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Abstract

Clustering is a group of (unsupervised) machine learning algorithms used to categorize
data into clusters. The most popular clustering algorithm is k-means clustering. K-means
clustering clusters the data into k clusters where a cluster is represented by the mean of
the data points called a centroid. Instead of using the mean as a centroid, a data point
(medoid) can be used instead. This algorithm is called k-medoids algorithm. Both the
algorithms work in an offline setting where all the data is known beforehand and usually
use Euclidean distance to calculate the distance between any two points. SeqClu is another
clustering algorithm for sequential data that works in an online setting and uses Dynamic
Time Warping as its distance measure. It is based on k-medoids where it uses p sequences
called prototypes, to represent a cluster. It assigns an incoming sequence to the cluster that
has the lowest average distance between its prototypes and the incoming sequence. The
issue in this approach is that many Dynamic Time Warping distance calculations need to be
made which affects the clustering speed and using the average distance affects the clustering
accuracy due to outliers being assigned as prototypes. This paper proposes an alternative
algorithm with three variants for the cluster assignment process. This algorithm iterates
through the prototypes in search for the closest prototype while excluding clusters that are
deemed too far. It assigns the incoming sequence to the cluster of the closest prototype that
it has found. Experiments on the UJI Pen Characters and UCR Synthetic Control datasets
show an improvement in clustering speed and accuracy.

1 Introduction

Clustering is an unsupervised learning algorithm used to classify data points whose labels are
unknown. The aim of a clustering algorithm is to minimize intra-cluster distance and maximize
inter-cluster distance [1]. A popular clustering algorithm is k-means clustering. K-means cluster-
ing algorithm works by partitioning the data into k clusters. The center of a cluster is calculated
by taking the mean of the data points that belong to that particular cluster |2]. However, k-means
clustering is known to be sensitive to outliers [3]. An alternative algorithm called k-medoids clus-
tering can be used to avoid this issue [4]. Instead of assigning a centroid to represent a cluster,
a data point (medoid) is used to represent a cluster instead [5].

Sequential data is a type of data where the ordering is important. Time-series data is a type
of sequential data. Sequential data can be from many sources like the stock market or sensors and
it is used in many contexts like financial analysis or weather forecasting, etc [6, Chapter 5]. In a
clustering algorithm, the distance between two objects needs to be calculated during runtime. In
k-medoids clustering, a distance measure is used to compute the distance between the points and
the medoids in order to assign them to an appropriate cluster. One of the most popular distance



measures is Euclidean distance. However, Euclidean distance is unsuitable for sequential data,
and therefore, Dynamic Time Warping distance is used instead of Euclidean distance [7] [§].

SeqClu is a real-time sequence clustering using an online k-medoids algorithm. SeqClu uses
multiple sequences to represent a cluster. These are the most representative points in a cluster
and they are called prototypes. The default implementation of SeqClu uses 5 prototypes to
represent a cluster. SeqClu works in an online setting where not all the sequences are known
initially. The sequences arrive one at a time with an unknown interval between them. SeqClu
clusters sequential data therefore it uses Dynamic Time Warping as a distance measure.

Some of the related work that can be considered is from K. Nakagawa et al. |9] who proposed
a k-medoids clustering algorithm for stock prices |9]. Their work use a variant of Dynamic
Time Warping (DTW) called Indexed DTW since stock prices are time series data. However,
their proposed algorithm works on offline data. L. O’Callaghan et al.[10] proposed STREAM
algorithm [10]. Their algorithm deals with online/streaming data just like SeqClu. It buffers new
data points before clustering them and it uses k-medians instead of k-medoids. Another algorithm
that cluster data streams is CluStream [11] which makes use of micro-clusters. There have been
also other research focused on improving the cluster assignment process for clustering algorithms
such as the work by J. Ortega et al. |[12] who worked on improving the cluster assignment process
of k-means clustering for big data [12].

Currently, the cluster assignment process of SeqClu needs to calculate the Dynamic Time
Warping distance between an incoming sequence and every prototype which is a computationally
expensive process. This paper describes different ways to improve the cluster assignment process
and compares them to the baseline implementation of SeqClu to assess their performance and
accuracy. In section [2] the existing algorithm is described in detail and the problems with the
current process are identified. The main contributions are explained in section |3} It contains the
new cluster assignment algorithm and how it tries to fix the problems identified in the previous
section. In section [ the experimental setup is introduced and elaborated on. In section [5} the
results of the different solutions are shown and compared to the original SeqClu implementation
using different datasets; results reproducibility is also discussed in this section. The results are
also compared and investigated in order to determine if there is an improvement in the cluster
assignment process in section [6] The paper is concluded in section [7]

2 Investigating SeqClu

In order to investigate and improve SeqClu, the current algorithm of SeqClu needs to be fully
outlined first. Afterward, potential flaws can be identified from the current algorithm.

2.1 Current algorithm

There are three important phases that take place when SeqClu is running, cluster initialization,
cluster assignment and cluster update. Cluster initialization is done when SeqClu first starts
up. Cluster assignment and cluster update phases are done for every incoming sequence that
needs to be clustered. SeqClu clusters points in n clusters where each cluster is represented by p
prototypes (default number of prototypes is 5).

Since SeqClu is still in an experimental stage, it uses an initialization strategy where every p
sequences are assigned to each cluster.

When an incoming sequence needs to be assigned to a cluster, the Dynamic Time Warping
distance is calculated between the incoming sequence and each prototype of a cluster. The
incoming sequence is assigned to the cluster which has the lowest average distance between the
incoming point and its prototypes. The pseudocode which can be found in algorithm [I] describes
the cluster assignment process for an incoming sequence in detail.



Algorithm 1 Pseudocode for SeqClu cluster assignment
1: function CLUSTERASSIGNMENT(sequence, clusters)
2 assignedCluster < {}

3 minimumDistance < oo
4 for all C € clusters do

5: distance < (3_,cc DTW (sequence, p))/|C]|

6

7

8

9

if distance < minimumDistance then
assignedCluster < C
mintmumDistance < distance
end if
10: end for
11: return assignedCluster
12: end function

Once a sequence has been assigned to a particular cluster, the cluster’s prototypes will need
to be updated to reflect that a new sequence now belongs to this cluster. SeqClu updates the
cluster’s prototypes by swapping the prototype with the farthest distance from the incoming
sequence by the incoming sequence itself. During cluster update, p DTW distance calculations
need to be made.

2.2 Problems with the current algorithm

The focus of this paper is to improve the cluster assignment process. As can be seen from the
pseudocode of the cluster assignment phase, the Dynamic Time Warping distance needs to be
calculated between the incoming sequence and every prototype of every cluster. That means for
n clusters with p prototypes, n * p Dynamic Time Warping distance calculations have to be done
to assign a single incoming sequence to a cluster. The time complexity of calculating Dynamic
Time Warping distance is O(n * m), where n and m are the lengths of the two sequences [13]
which means it is a computationally expensive operation |14]. Therefore, an improvement in
the cluster assignment process that can be thought of is how to reduce the number of Dynamic
Time Warping distance calculations while continuing to represent a cluster with p prototypes and
ensuring that the accuracy is not severely affected.

Another cause of concern with the cluster assignment process of SeqClu is calculating the mean
distance between an incoming sequence and the prototypes of a cluster. Mean is susceptible to
outliers therefore it might cause sequences to be assigned to incorrect clusters. Since SeqClu
replaces the farthest prototype with the incoming sequence in the assigned cluster, an outlier
can become a prototype (see the example in figure . An important point to investigate here is
whether there is a better alternative to calculating the mean and how it will affect the accuracy
of SeqClu.

Figure 1: Even though all the sequences are on the left, the incoming sequence (red) replaces the
yellow sequence as the new prototype due to the cluster update process of SeqClu



3 Improving SeqClu

At the end of section [2] two aspects were identified to improve the cluster assignment process.
These two aspects are reducing the number of Dynamic Time Warping (DTW) distance calcu-
lations and avoid using the mean distance between a sequence and the prototypes of a cluster.
This paper proposes a new algorithm and three variants that aim to reduce the number of DTW
calculations and assign an incoming sequence to the cluster that has the closest prototype to the
incoming sequence. The main idea behind the new algorithm is to exclude clusters that can be
considered very far while searching for the closest prototype. The motivation behind this idea is
that by excluding sufficiently far clusters during the iterative process, the total number of DTW
distance calculations can be reduced. A simple visualization of the new algorithm can be seen in
figure 2

At the first iteration, one prototype is selected from each cluster, the DTW distances between
the incoming sequence and the selected prototypes are calculated and stored. From figure [2] we
can see this selection by the green circle on one prototype from each cluster. The shortest distance
between the incoming sequence and the selected prototypes is retrieved and is denoted as d,, ;y,.
The parameter ¢ controls how far a cluster should be from the incoming sequence (compared
to the closest cluster to the incoming sequence) in order to be excluded for the next iteration.
Clusters are included in the next iteration if they satisfy the following condition:

dmin

where d; is the distance between the incoming sequence and the currently selected prototype
for cluster 7. If one cluster remains, then the sequence is assigned to the last remaining cluster.
In subsequent iterations, a new prototype is selected for each cluster that passed the previous
iteration. As shown in figure [2] cluster 3 didn’t pass the first iteration so no new prototype
is selected from it. The DTW distances between the incoming sequence and the newly selected
prototypes are calculated. The newly selected prototype of cluster x replaces that of the previously
selected prototype of the same cluster if it is closer to the incoming sequence than the old one.
From figure cluster 2 now has a closer prototype than the one selected from the previous
iteration so it replaces it. Clusters are excluded just like the first iteration and if one cluster
remains then the sequence is assigned to that cluster. If it is the last iteration, no filtering is
done and the sequence is assigned to the cluster which has the closest prototype. In the worst
case, n*xp DTW distance calculations will still need to be done (no cluster was excluded) but this
should not happen very often. Algorithm [2] contains the full pseudocode of this new algorithm.

As mentioned earlier, the new algorithm has (three) different variations which differ in how a
prototype is selected at each iteration. The three variants are described as follows:

1. Variant 1 starts with a random prototype (from each cluster) at the first iteration and
selects another random prototype in subsequent iterations.

2. Variant 2 also starts with a random prototype but in subsequent iterations, it selects the
closest prototype to the one from the previous iteration which has not been yet selected.
Distances between prototypes of each cluster are calculated during cluster initialization and
updated during the cluster update phase.

3. Variant 3 sorts the prototypes of each cluster by the average DTW distance between each
prototype for every cluster. In another words, a prototype s ranks the highest in a cluster
F (represented as the set of its prototypes) if it has the lowest (3, ., DTW (w,s))/|F],
where D = F — {s} . Variant 3 starts with the prototype that has the lowest average
DTW distance to other prototypes and continues in ascending order. Distances between
prototypes are calculated and updated just like variant 2.



Variants 2 and 3 incur extra DTW distance calculations during cluster initialization as
they need to maintain the distance between the prototypes of each cluster. This extra costs is
equivalent to mn * (’2’)

Algorithm 2 Pseudocode for improved cluster assignment

Require: clusters > The prototypes of the clusters
Require: f: A— B > Selects a prototype from a cluster
1: function CLUSTERASSIGNMENT’(sequence, ¢)

2 assignedCluster <+ {}

3 D + {(c¢, o) | ¢ € clusters}

4 for i+ 1,p do

5: D «+ select Prototypes(sequence, D)

6: if i # p then

7 (K',v") + min(D) > Closest cluster
8 for all (k,v) € D do

9: if k£Ek A(v—2")/v> ¢ then

10: D+ D—{(k, v)}

11: end if

12: end for

13: if D= {(k, v)} then > Only one cluster remains
14: return k

15: end if

16: else

17: assignedCluster <— min(D)

18: end if

19: end for

20: return assignedCluster

21: end function

22: function SELECTPROTOTYPES(sequence, D)
23: D+ 0
24: for all (k, v) € D do

25: v’ < DTW (sequence, f(k)) > Get a new prototype and find the distance to it
26: if v' < v then

27: D'+ D' U{(k, v)}

28: else

29: D'+ D' U{(k, v)}

30: end if

31: end for

32: return D’

33: end function

4 Experimental Setup

The experiment aims to compare how the original algorithm holds against the new algorithm
with its three variants. Due to resource constraints, three values for ¢ will be used for the three
variants which are 0.75, 1.0, and 1.25. The purpose of the experiment is not to find an optimal ¢
but rather to show that the new algorithm improves the clustering process. The experiment will



lteration 1

Green circles show the prototypes
selected at the cumrent iteration

Solid lines show the closest prototypes of clusters
that will be kept for the next iteration.

Dotted lines show excluded clusters.

One prototype is selected from each cluster in the first
iteration.

e Cluster 1 has the closest prototype.

Cluster 3 is sufficiently far so
it is not considered for the
next iteration

lteration 2

Red circles show the prototypes
selected in previous iterations

’ The selected prototype for cluster 1 is further than the old
one 5o it is not considered.

Cluster 1 is discarded and the
sequence is assigned to
cluster 2

Figure 2: Visualization of the new algorithm



randomize the data stream (except for the first n*p sequences as they are needed for initialization)
and the same stream is used on all the implementations. The stream is randomized again and
this is repeated z times in order to get reliable results and mitigate the effect of randomness.
The goal of the experiment is to check if the new algorithm (with its three variants) improves the
clustering speed while aiming for an improvement in the clustering accuracy.

At the end of each trial, performance metrics are calculated for each implementation and they
are stored. At the end of the experiment, the mean and the standard deviation of each metric
and implementation are calculated. The performance metrics are the following;:

1. Total time to assign every incoming sequence to a cluster.

2. Total number of Dynamic Time Warping distance computations during the cluster assign-
ment process (this also includes the extra Dynamic Time Warping distance computation
incurred during initialization for variants 2 and 3).

3. Average Dynamic Time Warping distance computations for assign an incoming sequence to
a cluster.

4. The (micro) Fi-score which is calculated as follows:

precision * recall
*

Fy =2 —
precision + recall

Once these statistics are calculated, a bar chart is created for each metric to compare the
obtained results between the original SeqClu implementation and the three variants (with different
¢ values). Statistical hypothesis testing is used to check if there is a significant difference between
the original SeqClu implementation and the three variants. The Wilcoxon signed-rank test is used
as a statistical hypothesis test in this experiment setup as the samples are paired and it can’t
be guaranteed that the data is normally distributed for all the metrics (e.g., the average DTW
distance calculations during cluster assignment for the original SeqClu algorithm is always n * p)
[15] [16]. Two datasets will be used for the experiment which will be elaborated more on in section

The source code for the experimental setup is developed in Python programming language
El The source code contains the original SeqClu implementation and the implementation of the
new improved cluster assignment algorithm with its three variants. It also contains the statistics
calculation used to make conclusions about the performance of each implementation. Multiple
external libraries are used in the source code to set up the entire experiment. FastDTW [17]
is used to calculate the Dynamic Time Warping distance between two sequences. Numpy [18|,
Scipy [19], Matplotlib |20], Scikit-learn [21], Tslearn 22|, and Pandas [23] are used for different
functionalities like calculating metrics and statistics.

5 Results

5.1 UJI Pen Characters dataset

The first dataset that will be used is the UJI Pen Characters dataset [24]. It consists of 3-
dimensional data. Due to resource constraints, the experiment will only use seven characters
from the dataset which are C, W, S, O, 1, 2, and 6. There are 281 sequences in the dataset that
corresponds to these classes, where each sequence has a length of 35. The performance of the
algorithms on this dataset can be found in figures 3] [ [} and [6]

Ipython.org
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Figure 3: Total time to cluster the UJI Pen Characters dataset with different algorithms

5.2 UCR Synthetic Control dataset

The second dataset that will be used is the synthetic control dataset from the UCR time-series
datasets archive . It consists of univariate data. It contains 300 sequences (for the train set)
which are divided into 6 classes (50 sequences per class). Each sequence has a length of 60. The
performance of the algorithms on this dataset can be found in figures[7}, [8} [9 and

5.3 Result Reproducibility

The source code mentioned in section @ can be found from the project’s GitHub repositoryﬂ The
project repository contains the source code and all the documentation needed to understand the
source code. The datasets used in this paper are also included in the project’s repository. The
source code is included as a Jupyter Notebookﬂ The version of Python used in the source code
is Python 3.8. The repository includes a requirements file that indicates the dependencies that
need to be installed.

The results shown in subsections [5.1] and were obtained using the same source code. The
relevant hardware specifications of the device which was used to obtain the results are Intel Core
i7-8750H @ 2.20GHz and 16 GB RAM. The device was running the latest version (21H1) of the
Windows 10 operating system at the time of the experiment.

6 Discussion

The obtained results are similar between the two datasets. The new algorithm shows a big
improvement in clustering speed. The new algorithm shows a substantial decrease in total time

2github.com /rami-ra/SeqClu-Cluster Assignment
3jupyter.org
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Figure 4: Total number of DTW calculations to cluster the UJI Pen Characters dataset with
different algorithms including extra DTW calculations incurred during initialization (if any)

for clustering, total DTW distance calculations for clustering (including the extra DTW distance
calculations incurred during initialization) for both the datasets. From the figures, we can see
there is an improvement in the F-score for both the datasets for variants 1 & 3 (for all ¢ values)
while there is a (slight) drop in the F-score for variant 2 across all ¢ values when compared to the
original implementation of SeqClu. A substantial improvement can also be seen when considering
the number of DTW distance calculations to cluster a single sequence. The original algorithm
will always use n * p DTW distance calculations to cluster a sequence but in the best performing
case (variant 1 with ¢ = 0.75), there is a decrease of ~50% and a decrease of ~30% in the worst
performing variant (variant 2 with ¢ = 1.25). As expected, excluding sufficiently far clusters
improves the clustering speed greatly, and assigning the incoming sequence to the cluster which
has the closest prototype improves clustering accuracy.

In order to confirm these results, the Wilcoxon signed-rank test will be used to compare the
original algorithm and three variants using ¢ = 1.0 against each other. The statistical test shows
that there is a significant difference when comparing the original algorithm with the three variants
across all the metrics for both the datasets except in F-score between the original algorithm and
variant 2 for the UCR Synthetic Control dataset. Variant 2 shows a significant difference when
compared to variants 1 & 3 across all metrics for both datasets. Variants 1 & 3 don’t show a
significant difference in F-score for UCR Synthetic Control and no significant difference between
them with regards to the total time for both datasets.

As can be seen from the statistical test results, the new algorithm is a significant improvement
over the original algorithm. It has a significant improvement in the clustering speed across all
the variants. Variants 1 & 3 also improve the clustering accuracy while variant 2 doesn’t do well
in terms of improving the clustering accuracy. The hypothetical reason that variant 2 fails in this
regard is that it selects new prototypes that are the closest to the current ones. However, this
doesn’t mean that they are nearer to the incoming sequence so it can cause some clusters to be
discarded even if they have not yet selected prototypes that are nearer to the incoming sequence.
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Figure 5: Average number of DTW calculations to cluster one point in the UJI Pen Characters
dataset with different algorithms

It can also lead to fewer clusters being discarded so more DTW distance calculations are needed.
The same issue is present in variants 1 & 3 but it occurs less due to the way these two variants
select the prototypes.

7 Conclusions & Future Work

In this paper, a new (iterative) algorithm has been proposed to accelerate the cluster assignment
process for SeqClu. SeqClu is a real-time sequence clustering using an online k-medoids algorithm.
This iterative algorithm iterates over the prototypes of the cluster in order to find the closest
prototype while excluding clusters that are deemed not sufficiently close (controlled by the ¢
value). It assigns a sequence to the cluster that has the closest prototype while the original
algorithm assigned it to the cluster that has the lowest average distance between its prototypes
and the sequence. This algorithm has three variants that differ in how they select a prototype
at each iteration. Variant 1 selects a (new) prototype from a cluster randomly at each iteration.
Variant 2 starts with a random prototype from a cluster in the first iteration, and in subsequent
iterations, it selects the closest (not previously selected) prototype to the previously selected
prototype. Variant 3 ranks the prototypes of a cluster by the average Dynamic Time Warping
distance between them in ascending order; it uses this order to selects prototypes at each iteration.
This algorithm aims to decrease the number of Dynamic Time Warping distance calculations by
excluding far clusters and attempts to improve the accuracy by assigning sequences to the cluster
with the closest prototype.

The three variants were tested against the original implementation of SeqClu across two
datasets. They all showed a significant improvement in clustering speed. Variants 1 & 3 also
showed a significant improvement in the clustering accuracy when compared to the original algo-
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Figure 6: F score when clustering the UJI Pen Characters dataset with different algorithms
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rithm. Variant 2 generally performed worse than variants 1 & 3 but performed better in terms
of clustering speed when compared to the original algorithm. Variant 1 and Variant 3 perform
similarly when compared to each other in terms of the DTW distance calculations but variant 3
needs n * (127) extra DTW distance calculations during cluster initialization which means it scales
worse when compared to variant 1.

Future improvements to the proposed algorithm can revolve around optimizing the value of
¢, have a changing ¢ value during the iterative process, or explore different heuristics to select
prototypes. The original SeqClu implementation was intended to cluster network traffic to detect
malware. The new algorithm will also need to be tested on network traffic to check its performance
in its intended context. Ethical considerations need to be taken into account when testing SeqClu
and its new proposed improvement in their intended setting (clustering network traffic) to ensure
that normal network traffic doesn’t get classified as malicious (false positives) which could have
wide implications on the network users.
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Figure 7: Total time to cluster the UCR synthetic control dataset with different algorithms
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Figure 8: Total number of DTW calculations to cluster the UCR synthetic control dataset with
different algorithms including extra DTW calculations incurred during initialization (if any)
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Figure 9: Average number of DTW calculations to cluster one point in the UCR synthetic control
dataset with different algorithms
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