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Abstract

This paper investigates strategies to limit the cost of switching the cache in the
context of an optimistic discrete caching problem. We have chosen as starting point
the current state-of-the-art in optimistic discrete caching, the Optimistic Follow-The-
Perturbed-Leader (OFTPL) algorithm. We propose two strategies that attempt to
limit this cost. The first approach sets a lower bound for the perturbation factor, thus
including a mandatory amount of noise to the optimization of the cache state. The
second approach investigates dynamically updating the perturbation factor to increases
in the switching cost, hence allowing the algorithm to adapt to the scenario at hand.
Therefore, to the best of our knowledge, we design the first optimistic discrete caching
algorithm that attempts optimizing the switching cost. Finally, we experiment and
evaluate our solutions while highlighting their strengths and limitations.

1 Introduction
Caching systems are present in most services and applications we use daily: from watching
movies and visiting websites in content delivery networks [1], communication systems [2],
wireless content delivery [3] and CPU caching to even the logistics of inventory management
for delivery companies. The implementation of caching enables lower latency for customers
or users, valuable network efficiency, and enhanced scalability [4]. Due to increasing usage
of the aforementioned applications, these properties represent the reason why developing
effective caching algorithms is essential to sustainability, cost and time savings.

1.1 Motivation
The goal of this project is to design and evaluate online learning techniques for robust
caching systems with real-world value. Common approaches to caching systems are the
well-known eviction policies: Least-Recently-Used (LRU), Least-Frequently-Used (LFU),
First-In-First-Out (FIFO). These policies employ a strategy to evict an item from the cache
when it becomes full in response to a request of an non-cached file. In this case, the policies
attempt to add the new item in the cache, but since it is full, a decision needs to be made
as to which item to remove. This is where these policies dictate which item will be evicted.
Although proven and still frequently used in caching systems today, the existence of time-
varying trends in different files, such as a new TV show, can lead to suboptimal performance
[5].

Therefore, a common challenge in these systems is to design an online policy that decides
dynamically which items to store in cache, without knowing the future requests, so as
to maximize the cache hits. Previous work [6] expanded on online learning algorithms
using Online Gradient Ascent (OGA) while considering a caching system for a continuous
environment.

With the increased development effort towards machine learning algorithms, the usage
of predictors for future requests has been a topic of interest. Previous work [7] included
implementation and performance guarantees of different online learning algorithms for dis-
crete caching. The algorithms in this paper represent the current state-of-the-art with the
help of a prediction oracle of unknown accuracy, thus leading to the term optimistic. While
having knowledge of future requests makes these algorithms obsolete, having a predictor
with high accuracy will inevitably obtain good results. However, the benefit of the Opti-
mistic Follow-The-Perturbed-Leader is that it makes no assumptions on the accuracy of the
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Figure 1: Simplified view of switching cost

predictor, therefore being able to adapt to cases where its accuracy is degrading. As the au-
thors have proved in this work, this algorithm achieves higher performance that many other
algorithms, including other optimistic implementations. For this reason, this represents a
good candidate to further expand upon.

To be able to evaluate a caching policy, a metric has been defined, namely the regret.
The works cited above use this metric as a way to evaluate the implemented caching policy
against a theoretical "best-in-hindsight" static policy, which assumes complete knowledge
of future requests. In essence, this metric evaluates the cache hits that the caching policy is
able to obtain.

We can also consider a different metric for evaluating our caching policies, namely the
switching cost. This cost can be interpreted as penalties incurred by the caching algorithm
for swapping the items stored in the cache, and can be visualised in Figure 1. In real-world
scenarios this can be seen as replacing items in the warehouse. This example has very high
costs, as the old items need to be shipped out and the new ones need to be brought in,
therefore it incurs transportation costs, fuel, employees, etc. Another example is changing
the movies stored in a caching server. In this case, the switching costs are considerably
lower: removing a movie, downloading a new one, and the power used by this process.

While the regret, which considers the number of cache hits of a policy is an informative
metric, the costs incurred by switching items in the cache could outweigh the benefits of
many cache hits. However, the research cited above does not implement in its optimizations
the concept of switching cost. For this reason, the purpose of this research is to investigate
the switching cost in an optimistic caching algorithm and evaluate the trade-off between
cache hits and switching costs.

1.2 Contribution
We can categorize caching systems as discrete or continuous, where discrete signifies having
atomic items that can not be split, and continuous represents items that can be cached
partially. In this project we are considering only discrete caching algorithms, but these
approaches can be converted to approximate continuous environments as well, by splitting
items in chunks and treating it as a discrete problem.
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In this paper, we will dive deeper into the Optimistic Follow-The-Perturbed-Leader
(OFTPL) algorithm [7] and augment it with strategies for limiting the switching cost. The
research questions we are attempting to answer in this work are:

• Under what scenario would OFTPL change the cache state at every step?

• How can the OFTPL algorithm incorporate the switching cost?

• What strategy can be implemented to limit this switching cost?

To this end, we started by recreating the algorithm in [7] and evaluating it on specific
request patterns and on different predictor accuracies. As expected, the algorithm performs
well in terms of regret regardless of the accuracy of the predictor. However, we have also
evaluated the algorithm in terms of the switching cost. Under specific conditions, we have
observed that a perfect predictor will lead to a linearly growing switching cost. A perfect
predictor will influence the perturbation factor of the algorithm, which has the purpose of
introducing noise inversely proportional to the accuracy of the predictions. This paper will
investigate heuristic approaches to limiting the switching cost by adapting the perturbation
factor in 2 different ways: by limiting the perturbation factor above a threshold, and by
dynamically adapting it with the switching cost, and not only with the predictor’s accuracy.

2 Methodology and Background

2.1 Related work
The caching problem has always been prevalent and research in this field has been contin-
uously growing, as the survey [8] presents a number of recent developments. Therefore, the
current landscape contains a variety of caching algorithms. There exists the classic caching
strategies based on eviction policies, such as LFU and LRU, and modern variations of these
[9, 10].

A significant body of research has focused on the development of online learning algo-
rithms, such as Online Gradient Descent [6] for continous caching or Follow-The-Perturbed-
Leader [11] for discrete caching. However, increasing work in the field of machine learning has
also enabled the development of optimistic learning, by using predictions for future requests
as a tool to compute the best caching policy [12]. While this work has taken into account
the predictions’ accuracy, further work [13] has developed a method of using untrusted pre-
dictions, therefore being agnostic to the predictor’s accuracy, achieving competitive-ratio
guarantees. Furthermore, [7] has extended this approach to discrete caching with untrusted
predictions, by developing the Optimistic Follow-The-Perturbed-Leader algorithm, which is
the focus of this paper. This algorithm has been shown to achieve sub-linear regret regardless
of the predictor’s performance.

The purpose of this paper is to extend the work done in [7] by augmenting the OFTPL
algorithm while considering the switching cost and striking a balance between this and the
regret metric. Finally, it is important mentioning that including the switching cost in the
optimization function is not a new concept. There have been online caching algorithms
which consider this cost [14]. However, while this work is studying the similar Follow-The-
Perturbed-Leader (FTPL) algorithm, it is not the optimistic variant that we are investi-
gating, therefore not using a predictor for future request traces. The use of a predictor is
an important development that leads to performance gains over the plain FTPL algorithm.
However, as we will discover in the later sections, it can also represent a detriment for the
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other metric we are evaluating, the switching cost. Therefore, the solutions discussed in this
paper can’t be applied to the non-optimistic variant directly.

2.2 Methodology
For the purpose of this paper, we have employed an experimental research design to evaluate
and augment the OFTPL caching algorithm against various request patterns and prediction
accuracies. This choice has been done to provide empirical evidence of current performance
considering the switching cost metric and the performance of our improvements.

The first step in investigating strategies of limiting the switching cost was to evaluate
the current state-of-the-art in terms of this metric. By recreating the Optimistic Follow-
The-Perturbed-Leader algorithm in [7] we could observe its performance on custom-defined
request patterns that may not necessarily appear in real-world applications. One such
request pattern that we observed to produce surprising results is the round-robin trace,
which requests files consecutively at every time step. To evaluate the OFTPL algorithm, a
predictor must also be used. This has been achieved by using the known request in advance
and predicting with a specified accuracy. The request patterns and predictors used will be
described in more detail in subsection 3.2.

Using the round-robin request pattern, and a predictor with 100% accuracy 1, and for
certain sizes libraries and caches, the caching algorithm will attempt to switch the item
in the cache at every time step to accommodate for the perfect predictions. Having a
perfect predictor will cause the OFTPL algorithm to completely trust the predictor and not
introduce any noise for the purpose of exploration. The noise is caused by the perturbation
factor, which is inversely proportional to the predictor’s accuracy. Therefore, we see that
in this scenario, the perturbation factor will go to 0. In this case, the caching policy does
indeed achieve great performance in terms of cache hits by having negative regret, but we
also identify that the switching cost is linearly growing with time, since it modifies the cache
state by 2 items at every time step.

Thus we can observe that there is a trade-off to be made between achieving the largest
number of cache hits, and having a low switching cost. And we can also notice that the
balance of the two stands in the perturbation factor.

To obtain our results, we have pursued 2 different heuristic-based approaches of modi-
fying the perturbation factor, in the hopes of lowering the switching cost. Since having a
perturbation factor equal to 0 causes high switching costs, the first approach was to limit
this factor above a threshold, thus, never allowing the perturbation to hit 0. The second
approach was to dynamically adapt this variable with the switching cost, by integrating this
cost in the calculation of the perturbation factor. This is a more advanced approach than a
threshold as we have observed that different scenarios require different thresholds.

Using these heuristics we have run new experiments to evaluate the switching cost, and
we have observed that for some scenarios, the switching cost can be decreased significantly,
but at the cost on an increased regret.

1which would be very desirable in real-world scenarios
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3 System Model and Problem Statement

3.1 Model Preliminaries
Cache. The cache represents a subset of the entire library of N items. The cache has a
maximum size of C items, where usually, C < 10% ·N . The cache is considered a high-speed
storage layer that holds only C items which are a copy of the total library of items, that is
stored in a slower storage. Caches are used to reduce the time required to access the items
and to reduce the load on the main storage space. A cache can be encoded as a 1-hot vector
yt = {0, 1}N ,

∑N
i=1 yi ≤ C with value 1 for the item that is cached. We define the set of

valid caching states

X =

{
yt ∈ {0, 1}N

∣∣∣∣∣
N∑
i=1

yi ≤ C

}
Requests. Our caching system is slotted in discrete time steps, t = 1, 2, ..., T . The

system receives a request at every time step for a specific item from a library of total N
items. The request is encoded as a 1-hot vector, where only 1 file is requested per time slot

θt = {0, 1}N ,

N∑
i=1

θi = 1

Predictions. Since we are developing an optimistic caching algorithm, be also receive
predictions for the next request, which are encoded similarly to the requests,

θ̃t = {0, 1}N ,

N∑
i=1

θi = 1

Gradient. We denote the accumulated sum of all the requests until time t as

Θt =

t∑
i=1

θi

Cache hit. A cache hit occurs when the item requested at at a time step is present in
the caching state at that time. This results in a faster response.

Cache miss. A cache miss occurs when the item requested at a time step is not present
in the cache state. In this case, the item will be retrieved from the main library incurring a
latency cost.

Perturbation factor. The perturbation factor is a term used in the OFTPL algorithm
in [7] that increases with the error of the predictions. It is used in the OFTPL algorithm as
a way to add noise in case the predictions are not accurate.

ηt =
1.3√
C

(
1

ln (Ne/C)

) 1
4

√√√√t−1∑
τ=1

∥∥∥θτ − θ̃τ−1

∥∥∥2
1

3.2 Problem Statement
Predictions. There is a prediction oracle that, at each time step, is able to provide a
prediction of unknown accuracy of the next request. Using the predictions provided by the
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oracle we compute our utility function to determine the next caching state, before we receive
the request. Predictions are also encoded as 1-hot vectors θ̃t = {0, 1}N .

Benchmark. To be able to evaluate the performance of our caching policy, we need
to define what is the optimal caching policy. The optimal policy we choose is the "best-in-
hindsight" x⋆, which is chosen assuming access to all future requests. Thus, the "best-in-
hindsight" policy becomes the static policy which obtains the maximum number of cache
hits. A static policy is one such that it keeps the same cache state for every time step.

Regret. To evaluate our online learning policy, we use the static regret metric which
compares our policy to the hypothetical solution x⋆.

RT ({x}T ) = sup
{ft}T

t=1

{
T∑

t=1

ft(x
⋆)−

T∑
t=1

ft(xt)

}
.

Switching cost. To evaluate the incurred penalty of switching the cache, we use the
switching cost [14] as the accumulated sum of the cache state changes at every time step.
The factor D represents the weight of the switching cost and it can be adapted to the
scenario in which it is used.

ST ({x}T ) =
D

2

T∑
t=2

∥yt − yt−1∥1

Switching regret. To evaluate both the regret metric and the switching cost in the
same formula, we use the so-called switching regret [14] defined as the sum of the regret and
the switching cost.

SRT ({x}T ) = RT + ST

4 Limiting the switching cost in OFTPL
To fully understand how the switching cost grows in the OFTPL algorithm, we have eval-
uated the current state-of-the-art in [7] with different request patterns, and different pre-
dictors. These experiments will be shown and described in more detail in the next section.
However, the scenario which caused surprising results is the round-robin request pattern
coupled with a perfect predictor. While this scenario is very rare in real-world application,
even arguably impossible to achieve, it is a good example of the worst existing scenario that
can cause an extreme increase of the switching cost.

In the aforementioned scenario, due to the perfect predictions, the algorithm will set the
perturbation factor to 0, thus focusing solely on exploitation rather than exploration. In
this case, the caching state will be decided entirely by the past requests, and the prediction.
While this is a perfect scenario that achieves 100% cache hit rate, it can be observed in
Figure 2a, that the switching cost increases linearly with time. This is due to the fact that
the caching policy will always cache the next file, and remove a file from its cache.

With this observation we can deduce that there is a balance between the cache hits,
measured by the regret, and the switching cost. It also seems that we can control this
balance by adapting the perturbation factor. To be able to evaluate the balance between
the regret metric and the switching cost, we will also evaluate our algorithms against the
switching regret, defined previously. In the following subsections we will discuss 2 approaches
that should help control the balance between the regret and the switching cost.
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4.1 Bounding the perturbation factor

Algorithm 1 OFTPL with bounded perturbation factor

1: Input: Θ0 ← {0}N , L

2: Output: {yt ∈ X}T ▷ Discrete caching vector at each time step
3: γ ∼ N (0, 1N×1) ▷ Sample perturbation vector
4: for t = 1, 2, ... do
5: θ̃t ← prediction ▷ Receive prediction for next request

6: ηt ← 1.3√
C

(
1

ln (Ne/C)

) 1
4

√∑t−1
τ=1

∥∥∥θτ − θ̃τ−1

∥∥∥2
1

▷ Update perturbation

7: ηt ← max {L, ηt} ▷ Apply threshold

8: yt ← argmaxy∈X

〈
y,Θt−1 + θ̃t + ηtγ

〉
▷ Calculate caching vector

9: Θt ← Θt−1 + θt ▷ Receive the request and update gradient
10: end for

Given the observation that a perturbation factor equal to 0 will cause high switching
costs, the first approach tested was to limit the perturbation factor above a preset threshold,
noted by L. Thus, by imposing this threshold, the algorithm will never completely elimi-
nate the exploration factor. In this case, at every time step, the algorithm calculates the
perturbation factor in the same way as in [7], but after calculation, a minimum threshold
defined by the user is imposed. In this case, the choice for the caching state will introduce
noise, or perturbation, regardless of the accuracy of the predictor.

With the introduction of the threshold, a new challenge appears. What is the optimal
value for L that achieves the best switching regret? Through experiments that will be
further described in the next section, we observed that this variable is not a one-size-fits-
all. Different request patterns and predictor accuracies will require a different threshold to
achieve better results compared to having no threshold. Furthermore, we have observed that
in more common cases, when the predictor does not have 100% accuracy, the perturbation
factor does not go to 0 and increases with time, therefore the threshold does not affect the
outcome after some time horizon in these cases.

However, for the scenarios under test, we have identified that setting very high thresholds
will obtain very low switching regret. While this seems like a good result, the algorithm
is essentially not learning. Since the perturbation factor is so high, the cache state will
always be skewed to the random vector chosen at the beginning, therefore incurring very
low switching cost and performing badly in terms of cache hits. Setting the threshold to
lower values can achieve ≈ 55% decrease in switching regret, with a ≈ 66% decrease in
switching cost, while maintaining negative regret, as seen in Figure 2b.

With these results considered, we identified that the main issue with using a threshold
for the perturbation factor is the fact that it requires manual tuning to the request pattern,
the predictor accuracy, information that is not known in real-world applications, and of
course that it does not adapt over time. Considering these observations, we move on to the
second attempted approach.
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4.2 Switching cost informed perturbation factor
From the previous discussion, it has become apparent that the perturbation factor should
dynamically adapt to the scenario at hand. While it is already dynamically updated with
regards to the predictor’s accuracy, it does not optimize for the switching cost as well. Thus
to optimize the algorithm for the switching costs, we need to modify the update step of the
perturbation factor.

We observed that a low perturbation factor increases the switching cost, and a high
perturbation factor decreases it. Therefore, one option is to change this term so that it
increases proportionally to the switching cost. This choice is reasonable, since high switching
costs will lead to a higher perturbation factor, thus indirectly decreasing the weight of the
prediction in line 7 of Algorithm 2. To obtain this behavior for the perturbation factor,
we have included the accumulated switching cost under the root next to the accumulated
prediction errors, as in line 6 of the following algorithm.

Algorithm 2 OFTPL with switching cost informed perturbations

1: Input: S0 ← 0,Θ0 ← {0}N , D

2: Output: {yt ∈ X}T ▷ Discrete caching vector at each time step
3: γ ∼ N (0, 1N×1) ▷ Sample perturbation vector
4: for t = 1, 2, ... do
5: θ̃t ← prediction ▷ Receive prediction for next request

6: ηt =
1.3√
C

(
1

ln (Ne/C)

) 1
4

√∑t−1
τ=1

∥∥∥θτ − θ̃τ−1

∥∥∥2
1
+ St−1 ▷ Update perturbation

7: yt ← argmaxy∈X

〈
y,Θt−1 + θ̃t + ηtγ

〉
▷ Calculate caching vector

8: Θt ← Θt−1 + θt ▷ Receive the request and update gradient
9: St ← St−1 +

D
2 ∥yt − yt−1∥1 ▷ Update the accumulated switching cost

10: end for

The introduction of the switching cost under the root has been made heuristically. This
choice is reasonable considering that the perturbation factor contains the accumulated pre-
diction errors under the root as well. Therefore, this allows us to scale the perturbation
factor with both the predictor’s accuracy and the switching cost. We note that a theoretical
analysis is not in the scope of this paper, and is left as a suggestion for future work.

Besides the addition to the update step of the perturbation factor, the algorithm also
needs to keep track of the accumulated switching cost, its formula being described in the
previous section. This step requires an additional variable D, but in this case, this variable
does not need to be adapted. The parameter D dictates how expensive is the cost of switching
the cache. As exemplified in the introduction, a CDN server that keeps movies and websited
would have low cost for deleting and adding new items in the cache. Whereas, an online
store’s warehouse that acts as a cache for a neighbouring city has a much higher cost for
removing and adding new items, due to the costs of logistics. Therefore, this parameter
should be set according to the problem that the caching system aims to solve.

With the new perturbation factor, the algorithm is able to adapt to different request
patterns and predictors that cause varying switching cost, as opposed to the first approach
which required unavailable knowledge to choose the right value for the threshold.
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5 Experimental Setup and Results
In this section we will present the experiments ran on the approaches described previously.
We will compare to the OFTPL algorithm described in [7] with no modifications.

The algorithm and experiments have been implemented in Python 3.12 using a Jupyter
Notebook. The program was run in Visual Studio Code on a system running macOS 14.5
on an Apple M3 Pro chip.

For part of our data used for evaluation, we have synthetically generated requests accord-
ing to different patterns. For these request patterns, we have used a time horizon T = 10000,
a library size N = 1000 and a cache size C = 50.

The following request patterns have been generated:

• round-robin requests - At every time step the request contains a different file, sequen-
tially. More specifically, at time t, file tN will be requested.

• Zipf requests - Files are requested according to a Zipf 2 distribution, with parameter
a = 2.

• random requests - At every time step, the request contains a file drawn from a uniform
distribution. The experiments for this request pattern have been included in the
appendix and can be seen in Figure 5.

Besides synthetic data, we have also generated request traces from the MovieLens dataset
[15]. More specifically, the dataset "ml-latest-small" 3 has been chosen, having a total of
100.000 ratings. A request is generated from a timestamped movie rating and are sent to
the caching algorithm in order of their timestamp. For computational reasons, we have
used only the first 10.000 requests, therefore leading to a time horizon T = 10000. For this
dataset we identify 3218 unique movies that have been rated at least once, leading to setting
the library size N = 3218, and we set the cache size C = 50, around 1.5% of N .

Since we are constructing an optimistic caching algorithm, we also designed a predictor
that has different accuracies. For every request trace, we have used a synthetic predictor as
also used for the experiments in [7]. The predictions have a α probability of being correct,
namely, at each time step t, we generate a one-hot encoded vector θ̃t, which is identical to
the request θt with probability α, or with probability 1 − α we choose any file except the
requested one, and set it to 1.

5.1 Round-robin requests
The first experiment we will discuss involves evaluating the algorithms under a round-robin
request pattern and with a predictor of various accuracies. In Figure 2, we see the plots of the
key metrics we used to evaluate our algorithms. Here we can see how the 3 implementations:
the unmodified OFTPL from [7], the OFTPL with a limited threshold from subsection 4.1,
and the OFTPL with a switching cost informed perturbation factor from subsection 4.2.
In this experiment we observed the linearly growing switching cost in sub-figure 2d, which
was caused by a predictor with 100% accuracy, therefore leading to a perturbation factor
equal to 0. This experiment is what led us to the 2 approaches previously described. To
evaluate the proposed solutions, we set the threshold in the first approach to L = 5 for
all experiments, which was chosen by trial and error. For the second proposed solution we

2https://en.wikipedia.org/wiki/Zipf%27s_law
3https://grouplens.org/datasets/movielens/latest/
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(a) Predictor with accuracy 0.5 (b) Predictor with accuracy 0.75

(c) Predictor with accuracy 0.95 (d) Predictor with accuracy 1

Figure 2: Plots showing metrics of the OFTPL algorithm under round-robin requests and
using a predictor with various accuracies. In each sub-figure, 4 plots are shown: top-
left represents the regret metric, top-right represents the perturbation factor, bottom-left
represents the switching cost, and bottom-right, the switching regret.

chose D = 2, therefore giving a unit penalty, to ensure fairness between experiments. In this
experiment we saw the biggest improvements to the switching regret when the predictor’s
accuracy was set to 1, therefore achieving a 96% decrease with the first approach and a 91%
decrease with the second approach, and while the regret is closer to 0, it is still negative
while achieving very low switching costs. For the other preset accuracies of the predictor,
we see a similar trend with improvements ranging from 30% to 60% in switching regret.

Observation 1. An increase in the predictor’s accuracy will always lead to a lower
perturbation factor, which, depending on the request pattern, may lead to higher switching
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costs. At the same time, higher accuracies will lead to lower regret values.
Observation 2. Higher values for the perturbation factor will lead to lower switching

cost, but a higher regret metric. For the chosen threshold L = 5, which is a high value for
this specific scenario, Algorithm 1 achieves lower switching regret and switching cost then
Algorithm 2, but at the expense of regret.

5.2 Zipf requests

(a) Predictor with accuracy 0.5 (b) Predictor with accuracy 0.75

(c) Predictor with accuracy 0.95 (d) Predictor with accuracy 1

Figure 3: Plots showing metrics of the OFTPL algorithm under Zipf requests and using a
predictor with various accuracies.

The second experiment follows the same template as the first. Here we have evaluated
the three algorithms against the metrics already discussed while receiving requests that
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follow the Zipf distribution. Results can be found in Figure 3.
Observation 1. This distribution behaves completely different as the one from experi-

ment 1. Here we observe that the switching cost of the OFTPL algorithm converges to the
same value regardless of the predictor’s accuracy, whereas in experiment 1, the switching
cost increased with the accuracy of the predictor.

Observation 2. Due to the nature of a Zipf distribution, the algorithm does not incur
high switching costs, which causes both solutions to perform similar or worse than the normal
OFTPL algorithm in terms of switching regret. Because of the highly localized requests, the
perturbation factor introduces unwanted noise, leading to introducing higher switching costs
or cache misses. Therefore, we can observe that highly localized request patterns would not
benefit from the proposed solutions.

5.3 MovieLens dataset
For the third experiment we have used request traces drawn from a MovieLens dataset.
This process has been described in more detail in the introduction of this section. Figure 4
present the plots in the same manner as the other two experiments, by comparing the three
algorithms in the key metrics we have defined.

Observation 1. Real-world request traces lead to more evident performance benefits.
We observe that the two proposed solution achieve better switching regret, switching costs,
and a regret that is still withing bounds, for accuracies 0.5, 0.75, and 0.95. Here we observe
a decrease in switching regret of up to 50% for Algorithm 1, and up to 31% for Algorithm
2.

Observation 2. In this case we see again that Algorithm 1 performs better than
Algorithm 2, with the same well-chosen value for L = 5. However, while it performs better
in switching regret and switching costs, it incurs a higher regret, especially for a prediction
accuracy of 1, therefore pointing to a clear trade-off between the 2 methods.

6 Responsible Research
The ethical considerations of our research, as well as the reproducibility and transparency of
our methods and experiments should be discussed to ensure a responsible research process.
This requires a discussion on the data we have chosen and the experiments we have shown.

Throughout our research we have used either synthetically generated data, or publicly
available datasets which do not contain personally identifiable information. For the synthetic
data we have used, we have described the methods of generating it, ensuring reproducibility.
For the MovieLens dataset, we have mentioned the exact version of the dataset we have
chosen, how we generated the requests from the ratings data and how we selected the
requests to use.

To ensure transparency and reproducibility of our work, we have given pseudocode for
both of our proposed solutions and have described their inner workings in detail. In terms
of experiments, we have clearly and transparently shown all of our results in the form of
plots and formed an objective interpretation of the figures. The metrics we have chosen to
plot have been described mathematically in Section 3.
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(a) Predictor with accuracy 0.5 (b) Predictor with accuracy 0.75

(c) Predictor with accuracy 0.95 (d) Predictor with accuracy 1

Figure 4: Plots showing metrics of the OFTPL algorithm under requests generated from
the MovieLens dataset and using a predictor with various accuracies.

7 Conclusions and Future Work
In summary, the main research question we aimed to answer through this research was "What
strategy can be implemented to limit the switching cost?". In this project we focused on
developing an optimistic online learning algorithm for discrete caching that also considers
the switching cost as an optimization target. We have developed on the OFTPL algorithm
presented in [7] and proposed two solutions for limiting the switching cost incurred by this
caching policy. The first proposed solution involves bounding the perturbation factor by
a preset value, and the second solution updates the calculation of the perturbation factor
to take into account the accumulated switching cost alongside prediction errors. We have
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presented experiments for different request patterns and prediction accuracies in which we
compared the proposed solutions to the original algorithm. As a result of our experiment
we have identified that in the MovieLens dataset, the proposed solutions perform better
than the initial OFTPL algorithm in terms of switching cost and switching regret while still
maintaining the regret within the theoretical bounds. We have also identified a scenario
in which these two approaches, namely requests that follow a Zipf distribution. While
comparing the two solutions with each other, we have noticed that the more simple bounded
perturbation performed better in some cases than the switching cost informed perturbation.
This does come at the cost of an increased regret, therefore there is a clear trade-off to
be made between the 2 approaches. The significant disadvantage to the first approach
is that it requires setting an additional variable L. To choose the optimal value for this
variable requires knowledge of the scenario in which the algorithm is applied, information
that is possibly not known. However, it can be heuristically chosen, as we have done in our
experiments. In contrast, the second approach represents an online learning method as it is
able to adapt to different request patterns and prediction accuracies on the fly.

There are a number of possible improvements and suggestions for future research in this
topic. For the moment the variable D is fixed in time and represents the weight of the
switching cost. However, in real-world applications, the cost of switching the cache can
vary with time, for example, internet speeds can vary in a caching server for movies. On
the same topic, we have considered that every file/item has the same weight, or the same
cost of being removed or added to the cache. But, by using the same example, different
movies have different file sizes, therefore incurring a different cost to bring into the cache.
Furthermore, we have made the assumption that the cost of adding an item into the cache
is the same as removing one. This is not always true, as the time it takes to download
a file is often higher than the time it takes to remove one from the cache. Additionally,
the second approach we have proposed only uses the past caching states for calculating the
switching cost. However, as we use predictions for the next request, implementing optimism
in the calculation of this sum can also be further investigated. Finally, the solutions we
have proposed have been chosen heuristically and we have only verified their performance
experimentally. Thus, a theoretical analysis of these chosen solutions, and their performance
guarantees would represent a valuable addition to this research field.
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A Additional experiments

A.1 Uniformly random requests

(a) Predictor with accuracy 0.5 (b) Predictor with accuracy 0.75

(c) Predictor with accuracy 0.95 (d) Predictor with accuracy 1

Figure 5: Plots showing metrics of the OFTPL algorithm under uniformly random requests
and using a predictor with various accuracies. In each sub-figure, 4 plots are shown: top-
left represents the regret metric, top-right represents the perturbation factor, bottom-left
represents the switching cost, and bottom-right, the switching regret.
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