# Thin glass composite panel with 3D-printed core

Stella Brugman - 4630645

#### Content

- Introduction
- Literature study
  - Sandwich panels
  - (thin) glass
  - Additive manufacturing
  - Thermal insulation
  - Structural properties
- Prototype
- Preliminary design
- Design proposal
- Recommendations



Thin glass. Photo: SCHOTT

## Introduction









#### Context



The Glass House, designed by Philip Johnson. Photo: Michael Biondo

#### Objective



#### Objective

#### Objective

Panel needs to:

Meet current thermal insulation requirements

Be structurally safe

#### Main question

To what extent can a thin glass composite panel, with a polymeric 3D-printed trussed core, be improved to meet the thermal insulation and structural regulations of today, to be used as a façade element in the building industry?

#### Research framework



#### Research framework



## Literature study

#### Sandwich structures



Different patterns in sandwich structures. Wadly, 2006.

## (Thin) glass



Wurm, 2017



#### Additive manufacturing

3D-printing
Rapid prototyping



FDM/3D printing. Image: Industry week.

# Injection molding Mass production

#### Process schematic



Scheme of injection molding. Image from CES EduPack 2018.

### Façade criteria thermal insulation



Schematic visualisation of the function of the façade. Own image.



https://www.machinedesign.com/whats-difference-between/what-s-difference-between-conduction-convection-and-radiation

Heat transfer through conduction

- Glass (faces)
- PET (core)



Schematic section of panel. Own image.



Heat transfer through conduction, convection

- Glass
- Spacer
- Air cavity
- Air layers surface



Schematic section of panel. Own image.



Heat transfer through conduction, convection, radiation

- Glass
- Spacer
- Air cavity
- Air layers surface



Schematic section of panel. Own image.

#### Structural properties

#### Permanent load

- Self-weight of the panel
- Weight of other structural elements

#### Variable load

- Snow load
- Wind load
- Life load

The safety factor is 1,5.



Schematic visualisation of the function of the façade. Own image.

#### Sandwich structures

• Compression test









Failure modes aluminium sandwich panels with honeycomb core. Image by sun, Huo, Chen & Li, 2017.

#### Sandwich structures

$$P_{cr} = \frac{\pi^2 \cdot E \cdot I}{L^2}$$

$$I = \frac{1}{12}bt^3$$



Effective length of column.



Buckling of a sandwich panel. Own image.



























#### Panel bonding





# Preliminary design

#### Composite panel



3D exploded view of the panel. Own image.

# Composite panel



Overview of test specimen. Own image.

- PET
- Glass
- Air
- Sunlight radiation



Schematic section of panel. Own image.



| Panel type              | Reference  | Reference  | Standard   | Standard    | Standard          | Dense      | Dense       | Dense             |
|-------------------------|------------|------------|------------|-------------|-------------------|------------|-------------|-------------------|
| Characteristic          | Air filled | PET filled | Optimistic | Pessimistic | Thermal<br>bridge | optimistic | pessimistic | Thermal<br>bridge |
| U [W/m <sup>2</sup> /K] | 2,6        | 3,4        | 2,77       | 2,82        | 2,66              | 2,79       | 2,85        | 2,67              |



| Panel type     | Reference  | Reference  | Standard   | Standard    | Standard          |
|----------------|------------|------------|------------|-------------|-------------------|
| Characteristic | Air filled | PET filled | Optimistic | Pessimistic | Thermal<br>bridge |
| U [W/m²/K]     | 1,90       | 3,00       | 2,19       | 2,22        | 2,040             |



| Panel type | Standard | Standard | Standard |
|------------|----------|----------|----------|
| U [W/m²/K] | 2,82     | 3,1      | 1,90     |









|                | Standard | Dense | Double |
|----------------|----------|-------|--------|
| Optimistic     | 2,77     | 2,79  | 2,19   |
| Pessimistic    | 2,82     | 2,85  | 2,22   |
| Thermal bridge | 2,66     | 2,67  | 2,04   |
| Trisco         | 2,82     | 3,10  | 1,90   |
| Test 1         | 2,37     | 2,39  | 1,90   |
| Test 2         | 2,36     | 2,39  | 1,89   |

# Structural properties



# Structural properties









Maximum deformation. Own image.

# Structural properties



# Composite panel



#### Answer main question

To what extent can a thin glass composite panel, with a polymeric 3D-printed trussed core, be improved to meet the thermal insulation and structural regulations of today, to be used as a façade element in the building industry?

- Decrease radiation and conduction
- Add more layers

| Improvement | Thin glass    | Normal       |
|-------------|---------------|--------------|
|             | $U [W/m^2/K]$ | $U[W/m^2/K]$ |
| Start point | 2,66          | 2,58         |



| Improvement                                | Thin glass | Normal        |
|--------------------------------------------|------------|---------------|
|                                            | U [W/m²/K] | $U [W/m^2/K]$ |
| Start point                                | 2,66       | 2,58          |
| Decrease radiation ( $\varepsilon = 0.2$ ) | 2,08       | 1,91          |



| Improvement                                 | Thin glass U [W/m²/K] | Normal<br>U [W/m²/K] |
|---------------------------------------------|-----------------------|----------------------|
|                                             |                       |                      |
| Start point                                 | 2,66                  | 2,58                 |
| Decrease radiation ( $\varepsilon = 0,2$ )  | 2,07                  | 1,91                 |
| Krypton ( $\lambda = 0.009 \text{ W/m/K}$ ) | 1,75                  | 1,54                 |



| Improvement                                 | Thin glass    | Normal                  |
|---------------------------------------------|---------------|-------------------------|
|                                             | $U [W/m^2/K]$ | U [W/m <sup>2</sup> /K] |
| Start point                                 | 2,66          | 2,58                    |
| Decrease radiation ( $\varepsilon = 0.2$ )  | 2,07          | 1,91                    |
| Krypton ( $\lambda = 0.009 \text{ W/m/K}$ ) | 1,75          | 1,54                    |
| Woodfill ( $\lambda = 0.13 \text{ W/m/K}$ ) | 1,69          |                         |



| Improvement                                 | Thin glass U [W/m²/K] | Normal<br>U [W/m²/K] |
|---------------------------------------------|-----------------------|----------------------|
| Start point                                 | 2,66                  | 2,58                 |
| Decrease radiation ( $\varepsilon = 0.2$ )  | 2,07                  | 1,91                 |
| Krypton ( $\lambda = 0.009 \text{ W/m/K}$ ) | 1,75                  | 1,54                 |
| Woodfill ( $\lambda = 0.13 \text{ W/m/K}$ ) | 1,69                  |                      |
| Wider grit (10%)                            | 1,64                  |                      |



| Improvement                                 | Thin glass<br>U [W/m²/K] | Normal<br>U [W/m²/K] |
|---------------------------------------------|--------------------------|----------------------|
| Start point                                 | 2,66                     | 2,58                 |
| Decrease radiation ( $\epsilon = 0.2$ )     | 2,07                     | 1,91                 |
| Krypton ( $\lambda = 0.009 \text{ W/m/K}$ ) | 1,75                     | 1,54                 |
| Woodfill ( $\lambda = 0.13 \text{ W/m/K}$ ) | 1,69                     |                      |
| Wider grit (10%)                            | 1,64                     |                      |
| Add one layer                               | 1,04                     | 0,96                 |



| Improvement                                 | Thin glass U [W/m²/K] | Normal<br>U [W/m²/K] |
|---------------------------------------------|-----------------------|----------------------|
| Start point                                 | 2,66                  | 2,58                 |
| Decrease radiation ( $\varepsilon = 0.2$ )  | 2,07                  | 1,91                 |
| Krypton ( $\lambda = 0.009 \text{ W/m/K}$ ) | 1,75                  | 1,54                 |
| Woodfill ( $\lambda = 0.13 \text{ W/m/K}$ ) | 1,69                  |                      |
| Wider grit (10%)                            | 1,64                  |                      |
| Add one layer                               | 1,04                  | 0,96                 |
| Add two layers                              | 0,76                  | 0,70                 |



No coating due to glue (only Krypton in cavity)

$$U = 2,53 \text{ W/m}^2/\text{K}$$



$$U = 1.88 \text{ W/m}^2/\text{K}$$



$$U = 1,50 \text{ W/m}^2/\text{K}$$



- Decrease delamination
- Decrease deformation
- Increase thickness of cross section

#### 1. Start point



#### 2. Extra beams



1. Start point



2. Extra beams



3. Change core material



1. Start point



2. Extra beams



3. Change core material



4. Add 1 layer max strength is tripled



4. Add 1 layer max strength is tripled



#### Answer main question

To what extent can a thin glass composite panel, with a polymeric 3D-printed trussed core, be improved to meet the thermal insulation and structural regulations of today, to be used as a façade element in the building industry?

#### Answer main question

To what extent can a thin glass composite panel, with a polymeric 3D-printed trussed core, be improved to meet the thermal insulation and structural regulations of today, to be used as a façade element in the building industry?



Thermal insulation:

no core

Small panels

Big sheet: extra beams

Lower thermal insulation











3x 0,5 mm glass + core =

 $18 \text{ kN/m}^2$ 



3x 4 mm glass =

 $29 \text{ kN/m}^2$ 

Dimensions: 3,2 x 1,245 m





Dimensions 250 x 150 mm. Own image.



Full scale panel, 3,2 x 1,245 m. Own image.

#### **Details**



71 / 76

#### **Details**



72 / 76

#### Recommendations

- Different pattern for:
  - Improvement 3D-printing
- Tests with other core materials (woodfill or corkfill) and coatings for better thermal insulation
- Design and test spacer at edge of panel for gas
- Other bonding methods (lamination -> different core material)
- Leave out the glue/ change geometry of panel





# (Thin) glass

Float glass

