorphism to allow level arguments to sorts)

• AttributeKindNotEnabled

– (use [SUGGESTION] to enable them): [SUGGESTION]

• NamedWhereModuleInRefinedContext

– See https://github.com/agda/agda/issues/2897.

• PatLamWithoutClauses

– Use a single 'absurd-clause' for absurd lambdas

A.1.2 Agda.TypeChecking.Pretty.Warning

• CoinductiveEtaRecord

– If you must, use pragma {-# ETA [SUGGESTION] #-}

• UnusedVariablesInDisplayForm

– Replace it by an underscore to pacify this warning

– Replace them by underscores to pacify this warning

A.1.3 Agda.Syntax.Concrete.Definitions.Errors

• pretty

– If the opaque definitions are to be mutually recursive, move the 'mutual'

block inside the 'opaque' block.

– Since [SUGGESTION] can not participate in mutual recursion, their def-

inition must be given before this point.

• PragmaNoTerminationCheck

– To skip the termination check, label your definitions either as {-# TER-

MINATING #-} or {-# NON_TERMINATING #-}

A.2 Suggestions

A.2.1 Agda.TypeChecking.Errors

• CannotEliminateWithPattern b p a

– (suggestion: write [SUGGESTION] for a dot pattern)

• CantGeneralizeOverSorts

– Suggestion: add a 'variable Any : Set _' and replace unsolved metas by

Any

72

A.2. Suggestions

• ModuleNameUnexpected

– The module [SUGGESTION] should probably be named [SUGGESTION]

• ModuleNameHashCollision

– (you may want to consider renaming one of these modules)

• AmbiguousModule

– (hint: Use C-c C-w (in Emacs) if you want to know why)

• DotPatternInPatternSynonym

– Maybe use '_' instead.

• CannotResolveAmbiguousPatternSynonym

– (hint: overloaded pattern synonyms must be equal up to variable and con-

structor names)

• ImpossibleConstructor

– Possible solution: remove the clause, or use an absurd pattern ().

• NotAHaskellType

– Possible fix: add a pragma [SUGGESTION] for a suitable Haskell [SUG-
GESTION] .

– Possible fix: replace the value-level pragma at [SUGGESTION] by [SUG-
GESTION] for a suitable Haskell [SUGGESTION] .

• SolvedButOpenHoles

– (consider adding {-# OPTIONS --allow-unsolved-metas #-} to this module)

A.2.2 Agda.TypeChecking.Pretty.Warning

• IllegalRewriteRule

– You can turn off the projection-like optimization for [SUGGESTION] with
the pragma {-# NOT_PROJECTION_LIKE [SUGGESTION] #-} or globally with

the flag --no-projection-like

• InversionDepthReached

– Most likely this means you have an unsatisfiable constraint, but it could

also mean that you need to increase the maximum depth using the flag --

inversion-max-depth=N

• RewriteAmbiguousRules

– Possible fix: add a rewrite rule with left-hand side [SUGGESTION] to
resolve the ambiguity.

• RewriteMissingRule

– Possible fix: add a rule to rewrite

A.2.3 Agda.Syntax.Concrete.Definitions.Errors

• NotAllowedInMutual

– Suggestion: get rid of the mutual block by manually ordering declarations

73

A. Full List of Identified Hints in Agda

A.2.4 parseError

• Agda.Syntax.Parser.LexActions > lexToken

– (you may want to replace tabs with spaces)

A.3 Questions

A.3.1 Agda.TypeChecking.Errors

• CannotEliminateWithPattern b p a

– (did you supply too many arguments?)

• ClashingDefinition

– Perhaps you meant to write [SUGGESTION] at [SUGGESTION] ?

• IllTypedPatternAfterWithAbstraction

– (perhaps you can replace it by '_'?)

A.3.2 Agda.TypeChecking.Pretty.Warning

• IllegalRewriteRule

– Perhaps you can use a postulate instead of a constructor as the head sym-

bol?

• NotInScopeW

– (did you forget space around the ':'?)

– (did you forget space around the '->'?)

– (did you mean [SUGGESTION] ?)

74

Appendix B

User Study: Brightspace
Announcement

75

Appendix C

User Study: Informed Consent

77

Appendix D

Results: “Longest Intervals” Longer
than 2 Minutes

This appendix shows a complete list of the longest intervals within a submission in descending
order. This excludes the intervals from submissions that were removed due to other heuristics
detailed in Section 5.4.2.

• 5587.43333333333 mins
• 568.4 mins
• 554.583333333333 mins
• 60.9166666666667 mins
• 34.7166666666667 mins
• 19.35 mins
• 10.0833333333333 mins
• 7.66666666666667 mins
• 7.1 mins
• 6.4 mins
• 6.38333333333333 mins
• 5.08333333333333 mins
• 4.18333333333333 mins
• 3.65 mins
• 3.63333333333333 mins
• 3.43333333333333 mins
• 3.41666666666667 mins
• 2.98333333333333 mins
• 2.93333333333333 mins
• 2.9 mins
• 2.7 mins
• 2.65 mins
• 2.6 mins
• 2.51666666666667 mins
• 2.48333333333333 mins

79

D. Results: “Longest Intervals” Longer than 2 Minutes

• 2.45 mins
• 2.43333333333333 mins
• 2.33333333333333 mins
• 2.31666666666667 mins
• 2.3 mins
• 2.26666666666667 mins
• 2.25 mins
• 2.23333333333333 mins
• 2.21666666666667 mins
• 2.2 mins
• 2.15 mins
• 2.13333333333333 mins
• 2.1 mins
• 2.08333333333333 mins
• 2.08333333333333 mins
• 2.03333333333333 mins
• 2.01666666666667 mins

80

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Dependently-Typed Proof Assistants
	Enhancing Error Messages
	Research Questions and Methodology
	Thesis Overview

	Existing Agda Hints
	Identifying Existing Hints in Agda
	Trends in Hint Structure
	How to Proceed With this Information
	Limitations

	Implementation
	General Design and Implementation Decisions
	Missing Space
	Unicode Confusables
	Too Few Args

	Experimental Setup
	Recruitment
	Deploying the Survey
	The Experiment
	Pilot Study

	Results
	Statistical Significance: The Mann-Whitney U Test
	Programming Question Response Rate
	Subjective Opinions of the Error Messages
	Novices' Performance

	Discussion
	What Does The Data Say?
	Threats to Validity

	Related Work
	Usability of Proof Assistants
	What Errors do Novice Programmers Make?
	Enhancing Error Messages
	Improving Error Messages in Functional Languages

	Conclusion
	Advice for User Studies
	Further Work

	Bibliography
	Acronyms
	Full List of Identified Hints in Agda
	Directions
	Suggestions
	Questions

	User Study: Brightspace Announcement
	User Study: Informed Consent
	Results: ``Longest Intervals'' Longer than 2 Minutes

