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Matrix-Pencil Approach-Based Interference
Mitigation for FMCW Radar Systems
Jianping Wang , Member, IEEE, Min Ding, and Alexander Yarovoy, Fellow, IEEE

Abstract— A novel matrix-pencil (MP)-based interference
mitigation approach for frequency-modulated continuous-wave
(FMCW) radars is proposed in this article. The interference-
contaminated segment of the beat signal is first cut out, and
then, the signal samples in the cutout region are reconstructed
by modeling the beat signal as a sum of complex exponentials
and using the MP method to estimate their parameters. The
efficiency of the proposed approach for the interference with
different parameters (i.e., interference duration, signal-to-noise
ratio (SNR), and different target scenarios) is investigated by
means of numerical simulations. The proposed interference
mitigation approach is intensively verified on experimental data.
Comparisons of the proposed approach with the zeroing and
other beat-frequency interpolation techniques are presented. The
results indicate the broad applicability and superiority of the
proposed approach, especially in low SNR and long interference
duration situations.

Index Terms— Frequency-modulated continuous-wave
(FMCW) radar, interference mitigation, matrix pencil, signal
fusion.

I. INTRODUCTION

FREQUENCY-MODULATED continuous-wave (FMCW)
radars are widely used in both civilian and military appli-

cations due to their simple processing method, high accuracy,
and high reliability. With the explosive increase in wireless
radio and sensing applications, FMCW radars face increas-
ingly severe interference from other devices. For instance,
modern cars are equipped with multiple FMCW radars to assist
drivers and improve transportation safety, where the radars
inevitably cause strong interference among each other. More-
over, FMCW weather radars also suffer from radio frequency
interference from the surrounding environment. In these situa-
tions, the strong interference leads to reduced radar sensitivity
and resolution, weak target masking, and probably ghost target
detection. Therefore, to overcome these problems and alleviate
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performance degradation of the radar systems, it is crucial to
take proper interference mitigation in practice.

So far, a number of approaches have been proposed for
interference migration, which can be mainly classified into
two categories: 1) system-level approaches and 2) postsig-
nal processing techniques. System-level approaches exploit
temporal, spatial, polarization, frequency, and code diversities
in the radar system, the antenna array, and the waveform
design. In [1], a circular polarized antenna architecture is
design to combat the linear polarized interference. Meanwhile,
the frequency hopping technique learned from bats is also
generally used to counteract various interference caused by
spectrum congestion [2]. In [3], the slopes of FMCW sweeps
are devised to change in a predefined pattern and hundreds
of sweeps form a burst; then, the beat signals of targets
within a burst form a specific pattern in the spectrogram,
which makes them distinct from interference patterns caused
by aggressor radars. The medium access control (MAC)-like
approach is proposed to regulate transmission time of the
multiple radars in the same area [4], [5]. These approaches
provide an effective solution to interference mitigation, but
they increase the complexity of radar systems or antenna
designs for implementation and lead to costly systems.

On the other hand, the postsignal processing techniques
utilize a range of digital signal processing approaches to
mitigate interference probably at the expense of increased
computational load. The signal processing methods can be
further divided into three classes: filtering approaches [6], [7],
signals separation [8], [9], and suppression and reconstruction
approaches [10]–[13]. In [6], weighted-envelope normalization
approaches are proposed to deal with strong spiky mutual
interference by detecting the envelope variations within a
sliding time window and inversely normalizing the detected
interference. In [7], an adaptive noise canceller is devised
for mutual interference suppression by exploiting the differ-
ent distributions of frequency spectra of target’s signals and
mutual interference in the frequency domain. However, both
filtering approaches are only applicable to tackle certain types
of interference or point-like targets scenario, which limits their
wide applications. Meanwhile, the stability of the adaptive
filter is hard to guarantee.

The signals’ separation methods generally exploit different
features, i.e., distinct sparsity of targets’ signals and the
interference in different transform domains to separate them
[8], [9]. Thus, these methods require some prior informa-
tion about the sparsity of the desired signal and the related
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interference to construct proper bases for optimal separa-
tion. However, if the “off-grid” problem between the bases
(e.g., the discrete Fourier basis and short-time Fourier trans-
form basis [8]) and the signal to be represented exists, it would
lead to some loss of the degree of sparsity, thus degrading the
separation performance.

By contrast, as long as the extension of the interference
is limited in a certain domain, the simplest but effective
method to suppress the interference is, in practice, to directly
cut the interference-contaminated samples out of the sig-
nal with various windows (e.g., zeroing and inverse cosine
window) [14], [15]. However, the interference cutting-out
not just eliminates the interference but also suppresses part
of the useful signal of targets, which reduces the signal-
to-noise ratio (SNR) of the targets after coherent process-
ing and decreases the range resolution. To deal with the
SNR loss problem, a Burg method-based interpolation was
used to extrapolate the useful signal samples in the cutout
region in the time–frequency (t– f ) domain [11]. It separately
uses the signal samples in the front and back of the cutout
gap to extrapolate the cutout data forward and backward
based on the related estimated autoregressive (AR) models.
Then, the forward- and backward-extrapolated samples in the
cutout region are summed up with weights by a specifi-
cally designed cross-fading window. This method is generally
applicable to mitigate various interference for FMCW radars
(as indicated in Fig. 2). However, its extrapolation accuracy
degrades dramatically when the number of cutout samples
of signals increases. In [12], the signal extrapolation with
the AR model was suggested using the instrumental variable
method (IVM). However, this method is not very stable
and cannot always get proper signal reconstruction. In [13],
instead of using parametric models, an iterative method with
adaptive thresholding (IMAT) was used to recover the signal
samples in the cutout region by exploiting the possible spectral
sparsity of targets’ beat signals. By using the fast Fourier
transform (FFT) algorithm in implementation, this method
could be very efficient. However, its reconstructed samples
could have a large phase difference from the ground truth,
which would significantly affect following phase-based signal
processing, for instance, direction-of-arrival (DOA) estimation
and polarimetric decomposition.

To accurately extrapolate the cutout data after cutout oper-
ation (i.e., zeroing), we propose an iterative matrix-pencil
(MP) method-based extrapolation for interference mitigation.
Similar to the Burg method-based approach, the proposed
approach first cuts the interference-contaminated samples out
of the signals and then reconstructs/extrapolates the clipped
samples of the useful signals. However, the proposed approach
simultaneously accounts for the signals before and after the
clipped samples by using a unified all-pole model, which is
derived from the analytical model of the beat signals of targets.
Thus, it provides the potential to get a more accurate extrap-
olation of the noncontaminated signal in the cutout region.
Before the extrapolation, the all-pole model is first estimated
based on the interference-free samples with the MP method
[16], [17]. However, in practice, the noise and the possible
discontinuity of the interference-free samples would impact

Fig. 1. General block diagram of the monostatic linear FMCW radar system.

the accuracy of the estimated signal model, thus resulting in
less accurate reconstruction of the cutout samples of useful
signals. To alleviate this effect, an iterative scheme is intro-
duced to refine the model estimation and the extrapolation,
which significantly improves the accuracy of the signals in the
cutout region. Moreover, we want to mention that a method
similar to the one presented in this article has been used for
multiband signal fusion for high-resolution imaging in [18]
and [19]. In fact, for interference mitigation, the measured sig-
nals become two or more separate segments after interference
suppression. Thus, using the interference-free signal segments
to reconstruct/extrapolate the cutout region is in essence a
signal fusion problem. The main difference is the absence of
the incoherence correction between different signal segments
needed for interference mitigation. Note this article focuses on
interference mitigation on sweeps in the time domain, which
would be flexible to be followed by other further processing.
Nevertheless, we should mention that, in the case of inter-
ference mitigation followed by some specific 2-D processing
(e.g., range-Doppler (R-D) processing and range-DOA estima-
tion), the proposed interference mitigation approach could also
be extended and implemented in the high-dimensional space
by exploiting the 2-D or high-dimensional MP approaches
[20], [21], which would be considered in future.

The rest of this article is organized as follows. Section II
formulates the basic models of the signals received by FMCW
radars. In Section III, the proposed iterative MP method-based
interference mitigation approach is presented. Then, its perfor-
mance of interference mitigation is demonstrated in different
scenarios through the numerical simulations in Section IV and
the experimental results in Section V. Finally, conclusions are
drawn in Section VI.

II. FMCW RADAR SYSTEM MODEL

A. Transmitted and Received Signals

The system diagram of an FMCW radar system is shown
in Fig. 1. The transmitted FMCW signal can be expressed as

p(t) = Atx exp

[
j2π

(
f0 + 1

2
K t

)
t

]
(1)

for 0 < t < T , where Atx is the amplitude of the transmitted
signal, and f0 is the starting frequency of an FMCW sweep.
K = B/T is the chirp rate defined by the ratio of the signal
bandwidth B and the sweep time T . The transmitted electro-
magnetic (EM) signal is intercepted by targets and scattered
back to the receiver. Considering the quasi-monostatic con-
figuration of the transmit and receive antennas and assuming
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single-scattering process for each target, the backscattered
signal can be represented as

sr (t) =
M∑

i=1

Ar x,i exp

[
j2π

(
f0(t − ti ) + K

2
(t − ti )

2

)]
(2)

where ti = 2di/c is round-trip time delay of the scattered
signal related to the i th target at a distance of di , and Ar x,i is
the corresponding amplitude of the signal, which subsumes the
scattering coefficient and the propagation loss. c is the speed
of light, and M is the number of targets.

B. Dechirp on Receiver

In the FMCW radar system, dechirp processing is com-
monly used due to its simple operation and low requirement of
sampling rate for the analog-to-digital converter (ADC). It is
implemented by mixing the received signals with the conjugate
of the transmitted one, which leads to beat signals.

Considering the occurrence of strong interference sint,
the beat signal after demodulating and filtering can be for-
mulated in (3), as shown at the bottom of the page, where the
superscript ∗ denotes the complex conjugate and Flp is the
low-pass filter operator. Ãr,i is the amplitude of the received
signal of the i th target, and M ′(≤ M) is the number of
observed scatterers within the desired unambiguous range.
As exp[− j2π( f0 ti − ((K t2

i )/2))] is a constant phase term
related to the i th target, which can be subsumed by the ampli-
tude of the signal, one can present ai = Ãr,i exp[− j2π( f0 ti −
((K t2

i )/2))] as a new complex signal amplitude. Then, (3) can
be rewritten as a sum of complex exponential functions

s̃(t) = Flp
(
sint(t) · p∗(t)

) +
M ′∑

i=1

ai exp
(− j2π fb,i t

)
(4)

where fb,i = K ti is the beat frequency corresponding to the
i th target. For moving targets, ti = 2di/c = 2(di0 + vi t)/c can
be used to account for the Doppler shift, where vi and di0 are
the velocity and the initial distance of the i th target relative
to the radar. Generally, as vi � c, it has negligible impact on
the target’s beat frequency within a short FMCW sweep. After
getting beat frequencies, the ranges of different targets can be
calculated as

di = c · fb,i

2K
. (5)

As thermal noise and measurement errors always exist due
to physical limitation of the practical radar system, the signal

Fig. 2. Four cases of interference which corrupt the FMCW radar system.
Case 1: chirp interference with the identical sweep parameters as the victim
radar. Case 2: chirp interference with different sweep parameters from the
victim radar. Case 3: sinusoidal/narrowband continuous interference. Case 4:
instantaneous wideband interference.

measurements can be modeled as

s(t) = s̃(t) + n(t)

=
M ′∑

i=1

ai exp(− j2π fb,i t) + Flp
(
sint (t) · p∗(t)

) + n(t)

= s̃tar(t) + s̃int(t) + n(t) (6)

where s(t) represents the measured signal, n(t) denotes the
noise and measurement errors, s̃int(t) = Flp

(
sint(t)p∗(t)

)
is the signal resulting from the interference, and s̃tar(t) =∑M ′

i=1 ai exp(− j2π fb,i t) is the beat signal of targets within the
desired detection range. Equation (6) gives the general model
of the FMCW radar measurements contaminated by strong
interference.

C. Interference

Radar systems face various types of interference due to
the rapid increase in radio wireless applications. In particular,
for FMCW radar systems, the related interference can be
classified as the following four cases [22]–[24]: 1) FMCW

s̃(t) = Flp{[sr (t) + sint(t)] · p∗(t)}

= Flp
(
sint(t) · p∗(t)

) + Flp

{
M∑

i=1

Atx Ar x,i exp

[
− j2π

(
f0 ti − K t2

i

2

)]
· exp(− j2π K ti t)

}

= Flp
(
sint(t) · p∗(t)

) +
M ′∑

i=1

Ãr,i exp

[
− j2π

(
f0ti − K t2

i

2

)]
exp(− j2π K ti t) (3)
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interference with the same chirp rate; 2) FMCW interference
with a different chirp rate; 3) CW interference; and 4) transient
interference. These cases are illustrated in Fig. 2. In Case 1),
the FMCW interference would result in a strong ghost target
if it appears within the reception window of the system deter-
mined by the maximum detection range. In Cases 2) and 3),
the FMCW and CW interference have a long time duration
and lead to the nonconstant beat frequency after the dechirp
processing. Due to the low-pass filtering, their occurrences
are confined in a short time around the frequency intersecting
moment. In Case 4), the spectrum of the transient (or pulse)
interference with a rectangular amplitude in a short time can be
considered as equidistant lines with a sin(x)/x envelope. Some
of these frequency lines intersect with the reference FMCW
signal of dechirp operation and then, as in Case 3), result in
the short interference after low-pass filtering [23].

The above analysis indicates that the interference in
Cases 2)–4) all cause contaminated measurements in cer-
tain time period within an FMCW sweep duration, which,
in principle, can be tackled using the method described
in this article (note that the interference with a very
small sweep slope difference from that of the victim radar
(i.e., extreme situations in case 2) could make all the signal
samples contaminated, in which case the proposed approach
and other zeroing plus reconstruction methods would not
be applicable). Without loss of generality, we consider that
the FMCW signal was contaminated by an FMCW interfer-
ence with a different frequency slope, i.e., Case 2), in the
following.

Assuming that an interfering FMCW radar is located at a
distance dI away from the transceiver, the interference signal
arriving at the receiving antenna can be expressed as

sint(t) = AI exp

[
j2π

(
f I,0(t − tI ) + KI

2
(t − tI )

2

)]
(7)

for tI < t < TI + tI , where AI is the amplitude of the
interference. tI = dI /c is the time delay of the interference
signal relative to the starting time of the transmission of the
victim radar. f I,0 is the starting frequency of the interference
signal, and KI = BI /TI is the chirp rate of the interference
signal with the bandwidth BI and the sweep duration TI .

Then, the interference signal s̃int(t) obtained after dechirping
and low-pass filtering can be explicitly expressed as

s̃int(t) = Flp
(
sint(t)p∗(t)

) = Flp{aI exp[ j�(t)]} (8)

where

�(t) = 2π

[(
KI

2
− K

2

)
t2 + (

f I,0 − f0 − KI tI
)
t

]
(9)

aI = AI Atx exp

[
j2π

(
KI

2
t2
I − f I,0tI

)]
. (10)

Taking the first derivative of the phase �(t) with respect to
time, one can get the instantaneous beat frequency

fb,I (t) = − 1

2π

∂�I (t)

∂ t
= (K1t + K2) (11)

where K1 = (K − KI ) and K2 = ( f0 − f I,0 + KI tI ) are
constant coefficients. According to (11), the beat frequencies

resulting from the interference are time-varying. After the
low-pass filtering in (8), its frequency bandwidth and the time
of occurrence are confined, but the time-varying property is
not affected. By contrast, the beat frequencies of targets are
constant, as shown in (6). This difference between the beat
frequencies of targets and interferer makes that the interference
mitigation can be done in either the time or t– f domain [14].

III. MATRIX-PENCIL METHOD-BASED

INTERFERENCE MITIGATION

A model-based interference mitigation approach for the
FMCW radar system is presented in this section. This
approach can operate in either the time domain or the t– f
domain. Without loss of generality, its details are illustrated
through the time-domain processing for the interference miti-
gation in the following.

A. Discrete Signal in the Time Domain

From (6), the discrete signal measurements can be written
as

s[k] = s̃tar[k] + s̃int[k] + n[k]

=
M ′∑

i=1

ai z
k
i + s̃int[k] + n[k] (12)

where zi = exp ( j2π fb,i�t), �t is the sampling interval,
and k = 0, 1, . . . , N − 1 is the sampling indices of the
N time-domain samples in an FMCW sweep. As analyzed
above, the interference component s̃int appears in a short
period in a sweep; thus, only some of the measured sig-
nal samples, e.g., from N1 to N2, are contaminated, where
0 ≤ N1 < N2 ≤ N − 1. Since the desired targets’ signal s̃tar

is a sum of exponential components, it is natural to suppress
the interference by cutting out the contaminated samples from
the measurements and then reconstructing the cutout samples
with the uncontaminated measurements and the model of
the desired signal. As the clipped sample reconstruction is
generally converted to an estimation problem of exponential
components, it can be implemented with root-MUltiple SIgnal
Classification (root-MUSIC), Prony’s method [25], and so on.
To more efficiently and accurately reconstruct the cutout sam-
ples, we suggest using MP method in this article, which leads
to the proposed MP method-based interference mitigation.

B. Interference Mitigation

The flowchart of the MP method-based interference mit-
igation for FMCW radars is shown in Fig. 3. The detailed
processing involves two main steps.

1) Interference Detection and Cutting Out: Based on the
analysis in Sections II-B and II-C, the beat frequencies of
targets are generally constant in a sweep, while the interference
after dechirping and low-pass filtering still exhibits nonstation-
ary spectral property within its duration. Taking advantage of
this spectral difference, the interference and its duration can be
detected with many approaches, such as energy spikers’ detec-
tion [26], constant false alarm rate (CFAR) thresholding [27],
complex baseband oversampling [28], or other methods in
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Fig. 3. Flowchart of the proposed MP-based interference mitigation approach.

the time or t– f domain. After determining the location of
the interference, the contaminated signal samples can be
completely removed for interference suppression. However,
it also eliminates part of the energy of the desired signals,
which would cause SNR degradation of the resultant range
profiles.

2) Signal Extrapolation: To overcome the SNR degradation
of the targets’ signals caused by the interference suppression,
the removed signal samples can be reconstructed by using the
interference-free samples and the corresponding signal model
s̃tar. Generally, the all-pole signal model s̃tar[k] is unknown
and has to be estimated from the interference-free samples.
In this article, the MP method is applied to estimate the model
parameters (i.e., model order, signal poles, and coefficients) by
simultaneously accounting for the interference-free samples
in front of and behind the clipped ones. Moreover, to alle-
viate the impact of the noise and signal discontinuity of the
interference-free samples on the estimation of the signal model
of targets, an iterative fusion process is introduced to minimize
the estimation error of the signals on both sides of the clipped
region relative to the interference-free measurements. If the
estimation error fulfills the desired requirement after a few
iterations, the signals in the cutout region are reconstructed.

C. Signal Fusion and Reconstruction

After cutting out the interference-contaminated samples
indexed from N1 to N2, the interference-free measurements
in (12) can be represented as

s[k] =
M ′∑

i=1

ai z
k
i + n[k] (13)

where k = 0, 1, . . . , N1 − 1, N2 + 1, N2 + 2, . . . , N − 1.
Therefore, a gap is formed between the two signal sample

segments from 0 to N1 − 1 and from N2 + 1 to N , as illus-
trated in the second plot on the right-hand side of Fig. 3.
As the useful signals in this gap are also eliminated due to the
interference clipping, it would cause some SNR loss of the
final coherent processing results (e.g., range profile and R-D
map). To overcome this problem, in the next step, we try to
reconstruct the useful signals in the gap based on the signal
model (13) and the interference-free measurements on the both
sides.

As mentioned in Section I, here, the signal reconstruction
can be converted to a signal fusion problem. We suggest using
the MP-based fusion method in [18] and [19] to implement the
signal reconstruction, but no incoherence correction between
different signal segments is needed.

For the convenience of description, we denote the signals
before and after the clipped region as s1 and s2, given by{

s1[k] = s[k], k = 0, 1, . . . , N1 − 1

s2[k] = s[k + N2 + 1], k = 0, 1, . . . , N − N2 − 2.
(14)

Then, the detailed steps of the signal reconstruction are
presented as follows.

First, estimate the all-pole signal model (13) with the
MP method based on the front and back signal segments,
i.e., s1 and s2.

Generally, the signal model order M ′ is estimated according
to the Akaike information criterion (AIC), the Bayesian infor-
mation criterion (BIC), the subspace-based automatic model
order selection (SAMOS) [29], [30], and so on. As SAMOS is
considered to be one of the most general and robust approaches
to model order selection and outperforms the aforementioned
methods based on the information theoretic criterion, it is used
in this article. The signal poles can be estimated with the
MP method. Different from the signal pole estimation with
continuous uniform signal samples, the Hankel matrices based
on the discontinuous signals s1 and s2 are constructed in a
slightly different way [18], [19]. First, two Hankel matrices
are constructed as

Hi0 = [
Di

0, Di
1, . . . , Di

L−1

]
Hi1 = [

Di
1, Di

2, . . . , Di
L

]
(15)

with

Di
k = [si [k], si [k + 1], . . . , si [Mi − L − 1 + k]]T , i = 1, 2

(16)

where T denotes the transpose operation, and M1 = N1 and
M2 = N − N2 − 1 are the lengths of s1 and s2, respectively. L
is the MP parameter, and M̂ ′ < L < min(M1 − M̂ ′, M2 − M̂ ′),
where M̂ ′ is the estimated signal model order (without explicit
statement, the ·̂ notation represents the estimated value of a
corresponding parameter).

The Hankel matrices constructed above can be vertically
stacked as

X0 =
[

H10

H20

]
, X1 =

[
H11

H21

]
. (17)

Then, the matrix pencil L(λ) = X1 −λX0 can be evaluated to
get the estimates the signal poles zi in (13) [18], [19]. To get
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the eigenvalues of this matrix pencil, we take advantage of
the singular value decomposition (SVD)-based method in [16].
Taking the SVD of the matrix X0 and X1, we get

X0 = [
U0, U′

0

][ �0,M̂ ′ 0
0 �0,L−M̂ ′

][
V0, V′

0

]H
(18)

X1 = [
U1, U′

1

][ �1,M̂ ′ 0
0 �1,L−M̂ ′

][
V1, V′

1

]H
(19)

where H denotes the conjugate transpose of a matrix, and
�0,M̂ ′ and �1,M̂ ′ are the diagonal matrices containing M̂ ′ dom-
inant singular values of X0 and X1, respectively. The columns
of U0, U1, V0, and V1 are the left and right singular vectors
related to the dominant singular values. (U0,�0,M̂ ′ , V0) and
(U1,�1,M̂ ′ , V1) are the singular value systems related to the
signal subspace in X0 and X1, respectively. The rest terms in
(18) and (19) form the corresponding singular value systems
related to the so-called noise subspace.

To suppress the impact of the noise on the signal pole
estimation, X0 and X1 can be approximated by their truncated
SVD as X0T and X1T

X0 ≈ X0T = U0�0,M̂ ′ VH
0 (20)

X1 ≈ X1T = U1�1,M̂ ′ VH
1 . (21)

Then, the signal poles zi can be estimated by solving the
generalized eigenvalue problem det(L(λ)) = 0 of the matrix
pair {X0; X1}, which is equivalent to the ordinary eigenvalue
problem

det
(
�−1

0,M̂ ′ U
H
0 U1�1,M̂ ′ VH

1 V0 − λI
)

= 0. (22)

The signal pole estimations ẑi = λi , i = 1, 2, . . . , M̂ ′ are
obtained.

After that, using the estimated signal model order M̂ ′
and the signal poles ẑi , the complex amplitude ai can be cast
as the least-squares problem m = Za, where m = [s1, s2]T

is the measured interference-free data, Z is the matrix formed
by signal poles, and a = [a1, a2, . . . , aM̂ ′ ] is the vector of the
coefficients. Explicitly, it is represented as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1[0]
s1[1]

...
s1[M1 − 1]

s2[0]
...

s2[M2 − 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
z1 z2 · · · zM̂ ′
...

...
. . .

...

zN1−1
1 zN1−1

2 · · · zN1−1
M̂ ′

zN2
1 z2 N2 · · · zN2

M̂ ′
...

...
. . .

...

zN−1
1 zN−1

1 · · · z1 N − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1

a2
...

aM̂ ′

⎤
⎥⎥⎥⎦.

(23)

Second, after inserting the estimated signal poles ẑi and the
coefficients âi into (13), the full beat signal in the sweep can
be estimated by

ŝ[k] =
M̂ ′∑

i=1

âi ẑ
k
i , k = 0, 1, . . . , N − 1. (24)

The estimated full beat signal indicates⎧⎪⎨
⎪⎩

ŝ1[k] = ŝ[k], k ∈ [0, N1 − 1]
ŝg[k − N1] = ŝ[k], k ∈ [N1, N2]
ŝ2[k − N2 − 1] = ŝ[k], k ∈ [N2 + 1, N − 1].

(25)

Third, to improve the estimation of the full beat signal,
we replace the ŝ1 and ŝ2 parts in ŝ with the measurements s1

and s2. Then, the reconstructed full beat signal can be modified
as

ŝ[k] =

⎧⎪⎨
⎪⎩

s1[k], k ∈ [0, N1 − 1]
ŝg[k − N1], k ∈ [N1, N2]
s2[k − N2 − 1], k ∈ [N2 + 1, N − 1].

(26)

Next, the reconstructed signal ŝ in (26) are used as a set of
contiguous samples to reestimate the signal poles zi and the
coefficients ai in (13) by using the traditional MP method [16].

Fourth, repeat steps (2) and (3) to update the reconstructed
results. After the step (2) in each iteration, the l2-norm of the
differences between the estimated signals and their measured
counterparts is examined to quantify the signal estimation
accuracy

εi =
∥∥∥ŝ(i)

1 − s1

∥∥∥2

2
+

∥∥∥ŝ(i)
2 − s2

∥∥∥2

2
(27)

where ŝ(i)
1 and ŝ(i)

2 are the estimated counterparts of the
measurements s1 and s2 in the i th iteration. If the signal
difference in the i th iteration satisfies the requirement

εi > εi−1 (28)

then iteration will stop. Otherwise, it continues to improve the
estimated model parameters. As εi is lower bounded by 0,
it means that one could always get a convergent solution by
gradually minimizing it.

After several iteration cycles, we get the most accurate
recovery of the full beat signal. Finally, by taking correspond-
ing operations on the reconstructed full beat signal, the range
profile and Doppler information of targets can be obtained with
substantially improved dynamic range and suppressed “noise”
floor.

IV. NUMERICAL SIMULATIONS

To analyze the performance of the proposed MP-based
method to interference mitigation, several sensing scenarios
have been simulated. Its results are also compared with the
traditional zeroing and three of the state-of-the-art meth-
ods, i.e., the Burg-based approach [11], the IVM-based
method [12], and the IMAT method [13].

A. Evaluation Metric

To facilitate quantitative evaluation of the accuracy of the
reconstructed beat signals by different methods, we intro-
duce two evaluation metrics: the relative signal-to-noise
ratio (RSNR) and the correlation coefficient ρ. The RSNR
and the correlation coefficient are defined as

RSNR(s0, ŝ) = 20 log10
‖s0‖2

‖s0 − ŝ‖2
(29)

ρs0,ŝ = ŝH s0

‖s0‖2 · ‖ŝ‖2
(30)
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TABLE I

PARAMETERS USED FOR SIMULATIONS FOR POINT-LIKE
AND DISTRIBUTED TARGET SCENARIOS

where s0 is the vector of a clean reference beat signal (without
interferences and noise) and ŝ is the beat signal formed
by the measured interference-free samples and the recon-
structed signal samples in the cutout region. ‖ · ‖2 denotes the

2-norm operator. If the signal samples in the cutout region are
reconstructed with sufficient accuracy, an RSNR larger than
the SNR of the input signal can be obtained according to (29).
Thus, the larger the obtained RSNR is, the more accurate the
recovered signal samples are.

The correlation coefficient is commonly used to evaluate
the similarity of two signals. Its formulation in (30) is a
normalized inner product between the reconstructed signal and
the reference one, which specifically represents the rotation
angle between the two signals. The correlation coefficient
satisfies 0 ≤ |ρs0,ŝ| ≤ 1. If |ρs0,ŝ| = 1, then the reconstructed
signal ŝ is a linear function of the reference signal s0 with
a phase difference of 	 ρs0,ŝ (i.e., argument of ρs0,ŝ). That is
to say, a correlation coefficient with a larger modulus and a
smaller argument indicates a better recovery performance.

B. Point Target Scenario

First, we demonstrate the performance of the proposed
MP-based interference mitigation approach in the point target
scenario. The parameters of the FMCW radar system used for
the simulation are shown in Table I. Three point targets are
placed at a distance of 2, 5, and 5.1 km, respectively, away
from the transceiver. The amplitudes of the scattered signals
from the three targets from the near to further distances are
set to be 1, 0.2, and 0.1, respectively.

The victim FMCW radar system suffers from strong inter-
ference from an aggressor FMCW radar with the same oper-
ational center frequency but an opposite sweep slope and a
time advancement of 75 μs relative to the starting time of the
victim sweep. After dechirping, the interference-contaminated
beat signal is acquired and illustrated in Fig. 4(a). The strong
interference appears at the interval from 165 to 265 μs
(indicated by the red solid-line rectangle), which still exhibits

Fig. 4. Numerical simulation for interference mitigation in the point target
scenario. (a) Interference-contaminated beat signal. (b) Metric values of
SAMOS for model order estimation. (c) Results after interference mitigation.

as a chirp-like signal [see the bottom-right inset in Fig. 4(a)].
Meanwhile, for clarity, part of the interference-free beat signal
(from 350 to 370 μs indicated by the blue dashed-dotted
rectangle) is zoomed in and shown in the top-right inset.
It is clear that the beat signal of targets is composed of the
sinusoidal components. Moreover, the white Gaussian noise
with the SNR of 15 dB is added to the signal to account for
the thermal noise and measurement errors of the radar system.

The interference-contaminated beat signal produces a range
profile with significantly increased noise floor (see “sig_Int”
in Fig. 5(a) where the two targets at the further distances are
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Fig. 5. (a) Range profiles of the targets obtained with the
interference-contaminated signal, the interference-free reference signal, and
the signals processed with zeroing, the Burg-based method, IVM, IMAT, and
the MP-based method. (b) and (c) Close-ups of the range profile around the
distances of targets, respectively.

Fig. 6. Convergence of the difference between the estimated signal and their
measured counterpart with the iterations of the MP-based approach.

almost shadowed by the raised noise floor) if the range com-
pression is performed directly by using the FFT. To mitigate
the interference by using the proposed MP-based approach,

TABLE II

RESULTS OF QUANTITATIVE EVALUATION OF THE RECOVERED SIGNALS
IN THE POINT TARGET SCENARIO

the interference-contaminated samples of the signal are first
detected and cut out (i.e., zeroing with a rectangular win-
dow [15]). Zeroing the interference-contaminated samples
results in two separate signal segments with a gap in-between
[see the top figure in Fig. 4(c)], which causes not only
power loss of targets’ signals but also high sidelobes of
the range profile, thus degrading the performance of target
detection. To overcome these effects, the proposed MP-based
interference mitigation method is used to reconstruct the signal
samples in the cutout gap based on the signal model (24)
and the rest interference-free ones in front and back. Before
reconstruction, the model order was estimated to be three
by using the SAMOS method [see Fig. 4(b)], which agrees
with the true value. Then, by exploiting the proposed iterative
scheme, the signal samples in the gap were recovered with
sufficient accuracy, as shown in the middle plot and a close-up
of them in the bottom figure in Fig. 4(c).

For comparison, the recovered signals with the Burg-based
method, IVM, and IMAT, as well as the interference-free
reference signal (with the noise), are shown in the middle
and bottom figures. For the Burg-based method and IVM,
the same model order as that of the MP-based method was
used. For the IMAT, the parameters of the adaptive threshold
were computed using the equations with m = 2.5 (a parameter
used by IMAT in [13]; without explicit statement, we will
use m to refer to the same parameter in the following)
for the empirically best performance. One can see that the
signal recovered with the proposed MP-based method has the
best agreement with the reference one. Meanwhile, the IVM
method achieves more accurate reconstruction of the signals
in the cutout region than the Burg-based method and IMAT
in this case. These observations are also confirmed through
the quantitative evaluation in Table II. Both the bottom plot
in Fig. 4(c) and ρ in Table II show that the IMAT recovered
the samples in the cutout region with a large phase difference
compared to the other three model-based methods.

To further examine the accuracy of the reconstructed sig-
nals, the range profiles of targets are constructed by taking
the FFT of them and shown in Fig. 5. For comparison,
the range profiles obtained with the interference-contaminated
and interference-free reference beat signals [i.e.,“sig_Int” and
“Ref” in Fig. 5(a), respectively] are also presented. Note all
the range profiles are normalized by the maximum of the range
profile acquired with the interference-contaminated signal.

According to Fig. 5(a), all the interference mitigation meth-
ods, i.e., zeroing, the Burg-based method, IVM, IMAT, and the
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MP-based method, significantly reduce the “noise” floor of the
range profile and, thus, increase its dynamic range compared
to the one obtained with the interference-contaminated signal.
Among them, the zeroing method is computationally most
efficient by simply replacing the interference-contaminated
samples with zeros, however resulting in a gap between the
front and rear signal samples. Consequently, it causes high
sidelobes and some SNR loss in the range profile compared to
that obtained with the reference signal. Specifically, from the
insets in Fig. 5(b) and (c), the peaks of targets’ range profiles
obtained after zeroing are 1.9 dB lower than those formed
with the reference signal and the signal reconstructed with
the MP-based method. Although the Burg- and IVM-based
methods efficiently interpolate the samples in the cutout gap
and result in comparable/identical range profiles as the ref-
erence signal for the target at the short distance, they fail to
overcome the power loss for the two weak targets at the further
distances and get range profiles close to that of the zeroing
method [see the insets in Fig. 5(c)]. The IMAT overcomes
the power loss for all targets but the large phase difference
of its reconstructed samples from the reference results in
asymmetrical sidelobes of the range profile [see Fig. 5(b)]. By
contrast, the MP-based method not only conquers the power
loss of the range profile for all the targets but also accurately
reconstructs their range profiles in terms of both the mainlobe
and the sidelobes. Therefore, its recovered signal samples in
the cutout region are more accurate than those obtained by the
Burg-based method, IVM, and IMAT.

In addition, compared to the straightforward extrapolation
of the Burg-based method and IVM, the proposed MP-based
approach introduces a heuristic iterative scheme to refine
the sample reconstruction. To demonstrate the effect of the
MP method and the iterative scheme, the recovered signal
by the MP-based approach in the first iteration is shown
in Fig. 4(c), and the convergence of difference ε with respect
to the number of iterations is displayed in Fig. 6. These
reveal that the MP-based method gets sufficiently accurate
reconstruction of the samples in the cutout region in the first
iteration [“MP(1 iter)” in Fig. 4(c)] compared to the other
methods, and then, the iterative scheme further improves the
recovered samples.

C. Extended Target Scenario

The applicability of the proposed method to extended target
scenarios is investigated in this section. The parameters used
for the simulation are shown in Table I. An extended target was
constructed with 15 point scatterers randomly generated with
adjacent interdistances between 1 and 1.8 m (i.e., less than
the range resolution of 3.75 m in the simulation setup). The
target was located at the range of 3–3.025 km away from the
transceiver. The amplitudes and phases of the scattered signals
from these closely spaced scatterers were random values with
uniform distribution in [0, 0.05] and uniform distribution in
[0, 2π], respectively. A beat signal with the SNR of 15 dB
was synthesized by adding white Gaussian noise to consider
measurement errors and thermal noise of the system and also
contaminated by a strong interference with the same center

frequency but a sweep slope of −0.98 times that of the victim
radar. The resultant beat signal is illustrated in Fig. 7(a).

To mitigate interference, the interference-contaminated sam-
ples are first detected and cut out. The result is shown in
top figure in Fig. 7(d). Then, the signal model order was
estimated by using the SAMOS method based on the other
interference-free samples. However, due to the strong corre-
lation among the beat signals scattered by the closely spaced
scatterers, the model order was selected to be two by using
the SAMOS method, which is significantly different from the
theoretical value of 15 [see Fig. 7(b)]. Thus, the SAMOS
method cannot work properly in such scenarios. To investigate
the reason for the failure of the SAMOS, we checked the
singular value distribution of the matrix used for model order
selection, as shown in Fig. 7(c). Based on Fig. 7(c), it is
obvious that a proper model order should be not smaller than
four. Taking the model order of four, the signal samples in
the cutout region were recovered by using the Burg-, IVM-
and MP-based methods; these samples were also reconstructed
by using the IMAT with m = 3. The obtained signals
are shown in the two bottom plots in Fig. 7(d) and (e),
respectively. It is clear that the IVM-based interpolation is
not stable, and a blow-up is observed in Fig. 7(e). Meanwhile,
compared to the Burg-based method and IMAT, the proposed
MP-based method reconstructed the signal samples with the
best agreement with the reference signal [see the bottom plot
in Fig. 7(d)]. Taking the FFT of the signal obtained after
zeroing and the recovered signals with the Burg-based method,
IMAT, and the MP-based method, the related range profiles of
targets were constructed and shown in Fig. 8(a). As expected,
the range profile of the targets constructed with the signal
recovered with the MP-based method has the best agreement
with that formed using the reference signal.

Moreover, we also reconstructed the signal samples in
the cutout region using the three methods by setting the
model order to be 15. Again, a blow-up as in Fig. 7(e) is
observed in the recovered signal by the IVM-based method
(here the figure is omitted for conciseness). Thus, it indicates
that the instability of the IVM-based method may not be
caused by the underestimation of the signal model order.
Meanwhile, the recovered signal by the Burg-based method is
still less accurate than that obtained with the MP-based method
[see Figs. 7(f) and 8(b)]. The RSNRs and correlation coef-
ficients of the recovered signals by the Burg-based method,
IMAT, and MP-based approach are quantitatively evaluated
and shown in Table III. It is clear that the MP-based method
recovered the signal with the highest RSNRs and correla-
tion coefficients with largest magnitudes and smallest phases
(except when model order = 4), which further confirms that
the MP-based method is superior to the Burg-based method
and IMAT in terms of the signal reconstruction accuracy.

Finally, we want to mention that, when multiple point
targets in the same range bin are very close to each other,
the Burg-based method could occasionally outperform the
proposed MP-based method (for conciseness, we do not show
it here). As the close targets in a range bin result in highly
correlated beat frequencies, the characteristic polynomial of
the corresponding AR model has many closely spaced roots.
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Fig. 7. Numerical simulation for interference mitigation in the extended target scenario. (a) Interference-contaminated beat signal of an extended target.
(b) Metric values of the SAMOS approach for model order selection. (c) Singular values distribution of the matrix constructed for model order selection.
(d) Results after interference mitigation: top: beat signal after zeroing; middle: reference beat signal and the beat signals recovered with the Burg- and
MP-based methods with the model order of four; and bottom: close-up view of the recovered samples in the cutout region. (e) Beat signal recovered by the
IVM with the model order of four. (f) Recovered beat signals with the model order of 15.

TABLE III

RSNRS AND CORRELATION COEFFICIENTS OF THE RECOVERED SIGNALS WITH THE BURG-BASED METHOD, IMAT, AND THE MP-BASED APPROACH

The proposed MP-based method tends to estimate some
dominant sinusoidal components (i.e., roots) that are close
to the real roots in the mean square error sense, while the
Burg-based method attempts to estimate the coefficients of
the characteristic polynomial of the AR model. Apparently,
the latter operation is easier in such cases; thus, the Burg-based
method could result in more accurate signal estimation.

D. Effect of the Model Order Underestimation

Besides the comparison of the recovered signals with dif-
ferent model orders in Section IV-C, the effect of model
order underestimation on the performance of the reconstructed
signal was further investigated through Monte Carlo sim-
ulation using the parameters for the point target scenario.

Simulations were run 100 times with different noise imple-
mentations at each case of the cutout gap size, which is, for
generality, defined by the ratio between the number of the
removed interference-contaminated samples and the number
of all signal samples in a sweep. The average RSNRs and
ρ’s of recovered signals are shown in Fig. 9. Note the IMAT
reconstructs the samples in the cutout region based on a
threshold (with m = 2.5) but does not need model order
estimation. Due to the instability of IVM, its results are not
presented. One can see that the results of both the Burg-based
method and MP-based approach only slightly degrade when an
underestimated model order of two was used compared to that
with the exact model order of three. Meanwhile, although the
IMAT performs better than the Burg-based method in terms of
RSNR when the gap size is not larger than 30%, its recovered

Authorized licensed use limited to: TU Delft Library. Downloaded on August 18,2021 at 14:07:58 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: MP APPROACH-BASED INTERFERENCE MITIGATION FOR FMCW RADAR SYSTEMS 11

Fig. 8. Range profile of the extended target obtained with the reference
signal, the interference-contaminated beat signal, the signals obtained with
zeroing, and the signals recovered by the Burg- and MP-based methods with
(a) model order of four and (b) model order of 15.

Fig. 9. Impact of model order estimation on the performance of the sample
reconstruction. (a) and (b) RSNRs and correlation coefficients of the recovered
signals with the model order of two (indicated by ♦) and model order of
three (�) by the Burg-based method (dashed line) and the MP-based approach
(solid line). The results obtained with the IMAT method are indicated by the
dashed-dotted line.

signals have a large phase difference from that of the reference
[see Fig. 9(b)]. At the same time, the IMAT is always inferior
to the MP-based method according to both RSNRs and ρ’s of
the recovered signals.

On the other hand, note that an underestimated model order
could, in principle, cause some degradation of the accuracy of
the recovered samples with the MP-based method. However,
this degradation could depend on the correlation among the
exponential components [17], [31]. As each singular value
spectrum is not attributed to a single exponential component,
an underestimated model order would lead to a certain loss
of the power of some exponential components but does

not mean that they would not be recovered entirely, espe-
cially for the case with highly correlated complex exponents
[see Fig. 7(d) and (f)].

E. Effect of the Length of Interferences and SNR

The impact of the interference duration (equivalently,
the size of the cutout gap caused by interference suppression)
and the SNR on the performance of the proposed MP-based
method for signal recovery is investigated in this section.
The simulation parameters for the point target scenario in
section IV-B were used here. In the simulation, the SNR
changes from −30 to 10 dB with steps of 10 dB, and at each
SNR, the interference duration increases from 10% to 50%
with steps of 10%. To investigate the statistical performance
of the proposed MP-based approach, 100 Monte Carlo runs
were conducted at each SNR with each specific gap size.
The average RSNRs and ρ’s of the recovered signals with
the Burg-based method, IMAT, and the MP-based method are
shown in Fig. 10 (due to the blow-ups of signals recovered
with the IVM-based method, its related results are omitted
here).

From Fig. 10(a), one can see that the RSNRs of the
signals reconstructed with the Burg- and MP-based methods
are almost identical when SNR < 0 dB, and they gradu-
ally improve and become larger than the SNRs with the
increase in the size of the cutout region. This is because,
when SNR < 0 dB, the zeroing operation eliminates, besides
interferences, more noise power than that of useful signals.
Then, the RSNRs of the reconstructed signals would improve
compared to the original SNRs as long as the useful signal
samples in the cutout region can be recovered with cer-
tain accuracy by using either of the model-based methods
(i.e., the Burg- and MP-based methods). When SNR ≥ 0 dB,
the zeroing operation suppresses more signal power than noise
power in the cutout region. The MP-based method accurately
recovers the signal samples in the cutout gap by jointly using
the sampling at both sides of the gap; thus, the RSNRs
of obtained signals are improved in contrast to the original
SNRs. In particular, when the cutout gap occupies 50% of the
whole sweep, almost half of the noise power is suppressed;
thus, 3-dB improvement of RSNR relative to the SNR of
the input signal can be obtained as long as the useful signal
samples in the cutout region are accurately reconstructed
[see Fig. 10(a)]. On the other hand, the Burg-based method
separately forward/backward extrapolates signal samples in the
gap based on the data on one side of the gap but fails to
recover the signal samples in the gap with sufficient accuracy,
which leads to decreased RSNRs of the reconstructed signals
compared to the original SNRs. Therefore, in terms of the
RSNR of the recovered signal, the Burg- and MP-based
methods obtain comparable results when SNR < 0 dB, while
the latter one outperforms the former one when SNR ≥ 0 dB.
Furthermore, based on Fig. 10(a), the RSNR of the recovered
signals by the IMAT seems almost constantly inferior to those
by the Burg- and MP-based methods at all the SNRs with gap
sizes from 10% to 50%.
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Fig. 10. Impact of gap duration and SNR on the accuracy of the reconstructed signals with the Burg-based method (dashed blue lines), IMAT (dash-dotted
green lines), and MP (solid red lines)-based methods. (a) RSNRs with different gap durations. (b) and (c) Moduli and phases of the correlation coefficients
with respect to different gap durations.

Regarding the modulus of the correlation coefficient
(i.e., |ρ|), Fig. 10(b) shows that the MP-based method con-
stantly obtains comparable/better signal reconstruction com-
pared to the Burg-based method and IMAT. Moreover, with the
increase in the SNR and the interference duration, the perfor-
mance advantage of the MP-based method to the Burg-based
one and IMAT becomes larger. However, the phases of the
correlation coefficients (i.e., 	 ρ) between the recovered signals
with both MP- and Burg-based methods and the reference
are comparable when the interference duration is smaller than
40% [see Fig. 10(c)]. They gradually reduce to zero with the
increase in the SNR of the original signal. However, compared
to those of both MP- and Burg-based methods, the phases
of the correlation coefficients of the signals obtained by the
IMAT show much greater fluctuations with different gap sizes.
Therefore, according to the above analyses, the MP-based
method generally achieves more accurate signal reconstruction
than the Burg-based method and IMAT in terms of both RSNR
and the correlation coefficient of the recovered signal.

F. Computational Efficiency

The Burg-based method, IVM, and IMAT are all very
computational efficient as the first two methods just separately
extrapolate the data in the gap from both sides, while the
third one utilizes the efficient FFT. By contrast, the proposed
MP-based method uses the SVD and an iterative scheme to
recover the samples in the cutout region by jointly taking
advantage of the data from both sides. Thus, its computa-
tional load is slightly heavier than that of the Burg- and
IVM-based methods, which depends on the number of iter-
ations in practice. For a scenario with moderate interference
duration (20%–30%) and SNR, the MP-based method gener-
ally needs several iterations. Specifically, for the simulation
in Section IV-B, it took 0.02, 0.15, 0.03, and 27.05 s for
the Burg-based method, IVM, IMAT, and MP-based method,
respectively, when they were implemented in MATLAB and
run on a computer with Intel Core i5-3470 central unit
processor (CPU) @ 3.2 GHz and 8-GB random access mem-
ory (RAM). In this case, four iterations were performed in
the MP-based method. To accelerate the MP-based method,
the Lanczos iteration [32] or the randomized algorithm [33]
for the SVD could be exploited in the future.

V. EXPERIMENTAL RESULTS

In this section, experimental results with radar observations
of an industrial chimney and raindrops are presented to demon-
strate the effectiveness and accuracy of the proposed MP-based
interference mitigation method.

A. Experimental Setups

The experiments used the TU Delft PARSAX S-band
(3.1315 GHz) full-polarimetric FMCW radar system [34].
In the experiments, we consider the interference problem
encountered when all components of the full-polarimetric
scattering matrix are measured simultaneously. To this end,
PARSAX radar transmits simultaneously two orthogonally
polarized (e.g., H- and V-pol) and mutually orthogonal in
time FMCW chirps (e.g., up-chirp for H-pol and down-chirp
for V-pol) through two transmission channels and then simul-
taneously receives H- and V-pol scattered signals through
the four receiver channels (i.e., HH-, HV-, VH-, and VV-pol
channels, where the two capital letters represent, respectively,
the polarizations of the transmitter and the receiver in order).
In the V-pol signal path in the receiver, the V-pol scattered
signals (i.e., a mixture of HV- and VV-pol signals) pass
through the HV- and VV-polarimetric receiver channels. The
HV- and VV-pol signals are separated through deramping
with the transmitted up- and down-chirps, respectively, and
low-pass filters. In such an operational mode, the interfer-
ence between HV- and VV-pol scattered signals exists at
the time moment when instantaneous frequencies of the up-
and down-chirps are coming closer to each other so that the
resulting beat signals are within the bandwidth of the low-pass
filter in the receiver. This kind of interference is categorized
as Case 2 in Fig. 2. A similar interference exists between the
HH- and VH-pol scattered signals. As the co-pol (i.e., HH and
VV) signals are generally much stronger than the cross-pol
(i.e., VH and HV) ones, this interference has a larger effect
on the cross-polarized signals. Therefore, the cross-polarized
(specifically, HV-pol) signals are processed for the following
demonstration.

In Experiment 1, we used an industrial chimney as a
stationary target and took measurements for a single sweep.
The chimney is about 1.07 km away from PARSAX radar
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Fig. 11. Experimental measurement setup. (a) PARSAX radar on the roof
of the EEMCS Faculty Building. (b) Industrial chimney used as a stationary
target.

TABLE IV

RADAR PARAMETERS FOR THE TWO EXPERIMENTAL MEASUREMENTS

(see Fig. 11). In Experiment 2, PARSAX radar pointed ver-
tically observes a rain storm, which can be considered as a
distributed target. The parameters for experimental measure-
ments are listed in Table IV.

B. Experiment 1: Stationary Isolated Target (Chimney)

The acquired HV-pol beat signal (i.e., “sig_Int” in the
solid red line) scattered from the chimney is shown
in Fig. 12(a). It was contaminated by the strong VV-pol
signal arrived together at the receiving antenna, and the
interference-contaminated samples are indicated by a dashed
red rectangle in Fig. 12(a). For comparison, the reference
HV-pol signal (i.e., “ref sig”) acquired by only transmitting
a single H-pol up-chirp signal is also presented.

To suppress the VV-pol interference, the received signal
was processed by using the zeroing, the Burg-based method,
IVM, IMAT, and the proposed MP-based interference mit-
igation method. For the Burg-based method, IVM, and the
MP-based method, SAMOS was initially used to estimate the
signal model order, and a model order of two was selected,
which is highly underestimated considering the complex envi-
ronment surrounding the chimney. Hence, we decided to
select the model order empirically based on the normalized
singular value distribution of the matrix used by SAMOS
[see Fig. 12(b)]. With a threshold of 10−2 (i.e., 20 dB) for
the normalized SVs, a model order of 40 was selected and
used by the three methods for signal reconstruction. For the
IMAT, the parameters are computed based on the equations
in [13] with m = 3. The obtained signals by these methods
are shown in Fig. 12(c) and (d). Comparing the signals
in Fig. 12(c), the MP-based method almost accurately recon-
structs the clipped samples in the interference-contaminated
region, while the Burg-based method and IMAT recover

these samples with underestimated/overestimated amplitudes
in some regions. By contrast, the IVM-based method leads to
a blow-up in the recovered beat signal [see Fig. 12(d)], which
again shows its instability.

Moreover, the range profiles constructed with the
interference-contaminated signal, reference signal, and
the signals acquired after interference mitigation are
displayed in Fig. 13(a) (due to invalid signal recovery of
the IVM-based method, its RP is omitted). It is clear that
the range profile obtained with the interference-contaminated
signal has a higher “noise floor” in contrast to those formed
with other signals, which would mask weak targets. For
the convenience of comparison, the close-ups of the range
profiles of the chimney at the distance of 1.07 km and
some weak targets at the distance of 4.3 km in Fig. 13(a)
are shown in Fig. 13(b) and (c). From Fig. 13(c), a clear
peak for a weak target at the distance of 4.24 km can be
observed in the range profiles generated with the reference
signals and the signals recovered after interference mitigation.
By contrast, a deep null is seen at the same position in
the range profile formed with the interference-contaminated
signal, which could be caused by the destructive interference
between the interference and the target’s signal. Moreover,
the range profiles obtained with signals after mitigating the
interference by using the Burg-based method, IMAT, and
the MP-based method are comparable to the reference one
and have lower sidelobes for the weak targets around the
distance of 4.3 km. On the other hand, the range profile
of the chimney acquired after processing with the proposed
MP-based interference mitigation is almost identical to the
one formed with the reference signal. However, the zeroing
caused a void of signal samples, and the Burg-based method
and IMAT underestimated the signal amplitude in the cutout
region; thus, they cause higher sidelobes and power loss in
the constructed range profiles [see the insets in Fig. 13(b)].

C. Experiment 2: Distributed Target (Rain)

In this experiment, we used 512 sweeps as a coherent
processing interval (CPI) for full-polarimetric measurements
of rain droplets. After simple preprocessing to suppress the
direct coupling, the acquired HV-pol signals in all the sweeps
are shown in Fig. 14, where the interference-contaminated
samples are located in the time interval from 0.4 to 0.6 ms.
The interference was caused by the VV-pol signals, which are
generally much stronger than the desired HV-pol signals (see
the much larger amplitudes of the interference-contaminated
samples relative to the rest). Thus, after the R-D processing,
the formed R-D map of the rain droplets is completely
overwhelmed by the interference, as shown in Fig. 16(a).

As the raindrops are moving targets, we suggest first taking
the FFT with respect to the slow time in a CPI and then
performing the interference mitigation to the time signal along
each Doppler bin to avoid the possible detrimental impact of
errors caused by interference mitigation on the Doppler infor-
mation. Fig. 15(a) shows the time signal in a Doppler bin after
taking the FFT along the slow time, and the interference is
still observed in the interval from 0.4 to 0.6 ms. Applying the
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Fig. 12. Beat signal acquired in one FMCW sweep for the chimney observation. (a) Measured beat signals with (i.e., “sig_Int” in the red solid line) and
without the cross-polarimetric interference (i.e., “ref sig” in the blue dashed line). (b) Signals around the interference-contaminated region after interference
mitigation using zeroing, Burg- and MP-based methods. (c) Recovered beat signal with the IVM-based method.

Fig. 13. Range profiles of the Chimney scenario obtained with the signals before and after interference mitigation. (a) Range profiles of the scenario within
10 km from the radar. (b) and (c) Zoomed-in views of the range profiles of the targets at the distances of 1.07 and 4.3 km from the radar, respectively.

Fig. 14. Signals of all the sweeps scattered from rain droplets.

proposed MP-based interference mitigation method, zeroing,
the Burg-based method, IVM, and IMAT to this time signal,
the resultant signals are presented in Fig. 15(b). The Burg-
and IVM-based methods reconstruct only some samples that
are close to the front and rear available measurements in the
cutout gap with underestimated amplitudes, while both IMAT
and the MP-based method manage to recover all the samples
in the gap. However, as the reference signal is unavailable

Fig. 15. Time signals at a Doppler bin after taking FFT along the slow-time
dimension. (a) and (b) Time signal before and after interference mitigation.

in this case, we could not directly evaluate the accuracy of
their recovered samples; alternatively, the R-D map of rain
droplets will be used in the following. Note that, for the rain
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Fig. 16. R-D processing results of the rain data. (a) RD map obtained with the original interference-contaminated signals. (b)–(f) are formed by the signals
after interference mitigation by using the zeroing, the Burg-based method, IVM, IMAT, and the MP-based method, respectively. (g)–(j) Corresponding power
differences between the RD maps in (c)–(f) and (b).

dataset, the SAMOS method could not estimate proper model
orders, either. Thus, we empirically determine the model order
of the signal in each Doppler bin based on the normalized
singular value distribution of the matrix used by SAMOS with
a threshold of 10−4. The estimated signal model order was
used by the Burg-, IVM- and MP-based methods to reconstruct
the signal in the cutout region. Meanwhile, the IMAT was
implemented with the parameter m = 3.

After mitigating the interferences for the time signals in all
Doppler bins, an FFT is taken along the fast time to get the
R-D map of the raindrops. Fig. 16(b)–(f) presents the obtained
R-D maps in the logarithmic scale of the moduli of signals
after interference mitigation with zeroing, the Burg-based
method, IVM, IMAT, and the MP-based approach, respec-
tively. It is clear that, due to the instability of the IVM-based
method, it could not reconstruct a proper R-D map of the rain
droplets [see Fig. 16(d)]. By contrast, the other four R-D maps
[see Fig. 16(b), (c), (e), and (f)] are visually almost identical,
and their qualities are noticeably improved compared to that
obtained without interference mitigation [see Fig. 16(a)].

Due to the lack of ground truth reference, we alternatively
assess the improvement of the R-D maps obtained with the
Burg-based method, IVM, IMAT, and the MP-based method
relative to the one got with zeroing by computing the power
differences between the pixels of the R-D maps of the three

signal reconstruction methods and the zeroing method. The
results are shown in the linear scale in Fig. 16(g)–(j). One
can see that the power difference between the R-D maps
of MP-based method and zeroing in Fig. 16(j), compared
with that in Fig. 16(g), presents a pattern much closer to
the R-D maps in Fig. 16(b), (c), (e), and (f). As, in the rain
dataset, the strong VV-pol interferences appear at a similar
time interval in all the sweeps within the CPI, the zeroing
method eliminates the signal samples within this time interval
(i.e., between about 0.4 and 0.6 ms) in all the sweeps. Thus,
the power difference of the R-D maps of zeroing and the other
three methods are determined by the contribution of the beat
signal samples in the cutout region. Theoretically, the beat
signals of rain droplets in the cutout time interval in a CPI
can be considered as the acquired data by using an FMCW
radar with narrower bandwidth (i.e., shorter FMCW sweep
duration) but keep other system parameters unchanged; thus,
they can form a similar R-D map as that obtained with the
full-sweep signals in the CPI but with lower range resolution.
Namely, the more accurate the signal samples recovered by
the Burg-based method, IVM, and the MP-based method in
the cutout region are, the closer to the actual R-D map the
pattern of the power difference between the R-D maps of these
methods and the zeroing approach. Therefore, the MP-based
method gets a more accurate estimation of the signals in
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the cutout region than the Burg-based method. Meanwhile,
compared to Fig. 16(i), Fig. 16(j) has a closer pattern to
the R-D maps in Fig. 16(b), (c), (e), and (f) (see the area
around the range of 2.8 m and the Doppler frequency of
50 Hz, and the region around the range of 1 km and the
Doppler frequency of 100 Hz). Thus, the samples recovered
by the MP-based method are more accurate than those by the
Burg-based method, IVM, and IMAT.

VI. CONCLUSION

In this article, we present an MP-based interference mitiga-
tion method for FMCW radar systems. The proposed method
exploits the feature of the desired beat signals as a sum of
exponential sinusoidal components, which is different from
the chirp-like waveforms of interferences after dechirping
on reception, for interference suppression. The method is
implemented in two steps by first detecting and cutting out
the interference-contaminated samples and then recovering the
signal samples in the cutout region based on the exponential
sinusoidal model of desired beat signals. It addresses the
discontinuity of the signals caused by the traditional zeroing
technique and overcomes the power loss of useful signals.
Meanwhile, it results in lower sidelobes of the range profile
of a target. Moreover, providing an accurate, compared to
the existing methods (i.e., the Burg-based method, IVM, and
IMAT), reconstruction of the signal after direct implementa-
tion, it significantly improves the accuracy of the reconstructed
signals in the cutout region by an iterative estimation scheme,
which has demonstrated through both numerical simulations
and experimental results. The numerical simulations also
reveal that the proposed method can robustly work in scenarios
with a low SNR (down to 0 dB) and with a long interference
duration (up to 50% of a sweep). In addition, the proposed
MP-based method can be extended to 2-D or high-dimensional
cases to mitigate interferences directly in a higher dimen-
sional space (e.g., RD or range-DOA domains), especially for
point-target scenarios, which would be considered in future
work.
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