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A B S T R A C T

Sentinel-1 Synthetic Aperture Radar (SAR) data have provided an unprecedented opportunity for crop mon-
itoring due to its high revisit frequency and wide spatial coverage. The dual-pol (VV-VH) Sentinel-1 SAR data are
being utilized for the European Common Agricultural Policy (CAP) as well as for other national projects, which
are providing Sentinel derived information to support crop monitoring networks. Among the Earth observation
products identified for agriculture monitoring, indicators of vegetation status are deemed critical by end-user
communities. In literature, several experiments usually utilize the backscatter intensities to characterize crops.
In this study, we have jointly utilized the scattering information in terms of the degree of polarization and the
eigenvalue spectrum to derive a new vegetation index from dual-pol (DpRVI) SAR data. We assess the utility of
this index as an indicator of plant growth dynamics for canola, soybean, and wheat, over a test site in Canada. A
temporal analysis of DpRVI with crop biophysical variables (viz., Plant Area Index (PAI), Vegetation Water
Content (VWC), and dry biomass (DB)) at different phenological stages confirms its trend with plant growth
dynamics. For each crop type, the DpRVI is compared with the cross and co-pol ratio (σVH0/σVV0) and dual-pol
Radar Vegetation Index (RVI = 4σVH0/(σVV0 + σVH0)), Polarimetric Radar Vegetation Index (PRVI), and the
Dual Polarization SAR Vegetation Index (DPSVI). Statistical analysis with biophysical variables shows that the
DpRVI outperformed the other four vegetation indices, yielding significant correlations for all three crops.
Correlations between DpRVI and biophysical variables are highest for canola, with coefficients of determination
(R2) of 0.79 (PAI), 0.82 (VWC), and 0.75 (DB). DpRVI had a moderate correlation (R2≳ 0.6) with the biophysical
parameters of wheat and soybean. Good retrieval accuracies of crop biophysical parameters are also observed for
all three crops.

1. Introduction

Monitoring crop condition is a principal factor for estimating and
forecasting production. When agencies require continuous monitoring
of crop production over large spatial extents, mapping from space offers
an effective option. Although optical remote sensing has been suc-
cessfully used (Boryan et al., 2011; de Wit et al., 2012; López-Lozano
et al., 2015; Chipanshi et al., 2015) in several operational frameworks
(e.g., MODIS vegetation products), useful acquisitions by this type of
sensors are restricted to nearly cloud-free conditions. In this context,
synthetic aperture radar (SAR) data are of significant interest for agri-
cultural applications due to the ability of SAR systems to monitor under

all weather conditions, as well as the sensitivity of the microwave signal
to the dielectric and geometrical properties crops (Ulaby, 1975;
McNairn and Shang, 2016). In particular, the availability of dual-pol
SAR datasets from the Sentinel-1 mission provides unique opportunities
to ramp up operational monitoring for several application communities
(ESA, 2017). Dual-pol modes have advantages over full-pol acquisitions
in terms of larger swath width and less data volume at the expense of
limited polarimetric information (Lee et al., 2001; Ainsworth et al.,
2009), offering some benefits for agencies in ongoing operational ac-
tivities.

The Sentinel-1 dual-pol mode (VV-VH), refers to the transmission of
a vertically polarized wave with the simultaneous reception of vertical
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and horizontal polarization. Hence, the received wave in co- and cross-
polarized channels (VV-VH) provides information about a target in
terms of backscatter intensities. Several studies utilized the backscatter
intensities for identification of crop types (Kussul et al., 2016; Nguyen
et al., 2016; Bargiel, 2017; Van Tricht et al., 2018; Mandal et al., 2018;
Whelen and Siqueira, 2018; Arias et al., 2020) and crop biophysical
parameter estimation (Bousbih et al., 2017; Kumar et al., 2018; Mandal
et al., 2020a). The sensitivity of backscatter intensities to crop phe-
nology and morphological development led to developing crop mon-
itoring approaches solely with scattering powers (Nelson et al., 2014;
De Bernardis et al., 2015; Nguyen et al., 2016; Lasko et al., 2018;
Singha et al., 2019; Fikriyah et al., 2019).

Several researchers have investigated derivation of vegetation me-
trics from SAR data using backscatter intensity ratios. Blaes et al.
(2006) investigated the sensitivity of σVH0/σVV0 against the growth
dynamics of maize. At incidence angles of 35–45°, σVV0/σVH0 was sen-
sitive to plant growth until the leaf area index (LAI) and vegetation
water content (VWC) reached 4.9 m2 m−2) and 5.6 kg m−2, respec-
tively. Later, this ratio is applied to crop classification (McNairn et al.,
2009; Inglada et al., 2016; Denize et al., 2019), phenology estimation
(McNairn et al., 2018; Canisius et al., 2018), and vegetation char-
acterization (Veloso et al., 2017; Vreugdenhil et al., 2018; Khabbazan
et al., 2019). Veloso et al. (2017) noted that this ratio was relatively
stable during pre-cultivation stages and increased significantly at the
tillering stages of cereal crops (wheat and barley). The σVH0/σVV0 ratio
was better correlated to the fresh biomass of cereals and the Normalized
Difference Vegetation Index (NDVI), compared to individual channel
backscatter response. Besides, this ratio provided better separability
among maize, soybean, and sunflower during their heading/flowering
stages.

The quad-pol Radar Vegetation Index (RVI) proposed by Kim and
van Zyl (2009), was modified for dual-pol SAR data (Trudel et al.,
2012) as 4σHV0/(σHH0 + σHV0). Later, few studies used the alternative
formulation as 4σVH0/(σVV0 + σVH0) using Sentinel-1 dual-pol data (VV-
VH) (Nasirzadehdizaji et al., 2019; Gururaj et al., 2019). These ap-
proaches are driven by the utilization of the cross-polarized component
of the received wave. Periasamy (2018) proposed the Dual Polarization
SAR Vegetation Index (DPSVI) by investigating the physical scattering
behaviour of several targets (vegetation, soil, urban area, and water) in
co- and cross-pol channels of Sentinel-1. It calculates the rate of de-
polarization in terms of the vertical dual depolarization index,
(σVV0 + σVH0)/σVV0 to separate bare soil from vegetation. The DPSVI
had R2 values greater than 0.70 with both optical NDVI and above-
ground biomass. Chang et al. (2018) exploited the degree of polariza-
tion parameter (average of HH and VV channel degree of polarizations)
along with the cross-pol backscatter intensity to characterize vegetation
and bare soil. It may be noted that utilizing the scattered wave in-
formation in terms of the roll-invariant degree of polarization (m)
would enhance target characterization (Shirvany et al., 2012; Touzi
et al., 2015, 2018).

Chang et al. (2018) utilized the degree of polarization of partially
polarized waves for deriving a vegetation index (PRVI) for quad-pol
SAR data. Assuming the vegetation canopy as a depolarizing media,
they first obtained the depolarized part by subtracting the degree of
polarization from unity (i.e., (1− m)), subsequently multiplying it with
the cross-polarization channel intensity (σHV0 in dB). This approach
delivered good correlation of shrubland biomass with PRVI (R2 = 0.75)
than RVI (R2 = 0.50). Shrubby vegetation usually develops random
structures within the canopy. However, agricultural crops often exhibit
a predefined orientation (e.g., vertical or horizontal based on erecto-
philes and planophiles) and crops are typically sown in rows. In this
sense, relying on only cross-polarized power may lead to issues related
to backscatter intensity saturation. Hence, including HV (or VH) may
falsely indicate a high value of the vegetation index, even though the
vegetation canopy is not entirely developed. An alternative would be to
exploit the dominant scattering component (in terms of the eigenvalue

spectrum of the covariance matrix) while calculating the polarized
components.

In the present work, we utilize the dual-pol Sentinel-1 SAR data to
derive a new radar vegetation index, named as dual-pol radar vegeta-
tion index (DpRVI) for crop condition monitoring. The eigenvalue
spectrum obtained from the eigen-decomposition of the dual-pol cov-
ariance matrix and the degree of polarization is used to derive this new
index. Instead of including the polarization channel backscatter in-
tensities (Chang et al., 2018; Periasamy, 2018), the proposed index uses
the normalized dominant eigenvalue and the degree of polarization
which are roll and polarization basis invariant. Moreover, DpRVI is a
bounded quantity (between 0 and 1), unlike PRVI, which uses the
channel intensity in decibel, making it unbounded. We assess the per-
formance of the DpRVI as an indicator of plant growth dynamics over
the Joint Experiment for Crop Assessment and Monitoring (JECAM) test
site in Carman (Manitoba), Canada. We perform a comparative analysis
between DpRVI, σVH0/σVV0, dual-pol RVI, PRVI, and DPSVI for three
structurally diverse crop types. We further assess the temporal response
of DpRVI to vegetation dynamics by comparing them with the in-situ
measured vegetation biophysical parameters, including Plant Area
Index (PAI), Vegetation Water Content (VWC), and Dry biomass (DB).

2. Study area and dataset

The present study is carried over the Joint Experiment for Crop
Assessment and Monitoring (JECAM) test site in Carman, Manitoba
(Canada), as shown in Fig. 1. This site covers an area of intensive
agriculture of 26 × 48 km2. A diverse mix of annual crops is grown in
this region, with dominant crops including wheat, canola, soybeans,
corn, and oats. Only a small fraction (< 5%) is under permanent
grassland and pasture. The in-situ measurements were collected over
the area near coincident with satellite passes during the Soil Moisture
Active Passive Validation Experiment 2016 Manitoba (SMAPVEX16-
MB) campaign (Bhuiyan et al., 2018).

During the campaign, in-situ measurements of vegetation and soil
were collected in two distinct periods (June 08 to June 22, and July 8 to
July 22, 2016) over 50 agricultural fields. During this experimental
period, most of the crops advanced from an early stage of growth fol-
lowing emergence to peak accumulation of biomass, as shown in Fig. 2.
The nominal size of each field is approximately 800 m× 800 m. In each
sampling field, three points were selected for vegetation sampling, as
shown in Fig. 1, which included measurement of plant area index (PAI),
wet and dry biomass, plant height, and phenological stages using both
destructive and non-destructive sampling methods (Bhuiyan et al.,
2018). The biomass measurements are used to derive the vegetation
water content (VWC) and dry biomass (DB) per unit square meter area.

Details of the vegetation and soil sampling methods during the field
campaign can be found in the SMAPVEX16-MB report in McNairn et al.
(2016) and in Bhuiyan et al. (2018). From several Sentinel-1 images
acquired during the campaign, four dual-polarization (VV and VH) C-
band Sentinel-1A Single Look Complex (SLC) data are selected for use in
this study (Table 1). The selection of Sentinel-1 data is based on ac-
quisition dates near coincident with in-situ measurement periods.

3. Methodology

3.1. SAR data preprocessing

Sentinel-1 acquires data over land majorly in the Terrain
Observation with Progressive Scans SAR (TOPSAR) mode and delivers
the Level-1 SLC data in an Interferometric Wide (IW) product. A full
swath is approximately 250 km in length at 5 × 20 m spatial resolution
in single look. The IW swath consists of three sub-swaths (IW1, IW2,
and IW3) in the range direction. Each sub-swaths has 9 bursts in the
azimuth direction, and the individually focused complex bursts are
arranged in azimuth-time order with black-fill in between. For further
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applications, these SLC products are preprocessed with a standard set of
corrections in a workflow, as shown in Fig. 3.

This study involves preprocessing of the temporal dataset to obtain
the dual-pol 2 × 2 covariance matrices. Individual Sentinel-1 images
are read into the SNAP7.0 tool (ESA, 2015). The sub-swaths and bursts
are then selected based on the test area coverage with the TOPS Split
module. A precise orbit file is applied to update the state vectors, and
subsequently, the images are calibrated. Unlike the Ground Range De-
tected (GRD) processing pipeline, which is used to generate the radar
cross-section powers (σ0), the current workflow requires saving the
radiometric calibration output product in a complex-valued format. A
complex-values output is necessary to generate the covariance matrix in
succeeding steps. These processing steps are performed in a batch mode
for all temporal datasets.

All these calibrated images from different dates are coregistered
with sub-pixel accuracy using a digital elevation model (DEM) and orbit
information in SNAP ‘Sentinel-1 Back Geocoding’ operator. For the
current work, we have utilized the SRTM 1Sec Grid (approximately
30 m pixel size) as DEM. Subsequently, the stack of temporal images is
processed for Sentinel-1 TOPS Deburst and TOPS Merge, which merges
different bursts of an individual image (of a particular date) into a

single SLC image. Subset operation is then performed on the debursted
image to clip the product into a smaller spatial extent covering the test
area.

The subset stacked images are multilooked by 4 × 1 in range and
azimuth direction to generate ground ranged square pixels. These
multi-looked products are then utilized to produce a 2 × 2 covariance
matrix (C2). The matrix elements are further processed by despeckling
them with a 5 × 5 refined Lee filter. It may be noted that in this study,
the nominal size of each plot is ~ 800 m × 800 m and fields are chosen
as homogeneous as possible according to the agronomic practices. The
5 × 5 window is selected to ensure enough equivalent number of looks
(ENL) for a good estimation of the elements of DpRVI.

The next step requires the deletion of baseline information from the
metadata, which is essential for exporting the covariance matrices from
SNAP to the PolSARPro format. The stack is then split into individual
products using the Stack Split operator, and these products (i.e., the
2 × 2 covariance matrices for single dates) are exported into the
PolSARPro format. Each matrix element (C11, C22, ℜ(C12), and ℑ(C12))
is stored individually in a binary format with separate header in-
formation. These elements essentially deal with the second-order scat-
tering information generated from the spatial averaging of the

Fig. 1. Study area (red box) and Sentinel-1 passes (blue boxes) over the Carman JECAM test site. The sample fields (mint green polygons) are overlayed on σVV0
Sentinel-1A image of 19 July, 2016. A layout of 16 sampling locations within a field is highlighted. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

D. Mandal, et al. Remote Sensing of Environment 247 (2020) 111954

3



scattering vector k = [SVV, SVH]T as expressed in (1),
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where superscript ∗ denotes complex conjugate and 〈⋯〉 denotes the
spatial average over a moving window.

The DpRVI is then generated from the covariance matrix elements
for each date. These images are subsequently geocoded to a UTM pro-
jected coordinate systems using the Range Doppler Terrain correction.
Further analysis is performed with the in-situ measurement locations
and extracted radar vegetation index from the geocoded products.

3.2. Dual-pol radar vegetation index (DpRVI)

Radar backscatter intensity provides information about spatial and
temporal variations in crop growth and changes in their phenology
stages (Lopez-Sanchez et al., 2014). Exploiting the characteristics of
scattering randomness from vegetation structures, radar vegetation
indices have been proposed including RVI (Kim and van Zyl, 2009),
RVII-RVIII (Szigarski et al., 2018), GRVI (Mandal et al., 2020b), and
CpRVI (Mandal et al., 2020c) for full- and compact-pol SAR data. These
SAR indices were developed to provide a relatively simple and physi-
cally interpretable vegetation descriptor. Although these radar vegeta-
tion indices are good proxies for vegetation condition, they are confined
to the use of full or compact polarimetric SAR data. A vegetation index
based on dual-pol SAR data (viz., Sentinel-1) would be advantageous

for operational crop monitoring over expansive geographies.
In this study, we have jointly utilized the scattering information in

terms of the degree of polarization and the eigenvalue spectrum to
derive a new vegetation index from dual-pol SAR data. The state of
polarization of an EM wave is characterized in terms of the degree of
polarization (0 ≤ m ≤ 1). The degree of polarization is defined as the
ratio of the (average) intensity of the polarized portion of the wave to
that of the (average) total intensity of the wave. For a completely po-
larized EM wave, m = 1 and for a completely unpolarized EM wave,
m = 0. In between these two extreme cases, the EM wave is considered
to be partially polarized, 0 < m < 1. In the literature, the unpolarized
part of the received wave, (1 − m) is usually considered to represent
the volume scattering component from distributed targets (Raney et al.,
2012).

Barakat (Barakat, 1977) provided an expression of m for the N × N
covariance matrix. This expression is used in this study to obtain the
degree of polarization m from the 2 × 2 covariance matrix C2 for dual-
pol data as,

= − ∣ ∣m C
C

1 4
( Tr ( ))

2

2
2 (2)

where Tr is the matrix trace operator (i.e., the sum of the diagonal
elements) and ∣ ⋅ ∣ is the determinant of a matrix.

In addition, the two non-negative eigenvalues (λ1 ≥ λ2 ≥ 0) are
obtained from the eigen-decomposition of the C2 matrix which are then
normalized with the total power Span (Tr(C2) = λ1 + λ2). The ei-
genvalues quantify the dominancy of scattering mechanisms. For a

Fig. 2. Field conditions for wheat, canola, and soybean crops during the SMAPVEX16-MB campaign.

Table 1
Sentinel-1A acquisitions over Carman test site during SMAPVEX16-MB campaign (IW: Interferometric Wide swath). The incidence angle ranges shown here are over
the test area of 26 × 48 km2.

Satellite data acquisition date Beam mode Incidence angle range (deg.) Orbit In-situ measurement window

13-06-2016 IW 30.22–32.47 Ascending 13-06-2016 15-06-2016
07-07-2016 IW 30.22–32.44 Ascending 05-07-2016 06-07-2016
19-07-2016 IW 30.22–32.44 Ascending 17-07-2016 20-07-2016
31-07-2016 IW 39.82–41.79 Ascending Not Available
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single dominant scattering mechanism, λ1 ≫ λ2. Moreover, in dual-pol,
m is equivalent to wave anisotropy, which quantifies the relative
strength among the first and the second dominant scattering mechan-
isms. Therefore, in this study, we utilize the parameter β = λ1/Span as
a measure of dominancy in the scattering mechanism.

Most studies solely consider the cross-polarized channel (i.e., VH or
HV) intensity to characterize scattering from random structures. For
most distributed targets, VV and HH are dominated by first-order
scattering (i.e., direct backscatter with no multiple reflections), whereas
HV (or VH) is due to second- and higher-order scattering (i.e., two or
more reflections involving two or more scatterers). Unlike the PRVI
(Chang et al., 2018), which utilizes the degree of polarization and the
HV backscatter coefficient (i.e., σHV0) from full-polarimetric SAR data,
the proposed formulation for the dual-pol radar vegetation index
(DpRVI) introduces a measure of dominancy via the β parameter.

The dominant scattering information is modulated with the degree
of polarization (m), which in particular characterizes anisotropy for
dual-pol SAR data. The scattering randomness is then obtained by
subtracting mβ from unity, as given in (3).

= − ≤ ≤mβDpRVI 1 , 0 DpRVI 1, (3)

Besides, multiplying of the VH component directly to other com-
ponents of PRVI and DPSVI makes then unbounded (Periasamy, 2018;
Chang et al., 2018). Unlike PRVI and DPSVI, the utilization of the
normalized of the dominant eigenvalue (i.e., λ1/Span) makes it
bounded between 0 and 1, which is useful and natural to interpret
considering the lower and upper bounds owning physical significance.
Besides, the normalized dominant eigenvalue and the degree of polar-
ization are both roll and polarization basis invariant.

Equivalently, an alternative formulation would be to have the pro-
duct of (1 − m) and λ2/Span. It may be noted that this is analogous to
the formulation of PRVI (Chang et al., 2018), which is a product of
(1 − m) and σHV0. Here (1 − m) is the unpolarized part of the scattered
wave and λ2/Span indicates the less dominant scattering term. How-
ever, λ2/Span is intrinsically noisier rather than depicting actual
changes in scattering randomness from vegetation canopy.

It is apparent from Fig. 4 that the standard deviation of λ2/Span
increases as canola advances from the leaf development stage (13 June)
to pod development and maturity (3rd week of July). The mean value of
λ2/Span increases with plant growth stages while following an inverse
trend with λ1/Span. The structural heterogeneity of plants during the

Fig. 3. Sentinel-1 preprocessing workflow for time-series data.
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reproductive to maturity stage might lead to a spatial variance within a
parcel. Hence, this might increases variation in DpRVI values from
mean at advanced growth stages.

Furthermore, it is noteworthy that the standard deviation of λ1/
Span is relatively lower than λ2/Span and the mean value decreases
with plant growth stages. Hence, the product of m and β corresponds to
the scaling of the dominant scattering. Order of scattering increases as
crop canopy develops. At the initial stages of crop development (early
leaf development), usually, the scattering from the soil surface is
dominant. However, at the advanced vegetative stage, multiple scat-
tering from the canopy and soil is more apparent. Hence, m is expected
to decrease from early to advanced vegetative stage. It may be noted
that a similar sensitivity of the degree of polarization is highlighted
with increasing order of scattering (Chang and Shoshany, 2017; Chang
et al., 2018).

Furthermore, the principal basis to couple m and β is inferred from
their differential sensitivity to crop growth dynamics. The experimental
plots that are shown in Fig. 5 indicate their variations through temporal
growth stages for three different crops.

Even though these parameters are investigated in detail in Section 4,
here, we briefly highlight their importance to characterize the proposed
index. This insight is particularly vital considering that even though
these two parameters show analogous trends, they exhibit differential
variations within a distinctive dynamic range at several phenological
stages. For example, the mean values of m and β decrease with the
growth stages of canola (Fig. 5). It is interesting to note that both m and
β are> 0.70 with a marginal difference between their values on 13
June. However, m and β diverge as canola phenology advances until full
vegetative growth is attained during mid-July. Similarly, for soybean
and wheat, the differential sensitivities of m and β are apparent
throughout its growth stages, as shown in Fig. 5. It is interesting to note

that unlike other crops, wheat shows an increasing trend in both m and
β during the end of the ripening stage on 31 July, with higher variations
in responses of both parameters. These differences may be due to a high
degree of randomness in scattering from wheat heads or due to a drier
canopy which allows greater contribution from the soil.

It can be observed from the general analysis of the eigenvalue
spectrum (given in Appendix A) that these differential variations be-
tween m and β are related to λ2/Span. This measure which quantifies
the less dominant scattering mechanism is inappreciable when m ≈ 1,
and unreliable due to large variance with increasing scattering ran-
domness. In most circumstances, at the early stage of plant develop-
ment, there exists a single dominant scattering mechanism usually from
the bare soil. This is manifested by a low difference between m and β. A
decrease in the uncertainty among two targets is controlled by the
mutual use of m and β.

The elements of DpRVI (i.e., m and β) are shown in a polar plot
(Fig. 6). It may be noted that we have utilized the parameter β in the
linear scale in the formulation of DpRVI (Eq. (3)). The angular re-
presentation of this parameter is solely utilized to represent it in the
polar plot (Fig. 6) along with m. This particular type of representation is
adopted in this study to adequately perceive subtle variations of DpRVI
due to the diversity in the scattering characteristics through the tran-
sition of phenological stages. In this plot, cos−1β is represented in the
angular direction, while m is plotted in the radial axis. It can be noted
that cos−1β varies from 0 to 60∘ in the angular direction, while m ra-
dially varies from 0 to 1.

The polar plot is used to illustrate temporal variations in the scat-
tering attributes for each crop type, individually discriminated by m
and β. Some canonical or elementary targets are also shown, which are
located at the extremes of the boundaries, while natural targets reside
within the polar plot.

The β parameter indicates the contribution of the dominant scat-
tering component within the total backscattered power. For pure or
point target scattering with a dominant scattering mechanism, β = 1
which assigns to cos−1β = 0° with m = 1 in the polar plot. This state
corresponds to Case-2 shown in Fig. 6 with DpRVI = 0. Theoretically,
for a smooth bare surface (i.e., Bragg scattering), λ1 ≫ λ2 with a high
value of m pointing to cos−1β ≈ 0. However, the cluster density plot of
bare soil indicates variations in m and cos−1β about their theoretical
positions, which are due to the natural variability in real scenarios.

In the case of completely random scattering (i.e., with no polar-
ization structure), m = 0 (i.e., completely depolarized wave) and
β = 0.5. This suggests that λ1 = λ2 = Span/2 for which DpRVI = 1.
Case-1 is a typical example of such a state. For natural targets like fully
developed vegetation canopy, m ≈ 0 and β ≈ 0.5, leading to higher
DpRVI, i.e., DpRVI ≈ 1. Moreover, dispersion of m and β in the density

Fig. 4. Temporal pattern of normalized eigenvalue (λ1/Span and λ2/Span)
derived from coherency matrix (C2) for canola fields.

Fig. 5. Sensitivity of m and β parameters through the growing season for canola, soybean, and wheat crops.
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plot is evident in the vegetation cluster. As plant canopy advances from
early leaf development to fully vegetative stage, the DpRVI increases
from 0 to 1.

It can be noted that at each phenological stage, m and β are re-
presented as points in the polar plot. However, certain regions in the
m − β plot are infeasible due to the non-existence of physical depo-
larizers in such regions. Case-3 is an instance of such a state, where
m = 1.0 (i.e., pure target) and cos−1β = 60°, indicating,
λ1 = λ2 = Span/2 (i.e., similar to a complete depolarizer). These types
of targets are not practically possible in natural scenarios.

3.3. Data analysis and comparison

Elements of the C2 matrix are used to calculate the DpRVI as dis-
cussed in Section 3, for each acquisition over a 5 × 5 window. In ad-
dition, the DpRVI is compared with the cross and co-pol ratio (σVH0/
σVV0), RVI (4σVH0/(σVV0 + σVH0), PRVI and DPSVI. The σVH0/σVV0 and
RVI are computed from the diagonal elements of the C2 matrix. The in-
situ measurement points are overlaid on the temporal σVH0/σVV0, RVI,
PRVI, DPSVI and DpRVI images. Here it is important to note that the
nominal field size of the study area is relatively larger (approx.
800m×800m) than the size of the image pixel (approx. 15m×15m).
Hence, the vegetation indices for each sampling location are calculated
as an average over a 3 × 3 window centered on each site.

It should be noted that the dual-pol RVI and PRVI are not funda-
mental for dual-pol systems. The full-pol Radar Vegetation Index (RVI)
was formulated by modeling the vegetation canopy as a collection of
randomly oriented dipoles (Kim and van Zyl, 2009), and in principle
utilizes a measure of scattering randomness from vegetation targets and
formulated from eigenvalue spectrum of full-pol covariance matrix C3.
However, for dual-pol, RVI formulation is approximated from the final
formulation of the full-pol RVI. On the other hand, the PRVI in principle
is not directly comparable to the DpRVI as the former is proposed for
full-pol SAR data (Chang et al., 2018). The degree of polarization is
derived using the modified Mueller matrix with Stokes parameters,
assuming a completely and linearly polarized transmitted wave. How-
ever, the DpRVI is directly comparable to DPSVI and σVH0/σVV0, which

are created from dual-pol SAR data. Nonetheless, for completeness and
relevant analysis, we have included the comparison of DpRVI with re-
lated radar vegetation indices like PRVI, dual-pol RVI, σVH0/σVV0, and
DPSVI.

These parameters are initially investigated on a temporal scale for
various phenological stages of crops. We have selected three structu-
rally different crops for this study: wheat, canola, and soybean. The
temporal behaviour of these parameters are also compared with crop
biophysical variables, such as the Plant Area Index (PAI, m2m−2), dry
biomass (DB, kg m−2), and vegetation water content (VWC, kg m−2).
Finally, the DpRVI, σVH0/σVV0, RVI, PRVI, and DPSVI are utilized in a
correlation analysis with these crop biophysical variables.

4. Results and discussion

This section describes the results of the proposed vegetation
index–DpRVI separately for three crop types, viz., canola, soybean, and
wheat. The results of the statistical comparison of the five indices:
DpRVI, σVH0/σVV0, dual-pol RVI, PRVI and DPSVI with the three crop
parameters, PAI, DB, and VWC, are also documented in this section.

4.1. Canola

The temporal analysis of DpRVI averaged for three sampling points
in each canola fields (Field no. 206, 208, and 224) is provided in Fig. 7.
For comparison, σVH0/σVV0, dual-pol RVI, PRVI and DPSVI are pre-
sented in the same figure. Furthermore, a regression analysis is per-
formed for the vegetation indices with in-situ measured PAI, VWC, and
dry biomass (Fig. 9).

The in-situ measurements indicate that canola seeding was almost
completed by the 3rd week of May. Thus, plant development during the
beginning of June was primarily limited to vegetative growth.
Subsequently, flowering started in the last week of June to early July,
which led to pod development by the middle of July. Ripening of seeds
and senescence followed at the end of July until the 2nd week of
August. The phenological stages are highlighted in the temporal plots of
vegetation indices for each field (Fig. 7).

Fig. 6. The elements of DpRVI i.e., degree of polarization (m) and β (i.e., λ1/Span) in polar plot. The cos−1β is represented in the angular direction and m in radial
axis of the polar plot. The boundary cases and regions of natural targets are highlighted. The vegetation and soil clusters are derived using radar measurements over
the sampling fields.
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Analysis of canola is particularly interesting due to its dynamic
morphological changes with phenology. Canola is a broad-leaf plant
with distinctive differences in canopy structure throughout the growing
season. Upon emergence, the plant develops a dense rosette of leaves
near to the soil. Hence, the backscatter response is affected by the de-
velopment of leaves, which have a similar size compared to the C-band
wavelength (≈5.6cm). The canola stem then bolts, increasing its ver-
tical structure just before flowering and podding with an increase in
both PAI and biomass (Wiseman et al., 2014). Latter in the pod de-
velopment stage, canola forms a dense and complex canopy structure.

On 13 June, DpRVI is ≈0.35 in the majority of the canola fields,
indicating low vegetation cover. In-situ measurements confirm that
their growth was limited to the stem elongation stage with low PAI
(≈1.45 m2 m−2) and biomass (VWC = 1.0 kg m−2 and

DB<0.2 kg m−2). The vegetation cluster in the m − β polar plot
(Fig. 8 shows a high value of m ≈ 0.90 along with a high value of β
(cos20 ° = 0.94) during early development stages when canopy
structure is less random. Similarly, a low value of σVH0/σVV0 and RVI
also indicate sparse vegetation condition. Low values of the other two
indices i.e., PRVI and DPSVI also indicative of low vegetation. Although
the dynamic range of PRVI is low as compared to others, the increase in
mean value throughout canola growth is observed.

In comparison to field 206 and 208, with low vegetation cover (i.e.,
PAI ≈ 0.5 m2m−2) and VWC<0.42 kg m−2), a lower value of DpRVI
(≈0.18) is found in field 224, where the canola plants were still at their
leaf development stage. At early growth stages, the backscattering is
dominated by uncovered soil surface where a single dominant scat-
tering mechanism is most apparent. This indicates that λ1 ≫ λ2, and

Fig. 7. Temporal pattern of vegetation indices (DpRVI, σVH0/σVV0, dual-pol RVI, PRVI and DPSVI) for three representative canola fields at different growth stages. The
in-situ measurements of Plant Area Index (PAI, m2m−2), Vegetation water content (VWC, kg m−2), and dry biomass (DB, kg m−2) are plotted in third row for each
field.

Fig. 8. Temporal variations of degree of polarization (m) and β in polar plots for canola fields.
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consequently low DpRVI values.
The DpRVI values for each field increased rapidly as the plant

growth progressed from the early vegetative stage to the beginning of
pod development. During the early pod development stage (19 July),
the DpRVI is ≈0.8 ± 0.04. At high growth stages, with the increase of
vegetation elements, a decrease in m is likely due to the depolarization
of incident waves from the complex vegetation canopy. During this pod
development stage, the ramified stems and the randomly oriented pods
create a complex upper canopy structure that may increase multiple
scattering mechanisms. This aspect may lead to similar values of λ1 and
λ2 (equal to Span/2). Variations in m and β with vegetation growth
stages are apparent in Fig. 8. A significant increase in σVH0/σVV0 is
observed during the inflorescence emergence and flowering stage, po-
tentially due to changes in the cross-pol intensity as the canopy de-
velops (Pacheco et al., 2016). Increment of PRVI with PAI is also ap-
parent in the simulations presented by Chang et al. (2018), which
indicate relatively linear relationships among LAI and PRVI.

During the advanced pod development to ripening stage, the DpRVI
values are peculiarly confined within the range of 0.75 ± 0.05, rather
than increasing from the early pod development stages. At the end of
the pod development stage, in-situ measurements indicate high vege-
tation cover (PAI≈6.0 m2 m−2) and biomass (VWC>3.0 kg m−2 and
DB ≈ 1.0 kg m−2). The sensitivity of the SAR signal to the accumula-
tion of biomass from leaf development until the flowering stage is ap-
parent in Fig. 7. Following this, a saturation of the C-band signal is
likely due to the high volume of vegetation components during the pod
development stage (Wiseman et al., 2014). Besides, the values of the
other four indices also remain stable at high growth stages. These re-
sults are comparable to the backscatter response from canola reported
in Veloso et al. (2017) and Vreugdenhil et al. (2018).

On 31 July, changes in all the five radar vegetation indices are less
apparent with plant growth. Although the in-situ measurements were
not available, the Manitoba agriculture weekly reports (Agriculture,
2016) indicates that the canola crops were at their pod development
stage in this region. Hence, an increment in the order of scattering is
expected as the crop canopy develops. Consequently, m is expected to
decrease from early leaf development to pod development stage with
λ1 ≈ λ2. However, it can be noted that the incidence angle of Sentinel-1
data on 31 July is comparatively higher than other dates. At this high
incidence angle (e.g., 39°), surface roughness and leaf layer have more
contribution to scattering, which reduces the effect of volume con-
tribution as the crop matures. Thus, the collective influence of changes
in the incidence angle and crop growth renders the interpretation of
radar vegetation indices challenging.

A quantitative assessment of vegetation indices is essential for
comparative analysis. The correlation plots in Fig. 9 indicate that the
DpRVI values are better correlated with the biophysical parameters of
canola than the other four indices. It is observed that the coefficients of
determination (R2) for the PAI, VWC, and DB with DpRVI are 0.79,
0.82, and 0.75 respectively. Both σVH0/σVV0 and RVI produced lower
correlations with PAI, VWC, and DB. Both σVH0/σVV0 and RVI produced
higher correlations with crop biophysical parameters than PRVI and
DPSVI. The DpRVI certainly outperforms these four vegetation indices
both in terms of stronger correlations and lower variances throughout
the entire growth stages.

4.2. Soybean

Unlike cereal and oil-seed crops, soybeans are legumes, which are
characterized by more planophile canopy architecture. However, as
soybeans mature, their canopy structure becomes more random due to
its unique morphology with trifoliate leaves (a compound leaf made of
three leaflets) attach to each stem node with petiole, secondary stems,
and randomly oriented leaves (Fehr et al., 1971).

The Manitoba weekly crop reports (Agriculture, 2016) suggests that
soybean seeding was completed by the 3rd week of May. Thus, crop

development during the beginning of the SMAPVEX-16 campaign in
June was primarily restricted to vegetative growth. Subsequently, in-
florescence emergence, flowering, and pod initiation started during the
last week of July. The development of pods, ripening of seeds, and
senescence followed in August until the 2nd week of September.

Fig. 10 shows the temporal trends of the vegetation indices for three
representative fields (Field no. 65, 72, and 232). It is evident from
Fig. 10 that the DpRVI values for each field increase rapidly as the
vegetation growth increases from the early leaf development stage to
the beginning of pod development. The DpRVI value is ≈0.21 at the
leaf development stage (on 13 June).

In-situ measurements confirm the vegetative growth with low PAI
(≈0.35 m2 m−2) and biomass (VWC = 0.2 kg m−2 and
DB<0.05 kg m−2). The m − β polar plot (Fig. 11 indicates that the
vegetation cluster lies in the region of high m (≈0.90) and β during
early development stages (i.e., 2nd trifoliate stage) with less random
canopy structure. During this stage, the SAR backscatter is primarily
affected by the underlying soil (Wang et al., 2016). It may be noted that
a similar effect of soil on backscatter response at the early vegetative
stage is also reported by Cable et al. (2014) with quad-pol RADARSAT-2
SAR data. Alongside, low values of σVH0/σVV0 and RVI also indicate an
early stage of vegetation growth. Furthermore, low values of PRVI and
DPSVI are similarly aligned with the crop condition. However, Veloso
et al. (2017) reported a higher standard deviation of the co-pol channel
than cross-pol for bare soil conditions, which may impart bias in σVH0/
σVV0 and RVI values.

With the increase in vegetation components, the variations in
DpRVI values among several fields are apparent. The DpRVI reaches its
highest value (≈0.55) at the end of the flowering stage when the vo-
lume scattering component increases. Moreover, biophysical para-
meters also peak (PAI> 3.0 m2 m−2, VWC>1.25 kg m−2, and DB
0.40 kg m−2) during this stage. Wigneron et al. (2004) indicated
random scattering behaviour at high vegetative growth of soybean ra-
ther than a dominant scattering component. A significant increase in
cos−1β along with a decrease in m at peak growth stage (Fig. 11 is in
agreement with these findings. Conversely, variations in σVH0/σVV0 and
RVI values are higher than DpRVI, which is likely due to lower at-
tenuation of the co-pol channel at pod development stages. Similar to
canola, we can observe a low dynamic range of DPSVI throughout the
growth stages of soybean. Conversely, the PRVI mimics the trends of the
crop biophysical parameters.

The correlation plots in Fig. 12 indicate that DpRVI values are better
correlated with the biophysical parameters than σVH0/σVV0, dual-pol
RVI, PRVI, and DPSVI. The coefficients of determination (R2) for PAI,
VWC, and DB with DpRVI are 0.58, 0.55, and 0.57, respectively. Even
though the correlations are statistically significant, the R2 values are
lower than that of canola (Fig. 9). It is likely that the indices derived for
low biomass canopies are significantly influenced by scattering from
the underlying soil rather than the vegetation canopy. This effect is
more apparent for PRVI and DPSVI with higher dispersion of the esti-
mates.

4.3. Wheat

Wheat belongs to the graminaceous plant family, which is char-
acterized by erectophile (canopy elements have predominant vertical
distribution) architecture. This morphological diversity leads to dis-
tinctive backscatter responses and associated vegetation indices. In the
test site, wheat was sown at the beginning of May. Most fields were at
the tillering stage on 13 June and then advanced to the heading stage
by the end of June. Flowering and fruit development started mid-July,
with the onset of dough and maturity stages at the end of July. The
corresponding vegetation indices derived from time-series Sentinel-1
data are shown in Fig. 13.

Variations in DpRVI values among three representative fields (Field
no. 220, 233, and 62) are evident with vegetation growth. Lowest
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DpRVI values are observed when wheat advanced from the leaf de-
velopment to the tillering stage on 13 June. Fields with plant density
(PD) of ≈100 m−2 (Fields no. 220) have low DpRVI values (≈0.22),
which are comparatively lower than wheat fields (Field no. 233 and 62)
with high PD (125 m−2 and 190 m−2). In-situ measurements of PAI and
VWC are also relatively higher (> 2.5 m2m−2 and ≈1.1 kg m−2) for
wheat fields with high plant density. In comparison to other crops,

wheat gained more vegetative components on 13 June (apparent in
their high biophysical parameter values), which lead to higher DpRVI
values. The m − β polar plot (Fig. 14) also indicates moderate to high
values of m (≈0.65) and β (cos35 ° = 0.82) on 13 June.

The DpRVI values reached its maximum when the crop advanced
from flowering to early dough stages on 19 July. DpRVI reaches up to
0.74 for low PD fields (Field no. 220), while these values peak at ≈0.8

Fig. 9. Correlation analysis between vegetation indices (DpRVI, σVH0/σVV0 and RVI) and crop biophysical parameters, i.e., Plant Area Index (PAI, m2 m−2),
Vegetation water content (VWC, kg m m−2), and dry biomass (DB, kg m m−2) for canola. The linear regression line is indicated as black dashed line. The 95%
confidence limits are highlighted as gray regions.
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for fields with high PD (Field no. 233 and 62). This difference may be
due to the high degree of randomness in scattering (m ≈ 0.35 and
cos−1β ≈ 50 ° − 55° on 19 July) from the canopy elements during the
flowering to fruit development stages. In-situ measurements of plant
biophysical parameters at these stages confirm their increment up to
approximately 6.2 to 8.1 m2 m−2, 3.0 kg m−2, and 1.1 kg m−2, for PAI,
VWC, and DB, respectively. Significant contributions due to multiple
scattering from the canopy might lead to λ1 ≈ λ2 ≈ Span/2 (i.e., no
dominant scattering) with low values of m (≈0.25).

The differential increase in DpRVI values among the wheat fields is
visible in Fig. 13. Variations in plant density might cause a difference in
DpRVI values among several fields, even though all fields are in the

same phenological stage. The rate of increase in DpRVI slows down at
the end of July after the stagnation of vegetative growth and the onset
of seed development. Similarly, the values of σVH0/σVV0 and RVI follow
the vegetation growth trends of wheat. σVH0/σVV0 increases during
heading to flowering as the plant biomass accumulates. Similar results
are also reported by Veloso et al. (2017) for cereal crops during these
phenology stages. The temporal trends of dual-pol RVI, PRVI and DPSVI
are also inline with plant growth.

The correlation analysis of vegetation indices with plant biophysical
parameters is provided in Fig. 15. The R2 of DpRVI with PAI, VWC, and
DB are 0.62, 0.62, and 0.57, respectively, which are higher than the R2

of σVH0/σVV0, dual-pol RVI, PRVI, and DPSVI. The dispersion of DpRVI

Fig. 10. Temporal pattern of vegetation indices (DpRVI, σVH0/σVV0, dual-pol RVI, PRVI and DPSVI) for three representative soybean fields at different growth stages.
The in-situ measurements of Plant Area Index (PAI, m2 m−2), Vegetation water content (VWC, kg m−2), and dry biomass (DB, kg m−2) are plotted in second row for
each field.

Fig. 11. Temporal variations of degree of polarization (m) and β in polar plots for soybean fields.
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values in the correlation plot at later growth stages is likely due to
scattering from the upper canopy layer (i.e., wheat heads). Wu et al.
(1985) reported similar results stating that the wheat heads dominate
the total scattering power at the heading stage. However, during the
ripening stage (when the heads become drier), the backscatter from the
ground dominants, and the backscatter power from the heads is in-
sensitive to the moisture content. Furthermore, variations in back-
scatter power are less prominent with changes in the leaf area or

biomass (Jia et al., 2013).

4.4. Crop biophysical parameter retrieval

The retrieval of biophysical parameters from SAR observations is of
vital importance for in-season monitoring of crop growth. The PAI,
VWC and dry biomass are valuable indicators of crop condition.
Considering the highest correlations among DpRVI and the three

Fig. 12. Correlation analysis between vegetation indices (DpRVI, σVH0/σVV0, dual-pol RVI, PRVI and DPSVI) and crop biophysical parameters, i.e., Plant Area Index
(PAI, m2 m−2), Vegetation water content (VWC, kg m−2), and dry biomass (DB, kg m−2) for soybean. The linear regression line is indicated as black dashed line. The
95% confidence limits are highlighted as gray regions.

D. Mandal, et al. Remote Sensing of Environment 247 (2020) 111954

12



biophysical parameters for canola, soybean and wheat (Figs. 9, 12, 15),
linear regression models are adopted for biophysical parameter esti-
mation. A k-fold (k = 5 in this case) cross-validation is performed while
estimating biophysical parameters using DpRVI. We measure the re-
trieval accuracy in terms of coefficient of determination (R2), Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE) with each
validation datasets. Among them, the best result is considered for re-
presentation, as shown in Table 2.

The PAI estimation for canola showed high R2 with
RMSE = 1.028 m2.m−2 and MAE = 0.844 m2.m−2. VWC and DB es-
timates also exhibit high correlation (R2 = 0.83 and 0.75) with in-situ
measurements. Lower error rates for VWC (RMSE = 0.527 kg m−2 and
MAE = 0.451 kg m−2) and DB (RMSE = 0.124 kg m−2 and
MAE = 0.106 kg m−2) are also within admissible range. The error

estimates of soybean and wheat are also consistent with the reported
errors in previous studies (Mandal et al., 2019, 2020a). The ranges of
biophysical parameters for specific acquisition dates for each crop can
be observed in the biophysical parameter maps, shown in Fig. 16.

Using DpRVI from Sentinel-1 image acquired on 13 June, 07 July,
and 19 July, we produce PAI, VWC and DB maps (20 m resolution)
respectively using the regression models developed for canola, soy-
beans and wheat (Fig. 16). The land cover map (adapted from the an-
nual crop inventory map prepared by Agriculture and Agri-Food Ca-
nada (AAFC) (Davidson et al., 2017)) over the test site allowed the
selective application of the models developed for a specific crop per-
taining only in that particular crop fields. In the absence of any re-
gression model for corn and oats, we masked out these fields in this
study. Both spatial, as well as temporal variability in crop growth, are

Fig. 13. Temporal pattern of vegetation indices (DpRVI, σVH0/σVV0, dual-pol RVI, PRVI and DPSVI) for three representative wheat fields at different growth stages.
The in-situ measurements of Plant Area Index (PAI, m2 m−2), Vegetation water content (VWC, kg m−2), and dry biomass (DB, kg m−2) are plotted in second row for
each field.

Fig. 14. Temporal variations of degree of polarization (m) and β in polar plots for wheat fields.
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observed for various fields in these map products.
On 13 June, the estimated PAI in majority of canola and soybean

fields are low (about 1.0 m2 m−2and 0.5 m2 m−2) as compared to
wheat fields. The VWC and DB maps on 13 June are also indicative of
these variations between crop fields. Increases in PAI, VWC and DB are
observed in Fig. 16 up to 5.0 m2 m−2, 2.5 m2 m−2 and 0.75 kg m−2,
respectively for canola on 07 July. A rapid increase in biophysical
parameters is apparent for the wheat fields. During the first week of
July, good crop growth was also reported in the Manitoba weekly crop

reports (Agriculture, 2016). In contrast, for soybean, increases in VWC
and DB are negligible as can be seen in the map products. During the
third week of July, most crops were at the end of their vegetative
growth stage and the commencement of their reproductive stages.
Hence, the increase in biophysical parameters for all crops is apparent
on 19 July. It is interesting to note the rapid growth in soybean fields as
evident on 19 July as soybeans continue to flower at the end of the
vegetative stage.

Fig. 15. Correlation analysis between vegetation indices (DpRVI, σVH0/σVV0, dual-pol RVI, PRVI and DPSVI) and crop biophysical parameters, i.e., Plant Area Index
(PAI, m2 m−2), Vegetation water content (VWC, kg m−2), and dry biomass (DB, kg m−2) for wheat. The linear regression line is indicated as black dashed line. The
95% confidence limits are highlighted as gray regions.
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5. Conclusion

We have proposed a dual-pol radar vegetation index (DpRVI) for
Sentinel-1 (VV-VH) SAR data. The index is derived using the degree of
polarization (m) and the dominant normalized eigenvalue (β = λ1/
Span) obtained from the 2 × 2 covariance matrix. The DpRVI is as-
sessed for three crop types (canola, soybean, and wheat) to characterize
vegetation growth throughout the phenology of these crops. The DpRVI
followed the advancement of plant growth until full canopy develop-
ment with the accumulation of the Plant Area Index (PAI) and biomass
(vegetation water content (VWC) and dry biomass (DB)). Strong and
moderate correlations are reported between DpRVI and these biophy-
sical parameters.

Among the results obtained from three different crops, canola de-
livered the highest correlation (R2) with its biophysical parameters:
0.79 (PAI), 0.82 (VWC), and 0.75 (DB). In contrast, DpRVI showed
moderate correlations with biophysical parameters of wheat and

Table 2
Validation accuracies for crop biophysical parameter retrieval using DpRVI.
The error estimates are presented in terms of coefficient of determination (R2),
Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).

Crop Parameter Regression model Validation accuracy

R2 RMSE MAE

Canola PAI 10.626 × DpRVI − 2.354 0.79 1.028 0.844
VWC 6.234 × DpRVI − 1.251 0.83 0.527 0.451
DB 1.132 × DpRVI − 0.288 0.75 0.124 0.106

Soybean PAI 7.528 × DpRVI − 1.422 0.576 0.795 0.705
VWC 2.684 × DpRVI − 0.681 0.545 0.302 0.243
DB 0.493 × DpRVI − 0.121 0.526 0.057 0.046

Wheat PAI 9.797 × DpRVI − 0.862 0.61 1.115 0.904
VWC 4.945 × DpRVI − 1.204 0.56 0.561 0.447
DB 1.941 × DpRVI − 0.662 0.55 0.248 0.201

Fig. 16. Plant Area Index (PAI m2 m−2), Vegetation Water Content (VWC, kg m−2), and Dry Biomass (DB, kg m−2) maps over the test site for three acquisitions dates
(13-06-2016, 07-07-2016, and 19-07-2016). The land cover map (produced by AAFC) and Landsat-8 True Colour Composite (TCC) image (acquired on 18-07-2016)
over the subset area are highlighted.
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soybean. It is noted that the correlations of DpRVI are comparatively
better than that of σVH0/σVV0, dual-pol RVI, PRVI, and DPSVI for all
crops. Rather than using the polarization channel backscatter in-
tensities, the DpRVI exploits the normalized dominant eigenvalue and
the degree of polarization, which are roll and polarization basis in-
variant. It can be concluded that the DpRVI effectively incorporates the
scattered wave information to describe the phenological changes that
are vital for time-series crop monitoring. Moreover, the crop biophy-
sical parameters are accurately retrieved using linear regression models
with DpRVI.

Notably, the proposed DpRVI for dual-pol SAR data holds significant
interest from an operational perspective for the Sentinel-1 Copernicus
mission, the RADARSAT Constellation Mission (RCM) and other up-
coming SAR missions, such as NISAR. These missions provide data
across larger spatial extents with short revisit time. For example, end-
users might be interested in weekly vegetation condition products from
an operational mission like Sentinel-1, particularly in regions where
cloud cover obscures the Earth to optical satellite acquisitions.

With the synergy of Sentinel-1A and 1B, monitoring crop conditions
every 6 days is possible at national scales with dual-pol indices would
be an adequate proxy. However, further assessment of the HH-HV mode
is required, as crop response could be different for horizontally polar-
ized transmitted wave relative to vertically transmitted. Moreover, ex-
perimental validation of vegetation indices on the incidence angle

variations is necessary for wide swath products. Finally, the vegetation
index needs to be further investigated for different cropping systems at
various test sites. This investigation is planned for dense time-series
data cubes which have been acquired under the JECAM SAR Inter-
Comparison Experiment.
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Appendix A. Relationship between m and β

The eigen-decomposition of a 2×2 covariance matrix, C2 can be expressed as,
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is a 2×2 diagonal matrix with non-negetive elements, λ1 ≥ λ2 ≥ 0, which are the eigenvalues of the covariance matrix, and U2 is a 2 × 2 unitary
matrix whose columns are the eigenvectors of the covariance matrix.

The degree of polarization (m) of the EM wave is derived from the expression given by Barakat (1977) as,
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It can be noted that m can also be expressed in terms of the eigenvalues as,
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The normalized dominant eigenvalue, β is given as, λ1/Span = λ1/(λ1 + λ2). Hence, the differential variation between m and β is expressed as,
β − m = λ2/(λ1 + λ2) = λ2/Span.
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