

Delft University of Technology

Instruction Flow-based Detectors against Fault Injection Attacks

Köylü, Troya Çağıl; Reinbrecht, Cezar; Brandalero, Marcelo; Hamdioui, Said; Taouil, Mottaqiallah

DOI
10.1016/j.micpro.2022.104638
Publication date
2022
Document Version
Final published version
Published in
Microprocessors and Microsystems

Citation (APA)
Köylü, T. Ç., Reinbrecht, C., Brandalero, M., Hamdioui, S., & Taouil, M. (2022). Instruction Flow-based
Detectors against Fault Injection Attacks. Microprocessors and Microsystems, 94, Article 104638.
https://doi.org/10.1016/j.micpro.2022.104638

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.micpro.2022.104638
https://doi.org/10.1016/j.micpro.2022.104638

Microprocessors and Microsystems 94 (2022) 104638

A
0

I
T
M
a

b

A

K
F
C
M
R
C
B

1

c
t
p
s
a
m
o
a
o
g
e
p
s
v
a
k
h
p
e
o
a

S

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

nstruction flow-based detectors against fault injection attacks
roya Çağıl Köylü a,∗, Cezar Rodolfo Wedig Reinbrecht a, Marcelo Brandalero b, Said Hamdioui a,
ottaqiallah Taouil a

Delft University of Technology, Delft, South Holland, The Netherlands
Brandenburg University of Technology, Cottbus-Senftenberg, Brandenburg, Germany

R T I C L E I N F O

eywords:
ault injection
ountermeasure
achine learning
ecurrent neural network
ontent addressable memory
loom filter

A B S T R A C T

Fault injection attacks are a threat to all digital systems, especially to the ones conducting security sensitive
operations. Recently, the strategy of observing the instruction flow to detect attacks has gained popularity. In
this paper, we provide a comparative study between three hardware-based techniques (i.e., recurrent neural
network (RNN), content addressable memory (CAM), and Bloom filter (BF)) that detect fault attacks against
software RSA decryption. After conducting experiments with various fault models, we observed that the CAM
provides the best detection rate, the RNN provides the most software/application flexibility, and the BF is a
middle ground between the two. Regardless, all of them exhibit robustness against faults targeted at them,
and obtain a very high detection rate when faults change instructions altogether. This affirms the validity of
monitoring the integrity of the instruction flow as a strong countermeasure against any type of fault attack.
. Introduction

Fault injection attacks are among the most important threats in
urrent electronic systems [5]. Attackers can provoke hardware faults
o modify functionality or steal sensitive data from devices such as
ersonal computers, smartphones, and smartcards (e.g., bank, per-
onal identification cards) [6,7]. Modifying the functionality allows
n adversary to take control of the system or bypass some security
echanism [8], while stealing data can happen by observing the output

f faulty calculations during some cryptographic function [9]. This is
n alarming issue, as many ways to inject faults have been proposed
ver the years. Examples include voltage underfeeding [10], voltage
litching [11], overclocking [12], clock glitching [6], heating [13],
lectromagnetic-based glitching [14], and laser glitching [15]. This
aper addresses the issue of protecting asymmetric cryptography, the
oftware RSA decryption in particular from these attacks. RSA is a
ery popular algorithm that is used in a variety of security sensitive
pplications, such as bank transactions, cloud authentication, and as
ey exchange protocols for symmetric cryptosystems [16,17]. Although
ardware implementations are much more efficient, many systems still
erform RSA in software to avoid the area overhead. [18]. Boneh
t al. [19], Bao et al. [20], and Lenstra [21] have all proposed meth-
ds that could break RSA implementations using any kind of fault
ttack technique. Today, due to the increased complexity and high

∗ Corresponding author.
E-mail addresses: T.C.Koylu@tudelft.nl (T.Ç. Köylü), C.R.W.Reinbrecht@tudelft.nl (C.R. Wedig Reinbrecht), marcelo.brandalero@b-tu.de (M. Brandalero),

.Hamdioui@tudelft.nl (S. Hamdioui), M.Taouil@tudelft.nl (M. Taouil).

performance requirements of integrated circuits, current state-of-the-
art protections might not be suitable anymore [22,23]. Therefore, new
approaches are required to protect software implementations of RSA.

We can group the protections for software RSA implementation in
three: (i) prevention, (ii) detection, and (iii) redundancy. In prevention,
the protective countermeasures aim to prevent the injection of a fault
in the integrated circuit. Passive shields are an example for this cate-
gory [5]. These shields cover the circuit with extra metal layers in order
to make it hard for electromagnetism or light to inject a fault. Note that
such a protection is limited, as they cannot prevent other threats like
voltage or clock-based fault attacks. The detection countermeasures on
the other hand aim to monitor the system behavior to identify when a
fault attack happens. Ngo et al. [24] proposed an active shield to detect
laser and EM-based attacks. Their active shield holds the encoded data
and the integrity of it can be checked to determine if it is faulted or
not. However, similar to the passive shields, this countermeasure does
not protect against voltage and clock-based attacks. Another detection
approach is based on the monitoring of physical disturbances using
sensors. Examples include detecting light, voltage fluctuations or clock
frequency variations [5]. The main issue with such countermeasures is
their coverage, as a single sensor typically can only detect one type of
fault attack. An overall secure system would require many sensors to
protect against the different types of attack, which is not very practical
due to area and power costs. The third type of detection approaches
vailable online 23 August 2022
141-9331/© 2022 The Authors. Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.micpro.2022.104638
eceived 30 July 2021; Received in revised form 20 May 2022; Accepted 17 Augu
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

st 2022

http://www.elsevier.com/locate/micpro
http://www.elsevier.com/locate/micpro
mailto:T.C.Koylu@tudelft.nl
mailto:C.R.W.Reinbrecht@tudelft.nl
mailto:marcelo.brandalero@b-tu.de
mailto:S.Hamdioui@tudelft.nl
mailto:M.Taouil@tudelft.nl
https://doi.org/10.1016/j.micpro.2022.104638
https://doi.org/10.1016/j.micpro.2022.104638
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2022.104638&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Microprocessors and Microsystems 94 (2022) 104638T.Ç. Köylü et al.
is based on redundancy. Redundancy can be added in time [25,26] or
in space [27,28]. A basic time-based redundancy repeats an operation
later in time and compares both results [29]. A more complex version
is to calculate the inverse operation and compare the result with the
input [30]. Other versions that validate the operation with a completely
different operation also exists [31,32]. Giraud et al. [33] presented one
way of achieving this by adding two additional redundant modular
multiplications to RSA and verifying the integrity using several check-
sums. In space-based approaches, either multiple operations can run in
parallel at the same time using additional hardware [27,28] or different
checking mechanisms are added, such as error correction codes/parity
checks [28]. However, in such implementations, a final checker or voter
is required to decide if a fault was injected. In general, redundancy-
based techniques can protect a system against all kinds of fault injection
attacks, but come with two major drawbacks. First, the entire security is
compromised if the checker is glitched. Second, these countermeasures
have a high overhead: typically, twice the execution time or twice
the hardware usage. Therefore, better low-cost countermeasures are
needed that do not only protect against all types of fault attacks, but
are also robust against faults attacks targeted at them.

In our previous work [34], we proposed a novel and efficient strat-
egy to detect all kinds of fault attacks. The countermeasure evaluates
the order of instructions of an RSA decryption and detects a fault if
the expected instruction flow is broken. We implemented this detector
using a recurrent neural network (RNN), learning simply from the
observations of instruction sequences without faults. In this study, we
extend our previous work by introducing a detailed analysis of the
impact of different parameters regarding instruction sequences (e.g., se-
quence length) on security. In addition, this study presents two other
implementations that meet the proposed concept. They are content
addressable memory (CAM) and Bloom filter (BF). Thereafter, we make
a comprehensive comparison among the implementations, showing the
trade-offs related to security, hardware costs, and application flexibil-
ity. Lastly, we performed robustness analysis to compare how secure is
each implementation when a fault targets the detector itself. Therefore,
our contributions can be summarized as follows:

• Analytical evaluation of instruction flow sequences in terms of
security and cost.

• Proposal of a content addressable memory based fault attack
detector.

• Proposal of a Bloom filter based fault attack detector.
• A location-based fault analysis to assess the vulnerability of a

processor.
• A comprehensive trade-off analysis between RNN and the two

new detectors, in terms of detection rate of faults and hardware
costs.

We organize the rest of the paper as follows. Section 2 provides
information about the tools used by the detectors elaborated in this
article. Section 3 describes the threat model considered in this work.
Section 4 presents the detectors. Section 5 presents the experiments
and results. Finally, Section 6 concludes and discusses the significance
of the obtained results.

2. Background

This section provides the background required to understand the
working principles of the detectors in the context of this study. First,
Section 2.1 presents the recurrent neural networks. Thereafter, Sec-
tion 2.2 describes the Content Addressable Memories. Finally, Sec-
tion 2.3 describes the Bloom Filters.

Before describing the detectors, we will briefly define the context
here (more details can be found in Section 4). In our study, we consider
instruction sequences (i.e., collection of a couple of instructions) as
inputs to the detectors. The output on the other hand is a binary value
2

that states whether the instruction sequence contains a fault or not.
Fig. 1. Background architectures: (a) RNN cell and its unrolling in time [1]; (b) CAM
memory [2]; (c) Bloom Filter.

2.1. Recurrent neural network (RNN)

A recurrent neural network is a neural network that is capable to
understand the relation of a dataset over time. For example, given a
sequence of elements, an RNN can be trained to predict the next ele-
ment in such sequence. This functionality is achieved by incorporating
previous state information using a feedback loop [35].

An RNN consists of one or more layers each containing at least
one RNN cell. Fig. 1(a) shows how such a cell processes information
over time. In our case, the information is the about to be executed
instructions that constitute an instruction sequence. During the first
time step, the RNN cell takes the first instruction from the sequence as
input at time 𝑡0, computes the dot product of it with the weight matrix
𝑾 . The result is used as an input to a nonlinear function 𝑓 (usually
tanh). In the following time steps (i.e., 𝑡1, 𝑡2, etc.) the same operation is
repeated for the next instructions of the sequence. The only difference
here is that the output of the previous time step is concatenated with
the next instruction input before the dot product computation. The RNN
consists of several layers, each containing multiple cells.

The neural network contains two phases: i) a design phase (consisted
of training and validation); and an ii) evaluation phase. During train-
ing, the network is trained using a reference dataset (e.g., instruction

Microprocessors and Microsystems 94 (2022) 104638T.Ç. Köylü et al.

e
i
i
a
b

2

q
n
c
a
m
o

a
o
u
d
o
i
f
a
p
i
i

s
s
p
b
a
𝐴
i
a
n

n
d

sequences without any faults). During validation, the training perfor-
mance is evaluated with another reference dataset. The expectation is
that the RNN is able to predict the next instruction, given the past
few instructions in the sequence. Finally, the RNN is employed in
the field, where it uses (instruction sequences that may include faulty
instructions) as input in the evaluation phase.

2.2. Content addressable memory (CAM)

Content addressable memory is a special type of memory, where
you query for the location of a specific content [2]. In other words,
it receives data as input and outputs the respective address in the
memory in case such content exists. CAMs are typically used in network
applications due to the dynamic information flowing in networks. For
example, if multiple destinations use the same path, a CAM is able to
store all these destinations on the same address. As a result, for this
type of application, the memory usage and performance are optimized.

A typical CAM is illustrated in Fig. 1(b). When a query consisting of
an instruction sequence is supplied, all rows are searched for a match-
ing instruction sequence. If there is a match, the matching row address
is encoded and supplied as an output. There are two characteristics of
such an architecture: (i) it finds out whether the query is stored (and
its address if that is the case) and (ii) it accomplishes this typically in
a single clock cycle.

The same phases used in RNN is also applicable to the CAM (i.e., de-
sign phase and the evaluation phase). During the design phase, the refer-
nce dataset (i.e., instruction sequences without any faults) is stored
n the CAM. In the evaluation phase, instruction sequences with faulty
nstructions could be queried. If the input is found in the CAM, the
ddress of the matched query is retrieved. Due to its deterministic
ehavior, there is no need for a validation for CAM.

.3. Bloom filter (BF)

A Bloom filter is a probabilistic data structure that can be used
uickly to check whether an element belongs to a predefined set or
ot. A BF can be implemented either in software or in hardware, and it
ontains the following key components: i) 𝑘 different hash functions,
nd (ii) an 𝑚-entry bitmap (representing a set). The hash functions
ust be independent, uniformly distributed, and in order to provide fast

perations, they also have a computational cost.
Fig. 1(c) depicts an example of how an element can be added (step

) and looked up (steps a and b) in a BF. We refer to the operation
f adding elements to the Bloom Filter as design phase, while the look-
p operation is referred to as evaluation phase. At the beginning of the
esign phase, all entries in the bitmap are first set to 0. Next, each item
f the training dataset, i.e., instruction sequences without any faults,
s processed by the 𝑘 different hash functions (see step a). Each hash
unction produces an integer in the range [0, 𝑚 − 1], which is used as
n index in the 𝑚-entry bitmap. During the design phase, the 𝑘 bitmap
ositions indexed by the hashes are set to 1. This phase ends when all
nstances of the training dataset are computed, and the bitmap memory
s filled.

Similarly, during the evaluation phase, hash values of instruction
equences that may include faulty instructions are computed using the
ame 𝑘 hash functions (see step a). However, in contrast to the design
hase, the resulting indices are now used to read the content of the
itmap memory. Hence, the 𝑘 positions are accessed and their values
re fed into an 𝐴𝑁𝐷 operation, as shown in step b of Fig. 1(c). If the
𝑁𝐷 returns a 1, there is a probability (depending on 𝑘 and 𝑚) that the

nput element belongs to the valid set. Note that for BF, false positives
re possible. If the 𝐴𝑁𝐷 returns a 0 instead, the element is definitely
ot in the valid set.

Notice that a BF never produces false negatives. In other words, it
ever identifies an element as a non-member of the set when it actually
oes. In the context of this work, this property ensures that a non-faulty
3

instruction sequence will never be detected as faulty. Additionally, the
accuracy obtained in the evaluation phase can be pre-adjusted using
the parameters 𝑘 and 𝑚. Many works provide mathematical estimates
for accuracy bounds based on 𝑚 and 𝑘, and we base our analysis
on the results of [36]. Provided that the hash functions are perfectly
random, the false positive rate (FPR) (i.e., probability that a malicious
behavior is mistakenly identified as non-malicious) can be estimated
by Eq. (1) [36]:

FPR = (1 − 𝑒−
𝑘𝑛
𝑚)𝑘, (1)

where 𝑛 represents the number of instruction sequences that are part
of the set. This equation allows the parameters to be configured for
different levels of accuracy and costs, and hence, enables a fast and
cheap implementation.

3. Threat & attack model

This section describes the threat model. It discusses the target algo-
rithm, target implementation, fault models, fault exploitation methods,
and fault attacks.

3.1. Target Algorithm — RSA

The target algorithm we aim to protect in this work is RSA [37]. It
is an asymmetric cryptographic algorithm that consists of three phases
(see Fig. 2): key generation, encryption and decryption. In the key
generation phase, a public and a private key are generated based on
two large primes 𝑝 and 𝑞 (Steps 1–6 of Fig. 2). The public key 𝑘𝑝𝑢𝑏
consists of 𝑒 (the public exponent) and 𝑛 (product of two large prime
numbers 𝑝 and 𝑞), while the private key 𝑘𝑝𝑟 consists of 𝑑 (the private
exponent) and 𝑛. The public key is available to everyone and can be
used to send encrypted messages to the receiver. In RSA, the encryption
is performed by exponentiating the message 𝑚 with the public exponent
𝑒, which results in a ciphertext 𝑐 (Step 9 of Fig. 2). When the ciphertext
is received, the receiver can decrypt the original message 𝑚𝑑𝑒𝑐 by
exponentiating the ciphertext with the private exponent 𝑑, which is
only available to the receiver (Step 11 of Fig. 2).

The security of RSA depends on the selection of prime numbers 𝑝
and 𝑞. As 𝑛 is public, as shown in Step 2, an attacker may obtain 𝑝
and 𝑞 by brute-forcing the factorization of 𝑛. To overcome this, large
numbers are used, typically in the order of 1024 bits and beyond. As
a consequence, the selection of large numbers affects the encryption
and decryption performance (Steps 9 and 11). To speed them up,
different algorithms have been proposed. In this paper, we look at
two algorithms for the decryption. The first algorithm uses square-
and-multiply (SAM) (see Algorithm 1) for the exponentiation. SAM
decomposes the exponentiation in a series of iterative square operations
and potential multiplications based on the binary representation of the
key. As a result, this algorithm has logarithmic time complexity. The
second algorithm is based on the Chinese remainder theorem (CRT)
(see Algorithm 2). This method first computes the exponentiation for
two smaller numbers 𝑝 and 𝑞 as modulo (typically also using SAM).
Thereafter, it linearly combines these results to obtain the actual ex-
ponentiation in the larger modulo 𝑛. The performance gain in CRT
comes from this task division. This algorithm typically uses the extended
Euclidean algorithm [38] to calculate modular inverses of 𝑝 and 𝑞. CRT
provides a performance advantage when big integers are used.

3.2. Target Implementation — RISC-V ISA

In this work, we consider an RSA implementation in software com-
piled for the RISC-V instruction set architecture (ISA), in particular, the
32-bit base architecture (RV32I). RISC-V is an open source ISA that
contains four core instruction formats, either 32, 64, or 128 bits and
several optional extensions [4]. The four core instruction formats are

R-type: used for arithmetic and logical operations where three registers

Microprocessors and Microsystems 94 (2022) 104638T.Ç. Köylü et al.

O

f
a
f
w
n

Fig. 2. The RSA cryptosystem [3].
w
v
e
a
w
d
a
t
t
o
(
b
o
a
b
o
w
i
l
e

3

c
m
a
a
i
m

Algorithm 1 square-and-multiply (for RSA decryption) [3].
Input: Private key 𝑘𝑝𝑟 = (𝑑, 𝑛) and ciphertext 𝑐
Output: Decrypted message 𝑚𝑑𝑒𝑐= 𝑐𝑑𝑚𝑜𝑑 𝑛
1: Let 𝑑𝑏 = {𝑑𝑏0 , 𝑑𝑏1 ,… , 𝑑𝑏𝐵 } be the base-2 (bit) representation of 𝑑
2: 𝑚𝑑𝑒𝑐 ← 𝑐
3: for 𝑖 ← 𝐵 − 1 downto 0 do
4: 𝑚𝑑𝑒𝑐 ← 𝑚2

𝑑𝑒𝑐 mod 𝑛 ⊳ square in every step
5: if 𝑑𝑏𝑖 = 1 then ⊳ branch condition
6: 𝑚𝑑𝑒𝑐 ← (𝑚𝑑𝑒𝑐 × 𝑐) mod 𝑛 ⊳ multiply if the key bit is 1
7: end if
8: end for

Algorithm 2 Chinese remainder theorem (for RSA decryption) [3].
Input: Private key 𝑘𝑝𝑟 = (𝑑, 𝑛), two (secret) large primes (𝑝, 𝑞) and

ciphertext 𝑐
utput: Decrypted ciphertext 𝑚𝑑𝑒𝑐 = 𝑚

1: 𝑚𝑝 ← 𝑐𝑑 mod 𝑝 ⊳ smaller modulo exponentiation for 𝑝
2: 𝑚𝑞 ← 𝑐𝑑 mod 𝑞 ⊳ smaller modulo exponentiation for 𝑞
3: 𝑎𝑝 ← 𝑞−1 mod 𝑝 ⊳ auxiliary calculation for 𝑝
4: 𝑎𝑞 ← 𝑝−1 mod 𝑞 ⊳ auxiliary calculation for 𝑞
5: 𝑚𝑑𝑒𝑐 ← ([𝑞 × 𝑎𝑝]𝑚𝑝 + [𝑝 × 𝑎𝑞]𝑚𝑞) mod 𝑛 ⊳ combination

are involved; I-type: used for short immediate and loads; S-type: used
or loads, stores, and branches; and U-type: used for long immediate
nd unconditional jumps. There are several format extensions, such as
loating point (extension F) or compressed instructions (extension C),
hich aim to provide flexibility to adapt the processor according to the
eeds of the target application.
4

The base 32-bit instruction set RV32I includes 47 instructions,
hich can be grouped into six types if we consider two additional
ariants with respect to the four core instruction formats. These two
xtra formats are the B-type (used for conditional branches, which is
variation of the S-type) and J-type (used for unconditional jumps,
hich is a variation of the U-type). Fig. 3 illustrates the format of the
ifferent instruction types. In all of them, the least significant seven bits
re used as opcode. Aside from the U-type and J-type formats, bits 12
o 14 are referred to as function 3 (f3) field. These two fields determine
he functionality of the instruction. In the R-format, which is used for
perations where three registers are involved, an additional function 7
f7) field is used to specify extra functionality details. This field is seven
its wide, from bit 25 to 31. Six of these bits are always 0. The value
f the 30th bit is used to further clarify the instruction. For example,
n f3 value of {000}2 may indicate addition or subtraction. If the 30th
it equals 0 (i.e., f7 equals {0000000}2), the operation equals an add,
therwise (when f7 is {0100000}2) a subtraction is performed. Note that
e used the opcode, function f3, and 30th bit located in function 7 as

nputs to the neural network, as these define an instruction. Without
oss of generality, we do not consider out-of-order and speculative
xecutions in this work.

.3. Fault models

We used two sets of fault models. Both sets assume that an attacker
an inject faults in the different parts of the systems such as the main
emory, processor in general and specific parts of the processor such

s instruction buffer during the sensitive operation. In addition, we
ssume that attackers have full observability, i.e., they can observe
nputs (ciphertext), as well as faulty and fault-free outputs (decrypted
essage).

Microprocessors and Microsystems 94 (2022) 104638T.Ç. Köylü et al.
Fig. 3. RISC-V RV32I instruction formats [4].
The first set of fault models can be used by an attacker to determine
vulnerable locations in the system. Therefore, they focus on faults in
different locations of the system. There are four location-based fault
models:

1. One fault in memory (OM). This fault model represents one bit
flip in the main memory.

2. One fault in processor (OP). In this fault model, one random bit
flip occurs in any part of the processor.

3. Multi-bit fault in memory (MM). In this fault model, multiple
random bit flips occur in any part of the main memory (from one
to four, where the latter is set to limit the simulation times). Note
that these faults may fall in any place, and hence, they are not
necessarily concentrated in the same or adjacent memory row.

4. Multi-bit fault in processor (MP). In this fault model, multiple
random bit flips occur in any part of the processor (from one
to four, again for the same reason).

The second set was introduced by Koylu et al. in [34], in order
to evaluate the instruction fault detection capabilities of a detector.
Here, the fault models represent different types of faults that alter
instructions that can take place for example in the instruction memory
or the instruction buffer of the processor. It contains five types of fault
models:

1. Single bit fault model. This fault model represents a single bit flip
that may happen in any bit of the instruction.

2. Single byte fault model. A byte fault refers to multiple bit flips
within a single byte of the instruction. Any fault that provokes
a change in a random byte falls into this fault model.

3. Branch-to-opposite fault model. This fault model contains bit flips
that change a branch instruction to the opposite branch in-
struction. As we consider the RISC-V ISA, these bit flips must
happen in the f3 field. As such, the instructions are swapped
between branch equal<–>branch not equal, branch less than<–
>branch greater or equal and branch less than unsigned<–>branch
greater or equal unsigned.

4. Instruction-to-instruction fault model I. This fault model extends
the previous, by also including the faults resulting in the change
of other instructions to each other. This change can be in the
same format (e.g., from branch equal to branch greater) or into
different formats (e.g., from branch to add). One constraint in
this fault model is that only a branch instruction can be glitched
into another branch instruction. The reason for this is that when
a non-branch instruction is glitched into a branch, it is very easy
to detect the fault as the control flow of the program breaks and
the program typically crashes.

5. Instruction-to-instruction fault model II. This fault model is the
same as the variation I, but without the branch constraint.

Note that the instruction changing fault models can also cover
popular software attacks such as instruction skips, code injection, buffer
overflow, and code reuse [39]. However, we do not formally investigate
them in this paper.
5

3.4. Fault exploitation methods

The exploitation methods show how vulnerabilities can be exploited
to break a cryptosystem by injection of faults. The objective is to
identify three main aspects: ‘‘how many faults are needed?’’, ‘‘where
should the faults occur?’’, and ‘‘what type of faults are needed?’’. Two
popular methods against RSA are considered in this paper. These are
referred to as Bellcore and Bao.

3.4.1. Bellcore threat model
One of the first fault exploitation methods against RSA is ‘‘Bell-

core’’ [19]. This theoretical study demonstrated that some particular
faults allow malicious parties to break Chinese remainder theorem-
based RSA implementations (i.e., obtain the key). The attack aims at
inserting a fault into one of the smaller modulo exponentiation (see
Algorithm 2) to provoke an erroneous result. By comparing the wrong
output with the correct output from fault-free decryption, the key can
be mathematically retrieved. To understand the attack in more detail,
let us revisit the smaller modulo exponentiation 𝑚𝑝 ≡ 𝑐𝑑 mod 𝑝 and
𝑚𝑞 ≡ 𝑐𝑑 mod 𝑞 (see also Algorithm 2). There are two coefficients (𝑎, 𝑏)
that satisfy the following three properties:

p1. 𝑚𝑑𝑒𝑐 = 𝑚 ≡ 𝑎 × 𝑚𝑝 + 𝑏 × 𝑚𝑞 mod 𝑛
p2. 𝑎 ≡ 1 mod 𝑝, 𝑎 ≡ 0 mod 𝑞
p3. 𝑏 ≡ 0 mod 𝑝, 𝑏 ≡ 1 mod 𝑞

Let us assume that a fault occurred during decryption which affected
𝑚𝑝 only (see line 2 at Algorithm 2). As 𝑚𝑝 ≡ 𝑐𝑑 mod 𝑝, property p1
will change and the faulty 𝑚′

𝑝 can be expressed by Eq. (2). In case the
fault-free 𝑚𝑑𝑒𝑐 is available, a differential calculation can be made; this is
shown in Eq. (3). From this equation the value of 𝑞 could potentially be
derived, as shown in Eq. (4). In case the result of Eq. (3) is not divisible
by 𝑝, the value of 𝑞 can be retrieved. Hence, RSA can be easily broken
as 𝑛 = 𝑝 × 𝑞. Later, Lenstra et al. showed that the correct message 𝑚𝑑𝑒𝑐
is even not needed to break the cryptosystem [21].

𝑚′
𝑑𝑒𝑐 ≡ 𝑎 × 𝑚′

𝑝 + 𝑏 × 𝑚𝑞 mod 𝑛 (2)

𝑚𝑑𝑒𝑐 − 𝑚′
𝑑𝑒𝑐 = (𝑎 × 𝑚𝑝 + 𝑏 × 𝑚𝑞) − (𝑎 × 𝑚′

𝑝 + 𝑏 × 𝑚𝑞) = 𝑎(𝑚𝑝 − 𝑚′
𝑝) (3)

gcd{𝑎(𝑚𝑝 − 𝑚′
𝑝), 𝑛} =

{

𝑞, if 𝑚𝑑𝑒𝑐 − 𝑚′
𝑑𝑒𝑐 mod 𝑝 ≠ 0.

𝑛, otherwise.
(4)

3.4.2. Bao threat model
A second popular fault exploitation method against RSA is presented

in Bao et al. [20]. In this study, two threats are introduced. Both are
based on the idea of introducing bit faults to leak one bit of the secret
exponent 𝑑 at a time. To understand why this strategy works, the
decryption operation can be rewritten in such a way that the key bits
are used independently from each other. This is shown in Eq. (5). In
this equation, 𝑑 presents the 𝑖th bit of the key and 𝑁 the bit length
𝑖

Microprocessors and Microsystems 94 (2022) 104638T.Ç. Köylü et al.

I
N
I
s
m

3

a
s
s
e
R
B
B
s
c
p
w
a
e
t
t
a

t
e
e
B
t
s
m
D
o
i
e
l

c
m
i
s
t
i
i
f
b

4

d
t
S
d
t
b
R

4

p
t
i
f

t
t
i
a
T
f
e
c
t
c
s
i

t
d
u
t
i
a
t
h
d
i
s
e
f
i

(
i
l
N
t
b

of the modulus 𝑛. The values 𝑡𝑖 depend on the ciphertext 𝑐 as shown
in Eq. (6).

𝑚𝑑𝑒𝑐 ≡ 𝑡𝑑𝑁−1
𝑁−1 × 𝑡𝑑𝑁−2

𝑁−2 ×⋯ × 𝑡𝑑11 × 𝑡𝑑00 mod 𝑛 (5)

𝑡𝑖 ≡ 𝑐2
𝑖

mod 𝑛 ∶ 𝑖 ∈ {0, 1,… , 𝑁 − 1} (6)

The first attack injects a bit fault into the ciphertext. More specifically,
one of the 𝑡𝑖’s are made faulty by one bit. It can be quickly observed
from the equation that only one of the 𝑁 terms of Eq. (5) will differ
from the correct decryption. Hence, when you divide the faulty output
with the fault-free output, either a 1 is expected (when the involved
key bit is 0) or the ratio between them (when the involved key bit
is 1). This is shown in Eq. (7). Note that the first condition on this
equation, when 𝑑𝑖 = 0, means that 𝑚′

𝑑𝑒𝑐 mod 𝑛 ≡ 𝑚𝑑𝑒𝑐 mod 𝑛. Thus, no
information can be gained in this case. For the other case however, an
attacker can calculate all possible 1 bit faults on 𝑡𝑖’s, and compare it
with the result of 𝑚′

𝑑𝑒𝑐
𝑚𝑑𝑒𝑐

, which are both assumed to be accessible. When
a match is found, the attacker infers both 𝑖 and that 𝑑𝑖 = 1. This attack
is then repeated to find other bits of the secret exponent 𝑑.

𝑑𝑖 =

⎧

⎪

⎨

⎪

⎩

0, if 𝑚′
𝑑𝑒𝑐

𝑚𝑑𝑒𝑐
≡ 1 mod 𝑛

1, if 𝑚′
𝑑𝑒𝑐

𝑚𝑑𝑒𝑐
≡ 𝑡′𝑖

𝑡𝑖
mod 𝑛

(7)

n the second attack, the bit fault is injected into the secret exponent 𝑑.
amely, 𝑑𝑖 is made faulty. In a similar way, Eq. (8) is now applicable.

n the equation, both cases 𝑑𝑖 = 0 and 𝑑𝑖 = 1 leak information. The
ecret bit is 0 or 1 when the division of the correct and faulty decrypted
essages results in 𝑡𝑖 or 1

𝑡𝑖
, respectively. This attack is then repeated to

find the other bits.

𝑑𝑖 =

⎧

⎪

⎨

⎪

⎩

0, if 𝑚′
𝑑𝑒𝑐

𝑚𝑑𝑒𝑐
≡ 𝑡𝑖 mod 𝑛

1, if 𝑚′
𝑑𝑒𝑐

𝑚𝑑𝑒𝑐
≡ 1

𝑡𝑖
mod 𝑛

(8)

.5. Fault attacks

Fault injection attacks on RSA try to successfully retrieve the key by
pplying exploitation methods like the ones presented in the previous
ubsection. Several techniques can be used to inject faults into a circuit,
uch as voltage underfeeding or clock glitching. For example, Barenghi
t al. [7] used voltage underfeeding to retrieve the key of a software
SA implementation using both Bellcore and Bao methods. To perform
ellcore’s method, they corrupted the load instructions. To perform
ao’s method, they changed branch instructions to the opposites, during
quare-and-multiply (Algorithm 1). To elaborate further on this, the
heck condition that determines whether a multiplication should be
erformed (which depends on the key bit) is typically implemented
ith a branch not equal instruction. When this condition is changed to
branch equal, the effect is equal to having a bit fault in the secret

xponent 𝑑. Hence, the vulnerability conditions described by the Bao
hreat model can be exploited. Schmidt et al. [14] successfully applied
he Bellcore threat model-based attack using an EM spark, which was
ble to disturb only one of the modulo computations.

It is important to note here that the conditions of the aforemen-
ioned threats can be realized in a number of ways. Although not
xplicitly aimed at RSA implementations, many studies show differ-
nt fault injection techniques that can potentially be used to achieve
ellcore and Bao exploitation methods. For example, Amiel et al. [6]
ampered with the clock signal of a smartcard to break data encryption
tandard (DES). The study by Kim et al. [40], introduced Rowham-
ering to flip bits in memory cells by continuously reading data from
RAMs. The importance is that the attacker does not even have to
btain physical access to the attacked device. Skorobogatov et al. [41]
llustrated the same effect by using a flash lamp, whereas Agoyan
t al. [15] used a laser. Finally, Schmidt et al. [42] used ultraviolet
6

ight to attack advanced encryption standard (AES). s
The location of where the faults take place is important. In the
ontext of a processor running an RSA decryption, the attacks can target
ultiple places to succeed in realizing Bellcore and Bao threats. These

nclude; (i) injecting faults to the main memory to change associated
tored values [40], (ii) injecting faults to the instructions to change
he operations and/or the interpretation of the data [7], and (iii)
njecting faults into the internal signals of the processor to change the
nterpretation of intermediate results [43]. Our protection focuses on
aults that affect the instructions directly or indirectly in the instruction
uffer, which is explained next.

. Instruction flow-based detectors

This section presents a detailed analysis on instruction flow-based
etectors. Section 4.1 explains the concept of how faults can be de-
ected by observing the program flow at instruction level. Thereafter,
ection 4.2 provides a mathematical relation between the detector’s
etection capability (i.e., security) versus its cost. Subsequently, Sec-
ion 4.3 presents our general methodology to design an instruction-flow
ased detector. Finally, Section 4.4 presents different types of detectors:
NN, CAM, and BF.

.1. Concept

Our aim is to design a detector that works in parallel to the
rocessor, with the aim of detecting faulty instructions. This requires
wo main elements: a way to extract meaningful information from the
nstructions, and an algorithm to detect faults in them. This subsection
ocuses on the ways to extract meaningful information.

Every program runs a specific sequence of instructions that is dic-
ated by its algorithm. Depending on the data, a program can have mul-
iple execution flows, which creates multiple valid/fault-free/correct
nstruction sequences. Note that we use these terms interchangeably. If
fault occurs, it is very likely that a valid sequence becomes corrupted.
his can lead to erroneous computations or even crashes. Therefore,
aults can be detected by investigating the validity of the sequence of
xecuted instructions. The more instructions an instruction sequence
ontains, the easier it is to detect the fault in general, as the order of
he instructions is more unique. In contrast, if the instruction sequence
onsists of a single instruction only, the probability that a faulty in-
truction is still valid is much larger: such as the case when an add
nstruction is faulted to a subtract instruction.

A number of studies have investigated a similar concept; we refer
o them as control flow integrity checking [23,44–48]. These studies
ivided the instructions of a program into blocks and protected them
sing signature-based integrity checks at the end of each block. Even
hough this approach would theoretically determine faulty instructions,
t has major drawbacks: i) a fault injected into the signature checker
t the end of a block will render the countermeasure inefficient, ii)
here are typically no security dependencies between the blocks and
ence if one check is bypassed, checks in the subsequent blocks cannot
etect that, iii) the exhaustive listing of all possible program behavior
s costly, and (iv) they typically require modifications to the proces-
or [39]. Our previous work addressed these shortcomings by simply
valuating sequences of non-faulty instructions (i.e., the last couple of
etched instructions) continuously in the processor [34] to determine
rregularities when there are faulty ones.

This concept is shown in Fig. 4, where 𝑤𝑙 denotes the window length
i.e., the size of the instruction sequence, which contains the last 𝑤𝑙
nstructions that are being checked), while 𝑠𝑙 represents the sliding
ength, i.e., how many instructions are skipped between the sequences.
ote that an 𝑠𝑙 of 1 represents an overlap of 𝑤𝑙−1 instructions between

wo consecutive sequences (see Fig. 4). To prevent instructions from not
eing checked, 𝑠𝑙 must be equal to or smaller than 𝑤𝑙. In the following

ubsection, we provide detailed analysis regarding 𝑤𝑙 and 𝑠𝑙.

Microprocessors and Microsystems 94 (2022) 104638T.Ç. Köylü et al.

i

4

a

p
s
i
v
s
h
b
s
H
a

𝑆

Fig. 4. Illustration of two cases of instruction sequences, with the following parameters as examples: (a) 𝑤𝑙 = 5, 𝑠𝑙 = 1 and (b) 𝑤𝑙 = 4, 𝑠𝑙 = 2. Two sequences (𝑠0 and 𝑠1) are
ndicated for both cases.
F
F
𝑤

w
c
[
f
v

s
s
y
b
b
w
a
c

r
f
a
s
h

.2. Analysis

The window 𝑤𝑙 and sliding length 𝑠𝑙 impact the security and cost
s follows:

• If the probability of randomly changing an instruction to another
valid instruction by a fault injection attack is 𝑝, changing an
instruction such that it still matches a valid sequence of more
than one instruction is 𝑞, where 𝑞 ≪ 𝑝. In this case, an adversary’s
success rate is reduced to 𝑞.

• Furthermore, when instruction sequences are validated (e.g., by
a detector) instead of single instructions, the success rate of
an attack (i.e., changing a complete sequence to another one)
becomes 𝑄 = 𝑞𝑤𝑙 . Hence, we have 𝑄 ≪ 𝑞, which also means that
the bigger 𝑤𝑙 is, the lower the probability of an attack to succeed.

• An instruction can be validated multiple times, as 1 ≤ 𝑠𝑙 ≤ 𝑤𝑙
holds. Specifically, the instructions are validated in approximately
𝑙 = ⌈

𝑤𝑙
𝑠𝑙
⌉ different sequences. The lower 𝑠𝑙, the more overlap of

instructions in different sequences, and hence, more redundant
checks are performed. This further reduces the adversary success
probability 𝑄′ as 𝑄′ < 𝑄.

Based on these observations, a countermeasure can be designed to
rotect the system by evaluating instructions sequences. A large 𝑤𝑙 and
mall 𝑠𝑙 is expected to increase the security, but also come with a higher
mplementation cost. In order to analyze the trade-off between security
ersus cost, we propose two evaluation metrics to represent them. The
ecurity can be expressed in how often an instruction gets checked and
ow difficult it is to change an instruction without getting detected
y the detector. The latter implies that a bit causing a fault in a valid
equence must lead to another valid sequence in order to go undetected.
ence, we use the average Hamming distance between the different sets
s a security metric as shown in Eq. (9).

𝑒𝑐𝑢𝑟𝑖𝑡𝑦 = 𝑙 × 2
𝑁 × (𝑁 − 1)

𝑁−2
∑

𝑖=0

𝑁−1
∑

𝑗=𝑖+1

𝐻𝐷(𝑠𝑒𝑞𝑖, 𝑠𝑒𝑞𝑗)
𝐵

. (9)

In this equation, 𝑙 denotes how often the same instruction is checked
in different sequences, 𝐻𝐷 the hamming distance between two se-
quences 𝑠𝑒𝑞𝑖 and 𝑠𝑒𝑞𝑗 normalized with respect to the number of bits in a
sequence 𝐵, and 𝑁 the number of different instruction sequences which
can be approximately represented by 𝑁 ≈ (𝐼−𝑤𝑙)∕𝑠𝑙. Here, 𝐼 represents
the total number of instructions. Lastly, to calculate the average 𝐻𝐷
between the instruction sequences the equation is normalized by the
number of different sequence pairs (i.e., [𝑁 × (𝑁 − 1)]∕2).

The security in Eq. (9) is directly proportional to the number of
instruction checks, and thus a larger 𝑤𝑙 and smaller 𝑠𝑙 increases the
security. However, at the same time using such values will increase
the required storage and computational capacity. The storage can be
expressed by the number of bits that need to be stored, while the
computation complexity by the number of instructions processed in
parallel at a given time. We integrate both concepts in a single cost
metric, as shown in Eq. (10).

𝐶𝑜𝑠𝑡 = 𝑁 × 𝐵 × (𝑤𝑙 × 𝑙), (10)

In this equation, the storage requirement equals the product of
7

number of sequences 𝑁 and the number of bits in each sequence 𝐵. 𝑠
Fig. 5. Number of processed instructions before the last instruction in the first sequence
(indicated by red) is released.

For the computational capacity, we consider the number of instructions
that are processed from the moment a new instruction is part of the
instruction sequence under process until the moment it is not part of
an instruction sequence. Fig. 5 provides an example for the instruction
𝑖𝑛𝑠𝑡2 . The amount of instructions that are processed while 𝑖𝑛𝑠𝑡2 is being
checked equals 𝑤𝑙 × 𝑙, which can also be represented as 𝑖𝑝 = 𝑤𝑙 × ⌈

𝑤𝑙
𝑠𝑙
⌉.

or part (a) of the figure with 𝑤𝑙 = 3 and 𝑠𝑙 = 1 this equals 𝑖𝑝 = 9.
or part (b) with 𝑤𝑙 = 3 and 𝑠𝑙 = 2 equals 𝑖𝑝 = 6, and for part (c) with
𝑙 = 3 and 𝑠𝑙 = 3 equals 𝑖𝑝 = 3.

We calculated the security and cost metrics for the RSA decryption
ith and without CRT. Both algorithms were coded in C language and

ompiled for the RISC-V ISA. The metrics were evaluated for {𝑤𝑙 , 𝑠𝑙} ∈
1, 2, 3, 4, 5, 6, 7, 8, 9, 10], with 𝑠𝑙 ≤ 𝑤𝑙. Next, we only present the results
or CRT case in Fig. 6 and Fig. 7, since the results for the non-CRT are
ery similar.

Fig. 6 shows the impact of 𝑤𝑙 and 𝑠𝑙 on the security, while Fig. 7
hows the impact on the cost metrics. The larger 𝑤𝑙 the higher the
ecurity. However, the cost increases faster than the security. This anal-
sis ultimately shows that increasing the instruction sequence length
rings more protection but at a higher price. In other words, 𝑤𝑙 must
e chosen carefully, being high enough to provide adequate protection,
hile low enough to avoid a high cost. Increasing parameter 𝑠𝑙, denoted
s slide in the figure, on the other hand leads to a faster reduction of
ost as compared to the security.

In our previous work, we selected 𝑤𝑙 = 5 and 𝑠𝑙 = 1. This seems a
easonable selection as the cost is not too high. We made this selection
or the RNN based on training and validation performance (with trial-
nd-error), as is customary while working with neural networks. This
election of a low 𝑤𝑙 value also fitted our goal of lowering the cost of a
ardware implementation [34]. In this work, we use the same 𝑤𝑙 and

𝑙 values for CAM and BF implementations.

Microprocessors and Microsystems 94 (2022) 104638T.Ç. Köylü et al.
Fig. 6. Protection level analysis for CRT implementation.
Fig. 7. Cost analysis for CRT implementation.
Fig. 8. Design methodology of instruction-flow based detectors.
4.3. Design

The background section (Section 2) presented different tools that
can be used to build instruction-flow-based detectors. All these methods
use a similar design approach consisting of two phases: design and
evaluation. Both phases are described next.

4.3.1. Design phase
The design phase consists of four steps, which are illustrated at the

top of Fig. 8. The aim of step 1 (Coding) is to create a software code or
a program, in this case, the RSA decryption. For this, we implemented
two RSA decryptions in C, one with and one without CRT. Both im-
plementations generate random public/private keys and a ciphertext.
The software implementation also contains the extended Euclidean
algorithm (EEA) needed for CRT. Moreover, both implementations use
square-and-multiply (SAM) for exponentiation. Next, step 2 (Compil-
ing) compiles the created programs to the target implementation. In
this work, we employed the riscv_gcc (version 7.1) [49] compiler to
generate the binaries. These binaries contain all assembly instructions
required to generate the instruction sequences.
8

In step 3 (Simulation), we load the generated binaries into the
instruction memory of the RISC-V processor. This processor is written
in register-transfer level (RTL) and is part of a system-on-chip (SoC)
containing the processor, cache memory and peripherals. Next, we sim-
ulate this SoC using QuestaSIM from Mentor Systems [50] and Incisive
from Cadence Design Systems [51]. During simulation, instructions are
fetched from the instruction memory and are executed. The simulator
saves the sequence of executed instructions into a file as output and
marks those related to the decryption. Lastly, step 4 (Training) uses this
file of instruction sequences to build a training dataset and perform
the training process. When the training is complete, the RNN is able to
predict the next instruction from previous ones. To determine whether a
next instruction is valid with an RNN, we need an additional parameter
called 𝑐𝑜𝑛𝑓𝑡ℎ𝑟, which we set as the lowest expectance probability of
all instructions in the validation set [34]. Consequently, if a run-time
instruction has a lower expectance probability than 𝑐𝑜𝑛𝑓𝑡ℎ𝑟, the detector
considers it faulty. The CAM saves different correct sequences into its
table and BF fills the bitmap positions after the hash calculations of
correct sequences (see also Fig. 1(c)). Consequently, both are able to
determine whether an instruction sequence is valid or not. At the end

Microprocessors and Microsystems 94 (2022) 104638T.Ç. Köylü et al.
Fig. 9. Hardware implementation of CAM-based detector.
of this design phase, the detector is ready to be tested for use in the field,
which constitutes the evaluation phase.

4.3.2. Evaluation phase
The evaluation phase also consists of four steps, as illustrated in

the bottom part of Fig. 8. The first two steps are similar to the design
phase, where the software programs (Coding) are compiled to the target
processor (Compiling). In step 3 (Execution), the SoC is tested in the
field. During this step, the processor fetches the instructions from its
memory. In parallel, those fetched instructions are copied to a buffer
to be used by the detector. Note that at this moment, the system can
be exposed to a fault attack. Lastly, step 4 (Detection) represents the
detector evaluating the sequence of instructions and providing fault
detection results. In the presence of an alarm (i.e., when the detector
identifies an invalid sequence), the system can take some action. This is
beyond the scope of this work; however, some examples are restarting
the operation or the system and changing secret keys.

To test the effectiveness of the detector, we simulated the processor
with the aforementioned fault models (see Section 3.3) that were
applied in the testbench. We argue though that this is not different from
testing in a real environment. The reason is that our detectors are solely
trained on instruction sequences of fault-free operations. Hence, the
detectors are up-front not aware of any faults. Therefore, the detection
results are bias-free and give an idea about the performance against
unknown or future attacks.

4.4. Implementation

In this section, we describe the hardware implementation of the
three different detectors: RNN, CAM and BF. All three detectors are
intended to be used as a hardware module in the SoC, with inputs
(i.e., fetched instructions) provided from the instruction buffer. We
omit the description of the implementation of the RNN as it is provided
in [34]. A detailed description of the other two methods is provided
next.

4.4.1. CAM
The hardware implementation of the CAM-based detector, which

is illustrated in Fig. 9, consists of three major components: a buffer,
table, and an finite state machine (FSM) controller. The function of the
buffer is to collect the last five fetched instructions in a first in-first out
(FIFO), which outputs a 5×32 = 160 bit signal. After each newly fetched
instruction, the content of the FIFO is updated by shifting in the newly
fetched instruction.

A CAM is used to identify if the instruction sequence consisting of
five instructions is a valid sequence or not. The internal logic of the
CAM compares this input with every existing entry. The output is 1
(hit) if there is such an entry and hence a valid sequence, or 0 (miss)
otherwise when the sequence is invalid.

The FSM controller makes sure that the initial sequence of five
instructions is properly initialized and synchronizes the communication
between the buffer and CAM to ensure that a fault check happens each
9

Fig. 10. False positive rate analysis for the Bloom filter.

time a new instruction is fetched. When a fault is detected, an alarm
signal is raised. Such a signal could for example be an interruption
request (IRQ) to the CPU).

4.4.2. BF
As mentioned in Eq. (1), the fault detection rate of a BF depends on

three parameters: the number of hash functions 𝑘, expected number
of elements 𝑛 that equals the number of different valid instruction
sequences, and number of entries in the bloom filter memory 𝑚.

From the simulations, we identified that 𝑛 = 213 for the CRT
implementation, and 𝑛 = 63 for the non-CRT implementation. The
analysis for these given 𝑛 values and varying 𝑘 and 𝑚 is illustrated in
Fig. 10. The plots immediately show that a higher 𝑚 reduces the false
positive rate (FPR). To have a low FPR, we used 𝑚 = 512 bits in our
experiments. In terms of 𝑘, 𝑘 = 2 results in the smallest FPR for the
CRT implementation. For the non-CRT case, 𝑘 = 3 has the lowest FPR.
However, to have a single design for both cases we select 𝑘 = 2 as
this gives overall the lowest FPR for both designs. The hashes that we
select are fnv [52] and murmur [53]. Each of these hash functions takes
a 32-bit input and produces a hash value in a single clock cycle, thus
also enabling one-cycle lookups. With all these parameters selected,
we used the architecture shown in Fig. 1(c) to make the hardware
implementation.

5. Experimental results

In this section, we describe the experimental setup, the performed
experiments, and obtained results. In the last part, we also evaluate
the hardware overhead of the proposed detectors in terms of area and
power.

5.1. Setup

We implemented the RSA implementations using 12-bit keys (with-
out loss of generality) to speedup simulations. Table 1 shows the design

Microprocessors and Microsystems 94 (2022) 104638T.Ç. Köylü et al.

t
m

p
f
i

5

u
y
p
a
t
o
a
o
i

5

a
l
f
f
m
c

d
s
a
c

a
w
i
t
a
e
s

5

l
a
p
b
b
d

5

B
(
(
i

5

5

a
f
(
b
o
i
t
c
E
b

j
c
p

Table 1
Design parameters.

RNN

Parameter Value

𝑠 5
𝑠𝑙 1
#used instruction bits 11
validation ratio 25%
optimizer adam [54]
loss function categorical crossentropy
metrics accuracy
batch size 100
epochs 100
dropout RNN layer: 0.1 (normal, recurrent)

CAM

Parameter Value

𝑠 5
𝑠𝑙 1
#used instruction bits 32

Bloom filter

𝑠 5
𝑠𝑙 1
#used instruction bits 32
𝑛 213 (CRT)–63 non-CRT
𝑚 512
hash functions fmv, murmur

parameters of RNN, CAM and Bloom filter. We used 750 fault-free
decryptions to train the RNN, whereas the validation set consists of
250 fault-free decryptions. We obtained 𝑐𝑜𝑛𝑓𝑡ℎ𝑟 values of 3.65 for the
Chinese remainder theorem (CRT) and 12.69 for the non-CRT case after
the training, using the validation set. The CAM contains 213 entries
(i.e., 213 different instruction sequences as multiple instances of the
same instruction sequence have been added once only) for the CRT
and 63 for the non-CRT case (for reference: the binary of the decryption
implementation contains 174 instructions for CRT and 44 for non-CRT).
For the Bloom filter, we have 𝑘 = 2 hashes, 𝑛 = 213 sequences for CRT,
𝑛 = 63 sequences for non-CRT, and 𝑚 = 512. Also note that in contrast
o RNN which monitors only 11 bits of the instructions, CAM and BF
onitor all 32 bits.

We evaluate the overhead of the detectors by synthesizing and map-
ing them on an FPGA using as target the device 10AS066N3F40ELG
rom the ARRIA 10 family [55]. The processor and the detector are
mplemented in hardware and the clock frequency was set to 25MHz.

.2. Performed experiments

In this subsection we are going to describe the experiments that are
sed to accomplish the following goals: (i) make a vulnerability anal-
sis on various fault attack locations, and (ii) evaluate the detector’s
erformance of attacks on the most vulnerable location. In total there
re three experiments. In the first experiment, we assess how vulnerable
he processor is. In the second experiment, we evaluate and inject faults
nly in part of the processor (i.e., instruction buffer) to increase the
ttack’s success rate. This allows us to compare the detection accuracy
f the three detectors better in the third experiment. Each experiment
s further described next:

.2.1. Experiment 1 — Vulnerability assessment of processor
The aim of the first experiment is to analyze vulnerable parts of

processor against faults. For this, we injected faults into random
ocations (including the memory and the processor parts), using the
irst set of fault models (see Section 3.3). These fault models are one
ault in memory (OM), one fault in processor (OP), multi-bit fault in
emory (MM), and multi-bit fault in processor (MP). The binary of the

omplete program has a size of 10.4 kB, from which 696 bytes contain
10

b

Table 2
Vulnerability assessment of processor (Experiment 1).

Fault CRT non-CRT

model Crash Successful Exploitable Crash Successful Exploitable

OM 0.07% 0.16% 0.12% 0.00% 0.04% 0.00%
OP 0.94% 2.11% 1.50% 0.16% 0.18% 0.06%
MM 0.26% 0.73% 0.49% 0.02% 0.02% 0.02%
MP 3.40% 4.27% 2.75% 1.65% 1.41% 0.01%

instructions related to the decryption for CRT which equals 696∕4 = 174
instructions. Similarly, the non-CRT decryption part has a size of 176
bytes). Since the total memory size is 64 kB, only 1.06% of the memory
contains the target program (0.26% for the non-CRT).

For each fault model, a test set is used that contains single correct
ecryption and 10000 runs with injected faults. In some trials, the
imulator was not able to inject a fault. This happens for example when
fault is injected into an undefined signal. These cases have not been

onsidered in the results.
Note that this experiment covers all possible cases that can lead to

n incorrect decryption result. These include: (i) glitching the memory
here the program instructions and data are stored, (ii) glitching the

nstructions in the instruction buffer of the processor, and (iii) glitching
he internal processor signals to corrupt intermediate results (like the
rithmetic logic unit (ALU) input or output). Hence, the result of this
xperiment allows an efficiency comparison of different fault injection
trategies.

.2.2. Experiment 2 — Vulnerability assessment of instruction buffer
Injection faults randomly in the processor and memory typically

ead to a low success attack rate. To increase this, and hence to be
ble to compare the performances of the detectors better, we repeat the
revious experiment but limit the location of faults to the instruction
uffer only (see attack case (ii) in Section 5.2.1) and use the single
it fault model only (see Section 3.3). We have created 2000 different
ecryptions and injected bit flips into one or more instructions.

.2.3. Experiment 3 — Detector evaluation
In this experiment, we evaluate our detectors (RNN, CAM, and

F) by injecting faults to the instruction buffer only (see attack case
ii) in Section 5.2.1). We use all the fault models in the second set
see Section 3.3): single bit, single byte, branch-to-opposite, instruction-to-
nstruction-I/II fault models.

.3. Results

Next, we present the results of the three experiments.

.3.1. Experiment 1
The results of the first experiment are shown in Table 2. The results

re here presented based on the observed outputs for the different
ault models. Four different output categories are observed. They are:
i) expected; (ii) crash; (iii) successful; and (iv) exploitable. Expected
ehavior means that the fault did not have an impact on the output
f the decryption (omitted in the table). A crash represents corruption
n the execution, which makes the processor hold. Successful means
hat the fault(s) have changed the decryption output. Note that not all
hanges in the output of the decryption can be exploited by an attack.
xploitable indicates the cases where faults caused exploitable outputs
y Bellcore and/or Bao’s methods (see Section 3.4).

The results shows than only a small percentage of the 10000 fault in-
ection trials for each model (i.e., OM, OP, MM, MP) leads to exploitable
ases. This shows that randomly injecting faults without considering the
recise location is not very effective.

Another observation is that attacking the processor in general yields

etter results than attacking the memory. This is primarily because the

Microprocessors and Microsystems 94 (2022) 104638T.Ç. Köylü et al.

a
𝑓

c
r
R
b
t
s
t

t

Table 3
Vulnerability assessment of instruction buffer (Experiment 2).

CRT non-CRT

Crash Successful Exploitable Crash Successful Exploitable

34.29% 47.76% 28.84% 33.63% 49.97% 10.02%

actively used memory is small in contrast to the attack surface. Thus,
the majority of the faults do not create an effect. Therefore, from the
results, the best approach is to target the processor with multiple faults.

Note that there are some 0.00% entries in Table 2. These results
are due to a low possibility of occurrence. As an example, for the OM
non-CRT case, there are some successful instances. Such an instance can
lead to a vulnerability, but it did not in our sample. The same applies
to the case of no crashes.

5.3.2. Experiment 2
Evaluating the detector based on the first experiment would require

many runs for a fair comparison, as the only limited cases lead to
exploitable cases. Therefore, we focus in this experiment on injecting
fault in the instruction buffer only. The results of this experiment are
presented in Table 3, and are represented in a similar manner as the
results of Experiment 1.

The results show that an incomparably larger percentage of the
faults create vulnerabilities when the instruction buffer is targeted. This
shows that attacking the instruction buffer is a much more effective and
time-efficient fault injection strategy. Another observation is that the
number of exploitable instances is smaller in percentage in non-CRT,
compared to the CRT case. One contributing factor is that the non-CRT
case cannot be exploited with Bellcore.

This experiment indeed shows that glitching the instruction buffer
is a better strategy to compare the performance of the three detectors.
However, it must be noted that a more localized fault attack gen-
erally requires more knowledge of the design and better fault-attack
equipment.

5.3.3. Experiment 3
The results of the third experiment are provided in Tables 4, 5, 6

for RNN, CAM, and BF-based detectors respectively. The results are
grouped in three classes: fault, decryption, and security detection. The
fault detection column contains the rate of traces that were detected
by the detector. The decryption detection column includes the ratio
of test cases we can protect, i.e., fault detection rate plus the cases
where the faults did not affect the decryption result. The security
detection column contains the ratio of traces that could not be attacked,
i.e., the decryption detection rate plus the cases where Bellcore and
Bao exploitation methods (see Section 3.4) did not work. The table
also shows additional information by also looking at the number of
faults that have been injected. For example, for fault model 1 we have
injected a single bit fault in one instruction (the first line where 𝑓 = 1)
nd a single bit fault in two or more instructions (the second line where
> 1).
The results show that CAM has a 100% detection accuracy for all

ases, BF almost 100% in all cases and RNN only has a high detection
ate when fault models are applied that change instructions. Note that
NN provides some detection even for bit and byte fault models. This is
ecause (i) some faults hit on instruction locations that are learned by
he RNN and (ii) some data faults can still disrupt the instruction flow,
uch as a change in the jump location in a branch instruction. Overall,
he deterministic methods result in higher accuracy.

We also evaluated our detector against 10000 correct decryptions
hat are not part of training, validation set and test set to realize the

impact of false positives. In none of the cases false positives have been
11

detected and hence, the false positive is 0% for all three detectors.
Table 4
Detector evaluation of RNN-based detectors ((Experiment 3 part (a))

Fault
model

#faults fault decryption security

(𝑓) CRT non- CRT non- CRT non-
CRT CRT CRT

1 𝑓 = 1 0.35 0.28 0.70 0.54 0.75 0.88
𝑓 > 1 0.65 0.62 0.71 0.69 0.82 0.95

2 𝑓 = 1 0.60 0.55 0.80 0.69 0.83 0.95
𝑓 > 1 0.88 0.84 0.91 0.86 0.93 0.99

3 𝑓 = 1 1.00 1.00 1.00 1.00 1.00 1.00
𝑓 > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-I 𝑓 = 1 0.91 0.90 0.95 0.91 0.97 0.99
𝑓 > 1 0.99 0.99 0.99 0.99 1.00 1.00

4-II 𝑓 = 1 0.88 0.90 0.95 0.91 0.96 0.99
𝑓 > 1 0.99 0.99 0.99 0.99 0.99 1.00

Table 5
Detector evaluation of CAM-based detectors ((Experiment 3 part (b))

Fault
model

#faults fault decryption security

(𝑓) CRT non- CRT non- CRT non-
CRT CRT CRT

1 𝑓 = 1 1.00 1.00 1.00 1.00 1.00 1.00
𝑓 > 1 1.00 1.00 1.00 1.00 1.00 1.00

2 𝑓 = 1 1.00 1.00 1.00 1.00 1.00 1.00
𝑓 > 1 1.00 1.00 1.00 1.00 1.00 1.00

3 𝑓 = 1 1.00 1.00 1.00 1.00 1.00 1.00
𝑓 > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-I 𝑓 = 1 1.00 1.00 1.00 1.00 1.00 1.00
𝑓 > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-II 𝑓 = 1 1.00 1.00 1.00 1.00 1.00 1.00
𝑓 > 1 1.00 1.00 1.00 1.00 1.00 1.00

Table 6
Detector evaluation of BF-based detectors ((Experiment 3 part (c))

Fault
model

#faults fault decryption security

(𝑓) CRT non- CRT non- CRT non-
CRT CRT CRT

1 𝑓 = 1 0.99 0.99 1.00 1.00 1.00 1.00
𝑓 > 1 1.00 1.00 1.00 1.00 1.00 1.00

2 𝑓 = 1 0.99 1.00 1.00 1.00 1.00 1.00
𝑓 > 1 1.00 1.00 1.00 1.00 1.00 1.00

3 𝑓 = 1 1.00 1.00 1.00 1.00 1.00 1.00
𝑓 > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-I 𝑓 = 1 1.00 1.00 1.00 1.00 1.00 1.00
𝑓 > 1 1.00 1.00 1.00 1.00 1.00 1.00

4-II 𝑓 = 1 1.00 1.00 1.00 1.00 1.00 1.00
𝑓 > 1 1.00 1.00 1.00 1.00 1.00 1.00

5.4. Hardware overhead

All detectors have been synthesized on an FPGA technology and
compared to the Ariane core. Table 7 shows the area overhead in
percentage for the three detector implementations: RNN (including a
single RNN cell), CAM (for both CRT and non-CRT cases) and BF.
Available resources in absolute value are indicated in parenthesis. Note
that the RAM comparison only considers internal components of the
Ariane core, such as caches and buffers (implemented as SRAM blocks).
Hence, no external memory is considered.

As observed in the table, the RNN-based detector is the most ex-
pensive implementation. In addition to requiring a lot of memory, this
implementation leads to increased overhead in the processor. However,
if desired, this implementation can be employed by a single RNN
cell. This would reduce the overhead significantly but increase the

computation time significantly.

Microprocessors and Microsystems 94 (2022) 104638T.Ç. Köylü et al.

h
s
a
i
a
s

6

t
e
s
a
f

Table 7
Area overhead of three detector implementations: RNN, CAM, and BF.

Tool Slice LUTs
(4182)

Slice registers
(273)

Block RAM tiles
(32)

RNN 15.57% 2.17% 1300.67%
RNN (1 cell) 1.92% 0.17% 162.58%
CAM (CRT) 2.05% 0.07% 61.35%
CAM (non-CRT) 0.55% 0.03% 26.97%
BF 0.51% 0.17% 154.61%

In contrast, both CAM implementations have a much lower over-
ead, especially the non-CRT case, due to limited number of instruction
equences. The memory overhead in CAM depends linearly on the
mount of different instruction sequences that have to be protected. BF
mplementation on the other hand is a middle ground between RNN
nd CAM with respect to LUT and register usage. However, BF has the
ame overhead for both CRT and non-CRT implementations.

. Conclusion and discussion

In this study, we extended our instruction sequence-based fault de-
ector for software RSA with two new implementations. We tested their
ffectiveness and efficiency using realistic fault models. The results
how in general that the detectors were able to detect faults that affect
n instruction or instruction sequence. We conclude the paper with the
ollowing observations:

• Functionality: Our experimental results show that detectors ob-
tained a 100% accuracy prediction for correct decryptions. Note
that this also works for decryptions with different key lengths
as the main part of the decryption contains a key-dependent
loop. Increasing or decreasing the loop size will not change the
order of the instruction flow (except on the boundary of the loop
iterations). Similarly, the extended Euclidean algorithm, which
computes the modular multiplicative inverse of a number that
is used in CRT also consists of a limited number of instructions
within a loop. Hence, the detectors are able to learn this very
well.

• Security: Experimental results show that our detectors attain a
nearly 100% detection rate for faults that change the instructions
for all implementations. For CAM and BF implementations, nearly
any fault in the instruction buffer could be detected. Note that for
successful exploitation, the attacker needs in addition to obtaining
an exploitable faulty output also the correct output. Obtaining the
correct output is possible, but is difficult (e.g., the attacker needs
to have access to the platform and run the same decryption with-
out fault injection). Getting this correct output is not considered
in this discussion, as well as a strong attacker that is able to find
and continuously exploit one of the very few uncovered cases.
Another important security feature of our detector is the checking
mechanism. As the detector checks for fault in every fetched
instruction, one successful glitch on this check is not enough
to break the system for two reasons. First, the instruction that
is glitched and the evaluation that checks its integrity have to
be glitched both at the right moments. Second, when the flow
is disrupted, it is likely that the detection will catch faults in
consecutive instructions as a single instruction is checked multiple
times in different sequences and as a change in instruction flow
will be detected as well. This can be observed from near-perfect
detection rates.

• Weaknesses: One vulnerability of the RNN-based detector is the
confidence threshold 𝑐𝑜𝑛𝑓𝑡ℎ𝑟 value. If an attacker manages to
glitch and lower the 𝑐𝑜𝑛𝑓𝑡ℎ𝑟 value, more faulty decryptions would
be seen as correct by the detector. A designer may therefore
choose to harden this by considering multiple copies of 𝑐𝑜𝑛𝑓𝑡ℎ𝑟,
or use some other form of redundancy like parity checks. The
12
detectors use only input from the instruction buffers to identify
faults. Hence, faults injected into the memory that affect data or
faults injected inside the processor (e.g., an add instruction could
be executed as a subtraction) might not be detectable. However,
the results of Experiment 1 in Table 2 clearly show that the
probability of successful injection faults that are exploitable is
marginal. Note that even when a fault injection is successful, only
a single bit of the key is typically leaked for Bao. Hence, it would
be very time consuming to recover the complete key by applying
such an approach.

• Robustness: Besides glitching the RSA instructions, an attacker
could also glitch the detector itself. To analyze the resiliency
of our detector implementations, we conducted a number of
experiments. Each experiment consisted of 20 trials, in which we
evaluated the detector performance under a random fault configu-
ration, using 1000 correct decryptions (the ones that are not part
of any set, see Section 5.3) and the 2000 faulty decryptions of
Instruction-to-instruction fault model II (see Section 3.3), both with
CRT as a case study. For the RNN, we injected a random bit or
byte fault to the network weights. For the CAM, we again injected
a random bit or byte fault to one of the entries, simulating an
attack against the memory. For the BF, we injected a bit fault
to one of the BF entries to simulate a memory glitch. Moreover,
as we wanted to simulate faulty hash calculations, we injected
a bit fault to the same place of each input. Each of the trials
yielded a similar result: a large number of false alarms for correct
decryptions, but also a considerable increase in fault detection
capability. Most importantly, the results show that the attacker
cannot gain an advantage by trying to glitch the detector, except
for disrupting the operation for correct decryptions. This is a very
unique property of our detector, compared to the state of the art.

• Comparison: As the experimental results in Section 5.3 indicate,
deterministic methods (CAM and BF) provide more coverage,
and create less overhead. On the other hand, RNN provides a
flexibility that is not directly possible in CAM or BF. By setting
the value of 𝑐𝑜𝑛𝑓𝑡ℎ𝑟, a user can directly determine the security
level of the system. There is a possibility to adjust the detection
rate in relation to Eq. (1), by changing values 𝑘 and 𝑚 (as 𝑛 is
fixed). However, this false positive rate is not exact, and does not
give the granularity of setting the 𝑐𝑜𝑛𝑓𝑡ℎ𝑟.
Moreover, the scalability of the CAM solution cannot be guaran-
teed. Theoretically, a branch-extensive application can produce
a great number of different instruction sequences. This favors
the BF solution over CAM, as in essence, it proposes a way to
compress the stored data.

• Uniqueness: The detectors presented in this study can be com-
pared with control flow integrity checkers [39]. However, as men-
tioned in Section 4.1, we use a much simpler instruction valida-
tion structure than creating control flow blocks based on program
jumps. To elaborate further, we can make a comparison with the
study presented in [23], which can be considered as a baseline
control flow integrity method. In that study, the authors rely on
both using encrypted instructions and comparing block signatures
with pre-computed versions. Although exhaustive pre-computing
theoretically covers all valid and invalid program flows (while our
observation-based method is not exhaustive), such an approach
creates storage and computational overhead, as well as attacks to
the architecture itself are still a viable strategy: a fault replacing
the final signature/message authentication code (MAC) check can
cause faulty instructions to be executed. If that is the case, it
is not possible to retroactively detect a faulty block further in
line. By replacing pre-calculated control flow blocks with valid
instruction sequence observations, we can detect faults later,
even when we miss the original fault occurrence. Finally, our

detectors do not require any modifications to the processor, or

Microprocessors and Microsystems 94 (2022) 104638T.Ç. Köylü et al.

D

c
i

A

s

any encryption/storage of encrypted data, as we only need to
create an interface with the instruction buffer.
In order to address the limitations of the control flow integrity
checker proposed in [23], a number of variations have been
proposed. First, the authors in [56] aimed to address the single
point of failure (MAC check) issue. As such, the authors proposed
to append execution history to the current instruction, making the
decrypted instruction faulty (thus detectable) if there was a fault
previously. However, especially for complex programs, this fur-
ther complicates the control flow, as there is a need to adjust for
different branches during execution. Second, the authors in [48]
aimed to remove the need to modify the processor. As a result, the
authors put their integrity checker as a module interacting with
the processor and the memory, similar to our solution. However,
their proposal does not address other shortcomings of control flow
studies, as it does one check per instruction block. Lastly, the
authors in [22] aimed to address the complexity of pre-computing
by eliminating the need for determining all possible branch lo-
cations beforehand. They used masks to connect sequences of
instructions to the previous ones and encrypt them together. To
accomplish that however, they require an extension to the ISA,
damaging general applicability.

• Generality and flexibility: Although we demonstrated the de-
tection results for two different implementations of RSA, our
detector can be used for a variety of applications. This includes
RSA algorithms with protections against other attacks such as
side-channel analysis, other software crypto algorithms as AES,
triple-DES and Elliptic curve cryptography (ECC). Not only crypto
algorithms, but also other security sensitive applications such
as banking and secure boot can be protected. The detector can
actually be used for multiple applications when the weights of
RNN, table of CAM, or bitmap of BF are adjusted at runtime.

• Applicability: We have developed our detectors to work in con-
junction with the processor. When employed, the hardware of
the detector will be static. When the user wants to run a specific
security sensitive application however, the operating system can
load the associated weights to RNN, or memory entries to CAM
and BF. Another possibility is to include these in the binary. If
on the other hand, the device supports reconfigurable hardware,
different RNNs (e.g., with a different number of layers, cells, etc.)
or CAM and BF with different memory sizes can be employed with
each application.
One point of concern is the operation of detectors during pro-
cessor interruptions. When the processor receives an interruption
signal, the execution context changes. Such a signal can be used
to halt the operation of our detector. As such, the detector will not
process fetched interruption handling instructions. When the in-
terruption ends and the previous context is restored, the detector
can continue its work. Our detector should only work when the
processor executes security sensitive applications and switched off
by the operating system otherwise.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgment

The authors would like to thank Ahmet Çağrı Bağbaba for his
upport with the Incisive simulator.
13
References

[1] C. Olah, Understanding LSTM networks, 2015, Understanding LSTM Networks –
Colah’s Blog, URL http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[2] K. Pagiamtzis, A. Sheikholeslami, Content-addressable memory (CAM) circuits
and architectures: A tutorial and survey, IEEE J. Solid-State Circuits 41 (3) (2006)
712–727.

[3] C. Paar, J. Pelzl, Understanding Cryptography: A Textbook for Students and
Practitioners, Springer Science & Business Media, 2009.

[4] A. Waterman, K. Asanovic, The RISC-V instruction set manual-volume I:
User-level ISA-document version 2.2, 2017, RISC-V Foundation (May 2017).

[5] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C. Whelan, The sorcerer’s
apprentice guide to fault attacks, Proc. IEEE 94 (2) (2006) 370–382.

[6] F. Amiel, C. Clavier, M. Tunstall, Fault analysis of DPA-resistant algorithms,
in: International Workshop on Fault Diagnosis and Tolerance in Cryptography,
Springer, 2006, pp. 223–236.

[7] A. Barenghi, G. Bertoni, E. Parrinello, G. Pelosi, Low voltage fault attacks on
the RSA cryptosystem, in: 2009 Workshop on Fault Diagnosis and Tolerance in
Cryptography, FDTC, IEEE, 2009, pp. 23–31.

[8] B. Giller, Implementing practical electrical glitching attacks, 2015, Black Hat
Europe.

[9] A. Barenghi, G.M. Bertoni, L. Breveglieri, M. Pellicioli, G. Pelosi, Low
voltage fault attacks to AES, in: 2010 IEEE International Symposium on
Hardware-Oriented Security and Trust, HOST, IEEE, 2010, pp. 7–12.

[10] N. Selmane, S. Guilley, J.-L. Danger, Practical setup time violation attacks on
AES, in: 2008 Seventh European Dependable Computing Conference, IEEE, 2008,
pp. 91–96.

[11] A. Djellid-Ouar, G. Cathebras, F. Bancel, Supply voltage glitches effects on CMOS
circuits, in: International Conference on Design and Test of Integrated Systems
in Nanoscale Technology, 2006, DTIS 2006, IEEE, 2006, pp. 257–261.

[12] L. Zussa, J.-M. Dutertre, J. Clédiere, B. Robisson, A. Tria, et al., Investigation
of timing constraints violation as a fault injection means, in: 27th Conference
on Design of Circuits and Integrated Systems, DCIS, Avignon, France, Citeseer,
2012, p. 11.

[13] S. Govindavajhala, A.W. Appel, Using memory errors to attack a virtual machine,
in: IEEE Symposium on Security and Privacy, vol. 5, 2003.

[14] J.-M. Schmidt, M. Hutter, Optical and EM Fault-Attacks on CRT-Based RSA:
Concrete Results, Na, 2007.

[15] M. Agoyan, J.-M. Dutertre, A.-P. Mirbaha, D. Naccache, A.-L. Ribotta, A. Tria,
How to flip a bit? in: 2010 IEEE 16th International on-Line Testing Symposium,
IEEE, 2010, pp. 235–239.

[16] S. Burnett, S. Paine, The RSA Security’s Official Guide to Cryptography,
McGraw-Hill, Inc. 2001.

[17] P. Kaliyamoorthy, A.C. Ramalingam, QMLFD based RSA cryptosystem for en-
hancing data security in public cloud storage system, Wirel. Pers. Commun. 122
(1) (2022) 755–782.

[18] A.S. Alkalbani, T. Mantoro, A.O.M. Tap, Comparison between RSA hardware and
software implementation for WSNs security schemes, in: Proceeding of the 3rd
International Conference on Information and Communication Technology for the
Moslem World (ICT4M) 2010, IEEE, 2010, pp. E84–E89.

[19] D. Boneh, R.A. DeMillo, R.J. Lipton, On the importance of checking cryptographic
protocols for faults, in: International Conference on the Theory and Applications
of Cryptographic Techniques, Springer, 1997, pp. 37–51.

[20] F. Bao, R.H. Deng, Y. Han, A. Jeng, A.D. Narasimhalu, T. Ngair, Breaking public
key cryptosystems on tamper resistant devices in the presence of transient faults,
in: International Workshop on Security Protocols, Springer, 1997, pp. 115–124.

[21] A.K. Lenstra, Memo on RSA Signature Generation in the Presence of Faults, Tech.
rep., 1996.

[22] O. Savry, M. El-Majihi, T. Hiscock, Confidaent: Control flow protection with in-
struction and data authenticated encryption, in: 2020 23rd Euromicro Conference
on Digital System Design, DSD, IEEE, 2020, pp. 246–253.

[23] R. De Clercq, J. Götzfried, D. Übler, P. Maene, I. Verbauwhede, SOFIA: software
and control flow integrity architecture, Comput. Secur. 68 (2017) 16–35.

[24] X.T. Ngo, J.-L. Danger, S. Guilley, T. Graba, Y. Mathieu, Z. Najm, S. Bhasin,
Cryptographically secure shield for security IPs protection, IEEE Trans. Comput.
66 (2) (2016) 354–360.

[25] L. Anghel, M. Nicolaidis, Cost reduction and evaluation of a temporary faults-
detecting technique, in: Design, Automation, and Test in Europe, Springer, 2008,
pp. 423–438.

[26] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, F. Regazzoni, Countermeasures
against fault attacks on software implemented AES: effectiveness and cost, in:
Proceedings of the 5th Workshop on Embedded Systems Security, ACM, 2010,
p. 7.

[27] R. Karri, K. Wu, P. Mishra, Y. Kim, Fault-based side-channel cryptanalysis
tolerant rijndael symmetric block cipher architecture, in: Proceedings 2001 IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems, IEEE,
2001, pp. 427–435.

[28] R. Karri, G. Kuznetsov, M. Goessel, Parity-based concurrent error detection of
substitution-permutation network block ciphers, in: International Workshop on
Cryptographic Hardware and Embedded Systems, Springer, 2003, pp. 113–124.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb2
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb2
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb2
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb2
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb2
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb3
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb3
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb3
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb4
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb4
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb4
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb5
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb5
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb5
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb6
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb6
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb6
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb6
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb6
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb7
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb7
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb7
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb7
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb7
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb8
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb8
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb8
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb9
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb9
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb9
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb9
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb9
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb10
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb10
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb10
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb10
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb10
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb11
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb11
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb11
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb11
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb11
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb12
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb12
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb12
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb12
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb12
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb12
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb12
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb13
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb13
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb13
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb14
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb14
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb14
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb15
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb15
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb15
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb15
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb15
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb16
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb16
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb16
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb17
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb17
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb17
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb17
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb17
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb18
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb18
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb18
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb18
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb18
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb18
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb18
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb19
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb19
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb19
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb19
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb19
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb20
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb20
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb20
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb20
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb20
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb21
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb21
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb21
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb22
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb22
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb22
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb22
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb22
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb23
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb23
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb23
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb24
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb24
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb24
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb24
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb24
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb25
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb25
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb25
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb25
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb25
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb26
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb26
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb26
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb26
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb26
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb26
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb26
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb27
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb27
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb27
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb27
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb27
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb27
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb27
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb28
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb28
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb28
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb28
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb28

Microprocessors and Microsystems 94 (2022) 104638T.Ç. Köylü et al.
[29] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, J.-P. Seifert, Fault attacks on
RSA with CRT: Concrete results and practical countermeasures, in: International
Workshop on Cryptographic Hardware and Embedded Systems, Springer, 2002,
pp. 260–275.

[30] A. Boscher, H. Handschuh, E. Trichina, Fault resistant RSA signatures: Chinese
remaindering in both directions, IACR Cryptol. ePrint Arch. 2010 (2010) 38.

[31] A. Shamir, Method and apparatus for protecting public key schemes from timing
and fault attacks, 1999, Google Patents, US Patent 5, 991, 415.

[32] D. Vigilant, RSA with CRT: A new cost-effective solution to thwart fault attacks,
in: International Workshop on Cryptographic Hardware and Embedded Systems,
Springer, 2008, pp. 130–145.

[33] C. Giraud, An RSA implementation resistant to fault attacks and to simple power
analysis, IEEE Trans. Comput. 55 (9) (2006) 1116–1120.

[34] T.C. Koylu, C.R.W. Reinbrecht, S. Hamdioui, M. Taouil, RNN-based detection of
fault attacks on RSA, in: 2020 IEEE International Symposium on Circuits and
Systems, ISCAS, 2020, pp. 1–5.

[35] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, S. Khudanpur, Recurrent
neural network based language model, in: Eleventh Annual Conference of the
International Speech Communication Association, 2010.

[36] A. Broder, M. Mitzenmacher, Network applications of bloom filters: A survey,
Internet Math. 1 (4) (2004) 485–509, http://dx.doi.org/10.1080/15427951.
2004.10129096.

[37] R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures
and public-key cryptosystems, Commun. ACM 21 (2) (1978) 120–126.

[38] E.W. Weisstein, Euclidean Algorithm, Wolfram Research, Inc. 2002.
[39] R. de Clercq, I. Verbauwhede, A survey of hardware-based control flow integrity

(CFI), 2017, ArXiv preprint arXiv:1706.07257.
[40] Y. Kim, R. Daly, J. Kim, C. Fallin, J.H. Lee, D. Lee, C. Wilkerson, K. Lai, O.

Mutlu, Flipping bits in memory without accessing them: An experimental study
of DRAM disturbance errors, in: ACM SIGARCH Computer Architecture News,
vol. 42, (3) IEEE Press, 2014, pp. 361–372.

[41] S.P. Skorobogatov, R.J. Anderson, Optical fault induction attacks, in: Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, Springer,
2002, pp. 2–12.

[42] J.-M. Schmidt, M. Hutter, T. Plos, Optical fault attacks on AES: A threat in
violet, in: 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography,
FDTC, IEEE, 2009, pp. 13–22.

[43] I. Verbauwhede, D. Karaklajic, J.-M. Schmidt, The fault attack jungle-a classifi-
cation model to guide you, in: 2011 Workshop on Fault Diagnosis and Tolerance
in Cryptography, IEEE, 2011, pp. 3–8.

[44] R. Vemu, J.A. Abraham, CEDA: Control-flow error detection through assertions,
in: 12th IEEE International on-Line Testing Symposium, IOLTS’06, IEEE, 2006,
p. 6.

[45] J.R. Azambuja, M. Altieri, J. Becker, F.L. Kastensmidt, HETA: Hybrid error-
detection technique using assertions, IEEE Trans. Nucl. Sci. 60 (4) (2013)
2805–2812.

[46] E. Chielle, G.S. Rodrigues, F.L. Kastensmidt, S. Cuenca-Asensi, L.A. Tambara, P.
Rech, H. Quinn, S-SETA: Selective software-only error-detection technique using
assertions, IEEE Trans. Nucl. Sci. 62 (6) (2015) 3088–3095.

[47] G. Di Natale, O. Keren, Nonlinear codes for control flow checking, in: 2020 IEEE
European Test Symposium, ETS, IEEE, 2020, pp. 1–6.

[48] J.-L. Danger, A. Facon, S. Guilley, K. Heydemann, U. Kühne, A.S. Merabet, M.
Timbert, CCFI-cache: A transparent and flexible hardware protection for code
and control-flow integrity, in: 2018 21st Euromicro Conference on Digital System
Design, DSD, IEEE, 2018, pp. 529–536.

[49] The RISC-V embedded GCC, 2017, GNU MCU Eclipse, SiFive, URL https://gnu-
mcu-eclipse.github.io/toolchain/riscv/.

[50] Questa® Advanced Simulator, URL https://www.mentor.com/products/fv/
questa/.

[51] Incisive Enterprise Simulator, URL https://www.cadence.com/en_US/home/
tools/system-design-and-verification/simulation-and-testbench-verification/
incisive-enterprise-simulator.html.

[52] G. Fowler, L.C. Noll, K.-P. Vo, D. Eastlake, T. Hansen, The FNV non-cryptographic
hash algorithm, 2011, Ietf-Draft.

[53] A. Appleby, Murmurhash 2.0, 2008.
[54] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, ArXiv

preprint arXiv:1412.6980.
[55] Intel arria 10 FPGAs, 2019, Available at: https://www.intel.com/content/www/

us/en/products/programmable/fpga/arria-10.html, (Accessed 23 October 2019).
[56] M. Werner, T. Unterluggauer, D. Schaffenrath, S. Mangard, Sponge-based control-

flow protection for iot devices, in: 2018 IEEE European Symposium on Security
and Privacy, EuroS&P, IEEE, 2018, pp. 214–226.
14
Troya Çağıl Köylü completed his undergraduate studies
in the Electrical and Electronics Engineering faculty of
Bilkent University, Ankara, Turkey. He completed his mas-
ters studies in the Computer Engineering faculty of the
same university, working on deep learning based image
segmentation. Since 2018, he is a Ph.D. candidate at the
Quantum & Computer Engineering Department in Delft
University of Technology, Delft, the Netherlands. He is
currently working on designing intelligent hardware against
fault injection attacks. His research interests include artifi-
cial intelligence/machine learning and fault injection in the
hardware security field.

Cezar Rodolfo Wedig Reinbrecht received his Ph.D. in
Computer Science (Hardware Security) at the Federal Uni-
versity of Rio Grande do Sul — UFRGS, BR, 2017, M.Sc.
in Computer Science (MPSoC Architectures) at the same
university (2012), and B.Sc. in Computer Engineering at
Catholic University of Rio Grande do Sul — PUCRS, BR,
2009. Currently, he is a postdoctoral researcher at the Quan-
tum and Computer Engineering Department in TU Delft –
the Netherlands – since 2018. In 2015, he worked in Lab-
oratoire Hubert Curien (France) as a researcher in the field
of microarchitectural security. He worked at NSCAD Micro-
electronics in the periods of 2010–2014 and 2016–2018,
whose attributions were Project Manager (2013–2014) and
instructor/IC designer (2010–2012 and 2017–2018). His
main integrated circuits projects were an ARM-M3 SoC with
support to IEEE 802.15.4, a transponder for the Brazilian
Cubesat (satellite) targeted for the SBCDA (INPE), a fault-
tolerant SoC (containing two MIPS with the partnership with
Brazilian Space Agency (AEB). His research interest is the
hardware security field, targeting microarchitectural attacks
and defenses.

Marcelo Brandalero received his Dr. Degree in Computer
Science from the Universidade Federal do Rio Grande
do Sul (UFRGS) in Porto Alegre, Brazil in 2019, and
his Computer Eng. Degree from the same institution in
2015. He is currently a Senior Research Scientist at the
Chair of Computer Engineering, Brandenburg University
of Technology Cottbus-Senftenberg. His research interests
cover computer architecture with an emphasis on adaptive
and reconfigurable architectures, low-power design, and
emerging approaches for energy-efficient computation such
as approximate computing.

Said Hamdioui is currently a chair professor and the
head of the Quantum & Computer Engineering Department
at TU Delft. He received the MSEE and Ph.D. degrees
(both with honors) from TU Delft. Prior to joining TU
Delft as a professor, Hamdioui spent about seven years in
the industry including Intel Corporation (California, USA),
Philips Semiconductors R&D (Crolles, France), Philips/NXP
Semiconductors (Nijmegen, The Netherlands). His research
focuses on two domains: Dependable CMOS nano-computing
(including Reliability, Testability, Hardware Security) and
emerging technologies and computing paradigms (including
3D stacked ICs, in-memory-computing). Hamdioui owns two
patents, has published one book and contributed to two
others, and has co-authored over 180 conference and journal
papers. He delivered dozens of keynote speeches, distin-
guished lectures, and invited presentations and tutorials
at major international forums/conferences/schools and at
leading semiconductor companies. Hamdioui is an Associate
Editor of IEEE Transactions on VLSI Systems (TVLSI), and he
serves on the editorial board of IEEE Design & Test, Elsevier
Microelectronic Reliability Journal, and of the Journal of
Electronic Testing: Theory and Applications (JETTA).

Mottaqiallah Taouil received his M.Sc. and Ph.D. degrees
(both with honors) in computer engineering from Delft
University of Technology, the Netherlands. He is currently
an Assistant Professor at the Computer Engineering Labo-
ratory, Delft University of Technology. His current research
interests include hardware security, embedded systems, 3D
stacked integrated circuits, VLSI design and test, built-inself-
test, design for testability, yield analysis, and memory test
structures.

http://refhub.elsevier.com/S0141-9331(22)00173-9/sb29
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb29
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb29
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb29
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb29
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb29
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb29
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb30
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb30
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb30
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb31
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb31
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb31
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb32
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb32
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb32
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb32
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb32
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb33
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb33
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb33
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb34
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb34
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb34
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb34
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb34
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb35
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb35
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb35
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb35
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb35
http://dx.doi.org/10.1080/15427951.2004.10129096
http://dx.doi.org/10.1080/15427951.2004.10129096
http://dx.doi.org/10.1080/15427951.2004.10129096
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb37
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb37
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb37
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb38
http://arxiv.org/abs/1706.07257
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb40
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb40
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb40
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb40
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb40
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb40
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb40
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb41
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb41
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb41
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb41
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb41
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb42
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb42
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb42
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb42
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb42
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb43
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb43
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb43
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb43
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb43
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb44
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb44
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb44
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb44
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb44
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb45
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb45
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb45
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb45
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb45
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb46
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb46
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb46
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb46
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb46
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb47
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb47
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb47
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb48
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb48
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb48
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb48
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb48
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb48
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb48
https://gnu-mcu-eclipse.github.io/toolchain/riscv/
https://gnu-mcu-eclipse.github.io/toolchain/riscv/
https://gnu-mcu-eclipse.github.io/toolchain/riscv/
https://www.mentor.com/products/fv/questa/
https://www.mentor.com/products/fv/questa/
https://www.mentor.com/products/fv/questa/
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb52
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb52
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb52
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb53
http://arxiv.org/abs/1412.6980
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb56
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb56
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb56
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb56
http://refhub.elsevier.com/S0141-9331(22)00173-9/sb56

	Instruction flow-based detectors against fault injection attacks
	Introduction
	Background
	Rnn
	Cam
	bf

	Threat attack model
	Target Algorithm — rsa
	Target Implementation — RISC-V isa
	Fault models
	Fault exploitation methods
	Bellcore threat model
	Bao threat model

	Fault attacks

	Instruction flow-based detectors
	Concept
	Analysis
	Design
	Design phase
	Evaluation phase

	Implementation
	cam
	bf

	Experimental results
	Setup
	Performed experiments
	Experiment 1 — Vulnerability assessment of processor
	Experiment 2 — Vulnerability assessment of instruction buffer
	Experiment 3 — Detector evaluation

	Results
	Experiment 1
	Experiment 2
	Experiment 3

	Hardware overhead

	Conclusion and discussion
	Declaration of competing interest
	Acknowledgment
	References

