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Abstract
Probabilistic numerics methods are a novel approach to quantifying the approximation errors

in numerical computations as probabilistic uncertainties. A recent method that was developed is
the Bayesian Finite Element Method, which aims to determine the discretization errors along a
coarse mesh probabilistically. This work analyzes the use of priors in this method. It is shown that
the priors in the right-hand side or forcing term of the partial differential equation are superior to
applying them directly in the solution. It is demonstrated that the maximum log-likelihood is not
an appropriate estimator of hyperparameters, and as solutions, hyperparameters are optimized
using objective functions to capture the discretization error with the posterior deviation. The
advantages of non-stationary priors are studied in order to have standard deviations that show the
error along the mesh. Additionally, this work examines how the optimal hyperparameters change
for mesh refinements and different arrangements of elements in the same problem. Finally, the
research delves into determining the approximate number of samples necessary for ensembling
covariance matrices and obtaining similar results.
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3 Jû values for optimized priors of Jσ̂ of Table (1) . . . . . . . . . . . . . . . . . . . . . . 33
4 Optimized α0 of prior covariance unit mass matrix for different meshes and refine-

ments of the 2D beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5 Minimal Jσ̂ of prior covariance unit mass matrix for different meshes and refinements

of the 2D beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6 Optimized α0 of prior covariance unit mass matrix for different meshes and refine-

ments of the 2D beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7 Optimized α1 of prior covariance unit mass matrix for different meshes and refine-

ments of the 2D beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8 Minimal Jσ̂ of non-stationary prior covariance unit mass matrix for different meshes

and refinements of 2D beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vi



NOMENCLATURE NOMENCLATURE

Nomenclature
δ(x− x′) Dirac function

L Likelihood function

∆ Vector of discretization errors

D Domain

Γ Boundary of the domain
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1 INTRODUCTION

1
Introduction

1.1 Literature review
Mathematical modeling and computer simulation are suitable for civil and industrial applica-

tions. For instance, car crashes, fluid movement in petroleum reservoirs, and high-velocity airflow
around space shuttles. Often, physical problems are idealized and represented with ordinary dif-
ferential equations (ODEs) or partial differential equations (PDEs). Most of these equations do
not have an analytical solution. Therefore, numerical analysis techniques have been developed to
find approximate solutions for the equations that govern each problem. One of the most common
is the finite element method (FEM). In this method, the weak form of the PDE is derived from
the strong form, after which the domain is discretized into a mesh of finite elements. This re-
duces the infinite-dimensional problem into a finite-dimensional one. In the beginning, FEM was
mainly used for linear solid mechanics. Nowadays, it is used for much more complex problems, for
example, nonlinear geometrical and material analyses, multi-physics, and multiscale modeling.

The previously mentioned problems are known as forward problems because the input of the
model and the parameters are known and a result or output is obtained. In contrast, inverse
problems involve finding the parameters of the problem when the input and output are known.
FEM is also used in inverse problems, which involve adjusting the parameters of the FEM to
make the simulated results match the observed data. An example of an inverse problem in civil
engineering where FEM is used is the pile integrity test (PIT) [1]. This method is popular as a quality
check because of the possibility of finding cracks, soil inclusion, bulking, or stretching along the
pile. To perform the test, the pile is hammered at the top (input), and the acceleration (output) is
measured close to the hammered area. A 1D wave equation can be solved using FEM to obtain the
expected solution of the top acceleration as a function of the hammered force and the assumed
parameters, soil properties, pile area, and length. By comparing the expected acceleration on
the top and with the measured, an engineer can easily detect the discontinuities due to the wave
reflection on the discontinuity position. One approach to tackle this inverse problem involves
utilizing FEM to approximate the solution of the PDE. The goal is to minimize the discrepancy
between the measured signal and the numerical solution by optimizing the problem parameters.
For instance, parameters like the area and length of a potential anomaly at a specific point in
the pile need to be optimized. However, obtaining these optimal parameters requires significant
computational effort since each solution involves solving a wave equation.

Even with the improvement of computers, solving some of the aforementioned forward and in-
verse problems can still take weeks or even months due to the large number of equations involved.
To cope with this adversity, one solution is to use a coarse mesh to reduce the number of elements
and thus the number of equations. Nevertheless, this solution may not be adequate since it leads
to a loss of accuracy in the solution due to the increase of discretization errors compared with a

1



1.1 Literature review 1 INTRODUCTION

fine mesh. Furthermore, discretization error can be a significant source of uncertainty in inverse
Bayesian problems, as it can affect the accuracy and reliability of the forward model used to gener-
ate synthetic or simulated data. By obtaining a probabilistic discretization error along the mesh,
it is possible to account for this source of uncertainty and include it in the overall uncertainty
quantification for the inverse problem.

Several studies have been done to properly estimate the discretization errors in FEM. Based
on the regularity of the exact solution, the polynomial order of interpolation, and the size of the
mesh, an a priori estimate was developed to calculate the asymptotic rate of convergence [2].
This approach is not practical in real-world scenarios since the exact solution is typically known
only in academic examples. In contrast, an a posteriori error estimate in the energy norm was
elaborated [3]. In this method an approximation of the potential energy is estimated with the
use of a sequence of mesh refinements; then the error can be calculated in the energy norm
by comparing the potential energy of the mesh with the estimated one. These procedures have
proved their utility in simple problems and have been extended to adaptive meshes [4]. However,
they just calculate the global error without being able to show how the error is distributed along
the domain. To address this limitation, many estimators have been developed. One example is the
work by Zienkiewicz and Zhu, who developed an estimator that compares the gradients calculated
by the FEM model with recovered gradients [5, 6]. These error estimators do not account for
the uncertainty of the data and parameters, and they do not allow the incorporation of prior
information or perform sensitivity analysis of the error.

Recently, a new numerical formulation has been developed in which the error is treated as a
source of uncertainty, giving birth to probabilistic numerics methods (PNMs) [7]. In these methods
the data can be treated stochastically and sensitivity analysis of the uncertainty can be performed.
There are many examples where numerical analysis is combined with probability theory. For in-
stance, O’Hagan created a Bayesian quadrature [8]. Instead of using low-order polynomials to
approximate the function to integrate, as in the Newton-Cotes method, or using orthogonal Leg-
endre polynomials, as Gaussian quadrature does, O’Hagan applied a Bayesian inference with a
prior Gaussian process to approximate the function. Each integration point is seen as an obser-
vation used to improve the posterior that is integrated. Another example of a PNM is the work
by Cockayne et al. [9]. In numerical analysis, solving large systems of equations using iterative
solvers is a common task. Cockayne et al. developed a Bayesian conjugate gradient that obtains
a probabilistic estimate of the solution, showing the error as an uncertainty.

Cockayne et al. [10] proposed a clear distinction between two setups of PNMs and Bayesian
PNMs. In the first one numerical computations include sources of uncertainty in the ODEs or
PDEs, and the problems are solved without using observed data. As a result, instead of obtaining
one result as in a traditional numerical computation, a distribution of the solution is obtained. In
the second one, observed data or evidence are included to improve the knowledge of the solution
distribution. In this thesis, both sets of problems will be referred to as PNMs, whether or not they
include evidence or observations to obtain a final solution.

Until now PNMs methods have been developed to solve different problems such as linear alge-
bra, global and local optimization, numerical integration, and ODEs and PDEs [11]. In the case
of the solutions for ODEs and PDEs, there have been different approaches developed [12–17].
The works [12–14] can be categorized as collocation problems. Chkrebtii et al. [12] applied the
randomness in the ODE itself rather than in the solver. In this formalism, the solution and the
derivatives that are involved in the ODE are assumed uncertain with a statistical distribution and
update in each step of the process based on the previous values. Wang et al. [13] generalized the
work of Chkrebtii for non-linear PDEs by locally linearizing the differential operations. Cockayne
et al. [14] used a Bayesian approach to evaluate governing equations at finite locations of inter-
est in a domain, which means that the PDE is strongly evaluated. In contrast to these methods,
Conrad et al. [15] worked on randomized solutions of ODEs with Euler and Runge–Kutta meth-
ods, altering the numerical solution with a Gaussian noise that varies according to the size of the
discretization.

In the context of FEM, Girolami et al. [16] developed a technique called statFEM, which treats
the PDE as a stochastic problem by considering the diffusion coefficient and the forcing term as
random sources modeled as a Gaussian process. Due to the linearity of the integro-differential
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1.2 Knowledge gap 1 INTRODUCTION

operator in the PDE, the solution also follows a Gaussian process. By discretizing the domain
of the SPDE into finite elements, a system of equations can be obtained, and the solution is
represented as a multivariate Gaussian distribution with a mean vector and a covariance matrix.
This process serves as the prior solution in the Bayesian inference framework, where the available
observed data is used to obtain a posterior solution. One of the major drawbacks when using
FEM to solve SPDEs is that it requires the inversion of stiffness matrices. In cases where the
dimensionality of the problem is high, the computational cost can be prohibitive. Akyildiz et
al. [17] use the unadjusted Langevin algorithm to obtain sample solutions of statFEM, without
inverting the typical FEM stiffness matrices. This leads to a sampler that can be used to solve the
problem of integrating over the uncertainties, and also call forward the problem of uncertainty
quantification.

Recently, Poot et al. [18] developed a Bayesian finite element method (BFEM) to find a proba-
bilistic distribution of the discretization errors along a mesh. In BFEM, a Petrov-Galerking scheme
is applied [19], where the space of test functions is a subspace of the trial functions space, which
leads to an underconstrained problem with an infinite set of solutions. The underconstrained
system can be regularized by assuming a prior distribution over the solution or forcing the term
of the SPDE. This prior should take into account the boundary conditions imposed on the sys-
tem. The test function belongs to a space with a mesh fine enough to assume that the solution
is approximately the true solution, while the test or weight function belongs to a fine mesh on
which we want to obtain the discretization error. Within a Bayesian framework, the posterior dis-
tribution is derived after updating the prior distribution with the forcing term of the coarse mesh
solution used as observational data. The posterior mean obtained should represent the solution
in a fine mesh, and the deviation should represent the error due to discretization along the mesh.
This method has shown suitable results for smooth problems with simple geometries, where the
standard deviation of the solution qualitatively shows the discretization error.

1.2 Knowledge gap
The prior utilized in the work of Poot et al. [18] is found by assuming a random white noise

source on the right-hand side (RHS) term of the PDE and integrating it after discretizing the do-
main. The same methodology is used by Owhadi [20], who developed a Bayesian framework to
obtain the basis functions of a numerical homogenization problem. The difference between both
approaches is that in Owhadi’s work, the domain is not discretized, being a collocation problem.
Poot et al. obtain a unit mass matrix as a prior covariance matrix after discretizing and integrat-
ing the random forcing term. Moreover, Roininen et al. [21] used a similar technique to obtain
numerical approximations of Whittle-Matérn priors using finite-difference for structured meshes
and FEM for unstructured meshes, reducing the computations needed to solve a large inverse
problem since the covariance matrices become sparse. Lastly, Nguyen et. al [22] weakly treats
the PDE and the knowledge of the physical system is improved by finding a distribution over the
functionals. By this weak treatment of the PDE Nguyen et. al end up obtaining priors that are a
combination of unit mass and unit stiffness matrices. In BFEM, no comparison has yet been made
between priors in the left-hand side (LHS) or solution and the RHS or forcing term demonstrating
the advantages of using the RHS.

The analytical derivation to obtain the hyperparameter of the white noise prior in Poot et al.
work is done by using the maximum likelihood estimator (MLE). Simultaneously, they suggested
treating Dirichlet and Neumann boundary conditions as random variables rather than determin-
istic values, thus enriching the prior distribution with noise. Nonetheless, it has not been shown
if the posterior deviation obtained is quantitatively representative of the discretization error and if
the MLE is a suitable estimate to find the optimal hyperparameter. In this thesis, we will demon-
strate that the MLE does not provide representative results and that the white noise prior can be
improved instead of adding noise by proposing non-stationarity functions.

Due to the significant computational cost associated with calculating prior and posterior co-
variances, Poot et al. utilized a Kalman ensemble [23,24] to approximate these matrices through
sampling. Furthermore, the required number of samples to accurately capture the posterior dis-
tribution in BFEM has not been investigated. Lastly, the impact of different mesh configurations
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on the ability of posterior deviations that represent discretization error has not been tested.

1.3 Thesis objectives and research questions
The main objective of this work is to study how covariance matrices and their hyperparameters

influence BFEM to show discretization errors with posterior deviations. Therefore, the analyses
conducted are focused on the prior matrices, hyperparameter estimation, the sensitivity of hy-
perparameters to modifications in the mesh, and how posterior deviation changes when the prior
covariance matrix is an ensemble with samples. For each topic the research questions are:

• Optimal hyperparameters and error representation:

– Is the maximum log-likelihood estimator a suitable way to obtain the optimal value of the
hyperparameters to demonstrate the error as a source of uncertainty along the mesh?

– What is the best approach to compare different kernel or covariance matrix priors quan-
titatively and qualitatively, to represent the error along the mesh effectively?

• Priors covariances:

– Is placing a prior on the right-hand side or forcing term considered better than one on
the solution or left-hand side?

– Can the use of non-stationary covariance functions improve the distributions obtained
by BFEM, particularly to show the discretization error?

• Mesh impact:

– Do the optimal hyperparameters change between mesh refinements?
– Does something similar happen if the arrangement of the mesh elements is also modi-

fied?

• Impact of the number of samples in ensemble covariance matrices:

– In the case of using sampling to assemble covariance matrices, what is the range of
samples that is necessary to obtain distributions showing an error similar to the one
obtained by the matrix without sampling?

1.4 Structure of the thesis
The structure of the thesis is as follows, Chapter 2 will review the mathematical theory needed

to understand the BFEM, the method itself, and the mathematical tools used during the thesis.
Chapter 3 shows what are the common choices of prior, the differences between placing uncer-
tainty directly in the solution or in the forcing term, whether the MLE is a good estimator, and how
to compare different priors. In Chapter 4 a comparison between stationary and non-stationary
priors is developed, in Chapter 5 we study how the results are modified with different mesh re-
finements, different element arrangements, and sampling. Finally, in Chapter 6 the conclusions
of the work are made and directions for future work are discussed to answer new questions that
arose throughout the thesis.

4



2 THEORY

2
Theory

2.1 Gaussian Processes
Stochastic processes are used to represent systems that evolve randomly in time or space.

Moreover, a stochastic process can be understood as a random distribution over functions. In
particular, we are interested in Gaussian processes (GPs), which can be thought of as a gen-
eralization of the Gaussian probability density distribution [25]. A random variable is a scalar
distribution, or in the case of a multivariate distribution, a vector. In contrast, the process is a
distribution over a function. A function is represented by a mean function m(x) and its covariance
function k(x, x′).

f(x) ∼ GP(m(x), k(x, x′)) (1)
Since a property of GPs is that any finite selection of points follows a multivariate normal dis-

tribution and there are an infinite number of locations to analyze in the process, a finite number
of values are selected to represent the domain, denoted as X. This transforms the problem into
a multivariate Gaussian distribution, where each point in X represents a variable with a corre-
sponding mean and covariance.

f(X) ∼ N (µ(X),Σ(X,X)) (2)
To obtain samples of a GP, the same method for any multivariate Gaussian is used. Firstly, a

sample is obtained from a normal distribution with a mean vector of zero and an identity matrix
as the covariance matrix. This can be expressed as

z ∼ N (0, I) (3)
Secondly, the z vector is transformed into the vector f̄ by using the Cholesky decomposition of
the covariance matrix Σ, which can be expressed as:

f̄ = Lz +m (4)

Here, L is the lower triangular matrix obtained from the Cholesky decomposition of Σ, and m is
the mean vector of the prior distribution.

An example of what a covariance matrix based on the square exponential kernel of Eq. (5)
looks like is shown in Fig. 1a. To obtain this matrix, a vector X was generated with 64 equally
spaced positions between [−4, 4].

k(x, x′) = σ2e−
(x−x′)2

2l2 (5)
In addition, a polynomial mean function, the deviation, and three samples are plotted in Fig. (1b).
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Figure 1: (a) Example of square exponential covariance matrix with σ = 3 and l = 10. (b) Example
of a stationary Gaussian process with µ(x) = x2 −x3 +3, exponential covariance matrix with σ = 3
and l = 10, and domain [−4, 4].

2.2 Kernel properties
A kernel function is called stationary as long as the relationship between the points x and

x′ depends only on their distance and not on a given position. This means that the difference
between the positions of the points can be substituted by a variable that denotes the distance.
For example, in eq. (5), the difference between the positions can be substituted by d = x − x′.
Then, the square exponential kernel function will look like

k(d) = σ2e−
d2

2l2 (6)

In many cases, the stationary property is problematic because it is not able to show amplitude or
length scale variations along the problem domain. In these cases, it is more useful to use non-
stationary kernel functions. An example of this is the polynomial kernel function, which increases
as the position moves away from x = 0:

k(x, x′) = (σ2 + xx′)p (7)

If the covariance matrix in Fig. (1a) is compared with the covariance matrix in Fig. (2a), it can be
observed that the former has no variation along the diagonal. In contrast, the values of the latter
matrix change along the diagonal. Moreover, if the process shown in Fig. (1b) is repeated with
the kernel function changed to a polynomial function, it is possible to notice how the variation
increases at the extremes when moving away from x = 0, as shown in Fig. (2b).

If the kernel has more than one dimension, then it will be isotropic if the level of correlation is
the same in each direction.

k(x, x′, y, y′) = σ2e
− (x−x′)2

2l21 e
− (y−y′)2

2l22 (8)

In contrast, it is called anisotropic if its behavior changes depending on the direction. For ex-
ample, Equation (8) is an anisotropic kernel because it has different length scales in each direction
(l1 ̸= l2).

Based on input points x ∈ S, the kernels are evaluated to form a covariance matrix that has a
symmetric and positive semi-definite form, meaning that k(x,x′) = k(x′,x) and

∑N
i

∑N
j aiajk(xi, x

′
j) ≥

0 ∀ N,x ∈ S,a ∈ IRN [26].
A GP can be subjected to integro-differential operators, allowing predictions of its deriva-

tives. To do this, kernels have to be subjected to the linear operators twice if it has two inputs
LxLx′ [k(x,x′)].
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Figure 2: (a) Example of polynomial covariance matrix with σ = 1 and p = 2. (b) Example of a
non-stationary Gaussian process µ(x) = x2 − x3 + 3 and polynomial covariance matrix with σ = 1,
p = 2, and domain [−4, 4].

2.3 Maximum log-likelihood estimator
The likelihood is a function that measures how probable a given data is to correspond to cer-

tain parameters. Therefore, the maximum likelihood will have the best parameters to make the
distribution fit the data and is computed by multiplying the probability density function (PDF)
across the data points. This approach assumes that the values used in the likelihood function
are independent of each other. The likelihood function can be expressed as:

L(X|θ) =
n∏

i=1

p(Xi,θ) (9)

Where Xi represents the observed data, θ is the parameter vector, and p(Xi,θ) is the probability
density function. Maximizing the log-likelihood is often preferred over maximizing the likelihood
directly because it is simpler, and the obtained values are analogous. The Log-likelihood is

ln (L(X|θ)) =
n∑

i=1

ln(p(Xi,θ)) (10)

and the partial derivatives are

∂(ln (L(X|θ)))
∂θk

=

n∑
i=1

∂ ln(p(Xi,θ))

∂θk
(11)

In certain cases, the MLE can be found analytically by setting the partial derivatives of the log-
likelihood function to zero, resulting in a system of equations to be solved. However, not all prob-
lems have straightforward analytical solutions. In such instances, is necessary to use mathemat-
ical optimization methods. These numerical techniques efficiently search for the maximum of the
log-likelihood function by iteratively updating the parameter values until convergence is achieved.

An essential consideration is the convexity of the log-likelihood function. If the log-likelihood
function is convex, it has a single global maximum, simplifying the optimization process. Stan-
dard optimization algorithms can efficiently find this global maximum. Nonetheless, if the log-
likelihood function is not convex and exhibits multiple local maxima or points of inflection, finding
the global maximum becomes more challenging.

2.4 Linear and Gaussian processes regression
A linear regression model is introduced, with the linear regression defined as:

y = αTX + ε (12)

7
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where X is the input vector, y is the observed target value, α is the weights vector, and ε is the
additive noise, which can be assumed with a Gaussian distribution:

ε ∼ N
(
0, σ2

)
(13)

With n as the number of observed data points (yi,Xi) the objective is to find the optimal values
of α that minimize the error function, usually measured using the mean square error (MSE):

MSE =
1

n

n∑
i=1

(yi −αTXi)
2 (14)

The minimum MSE can be obtained by using an analytical ordinary least squares solution or
numerical optimization algorithms such as gradient descent.

Another approach is the Bayesian formulation of linear regression, which allows us to assume
a distribution for the weights and take into account any prior information we may have. For
instance, it is common to assume a Gaussian distribution for the weights:

α ∼ N (0,Σp) (15)

This prior distribution of the weights can be updated by using the Bayes’ rule:

p(α|y) = p(y|α)p(α)∫
p(y|α)p(α)dα

(16)

The probability density distribution p(α) is the prior belief of the parameters, and the likelihood
of the parameters is defined as p(y|α) and the evidence or marginal likelihood is

∫
p(y|α)p(α)dα.

Unlike parametric models that assume a specific functional form with a fixed number of pa-
rameters, GPs learn the form by fitting to the data, which makes them more flexible than linear
or polynomial regressions [27].

To make a GP regression function evaluated on the vector of points X2 based on the observed
points (X1,y1), we can assume a prior mean vector µ(X) = 0 and a prior covariance matrix
Σ(X,X). Then, the problem can be expressed as a multivariate Gaussian:(

y1

y2

)
∼ N

((
0
0

)
,

(
Σ(X1,X1) Σ(X1,X2)
Σ(X2,X1) Σ(X2,X2)

))
(17)

A conditional distribution of y2 given y1 and the observed inputs X1 and X2 can be expressed as:

p(y2|y1,X1,X2) = N
(
µ2|1,Σ2|1

)
(18)

where the posterior mean and posterior covariance are obtained as:

µ2|1 = Σ(X2,X1)Σ(X1,X1)
−1y1 (19)

Σ2|1 = Σ(X2,X2)−Σ(X2,X1)Σ(X1,X1)
−1Σ(X1,X2) (20)

To clarify these concepts an example will be provided. Fig. (3a) shows a prior f(x) with zero
mean and a square exponential kernel. Moreover, this estimation is improved in Fig. (3b) by
obtaining the posterior estimate based on 3 points that are known from f(x). As can be seen, the
posterior mean passes through the 3 points where the data are known and the deviation is zero.
This deviation changes away from the known data.
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Figure 3: (a) Example of prior samples with µ(x) = 0 and exponential covariance matrix with
σ = 3 and l = 0.5, and domain [−4, 4]. (b) Posterior example where the real function is f(x) and is
estimated with a posterior mean µ2|1 and posterior covariance Σ2|1.

2.5 Standard finite element method
The finite element method (FEM) is a numerical tool used to approximate the solution of con-

tinuous problems. Although the method can be used for all kinds of PDEs, the derivation of the
method will be illustrated with a 1D boundary value problem as shown in Fig. (4), where the
function to obtain is u = u(x) in the one-dimensional domain D = [0, L]:

− d

dx

(
EA

du

dx

)
+ ku = f ∀ x ∈ D (21)

where EA = EA(x), k = k(x), and f = f(x) are parameters of the problem.

Figure 4: Example general 1D bar with distributed load.

2.5.1 Weak form

To set up the weak (or weighted-integral) formulation of any PDE, we have to multiply both
sides by the test or weight function v(x) = v and integrate over the domain D. This way, we will
obtain a solution that satisfies the equilibrium on average.∫ L

0

v

(
− d

dx

(
EA

du

dx

)
+ ku

)
dx =

∫ L

0

vfdx ∀ v ∈ V (22)
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Now we do the integration by parts:∫ L

0

dv

dx
EA

du

dx
dx+

∫ L

0

vku dx =

∫ L

0

vfdx+ vEA
du

dx

∣∣∣∣L
0︸ ︷︷ ︸

Neumann BCs

∀ v ∈ V (23)

In the weak formulation, the solution is more flexible and does not require a second derivative.
This relaxed requirement leads to a trial function, which approximates the solution. Unlike the
strong formulation, the weak formulation does not guarantee an exact solution, hence the term
"trial solution". Overall, the weak formulation allows for broader function considerations and
approximate solutions to differential equations.

2.5.2 Bubnov-Galerkin formulation

The solution of the Eq. (23) exists in the infinite-dimensional space U . Therefore, it is imprac-
tical to search for solutions in this way. To solve this the domain D is partitioned in a number of
subdomains or finite elements Dh ⊆ D. When relaxing the requirement for an infinite-dimensional
space, it is sufficient for the functions to be continuous at the interfaces between elements, with-
out requiring continuity of their derivatives in the interfaces.∫ L

0

dvh

dx
EA

duh

dx
dx

∫ L

0

vhkuh dx =

∫ L

0

vhf dx+ vhEA
duh

dx

∣∣∣∣L
0

∀ vh ∈ Vh (24)

In the Bubnov-Galerkin formulation, the trial and weight functions are assumed to belong to
the same finite-dimensional space. Then Uh = Vh

uh =

n∑
i=1

uiNi(x), uh ∈ Uh,

vh =

n∑
j=1

vjNj(x), vh ∈ Vh

(25)

Where u and v are vectors with the coefficients that act as amplitudes in each degree of freedom
(DOF ) and N is a vector with the shape functions. After replacing (25) in (24) we obtain

∫ L

0

n∑
j=1

vj
dNj

dx
EA

n∑
i=1

ui
dNi

dx
dx+

∫ L

0

n∑
j=1

vjNjk
n∑

i=1

uiNi dx =

∫ L

0

n∑
j=1

vjNjf dx+

n∑
j=1

vjNjEA
du

dx

∣∣∣∣L
0

∀ vh ∈ Vh

(26)
Since u and v are coefficients they can be taken out of the integrals

n∑
j=1

vj

(
n∑

i=1

ui

∫ L

0

dNj

dx
EA

dNi

dx
+NjkNi dx

)
=

n∑
j=1

vj

(∫ L

0

Njf dx+NjEA
da

dx

∣∣∣∣L
0

)
∀ vh ∈ Vh (27)

This relationship has to be fulfilled for each vj this term can be canceled out

n∑
i=1

∫ L

0

dNj

dx
EA

dNi

dx
+NjkNi dx︸ ︷︷ ︸

Kij

ui =

∫ L

0

Njf dx+NjEA
du

dx

∣∣∣∣L
0︸ ︷︷ ︸

fj

∀ vh ∈ Vh (28)

the system of equations is
Ku = f (29)
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2.5.3 Boundary conditions

All elliptic differential equations have boundary conditions that can belong to the solution field
or to the derivative of the solution, also called Dirichlet and Neumann boundary conditions. The
stiffness matrix represents a semi-definite matrix since it has zero eigenvalues, which physically
corresponds to rigid translations. After applying the Dirichlet boundary conditions, the stiffness
matrix becomes positive definite due to the elimination of the rigid translations. Therefore, the
matrix can be inverted. The way to impose them is to substitute the constraints in the system of
equations obtained after assembling the system. For that, the system is divided in the following
way. (

K11 K12

K21 K22

)(
u1

u2

)
=

(
f1

f2

)
(30)

Were u1 are the known Dirchlet boundary conditions, u2 the unknowns of the solution field, f1

are the unknowns of the forcing field, and f2 the Neumann boundary conditions and body force
terms. Then is possible to rewrite (30) as

K11u1 +K12u2 = f1

K21u1 +K22u2 = f2

(31)

therefore the unknown of the system can be calculated as

u2 = (K22)
−1

(f2 −K21u1) (32)

and then by replacing u2 in the first equation of (31) it is possible to obtain the unknowns f1.
Since the boundary conditions are going to be used in the BFEM prior covariance matrices with
some differences, the system of equations of (30) will be re-arranged as follows(

I 0
0 K22

)(
u1

u2

)
=

(
0
f2

)
+

(
u1

−K21u1

)
(33)

2.6 Bayesian finite element method
To introduce BFEM an illustrative example is done. Fig. (5) shows a 1D bar with uniformly

distributed load and homogeneous Dirichlet boundary conditions. The ODE for this problem is
shown in Eq. (34).

Figure 5: Example of 1D bar with the distributed load and homogenous boundary conditions. In
this case, the distributed load is f = 1, the axial stiffness is EA = 1, and the length is L = 1.

−d2u(x)

dx2
EA = f(x) (34)

The true solution of the ODE and two numerical solutions obtained with standard FEM are
plotted in Fig. (6a). The first numerical solution has a coarse of 4 elements and the second
numerical solution has a fine mesh of 64 elements. Since the fine mesh contains a larger number
of elements, the numerical solution closely resembles the true solution of the ODE. However,
with fewer elements in the mesh, there is a noticeable difference between the numerical and true
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solutions. This difference is known as the discretization error, which arises because the number
of elements used in the numerical method is insufficient to represent the solution accurately. To
minimize this error and obtain precise results, a finer mesh with more elements is required.

In BFEM, the objective is to use a Gaussian regression as shown in Fig. (6b), where the posterior
mean should be close to the fine solution that is assumed as the true solution, while the posterior
standard deviation indicates the uncertainty associated with the discretization error of a coarse
mesh.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.1
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u
(x
)

Coarse solution
Fine solution
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True solution
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u
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)
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(b)

Figure 6: Comparison between standard FEM solutions and BFEM solution.(a) Example of true
and standard FEM solutions. (b) Example of statistical solution.

This method is based on the work of Poot et al. [18]. The force vector of a coarse mesh is used
as data to perform a GP regression in a fine space. This means that in the fine space, a prior
mean and prior covariance are proposed and the posterior mean and deviation are obtained after
conditioning the distribution with the coarse mesh force vector. To formulate this method, the
steps are the same as in the previous section until Eq. (23). After obtaining the weak formulation,
the Petrov-Galerkin method is used, a prior is assumed to regularize the solution, and then make
use of Bayesian inference to obtain the posterior distribution.

2.6.1 Petrov-Galerkin formulation

The Petrov-Galerkin formulation has the characteristic that the trial and weight or test func-
tions belong to different spaces. In BFEM, this formulation is used to have a space of test func-
tions, denoted as V, which can be constructed as a subset of the space of trial functions, denoted
as U . Therefore, we have V ⊆ U .

The trial and test functions are defined in the same way as in Eq. (25), but in this case, the
shape functions Qj belong to the discretization of the coarse mesh, while the shape functions Ni

belong to the fine mesh. This implies that the number of coarse shape functions denoted as nc,
is always less than the number of fine shape functions, denoted as nf .
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uh =

nf∑
i=1

uiNi(x), uh ∈ Uh,

vh =

nc∑
j=1

vjQj(x), vh ∈ Vh

(35)

If we substitute uh and vh from equation (35) into equation (24) and move the summation of vj
coefficients outside the integral, we obtain:

nc∑
j=1

vj


nf∑
i=1

∫ L

0

dQj

dx
EA

dNi

dx
+QjkNi dx︸ ︷︷ ︸

Hij

ui

 =

nc∑
j=1

vj


∫ L

0

Qjf dx+QjEA
du

dx

∣∣∣∣L
0︸ ︷︷ ︸

gj

 ∀ vh ∈ Vh (36)

Again, the vj terms can be canceled out, and the system of equations is:

Hu = g (37)

Since i is always bigger or equal to j, the H matrix is a rectangular matrix with i columns and
j rows. To illustrate this, consider a 1D problem with a coarse mesh of 3 elements and a fine mesh
of 6 elements, as shown in Fig. (7). Since the coarse mesh has 4 DOFs and the fine mesh has 7
DOFs, the H matrix will have 7 columns and 4 rows. The vector u will have 7 components, while
g will have 4 components. Therefore, we have more unknowns to obtain than equations because
the displacement belongs to the fine mesh, and the force vector belongs to the coarse mesh.

Figure 7: Example of a coarse and fine mesh used in BFEM.

As mentioned above, the coarse shape functions can be obtained as a linear combination of
the fine shape functions. Eq. (38) shows how the combination of shape functions from the fine
mesh can give a shape function from the coarse mesh:

Qj(x) =

nf∑
k=1

ΦkjNk(x) (38)

Here, Nk(x) represents the shape functions of the fine mesh, Φkj are the components of a rectan-
gular transformation matrix, and Qj(x) represents the coarse mesh shape functions. The index
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j represents the index of the coarse DOFs, while the index k represents the indices from the fine
mesh. If we replace the Qj term on both sides of Eq. (36) with

∑nf

k=1 ΦkjNk, we obtain

nf∑
i=1

∫ L

0

d
(∑nf

k=1 ΦkjNk

)
dx

EA
dNi

dx
+

nf∑
k=1

ΦkjNkkNi dx ui =

∫ L

0

nf∑
k=1

ΦkjNkf dx+

nf∑
k=1

ΦkjNkEA
du

dx

∣∣∣∣L
0

∀ vh ∈ Vh

(39)
Now the Φkj components can be taken out of the derivative or integrals since these values do not
depend on x.

nk∑
i=1

nf∑
k=1

Φkj

∫ L

0

dNk

dx
EA

dNi

dx
+NkkNi dx︸ ︷︷ ︸

Kki

ui =

nf∑
k=1

Φkj

∫ L

0

Nkf dx+NkEA
du

dx

∣∣∣∣L
0︸ ︷︷ ︸

fk

∀ vh ∈ Vh (40)

What is proved with this final derivation is that
∑nf

k=1 ΦkjKki = Hji and that
∑nf

k=1 Φkjfk = gj.
Which in matrix form can be written as H = ΦTK and g = ΦTf .

2.6.2 Bayesian inference

The current solution is underconstrained and requires regularization by introducing a prior
solution. The chosen distribution has a zero prior mean and a prior covariance matrix.

u ∼ N (0,Σ) (41)

Utilizing the connection between u and g as described in Eq. (37), it can be deduced that the
joint distribution of both vectors is:(

g
u

)
∼ N

((
0
0

)
,

(
HΣHT HΣ

ΣHT Σ

))
(42)

Since g is known we can condition u and obtain the posterior distribution

u|g ∼ N (û, Σ̂) (43)

The posterior mean and posterior covariance are

û = ΣHT
(
HΣHT

)−1

g (44)

Σ̂ = Σ−ΣHT
(
HΣHT

)−1

HΣ (45)

2.6.3 Boundary conditions in BFEM

The treatment of Dirichlet or Neumann boundary conditions in a probabilistic manner is a
possibility. However, in this particular study, these conditions are assumed to be deterministic
and known, given the proposed prior distribution. For this reason, the conditions can be thought
of as values changing the prior mean and with zero deviations in those DOFs. Then the system
in Eq. (41) will be subdivided like in (30).(

u1

u2

)
∼ N

((
u1

K22
−1(f2 −K21u1)

)
,

(
0 0
0 Σ22

))
(46)

Where u1 represents the vector of Dirichlet conditions, no matter if the condition is homogeneous
or not, and f2 is the vector of known forces, i.e. the Neumann conditions. The DOFs where the
solution is not known are represented by the subindex 2. In the DOFs of Dirichlet conditions, the
deviation is zero. On the contrary in the DOFs where the solution is not known the components
of the covariance prior matrix Σ remain the same. The problem with this is that then the matrix
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cannot be inverted since it is necessarily positive semidefinite. For this reason, a small noise
σε ∼ 10−7 will be added in the diagonal entries of the matrix to avoid numerical inconveniences.

As evident, unless the problem has homogeneous Dirichlet conditions, the prior mean vector
will not be zero. From now on, in this thesis, we will refer to the mean vector in Eq. (46) as um.

2.6.4 Sampling from prior and posterior

As mentioned in the introduction, the main idea of sampling is to use it to obtain covariance
matrices more cost-effectively than analytically calculating the matrix. Now, if the prior samples
are directly obtained from the solution u, it would have to be performed as shown in Eq. (4) and
Eq. (47).

us = Lz + um (47)

Where L is the lower triangular matrix obtained from the Cholesky decomposition of the prior
covariance Σ, z is a sample vector with zero mean, and an identity covariance matrix, and us is
the sample prior. The disadvantage of this approach is that the matrix L is a decomposition of
the prior covariance matrix which is dense.

To avoid this drawback, we can use a sparse covariance matrix in the RHS, as explained in
section (3.1), to obtain less expensive fs samples. Then prior samples of the force vector can be
obtained by

fs = Lfz + fm (48)

Where Lf is the Cholesky decomposition of a sparse matrix, z is a sample vector with zero mean,
fm is a vector that includes the Neumann boundary conditions, and an identity covariance matrix,
and fs is the sample prior of the force vector.

Once this is done, the system Kus = fs can be solved more cost-effectively than simply invert-
ing K, obtaining samples of the solution u without the need to decompose a dense prior matrix.
In this thesis, sparse Cholesky factorization is used, but for large systems of degrees of freedom,
an iterative solver such as the Gauss-Seidel method can be used.

Now the idea is to obtain posterior samples without the need to compute the posterior covari-
ance matrix. If we take into account that the posterior mean and covariance are

û = ΣHT
(
HΣHT + σ2

εI
)−1

︸ ︷︷ ︸
G

g = Gg (49)

Σ̂ = Σ−ΣHT
(
HΣHT + σ2

εI
)−1

︸ ︷︷ ︸
G

HΣ = (I −GH)Σ (50)

where G is the Kalman gain matrix and σε is the deviation of an observational noise distribution
ε = N

(
0, σ2

εI
)
, then we can rewrite the posterior covariance in the Joseph form:

Σ̂ = (I −GH)Σ (I −GH) + σεGGT (51)

Now, posterior samples can be obtained by:

ûs = us +G (g −H(us − um) + ε̂) (52)

where ε̂ is a sample vector from the observational noise distribution. Finally, the term G depends
on the prior covariance matrix, but this can be assembled with the prior samples.

2.7 Optimization methods
Throughout this thesis different optimization methods are used, therefore a brief summary of

the most used tools will be made.
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2.7 Optimization methods 2 THEORY

After obtaining the data and defining the objective function, the algorithm searches for the
parameters of the function that correspond to a global minimum

x̄ = arg min f(x)
x

(53)

Where f(x) is the multivariate function to be minimized and x̄ is the value corresponding to the
global minimum.

2.7.1 Gradient descent

This iterative method involves updating the parameters of the objective function by moving in
a downward direction. To find the descent direction the gradient of the function is used [28].

xi+1 = xi − α∇f(xi) (54)

α is a positive real value representing the learning rate. It determines the step size for each model
parameter update, and finding a suitable value can be challenging. Typically, determining the
appropriate learning rate involves a trial-and-error approach, which can be highly impractical.
On one hand, if the value is small it can converge slowly or get stuck in local minima. On the
other hand, if the value is high it may result in an unstable convergence. In Fig. (8), it can be
observed how the direction of the vectors varies based on the gradient at each point. The length
of these vectors is determined by the gradient at each point and the learning rate.

Figure 8: Plot of a gradient descent algorithm.

2.7.2 Newton methods for optimization

The gradient descent does not take into account higher-order terms, slowing down the conver-
gence close to a minimum. To take these terms into account we will review Newton’s method [28].
If we do a Taylor expansion of a one dimension problem, the second order of a function in the
point xi +∆ is

f(xi +∆) = f(xi) + f ′(xi)∆ +
1

2
f ′′(xi)∆

2 (55)

To obtain the value of Delta to minimize this value we can derive in that direction and equal to
zero.

f ′(xi) + f ′′(xi)∆ = 0

∆ = − f ′(xi)

f ′′(xi)

(56)
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then the value of xi+1 can be obtained by

xi+1 = xi −
f ′(xi)

f ′′(xi)
(57)

As it is possible to observe this iterative method has a variable step size that is updated de-
pending on the first and second derivative of the function. If we generalize it for multiple variables

xi+1 = xi −H(xi)
−1∇f(xi) (58)

Where ∇f(xi) is the gradient vector and H(xi) is the Hessian matrix, composed of the second
derivatives. Eq. (58) is the form of the Newton method.

If this method is used for multiple variables, it becomes expensive compared to gradient de-
scent. Computing an inverse Hessian matrix is O(n3), while the complexity of the gradient descent
is O(n).

Quasi-Newton methods are a family of optimization algorithms that approximate the Hessian
matrix using gradient information, rather than computing it directly. This can significantly re-
duce the computational cost of the optimization algorithm, making it more efficient for large-scale
problems. To explain it simply in a single-variable problem the way to obtain the points is

xi+1 = xi − f ′(xi)
xi − xi−1

f ′(xi)− f ′(xi−1)
(59)

the second derivative inverse is approximated by

f ′′(xi)
−1 =

xi − xi−1

f ′(xi)− f ′(xi−1)
(60)

In multiple variables, this can be generalized as

Bi+1 (xi+1 − xi) = ∇f(xi+1)−∇f(xi) (61)

Where Bi+1 is the approximation of the Hessian matrix.

Figure 9: Example of triangle as simplex in a Nelder-Mead algorithm in a 2D objective function.

The most well-known quasi-Newton method and the one used in this thesis is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) [29] algorithm, which approximates the Hessian matrix using
a rank-two update approach. Other quasi-Newton methods include the limited-memory BFGS
(L-BFGS) algorithm [30].
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2.7.3 Nelder–Mead

The Nelder-Mead method is a heuristic algorithm [31] since it solves a complex optimization
problem by an intuitive approach for unconstrained multidimensional problems. Moreover, it does
not use information from derivatives or curvatures but instead simply works as a point comparison
method. It works by maintaining a simplex, which is a figure with one vertex more than the
dimensions of the function. For example, a simplex of a 2-dimensional function is a triangle
and a 3-dimensional function is a tetrahedron. At each iteration of the algorithm, the function
values at the vertices of the simplex are computed and a series of transformations are performed
to update the simplex until convergence is reached. In Fig. (9), it is illustrated how a simplex
consisting of three points is constructed over the function f(x). By comparing the function values
at these points, a new triangle can be formed. The transformations include reflection, expansion,
contraction, and shrinkage of the simplex. The Nelder-Mead method is easy to apply, requires only
function evaluations, and can handle non-smooth or noisy functions. However, it can converge
slowly or stagnate at local minima.
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3 MODEL SELECTION IN BFEM

3
Model Selection in BFEM

In the previous chapter, BFEM was introduced as a method to obtain statistical solutions where
the posterior deviation should show the discretization error as an uncertainty along the mesh.
However, it did not explain the selection of a suitable prior covariance, the estimation of prior
hyperparameters, and the appropriate criteria for assessing the quality of results obtained for a
specific prior. In this chapter, we establish the fundamental concepts of model selection in BFEM,
which involve exploring various covariance matrices to find those that are more appropriate. This
includes techniques for estimating prior hyperparameters and defining measures to determine the
adequacy of results achieved with a particular prior.

3.1 Choices of prior covariance
The prior distribution can be formulated as:

u ∼ N (0,Σ) (62)

In this case, the prior covariance can be formed with a kernel, such as a square exponential
kernel. One potential issue arises when using this approach: the resulting covariance matrix
becomes dense, leading to computational inefficiencies, such as the need to decompose a dense
matrix to perform sampling and the need to invert a prior dense matrix to obtain the posterior.

Alternatively, considering the nature of any PDE, there exists a fixed integro-differential rela-
tionship between the solution and the forcing term. Using this relationship allows us to assume
white noise in the right-hand side (RHS) and derive an equivalent prior for the solution, as dis-
cussed in Owhadi [20].

To explain this in detail, let us consider a general example of a continuous problem where L
and B are integro-differential operators defined on the domain D and the boundary Γ. We have
the following PDE: {

Lu(x) = f(x), x ∈ D
Bu(x) = 0, on Γ

(63)

To give an example of what the linear operator would look like in a particular case we can take
the left-hand side (LHS) of Eq. (21)

− d

dx

(
EA

du(x)

dx

)
+ ku(x) = Lu(x) (64)
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meaning that the operator L for this ODE is

L = − d

dx

(
EA

d

dx

)
+ k (65)

Now we make the assumption that there exists a Green’s function, denoted as G(x,w), correspond-
ing to the operator L. This Green’s function is defined as follows:{

LG(x,w) = δ(w − x), x ∈ D
BG(x,w) = 0, on Γ

(66)

The solution of the general PDE in Eq. (63) can then be expressed as:

u(x) =

∫
D
G(x,w)f(w)dw (67)

This solution is known as Green’s solution for linear and inhomogeneous ODEs. Now, if a prior is
assumed for the forcing term f(x) as GP (0, k(x,x′)), the kernel of the solution is:

knat(x,x
′) =

∫
D

∫
D
G(x,w)G(x′,w′)k(x,x′)dwdw′ (68)

This approach is described as the "natural kernel" in Cockayne et al. [14], because it naturally
captures part of the physics of the problem and its smoothness. For example, in an elastic problem
with different stiffnesses in the domain, it reveals the spatial correlation change due to the varia-
tion in stiffness. In addition, the kernel in the forcing term k(x,x′) can be a white noise δ(x− x′)
and the result after evaluating the natural kernel at the X positions to assemble a covariance
matrix would not result in a sparse matrix.

However, the previous example is applicable to collocation problems. In this work, the form
of the stochastic partial differential equation (SPDE) is discrete, as in Eq. (29). Therefore, the
distribution of the force vector f needs to be obtained based on a white noise forcing term f(x) ∼
GP

(
0, α2

0δ(x− x′)
)

integration, as shown in Eq. (28):

f =

∫
D
f(x)N(x)dx ∼ N

(
0,

∫
D

∫
D
α2
0N(x)δ(x− x′)N(x′)dxdx′

)
(69)

where N(x) are the vector of shape functions of the fine mesh. After evaluating the integral, we
obtain:

f =

∫
D
f(x)N(x)dx ∼ N

(
0, α2

0

∫
D
N(x)N(x)dx

)
∼ N

(
0, α2

0M
)

(70)

A unit mass matrix M that depends only on the shape functions. Therefore, is obtained when
assuming a white noise in the RHS term.

Similar to Eq. (67), the relationship between u and f is established through the inverse of the
stiffness matrix K.

u ∼ N (0, α2
0K

−1MK−1) (71)

As can be observed, there exists an analogy between the utilization of Green’s functions in a
continuous problem and the utilization of the inverse of the stiffness matrix in a discrete problem,
which incorporates structural information. It is important to note that inverting the stiffness
matrix can be computationally expensive. However, due to its sparse structure, it is relatively
easier to invert compared to a dense matrix formed with a kernel. In the work by Roininen et
al. [21], it has been demonstrated that inverting the covariance matrix in Eq. (71) simplifies to Eq.
(72), where the mass matrix is easy to invert due to its sparse structure and the stiffness matrix
is known.

Σ−1 =
1

α2
0

KM−1K (72)
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3.1.1 Example comparing LHS and RHS Priors

To compare priors in the LHS and RHS an illustrative example is made. The example is a 1D
tapered bar subjected to a uniformly distributed load, as shown in Fig. (10). The kernel applied
directly in the solution or LHS is a square exponential kernel and in the forcing term or RHS, a
unit mass matrix is applied.

Figure 10: Example of a 1D tapered bar with smooth load. The body load is f(x) = 1, the bound-
ary conditions are homogeneous Dirichlet conditions, the length is L = 1, and the material and
geometrical properties have a linear variation EA(x) = 1− 0.9x.

To solve this problem as posed, 2 meshes are used, a coarse line mesh of 4 elements and a fine
line mesh of 64 elements. In both cases the progression of elements is uniform. Then, the LHS
prior is

u ∼ N (0, σ2e−
(x−x′)2

2l2 ) (73)
and the RHS prior is shown in Eq. (71)

� ���� ��� ���� �
�

�

����

���

����

�

�

�����

�����

�����

�����

�����

�����

�����

�����

Σ p
ri
(x

,x
′ )

(a)

0 0.25 0.5 0.75 1
X

0

0.25

0.5

0.75

1

X

0.00

0.01

0.02

0.03

0.04

0.05

pr
i(x

,x
′ )

(b)

Figure 11: Comparison of prior covariance matrix in the LHS and the RHS. (a) Prior covariance
matrix of 65× 65, resulting from the use of a square exponential kernel with a length scale l = 0.20
and σ = 0.65. (b) Prior covariance matrix of 65 × 65, resulting from the use of a unit mass matrix
with α0 = 0.1.

Figs. (11a) and (11b) show how the prior matrices look like. Both matrices show zero values at
the boundaries due to the imposed Dirichlet conditions. Moreover, there are notable differences
between the two. The first matrix displays a stationary behavior, influenced by the chosen kernel.
On the other hand, the second matrix, resulting from the multiplication of stiffness matrices
with the unit mass matrix, shows distinct characteristics due to the varying stiffness along the
structure. Consequently, larger deviations occur in the direction of the region with lower stiffness
values.

After applying the Bayesian inference with the coarse mesh force vector as the observed data,
the obtained posterior covariance matrices are shown in Figs. (12a) and (12b). The results ob-
tained with the prior placed on the LHS demonstrate similar deviation values along the length of
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Figure 12: Comparison of posterior covariance matrix in the LHS and the RHS. (a) Posterior
covariance matrix of 65 × 65, resulting from the use of a square exponential kernel with a length
scale l = 0.20 and σ = 0.65. (b) Posterior covariance matrix of 65 × 65, resulting from the use of a
unit mass matrix with α0 = 0.1.

the bar. In contrast, in the case of priors placed on the RHS, the standard deviation is predomi-
nantly concentrated in the region with lower stiffness.

By comparing these outcomes with the results depicted in Figs. (13a) and (13b), it can be
affirmed that the prior placed on the RHS has superior performance. This conclusion arises from
the fact that the higher discretization error is indeed localized in the area with lower stiffness
values. Additionally, it is evident that the posterior mean aligns more closely with the solution
obtained from the fine mesh.
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Figure 13: Comparison of solution with priors in the LHS and the RHS. (a) Solution obtained with
a prior covariance matrix from the use of a square exponential kernel with a length scale l = 0.20
and σ = 0.20. (b) Solution obtained with a prior covariance matrix from the use of a unit mass
matrix with α0 = 0.65.

This a simple example, but placing priors on the RHS generally leads to qualitatively superior
distributions for the purpose of estimating the discretization error probabilistically. This becomes
apparent when examining the prior and posterior standard deviation of both distributions. The
RHS deviation more accurately represents the error and the posterior mean closely resembles
the desired solution obtained from a fine mesh space. In this particular example with a limited
number of coarse elements, the zone with lower stiffness has the highest error and the RHS prior
takes this into account since the prior deviations are higher in this region. Additionally, in the
case of performing sampling the RHS is also more beneficial because there is no need to invert a
dense matrix at any time in the operations.
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It is important to highlight that a white noise prior was employed in the RHS solution. In
contrast, the same covariance matrix could not be used in the LHS approach. This is because,
without being multiplied by the stiffness matrices, the resulting matrix would have a diagonal
and sparse structure, which would introduce excessive noise throughout the bar and would not
be able to visualize the discretization error.

3.1.2 Sparse RHS priors

As presented in the work of Poot et al. [18], another alternative is to directly assume a sparse
covariance matrix in the prior distribution of the RHS and then obtain its equivalent in the solu-
tion. One option apart from the already mentioned unit mass matrix, is to assume the stiffness
matrix as the prior covariance matrix of the RHS, which is

f ∼ N
(
0, α2

0K
)

(74)

consequently, the resulting distribution in u can be expressed as:

u ∼ N
(
0, α2

0K
−1
)

(75)

Furthermore, it can be demonstrated that utilizing the stiffness matrix as a prior in the RHS
consistently leads to the coarse solution being the posterior mean.

In this thesis, the combination of the unit mass matrix and the stiffness matrix is analyzed:

f ∼ N
(
0, α2

0M + β2
0K
)

(76)

3.2 MLE as a hyperparameter estimator in BFEM
In BFEM, the MLE has been utilized to determine the optimal hyperparameter corresponding

to a mass unit prior covariance matrix. Previous work by Poot et al. [18] has analytically demon-
strated the methodology for obtaining this hyperparameter. However, it remains untested whether
this approach leads to an accurate error estimate when considering the standard deviation.

To investigate this matter, Fig. (14) presents the distribution obtained for the problem depicted
in Fig. (10) after obtaining the hyperparameter α0 of a unit mass matrix in the RHS with MLE.
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Figure 14: Distribution obtained in a 1D tapered bar with unit mass matrix in the RHS with a
hyperparameter α0 = 0.485. The confidence interval shown is equal to one standard deviation.

In Fig. (14), it is evident that the estimated hyperparameter leads to a posterior standard
deviation that appears smaller than the visually observed error between the coarse and fine mesh
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solutions. However, this happens because a confidence interval of only one standard deviation
is shown. The main problem is that this deviation increases or decreases uniformly throughout
the domain as the hyperparameter changes. Ideally, the standard deviation should accurately
represent the error resulting from the mesh discretization in each DOF.

3.3 Performance assessment measures in BFEM
In this thesis, it is essential to compare different priors to see which one influences better the

posterior distribution to represent the discretization error. At the same time, it is also necessary
to be able to estimate the hyperparameters with the mentioned objective.

Therefore, two distinct measures are proposed. The first measure aims to compare the dis-
cretization error between the fine mesh and coarse mesh using the standard deviation. The second
measure involves comparing the posterior mean with the solution on the fine mesh. In a perfect
setting, the standard deviation should be equal to the error between the coarse and fine mesh,
and the posterior mean should match the fine mesh solution.

The measure used in this thesis to compare the posterior deviation and discretization error
is called Jσ̂ and is half the sum of the squared differences between the discretization error and
posterior standard deviation, as shown in Eq. (77).

Jσ̂ =
1

2

n∑
i=1

(
∆i −

√
Σ̂ii

)2
(77)

∆ = uf −Φuc (78)

where ∆i represents the difference between the solution obtained at a DOF of the fine mesh and
the projection of the coarse mesh in fine space, calculated using the matrix Φ as shown in Eq.
(78). The deviation in the fine space DOFs is denoted by

√
Σ̂ii = σi. Fig. (15a) illustrates how

the DOFs of the fine mesh can be projected onto the coarse mesh to obtain the error between
them. Additionally, Fig. (15b) presents the posterior distribution obtained with specific priors
and hyperparameters.

The best values for the hyperparameters for a given prior are those that minimize Jσ̂. When
comparing two different priors with optimized hyperparameters, the best choice is the one that
leads to a lower value of Jσ̂.

Although arbitrary, we choose to set the standard deviation to a single standard deviation in
Jσ̂, then the shape and scale of the distribution depend only on the hyperparameters.

(a) (b)

Figure 15: Example of discretization error between coarse and fine mesh, and standard deviation
in a 1D problem. (a) Example of fine and coarse solutions and the discretization errors between
both. (b) Example of posterior mean and posterior deviation in the fine mesh space.
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The second measure is called Jû and is half the sum of squared differences between the pos-
terior mean and the fine mesh solution, as shown in Eq. (79).

Jû =
1

2

n∑
i=1

(ufi − ûi)
2 (79)

Finally, since the objective is to minimize these two measures, they are used as objective func-
tions, and the hyperparameters of each employed covariance matrix are the variables to optimize.
To achieve this, an optimization algorithm that can use the Nelder Mead or L-BFGS-B algorithms
was developed. The necessary gradients for the second method can be obtained following the
procedure in Appendix (A.1).

To assess its effectiveness, a grid search is conducted over the hyperparameter α0 of the prior
unit mass matrix covariance. The problem used as an example is the one in Fig. (10). This grid
search will cover the range from 10−3 to 10, with a grid size of 5x10−3 aiming to identify the α0

corresponding to the MLE, the minimum Jσ̂, and the minimum Jû.
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Log. Likelihood
MLE with α0 = 0.485
Min. Jσ̂ with α0 = 0.979

Figure 16: Plot showing the variation of Jσ̂, Jû, and Log-Likelihood for different values of α0 of a
unit mass matrix in the RHS.
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Figure 17: Comparision between the α0 of the maximum MLE and the α0 of the minimum Jσ̂.
(a) distribution with the hyperparameter α0 = 0.485. (b) distribution with the hyperparameter
α0 = 0.979.

As observed in Fig. (16), the differences between the α0 of the maximum log-likelihood and the
α0 value that minimizes Jσ̂ is not negligible. To compare these two values, two distributions are
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shown in Figs. (17a) and (17b). It can be seen that when Jσ̂ is minimized, a better approximation
of the posterior standard deviation, capturing the difference between the coarse and fine mesh
solutions, is obtained.

When visualizing the results obtained by using the value of α0 that maximizes the log-likelihood,
it becomes apparent that the standard deviation fails to effectively capture the discretization error
between the coarse and fine mesh with one deviation. A different outcome appears when employing
the α0 value that minimizes Jσ̂. A significantly clearer result is observed, where the posterior
deviation shows the discretization error as a deviation.

A question that may arise is why not simply change the number of standard deviations shown
so that the MLE correctly captures the discretization error? If it showed 2 deviations instead
of 1, the MLE would appear notably accurate. The problem lies in that in this case both the
number of standard deviations showed or the hyperparameter scales the posterior deviation. In
problems with more hyperparameters, this becomes clearer because the main drawback with the
MLE is that it makes the distribution fit the force vector data and does not necessarily match
every standard deviation to each DOF discretization error.

As demonstrated in [18], changing the hyperparameter of a unit mass matrix does not alter
the posterior mean. Considering the posterior mean in Eq. (80) for the case of an assumed
uncertainty in the RHS derived in [18], it becomes clear that the hyperparameter has no influence
on the posterior mean. This is because the hyperparameter cancels out, leaving only the matrix
terms to determine the posterior mean. As Jû is independent of the values of α0 in Fig. (16), we
have a constant function.

û = K−1α2AΦ
(
ΦTα2AΦ

)−1

ΦTf (80)

So far, the unit mass prior presented has exhibited a constant standard deviation in the forcing
term, with exceptions near the boundary conditions where deviations become zero. Because of this
the hyperparameter scales the posterior distribution of the solution at each DOF, either amplifying
or reducing their values. In the next chapter, we demonstrate that this is a drawback in other
problems and also propose solutions for it.
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4
Stationary and Non-Stationary

Priors
This chapter analyzes the posterior distributions by optimizing the measures obtained in the

previous chapter using the unit mass matrix prior covariance. With this prior the resulting dis-
tributions lack flexibility as they can be amplified or reduced by a single hyperparameter, making
it challenging for the distribution to show variations of discretization errors. To address this com-
plexity, an alternative approach to obtain flexible distributions is adopted.

4.1 Stationary priors
In this section, two distributions with stationary priors are obtained for the simply supported

beam problem shown in Fig. (18), which is only subjected to gravity loads. The objective is
to observe if they represent the discretization error of a 2D beam with the posterior standard
deviation. In both cases, the hyperparameters are optimized in order to minimize Jσ̂. The desired
posterior standard deviation plot should be equal to Fig. (19). The optimization algorithm used to
obtain the optimal hyperparameters by minimizing Jσ̂ is Nelder–Mead.

The coarse and fine mesh used can be seen in Fig. (B1) in Annex (B.1). Fig. (19) shows the
discretization error between a coarse mesh of 28 DOFs and a fine mesh of 1106 DOFs.

Figure 18: Simply supported 2D beam subjected to self-weight. Where L = 10, H = 2, the thickness
is T = 0.2, the modulus of elasticity is E = 10000, the density ρ = 1, and the Poisson ratio is ν = 0.2.

In the first example shown in Figs. (20a) and (20b) the prior is a unit mass matrix in the
RHS. In Fig. (20a) the standard deviation is small in the center of the beam compared to the
discretization error and the opposite happens near the supports. The discretization error between
the coarse and fine mesh is not well captured with a prior that is only formed with the unit mass
matrix.
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Figure 19: Discretization error between a coarse mesh of 28 DOFs and a fine mesh of 1106 DOFs.
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Figure 20: Probabilistic discretization error distribution based on the optimization of a unit mass
matrix as a prior. (a) Posterior standard deviation in the lower edge of the 2D beam. (b) Posterior
standard deviation in 2D beam based on a unit mass prior covariance matrix.

The second stationary example is a sum between a unit mass matrix and the stiffness matrix
as the one in Eq. (76). The results are pictured in Figs. (21a) and (21b). This covariance is
much better compared to only using a unit mass matrix since the standard deviation has bigger
flexibility due to the combination of two different matrices. Moreover, the stiffness matrix term
has the disadvantage that moving the posterior mean from the fine mesh solution. This happens
because in the case of only using a stiffness matrix the posterior mean is the coarse solution.

The results obtained in these two examples with stationary covariance matrices are not out-
standing, this is because the discretization errors vary along the mesh and the posterior standard
deviation distributions obtained do not have as much flexibility to capture that variation.

In the case of stationary sparse covariance matrices, where a single hyperparameter scales the
matrix, the hyperparameter does not impact the posterior mean as it was explained in section
(3.3). In this work, the sparse matrices utilized are the unit mass matrix and the stiffness matrix,
the results with the mass matrix generate accurate outcomes, and the stiffness matrix results
in a posterior mean matching the coarse solution. Consequently, when combining the unit mass
matrix with the stiffness matrix in the Jû optimization process, the hyperparameter associated
with the stiffness matrix tends to approach zero, leaving only the mass matrix as a prior matrix.

4.2 Proposed non-stationary priors
Since usually, the discretization error varies along the mesh, we propose a non-stationary

approach to improve the results of the sparse RHS matrices. By doing this, the prior will already
include spatial variations. One way to include them involves introducing a function η(x) that
represents the variation of the error along the mesh. In this case, the prior unit mass covariance
matrix can be formulated as:

f ∼ N
(
0,
(
α2
1η(xi)η(xj) + α2

0

)
Mij

)
(81)
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Figure 21: Probabilistic discretization error distribution based on the optimization of the sum of
a unit mass matrix and a stiffness matrix as a prior. (a) Posterior standard deviation in the lower
edge of the 2D beam. (b) Posterior standard deviation in 2D beam with a unit mass and stiffness
prior covariance matrix.

In Eq. (81), α1 is a hyperparameter that amplifies the non-stationary effect, while α0 accounts
for the stationarity of the unit mass matrix. This prior covariance can be extended to the combi-
nation of unit mass matrices and stiffness matrices:

f ∼ N
(
0,
(
α2
1η(xi)η(xj) + α2

0

)
Mij +

(
β2
1η(xi)η(xj) + β2

0

)
Kij

)
(82)

Where i and j are the DOFs where the matrix is evaluated. One challenge with the afore-
mentioned approach is designing a suitable function η(xi) that is both general and flexible while
keeping the number of hyperparameters small to avoid complicating the optimization process. As
an alternative, the coarse mesh solution can be utilized:

f ∼ N
(
0,
(
α2
1(uiuj)

2 + α2
0

)
Mij

)
(83)

f ∼ N
(
0,
(
α2
1(uiuj)

2 + α2
0

)
Mij +

(
β2
1(uiuj)

2 + β2
0

)
Kij

)
(84)

Since the coarse mesh has fewer DOFs than the fine space, it is necessary to project the
coarse solution onto the fine mesh space. Therefore, the values ui and uj are obtained by linearly
interpolating at the positions of the fine mesh using the Φ matrix. Therefore, ui =

∑m
k=0 Φkiuck or

in matrix form u = Φuc.
By incorporating the coarse solution, the method can effectively capture regions with high

values where the discretization error tends to be most significant. Additionally, if these functions
have limited utility for a specific problem, the hyperparameters are allowed to go zero, and only
the unit mass matrix or the stiffness matrix will remain, and the distribution can be similar to
the stationary case.

4.3 Results of non-stationary priors
4.3.1 Posterior deviation

In this section, the proposed non-stationary covariance functions are applied to the example of
Fig. (18), and at the end a comparison between the previous stationary matrices and the proposed
ones is made. The optimization algorithm used to obtain the minimum values of the Jσ̂ in this
case, is Nelder–Mead.

Knowing that the discretization error is higher at the center of the beam and almost zero near
the supports as shown in Fig. (19) the function η(xi) from Eq. (82) is substituted with a sine
function that only varies along the x axis, and it has its maximum value in the middle of the
beam. Then, the prior covariance is

f ∼ N
(
0,
(
α2
1 sin

(xiπ

10

)
sin
(xjπ

10

)
+ α2

0

)
Mij

)
(85)
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As can be seen in Figs. (22a) and (22b) the results are favorable since after optimizing the hyper-
parameters the discretization error is well captured by the standard deviation.
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Figure 22: Probabilistic discretization error distribution based on the optimization of the product
of a unit mass matrix and a non-stationary covariance sine function as a prior. (a) Posterior
standard deviation in the lower edge of the 2D beam. (a) Posterior standard deviation of 2D.

By adding a stiffness matrix that is also multiplied by the same non-stationary covariance
function, the results are further improved as shown in Figs. (23a) and (23b). Then, the covariance
matrix is formed with the function:

f ∼ N
(
0,
(
α2
1 sin

(xiπ

10

)
sin
(xjπ

10

)
+ α2

0

)
Mij +

(
β2
1 sin

(xiπ

10

)
sin
(xjπ

10

)
+ β2

0

)
Kij

)
(86)
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Figure 23: Probabilistic discretization error distribution based on the optimization of combining a
unit mass matrix multiplied by a non-stationary covariance sine function with a stiffness matrix
multiplied by a non-stationary covariance sine function as a prior. (a) Posterior standard deviation
in the lower edge of the 2D beam. (b) Posterior standard deviation of the 2D beam.

The results of both covariance matrices are suitable. Nonetheless, it is easy to propose this
non-stationary function since the discretization error, in this case, is known. In the next two
examples, the covariance functions are formed with the use of the coarse mesh solution. The
distribution obtained when using the prior of Eq. (83) is shown in Figs. (24a) and (24b). It can be
observed, that the distribution with the prior formed by the mass matrix and the non-stationarity
function produced by the coarse solution is suitable.

The last example shown in Figs. (25a) and (25b) uses the coarse mesh solution and incorporates
the stiffness matrix, as shown in Eq. (84).

Table (1) presents the six optimized Jσ̂ with the corresponding hyperparameters. The results
demonstrate that incorporating a combination of mass and stiffness matrices leads to a reduction
in the Jσ̂ value. An even more significant reduction is observed when employing non-stationary
covariance matrices, both with the proposed function and the coarse solution. On the whole, the
results show a better capacity of non-stationary matrices in enhancing the distributions.
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Figure 24: Probabilistic discretization error distribution based on the optimization of the product
of a unit mass matrix and a non-stationary covariance function form with coarse mesh solution
as a prior. (a) Posterior standard deviation in the lower edge of 2D beam. (b) Posterior standard
deviation of the 2D beam.
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Figure 25: Probabilistic discretization error distribution based on the optimization of adding the
product of a unit mass matrix and a non-stationary covariance form of coarse mesh solution with
the product of a stiffness matrix and a non-stationary covariance form of coarse mesh solution as
a prior. (a) Posterior standard deviation in the lower edge of the 2D beam. (b) Posterior standard
deviation of the 2D beam.

The non-stationary covariance functions in this problem tend to reduce Jσ̂ by almost an order
of magnitude. The hyperparameter values associated with the coarse solution tend to be high
simply because the non-stationary function depends on the displacements that may be low. When
the stiffness matrix is incorporated the posterior mean tends to separate from the fine solution
because the prior incorporates the stiffness matrix.

4.3.2 Posterior mean

If a non-stationary sparse matrix that only has one hyperparameter multiplying the matrix is
constructed, the hyperparameter can also be eliminated as in Eq. (80), resulting in the posterior
mean depending solely on the unit terms of the matrix, independent of the amplifying hyper-
parameter. Therefore, when considering each case of a matrix multiplied by a hyperparameter
separately, the Jû value remains constant. This measure, chosen in section (3.3) to assess the
proximity of the posterior mean to a fine mesh solution, remains constant despite variations in
the hyperparameter.

The objective of this section is to investigate whether the combination of a non-stationary
covariance matrix with a stationary one can enhance the posterior mean solution or if the solution
converges towards the minimum generated by either one matrix alone canceling the other matrix.
To explore this, the combination of the two matrices presented in Eq. (87) is utilized. The beam
in Fig. (18) is used again as an example and the Nelder-Mead method is utilized to optimize the
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Prior covariance matrix Jσ̂ α0 α1 β0 β1

α2
0M 2.089e-02 1.102e+01 - -

α2
0M + β2

0K 5.482e-03 6.930e-01 - 1.590e-01 -(
α2
1 sin

(
xiπ
10

)
sin

(xjπ

10

)
+ α2

0

)
Mij 1.485e-03 1.564e-05 2.490e+01 - -(

α2
1 sin

(
xiπ
10

)
sin

(xjπ

10

)
+ α2

0

)
Mij +(

β2
1 sin

(
xiπ
10

)
sin

(xjπ

10

)
+ β2

0

)
Kij

1.058e-03 6.934e-06 1.478e+00 2.197e-07 1.930e-01

(
α2
1(uiuj)

2 + α2
0

)
Mij 1.601e-03 3.744e+00 9.064e+04 - -(

α2
1(uiuj)

2 + α2
0

)
Mij +(

β2
1(uiuj)

2 + β2
0

)
Kij

8.293e-04 7.516e-03 1.201e+04 4.582e-02 7.671e+02

Table 1: Optimized Jσ̂ for different prior covariance.

hyperparameters.

û = K−1
(
α2
0M + α2

1MNS)
)
Φ
(
ΦT (α2

0M + α2
1MNS)Φ

)−1

ΦTf (87)

where MNS is a matrix conformed with the combination of a mass matrix and the multiplication
of the covariance function in each DOF. This function can be a predefined function like a sine or
another approach like the coarse mesh solution. Table (2) presents the results of the hyperpa-
rameter values used for the mass matrix. Regardless of the value chosen, the same value of Jû is
obtained (that is why there is no value of the hyperparameter in α0 of that row), as the posterior
mean is independent of the hyperparameter. For both non-stationary cases, it can be observed
that the hyperparameters multiplying the non-stationary matrix tend towards zero. This implies
that, instead of improvement, the inclusion of the non-stationary matrix leads to a worsening of
the Jû result.

Prior covariance matrix Jû α0 α1

α2
0M 5.016e-06 - -(

α2
1 sin

(
xiπ
10

)
sin

(xjπ

10

)
+ α2

0

)
Mij 5.016e-06 1.214e+0 2.531e-04(

α2
1(uiuj)

2 + α2
0

)
Mij 5.016e-06 1.102e+01 9.647e-07

Table 2: Optimized Jû for different prior covariance in the 2D beam.

To explain these observations, it is important to revisit [18], which mentions the existence of a
projection matrix P :

f̂ = α2AΦ
(
ΦTα2AΦ

)−1

ΦT︸ ︷︷ ︸
P

f = Pf (88)

The non-stationarity of the matrices used in this study worsens the projection of the original force
vector f to the estimated force vector f̂ . If the projection matrix P were to be equal to the identity
matrix I (in an ideal scenario), f̂ would be equal to f .

It is worth mentioning that since the posterior solution tends to converge to the coarse solution
with the use of the stiffness matrix as the prior, adding the stationary matrix in an attempt to
improve the posterior mean solution only cancels out the hyperparameters in the optimization
process, resulting in convergence towards the unit mass matrix. Therefore, none of the covariance
priors that have a stiffness matrix are included in the analysis.
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To study how much the posterior mean varies with respect to the fine mesh solution after
minimizing Jσ̂ we use the optimized hyperparameters of Table (1), and compute the corresponding
Jû values, we can summarize the results in Table (3).

Prior covariance matrix Jσ̂ Jû

α2
0M 2.089e-02 5.016e-06

α2
0M + β2

0K 5.482e-03 1.619e-02(
α2
1 sin

(
xiπ
10

)
sin

(xjπ

10

)
+ α2

0

)
Mij 1.485e-03 1.381e-05(

α2
1 sin

(
xiπ
10

)
sin

(xjπ

10

)
+ α2

0

)
Mij +(

β2
1 sin

(
xiπ
10

)
sin

(xjπ

10

)
+ β2

0

)
Kij

1.058e-03 3.781e-04

(
α2
1(uiuj)

2 + α2
0

)
Mij 1.601e-03 1.690e-05(

α2
1(uiuj)

2 + α2
0

)
Mij +(

β2
1(uiuj)

2 + β2
0

)
Kij

8.293e-04 2.598e-04

Table 3: Jû values for optimized priors of Jσ̂ of Table (1)

Among the obtained values, the lowest Jû correspond to cases where the stationary matrix
is only the unit mass matrix, especially the lowest is the case of only the unit mass matrix.
This indicates that whenever we introduce the stiffness matrix in the prior, it tends to cause a
deviation between the posterior solution and the solution obtained using a finer mesh. In addition,
by introducing a non-stationary term in the prior and seeking to minimize the Jσ̂, we obtain a
sub-optimal result for Jû.
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5
Impact of Meshing and Sampling

In this chapter, we extend our investigation by exploring mesh refinement, variation of the ar-
rangement in the mesh, and sampling to challenge the findings from previous chapters. We aim
to determine if the optimization results obtained in the previous chapters hold consistency even
when we modify the mesh arrangement and refine it differently. By analyzing these variations,
we can assess if the optimal hyperparameter for the first refinement closely aligns with that of a
very fine mesh. In that case, a strategy could be to optimize it for a few degrees of freedom and
then extrapolate this estimate to the finer mesh. If the optimal hyperparameters change signifi-
cantly with different mesh arrangements, we will understand that these optimal values cannot be
extrapolated to different meshes. Additionally, we delve into investigating whether the optimal hy-
perparameters remain consistent when covariance matrices are assembled with samples. In [18],
ensemble posterior covariances are presented as an option to reduce the number of computations
and storage. However, there has been no study on determining the number of samples needed
to obtain covariance matrices with satisfactory performance. This analysis will provide valuable
insights into the efficiency and accuracy of using ensemble posterior covariances, contributing to
better computational strategies.

5.1 Meshing and its impact on error representation
In this section, we investigate the variation of the optimal hyperparameters and how the opti-

mized posterior distribution can represent the error for different refinements of the same coarse
mesh, as well as variations in the arrangement of finite elements for the same problem. In both
cases, we use the problem shown in Fig. (18).

To examine the variation of the optimal hyperparameters after refining the mesh, we performed
a grid search of the hyperparameter α0, The range is from 1 to 100, with a step size of 1. We
analyzed the variation of Jσ̂ for a prior unit mass covariance matrix. The coarse mesh used is No.
1, as depicted in Appendix (B.1) in Fig. (B2) and the refinements of this mesh only reduce the size
of the elements, keeping the triangular element type without changing the shape or interpolation
functions. As an example of how the refinements look like, for the case of coarse mesh No. 1, they
can be seen in Fig. (B1).

Fig. (26a) displays the four different grids along with the points representing the minimum
values of Jσ̂. On the other hand, Fig. (26b) illustrates the variation of the optimal α0 as the number
of DOFs increases in the fine mesh. As can be observed, there is a clear pattern in Jσ̂ that remains
consistent for each refinement, and both the minimum Jσ̂ and the optimal hyperparameters vary
in each case.

For the case of varying the arrangement of the elements, twelve distinct computational experi-
ments are conducted on the beam problem illustrated in Fig. (18). The same grid search as in Fig.
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Figure 26: Jσ̂ grid of 2D beam for different mesh refinements and a prior unit mass matrix co-
variance in RHS. (b) Variation of the four Jσ̂ functions for each α0 grid search with their optimal
α0 and minimum Jσ̂. (a) Minimum α0 values for different DOFs of fine meshes.

(26) is performed, ranging the hyperparameter α0 from 1 to 100 with a step of 1. That is why the
minimum hyperparameter for each case in this study is an integer number. The coarse meshes
used are shown in Fig. (B2). Each of these grids underwent four refinement iterations as in the
example shown before in Fig. (26b). Therefore, a total of 48 Jσ̂ functions are plotted, representing
4 refinements of the 12 meshes.

The grids of the twelve meshes are shown in Fig. (27) in which there are 4 boxes, one for each
of the refinements, and in each one is shown how much the Jσ̂ varies for each mesh. It can be
seen how some grids are more capable than others in representing the error with the posterior
standard deviation since they have smaller minima than the rest.

To summarize the results of these twelve analyses and their refinements, two tables are created.
Table (4) presents the minimum α0 values for each refinement of a specific coarse mesh, while
Table (5) displays the minimum Jσ̂. The minima of Jσ̂ can be different for the same number of
DOFs and different arrangements. Furthermore, in almost all cases, it happens that the optimal
hyperparameters change in at least 10% when refining the mesh.

Mesh Fine mesh
43 nodes

Fine mesh
149 nodes

Fine mesh
553 nodes

Fine mesh
2129 nodes

Coarse mesh 1 20 14 11 9
Coarse mesh 2 20 14 11 9
Coarse mesh 3 20 14 11 9
Coarse mesh 4 19 13 11 9
Coarse mesh 5 18 14 12 11
Coarse mesh 6 15 13 12 11
Coarse mesh 7 17 13 10 8
Coarse mesh 8 16 12 9 8
Coarse mesh 9 16 12 9 8

Coarse mesh 10 14 12 10 8
Coarse mesh 11 14 13 12 12
Coarse mesh 12 14 13 12 12

Table 4: Optimized α0 of prior covariance unit mass matrix for different meshes and refinements
of the 2D beam.

In order to understand graphically how different meshes facilitate the possibility of obtaining a
posterior standard deviation that shows the discretization error with the unit mass matrix prior,
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Figure 27: Summary of the grids search of Jσ̂ performed on the 12 coarse meshes and their 4
refinements for a 2D beam and with a mass unit prior covariance.

the optimal result of the first refinement of mesh 7, which is the one with the lowest performance,
and mesh 12, which is one of the best are shown in Fig. (28).

Mesh No. 7 exhibits inefficiency in capturing the discretization error of a fine mesh of 43 nodes.
This can be seen both in the lower edge of Fig. (28a) as well as in the contour plot in Fig. (28b)
where it can be seen how the standard deviations are not showing well the discretization error.
Mesh No. 12 demonstrates remarkable proficiency in this regard. In the lower edge of Fig. (28c)
the standard deviation almost perfectly captures the discretization error and the same happens
in the contour plot of Fig. (28d) where this is also noticeable.

The reason why some meshes outperform others lies in the fact that in certain areas of the
mesh, the discretization error is lower compared to others. By reducing the size of the elements
in those areas, the values of the mass matrix are also reduced, and consequently, the subsequent
standard deviations are as well. In other words, modifying the mesh transforms the discretization
error of the problem as well as the posterior standard deviation.

As a result of this analysis, we can conclude that mesh variation changes the discretization
error and the structure of the posterior covariance matrix. Therefore, the optimal hyperparameters
may not be transferable between refinements of the same coarse mesh or changes in the mesh
arrangement for the same problem.

Now that we already know that the optimal hyperaprameters change as the mesh is refined or
have other values for different mesh arrangements of the same problem, another question that
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Mesh Fine mesh
43 nodes

Fine mesh
149 nodes

Fine mesh
553 nodes

Fine mesh
2129 nodes

Coarse mesh 1 1.597E-04 2.749E-03 2.075E-02 1.151E-01
Coarse mesh 2 1.550E-04 2.694E-03 2.060E-02 1.151E-01
Coarse mesh 3 1.870E-04 2.419E-03 1.884E-02 1.109E-01
Coarse mesh 4 1.847E-04 3.201E-03 2.416E-02 1.347E-01
Coarse mesh 5 7.820E-05 1.245E-03 1.087E-02 7.255E-02
Coarse mesh 6 8.110E-05 9.242E-04 7.615E-03 5.307E-02
Coarse mesh 7 3.207E-04 3.577E-03 2.367E-02 1.258E-01
Coarse mesh 8 2.700E-04 3.119E-03 2.189E-02 1.215E-01
Coarse mesh 9 2.798E-04 3.115E-03 2.127E-02 1.179E-01

Coarse mesh 10 2.098E-04 2.597E-03 1.993E-02 1.212E-01
Coarse mesh 11 3.330E-05 3.189E-04 2.223E-03 1.774E-02
Coarse mesh 12 3.220E-05 3.119E-04 2.350E-03 1.841E-02

Table 5: Minimal Jσ̂ of prior covariance unit mass matrix for different meshes and refinements of
the 2D beam.

arises is how much does the analysis change if a non-stationary prior is used? In this case,
since the computational cost of performing the analysis with grids search is higher, the optimized
hyperparameter pairs for each case of Eq. (83) are found. Basically, the combinations of the
hyperparameter α0 and α1 are found for each mesh arrangement, but in this case, only three
refinements of the same mesh are done.

In the Table (6) and (7) the results for α0 and α1 are shown. What can be observed is that there
are still non-negligible variations in the hyperparameters. However, the variations in percentage
terms are minor compared to the case with only the unit mass matrix as prior.

Mesh Fine mesh
43 nodes

Fine mesh
149 nodes

Fine mesh
553 nodes

Coarse mesh 1 4.35 4.45 3.74
Coarse mesh 2 4.27 4.38 3.65
Coarse mesh 3 2.23 3.64 3.30
Coarse mesh 4 3.95 3.85 3.24
Coarse mesh 5 4.81 5.52 5.25
Coarse mesh 6 4.91 5.65 5.55
Coarse mesh 7 1.19 0.00 0.00
Coarse mesh 8 0.00 0.00 0.00
Coarse mesh 9 0.00 0.00 0.00

Coarse mesh 10 3.87 4.30 3.83
Coarse mesh 11 8.16 8.61 8.21
Coarse mesh 12 8.91 8.59 8.16

Table 6: Optimized α0 of prior covariance unit mass matrix for different meshes and refinements
of the 2D beam.

Finally, when analyzing the results of the Jσ̂ in Table (8), it can be seen that there are no meshes
that are significantly superior to the others, as was the case when using a stationary matrix. This
can be observed particularly when comparing the results of Mesh No. 7 with Mesh No. 12, in
which in this case the difference is less than 10%, whereas, with only the stationary mesh, the
difference is almost 8 times different.

It is evident that in Table (7) there are many hyperparameters α0 that are zero, this is be-
cause, in the optimization process, the results were negligible. This result has logic because the
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Figure 28: Comparison of discretization error and posterior standard deviation for the 14-node
coarse mesh 7 and 12, and their 43-node fine mesh. (a) Posterior standard deviation in the lower
edge of the 2D beam of mesh No. 7. (b) Posterior standard deviation and discretization error
contour plot of mesh No. 7. (c) Posterior standard deviation in the lower edge of the 2D beam of
mesh No. 12. (d) Posterior standard deviation and discretization error contour plot of mesh No.
12.

Mesh Fine mesh
43 nodes

Fine mesh
149 nodes

Fine mesh
553 nodes

Coarse mesh 1 1.03E+05 9.14E+04 9.06E+04
Coarse mesh 2 1.05E+05 9.29E+04 9.21E+04
Coarse mesh 3 1.33E+05 1.14E+05 1.11E+05
Coarse mesh 4 1.24E+05 1.11E+05 1.10E+05
Coarse mesh 5 1.30E+05 1.08E+05 1.02E+05
Coarse mesh 6 1.54E+05 1.24E+05 1.16E+05
Coarse mesh 7 1.33E+05 1.20E+05 1.16E+05
Coarse mesh 8 1.71E+05 1.43E+05 1.26E+05
Coarse mesh 9 1.63E+05 1.34E+05 1.18E+05

Coarse mesh 10 1.23E+05 1.04E+05 1.00E+05
Coarse mesh 11 1.62E+05 1.20E+05 1.16E+05
Coarse mesh 12 2.02E+05 1.56E+05 1.49E+05

Table 7: Optimized α1 of prior covariance unit mass matrix for different meshes and refinements
of the 2D beam.
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Mesh Fine mesh
43 nodes

Fine mesh
149 nodes

Fine mesh
553 nodes

Coarse mesh 1 3.849E-05 2.987E-04 1.601E-03
Coarse mesh 2 3.678E-05 2.854E-04 1.526E-03
Coarse mesh 3 2.685E-05 2.126E-04 1.138E-03
Coarse mesh 4 3.525E-05 2.768E-04 1.517E-03
Coarse mesh 5 2.501E-05 2.326E-04 1.397E-03
Coarse mesh 6 2.105E-05 2.076E-04 1.294E-03
Coarse mesh 7 4.421E-05 2.289E-04 1.440E-03
Coarse mesh 8 7.159E-05 6.749E-04 4.870E-03
Coarse mesh 9 6.111E-05 6.258E-04 4.471E-03

Coarse mesh 10 4.308E-05 4.186E-04 2.550E-03
Coarse mesh 11 2.248E-05 2.156E-04 1.340E-03
Coarse mesh 12 2.278E-05 2.073E-04 1.344E-03

Table 8: Minimal Jσ̂ of non-stationary prior covariance unit mass matrix for different meshes and
refinements of 2D beam.

hyperparameter α0 is associated with the effect of the stationary mass matrices that have a low
performance when they are the only term of the prior covariance. Therefore, in the optimization,
only the non-stationary term ends up remaining.

5.2 Minimum number of samples for ensemble
In the paper [18] the use of Kalman filters is proposed as an option to avoid computing complete

covariance matrices of size m ×m and instead utilize matrices obtained from a reduced number
n of samples of size m. Therefore, the advantage lies in the fact that the required information for
storage and operations is now of size m×n. However, the investigation into the number of samples
required to accurately represent the posterior distribution is still pending, whether to obtain a
standard deviation similar to the discretization error or a mean value similar to the fine space
solution.

To achieve this, the hyperparameters of ensemble prior covariance matrices for the RVE struc-
ture shown in Fig. (29) are optimized. Multiple cases are analyzed, each with a different number
of samples. To conduct a comprehensive study, numerous initializations with the same number
of samples are performed. As the number of samples increases, these initializations are reduced,
as the results tend to improve and the computational cost of optimizing the ensemble covariance
increases due to the number of samples.

The covariance matrices used to optimize the posterior standard deviation and posterior mean
are the unit matrix as defined in Eq. (70) and the non-stationary matrix as described in Eq. (83).

The coarse and fine mesh used can be seen in Fig. (B3) in Annex (B.2). The coarse mesh has
44 nodes and the fine mesh has 147 nodes.

5.2.1 Solutions after optimizing the posterior standard deviation

In this subsection, the goal is to examine the convergence of the Jσ̂ values obtained from
sample ensemble matrices with those obtained analytically. As the number of samples increases
the Jσ̂ and hyperparameters should converge to those that would be obtained analytically. In
this analysis, it is assumed that Jσ̂ results above or below 10% of those obtained analytically are
favorable.

Fig. (30a) shows the discretization error between the meshes used and Figs. (30b) and (30c)
show the posterior standard deviations of the two matrices used after optimizing the Jσ̂. The
first image is the posterior deviation with a unit mass covariance matrix and the second is the
solution with a non-stationary covariance function that combines the coarse solution with the
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Figure 29: 2D plate with voids and complex boundary conditions.

mass matrix.

Algorithm 1 Convergence analysis of ensemble covariances
1: procedure ConvergenceAnalysis
2: Initialize hyperparameter α0

3: for each desired number of samples do
4: Sample vectors zi from N(0, I)
5: Obtain initial samples usi and posterior samples ûsi

6: Calculate posterior standard deviation Jσ̂
7: while Jσ̂ has not converged do
8: Update hyperparameter α0

9: Obtain updated posterior ûsi

10: Calculate new Jσ̂
11: end while
12: Store final Jσ̂ and hyperparameter value
13: end for
14: end procedure

To conduct this analysis, the procedure shown in Algorithm (1) was followed and the optimiza-
tion algorithm used is L-BFGS-B. In the analysis, a sequence of integer numbers that exponen-
tially increase from 2 to 10000 was generated. These values were used to determine the number
of samples in each iteration. Fig. (31) illustrates the frequency at which the same analysis is
repeated for a specific number of samples. For example, for 2 samples, the optimization was per-
formed 20 times with 20 random initiations of the hyperparameters, while for 20 samples, the
optimization was performed 8 times. This frequency progressively decreases as the sample count
increases, as a higher number of samples leads to a smaller disparity compared to the analytically
obtained values and the time of the optimization is higher because of the computational cost.

The same vector sampled from the Gaussian distribution of zero mean and unit deviation is
used in each iteration of the optimization. It is only re-sampled at the initialization. This means
that the posterior covariance matrices are optimized by changing the hyperparameters because
the samples are the same.
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Figure 30: Comparison between discretization error and posterior standard deviations of RVE
structure. (a) Discretization error between a fine and coarse solution of RVE.(b) Posterior stan-
dard deviation with unit mass matrix prior. (c) Posterior standard deviation with non-stationary
covariance function.

In this case, two distinct analyses were conducted. The first analysis utilized a prior covariance
matrix with unit mass, while the second analysis incorporated non-stationarity using the coarse
solution. The initial α0 value for the case of the unit mass matrix is randomly initiated between 1
and 20.

In Fig. (32) the dots represent the value of Jσ̂ minimized for that number of samples and
a specific initialization. Then, the blue line represents the value obtained with an analytically
assembled covariance matrix which is Jσ̂ = 0.00428, and finally the black lines are 10%± with
respect to this value. Similarly, Fig. (33) represents how the optimized hyperparameter α0 varies
for different numbers of samples, the blue line represents the value obtained from the analytical
optimization, which is α0 = 23.3673, and the black lines are 10%± of this value.

The first observation is that the sampled Jσ̂ clearly converges to the analytically obtained value
for the same problem. Similarly, in Fig. (33), we observe the convergence of the hyperparameter,
and in both cases, there is a larger deviation from the analytical value with a low number of
samples. Secondly, the randomly varied initial value of the hyperparameter ranged from 1 to 20.
As seen in Fig. (33), there are instances where the approximated value surpasses the initial 20,
indicating that even with a low number of samples, the hyperparameter does not remain stuck at
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Figure 31: No. of initiations for each number of samples.
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Figure 32: Plot comparing the optimized norms of posterior standard deviation for different num-
bers of samples. In this case, the prior is a unit mass matrix in the RHS.

the initial values.
Furthermore, the Jσ̂ exhibits cases where optimized minimum values are lower than the ana-

lytical values. This phenomenon occurs primarily with a low number of samples, which is logical
since with a smaller sample size, the randomness is higher.

In the case of the hyperparameter associated with the unit mass matrix, a similar behavior
to Jσ̂ is observed. The convergence is evident, and after approximately 100 samples, it becomes
apparent that the value consistently deviates by around 10% from the analytical value, either above
or below.

The second case involving the non-stationary matrix follows a similar procedure, but now there
are two hyperparameters instead of just one. The blue lines represent the values obtained ana-
lytically, while the black lines represent a range of ±10% around the analytical values.

When examining the second case that incorporates non-stationarity, we can observe similar
patterns to the previous case. Firstly, after optimizing the hyperparameters, the results converge
towards the minimum of Jσ̂, as shown in Fig. (34), and the hyperparameters displayed in Fig. (35)
tend to align with those obtained using analytical covariances. Similarly to the case presented
before, with approximately 100 samples, the solution tends to be around ±10% of the desired Jσ̂.
In other words, the achieved Jσ̂ is a value lower due to the non-stationarity function, but it does
not converge earlier because of it.

Fig. (35) illustrates the variation of the optimal α0 and α1 for different numbers of samples. It
is important to mention that certain combinations of values have been excluded from the plots
due to their significant influence on the scale, making most of the points difficult to differentiate.
This occurred in a few combinations of hyperparameters for less than ten samples. In those cases
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Figure 33: Plot comparing hyperparameters of the optimized norms of posterior standard deviation
for different numbers of samples. In this case, the prior is a unit mass matrix in the RHS.
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Figure 34: Plot comparing the optimized norms of posterior standard deviation for different num-
bers of samples. In this case, the prior is a non-stationary unit mass matrix in the RHS.

one of the hyperparameters approaches values close to zero, distorting the scale.
It can be seen that both hyperparameters also converge to the optimal combination of an ana-

lytically formed matrix and that after about 100 samples the values do not change so much.
Finally, upon comparing Fig. (32) and Fig. (34), it becomes apparent that the non-stationary

case has less disparity. There are significantly more cases where the Jσ̂ is less than −10% of the
analytical value in the first case. In the second case, it can easily be counted the points that are
below 10% less than the analytical minimum Jσ̂.

5.2.2 Solutions after optimizing the posterior mean

In this section the aim is to find the minimum values of the Jû for different numbers of samples,
after optimizing the hyperparameters. The same procedure to the Algorithm (1) can be done but
replacing the Jσ̂ with the Jû.

After performing this analysis the result was that in all sample cases the hyperparameters
became close to zero and the optimization became unstable because the covariance matrix prior
had very small values, the Jû tended to the analytical value when reducing the hyperparameters.
This can be explained by rewritting the Eq. (4) applied to this case

ûs = û+ L̂z (89)

where ûs is the posterior sample vector, û is the posterior mean, L̂ is the Cholensky decomposition
of the posterior covariance, and z is a sample vector from a multivariate Gaussian distribution
with zero mean and identity covariance matrix.
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Figure 35: Plot comparing hyperparameters of the optimized norms of posterior standard deviation
for different numbers of samples. In this case, the prior is a non stationary unit mass matrix in
the RHS.

Although the procedure shown in section (2.6.4) is different, implicitly the same operation is
performed, the difference is that the posterior covariance matrix is not computed analytically.
Since the value Jû measures the difference between the fine mesh solution and the posterior
mean, the minimum obtained in this case would be for a value of the sampled posterior mean
equal to the one obtained analytically.

Therefore, this operation becomes trivial, since the hyperparameters multiply the prior covari-
ance, by simply replacing them with a zero value the complete matrix becomes a zero matrix and
only the posterior mean in Eq. (89) remains.
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6
Conclusions and Directions for

Future Work
In the previous chapters, we analyzed model selection in BFEM, non-stationary priors, and the

impact of meshing and sampling. In this chapter, we will recapitulate the questions presented in
the first chapter and provide the corresponding answers. The chapter is divided into two parts: ad-
dressing the initial questions posed at the beginning of this thesis and discussing a few criticisms
of BFEM and its potential as a basis for future work.

6.1 Answer to research questions
• Optimal hyperparameters and error representation:

– Is the maximum log-likelihood estimator a suitable way to obtain the optimal value of the
hyperparameters to demonstrate the error as a source of uncertainty along the mesh?

It was shown that MLE does not generate proper results for estimating hyperparameters
because it does not obtain minimum values of the difference between a posterior devi-
ation and the discretization error between two meshes. This is because MLE adjusts
the parameters of a distribution to fit the available data, and in this case, the available
data is the forcing vector of a coarse mesh. However, the goal of BFEM is to quantify the
discretization error with the standard deviation. Therefore, since the discretization error
at each point of the coarse mesh is not used as data and is not part of the formulation
that aims to quantify the discretization error through the posterior mean and deviation,
the BFEM does not have to generate a good distribution.

– What is the best approach to compare different kernel or covariance matrix priors quanti-
tatively and qualitatively, to represent the error along the mesh effectively?

In this thesis, two measures were used to facilitate the comparison of different priors
to address the same problem. These measures were suitable for the objectives of the
thesis, which simply measured which distribution better shows the discretization error
or which posterior mean is closer to the fine mesh solution. The major drawback of these
measures is that they are absolute, and the results obtained are not in percentages, so
it is difficult to know how far a distribution is from resembling the discretization error.
They are only useful to compare two priors applied to the same problem or to compare
how the distribution changes for different mesh arrangements of the same number of
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DOFs.

• Priors covariances:

– Is placing a prior on the right-hand side or forcing term considered better than one on the
solution or left-hand side?

In this thesis, it was explained that incorporating a prior in the RHS is a way to con-
sider the integro-differential relationships of the PDE. This is not achieved by directly
placing a prior on the PDE solution itself. Additionally, it was clarified why the stiffness
matrix is analogous to Green’s function for solving PDEs. By utilizing sparse matrices
on the right-hand side (RHS), we can achieve computationally more efficient covariance
matrices compared to applying a kernel directly in the solution field. The inversion
of the stiffness matrix is simpler due to its sparse structure, as opposed to a dense
matrix. Additionally, obtaining samples in the forcing term and converting them into
solution samples is easier when using a sparse covariance matrix. The samples are ob-
tained through the decomposition of a sparse matrix like the mass matrix, followed by
transforming the force samples into displacement samples. This transformation can be
accomplished through the inversion of the sparse stiffness matrix or by utilizing approx-
imate methods to solve the system of equations.

– Can the use of non-stationary covariance functions improve the distributions obtained by
BFEM, particularly to show the discretization error?

It is necessary to mention that in this thesis the main focus was on obtaining appropri-
ate distributions of discretization error with standard deviations and posterior means
that show the fine mesh solution. However, the study did not aim to combine both as-
pects simultaneously; rather, they were investigated separately. Therefore, the use of
stationary or non-stationary matrices varies between these two aspects.
Stationary matrices have the disadvantage of not incorporating large variations in the
posterior deviations after optimizing the hyperparameters. Consequently, they tend to
generate a continuous distribution of error when deviating slightly from the observa-
tions used to generate the posterior. Therefore, they are incapable of generating suitable
posterior standard deviations that accurately represent the error, unlike non-stationary
matrices.
Constructing non-stationary matrices is challenging since, a priori, the error is un-
known. Therefore, finding a function to represent it and make the covariance non-
stationary is challenging. However, using the coarse solution simplifies this process,
obtaining not only qualitative representations but also, in simple cases such as the 2D
beam example, suitable distributions of the error if the rights hyperparameters are cho-
sen. In the case of the structure with voids, this was not the case as even with the
incorporation of the coarse solution, the distribution did not improve significantly. This
is due to the presence of numerous geometric singularities and boundary conditions in
the problem.
Concerning the posterior mean, it was demonstrated that it does not make sense, thus
far, to use a prior matrix different from the unit mass matrix. The advantage of this ap-
proach is that there is no need to optimize or obtain the hyperparameter that amplifies
the matrix since it does not change the solution. In all cases, with the use of this matrix,
similar values of the posterior mean are observed compared to the fine mesh solution.

• Mesh impact:

– Do the optimal hyperparameters change between mesh refinements?
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– Does something similar happen if the arrangement of the mesh elements is also modified?

It was demonstrated that refining the mesh leads to changes in the optimal values of the
hyperparameters, as well as in a change of the mesh arrangement. In the case of using
a sparse covariance matrix that depends on the shape functions of the mesh, better
results can be obtained if the size of the elements is related to the error size in that area
of the mesh.
When utilizing a non-stationary covariance matrix, the hyperparameters exhibit rela-
tively less variation with mesh refinements or between different arrangements of ele-
ments. However, these differences are still noticeable.

• Impact of the number of samples in ensemble covariance matrices:

– In the case of using sampling to assemble covariance matrices, what is the range of sam-
ples that is necessary to obtain distributions showing an error similar to the one obtained
by the matrix without sampling?

It was proved that after obtaining approximately 100 samples, the hyperparameters of
the prior can be optimized to obtain values that are similar to the posterior deviation of
the analytically optimized distribution. Moreover, the distributions obtained with non-
stationary priors do not converge faster but in general, have less disparity compared to
those with stationary priors.
Finally, in the case of optimizing the hyperparameters to obtain a posterior mean that
is similar to the fine mesh solution, the optimization generates values of the hyperpa-
rameters that tend to be zero because implicitly the posterior mean is in the formula to
obtain the posterior samples.

6.2 Directions for future work
One of the main drawbacks of BFEM is that it uses the stiffness matrix of the fine mesh to form

the prior. This makes the method contradictory because if obtaining the most expensive part of the
fine mesh is necessary, obtaining the discretization errors between the meshes could be directly
solved. At the same time, the prior must take into account the boundary conditions, and in order
to use Neumann conditions or non-homogeneous Dirichlet conditions, it is necessary to invert the
fine mesh. It could be mentioned that these conditions could be studied probabilistically to avoid
having to invert the matrix, but this is not intuitive, as the boundary conditions would become
uncertain values when they are deterministic data.

Using sampling to assemble the covariance matrices has been proposed as a solution to reduce
the computational cost of forming the matrices. However, a system of equations must still be solved
or the stiffness matrix of the fine mesh must be inverted. Therefore, the cost of sampling remains
high. In the future, a method such as the Langevin algorithm to generate posterior samples
without the need to invert the stiffness matrix may be an option to reduce this cost.

Discretization errors have traditionally been studied to determine the extent to which the mesh
size needs to be reduced to obtain consistent results of the solution, or, in the best-case scenario,
optimize the mesh in areas of higher error and perform additional remeshing in those locations,
which led to adaptivity techniques. These errors naturally arise from singularities where the slope
of the primary field changes abruptly, such as point loads, sharp changes in the forcing load,
or abrupt changes in geometry. Consequently, many error estimators have been formulated to
identify changes in the derivatives of the primary field. However, in BFEM, the entire formulation
is done in the primary field, meaning that singularities are not addressed at any point in the
formulation. The proposed idea so far is to change or enrich the prior with noise in these degrees
of freedom to account for these singularities. This introduces other additional challenges: how
automatically can be determined where a singularity exists to avoid user intervention and how
many DOFs have to be enriched with noise?
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The result that the standard deviation can also represent the discretization error, as shown in
this thesis, depends on many factors, including the chosen prior, the mesh itself, and the cali-
bration of the hyperparameters of the prior. While it is possible to improve the prior by combining
multiple stationary matrices and using non-stationary matrices to solve the problem, there is still
the issue of obtaining the hyperparameters, and the more complex the prior becomes, the larger
the amount of hyperparameters is likely to be, along with their estimation. Although a solution
could involve training a neural network or some form of regression with multiple already optimized
Jσ̂, the number of inputs is enormous, and the fact that the optimal hyperparameters changes for
each mesh represents an even greater challenge.

The cost of optimization in the sampling section was high due to the numerous optimizations
performed for different sample sizes, and considering that the non-stationary prior case also
requires additional computational time, it necessitated the use of a fine mesh that does not possess
significantly more DOFs compared to the coarse mesh. Consequently, this raises another question:
Can satisfactory results be achieved with only 100 samples if the DOFs of the fine mesh are several
times greater than those of the coarse mesh?

Finally, if these questions are answered positively, it is likely that BFEM could be a useful
method for inverse problems where an optimization algorithm is necessary to find the problem’s
parameters. In that case, BFEM could be employed in a fully probabilistic setting, where the mesh
is coarsened to speed up each forward step in the optimization process, and where the error is
propagated in the problem as another uncertainty.
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A
Gradients derivation

A.1 Gradients of Jσ̂ and Jû

The objective function to minimize the difference between the posterior standard deviation and
the discretization error is given by:

Jσ̂ =
1

2

n∑
i=1

(
∆i −

√
Σ̂ii(ξ)

)2

(90)

∆i represents the error between a coarse and a fine mesh in a DOF of the fine mesh, and Σ̂ii, is the
variance in that degree of freedom. The objective is to minimize the difference between the error
and the standard deviation by optimizing the hyperparameters that are represented by the vector ξ.

To update the hyperparameters using the BFGS or L-BFGS algorithm, the gradients are calcu-
lated. Taking the partial derivative of the objective function with respect to the hyperparameters
yields:

∂Jσ̂
∂ξj

=

n∑
i=1

(
∆i −

√
Σ̂ii(ξ)

)−
∂

√
Σ̂ii(ξ)

∂ξj

 (91)

This equation expresses the gradient of the objective function JSTD with respect to the hyperpa-
rameters ξj. It involves the difference between ∆i and the square root of the posterior variance Σ̂ii

evaluated at the hyperparameters ξ. The partial derivative of
√

Σ̂ii(ξ) with respect to ξj is then
multiplied by this difference.

By computing these gradients, is possible to update the hyperparameters iteratively in each
step of the BFGS optimization algorithm. To proceed, the derivative of the posterior covariance
has to be obtained. The posterior covariance is defined as:

Σ̂ = Σ−ΣHT (HΣHT )−1HΣ (92)

In order to obtain this derivative the inverse of a matrix is obtained:

I ′︸︷︷︸
=0

=
(
AA−1

)′
= A′A−1 +A

(
A−1

)′
A
(
A−1

)′
= −A′A−1 ⇒

(
A−1

)′
= −A−1A′A−1

(93)

Now, applying this to our case, we obtain the derivative of the term
(
(HΣHT )−1

)
:
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(
(HΣHT )−1
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= −(HΣHT )−1

(
HΣHT

)′
(HΣHT )−1 (94)

Next, the derivative of the term
(√
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)
is:

∂

√
Σ̂(ξ)

ii

∂ξj
=

1

2

√
Σ̂(ξ)

ii

{(
∂Σ(ξ)

∂ξj

)
+

∂Σ(ξ)

∂ξj
HT (HΣ(ξ)HT )−1HΣ(ξ)

−Σ(ξ)HT (HΣ(ξ)HT )−1H
∂Σ(ξ)

∂ξj
HT (HΣ(ξ)HT )−1HΣ(ξ)−ΣHT (HΣ(ξ)HT )−1H

∂Σ(ξ)

∂ξj

}
ii

(95)

The second function to optimize is the difference between the posterior mean and the fine mesh
solution.

Jû =
1

2

n∑
i=1

(ufi − ûi(ξ))
2 (96)

Again, the derivative of the function is:

∂Jû
∂ξj

=

n∑
i=1

(ufi − ûi(ξ))

(
−∂ûi(ξ)

∂ξj

)
(97)

The posterior mean in the displacement field is:

û = ΣHT (HΣHT )−1g (98)

Lastly, the gradient is

∂ûi(ξ)

∂ξj
=

∂Σ(ξ)

∂ξj
HT (HΣ(ξ)HT )−1g +Σ(ξ)HT

(
−(HΣ(ξ)HT )−1H

∂Σ(ξ)

∂ξj
HT (HΣ(ξ)HT )−1

)
g (99)
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B
Meshes used

B.1 FEM Meshes
This appendix presents the coarse meshes utilized in section (5.1) to investigate the mesh

dependence of the optimized hyperparameters. The corner nodes were preserved to maintain
consistent dimensions across all meshes. However, the remaining nodes on the perimeter under-
went modifications in nearly all instances, while the internal nodes were also adjusted to create
scenarios where the finest elements are positioned near the supports or the center as the mesh
is refined. A total of 12 cases were generated using the gmsh program, and the mesh refinement
was achieved by utilizing the "refine by splitting" option provided by the program.

(1) (2)

(3) (4)

Figure B1: Four refinements of mesh No. 1

B.2 Meshes used for the RVE structure
In the images provided, you can observe the coarse and fine meshes used in the section (5.2).

It is important to note that the Representative Volume Element (RVE) depicted in the coarse mesh
contains two holes. However, it is not possible to refine these holes by adding more nodes along
the circumference. The reason behind this limitation is that refining the holes in the coarse mesh
would result in the loss of the projected fine DOFs onto the coarse structure.

To overcome this issue, an alternative approach is employed. Instead of refining the holes
directly, additional nodes are introduced along the lines used to mesh the coarse mesh holes.
This strategy allows for preserving the projected fine DOFs on the coarse structure while still
introducing local refinements. By adding nodes on these lines, the desired mesh refinement can
be achieved without compromising the accuracy of the projection process.
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(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

(11) (12)

Figure B2: Meshes used to study the dependency of the optimized hyperparameters.

By adopting this method, it becomes possible to maintain the integrity of the fine-scale infor-
mation while incorporating localized refinements in the mesh.
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(a) (b)

Figure B3: Meshes used in the RVE. (B3a) Coarse mesh of 44 nodes. (B3b) Fine mesh of 147
nodes.

53



REFERENCES REFERENCES

References
[1] Y. D. Lugovtsova and A. I. Soldatov, “Comparison of Three Different Methods for

Pile Integrity Testing on a Cylindrical Homogeneous Polyamide Specimen,” Journal
of Physics: Conference Series, vol. 671, p. 012055, Jan. 2016. [Online]. Available:
https://iopscience.iop.org/article/10.1088/1742-6596/671/1/012055

[2] B. A. Szabo and I. Babuška, Finite Element Analysis: Method, Verification and Validation,
second edition ed., ser. Wiley Series in Computational Mechanics. Wiley, 2021.

[3] I. Babuška and W. C. Rheinboldt, “A-posteriori error estimates for the fi-
nite element method,” vol. 12, no. 10, pp. 1597–1615. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/nme.1620121010

[4] ——, “Error estimates for adaptive finite element computations,” SIAM Journal
on Numerical Analysis, vol. 15, no. 4, pp. 736–754, 1978. [Online]. Available:
http://epubs.siam.org/doi/10.1137/0715049

[5] O. C. Zienkiewicz and J. Z. Zhu, “The superconvergent patch recovery and a posteriori
error estimates. Part 1: The recovery technique,” International Journal for Numerical
Methods in Engineering, vol. 33, no. 7, pp. 1331–1364, May 1992. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/nme.1620330702

[6] ——, “The superconvergent patch recovery and a posteriori error estimates. Part
2: Error estimates and adaptivity,” International Journal for Numerical Methods
in Engineering, vol. 33, no. 7, pp. 1365–1382, May 1992. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/nme.1620330703

[7] P. Hennig, M. A. Osborne, and M. Girolami, “Probabilistic numerics
and uncertainty in computations,” vol. 471, no. 2179. [Online]. Available:
https://royalsocietypublishing.org/doi/10.1098/rspa.2015.0142

[8] A. O’Hagan, “Bayes-hermite quadrature,” Journal of Statistical Planning
and Inference, vol. 29, no. 3, pp. 245–260, 1991. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/037837589190002V

[9] J. Cockayne, C. J. Oates, I. C. Ipsen, and M. Girolami, “A bayesian conjugate gradient method
(with discussion),” 2019.

[10] J. Cockayne, C. J. Oates, T. J. Sullivan, and M. Girolami, “Bayesian Probabilistic Numerical
Methods,” SIAM Review, vol. 61, no. 3, pp. 756–789, Jan. 2019. [Online]. Available:
https://epubs.siam.org/doi/10.1137/17M1139357

[11] P. Hennig, M. A. Osborne, and H. P. Kersting, Probabilistic Numerics: Computa-
tion as Machine Learning, 1st ed. Cambridge University Press. [Online]. Available:
https://www.cambridge.org/core/product/identifier/9781316681411/type/book

[12] O. A. Chkrebtii, D. A. Campbell, B. Calderhead, and M. A. Girolami, “Bayesian solution
uncertainty quantification for differential equations,” June 2013. [Online]. Available:
https://arxiv.org/abs/1306.2365

[13] J. Wang, J. Cockayne, O. Chkrebtii, T. J. Sullivan, and C. J. Oates, “Bayesian numerical
methods for nonlinear partial differential equations,” Statistics and Computing, vol. 31, no. 5,
p. 55, 2021. [Online]. Available: https://link.springer.com/10.1007/s11222-021-10030-w

[14] J. Cockayne, C. Oates, T. Sullivan, and M. Girolami, “Probabilistic numerical methods
for partial differential equations and bayesian inverse problems,” arXiv, 2016. [Online].
Available: https://arxiv.org/abs/1605.07811

54



REFERENCES REFERENCES

[15] P. R. Conrad, M. Girolami, S. Särkkä, A. Stuart, and K. Zygalakis, “Statistical analysis of
differential equations: introducing probability measures on numerical solutions,” vol. 27,
no. 4. [Online]. Available: https://link.springer.com/article/10.1007/s11222-017-9737-4

[16] M. Girolami, E. Febrianto, G. Yin, and F. Cirak, “The statistical finite element method
(statFEM) for coherent synthesis of observation data and model predictions,” Computer
Methods in Applied Mechanics and Engineering, vol. 375, p. 113533, 2021. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S0045782520307180

[17] D. Akyildiz, C. Duffin, S. Sabanis, and M. Girolami, “Statistical finite elements via langevin
dynamics,” SIAM/ASA Journal on Uncertainty Quantification, vol. 10, no. 4, pp. 1560–1585,
2022. [Online]. Available: https://epubs.siam.org/doi/10.1137/21M1463094

[18] A. Poot, P. Kerfriden, I. Rocha, and F. van der Meer, “A bayesian approach to modeling finite
element discretization error.” [Online]. Available: http://arxiv.org/abs/2306.05993

[19] J. N. Reddy, Introduction to the finite element method, fourth edition ed., ser. Mechanical
engineering. McGraw Hill Education, 2019, oCLC: on1065524414.

[20] H. Owhadi, “Bayesian numerical homogenization,” Multiscale Modeling & Simulation, vol. 13,
no. 3, pp. 812–828, 2015. [Online]. Available: https://doi.org/10.1137/140974596

[21] L. Roininen, J. M. Huttunen, and S. Lasanen, “Whittle-matérn priors for Bayesian statistical
inversion with applications in electrical impedance tomography.” Inverse Problems & Imaging,
vol. 8, no. 2, 2014.

[22] N. C. Nguyen and J. Peraire, “Gaussian functional regression for lin-
ear partial differential equations,” Computer Methods in Applied Mechan-
ics and Engineering, vol. 287, pp. 69–89, 2015. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0045782515000092

[23] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal
of Basic Engineering, vol. 82, no. 1, pp. 35–45, Mar. 1960. [Online]. Available:
https://asmedigitalcollection.asme.org/fluidsengineering/article/82/1/35/397706/A-
New-Approach-to-Linear-Filtering-and-Prediction

[24] M. Katzfuss, J. R. Stroud, and C. K. Wikle, “Understanding the Ensemble Kalman Filter,”
The American Statistician, vol. 70, no. 4, pp. 350–357, Oct. 2016. [Online]. Available:
https://www.tandfonline.com/doi/full/10.1080/00031305.2016.1141709

[25] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. The
MIT Press, 2005. [Online]. Available: https://direct.mit.edu/books/book/2320/gaussian-
processes-for-machine-learning

[26] M. M. Noack and J. A. Sethian, “Advanced Stationary and Non-Stationary Kernel
Designs for Domain-Aware Gaussian Processes,” arXiv, 2021. [Online]. Available:
https://arxiv.org/abs/2102.03432

[27] C. M. Bishop, Pattern Recognition and Machine Learning, ser. Information science and statis-
tics. New York: Springer, 2006.

[28] P. Y. Papalambros and D. J. Wilde, Principles of Optimal Design Modeling and Computation,
3rd ed. Cambridge University Press, 2017.

[29] C. G. Broyden, “The convergence of a class of double-rank minimization algorithms 1. general
considerations,” IMA Journal of Applied Mathematics, vol. 6, no. 1, pp. 76–90, 1970. [Online].
Available: https://academic.oup.com/imamat/article-lookup/doi/10.1093/imamat/6.1.76

[30] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for bound
constrained optimization,” SIAM Journal on Scientific Computing, vol. 16, no. 5, pp.
1190–1208, 1995. [Online]. Available: http://epubs.siam.org/doi/10.1137/0916069

55



REFERENCES REFERENCES

[31] J. A. Nelder and R. Mead, “A simplex method for function minimization,”
The Computer Journal, vol. 7, no. 4, pp. 308–313, 1965. [Online]. Available:
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/7.4.308

56


