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Abstract

The TANGO mission represents a significant leap forward in the global monitoring of

greenhouse gas emission plumes, particularly CO2 and NO2. Comprising two satellites,

TANGO-Carbon and TANGO-Nitro, the mission is designed to operate from 2027 to 2031,

offering unprecedented capabilities through stereo (temporally separated) and high spatial res-

olution emission plume images. These capabilities create a unique framework that facilitates

the development of novel estimation methods for emission rates of greenhouse gas emitters.

Conventional methods for estimating emission rates of CO2 and NO2 rely on combining gas

concentration measurements with wind velocity fields derived from meteorological data,

often introducing substantial uncertainties due to the inherent inaccuracies in wind velocity

estimation. To address this challenge, this research explores alternative methods enabled

by TANGO’s innovative framework, which allows for the direct measurement of emission

plume velocity from concentration data. By eliminating the dependency on uncertain me-

teorological inputs, these methods promise to reduce the uncertainty in emission rate estimates.

Through detailed simulations and analyses, this research demonstrates that the TANGO

mission can effectively establish a framework for directly measuring emission plume velocities.

By simulating the data products of the TANGO satellites using Large-Eddy Simulations

and applying advanced methods such as traditional Correlation Image Velocimetry (CIV)

and Computer Vision Correlation Image Velocimetry (CVision-CIV), wind velocity fields

were successfully estimated from plume imagery. These estimates were found to be of

promising precision across a range of conditions, including varying wind velocities, emission

rates of greenhouse gasses, and levels of measurement noise in the simulations. Results

revealed that the CVision-CIV method outperforms the traditional CIV method, especially

in scenarios with low signal-to-noise ratios. Wind velocity fields directly estimated from

plume imagery were implemented in the Cross-sectional Flux Method to estimate CO2

emission rates. The emission rate estimates indicate that direct plume velocity measure-

ments provide a more accurate estimate of emission source rates than conventional methods,

which rely on indirect wind velocity estimates from meteorological data. The use of wind

velocity fields obtained through the CVision-CIV method resulted in CO2 emission rate

estimates with ±20% accuracy in most scenarios, particularly under optimal SNR conditions.

Additionally, the study highlights the impact of mission parameters such as image resolu-

tion and measurement noise on the accuracy of wind velocity estimations. It was found

that higher image resolution and longer time intervals between measurements enhance the

precision of wind velocity field estimates by reducing the relative effects of measurement noise.

In summary, this research demonstrates that direct estimation of wind velocities from emission

plume imagery, as enabled by the TANGO mission’s advanced capabilities, can accurately be

performed and significantly enhance the accuracy of emission rate estimates. The improved

wind velocity estimation methods proposed in this thesis offer a promising advancement in

remote sensing techniques for greenhouse gas monitoring.
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1
Introduction

1.1. The Mission: Monitoring and Reducing Greenhouse Gas
Emissions

1.1.1. Anthropogenic Emissions
The combustion of fossil fuels has resulted in increased atmospheric CO2 levels, contributing

to global climate change (Quadrelli and Peterson (2007)). In recognition of the dangers

and possible irreversible consequences of climate change, there exists a heightened global

commitment to restricting CO2 emissions and greenhouse gas (GHG) emissions in general. A

primary goal of the United Nations Framework Convention on Climate Change (UN-FCCC)

Paris Agreement is to reduce these emissions. Consequently, there is a growing interest

in identifying sectors responsible for large CO2 emissions and accurately quantifying their

environmental impact.

Power generation in the form of electricity comprises over 40% of the total anthropogenic

emissions of CO2 (World Nuclear Association (2024)). Despite the growing competitiveness

of renewable energy costs, new inefficient power plants continue to be constructed, adding

substantial uncertainty to the future trajectory of anthropogenic CO2 emissions. To effectively

address this issue and enhance CO2 emission management, there is a pressing need for

improved quantification methods at various spatial scales, ranging from national to facility

level. This is particularly crucial in emerging economies where emission reporting systems

are often lacking, contributing to the global uncertainty in the quantification of anthropogenic

CO2 emissions (Wilkes et al. (2017)). DeCola and Secretariat (2017) and Ciais et al. (2015)

have indicated that quantifying anthropogenic emissions at the individual facility level is

imperative for enhancing emissions monitoring in order to support the regulation of carbon

trading/pricing systems proposed by several present international treaties (Perdan and

Azapagic (2011)).Currently, significant discrepancies exist in the total anthropogenic emission

estimates for point sources (Hogue et al. (2016)). The reduction of the uncertainty of point

source emission rate estimates will play an important role in monitoring and reducing GHG

emissions (Turnbull et al. (2016)).

1.1.2. Estimating Emission rates
Unfortunately, CO2 and GHG emission rates can not be accurately and practically measured

directly, but instead need to be inferred from emission characteristics that can be measured

directly (Nassar et al. (2017)). These emission characteristics include but are not limited

to spatial, concentration, and temporal differences between measurements of an emission

plume originating from a power plant, entire industrial facility, or urban region. Emission

characteristics can be obtained through measurements of the emission plume, measurements

which can originate from in situ measurement techniques or remote sensing techniques from

space.

In situ measurements for emission rate estimation are challenging to obtain due to limited

access, the complex nature of emission sources within facilities and spatial and temporal

variability in emissions. These factors, including restricted access to power plant sites, the

1
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variety of emission sources, and the high costs and technical demands of monitoring, pose

significant obstacles to obtaining accurate in situ measurements. Additionally, obtaining

measurements in situ is not easily scalable to the entire power plant industry or general GHG

emitters. Due to these limitations, in situ measuring is typically used for emissions estimation

on smaller scales or unique case studies (Jeong et al. (2005), Lushi and Stockie (2010), Brantley

et al. (2014), Foster-Wittig et al. (2015), Brantley et al. (2015), and Hosseini and Stockie (2016)).

A second way of obtaining the required emission characteristics relies on remote sensing

techniques from space, which display less variability compared to in situ measurements

since measurements from space are inherently smoothed due to their relatively low spatial

resolution (Bovensmann et al. (2010)). Moreover, once such measurement infrastructure is in

place, it is easily scalable and applicable to power plants and similar GHG emission sources

around the world independent of national protocols of emission rate reporting (Cusworth

et al. (2021)). Using these remote sensing techniques, emission plumes can be extracted and

studied to estimate the emission rates. Streets et al. (2013) have indicated the importance

and difficulty of estimating emission rates and how remote sensing techniques with high

resolution and agility are key to reducing uncertainties in emission rate estimates. Therefore,

when estimating emission rates from individual point sources, researchers are motivated to

utilize remote sensing techniques. Preferably, these methods should offer increased resolution

compared to current remote sensing infrastructure and the ability to repeatedly image different

point sources.

Before any emission rates are estimated, emitters must be precisely localized from measure-

ments obtained by remote sensing techniques. Presently, there exist three techniques of

reliably detecting emissions plumes from remote sensing techniques: either algorithms based

on statistical methods (Kuhlmann et al. (2021)) or based on traditional image processing

algorithms (Walt et al. (2014)) or algorithms implementing machine learning (Finch et al.

(2022)). The effectiveness of each method greatly depends on the setting in which it is applied,

since there exists disparity in the detectability of emissions. This discrepancy arises from two

main factors (Barratt (2013), Kuhlmann et al. (2021)). Firstly, certain pollutants, like CO2, are

naturally present in the atmosphere. Consequently, when measuring emission concentrations

for these pollutants, a significant background concentration is observed in the absence of

anthropogenic emissions. This background concentration differs and this discrepancy can

substantially affect image contrast, thereby influencing the detectability of emissions. Secondly,

emitted pollutants can undergo diverse interactions with the atmosphere. These interactions

range from various forms of atmospheric transport to reactions with naturally occurring

compounds in the atmosphere. They have the potential to greatly limit or completely hinder

the detectability of emissions affected by them.

1.1.3. Twin Anthropogenic Greenhouse Gas Observers
Obtaining emission measurement from remote sensing methods often relies on coarse spatial

resolutions (Streets et al. (2013), Nassar et al. (2017)), making it challenging to locate individual

emission sources accurately. The aggregated data from such techniques may not capture the

subtle variability and intensity of emissions from specific industrial facilities, urban areas

or natural sources. This limitation stems from the generally low spatial resolution, which

hampers the observation of fine-scale patterns and localized peaks in observed emissions.

Therefore, detailed measurements of individual emissions point sources are especially impor-

tant to eliminate the large discrepancies between true and estimated anthropogenic GHG

emission rates (Hogue et al. (2016)). Therefore, there is a critical need for higher resolution

remote sensing methods.

To satisfy this need, the Twin Anthropogenic Greenhouse Gas Observers (TANGO) mission

emerges as a pioneering satellite initiative set to make significant contributions to global

environmental monitoring. Designed to address the need for accurate measurements of

anthropogenic GHG emissions, TANGO represents a new approach in the realm of Earth

observation (Landgraf et al. (2020)). TANGO comprises two satellites, TANGO-Carbon

and TANGO-Nitro, flying in close formation with a minimal time difference of Δt < 60

seconds. TANGO’s mobility enables it to aim directly at known emission sources every

three to four days, providing precise and frequent measurements. Additionally, its unique

design allows TANGO to provide independent and precise measurements of emissions from

industrial facilities at a spatial resolution as high as 300 m x 300 m. This spatial resolution
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is comparatively higher than the resolution of its predecessors (7 km x 3.5 km TROPOMI

Copernicus Open Access Hub (2024), 1.29 km x 2.25 km OCO-2 eoPortal (2024)) which had

similar objectives of measuring anthropogenic GHG emissions.

Figure 1.1: Depiction of the Twin Anthropogenic Greenhouse Gas Observers mission. The image displays the two

CubeSats called TANGO-Carbon and TANGO-Nitro in the same orbit spaced by Δ𝑡.
Source: SRON (2023)

Due to its capabilities, the TANGO satellite mission is positioned as a crucial step toward

realizing the goals set by the Paris Agreement. TANGO’s data will complement major

European satellite missions, enhancing the detection capabilities of the European Space

Agency (ESA) Sentinel 5 mission. This relatively small mission allows for swift realization,

with data becoming available after its planned launch in 2027 (SRON (2024)). This early

availability provides an additional year of data collection, contributing to the UN-FCC Global

Stock Take scheduled for 2028 and supporting the fulfillment of Paris Agreement goals.

1.1.4. Problem Statement
The TANGO mission enables a significant advancement in the monitoring of GHG emissions.

The mission, comprising two satellites, TANGO-Carbon and TANGO-Nitro, is designed to

measure NO2, CO2, and CH4 gases globally and independently from 2027 to 2031. The

capabilities of TANGO which comprise stereo imaging and high spatial resolution, establish

a unique framework that enables the application of new estimation methods for individual

emission rates.

In conventional emission rate estimation methods for CO2, a combination of gas concentration

measurements with wind velocity fields estimated from meteorological data is used. Yet,

these established methods introduce substantial uncertainties in emission rate estimates

through the relatively uncertain wind velocity field estimates. To address this challenge, this

thesis aims to investigate alternative methods, enabled by the unique framework created

by TANGO, that directly measure the velocity of the emission plume from concentration

measurements. These alternative methods would eliminate the dependency on uncertain and

sparsely available meteorological data altogether.

Once these alternative methods have been implemented, the level of uncertainty achievable

using alternative methods will be obtained and studied. Therefore, this thesis will also

aim to investigate the factors influencing the accuracy of emission rate estimation utilizing

direct plume velocity measurements and identify the optimal design for mission parameters,

measurement strategies, and analysis techniques.

1.2. Emission Rate Estimation Methods
Unfortunately, emission rates cannot be measured directly. Instead, emission rates can only be

inferred from plume characteristics once plumes have been detected. In the case of emissions
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in our atmosphere, which are transported by diffusion and advection, there currently exist

several methods to estimate emission rates: inverse methods, mass balance methods, and the

novel computer vision approach.

1.2.1. Inversion Methods
Inversion methods involve the iterative adjustment of emission parameters until modeled con-

centration distributions closely match measured concentration distributions. These methods

leverage atmospheric dispersion models to simulate the transport and dispersion of pollutants,

considering complex factors such as wind velocity patterns and atmospheric stability.

Roberts (1923) and Sutton (1931) were the first to study atmospheric dispersion problems

subject to several different assumptions, boundary conditions, and parameters. Their studies

introduced a new diffusion coefficient, aiming for constancy over varying spatial scales,

building upon the concept of eddies with a novel consideration for its size variation based

on the characteristic length scale of diffusing. Additionally, the main finding suggests that

turbulent scattering of suspended matter or temperature diffusion in the atmosphere can

be likened to heat diffusion in solids, with a variable eddy-diffusion coefficient. Their new

analytical and exact solutions have proven to be invaluable in today’s world with use cases

varying from modeling dispersals of smell (Smith (1993)) to volcanic eruptions (Turner and

Hurst (2001)). For more detailed information with regards to different types of atmospheric

dispersion models, the reader is referred to Holmes and Morawska (2006).

Solutions provided by Roberts and Sutton and their present extensions have proved to be

very useful. However, they do not only enable atmospheric dispersion problems to be

modeled given the characteristics of the emission source and atmosphere; they also provide

the framework to inversely estimate these characteristics which might be inherently unknown

or hard to determine. The emission rate is one of them and can be determined inversely using

solutions to atmospheric dispersion models. These inverse methods use information about

and related to emissions sources as inputs for estimating the emission rate to a relatively high

degree of accuracy. Often these inputs prove relatively easy to obtain.

Emission rate estimation methods which rely on inverse methods have greatly been used

in literature, where the inverse Gaussian plume model has been predominately applied

(Hutchinson et al. (2017)) due to its relative simplicity and fast computation. This model is

mainly governed by the atmospheric turbulence coefficients 𝜎𝑦 and 𝜎𝑧 , defined as the standard

deviation related to mixing due to wind in orthogonal directions to the main direction of

advection experienced by the emission source. The eventual derivation of 𝜎𝑦 and 𝜎𝑧 is

highly dependent on the use case of the atmospheric dispersion model and its underlying

assumptions (Pasquill (1961) and Stockie (2011)). The equation of the Gaussian plume model

is defined in Equation 1.1.

𝐶(𝑥, 𝑦, 𝑧, 𝑄) = 𝑄

2𝑢𝜎𝑦𝜎𝑧𝜋
exp

(
− 𝑦2

2𝜎2

𝑦

) [
exp

(
−(𝑧 − 𝐻)2

2𝜎2

𝑧

)
+ exp

(
−(𝑧 + 𝐻)2

2𝜎2

𝑧

)]
(1.1)

where C is a concentration at position x,y,z and Q is the emission rate. Parameter �̄� represents

the uniform wind speed in the x direction and 𝜎𝑦 and 𝜎𝑧 represent the atmospheric turbulence

coefficients. H represents the height at which the emissions are released. For the complete

derivation, the reader is referred to Stockie (2011).

Krings et al. (2011) were the first to use this technique for emission rate estimation of individual

point sources which resulted in promising results. Their research was quickly extended using

different atmospheric turbulence coefficients and applied to estimate emission rates of several

different facilities and sectors, including individual power plants (Jeong et al. (2005), Lushi

and Stockie (2010), Hosseini and Stockie (2016), Nassar et al. (2017), Zheng et al. (2019), Hu

and Shi (2021), Li et al. (2024)).

Typically, inversion methods are relatively trivial to apply to estimate emission rates if coupled

with simple atmospheric dispersion models. However, their applicative ease originates

from the same characteristic that creates their main limitations; namely, their underlying

assumptions prove to be mere approximations in most cases. Assuming a constant and
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uniform wind velocity, for example, is one of those assumptions that proves to be unrealistic

when applied to real-world scenarios because of the dynamic and heterogeneous nature

of atmospheric processes. The atmosphere is characterized by a wide range of spatial

and temporal variations in temperature, pressure, humidity, and other factors, leading to

complex and variable wind patterns. Additionally, factors such as topography, land use,

and atmospheric phenomena introduce further complexity and non-uniformity into wind

patterns. Varon et al. (2018) have indicated that such unrealistic assumptions can cause

large deviations between true and estimated emission rates. Relying on more complicated

atmospheric dispersion models which depend on fewer assumptions has been shown to

increase the accuracy of emissions estimates, however, their increase in complexity limits their

applications.

1.2.2. Mass Balance Methods
In Mass Balance Methods (MBM), the estimation of emission rates involves applying the

divergence theorem. This theorem results from the mass balance principle, which determines

how the mass within a control volume changes (White et al. (1976), Pichler (1986)). It

achieves this by considering the integrated mass flux through the walls of a control volume or

boundaries of a control surface. The control volume is often defined as a box shape capturing

the area of the facility of interest, whereas the control surface could be taken at any point

within the plume perpendicular to the direction of the wind. This technique does not depend

on approximations or assumptions to the same degree as inverse methods; apart from external

wind measurements, it solely depends on the measurements taken of the control volume or

at the control surface. These required measurements often originate from remote sensing

methods from space.

White et al. (1976) were the first to apply the principle of mass balance to quantify atmospheric

fluxes. Their approach relied on determining the emission flux through several control

surfaces using remote sensing measurements of atmospheric concentrations and local wind

measurements. The horizontal mass flux 𝐹 of a compound of interest across a control surface

(CS) can be described as follows:

𝐹 =

‹

𝐶𝑆

𝑢𝑛(𝑥, 𝑧) [𝐶(𝑥, 𝑧) − 𝐶0(𝑥, 𝑧)] 𝑑𝑆 (1.2)

where 𝑥 is the distance downwind of the plume, and 𝑦 and 𝑧 are the crosswind and vertical

coordinates, respectively. Here, 𝑢𝑛(𝑥, 𝑧) represents the component of the wind speed normal

to the control surface. 𝐶(𝑥, 𝑧) is the concentration of interest, and 𝐶0(𝑥, 𝑧) is the average

background concentration, both derived from remote sensing measurements.

Following the publication of their proof of concept by White et al. (1976), numerous studies

and applications have utilized the principle of mass balance to estimate emissions from urban

areas (Trainer et al. (1995), Beirle et al. (2011), Cambaliza et al. (2014), Kuhlmann et al. (2020)),

oil fields (Karion et al. (2013), Gordon et al. (2015), Baray et al. (2018), Yang et al. (2018), Fried

et al. (2020)), wild fires (Goudar et al. (2023)) and individual power plants (Ryerson et al.

(1998), Kuhlmann et al. (2021), Kim et al. (2023), Wong et al. (2024)). These studies all used

remote sensing methods as their source of measurements.

MBMs are known for their relatively simple application since they only depend on the

concentration distribution and wind velocity field. Additionally, unrealistic assumptions used

in inversion methods are no longer present in MBMs. However, they also have their fair share

of limitations that restrict the number of use cases due to flow regimes that dominate the

atmospheric flow. For example, Varon et al. (2018) have shown that the results of the majority

of MBMs collapse when atmospheric flow is dominated by diffusion instead of advection.

1.2.3. Computer Vision Methods
The two estimation methods that were discussed in the previous two sections solely relied

on concentration measurements and wind velocity data. However, as Jongaramrungruang

et al. (2019) have indicated, information with respect to the morphology of present or current

emission plumes can also be used up to a certain extent to estimate emission rates of individual

power plants with increased accuracy.
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These deductions and findings motivated researchers to apply the pattern and shape recogni-

tion capabilities of Computer Vision (CVision) to the problem of emission rate estimation of

individual power plants. CVision is an interdisciplinary field at the intersection of Computer

Science and Artificial Intelligence (AI) which focuses on creating machine learning networks

with the ability to understand and interpret visual data. Their capability to extract features,

such as patterns, edges, or textures, enables them to create a meaningful interpretation of an

image. These capabilities originate from the hierarchical structure present in the majority

of CVision machine learning networks which are comprised of several fully connected con-

volutional layers. This structural design facilitates the detection and extraction of intricate

visual features across vast datasets. Due to their versatile capabilities, these machine learning

networks are used in several disciplines (Szeliski (2022)) including multiple environmental

science-related problems based on remote sensing techniques (Pan et al. (2020), Kumar et al.

(2020), Wang et al. (2020)).

Jongaramrungruang et al. (2022) were the first to apply CVision directly to the problem of

emission rate estimation. In doing so, they constructed MethaNet, a convolutional neural

network (CNN) consisting of ten layers, five of which were convolutional layers capable of

localizing and quantifying CH4 emissions source rates of individual power plants, using

simulated remote sensing data as input. MethaNet improved the accuracy of emission rate

estimates significantly compared to methods that require information with respect to the

local wind velocities. Additionally, MethaNet is also capable of estimating emission rates at

locations where wind information is unavailable.

Since the introduction of MethaNet, Joyce et al. (2022) and Radman et al. (2023) have extended

the research into the identification and quantification of CH4 emissions based on Sentinel-2

and PRISMA hyperspectral satellite imagery, respectively, instead of artificially simulated

data. Furthermore, Radman et al. (2023) studied deep learning architectures extended by

multiple convolutional layers created for emissions detection and quantification, resulting in

an architecture called S2MetNet which is capable of outperforming MethaNet. Additionally,

Jahan et al. (2023) have applied similar CVision techniques to detect and quantify emissions

originating from leakage in the oil and gas industry. Their proposed CNN, which was

comprised of five convolutional layers in a hierarchical structure, was capable of detecting

and quantifying leaks reliably and more accurately compared to methods dependent on

wind information. These studies have shown promising results in the field of emission rate

estimation, however, their applications are limited since the training procedures of their

CVision networks are quite niche and not applicable to general settings and pollutants.

1.3. Combination of CO2 and NO2 Emissions
One challenge in the estimation of emissions, particularly for CO2, lies in accurately de-

tecting emission plumes amidst the background concentrations present in the atmosphere.

The surrounding atmospheric conditions, influenced by various pollutants, can impact the

detectability of emitted GHG plumes (Kuhlmann et al. (2021)). Pollutants with minimal

background concentrations offer clearer detection of increased emissions (Kuhlmann et al.

(2021)).

Processes predominantly emitting GHGs are characterized by a mix of emissions. For instance,

emission plumes from sources like cities, power plants, or wildfires often contain a combi-

nation of CO2 and NO2 emissions (Hakkarainen et al. (2021)). Both CO2 and NO2 disperse

similarly in the atmosphere due to their similar coefficients of diffusion and molecular weights

(Massman (1998)), with slight variations in dispersion due to factors like the decay rate of

NO2 at different elevations and exposures to sunlight (Hakkarainen et al. (2021)). However,

these variations are considered insignificant compared to the accuracy of CO2 concentration

measurements (Bovensmann et al. (2010)).

As a result, researchers leverage the temporal and spatial correlation between these CO2

and NO2 emissions. CO2 concentration measurements face challenges in detecting plumes

due to increased background concentrations and reflective properties of CO2. In contrast,

NO2 concentration measurements are less hindered, as NO2 has a short atmospheric lifespan

and negligible background concentrations (Seinfeld and Pandis (2016)). This characteristic

makes NO2 concentrations less affected by long-range transport, allowing for more robust
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interpretation in a local setting (Goldberg et al. (2019)). Given the high correlation between

CO2 and NO2 emissions, information from NO2 emissions aids in enhancing the detection

and quantification of CO2 emissions.

Numerous studies have capitalized on the spatial and temporal correlation of CO2 and

NO2 emissions to improve CO2 emission rate estimates. For instance, Kuhlmann et al.

(2021) accurately constrained the shape of CO2 emission plumes from power plants by using

information derived from the corresponding NO2 emission plume measurements. They

applied a MBM to the CO2 plume and explored the use of known ratios between CO2 and NO2

concentrations (Reuter et al. (2014)) to infer the true shape of the CO2 emission plume solely

based on NO2 plume information. Similarly, Yang et al. (2023) investigated CO2 and NO2

emission plumes from urban areas, utilizing NO2-derived CO2 concentration distributions

through empirical relationships to estimate emission rates with a MBM.

1.4. Wind Velocity
As previously mentioned, the integration of wind velocity fields plays an important role

in both inversion methods and MBMs for estimating emission rates. In inversion methods,

wind velocity is a critical input for atmospheric dispersion models, refining the accuracy

of simulations and facilitating the iterative adjustment of emission parameters based on

observed concentrations. Similarly, in MBMs, wind velocity fields are essential for tracking

the downwind transport of emissions and calculating emission rates based on the principle

of conservation of mass. The only technique that does not depend on wind velocity data

are estimation methods using CVision. However, these CVision applications are constrained

by the necessity for extensive labeled datasets of flow consisting of high-contrast imagery,

limiting its practical implementation and scope (Jongaramrungruang et al. (2022)). Due to

these limitations, it is imperative to improve the accuracy of emission rate estimation methods

that do not entirely rely on CVision. The accuracy of their estimates could be significantly

improved by access to accurate knowledge of wind dynamics.

True local wind velocity fields can be estimated in several ways. On the one hand, one can rely

on published meteorological data such as the Merra-2 database to estimate local atmospheric

conditions. However, estimating atmospheric conditions based on meteorological data has

an inherent degree of uncertainty. The uncertainty in meteorological data related to wind

velocities stems from various factors such as temporal variability, driven by weather phe-

nomena such as gusts or fronts. Height dependency also contributes to uncertainty as wind

profiles vary with height above the ground, requiring extrapolation methods that may not

always accurately account for complex atmospheric conditions. These extrapolation methods

further compound uncertainty, as it often relies on assumptions about the spatial or vertical

distribution of wind that may not be universally applicable.

This inherent uncertainty of wind velocity fields estimated by meteorological data can signifi-

cantly affect the accuracy of emission rate estimates (Benjamin et al. (2016)). However, the

uncertainty with respect to estimating emission rets needs to be reduced in order to eliminate

the discrepancies in total emissions monitoring (Hogue et al. (2016), Turnbull et al. (2016)).

Therefore, it proves beneficial to strive for wind velocity field estimates which prove to be more

accurate and responsive compared to wind velocity field estimates based on meteorological

data.

An alternative to using meteorological data would be to rely on local wind velocities that are

estimated from observed atmospheric conditions, such as satellite imagery. Dvorak (1975)

was the first to utilize images of storms to estimate the wind velocity of these storms and

their surroundings. This method relied on the tracking of features within storms based

on computed correlations between temporally spaced images of the same storm, in order

to infer the wind velocity on local scales. Presently, this technique has been extended and

shown to deliver promising results with respect to wind velocity estimates (Nezhad et al.

(2021)). These exact techniques are solely applicable to satellite imagery of storms over large

parts of the oceans, however, research into this topic has indicated that it is possible to track

features in the atmosphere to estimate the local wind velocities. However, tracking features

within emission plumes for wind velocity estimation presents distinct challenges compared

to tracking features in clouds. Plumes display variability in altitude, leading to variations
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in wind speed and direction at different levels of the atmosphere. Currently, two methods

show promise in the literature for tracking features in emission plumes to estimate local wind

velocities: traditional Correlation Image Velocimetry and Computer Vision Correlation Image

Velocimetry.

1.4.1. Correlation Image Velocimetry
The most common type of velocimetry, the class of techniques used to determine and quantify

fluid flow, is characterized by visualizing fluid flow, often by seeding the fluid with reflective

particles or some colorful medium and observing the flow velocity field. This technique

dates back several centuries (Gharib et al. (2002)) and has since been studied extensively. The

development of high-speed and high-resolution digital cameras and advanced lasers greatly

accelerated the field of optimal flow visualization. Barker and Fourney (1977), Dudderar and

Simpkins (1977) and Grousson and Mallick (1977) were the first to independently demonstrate

the use of laser illumination and reflection to infer flow velocity fields. They all relied on

double-exposure imagery of small windows within the flow where prominent laser speckles

were present. In the research that followed, it became clear that the presence of reflective

particles mainly contributed to the accurate inference of flow instead of the presence of laser

speckles. As a result, Pickering and Halliwell (1984) and Adrian (1984) proposed the concept

of imaging flows that were primarily seeded with highly reflective particles and using imagery

of laser reflections, given the temporal difference and pixel size, to estimate the flow velocity

field. As such, the technique of Particle Image Velocimetry (PIV) was born. The technique

of PIV was quickly extended by Tokumaru and Dimotakis (1995) who tracked and matched

patterns between imagery of un-seeded flows in order to estimate the velocity field. Since

their approach no longer depended on the tracking of seeded particles, this extension was

called Correlation Image Velocimetry (CIV).

PIV, as presently defined by Abdulwahab et al. (2020), is a technique that relies on spotting the

motion of seeded tracer particles present within the fluid through correlations. PIV is known

for its wide variety of possible applications ranging from laminar to high-speed turbulent

flows. While CIV, as defined by Fincham and Spedding (1997) is a technique that relies on the

matching of well-defined optical patterns present in the flow between a pair of images. These

patterns can already be present or introduced in the flow. CIV is often preferred over PIV

when seeding flow with particles is not feasible or desirable.

Among both techniques, PIV has predominately been applied in literature (Schröder and

Willert (2008), Gonzalo et al. (2014), Abdulwahab et al. (2020)). It is often used on small-scale

flow fields where detailed flow velocity fields such as eddies or vortex shedding need to

be exposed. However, it has also been applied on larger scales estimating wind speeds

and direction within the atmosphere (Hagura and Koizumi (1990), Wilkerson et al. (2012),

Domínguez et al. (2013)). CIV on the other hand has been applied less extensively in literature.

Due to the effects of turbulent mixing and diffusivity within the atmosphere, direct pattern

matching between features that change over time within the flow becomes hard. In contrast

to PIV which uses seeded particles that are constant in size and reflectivity, features used

in CIV are a function of time and thus subject to change due to the temporal difference

between images. However, when diffusivity does not dominate the atmospheric flow regime,

CIV could prove effective in estimating wind velocity (Tokumaru and Dimotakis (1995) and

Fincham and Delerce (2000)). Unfortunately, this application of CIV has been studied less

extensively compared to its PIV counterpart.

CIV, and PIV for that matter, rely on tracking and matching optical patterns present in the

flow. Clear imagery of these patterns that change over time is essential to enable the tracking

and matching thereof. If one can observe similar patterns in multiple successive images, it

becomes possible to study their resemblance in these images and estimate the local linear

displacement vector of these patterns. This is achieved by selecting sub-regions within two

different images, called interrogation windows (IW), and subjecting them to statistical analysis

to infer the local linear displacement vector.

This statistical analysis can be defined as follows: from two successive images which are

separated by a certain time difference Δt, two IWs can be extracted, I ∈ R𝑁𝑥𝑁
and I

′ ∈ R𝑀𝑥𝑀
,

which are essentially 2D intensity fields centered around an arbitrarily selected pixel. I is

extracted from the first image and I
′
is extracted from the second image where I

′
is larger in
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size than I (N < M). Now for a possible shift (x,y) in pixels, that is a shift in the location of

the center of I and I
′
, one can apply Equation 1.3 in combination with Equation 1.4, 1.5 and

1.6 to determine the normalized cross-correlation between the two extracted IWs. Note that

this pixel shift represents a possible displacement between the centers of I and I
′
which could

have taken place in the Δt that spaces I and I
′
.

𝑐𝑐𝐼𝐼′(𝑥, 𝑦) =
𝐶𝐶𝐼𝐼′(𝑥, 𝑦)√

𝜎𝐼(𝑥, 𝑦) ∗ 𝜎𝐼′(𝑥, 𝑦)
(1.3)

𝐶𝐶𝐼𝐼′(𝑥, 𝑦) =
𝑁∑
𝑖=0

𝑁∑
𝑗=0

[𝐼(𝑖 , 𝑗) − 𝜇𝐼][𝐼′(𝑖 + 𝑥, 𝑗 + 𝑦) − 𝜇𝐼′(𝑥, 𝑦)] (1.4)

𝜎𝐼(𝑥, 𝑦) =
𝑁∑
𝑖=0

𝑁∑
𝑗=0

[𝐼(𝑖 , 𝑗) − 𝜇𝐼]2 (1.5)

𝜎𝐼′(𝑥, 𝑦) =
𝑀∑
𝑖=0

𝑀∑
𝑗=0

[𝐼′(𝑖 , 𝑗) − 𝜇𝐼′(𝑥, 𝑦)]2 (1.6)

The value 𝜇𝐼 is the average of I and is computed only once while 𝜇𝐼(x,y) is the average of I
′

centered at position (x,y). The value of 𝑐𝐼𝐼′(𝑥, 𝑦) is an indication of the degree of similarity

between both IWs; if 𝑐𝐼𝐼′(𝑥, 𝑦) is 1, I and I
′
are perfectly correlated and thus completely similar,

if 𝑐𝐼𝐼′(𝑥, 𝑦) is 0, I and I
′
are completely uncorrelated and share no similarities what so ever.

By performing this operation across a range of shifts (−𝑁 ≤ 𝑥 ≤ 𝑁 , −𝑁 ≤ 𝑦 ≤ 𝑁), a

two-dimensional cross-correlation map (CCM) is generated. Essentially, I is systematically

shifted within I
′
without overlapping its edges. At shift positions where the patterns within I

and I
′
align, the sum of the pixel intensity products will be notably higher compared to other

positions, resulting in an elevated cross-correlation value at these coordinates. Fundamentally,

the cross-correlation function statistically quantifies the level of similarity between the two

samples for a given shift. One can extract the coordinates of the peak within the CCM to

determine the pixel shift which corresponds with the most probable linear displacement

vector between I and I
′
(Raffel et al. (2018)). Once this linear displacement vector is known,

one can use the pixel size and the Δt between windows I and I
′
to determine the most probable

velocity vector of the flow that caused the displacement. To obtain a flow velocity field from a

pair of images, one selects a uniformly distributed pixel distribution (parameters that can

correspond to the specific use case) within the image domain. Then for every pixel within this

pixel distribution, select a pair of IWs, I and I
′
, which are centered around this selected pixel.

Next, the most probable linear displacement vector is selected by determining the location of

the CCM peak by applying Equation 1.3, 1.4, 1.5 and 1.6 for all possible pixel shifts.

When applying Equation 1.3, 1.4, 1.5 and 1.6, one essentially tracks features within a flow

over time by cross-correlating images. These features exist in the true flow and are measured

through imagery. However, obtaining these images can be challenging, unreliable, or

inaccurate. Measurement techniques inherently introduce some form of noise to images of

the true flow. The quantification of the introduced noise with respect to the measured signal

can be expressed as the Signal-to-Noise Ratio (SNR).

SNR =
𝑋𝑜𝑏𝑠 − 𝑋𝑏𝑔𝑟√
𝜎2

𝑟𝑎𝑛𝑑
+ 𝜎2

𝑠𝑦𝑠

. (1.7)

where 𝑋𝑜𝑏𝑠and 𝑋𝑏𝑔𝑟 represent the mean of the observation signal and background signal

respectively. 𝜎𝑟𝑎𝑛𝑑 and 𝜎𝑠𝑦𝑠 represent the random and systemic errors observed in the signal

respectively.

The SNR within imagery greatly affects the ability of features to be tracked and flow velocities

to be estimated using methods such as CIV. Low SNR imagery is characterized by having

low contrast within the flow. Therefore, observing clear features becomes difficult due to the
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increased effect of noise in the image. This increased noise propagates through statistical

analysis performed on the image. And as a result, correlation peaks in the CCM become less

distinct and more difficult to locate. In the worst case, spurious correlation peaks could arise,

rendering the implementation of CIV impractical. Therefore, higher SNRs are preferred when

applying CIV to estimate flow velocity fields. To achieve this, one can attempt to reduce the

total noise introduced by sensing techniques. This can be achieved by employing more precise

imaging equipment or reducing the total Δt between the pair of images, thereby minimizing

the contribution of measurement noise (Raffel et al. (2018)). However, the total observed linear

displacement, which is a function of Δt, still needs to be within the same order of magnitude

as the pixel size of the image. If this is not the case, displacements become unobservable and

features untrackable. Another way of increasing the SNR is by increasing the size of the IW to

artificially decrease the SNR of the total IW (Raffel et al. (2018)).

In the context of CIV, the accuracy of flow velocity estimates is influenced by how well

the cross-correlation procedure between interrogation windows can capture the statistical

properties of the flow. While individual features in the flow are not explicitly tracked, the

aggregate signal from all detectable features contributes to the CCM. Although features

with a length scale smaller than half a pixel size may not be individually resolvable, they

still contribute to the signal measured in each pixel and play a role in the cross-correlation

procedure. The relationship between feature size, interrogation window size (IWS), and

pixel size is crucial for accurate flow velocity estimates. If the IWS is too small relative to

the feature size, it may reduce the effectiveness of the cross-correlation procedure between

interrogation windows. Furthermore, the dominant flow regimes influence the reliability of

the cross-correlation procedure over time. In highly turbulent atmospheric flows, for example,

turbulent diffusion can rapidly decorrelate measurements between interrogation windows

spaced by Δt, reducing the utility of the cross-correlation procedure.

Addressing these considerations requires careful attention to the size of the IW. While increas-

ing the IWS to enhance the SNR and capture features of a certain size is desirable, it comes

with challenges. With increasing IWS, the effects of displacement vector gradients become

significant, leading to a broadening of the correlation peak observed in CCM and increased

uncertainty in its location estimate (Raffel et al. (2018)). Thus, achieving an optimal balance

between increasing the IWS to improve SNR and feature capture, while ensuring the IWS

remains small enough to disregard the effects of displacement vector gradients, is crucial in

CIV methodology.

The primary objective of this thesis is to investigate whether TANGO offers a framework

capable of directly measuring wind velocities for use in emission rate estimation. Given its

potential to provide stereo (temporally separated) imagery of plumes, the technique of CIV

could be leveraged to derive a wind velocity field, facilitating the estimation of emission rates.

However, several limitations and challenges associated with CIV in conjunction with the use

of satellite imagery need to be addressed.

The SNR of images used in CIV is typically maintained at relatively high levels to minimize

uncertainty in the estimated displacement vector. However, satellite imagery of certain

pollutants, particularly CO2, often exhibits a relatively low SNR (Kuhlmann et al. (2020))

adversely affecting the clearness of the CCM peak. Moreover, the Δ𝑡 between stereo images

produced by TANGO is generally larger than the typical Δ𝑡 values encountered in CIV or

PIV literature (Abdulwahab et al. (2020)). As Δ𝑡 increases, the clearness of the CCM peak

decreases due to changes in the plume shape caused by local velocity variations. As a result,

the accuracy of displacement estimation decreases. Additionally, the relationship between

the resolution of satellite imagery, feature size, and the magnitude of observed displacements

may not be favorable for CIV applications due to the capabilities of TANGO and variations

in global emission plumes. Furthermore, it’s important to acknowledge that the feature

size within emission plumes varies temporally and spatially, significantly influencing this

relationship. Given these factors—low SNR, varying feature sizes, satellite image resolution,

and high Δt—it is imperative to accurately determine key CIV parameters such as the size of

the IW. This is essential to ensure the validity of the flow velocity estimates in the context of

TANGO-based wind velocity measurements for emission rate estimation.
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1.4.2. Computer Vision CIV
Besides the traditional velocimetry methods, developments in the field of CVision and AI in

general, have opened the door for its supplementary applications in the field of velocimetry.

The first conceptual studies into the use of CVision to estimate velocity fields based on PIV

data, date back to ’90s (Teo et al. (1991), Cenedese et al. (1992), Hassan and Philip (1997),

Grant and Pan (1997)). These studies all relied on relatively simple neural networks able to

estimate linear displacement vectors by tracking particles within their input. From that time

on, interest in CVision approaches has steadily increased, reflected in the number of studies

published since (Yu et al. (2023)). As a result, there currently exist several CVision approaches

capable of applying PIV, taking an image pair as input. These approaches take advantage of

the current developments in the field of CVision and employ the use of CNNs to increase

the performance of machine learning networks. Thus far, no methods relying on CVision

have been proposed to implement CIV to estimate the flow velocity field. There have been

several studies that used CVision approaches to estimate optical flow, with use cases that

partly resemble use cases that use CIV (Dosovitskiy et al. (2015), Ilg et al. (2017), Manickathan

et al. (2022)).

Presently, applying CVision to flow field estimation problems is often done by applying Deep

Learning within neural networks characterized by having multiple layers some of which

are convolutional (O’Shea and Nash (2015)). The input data often consists of some form of

imagery of the visualized flow, which can be labeled or unlabeled. The labeling status of the

input data is often dependent on its source and is of great importance to the way a network

learns. A clear distinguishment can be made between the two different fundamental learning

strategies, namely, networks can learn supervised or unsupervised (Hiran et al. (2021)).

Supervised learning is a learning paradigm where a model is trained on a labeled dataset,

consisting of input-output pairs, to learn the mapping or relationship between inputs and

corresponding outputs. The goal is for the model to generalize and make accurate predictions

on new, unseen data based on the patterns learned during training. However, applying

supervised learning to flow velocity field estimation requires the data to be labeled thus the

corresponding data usually need to be simulated (Yu et al. (2023)).

This problem can be avoided by using unsupervised learning. In this learning paradigm,

as the name already suggests, a network is tasked with finding patterns or structures in a

dataset without explicit guidance through labeled input data. Zhang and Piggott (2020)

applied this principle to flow velocity field estimation, using an innovative loss function. This

unsupervised approach enjoys several benefits over its supervised counterpart, one of which

is that it allows the use of unlabeled real-world data which is presently abundantly available

in the field of atmospheric condition estimation. However, using an unsupervised learning

approach in combination with real-world atmospheric data, to the best of our knowledge, has

not been found in literature.

In contrast to these two fundamental training strategies, the concept of transfer learning

from existing CVision applications holds significant promise and potential benefits. Transfer

learning involves leveraging knowledge gained from training one model on a specific task and

applying it to a related but different task. One key advantage of transfer learning is its ability

to expedite the training process by starting from pre-trained models. By utilizing pre-trained

models trained on large datasets, one can mitigate the need for extensive labeled data, which

is often a bottleneck in traditional supervised learning approaches.

As outlined in Section 1.1.4, this thesis aims to explore whether TANGO provides a viable

framework for directly assessing wind velocities to aid in estimating emission rates. TANGO’s

unique capability to capture stereo imagery of plumes suggests that employing CVision-CIV

techniques could yield a wind velocity field, thereby assisting in emission rate estimations.

However, it is crucial to address various limitations and challenges inherent in integrating

CVision-CIV with satellite imagery.

Existing CVision machine learning networks utilized for estimating velocity fields typically

operate on data with relatively high SNR. Consequently, it remains uncertain how such

networks perform when confronted with the comparatively lower SNR prevalent in typical
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satellite imagery, particularly those capturing CO2 emissions. Additionally, the necessity of a

large labeled dataset for training machine learning networks, coupled with the significant com-

putational time required for training, poses significant hurdles. Nonetheless, these challenges

could potentially be mitigated through the application of transfer learning techniques.

1.5. Summary and Discussion
Anthropogenic emissions, primarily from fossil fuel combustion, contribute significantly to

rising atmospheric CO2 levels, fueling global climate change. The UN-FCCC Paris Agreement

targets emissions reduction, with a focus on the power generation sector responsible for over

40% of anthropogenic CO2 emissions. Improved quantification methods are crucial, especially

in emerging economies with inadequate reporting systems, contributing to global CO2 emis-

sions uncertainty. Individual facility-level emission rate quantification becomes essential for

monitoring emission reductions and supporting international carbon trading/pricing systems

and general GHG reduction policies. Discrepancies in anthropogenic emission estimates

underscore the need for reduced uncertainty in effective GHG management. DeCola and

Secretariat (2017) and Ciais et al. (2015) highlight the importance of quantifying emissions at

the individual facility level.

GHG emission rates are inferred from measurable emission characteristics, with in situ

measurements suitable for smaller scales and unique case studies. Remote sensing techniques,

utilizing satellite imagery, offer a scalable alternative for GHG emission measurements. Streets

et al. (2013) emphasize the importance of remote sensing techniques in reducing uncertainties

in estimating individual point source emission rates.

The TANGO mission addresses the challenge of obtaining accurate emissions measurements

by introducing higher resolution detection methods. Comprising two mobile satellites the

mission aims to provide precise and frequent measurements by targeting known emission

sources every three to four days. This approach allows TANGO to independently monitor

major anthropogenic GHG emissions with a spatial resolution as fine as 300 m x 300 m. The

TANGO mission introduces significant advancements in monitoring anthropogenic GHG

emissions, specifically CO2, NO2, and CH4 gases, globally and independently from 2027 to

2031. The unique capabilities of TANGO, including stereo imaging and high spatial resolution,

provide a framework for exploring new estimation methods for emission rates. Due to the

high spatial resolution, emission sources become easier to detect. Additionally, stereo imagery

of plumes creates opportunities concerning new emission rate estimation methods. The fact

that these stereo images comprise different concentration measurements (CO2 and NO2)

does not hinder these new opportunities since there exist several promising methods that en-

able CO2 concentration measurements to be extracted from NO2 concentration measurements.

Present literature on estimation methods of emission rates predominately relies on concentra-

tion measurements in combination with wind velocity data from meteorological observations.

Inversion methods iteratively adjust emission parameters to match modeled and observed

atmospheric concentrations using atmospheric dispersion models. Sutton (1931) and Roberts

(1923)) solutions form the basis for modern models, allowing for both dispersion modeling

and inverse estimation of emission characteristics. Unfortunately, unrealistic assumptions

may lead to deviations in estimated emission rates, especially with simple dispersion mod-

els. MBMs estimate emission rates by relying on measurements within a control volume

or at control surfaces obtained through remote sensing methods. While MBMs eliminate

unrealistic assumptions present in inversion methods, their application collapses under

diffusion-dominated atmospheric flow regimes. The CVision approach involves utilizing

Deep Learning and CNNs to estimate the velocity field of the flow. This estimation, incorpo-

rated into models, allows for emission rate estimation with promising results, however, their

applications are limited.

These different estimation methods have shown to be useful in the estimation of emission rates,

however, the uncertainty of their estimates is greatly influenced by their reliance on wind

velocity fields originating from meteorological data. Hogue et al. (2016) have indicated that

decreasing the uncertainty of emission rates is crucial. Eliminating the reliance on uncertain

meteorological data could drastically decrease the uncertainty of emission rate estimates. This

research aims to investigate methods enabled by TANGO’s capabilities of directly measuring
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plume velocity from concentration measurements, eliminating the dependence on uncertain

meteorological wind velocity data. The research problem centers on understanding the

factors influencing the accuracy of emission rate estimates utilizing direct plume velocity

measurements and identifying optimal mission parameters, measurement strategies, and

analysis techniques.

There has been extensive research into the field of flow estimation, leading to the identification

of two methods that could be used to estimate wind velocities from two similar concentration

measurements of the same plume taken with a certain temporal difference:

• One method, CIV, relies on cross-correlating images of flow dominated by advection.

While TANGO’s stereo imagery capabilities hold promise for deriving wind velocity

fields using CIV, challenges arise due to the low SNR in satellite imagery, large time

intervals between stereo images, and varying feature sizes within emission plumes.

Accurately determining key CIV parameters, such as the IWS, becomes crucial.

• The second method involves the use of AI, enabling the implementation of CVision-CIV.

In this case, adapting machine learning networks to the low SNR of satellite imagery,

along with the need for large labeled datasets and significant computational time for

training, presents challenges. However, the potential of transfer learning techniques

offers hope for addressing these hurdles and enhancing wind velocity estimation using

TANGO’s capabilities.



2
Research Outline

The TANGO mission marks a significant stride in reshaping the landscape of anthropogenic

greenhouse gas emissions monitoring. Comprising two satellites, TANGO-Carbon and

TANGO-Nitro, this mission is poised to independently measure global concentrations of

CO2, NO2, and CH4 from 2027 to 2031. TANGO’s unique features, such as its high spatial

resolution and stereo imaging capabilities, create a framework that allows for the development

of new techniques for estimating individual emission source rates.

In traditional approaches, the estimation of CO2 and NO2 emission source rates relies on a

combination of gas concentration measurements and wind velocity fields estimated from

meteorological data. However, the inherent uncertainties associated with meteorological

data introduce substantial challenges in accurate emission rate predictions. To tackle this

issue, this research endeavors to explore alternative methods facilitated by TANGO’s unique

framework. These methods aim to directly measure the velocity of emission plumes from

concentration measurements, eliminating the dependency on uncertain meteorological data.

As this research unfolds, three key questions guide the investigations. The methodologies

developed for each research question aim to provide comprehensive insights into the potential

of TANGO’s capabilities, the effectiveness of alternative methods, and the factors influencing

uncertainty in emission rate estimates.

2.1. Research Question 1: How can the TANGO mission facil-
itate a framework for directly measuring the velocity of
emission plumes from concentrations of CO2 and NO2?

Research Question 1 aims to investigate the capabilities of the TANGO mission in facilitating

a framework for directly measuring the velocity of emission plumes based on concentrations

of CO2 and NO2. This section outlines the methodology designed to address this question.

Simulation of TANGO Measurements
Due to the nature of the TANGO mission, it will be able to provide two images of the same

emission plume, namely one image of the CO2 and one image of the NO2 concentrations

within the plume. However, as mentioned in Section 1.3, information corresponding with the

NO2 plume can be used to infer the complete CO2 plume using given ratios between CO2

and NO2 emissions in power plant emission plumes. As a result, it will be possible to extract

two images from the same CO2 plume separated by some time difference which can be used

to determine the CO2 emissions of the observed point source.

However, TANGO has yet to be launched, so to effectively answer the proposed research

question, TANGO measurements must be simulated. Therefore, CO2 plumes from individual

point sources will be simulated using Large Eddy Simulations (LES). These simulations take

the global wind velocity, the image domain, and the emissions source rate as input. These

inputs can be changed as their effect needs to be studied. From these CO2 plume simulations,

two images from the same plume will be extracted which are separated by a certain Δt.
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Thereafter, these two images can be used to directly measure the velocity of the emission

plume.

Correlation Image Velocimetry
As discussed in Section 1.4, two promising methods in literature can be employed to track

atmospheric features using satellite imagery. Firstly, the utilization of CIV involves processing

two images of a simulated CO2 plume to derive a wind velocity field with a predetermined

spatial resolution. However, challenges arise concerning the low SNR inherent to CO2 satellite

imagery, the extended time intervals between stereo images, and the variability in feature

sizes within emission plumes. A feasibility assessment of this algorithm will be conducted

initially, followed by a discussion and motivation for the most optimal version.

CVision-CIV
Apart from CIV, Section 1.4 also mentioned the use of CVision to determine velocity fields.

This technique has yet to be applied in atmospheric wind velocity estimation. However, while

studies on CVision for velocity field determination show promise, challenges such as adapting

machine learning networks to the relatively low SNR in satellite imagery, and addressing

the need for extensive labeled datasets, remain to be addressed. To judge the effectiveness

of a CVision-based approach within the framework that TANGO supplies, a CNN will be

constructed that takes as input two images of CO2 plumes separated by a certain Δt, similarly

to the CIV approach. The use of simulated plumes in supervised and unsupervised training

in combination with transfer learning will provide insights into the performance of the CNN

and its potential applicability to real TANGO measurements with unknown wind velocities.

2.2. Research Question 2: Can the direct measurement of the
velocity of emissions plumes contribute to a more accu-
rate estimation of emission source rates?

Research Question 2 focuses on assessing whether direct velocity measurements of emission

plumes enhance the accuracy of emission rate estimations. Section 1.2 highlights studies

relying on meteorological data for wind velocity in emission source rate estimation, despite

its recognized inaccuracies. As an alternative, two methods leveraging direct wind velocity

measurements from simulated satellite imagery have been developed in the methodology

of Research Question 1. These methods will enable emissions source rate estimation to be

performed without relying on uncertain meteorological data. The methodology is outlined as

follows:

Quantification of Uncertainty in Direct Wind Velocity Measurements
To evaluate the suitability of direct wind velocity measurements for emission source rate

estimation, a crucial step involves quantifying and comparing the uncertainties associated

with these direct measurements against traditional meteorological data.

Propagation of Uncertainty into Emission Estimation Methods
This step investigates how the uncertainties of direct wind measurements influence emission

estimation methods. Utilizing MBMs, emission source rates for simulated plumes will be

estimated, enabling an assessment of the accuracy of these estimates. Additionally, the impact

of unique characteristics in direct wind velocity measurements, such as spatial resolution, on

emission source rate estimation will be examined.

2.3. Research Question 3: How can the mission or measure-
ment parameters be optimized to enhance the accuracy
of the estimation of emission source rates?

Research Question 3 aims to explore the optimization of mission measurement parameters to

enhance the accuracy of emission rate estimations relying on wind velocity estimates obtained

through CIV and CVision-CIV. This section outlines the methodology designed to address

this question.

Uncertainty Analysis
The primary goal is to assess the effect of mission and measurement parameters on the

uncertainty of direct mission measurements and emission source rate estimates. An iterative

optimization process will be employed to identify the combinations of mission and measure-

ment parameters that lead to enhanced accuracy in direct measurements and emission source
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rate estimates. This iterative approach will allow for the refinement of parameter values based

on the observed impact on uncertainty.



3
Methods and Results

3.1. Plume Simulation
To provide comprehensive answers to the research questions, it is necessary to simulate data

similar to data generated by TANGO once operational in 2027. The real TANGO data will

consist of high-resolution imagery of emission plumes worldwide. According to current

specifications, the measurement instrument aboard TANGO will produce imagery with a

resolution of 300m x 300m and a swath of 30km (Landgraf et al. (2020)). These images will

capture CO2 and NO2 emission plumes separately. Since TANGO’s launch is projected to

be at least three years away, TANGO imagery is simulated for this study by numerically

modeling turbulent atmospheric flow.

Several techniques and models can simulate turbulent atmospheric flow, including for example

Direct Numerical Simulation and Large-Eddy Simulations (LES) (Piomelli (2014)). Due to the

high Reynolds numbers typical of CO2 emission plumes (Re > 10000) and the computational

cost of simulating atmospheric turbulence, LES was chosen for this study. LES offers significant

advantages for simulating large Reynolds number flow regimes, particularly in atmospheric

emission plumes where small-scale turbulence is less critical and complex geometries are not

present. Unlike Direct Numerical Simulation, which resolves all turbulent scales and requires

an extremely fine mesh, LES focuses on the larger turbulent structures and employs a subgrid

scale model for the smaller, unresolved scales. This approach allows for a coarser mesh, which

greatly reduces computational costs and makes it feasible to model large-scale atmospheric

flows with current computing capabilities (Mason (1994), Piomelli (2014), Ardeshiri et al.

(2020)). The open-source software MicroHH (Van Heerwaarden et al. (2017)) was chosen to

perform these simulations. MicroHH’s algorithm is based on governing equations related to

the conservation of energy, momentum, and mass, incorporating boundary conditions. It

can provide large 3D simulations of turbulent flow on length scales that match real-world

observations containing compounds such as CO2 with specified characteristics, such as wind

velocity, pressure gradients, diffusion coefficients, and grid resolution. This versatility makes

it ideal for simulating emission plumes under various atmospheric and emissive conditions.

Additionally, MicroHH can run on multiple processing cores in parallel, significantly reducing

the running time required for simulations. For a detailed description of MicroHH’s algorithm,

the reader is referred to Van Heerwaarden et al. (2017) and the corresponding GitHub page,

which includes the MicroHH license (MicroHH (2024)).

A simulation of emission plumes begins with defining input parameters and boundary

conditions. MicroHH offers pre-defined cases of emission plumes from known power plants.

For this study, the case corresponding to the Jänschwalde Power Plant Station in Germany

was selected (MicroHH (2024)). The emission source is treated as a single scalar point source

(Ražnjević et al. (2022)). For all simulations conducted in this thesis, the input parameters and

boundary conditions remained constant, with the exception of wind speed in the horizontal

direction and the emission rate. A comprehensive list of input parameters is provided in

Appendix A.

The boundary conditions include no-slip and free-slip conditions at and away from the ground,

respectively. Additionally, boundary conditions are imposed on the specific humidity flux

17
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and the surface heat flux both at and away from the ground. In the pre-defined Jänschwalde

case, these parameters are time-dependent. However, for the simulations in this thesis,

both the specific humidity flux and surface heat flux were kept constant over time to ensure

that all simulations originated from similar conditions, enabling effective comparison of

corresponding results.

For completeness, it is crucial to describe both the subgrid scale modeling and the discretiza-

tion scheme utilized in the MicroHH LES solver. The solver employs the Smagorinsky-Lilly

subgrid scale model (Lilly (1968)), which introduces a dynamic turbulence viscosity to account

for the effects of unresolved small-scale turbulence. This model enhances the accuracy of

LES by adjusting the turbulence model parameters dynamically throughout the simulation.

MicroHH uses a staggered Arakawa C-grid configuration (Arakawa and Lamb (1977)). In

this grid system, scalar quantities are located at the centers of the grid cells, while the

velocity components are positioned at the corners and midpoints of the cell faces. The spatial

discretization is executed using finite differences with second-order and fourth-order accuracy,

ensuring consistency with the spatial resolution of the grid.

Each simulation was conducted to model the concentration distribution of a specified stable

compound over a period of 16.5 hours. The simulations were performed on an orthogonal

three-dimensional grid with dimensions 19.2 km×12.6 km×9.9 km in the 𝑥, 𝑦, and 𝑧 directions

respectively. In this coordinate system, the 𝑥 direction aligns with the imposed wind velocity

vector, the 𝑧 direction is perpendicular to the ground, and the 𝑦 direction is perpendicular to

the wind velocity. This domain size is smaller than that of TANGO, as observable emission

plumes do not extend to dimensions of 30 km. To enhance computational efficiency, the

simulation grid is consequently reduced relative to TANGO’s swath width, without com-

promising the overall representativeness of the results. Initially, the grid had a resolution

of of 100 m × 100 m however if was reduced to a TANGO resolution of 300 m × 300 m using

a Gaussian filter. . Snapshots of the concentration distribution were saved at 5-minute intervals.

To ensure that the concentration distribution was fully developed, only snapshots taken after

10 hours of simulation were selected for refinement. The refinement process takes a snapshot

as the initial point and runs the simulation for 300 seconds, saving snapshots at 10-second

intervals. The refined concentration distributions are transformed from a 3D concentration

distribution to a 2D vertically integrated concentration distribution. The concentration values

are then converted from CO2:air mixture ratios to parts per million (PPM) with respect to the

total moles of air. These simulated concentration distributions are transformed into simulated

emission plumes by adding the natural background concentration of the compound in the

atmosphere. Finally, simulated measurement noise with level 𝜎CO2 is added to the simulated

emission plume using Equation 3.1 and Equation 3.2. A normal distribution (𝒩) is used for

modeling the measurement noise of satellite imagery, as this noise is Gaussian (Landgraf

et al. (2024)). The Gaussian noise propagates into the final concentration measurements in

proportion to the magnitude of the measured concentration (Landgraf et al. (2024)).

Noise𝑖 𝑗 ∼ 𝒩(0, 𝜎𝐶𝑂2) (3.1)

Noisy Image𝑖 𝑗 = Image𝑖 𝑗 · (Noise𝑖 𝑗 + 1) (3.2)

The final simulated product is a 2D image of emission plumes of a specific compound, with

defined wind velocity, emission rate, and measurement noise level, at a 300m x 300m spatial

and 10-second temporal resolution. For each simulated plume, the true 3D wind velocity field

is extracted and vertically integrated, weighted by concentration, to create a 2D wind velocity

field that matches the resolution and dimensions of the simulated plume. As a result, the true

wind velocity is only defined in the 2D wind field at locations with nonzero concentration

values. In the plume simulations, the wind velocity boundary condition is applied solely in

the x direction (𝑢), with no imposed component in the y direction (𝑣). Consequently, the flow

regime is dominated by 𝑢, although local turbulence induces nonzero values of 𝑣 within the

flow field. However, the contribution of 𝑣 to the overall flow field is minimal, as its magnitude

is, on average, more than 100 times smaller than that of 𝑢 for all simulations. Therefore, the

analysis of true and estimated wind velocity fields is focused exclusively on wind speeds in
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the x direction (𝑢), disregarding the wind velocity component in the y direction (𝑣).

This simulation process has been applied to create CO2 plumes at TANGO resolution using the

output of MicroHH, with an added CO2 background concentration of 412 PPM to mimic the

background CO2 concentration in the atmosphere (Pu et al. (2014)). The CO2 plumes are char-

acterized by their wind velocity, emission rate, and simulated measurement noise. To match

TANGO’s data product, simulated NO2 plume imagery is also required, which originates from

the same emission source as the CO2 plume. Additionally, the CO2 and NO2 plume images are

spaced by a certain time difference, Δt, which accounts for the different overpass and imaging

times of TANGO-Carbon and TANGO-Nitro. Conversion techniques proposed by Krol et al.

(2024), motivated by the similar transport properties of and observed correlations between

NO2 and CO2 emission plumes (Massman (1998), Hakkarainen et al. (2021)), enable noiseless

CO2 plumes to be converted to NO2 plumes using CO2:NOX conversion ratios and NOX:NO2

conversion functions, a process displayed on the left side of Figure 3.2. CO2 concentration

values are first converted into NOX concentration using the CO2:NOX conversion factor of

1/1.35 (Reuter et al. (2014), Kuhlmann et al. (2020)). Afterward, the CO2:NOX plume image is

converted into a NO2 plume image using a decreasing exponential function that maps NOX

concentration to NO2 concentration. This decreasing exponential function is the result of a

fitted function to the NOX and NO2 plume simulations performed in Krol et al. (2024). It is a

function of NOX concentration and distance from the emission source, enabling the function

to accommodate for the natural decay rate of NOX in the Earth’s atmosphere. It is applied to

the NOX plume to create an NO2 plume which is augmented by artificial measurement noise

with level 𝜎NO2. Figure 3.1 shows a CO2 plume and its corresponding NO2-converted-to-CO2

counterpart. The reader is referred to Appendix B for the precise NOX:NO2 function and the

data representation used for fitting the function.

Figure 3.1: Simulated CO2 and NO2-converted-to-CO2 emissions plumes with a wind velocity of 6 m/s, emission

rate of 25 MT/y and 𝑙1 measurement noise.

The complete process, displayed in Figure 3.2, has been implemented to simulate NO2 plumes

from noiseless simulated CO2 plumes originating from the same source. Thus, for every

simulated CO2 plume, the corresponding NO2 plume is also determined and stored. These

procedures have been used to create an extensive database, 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 , containing simulated

CO2 and NO2 emission plumes which are spaced by a certain Δt and their corresponding

velocity fields.
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Figure 3.2: Flowchart representing the process that converts CO2 plume imagery into NO2 plume imagery which is

used to create NO2-converted-to-CO2 plume imagery.

As discussed in Chapter 1, this thesis investigates the feasibility of estimating wind velocities

and emission rates from TANGO’s data product, which includes CO2 and NO2 plume imagery

spaced by a certain Δt. Both proposed wind velocity estimation methods rely on image pairs

of a plume spaced by Δ𝑡, where both images in the image pair capture the plume of the same

compound. Consequently, TANGO’s NO2 plume imagery must be converted back to CO2

plume imagery for use in these methods. The conversion method, which was initially used to

simulate the NO2 plume image, is applied inversely to obtain these CO2 images, displayed on

the right side of Figure 3.2. These NO2-converted-to-CO2 plumes are also stored in 𝐷𝐵𝑇𝐴𝑁𝐺𝑂

for each entry.

Figure 3.3: Data structure of 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 , comprised of CO2 and NO2-converted-to-CO2 plumes and wind velocity

fields for a variety of wind velocities, emission rates, measurement noise levels and Δt’s.

Figure 3.3 illustrates the structure of 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 and the various types of image pairs (𝐼𝑃𝑖)

it contains. Each entry is categorized by wind velocity, emission rate, measurement noise

level, and Δ𝑡. 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 includes three wind velocities ranging from 3 m/s to 10 m/s. Wind

velocities below 3 m/s were excluded because these regimes are dominated by turbulent

diffusion, which limits the accuracy of flow and emission rate estimation. Tracking features

becomes difficult when mean displacements within the flow are overshadowed by the charac-

teristic length scale of diffusion. Additionally, Varon et al. (2018) indicated that emission rate

estimation methods are negatively affected when flows are dominated by diffusion rather

than advection. Wind velocities above 10 m/s were also excluded, given their rarity in Earth’s

atmosphere (Ebuchi (1999) demonstrated that over 80% of observed winds have velocities

lower than 10 m/s).

𝐷𝐵𝑇𝐴𝑁𝐺𝑂 comprises ten distinct emission rates ranging from 2.5 MT/y to 25 MT/y. Emission

rates below 2.5 MT/y, the detection limit of TANGO-Carbon, were excluded. Similarly,

emission rates above 25 MT/y were omitted due to the scarcity of power plants reaching or

exceeding this emission rate (Guevara et al. (2023), Landgraf et al. (2024)). This thesis focuses

on the use of simulated TANGO data to detect and image plumes corresponding to relatively

small emission rates.

There are three different measurement noise levels in 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 : 𝑙0=(0%, 0%), 𝑙1=(0.5%, 0.25%),

𝑙2=(1%, 0.5%), representing the simulated measurement noise level in the image pair. Even

though TANGO’s data-product will always be affected by some measurement noise, including

the zero measurement noise case, 𝑙0, is essential for clearly observing the contrast to the

negative effects of nonzero measurement noise. Additionally, incorporating the zero noise

cases allows for modeling biases to be easily detected without being dominated by the adverse
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effects of measurement noise. Each 𝑙𝑖 consists of two elements: the measurement noise level

added to the CO2 plume image, 𝜎CO2, and the measurement noise level added to the NO2

plume image before conversion to a CO2 image, 𝜎NO2. 𝑙0 denotes the case where no measure-

ment noise is added to either the CO2 or NO2 images. In this case, the NO2-converted-to-CO2

plume image and the original CO2 plume image are identical by definition of the conversion

process shown in Figure 3.2. In contrast, for 𝑙1 and 𝑙2, this is not the case as the measurement

noise added to the CO2 and NO2 plumes is independent. The measurement noise levels

for the CO2 plume image are set at 0.5% and 1% to reflect the precision of TANGO-Carbon

at the beginning and end of its operational life, respectively (Landgraf et al. (2024)). The

same applies to the NO2 plume images for TANGO-Nitro but with measurement noise

levels of 0.25% and 0.5%. This discrepancy in measurement noise levels of TANGO-Carbon

and TANGO-Nitro is primarily attributed to the differing atmospheric conditions at the

respective measurement wavelengths. TANGO-Carbon operates in the near-infrared (1.6

µm), while TANGO-Nitro utilizes the ultraviolet/visible (440 nm) spectrum. The shorter

wavelength of TANGO-Nitro benefits from a higher incoming solar irradiance due to the solar

spectrum’s peak around 500-600 nm. Additionally, Rayleigh scattering (Bates (1984)) and

aerosol scattering (Moosmüller et al. (2009)) are more pronounced in the ultraviolet/visible,

leading to a brighter atmospheric signal. A stronger signal generally corresponds to a lower

relative noise level. The retrieval process also influences measurement noise levels. Weaker

absorption typically results in higher noise in the retrieved concentration measurements

(Boersma et al. (2004), Saitoh et al. (2009)). While this favors the relative precision of CO2

retrieval over NO2 retrieval, the combined effects of higher solar irradiance, scattering, and

lower inherent noise in the NO2 measurements ultimately lead to a lower overall noise level

for NO2 concentration measurements (approximately half of measurement noise levels in

CO2 concentrations measurements) compared to CO2 concentration measurements (Landgraf

et al. (2024), Reuter et al. (2019), Kuhlmann et al. (2020)).

Finally, Δ𝑡 varies from 10 s to 100 s in 10 s increments. Larger Δ𝑡 values were excluded due to

the limitations of the TANGO mission (Landgraf et al. (2024)). For each combination of wind

velocity, emission rate, measurement noise level, and Δ𝑡, 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 includes 8 different image

pairs and simulated wind velocity fields. Consequently, 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 comprises a total of 7,200

image pairs.

In 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 , variations in wind velocity, emission rate, and measurement noise level signifi-

cantly impact the concentration values in both the CO2 plume and the NO2-converted-to-CO2

plume images. Increased wind velocity results in more dispersed emissions and lower peak

concentrations, whereas lower wind velocities lead to more concentrated emissions. Higher

emission rates correspond to elevated concentration values throughout the plume, while

lower emission rates produce the opposite effect. The introduction of measurement noise

affects concentration values across the entire plume, diminishing the clarity of the plume image.

These effects are quantified by the Signal-to-Noise Ratio (SNR), a single metric commonly

used in signal analysis. The SNR represents the clarity and quality of a signal by comparing

the level of the desired signal to the level of background noise. In the context of emission

plume measurements, a higher SNR indicates that concentration variations are more distinct

and easily detectable against the inherent variability of the measurement process. Essentially,

a higher SNR signifies more reliable and accurate measurements, where the true signal stands

out prominently from the measurement noise. As is discussed in subsequent sections, the

SNR of imagery determines its usability in estimation methods relying on this imagery. A

clear quantification of the different SNR values in 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 is presented in Appendix E,

which will enable a comprehensive interpretation of results in subsequent sections.

3.2. Correlation Image Velocimetry
3.2.1. The CIV Algorithm
From 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 , an image pair comprising a CO2 plume image and a NO2-converted-to-CO2

plume image for a given wind velocity, emission rate, measurement noise level, and Δ𝑡
can serve as input to the method that applies CIV. The CIV Algorithm relies on the same

cross-correlation technique discussed in Section 1.4.1. For a given pixel location and a specified

interrogation window size (IWS), two interrogation windows (IW) are extracted: 𝐼 ∈ R𝑁×𝑁

from the first image in the image pair and 𝐼′ ∈ R𝑀×𝑀
from the second image in the image
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pair, where 𝐼′ is twice the size of 𝐼 (2𝑁 = 𝑀). Example interrogation window extraction is

displayed in Figure 3.4

Figure 3.4: CO2 and NO2-converted-to-CO2 plume imagery (left column) from which two IW are extracted,

indicated by the red squares. These IW are displayed in the right column. The CO2 and NO2-converted-to-CO2

plumes have a Δt of 100 s, 25MT/y emission rate and are noiseless.

For a possible pixel shift (𝑥, 𝑦), representing a displacement between the centers of 𝐼 and 𝐼′

over Δ𝑡, Equation 1.3, 1.4, 1.5, and 1.6 are applied to compute the normalized cross-correlation

between the two IW. This shift enables systematic comparison across a range of pixel shifts

(−𝑁 ≤ 𝑥 ≤ 𝑁 , −𝑁 ≤ 𝑦 ≤ 𝑁), generating a two-dimensional cross-correlation map (CCM).

Here, 𝐼 is shifted within 𝐼′ without overlapping its edges. At positions where the patterns

within 𝐼 and 𝐼′ align, the value of the cross-correlation between I and I’ is high. The position of

the peak cross-correlation magnitude in the cross-correlation map reflects the average spatial

displacement of 𝐼′ relative to 𝐼 over the time interval Δ𝑡, from which an estimate of the local

velocity is obtained. The CCM created from the cross-correlation of the IW from Figure 3.4 is

displayed in Figure 3.5
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Figure 3.5: The CCM of the IW displayed in Figure 3.4. The red dot indicates the location of the peak of the CCM.

The magenta dot indicates the center of the CCM. The white vector from the center to the peak indicated the

estimated displacement vector.

Once the CCM is obtained, the peak location is extracted to infer the displacement vector,

limited initially to integral values. In Figure 3.5, this peak is located by the red-colored dot.

The white vector from the magenta-colored dot (the center of the CCM) to the red-colored dot

indicates the estimated displacement vector, which is estimated in integral values. However,

leveraging the CCM and its values allows for estimating the peak location with sub-pixel

accuracy. A common method involves fitting a function to points surrounding the peak within

the CCM, known as its neighborhood, and locating the peak of the fitted function.

In PIV applications, particle images are typically described by an Airy intensity distribution

which is accurately approximated by a Gaussian intensity distribution (Raffel et al. (2018)).

Due to the properties of a Gaussian distribution, the correlation of two Gaussian intensity

distributions results in a Gaussian distribution again. Therefore, neighborhood peaks in

PIV applications are accurately estimated by Gaussian functions to estimate sub-pixel dis-

placements. Depending on the shape of the CCM and the clearness of the peak, an optimal

neighborhood size is selected, which is at least a 3x3 by region surrounding and including the

CCM peak (Raffel et al. (2018)).

The CIV algorithm implemented in this thesis employs a similar procedure to estimate

sub-pixel peak locations. A 2D Gaussian function (shown in Equation 3.3) is fitted to the peak

neighborhood. The parameters (𝜇𝑥 , 𝜇𝑦) of the Gaussian function represent the estimated peak

location at sub-pixel accuracy. Subsequently, this sub-pixel peak location estimate (𝜇𝑥 , 𝜇𝑦) is

converted into a wind velocity using the image resolution and Δ𝑡 between the image pair.

This process outlines how the CIV Algorithm estimates the wind velocity for a selected pixel

location given an IWS. To estimate a wind velocity field, this procedure iterates over each

pixel location and estimates its corresponding wind velocity.

𝑓 (𝑥, 𝑦) = 1

2𝜋𝜎𝑥𝜎𝑦
exp

(
−
(𝑥 − 𝜇𝑥)2

2𝜎2

𝑥

−
(𝑦 − 𝜇𝑦)2

2𝜎2

𝑦

)
(3.3)

To evaluate the validity of the Gaussian approximation of the peak and its sensitivity to

neighborhood size, an analysis was performed on the CCMs of 50 randomly selected pixel

locations from the image pair displayed in Figure 3.4, with the IWS fixed at 12 pixels. For

all pixel locations, the peak of the Gaussian approximation is expected to be located at

coordinates (8,6), corresponding to an anticipated pixel shift of (2,0). This shift reflects a

displacement of 600 meters in the x-direction between the two IW, given a wind velocity

of 6 m/s and a time interval (Δ𝑡) of 100 seconds, as illustrated in Figure 3.4. Deviations

from this expected peak location may occur due to discrepancies between the imposed and

true wind velocities, resulting from the turbulent nature of the flow. Additional deviations

could also arise from the limited accuracy of the Gaussian approximation of the CCM peak.

By analyzing the discrepancies between the expected and estimated peak locations across
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different neighborhood sizes, the accuracy of the Gaussian approximation can be evaluated as

a function of peak neighborhood size.

Figure 3.6: Plot (a) displays a sample CCM selected for one of the 50 arbitrary pixel locations from the image pair in

Figure 3.4 for which the CCM was computed. The colored rectangles indicate the different peak neighborhoods used

in the peak fitting procedure. Plot (b) displays the peak location estimated by the Gaussian fitting procedure for

different peak neighborhood sizes.

The impact of neighborhood size on the accuracy of peak location estimation is illustrated

in plot (b) in Figure 3.6. As the neighborhood size increases, the accuracy of the Gaussian

approximation for the peak’s neighborhood decreases significantly, seen in an increased

deviation from the expected peak location. This is expected as the intensity distribution

in the simulated plume imagery does not necessarily follow an Airy intensity distribution

and cannot be as accurately approximated by a Gaussian distribution. As the neighborhood

size increases, this discrepancy becomes more profound. To mitigate the adverse effects of

approximating the peak neighborhood with a Gaussian distribution, a minimal neighborhood

size is employed in the CIV Algorithm. Specifically, the neighborhood consists of 9 points

arranged in a 3x3 grid centered on the integral peak location.

As detailed in Section 1.4.1, the IWS significantly impacts the shape of the CCM. Interrogation

windows that are too small often result in a low SNR, leading to a less distinct CCM peak.

Conversely, excessively large IW can include displacement gradients, which obscure the CCM

peak. Therefore, careful selection of the IWS is crucial for the proper application of the CIV

Algorithm. These factors (SNR and displacement gradients) not only alter the peak shape but

also affect the quality of peak fitting. The quality of the peak fit is determined by computing

the sum of squared residuals (SSR) of the fitting Gaussian function to the peak neighborhood.

Figure 3.7 illustrates the expected qualitative and observed impacts of SNR and displacement

gradients on the peak and quality of its fit as IWS varies.

Figure 3.7: Plot (a) illustrates the expected qualitative effects of SNR (orange line) and displacement gradients (blue

line) on the quality of peak fitting (SSR) as the IWS increases. The green line represents the combined expected

qualitative impact of SNR and displacement gradients on peak fitting quality. Plot (b) shows the observed trend

(which holds for all pixel locations) in peak fitting quality (SSR) as the IWS increases for an arbitrarily selected pixel

location from the image pair shown in Figure 3.4.
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Plot (a) in Figure 3.7 illustrates the expectation that as IWS increases and the SNR of the

interrogation window increases, the expected qualitative clearness and the quality of the

peak fit increases. However as the IWS increases, the presence of displacement gradients

in the interrogation window is expected to start to dominate and the expected qualitative

clearness and the quality of the peak fit decreases. Due to these opposing effects of SNR

and displacement gradients, the aggregated effect of them both dictates the IWS with the

maximal fitting quality. These expected effects are indeed also observed in the calculation

from numerical data in plot (b) in Figure 3.7 where the quality of the peak fit initially increases

as IWS increases (SNR effect dominates), however as it crosses an IWS of 16 pixels, the quality

of the peak fit decreases again (velocity effect dominates).

This observed behavior of the SSR across varying IWS can be leveraged to gain insights into

optimal IWS selection. Namely, given the nature of the imagery used in this thesis and the

broad, non-Gaussian CCM peak it produces, the most accurate displacement estimates are

expected to result from peak fitting procedures that have the lowest SSR. Consequently, SSR

serves as a proxy for the accuracy of displacement estimates, and the IWS is optimized to

achieve the highest quality fitting procedure, specifically by minimizing SSR.

In PIV and CIV literature, the IWS is typically constant for all pixel locations within a single

iteration of an algorithm. However, constant IWS across all pixel locations in an emission

plume is disadvantageous due to the varying concentration levels and stationary nature of

emission sources. Pixel locations near the emission source exhibit higher concentrations, but

the variation in the signal is diminished due to the constant emission rate and the scale of the

image resolution. This loss of detail necessitates larger IWS to effectively capture displacement.

Conversely, pixel locations farther from the source display greater variability at larger length

scales, allowing for smaller IWS to be effective. Therefore, each pixel locations, depending

on its proximity to the emission source, benefits from a different optimal IWS tailored to

maximize the quality of peak neighborhood fitting. The IWS that maximizes the quality of

peak neighborhood fitting is selected as the optimal IWS for that pixel location.

To estimate a comprehensive wind velocity field, the CIV Algorithm aims to estimate wind

velocities for all pixel locations in each image pair. However, this approach has limitations.

Pixels with high concentrations typically exhibit higher SNR, leading to clearer CCM peaks

and more accurate wind velocity estimates. In contrast, pixel locations with low concentrations

and lower SNR tend to produce less distinct CCM peaks, resulting in less accurate wind

velocity estimates. Moreover, the CIV Algorithm cannot effectively estimate wind velocity for

pixel locations near the image boundary where IW extraction is impractical. To address these

issues, a subset of pixel locations, 𝑙𝑝 , is extracted from the first image in the image pair, where

wind velocity estimation is reliable and boundary effects are minimized. Pixel locations are

included in 𝑙𝑝 if their concentration exceeds a threshold 𝑡𝑝 . Careful selection of 𝑡𝑝 is essential

as it significantly influences the CIV Algorithm’s inputs and outputs.

Since concentration values vary between plumes with different emission rates, maintaining

a constant 𝑡𝑝 is impractical. A fixed 𝑡𝑝 would bias selection towards pixel locations in high-

emission rate plumes, potentially skewing the analysis. This bias is illustrated in Figure 3.8,

where significant differences in pixel location selection are evident between plumes with

emission rates of 10 MT/y and 25 MT/y (plots (c) and (f) respectively).



3.2. Correlation Image Velocimetry 26

Figure 3.8: Imagery of two simulated CO2 plumes for an emission rate of 10 (plot (a)) and 25 MT/y (plot (d)) are

displayed. Plots (b) and (e) display the results on percentile thresholding and plots (c) and (f) display the effects of

constant thresholding, where for plots (b),(c),(e), and (f), pixel locations not in 𝑙𝑝 have value 0 (blue color), while pixel

locations in 𝑙𝑝 are have value 1 (yellow color).

To address this issue, 𝑡𝑝 needs to be dependent on the CO2 plume itself. A histogram is

created for the first image in the image pair, and 𝑡𝑝 is set to the value of the 85
th

percentile.

This approach ensures that 𝑡𝑝 can vary according to the distribution of concentration values

within a simulated plume, leading to similar pixel location selection between plumes with

differing emission rates observed in plots (b) and (e) in Figure 3.8.

Since the selection of pixel locations in 𝑙𝑝 is dependent on the concentration value of the

pixel and not IWS, the significant overlap of IW of different pixel locations is highly present.

Typically, obtaining an independent velocity vector of a flow is striven for in PIV and CIV

applications (Raffel et al. (2018)), however, the nature of TANGO data limits this. Due to

TANGO’s resolution of 300m x 300m and finite swath width, the number of pixel locations

and the image domain are constrained to a significant degree. The number of pixel locations

in the plume for which the wind velocity can be independently estimated is simply too

low. Furthermore, due to the inherently low SNR of CO2 plume imagery, pixel locations

typically necessitate relatively large IWS (up to 30 pixels) to mitigate its impact on wind

velocity estimates. As a result, the wind velocity vectors of the pixel locations in 𝑙𝑝 are

highly correlated and therefore create a smoothed wind velocity field. In typical PIV

applications, such smoothing is undesirable because it can obscure detailed flow structures

and is inappropriate for calculating turbulent statistics or flow velocity gradients. However,

this thesis is not concerned with calculating turbulent statistics or velocity gradients. Instead,

the goal in this thesis is to obtain the most locally accurate velocity vectors possible, given the

available data. Therefore, an appropriate IWS is chosen to ensure the best estimate of wind

velocity at each pixel location, rendering the overlap of IW irrelevant.

3.2.2. Wind Velocity Estimation Results
The CIV Algorithm provides wind velocity fields as output, consisting of wind velocities

for pixel locations in 𝑙𝑝 . These wind velocity fields include both horizontal and vertical

components (𝑢 and 𝑣) of the wind velocity. However, due to the nature and alignment of the

plume simulation, the 𝑣 component of the estimated wind velocity is negligibly small and is

therefore omitted from the analysis. To assess the accuracy of the wind velocity estimates,

a comparison is made with the true wind velocities of each pixel location extracted from

the CO2 plume simulations. To gain insight into the nature and characteristics of the CIV

Algorithm’s output, an arbitrary image pair is selected from 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 for which the wind

velocity field is estimated.
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Figure 3.9: The first CO2 plume image in the image pair is displayed in plot (a). The resulting wind velocity field

estimated by the CIV Algorithm is displayed in plot (b). For reference, the true wind velocity field filtered for pixel

locations in 𝑙𝑝 and the difference between the estimated and true wind velocity fields are displayed in plots (c) and

(d) respectively. The plume characteristics included a true wind velocity of 6 m/s, an emission rate of 25 MT/y, a 𝑙0
measurement noise level and a Δt of 50 seconds.

Figure 3.9 displays the first image in the image pair that was arbitrarily selected (plot (a)),

along with the corresponding estimated wind velocity field (plot (b)). Note that all pixels

marked with a nonzero wind velocity in plots (b) and (c) correspond to those pixel locations

in 𝑙𝑝 . It is observed that there does exist variation within the wind velocity field, however, the

wind velocity field is greatly smoothed in comparison with the true wind velocity field (plot

(c)). In the estimated wind velocity field, a clear relationship is observed between the distance

of pixel locations to the emission source and the degree of wind velocity underestimation.

This relationship is further illustrated in Figure 3.10.

Figure 3.10: Accuracy plot of the wind velocity field estimated by the CIV Algorithm displayed in Figure 3.9. For

perfect estimation, all points in the scatter plot lie on the red diagonal line. The scatter plot is color-coded with the

horizontal distance from the emission source.

Figure 3.10 shows a scatter plot mapping the estimated wind velocity field to the true wind
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velocity field. Ideally, with perfect estimation and zero error, all points would lie on the red

diagonal line. Deviation from this line indicates an estimation error. It is evident that there is

a significant estimation error across the entire wind velocity field since for all distances to

the emission source, deviations from the diagonal red line are observed. However, as the

distance to the emission source decreases, the greatest estimation errors are observed.

A notable phenomenon, also observed in Figure 3.9, is the clear underestimation of wind

velocity for pixel locations near the source. The two points plotted in the top left of Figure 3.10

correspond to the pixel locations closest to the source. Additionally, a distinct vertical line at

3.2 m/s estimated wind velocity represents pixel locations in the region near the emission

source. This alignment on the 3.2 m/s vertical line corresponds to the average wind velocity

of the left-most blob in plot (b) of Figure 3.10, adjusted for the bias introduced by including

the emission source in the IW. This pattern of underestimation is attributed to the operating

principle of the CIV Algorithm, which tracks moving features in the plume’s concentration

distribution. Features with higher concentration values relative to the rest of the plume are

given more weight in the tracking process. Pixel locations near the source usually exhibit the

highest concentration values but contain fewer traceable features due to the limited diffusion

of emissions. The CIV Algorithm assigns substantial weight to these high-concentration

pixel locations near the source, which appear stationary due to the constant emission rate.

Consequently, the CIV Algorithm underestimates the wind velocity of pixel locations closer

to the emission source.

To further evaluate the accuracy of the CIV Algorithm wind velocity estimates, it is essential

to analyze results from emission plumes with varying characteristics effectively without

manually reviewing figures such as Figure 3.9 and Figure 3.10. Therefore, the accuracy of the

estimated wind velocity is assessed using the Root Mean Squared Error (RMSE) and the Mean
Error (ME).

The RMSE provides a measure of the differences between the estimated wind velocity (𝑢) and

the true wind velocity (�̂�) extracted from 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 . Mathematically, RMSE is defined as the

square root of the average of the squared differences between 𝑢 and �̂�. If 𝑖 ranges from 1 to

|𝑙𝑝 | (the total number of selected pixel locations in the plume for which the wind velocity is

estimated), the formula for RMSE is given by Equation 3.4.

RMSE =

√√
1

|𝑙𝑝 |
∑
𝑖∈𝑙𝑝

(�̂�𝑖 − 𝑢𝑖)2 in [m/s] (3.4)

The RMSE is a useful metric because it gives a sense of the magnitude of the errors in the same

units as the original data. Lower values of RMSE indicate a better fit of the estimated wind

velocity to the true wind velocity. Additionally, the RMSE represents the spread of errors,

providing an overall measure of the accuracy and consistency of the wind velocity estimates.

On the other hand, the ME is a simpler metric that calculates the average of the differences

between the estimated wind velocity (𝑢) and the true wind velocity (�̂�). The ME is defined in

Equation 3.5.

ME =
1

|𝑙𝑝 |
∑
𝑖∈𝑙𝑝

(𝑢𝑖 − �̂�𝑖) in [m/s] (3.5)

The ME provides a measure of the bias in the estimates. A positive ME indicates an over-

estimation, whereas a negative ME indicates an underestimation of the wind velocity. By

analyzing the ME, one can detect systematic biases in the wind velocity estimates. Throughout

the remainder of this thesis, the terms bias and ME are used interchangeably.

To effectively analyze the results and accuracy of the CIV algorithm across all different

combinations of plume characteristics, the input is upscaled from a single plume to several

image pairs per combination of plume characteristics. This involves selecting a diverse

subset of 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 , called 𝐷𝐵𝑡𝑒𝑠𝑡 , that encompasses different wind velocities, emission rates,

measurement noise levels, and Δ𝑡’s. Each combination of these parameters is represented in
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𝐷𝐵𝑡𝑒𝑠𝑡 by four distinct image pairs. Then, for each image pair among the four image pairs that

belong to the same combination of plume characteristics, the RMSE and ME of the velocity

field are computed. Once all four RMSEs and MEs have been computed, they are averaged and

stored as the average RMSE and average ME for that combination of wind velocity, emission

rate, measurement noise level, and Δ𝑡, respectively. This averaging procedure limits the effect

of outliers in any performance metrics which enables reliable analysis.

The value of Δ𝑡 significantly influences the results of the CIV Algorithm as it determines

the magnitude of the displacement between image pairs. Larger Δ𝑡 values and the resulting

larger displacements reduce the random error relative to the displacements, whereas smaller

Δ𝑡 values and the resulting smaller displacements increase the random error relative to the

displacements (Raffel et al. (2018)). To account for this effect of Δt on the performance of the

CIV Algorithm, two distinct Δt scenarios are analyzed.

Firstly, the variable Δ𝑡 scenario is analyzed, where the displacement for different wind

velocities is constant. Δ𝑡 varies from 100, 50, and 30 seconds for wind velocities of 3, 6, and 10

m/s, respectively, such that the displacement in all cases is 300 meters. Since the displacement

of emission plumes remains constant across all wind velocities, the contribution of random

error is constant for all different wind velocities and the performance of the CIV Algorithm

can effectively be compared between different wind velocities.

Unfortunately, the TANGO mission does not offer the luxury of varying Δ𝑡 depending on

wind velocity. Instead, Δ𝑡 is fixed and constant for all emission plumes observed by TANGO.

In a scenario with constant Δ𝑡, the displacements of emission plumes vary based on wind

velocity. For example, with a constant Δ𝑡 of 20 seconds, a wind velocity of 3 m/s results in

a displacement of 60 meters, while a wind velocity of 10 m/s results in a displacement of

200 meters. As previously indicated, the relative contribution of random error increases as

displacements grow smaller. Thus, for a displacement of 60 meters, this relative contribution

is larger than for a displacement of 200 meters. Due to this effect, the scenario with constant

Δ𝑡 is analyzed separately from the variable Δt scenario.

Scenario: Variable Δt
Firstly, the average RMSE and ME results of the CIV Algorithm are analyzed for a variable

Δ𝑡. For a Δ𝑡 of 100, 50, and 30 seconds, for wind velocities of 3, 6, and 10 m/s respectively,

the displacement between the image pair is 300 meters in all three cases. As a result, the

contribution of random error to the results of the CIV Algorithm is constant relative to the

displacement, enabling effective analysis and comparison across estimated wind velocity

fields for different combinations of plume characteristics.

Table C.1 in Appendix C presents the average RMSE values across different combinations

of wind velocities, emission rates, measurement noise levels, and Δ𝑡 for the CIV Algorithm.

Each cell in the table represents the average RMSE computed from four image pairs per

combination. Similarly, Table C.2 in Appendix C displayed the average ME values for the

same combinations. These tables provide a comprehensive overview of the performance of

the CIV Algorithm in estimating wind velocities under varying conditions.

In Figure 3.11, the performance of the CIV Algorithm is visually represented through plots

of average RMSE and ME values. Each average RMSE and ME displayed in Figure 3.11

corresponds to a specific combination of wind velocity, emission rate, measurement noise

level, and Δ𝑡. This visualization helps to identify trends and outliers in the wind velocity

field estimation errors across different combinations of plume characteristics. Each average

RMSE and ME value is complemented by an error bar representing the standard deviation

of the average RMSE and ME, respectively. This standard deviation is determined from

the performance of the CIV Algorithm across all four plumes corresponding to the same

combination of plume characteristics.
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Figure 3.11: Plot (a) and (d) display the average RMSE and ME, respectively, for a Δt of 100 s, a wind velocity of 3

m/s and varying emission rates (ER) and measurement noise levels. Plot (b) and (e) display the average RMSE and

ME for a Δt of 50 s, a wind velocity of 6 m/s and varying emission rates (ER) and measurement noise levels. Plot (c)

and (f) display the average RMSE and ME for a Δt of 30 s, a wind velocity of 10 m/s and varying emission rates (ER)

and measurement noise levels. All plots are complemented by a single standard deviation error-bar of the average

RMSE and ME values.

The results for the CIV Algorithm are summarized in Figure 3.11, which illustrates the average

RMSE and ME in the wind velocity fields estimated by the CIV Algorithm. The emission

rate of the plume, given in megatons per year (MT/y), is plotted on the x-axis, while three

different measurement noise levels (𝑙0, 𝑙1, and 𝑙2) are represented by different colors in each

plot. The plots differentiate between three wind velocities: 3 m/s (plots (a) and (d)), 6 m/s

(plots (b) and (e)), and 10 m/s (plots (c) and (f)).

At a wind velocity of 3 m/s, the measurement noise level 𝑙0 maintains consistently low average

RMSE values around 0.76 m/s, indicating minimal error. In contrast, measurement noise

level 𝑙1 starts with a high average RMSE of approximately 11 m/s at lower emission rates, but

this decreases significantly to around 1.9 m/s as emission rates increase. Measurement noise

level 𝑙2 also starts with a very high average RMSE of about 12 m/s, which steeply decreases to

approximately 4 m/s with higher emission rates.

At a 6 m/s wind velocity, measurement noise level 𝑙0 continues to show low average RMSE

values, averaging around 1.19 m/s. For measurement noise level 𝑙1, the average RMSE starts

high at around 25 m/s at low emission rates and decreases to about 2 m/s as emission rates

increase. Measurement noise level 𝑙2 exhibits a similar trend, starting with a high average

RMSE of approximately 27 m/s and decreasing to around 2 m/s with increasing emission rates.

For a wind velocity of 10 m/s, measurement noise level 𝑙0 maintains low average RMSE values

around 2 m/s, indicating minimal error. Measurement noise level 𝑙1 begins with a very high

average RMSE of approximately 41 m/s at lower emission rates and decreases to around 3.7

m/s as emission rates rise. Measurement noise level 𝑙2 starts with an extremely high average

RMSE of about 45 m/s, which decreases to approximately 9 m/s with increasing emission rates.

These observations highlight the significant variation in average RMSE across different plume

characteristics. For scenarios with measurement noise level 𝑙0 and the highest emission rates,

RMSE averages around 20% of the true wind velocity. Conversely, with measurement noise

level 𝑙2 and the lowest emission rates (indicating the lowest SNR), average RMSE can spike

to around 400% of the true wind velocity. This underscores the critical impact of SNR on
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wind estimation accuracy. Additionally, in scenarios with nonzero measurement noise (𝑙1 and

𝑙2), increasing emission rates improve the SNR in the emission plume imagery, leading to

decreased average RMSE. This increase in contrast against background concentrations aids

the CIV Algorithm in providing more accurate wind velocity estimates.

When there is zero measurement noise (𝑙0), a significant average RMSE is observed that

increases non-linearly with true wind velocity. This increase is attributed to the effects of

turbulent mixing and displacement gradients in the plumes. As true wind velocity increases,

so does the amount of turbulent mixing, due to the higher Reynolds number, which affects

the traceability of features across image pairs. Additionally, displacement gradients, which

are constant relative to the true wind velocity, are affected by changes in wind velocity.

The average ME results, as shown in Figure 3.11 for a 3 m/s wind velocity, reveal that

measurement noise level 𝑙0 maintains low and stable average ME values, indicating minor

deviations from actual wind velocities. Measurement noise level 𝑙1 starts with a large average

ME of approximately -3 m/s at low emission rates but increases to around -0.6 m/s as emission

rates increase. Measurement noise level 𝑙2 shows an initial large average ME of about -3.2

m/s, which increases steeply to converge at -1.1 m/s with increasing emission rates.

At a 6 m/s wind velocity, measurement noise level 𝑙0 maintains low and stable average ME

values, showing minimal deviations from actual wind velocities. Measurement noise level

𝑙1 starts with a large average ME of around -10 m/s at low emission rates and increases to

about -0.5 m/s as emission rates rise. Measurement noise level 𝑙2 begins with a large average

ME of approximately -11 m/s and increases steeply to converge at -1.5 m/s with increasing

emission rates.

For a wind velocity of 10 m/s, measurement noise level 𝑙0 continues to show low and

stable average ME values. Measurement noise level 𝑙1 starts with a large average ME of

approximately -16 m/s at lower emission rates but increases to about -0.8 m/s as emission

rates rise. Measurement noise level 𝑙2 shows an initial very large average ME of about -20

m/s, which increases steeply to approximately -1.7 m/s with increasing emission rates.

Overall, the results indicate that changes in measurement noise levels, wind velocities, and

emission rates lead to varying SNRs, which significantly affect bias. Higher SNR generally

results in lower bias, whereas introducing measurement noise amplifies bias, particularly in

scenarios with inherently lower SNR. For instance, at a low SNR with a 10 m/s wind velocity

and 2.5 MT/y plumes, bias is significantly larger compared to higher SNR scenarios at 3 m/s

and 25 MT/y plumes. Specifically, at measurement noise level 𝑙2, bias at 10 m/s and 2.5 MT/y

is approximately 100 times larger than at 𝑙0, whereas bias at 𝑙2 for 3 m/s and 25 MT/y is only

about four times larger than at 𝑙0. This disparity highlights the pivotal role of SNR in bias

amplification. Furthermore, the increasing trends observed in the orange and green lines in

plots (d), (e), and (f) for increasing emission rates confirm the effect of SNR. As emission rates

increase and measurement noise is introduced at fixed levels, the SNR improves, reducing

absolute bias. When the CIV Algorithm is exposed to relatively low SNR imagery, it tends

to significantly underestimate wind velocity fields, with biases exceeding -200% relative to

the true wind velocity. These findings underscore the critical importance of high SNR inputs

for accurate wind velocity estimation using the CIV Algorithm. Higher SNR leads to more

accurate estimates, while lower SNR results in significant inaccuracies.

Scenario: Constant Δt
Secondly, the average RMSE and ME of the CIV Algorithm are analyzed for all combinations of

plume characteristics with a constant Δ𝑡 of 20 seconds, mimicking the data product of TANGO.

These results are displayed in Appendix C in Table C.3 and Table C.4, respectively, and plotted

in Figure 3.12. Each average RMSE and ME value in Figure 3.12 is again complemented by an

error bar representing the standard deviation of the average RMSE and ME, respectively.

For a Δ𝑡 of 20 seconds, the displacement between the image pairs in not constant but a

function of the wind velocity. For wind velocities of 3, 6, and 10 m/s, displacements between

image pairs are 60, 120, and 200 meters (all sub-pixel displacements), respectively. Due to this

variability of displacements, the relative contribution of random error is no longer constant
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over plumes with different wind velocities. Therefore, an increased relative estimation

error is expected to arise for combinations of plume characteristics with relatively smaller

displacements, and vice versa for larger displacements.

Figure 3.12: Plot (a) and (d) display the average RMSE and ME, respectively, for a Δt of 20 s, a wind velocity of 3 m/s

and varying emission rates (ER) and measurement noise levels. Plot (b) and (e) display the average RMSE and ME

for a Δt of 20 s, a wind velocity of 6 m/s and varying emission rates (ER) and measurement noise levels. Plot (c) and

(f) display the average RMSE and ME for a Δt of 20 s, a wind velocity of 10 m/s and varying emission rates (ER) and

measurement noise levels. All plots are complemented by a single standard deviation error-bar of the average RMSE

and ME values.

The results for the CIV Algorithm with a constant Δ𝑡 of 20 s are summarized in Figure 3.12.

This figure illustrates the average RMSE and ME in the wind velocity fields estimated by the

CIV Algorithm. The emission rate of the plume, given in megatons per year (MT/y), is plotted

on the x-axis, while three different measurement noise levels (𝑙0, 𝑙1, and 𝑙2) are represented

by different colors in each plot. The plots differentiate between three wind velocities: 3 m/s

(plots (a) and (d)), 6 m/s (plots (b) and (e)), and 10 m/s (plots (c) and (f)).

At a wind velocity of 3 m/s, measurement noise level 𝑙0 maintains consistent average RMSE

values around 1.5 m/s. For measurement noise level 𝑙1, average RMSE starts very high at

approximately 54 m/s at lower emission rates but decreases significantly to around 3.6 m/s as

emission rates increase. Measurement noise level 𝑙2 also starts with a very high average RMSE

of around 60 m/s, which steeply decreases to about 18 m/s with increasing emission rates.

For a 6 m/s wind velocity, measurement noise level 𝑙0 shows consistent average RMSE values

around 1.4 m/s across all emission rates. Measurement noise level 𝑙1 begins with a high

average RMSE of approximately 60 m/s at low emission rates and decreases to around

3.6 m/s as emission rates increase. Measurement noise level 𝑙2 starts with a very high av-

erage RMSE of about 64 m/s and decreases to approximately 9 m/s with higher emission rates.

At a wind velocity of 10 m/s, measurement noise level 𝑙0 maintains consistent average RMSE

values around 2.1 m/s. Measurement noise level 𝑙1 starts with a very high average RMSE of

around 60 m/s at lower emission rates and decreases to about 5 m/s as emission rates rise.

Measurement noise level 𝑙2 shows an initially extremely high average RMSE of approximately

66 m/s, which decreases steeply to around 12 m/s with increasing emission rates.

These observations highlight two key points regarding the average RMSE for a constant

Δ𝑡. Firstly, the performance of the CIV Algorithm is highly dependent on the SNR, even
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when Δ𝑡 is constant. As emission rates decrease and measurement noise levels increase,

the performance of the CIV Algorithm deteriorates rapidly, particularly in comparison to

scenarios with variable Δ𝑡. Secondly, for zero measurement noise (𝑙0), the average RMSE

increases significantly relative to the true wind velocity as displacements decrease. For the

smallest displacement of 60 meters (at 3 m/s wind velocity), the average RMSE is about

50% of the true wind velocity, whereas for the largest displacement of 200 meters (at 10 m/s

wind velocity), it is around 21% of the true wind velocity. This trend was expected, as the

contribution of random error relative to displacement increases when displacements are

smaller. In the variable Δ𝑡 scenario, where displacement is constant across wind velocities,

this trend is not observed.

The average ME results, displayed in Figure 3.12, exhibit a similar trend across different plume

characteristics. Notably, the magnitude of bias significantly increases under the constant Δ𝑡
scenario. In the absence of measurement noise, a distinct pattern emerges: for displacements

smaller than 150 meters, there is a significant positive bias, indicating an overestimation of

the wind velocity field. Conversely, for displacements larger than 150 meters, a significant

negative bias is observed, indicating an underestimation of the wind velocity field. This

suggests a bias towards a displacement estimate of 150 meters.

In the constant Δ𝑡 scenario, where all displacements are sub-pixel, the CIV Algorithm heavily

relies on the Gaussian peak fitting procedure for displacement estimation. This procedure

appears to introduce a bias towards a displacement of 150 meters for displacements below 300

meters. While peak locking is a common bias in PIV applications, where the bias is towards

an integral peak location, the observed phenomenon in this case is a bias towards a sub-pixel

location. As discussed in Section 3.2.1, the Gaussian peak fitting procedure has limitations in

accurately fitting peak neighborhoods. Typically, the neighborhood peaks encountered in

this thesis can be approximated by a Gaussian function with limited accuracy (see plot (b) in

Figure 3.7), which may introduce biases. However, the exact cause of the bias towards 150

meters due to the Gaussian peak fitting procedure remains unexplained and warrants further

analysis beyond the scope of this thesis.

With the introduction of measurement noise, the biases towards a 150-meter displacement

diminish. Instead, all biases become negative, indicating a significant underestimation of the

wind velocity fields. This shift to underestimation with added measurement noise is also

observed in the variable Δ𝑡 scenario, although the magnitude of this change is much more

pronounced in the constant Δ𝑡 scenario. When comparing bias magnitudes in the constant

Δ𝑡 scenario with those in the variable Δ𝑡 scenario, the biases in the constant Δ𝑡 scenario are

more than 40% larger. Thus, the CIV Algorithm is increasingly susceptible to the negative

effects of measurement noise with sub-pixel displacements. It is worth noting that SNR still

significantly affects the biases, decreasing their magnitude as SNR improves.

In conclusion, the performance of the CIV Algorithm in the constant Δ𝑡 scenario is notably

poorer for wind velocity estimation based on sub-pixel displacements. Except for one scenario

(10 m/s, 𝑙2, 25 MT/y), the variable Δ𝑡 scenario outperforms the constant Δ𝑡 scenario across

all plume characteristics.

3.3. CVision-CIV
As discussed in Chapter 1, advancements in CVision have significantly enhanced traditional

velocimetry methods. While there has been significant progress in applying CVision to PIV,

the use of CVision-CIV approaches for flow velocity estimation is still in its early stages.

However, due to the similarity between PIV and CIV, CVision methods corresponding to PIV

applications could be used to perform CIV. These methods typically involve Deep Learning

with convolutional layers and can use either labeled or unlabeled data (O’Shea and Nash

(2015)). They often require large training datasets and access to substantial computing power

in order to train CVision models effectively. To leverage existing resources, publicly available

methods, along with their trained models, are accessed and implemented in the research of

this thesis.

One of the most promising CVision-PIV models and networks developed, trained, validated,

and published is called UnLiteFLowNet-PIV created by Zhang and Piggott (2020). This model
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has been designed to estimate velocity fields from PIV imagery. It has been demonstrated to

match the performance of traditional PIV approaches while surpassing them in complex flow

regimes. Moreover, UnLiteFLowNet-PIV is capable of estimating high-quality velocity fields

in significantly less time compared to traditional PIV methods. Finally, UnLiteFLowNet-PIV

has been trained in an unsupervised manner using a complex loss function that tracks flows

estimated forwards and backward in time. This approach allows the network to be trained

on imagery of flows where the true flow structure is unknown, a characteristic shared with

satellite imagery of emission plumes.

Due to these advantageous properties, the trained UnLiteFLowNet-PIV network has been

extracted from Zhang and Piggott (2020) to serve as the foundation for the CVision-CIV

approach proposed in this thesis. Transfer learning is applied in a supervised manner to

adapt UnLiteFLowNet-PIV applying CIV to data of the type provided by the TANGO mission

and enhancing the accuracy of wind velocity estimates based on satellite imagery.

3.3.1. UnLiteFLowNet-PIV and Extension
UnLiteFlowNet-PIV, derived from the LiteFlowNet architecture (Hui et al. (2018)), is a model

designed for estimating displacements between image pairs. The model starts by using a

two-stream convolutional neural network named NetC (Hui et al. (2018)) to extract features

from the two input images displayed in Figure 3.13. Each stream processes one of the

images. The two streams within NetC share the same weights, meaning they utilize identical

parameters for processing both images. This ensures that the features extracted from both

images are consistent and comparable. NetC employs a pyramidal structure to process the

images at multiple scales. It starts with the full resolution and progressively reduces the

resolution through each level of the pyramid, down to one-sixth of the original size. This

multi-scale processing helps capture both fine details at higher resolutions and broader, more

general features at lower resolutions.

After extracting features with NetC, the model moves to the decoder network, NetE (Hui et al.

(2018)), displayed in Figure 3.13, which estimates the displacements between the two images.

NetE performs cascaded displacement inference. This means it begins with the coarsest level

of the pyramid (the lowest resolution) and estimates the displacements at this level. It then

progressively refines the displacement estimates as it moves up through the pyramid levels to

higher resolutions. This step-by-step refinement process helps improve the accuracy of the

displacement estimates. Throughout the inference process, NetE incorporates displacement

regularisation. This step is crucial for smoothing the displacement estimates and ensuring

they are physically plausible, avoiding abrupt changes that are not realistic.

Once NetE completes the cascaded inference and regularisation, the displacement field

estimate is still at a reduced resolution. To match the original image resolution, this estimate is

upsampled using bilinear interpolation. This interpolation technique smoothly increases the

resolution of the displacement field estimate, aligning it with the dimensions of the original

input images.

UnLiteFlowNet-PIV effectively captures and computes an accurate displacement field between

two images through a detailed process which can be transformed into a flow velocity field

using the Δt between images and the image resolution. The model is trained using a complex

loss function that includes photometric, smoothness, and consistency losses (Zhang and

Piggott (2020)). The photometric loss evaluates how well the model’s estimated flow aligns

the first image with the second image. The smoothness loss penalizes abrupt changes in the

flow field to ensure a smooth transition between neighboring pixel locations. The consistency

loss enforces that the forward and backward flow estimates are consistent with each other.

It checks that applying the forward flow to an image and then the backward flow should

ideally return the original image, and vice versa. At last, the (combined) complex loss function

compares the estimated displacement field with observed displacements, utilizing a dataset

of 15,050 particle image pairs, each sized 256x256 pixels, with ground truth data obtained

from computational fluid dynamics simulations. The dataset encompasses eight types of flow,

including both uniform and turbulent flow at various Reynolds numbers. For a complete

description of the training procedure, the reader is referred to Zhang and Piggott (2020).
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UnLiteFlowNet-PIV is applied to emission plume imagery to estimate wind velocity fields.

Similar to its PIV training procedure, it processes pairs of images taken at intervals of Δ𝑡.
Due to the size of image pairs in 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 , image pairs are resized to 256x256 pixels. Rather

than padding the input images, which results in large portions of UnLiteFlowNet-PIV being

unused during transfer learning, the emission plume imagery is up-sampled to match the

required input size. This approach ensures that all weights are utilized in the transfer learning

process. Importantly, up-sampling does not impact the performance of the estimated flow

fields, as it does not add or subtract any information into the input imagery.

UnLiteFlowNet-PIV was trained on black-and-white images, with each pixel value ranging

between 0 and 1. Since CO2 emission plume images have values in PPM starting from

412, these images are normalized to fit the input requirements. This normalization enables

UnLiteFlowNet-PIV to accurately estimate wind velocity fields from the up-sampled CO2

emission plume imagery.

The output of UnLiteFlowNet-PIV is a complete wind velocity field that spans the entire

up-sampled pixel domain of the image pair. This is in contrast to the wind velocity field that

is estimated by the CIV Algorithm which is made up of wind velocity estimates for pixel

locations in 𝑙𝑝 which is a subset of the entire pixel domain. So in order to effectively compare

the wind velocity fields estimated by UnLiteFlowNet-PIV to those estimated by the CIV

Algorithm, the wind velocity field estimated by UnLiteFlowNet-PIV is firstly down-sampled

to match the initial dimensions of the simulated plume imagery. Thereafter, the estimated

wind velocity field is filtered to contain wind velocity estimates for pixel locations in 𝑙𝑝 . The

set 𝑙𝑝 is constructed identically to the one used in the CIV Algorithm such that the estimated

wind velocity fields are comparable.

Since the output of UnLiteFlowNet-PIV is now comparable with the output of the CIV

Algorithm, it is also compatible with the true wind velocity fields corresponding with the

emission plume simulations. As a result, transfer learning is applied in a supervised manner

since the comparable output of UnLiteFlowNet-PIV is labeled. The RMSE from Equation 3.4

is used as the loss function for the training procedure. The training set, 𝐷𝐵𝑡𝑟𝑎𝑖𝑛 , consisted of

normalized image pairs, where 𝐷𝐵𝑡𝑟𝑎𝑖𝑛 = 𝐷𝐵𝑇𝐴𝑁𝐺𝑂\𝐷𝐵𝑡𝑒𝑠𝑡 . 𝐷𝐵𝑡𝑟𝑎𝑖𝑛 includes both noiseless

and noisy imagery, aligning with 𝐷𝐵𝑡𝑒𝑠𝑡 , which contains both types. This alignment allows

effective comparison of the results from the CIV Algorithm and the CVision-CIV approach.

However, if CVision-CIV would be applied to real-world imagery, exclusively training on

noisy imagery could enhance robustness to measurement noise of CVision-CIV networks.

UnLiteFlowNet-PIV is trained in two separate ways: on variable Δ𝑡 imagery in 𝐷𝐵𝑡𝑟𝑎𝑖𝑛 with a

constant displacement of 300 meters, and on constant Δ𝑡 imagery with variable displacements

across image pairs. This training distinction is made due to the contribution on random error

relative to the displacements, which significantly effect the accuracy of the wind velocity

estimates. To account for this effect two distinct training procedure are applied: a constant

and a variable Δt training procedure. Both training procedures span 10 epochs, with each

batch consisting of 8 entries. The learning rate is set to 1 × 10
−4

, and the Adam optimizer is

used with a weight decay of 1 × 10
−5

, an epsilon value of 1 × 10
−3

, and the AMSGrad variant

enabled. This configuration ensures stable and efficient training. After undergoing transfer

learning, the UnLiteFlowNet-PIV model evolves into two networks tailored for different

scenarios: CVision-CIVnet for the variable Δ𝑡 scenario and CVision-CIVnetcst for the constant

Δ𝑡 scenario. Both networks share identical architectures, as described in Figure 3.13.
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Figure 3.13: Architecture CVision-CIVnet and CVision-CIVnetcst.

3.3.2. Wind Velocity Estimation Results
The CVision-CIVnet’s (CVision-CIVnet and CVision-CIVnetcst) provide as output a dis-

placement field which is filtered by 𝑙𝑝 and transformed into a wind velocity field using

the Δ𝑡 between images, and the image resolution. This wind velocity field consists of both

components (𝑢 and 𝑣) of the wind velocity; however, due to the nature and alignment of

the plume simulation, the 𝑣 component of the estimated wind velocity is negligibly small.

Therefore, this component is omitted from the analysis similarly to Section 3.2.2.

To analyze the accuracy of the wind velocity fields estimated by the CVision-CIVnet’s, a

comparison is made with the true wind velocities of each pixel location extracted from

the CO2 plume simulations. To understand the nature and shape of the output of both

CVision-CIVnet’s, an image pair is selected, as was done in Section 3.2.2, from 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 for

which the wind velocity field is estimated by CVision-CIVnet.
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Figure 3.14: The first CO2 plume image in the image pair is displayed in plot (a). The resulting wind velocity field

estimated by CVision-CIVnet is displayed in plot (b). For reference, the true wind velocity field filtered for pixel

locations in 𝑙𝑝 and the difference between the estimated and true wind velocity fields are displayed in plots (c) and

(d) respectively. The plume characteristics included a true wind velocity of 6 m/s, an emission rate of 25 MT/y, a 𝑙0
measurement noise level and a Δt of 50 seconds.

Figure 3.14 displays the first image in the image pair for which the wind velocity is estimated

(plot (a)). The corresponding estimated wind velocity field for this image pair is also displayed

in Figure 3.14 (plot (b)). Note that all pixel locations marked with a nonzero wind velocity

estimate in plot (b) correspond to those within 𝑙𝑝 . In the estimated wind velocity field, it

is observed that there no longer exists a significant relationship between the distance of

pixel locations to the emission source and the degree of underestimation of wind velocities.

However, a clear smoothing of the wind velocity field is observed compared to the true wind

velocity field (plot (c)). Since the underlying network, UnLiteFlowNet-PIV, was partially

trained using a smoothness loss function, smoothing was expected to carry over into the

transfer-trained CVision-CIVnet.
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Figure 3.15: Accuracy plot of the wind velocity field estimated by CVision-CIVnet displayed in Figure 3.14. For

perfect estimation, all points in the scatter plot lie on the red diagonal line. The scatter plot is color-coded with the

horizontal distance from the emission source.

Figure 3.15 shows a scatter plot mapping the estimated wind velocity field to the true wind

velocity field. Ideally, with perfect estimation and zero error, all points would lie on the

red diagonal line; deviation from this line indicates estimation error. From Figure 3.15, it

is evident that there is a significant estimation error across the entire wind velocity field.

However, the cloud of points displayed in Figure 3.15 lies more closely on the diagonal line

compared to the results displayed in Figure 3.10. Additionally, there are no clear indications of

overestimation or underestimation of the wind velocity field. Due to the supervised training

procedure, CVision-CIVnet learned not to underestimate the wind velocity of pixel locations

near the emission source, in contrast to the CIV Algorithm.

The results displayed in Figure 3.14 and Figure 3.15 correspond to a single combination of

plume characteristics. To effectively analyze the results and accuracy of CVision-CIVnet and

CVision-CIVnetcst across all different combinations of plume characteristics, the input is

scaled up from a single plume to several image pairs per combination of plume characteristics

using 𝐷𝐵𝑡𝑒𝑠𝑡 . Similarly to the analysis of results corresponding to the CIV Algorithm, for each

image pair in the four image pairs that belong to the same combination of plume characteristics,

the RMSE and ME of the velocity field are computed using Equation 3.4 and Equation 3.5.

Once all four RMSEs and MEs have been computed, they are averaged and stored as the

average RMSE and ME for that combination of wind velocity, emission rate, measurement

noise level, and Δt respectively. Due to the contribution of random error relative to the

displacements between image pairs, which can significantly affect wind velocity estimation

accuracy, the results of CVision-CIVnet and CVision-CIVnetcst for different combinations of

plume characteristics are partitioned into two separate scenarios: variable Δ𝑡 and constant Δ𝑡.

Scenario: Variable Δt
Firstly, the average RMSE and ME results of CVision-CIVnet are analyzed for a variable Δ𝑡.
They are displayed in Appendix D in Table D.1 and Table D.2, respectively. Additionally,

these results for CVision-CIVnet are plotted in Figure 3.16. Each average RMSE and ME value

in Figure 3.16 is again complemented by an error bar representing the standard deviation of

the average RMSE and ME, respectively.

Δt is varied from 100, 50, to 30 seconds, for wind velocities of 3, 6, and 10 m/s respectively.

As a result, the contribution of random error to the results of CVision-CIVnet is constant

relative to the displacement, enabling effective analysis and comparison across estimated

wind velocity fields for different combinations of plume characteristics. Table D.1 presents

the average RMSE values across different combinations of wind velocities, emission rates,

measurement noise levels, and Δ𝑡 for CVision-CIVnet. Each cell in the table represents the

average RMSE computed from four image pairs per combination. Similarly, Table D.2 shows

the average ME values for the same combinations. These tables provide a comprehensive

overview of the performance of CVision-CIVnet in estimating wind velocities under varying

conditions. In Figure 3.16, the performance of CVision-CIVnet is visually represented through
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plots of average RMSE and ME values. Each point in the plots corresponds to a specific

combination of wind velocity, emission rate, measurement noise level, and Δ𝑡.

Figure 3.16: Plot (a) and (d) display the average RMSE and ME, respectively, for a Δt of 100 s, a wind velocity of 3

m/s and varying emission rates (ER) and measurement noise levels. Plot (b) and (e) display the average RMSE and

ME for a Δt of 50 s, a wind velocity of 6 m/s and varying emission rates (ER) and measurement noise levels. Plot (c)

and (f) display the average RMSE and ME for a Δt of 30 s, a wind velocity of 10 m/s and varying emission rates (ER)

and measurement noise levels. All plots are complemented by a single standard deviation error-bar of the average

RMSE and ME values.

The performance metrics of CVision-CIVnet are summarized in Figure 3.16, which illustrates

the average RMSE and ME of the estimated wind velocity fields in plots (a), (b), and (c), and

(d), (e), and (f) respectively. The emission rate of the plumes, given in megatons per year

(MT/y), is plotted on the x-axis, while three different measurement noise levels (𝑙0, 𝑙1, and 𝑙2)

are represented by different colors in each plot. The plots differentiate between three wind

velocities: 3, 6, and 10 m/s.

For a wind velocity of 3 m/s (plot (a)), the average RMSE for measurement noise level 𝑙0
generally remains around 0.8 m/s, with a slight decrease as emission rates increase. Mea-

surement noise level 𝑙1 begins with lower average RMSE values at lower emission rates but

increases steadily, approaching 0.85 m/s. Measurement noise level 𝑙2 maintains a consistent

and minimal average RMSE of around 0.65 m/s, with a slight increase at higher emission

rates. Notably, CVision-CIVnet performs progressively better for 3 m/s wind velocities when

measurement noise is present. This improvement is due to CVision-CIVnet’s training on low

SNR imagery, which is typically noisy and features relatively high wind velocities (mean

wind velocity in 𝐷𝐵𝑡𝑟𝑎𝑖𝑛 is 6.3 m/s).

At a wind velocity of 6 m/s (plot (b)), measurement noise level 𝑙0 maintains a steady average

RMSE of around 0.97 m/s across all emission rates. Measurement noise level 𝑙1 shows

considerable variation, with average RMSE decreasing to as low as 0.85 m/s at low emission

rates before rising to 0.95 m/s at higher emission rates. Measurement noise level 𝑙2 behaves

similarly to 𝑙1, starting below 0.95 m/s and gradually converging to about 0.9 m/s with

increasing emission rates. Generally, the average RMSE falls within the 1-0.85 m/s range,

indicating stable and favorable performance across all plume characteristics relative to the

true wind velocity. For most cases with a 6 m/s true wind velocity, CVision-CIVnet performs

better with noisy imagery due to its training on such data.

For a wind velocity of 10 m/s (plot (c)), measurement noise level 𝑙0 yields an average RMSE of
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approximately 1.27 m/s. Measurement noise level 𝑙1 shows a clear decrease at low emission

rates, reducing average RMSE to around 1.1 m/s, but then increases and stabilizes near 1.5

m/s. Measurement noise level 𝑙2 exhibits a decreasing trend, starting at about 1.35 m/s and

decreasing to around 1.2 m/s as emission rates increase. Due to the training of CVision-CIVnet,

it generally provides more accurate wind velocity estimates (i.e., lower average RMSE) when

using noisy imagery for most cases. As with the 6 m/s wind velocity, CVision-CIVnet shows

improved performance with noisy imagery due to its training.

The average ME results for a 3 m/s wind velocity (plot (d)) indicate that measurement noise

level 𝑙0 results in a negative bias at low emission rates, which increases slightly as emission

rates rise, stabilizing around -0.2 m/s. Measurement noise level 𝑙1 shows a transition from

positive to negative average MEs, converging around -0.5 m/s at higher emission rates. Mea-

surement noise level 𝑙2 starts with slightly positive average MEs, decreasing to approximately

-0.2 m/s.

At a wind velocity of 6 m/s (plot (e)), measurement noise level 𝑙0 maintains a relatively stable

average ME around 0.2 m/s with minor fluctuations, indicating a significant overestimation

of the wind velocity field. Measurement noise level 𝑙1 initially increases to about 0.6 m/s but

gradually decreases to -0.3 m/s, reflecting an overshoot and a shift from overestimation to

underestimation of the wind velocity field. Measurement noise level 𝑙2 starts with higher

average MEs around 0.3 m/s and decreases to nearly 0 at higher emission rates.

For a wind velocity of 10 m/s (plot (f)), measurement noise level 𝑙0 remains around 0.13 m/s

with minor fluctuations. Measurement noise level 𝑙1 shows a significantly positive average

ME at lower emission rates, peaking at 0.3 m/s before decreasing and stabilizing around 0.

Measurement noise level 𝑙2 starts with a positive average ME, which gradually decreases and

stabilizes around 0.28 m/s. In most cases, the bias is positive, indicating a slight overestimation

of the wind velocity field, though considerably less than the overestimation observed in

the other algorithm. CVision-CIVnet does not display the same trend in overestimation

magnitude with increasing measurement noise as seen in the other algorithm. However, a

clear trend is observed in plots (d), (e), and (f) for measurement noise levels 𝑙1 and 𝑙2, where

increasing emission rates lead to a negative bias, peaking at -0.4 m/s for an emission rate of

25 MT/y.

The results for CVision-CIVnet, displayed in Figure 3.16, underscore the significant impact of

SNR on the accuracy of wind velocity estimations derived from emission plume imagery. Un-

like the other algorithm, CVision-CIVnet’s performance is better aligned with noisy imagery

due to its training. Generally, the average RMSE and ME values are within a similar range

for different emission rates but show significant changes when varying measurement noise

levels. This change is less pronounced compared to the effect of measurement noise on the

CIV Algorithm’s results. CVision-CIVnet’s superior performance with noisy imagery, relative

to noiseless imagery, is consistent with its training on such data.

Comparing CVision-CIVnet with the CIV Algorithm, it is evident that CVision-CIVnet

outperforms it in the variable Δ𝑡 scenario across all plume characteristics. The average RMSE

and bias magnitudes for CVision-CIVnet are considerably smaller compared to those of the

CIV Algorithm, particularly for low SNR inputs corresponding to low emission rates, high

measurement noise, and high wind velocities. The CIV Algorithm’s accuracy deteriorates with

low SNR imagery, while CVision-CIVnet is designed to handle such conditions effectively.

Scenario: Constant Δt
Secondly, the average RMSE and ME results of CVision-CIVnetcst are analyzed for a constant

Δt of 20 seconds, mimicking the data product of TANGO. They are displayed in Table D.3

and Table D.4 respectively. Additionally, these results for CVision-CIVnetcst are plotted in

Figure 3.17, again complemented by an error bar representing the standard deviation of the

average RMSE and ME, respectively.

For a Δ𝑡 of 20 seconds, the displacement between the image pairs is not constant but again a

function of the wind velocity. For wind velocities of 3, 6, and 10 m/s displacements between

image pairs are 60, 120, and 200 meters (all sub-pixel displacements), respectively. Due to this
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variability of displacements, the relative contribution of random error is no longer constant

over plumes with different wind velocities. Therefore, an increased relative estimation

error is expected to arise for combinations of plume characteristics with relatively smaller

displacements, and vice versa for larger displacements.

Figure 3.17: Plot (a) and (d) display the average RMSE and ME, respectively, for a Δt of 100 s, a wind velocity of 3

m/s and varying emission rates (ER) and measurement noise levels. Plot (b) and (e) display the average RMSE and

ME for a Δt of 50 s, a wind velocity of 6 m/s and varying emission rates (ER) and measurement noise levels. Plot (c)

and (f) display the average RMSE and ME for a Δt of 30 s, a wind velocity of 10 m/s and varying emission rates (ER)

and measurement noise levels. All plots are complemented by a single standard deviation error-bar of the average

RMSE and ME values.

The results for CVision-CIVnetcst with a constant Δ𝑡 of 20 s are presented in Figure 3.17,

which illustrates the average RMSE and ME of the estimated wind velocity fields in plots

(a), (b), and (c), and (d), (e), and (f) respectively. The emission rate of the plumes, given in

megatons per year (MT/y), is plotted on the x-axis, while three different measurement noise

levels (𝑙0, 𝑙1, and 𝑙2) are represented by different colors in each plot. The plots differentiate

between three wind velocities: 3, 6, and 10 m/s.

At a wind velocity of 3 m/s, measurement noise level 𝑙0 maintains average RMSE values

around 2.6 m/s across all emission rates, indicating a substantial error of approximately

80%. In contrast, measurement noise levels 𝑙1 and 𝑙2 begin with higher average RMSE

values, approximately 11 m/s and 13 m/s respectively, at lower emission rates. As emission

rates increase, the average RMSE for both measurement noise levels decreases significantly,

converging towards 3.7 m/s for 𝑙1 and 3.8 m/s for 𝑙2 at higher emission rates.

For a wind velocity of 6 m/s, measurement noise level 𝑙0 similarly shows stable and relatively

low average RMSE values around 3.4 m/s. Measurement noise levels 𝑙1 and 𝑙2 exhibit

higher initial average RMSE values ( 10.1 m/s and 10.4 m/s respectively) that decrease to

approximately 2.9 m/s and 4.2 m/s as the emission rate increases.

At a wind velocity of 10 m/s, measurement noise level 𝑙0 maintains low average RMSE values

around 2.9 m/s. Measurement noise levels 𝑙1 and 𝑙2 start with high average RMSE values ( 7.3

m/s and 7.5 m/s respectively) which decrease to around 2.8 m/s for 𝑙1 and 4.0 m/s for 𝑙2 as

the emission rate increases.

Analysis of the average ME at a 3 m/s wind velocity shows that measurement noise level 𝑙0
maintains relatively low positive average ME values, indicating negligible positive biases from
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the actual wind velocities. Measurement noise levels 𝑙1 and 𝑙2 start with higher average ME

values, approximately 10 m/s and 11 m/s respectively, at lower emission rates, and decrease

to around 1.5 m/s for 𝑙1 and 2.5 m/s for 𝑙2 as emission rates increase.

At a wind velocity of 6 m/s, measurement noise level 𝑙0 continues to exhibit significant negative

average ME values, indicating an underestimation of the wind velocity fields. Measurement

noise levels 𝑙1 and 𝑙2 start with very high average ME values, approximately 8.7 m/s and 9.0

m/s respectively, which decrease significantly to around -1.6 m/s for 𝑙1 and -2.5 m/s for 𝑙2 as

the emission rate increases.

For a wind velocity of 10 m/s, measurement noise level 𝑙0 maintains small negative average

ME values relative to the true wind velocity, indicating only minor underestimation of the

wind velocity fields. Measurement noise levels 𝑙1 and 𝑙2 start with very high average ME

values, approximately 5.0 m/s and 5.1 m/s respectively, which decrease to around -1.3 m/s

for 𝑙1 and -1.7 m/s for 𝑙2 as emission rates increase.

From this analysis, it is concluded that the performance of CVision-CIVnetcst improves as the

observed displacement increases, similarly to the CIV Algorithm. For instance, with a true

wind velocity of 3 m/s and a displacement of 60 meters, the average RMSE and ME are 13 m/s

and 12 m/s, respectively. Conversely, for a true wind velocity of 10 m/s and a displacement

of 200 meters, the average RMSE and ME are reduced to 7.5 m/s and 5 m/s, respectively. This

pattern is caused by the contribution of random error relative to displacements, similar to the

patterns observed in the performance of the CIV Algorithm in the constant Δ𝑡 scenario. As

displacement increase, this relative contribution decreases, increasing the accuracy of wind

velocities, and vice versa.

These observations of the average RMSE and ME indicate significant variation across different

plume characteristics, emphasizing the sensitivity of CVision-CIVnetcst to SNR in a constant

Δ𝑡 scenario with sub-pixel displacements. In contrast to the variable Δ𝑡 scenario, SNR

has a distinct effect on average RMSE and ME when Δ𝑡 is constant with varying sub-pixel

displacements across different wind velocities. As measurement noise is introduced, the

average RMSE and ME of CVision-CIVnetcst across different combinations of plume char-

acteristics quickly deteriorate, indicating an increased susceptibility to measurement noise

in sub-pixel displacement estimation. However, as the SNR increases, the performance of

CVision-CIVnetcst increases. The decreasing trends on the orange (𝑙1) and green (𝑙2) lines

in all plots in Figure 3.17 indicate that as the emission rate increases, the performance of

CVision-CIVnetcst increases due to the increased SNR. Additionally, it is observed in all plots

in Figure 3.17 that the blue line (𝑙0) outperforms the orange line (𝑙1) in the majority of the

cases. While the orange lines (𝑙1) consistently outperform the green line (𝑙2). Contrarily, this

was not observed in the variable Δt scenario with constant displacements, where the average

RMSE and ME of CVision-CIVnet laid in the 0.4-1 m/s bandwidth for all different SNR’s

respectively.

Assessing the overall performance of CVision-CIVnetcst, it is evident that in all combinations

of plume characteristics, CVision-CIVnetcst is consistently outperformed by CVision-CIVnet.

This is primarily due to the increased relative contribution of random error, as displacements

are smaller in the variable Δ𝑡 scenario compared to the constant Δ𝑡 scenario. Additionally,

CVision-CIVnetcst’s performance is more susceptible to measurement noise due to its task of

estimating sub-pixel displacements. When comparing the results of CVision-CIVnetcst with

those of the CIV Algorithm, it is concluded that, in the constant Δ𝑡 scenario, CVision-CIVnet

outperforms the CIV Algorithm consistently for all different combinations of plume character-

istics. This performance difference is most profound for low SNR input, corresponding to

low emission rate, high measurement noise, and high wind velocity plumes. This is caused

by the fact that the accuracy of the CIV Algorithm collapses for low SNR imagery while

CVision-CIVnetcst is trained to deal with low SNR imagery.

3.4. Estimating CO2 Emission Rate
To estimate emission fluxes of CO2, a Mass Balance Method (MBM) is employed. This method

is preferred over inversion methods due to the relative simplicity of MBM’s, as discussed
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in Section 1.2.2. The MBM employed is the Cross-sectional Flux Method (CFM) (White

et al. (1976), Beirle et al. (2011), Cambaliza et al. (2014), Kuhlmann et al. (2020), Goudar

et al. (2023)), which relies on background-subtracted CO2 concentration measurements,

𝛿𝐶𝐶𝑂2

𝑖
, and the the complete wind velocity field. Contrarily, other MBM’s often depend

only on a single wind velocity vector for the entire plume. However, it is desirable to utilize

all information regarding the estimated wind velocity field to enhance emission rate estimation.

The background-subtracted CO2 concentration measurements, 𝛿𝐶𝐶𝑂2

𝑖
, are obtained by

subtracting the mean CO2 concentration observed before the emission plume source comes

into view. In this thesis, the background concentration in emission plume imagery is artificially

introduced, so its true value is known. However, in real-world scenarios, this is not the

case. Therefore, to closely match real-world conditions, the background CO2 concentration is

determined by computing the mean CO2 concentration observed before the emission source

comes into view. This approach is relatively simple and can only be applied to emission

plume imagery unaffected by any upwind emission sources that could influence the mean

background concentration (Goudar et al. (2023)).

3.4.1. Cross-sectional Flux Method
The CFM operates by computing the emission flux for cross-sections stretching across the

complete width of the plume that is perpendicular to the plume’s velocity. In this thesis,

the number of cross-sections for which a CO2 flux is estimated equals the number of pixel

columns in the emission plume imagery. For each cross-section containing pixel locations

where the wind velocity is estimated, the mean wind velocity over that cross-section, 𝑢𝑖 , can

be computed. For cross-sections without such pixel locations, 𝑢𝑖 is set to zero. Equation 3.6

illustrates how the emission flux 𝑄𝑖 for plume 𝑝 can be estimated for each cross-section 𝑖,
assuming a constant emission rate.

𝑄
𝑝

𝑖
=

ˆ
𝑆

𝛿𝐶
𝑝

𝑖
(𝑠) · �̄�𝑝

𝑖
𝑑𝑠 · 3600𝑠/ℎ · 24ℎ/𝑑 · 365𝑑/𝑦 · 10

−9𝑀𝑇/𝑘𝑔 (3.6)

where 𝑄𝑖 (in MT/y) is the emission flux through cross-section 𝑖, 𝛿𝐶𝐶𝑂2

𝑖
(in kg/m

2
) is the

background-subtracted CO2 values along a cross-section 𝑖, and 𝑢𝑖
𝑝

(in m/s) is the mean wind

velocity perpendicular to the cross-section 𝑖. By converting PPM to kg/m
2

using atmospheric

pressure and the molar mass of CO2 and air, the CO2 concentration in 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 can be used in

Equation 3.6. To gain insight into the functioning of the CFM, �̄�
𝑝

𝑖
and 𝑄

𝑝

𝑖
are evaluated for the

image pair and wind velocity fields estimated by CIV Algorithm and CVIsion-CIVnet, as illus-

trated in Figure 3.9 and Figure 3.14, respectively. The image pair in Figure 3.9 and Figure 3.14

were characterized with a true wind velocity of 6 m/s, a Δt of 50 seconds, an emission rate of

25 MT/y and 𝑙0 measurement noise level. The resulting �̄�
𝑝

𝑖
and 𝑄

𝑝

𝑖
are displayed in Figure 3.18.

Figure 3.18: Plot (a) displays a comparison of the mean wind velocity, �̄�
𝑝

𝑖
, and plot (b) displays a comparison of the

estimate CO2 flux, 𝑄
𝑝

𝑖
. Both comparisons are made between wind velocities estimated by the CIV Algortihms,

CVision-CIVnet and the true wind velocity field displayed in Figure 3.9 and Figure 3.14 respectively. The image pair

in Figure 3.9 and Figure 3.14 were characterized with a true wind velocity of 6 m/s, a Δt of 50 seconds, an emission

rate of 25 MT/y and 𝑙0 measurement noise level.

Plot (a) in Figure 3.18 compares the mean wind velocities across different cross-sections

estimated by the CIV Algorithm and CVision-CIVnet. The true mean wind velocity is

also included for reference (green line). It is evident that the CIV Algorithm significantly
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underestimates the mean wind velocity near the source (at lower cross-section values). This

underestimation is particularly noticeable in the initial segments of the cross-sections (from

cross-sections 43 to 55), where the blue line representing the CIV Algorithm consistently falls

below the true wind velocity. In contrast, the CVision-CIVnet method (orange line) tracks

the true mean wind velocity more closely throughout the cross-sections, indicating a more

accurate estimation. However, some underestimation is still observed in cross-sections close

to the emission source (from cross-sections 42 to 44).

Plot (b) in Figure 3.18 compares the CO2 emission fluxes estimated using the two wind

velocity estimation methods and the true wind velocity. The impact of the initial wind velocity

underestimation by the CIV Algorithm is apparent in the CO2 emission flux results. The

CIV Algorithm shows a lower CO2 emission flux near the source, corresponding to the initial

underestimation of wind velocity. As a result, the CO2 emission flux values are significantly

underestimated in the initial cross-sections. In contrast, the CVision-CIVnet method provides

a more consistent and higher CO2 emission flux estimate near the source, aligning with the

more accurate wind velocity estimations observed in the left plot in Figure 3.18.

As noted in Figure 3.9 and Figure 3.14, the percentile thresholding has segmented the emission

plume into two distinct regions comprised of pixel locations in 𝑙𝑝 , for which wind velocity

is estimated by the CIV Algorithm and CVision-CIVnet. This segmentation results in cross-

sections downstream of the source where no wind velocity estimates exist in the estimated

wind velocity fields. As previously mentioned, �̄�
𝑝

𝑖
is set to zero for cross-sections without

wind velocity estimates. This is observed in plot (a) in Figure 3.18, where �̄�
𝑝

𝑖
drops to zero

at cross-sections 56 to 58 for both the CIV Algorithm and CVision-CIVnet, despite nonzero

true wind velocities being present. Consequently, emission estimates for these cross-sections,

where �̄�
𝑝

𝑖
is zero, are discarded when calculating the final emission rate estimate. The set of

cross-sections that are not discarded is denoted as 𝐶𝑆∗
.

In plot (b) in Figure 3.18, significant oscillations are present in the values of 𝑄
𝑝

𝑖
for all wind

velocity fields corresponding to the CIV Algorithm, CVision-CIVnet, and the true wind

velocity field. The locations of these oscillations align with the blobs observed in Figure 3.9

and Figure 3.14 caused by turbulent atmospheric flow and the representation of a 3D plume as

a 2D projection. Due to this variability in 𝑄
𝑝

𝑖
observed in plot (b) in Figure 3.18—a variability

which shows no consistent pattern across different plumes—there is no universal optimal

location for estimating cross-sectional flux (Goudar et al. (2023)). Therefore, the CO2 emission

rate for plume 𝑝, 𝐸𝑅𝑝
, in MT/y, is estimated by taking the mean of 𝑄𝑖 over all cross-sections

in 𝐶𝑆∗
where wind velocity estimates exist and 𝑢𝑖

𝑝
can be computed (Equation 3.7). This

ensures that 𝐸𝑅𝑝
is not influenced by 𝑄

𝑝

𝑖
for cross-sections where �̄�

𝑝

𝑖
is artificially set to zero.

𝐸𝑅𝑝 =
1

|𝐶𝐷∗ |
∑
𝑖∈𝐶𝐷∗

𝑄
𝑝

𝑖
(3.7)

To effectively quantify the performance of the application of the CFM on TANGO imagery,

the CFM is applied on all noiseless plume imagery using the true wind velocities. Figure 3.19

displays the estimated emission rate using true wind velocities, 𝐸𝑅
𝑝

𝑡𝑟𝑢𝑒 , averaged over all

noiseless plumes in 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 that belong to the same combination of plume characteristics.

In Figure 3.19, emission rates estimated with the true wind velocities are mapped to the true

emission rates, both given in MT/y. In an ideal case, with zero estimation error, all points in

Figure 3.19 would lie on the red diagonal line.
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Figure 3.19: Accuracy plot of CO2 emission rates estimated using true wind velocity fields for noiseless image pairs

in 𝐷𝐵𝑇𝐴𝑁𝐺𝑂 with varying wind velocities and emission rates. The red line indicates perfect estimation while the

black line displays an estimated linear regression on the estimated-to-true emission rate mapping.

As shown in Figure 3.19, the estimated emission rates for varying wind velocities and true

emission rates closely align with the red diagonal line, which represents perfect estimation.

This is further confirmed by the linear regression (black line) derived from the estimated-to-

true emission rate mapping, where the slope is near 1, indicating a high degree of accuracy.

The CFM’s ability to accurately estimate emission rates using true wind velocity fields suggests

that, when provided with accurate wind data, the CFM can achieve reliable emission rate

estimations. Consequently, this demonstrates the potential of the CFM to effectively estimate

emission rates from accurately estimated wind velocity fields.

3.4.2. Emission Estimation Results
𝐸𝑅𝑝

is computed using estimated wind velocity fields estimated in 3.2.2 and 3.3.2. 𝐸𝑅𝐶𝐼𝑉

indicates emission rates estimated using the wind velocity field estimated by the CIV Algo-

rithm. Conversely, 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛
and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡

indicate emission rates estimated using the

wind velocity field estimated by CVision-CIVnet and CVision-CIVnetcst respectively. For

each combination of plume characteristics, four plumes exist for which the emission rate is

estimated. The error of the estimated emission rates is computed using Equation 3.8. At

last, the error of the emission rate estimates is averaged across these different plumes to

determine the accuracy of emission rate estimates for that particular combination of plume

characteristics. The results corresponding to emission rate estimation are again partitioned

into two separate scenarios: variable and constant Δt.

𝜖𝑝 = 𝐸𝑅𝑡𝑟𝑢𝑒 − 𝐸𝑅𝑝
(3.8)

Variable Δt
The accuracy of 𝐸𝑅𝐶𝐼𝑉

and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛
for a variable Δt is analyzed. Figure 3.20 displays

the averaged error (𝜖𝐶𝐼𝑉 and 𝜖𝐶𝑉𝑖𝑠𝑖𝑜𝑛
) of 𝐸𝑅𝐶𝐼𝑉

and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛
over four image pairs that

correspond with one combination of plume characteristics. These errors are represented in %

relative to the true emission rate with a corresponding error-bar computed from the standard

deviation of the average errors of 𝐸𝑅𝐶𝐼𝑉
and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛

. Within each figure, emission rate

estimates that rely on wind velocities estimated by the CIV Algorithm and CVision-CIVnet,

are compared.
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Figure 3.20: Plots (a), (b), and (c) show the average error of 𝐸𝑅𝐶𝐼𝑉
and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛

for a Δ𝑡 of 100 s and a wind velocity

of 3 m/s, corresponding to measurement noise levels 𝑙0, 𝑙1, and 𝑙2, respectively. Plots (d), (e), and (f) show the

average error of 𝐸𝑅𝐶𝐼𝑉
and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛

for a Δ𝑡 of 50 s and a wind velocity of 6 m/s, corresponding to measurement

noise levels 𝑙0, 𝑙1, and 𝑙2, respectively. Plots (g), (h), and (i) show the average error of 𝐸𝑅𝐶𝐼𝑉
and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛

for a Δ𝑡
of 30 s and a wind velocity of 10 m/s, corresponding to measurement noise levels 𝑙0, 𝑙1, and 𝑙2, respectively. All plots

are complemented by a single standard deviation error-bar of the average errors of 𝐸𝑅𝐶𝐼𝑉
and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛

.

Figure 3.20 provides a comparative analysis of emission estimation errors using wind velocity

fields estimated by both the CIV Algorithm and CVision-CIVnet across different wind veloci-

ties (3, 6, and 10 m/s) and measurement noise levels (𝑙0, 𝑙1, and 𝑙2). Each plot represents the

error in emission estimation as a function of the emission rate computed using Equation 3.8,

with different wind velocities and measurement noise levels, offering insights into the perfor-

mance of the CFM under varying conditions and estimated wind velocity fields.

Similarly to the average RMSE and ME results discussed in Sections 3.2.2 and 3.3.2, at

the lowest measurement noise level (𝑙0), both 𝐸𝑅𝐶𝐼𝑉
and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛

perform relatively well.

However, 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛
has lower error rates in the vast majority of combinations of plume

characteristics, while 𝐸𝑅𝐶𝐼𝑉
outperforms 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛

some (mainly noiseless cases). This was

expected due to the performance of CVision-CIVnet in cases with no noise and low wind

velocity. However, as the measurement noise level increases to 𝑙1 and 𝑙2, the performance of the

CIV Algorithm deteriorates, with 𝐸𝑅𝐶𝐼𝑉
errors increasing substantially. In contrast, 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛

errors maintain a more controlled error trend, demonstrating robustness to noise as was

the case for the average RMSE and ME of the wind velocity fields estimated by CVision-CIVnet.

Detailed analysis of each plot reveals more specific trends. For a 3 m/s wind with mea-

surement noise level 𝑙0 (plot (a)), 𝐸𝑅𝐶𝐼𝑉
starts with an error around -7% and is stable as the

emission rate increases, while 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛
starts with an error of 7% at low emission rate but

decreased to around 5% as emission rate increases. At measurement noise level 𝑙1 (plot (b)),
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𝐸𝑅𝐶𝐼𝑉
errors show high variability, decreasing from 58% to about 20%, whereas 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛

errors demonstrate an increase from 2% to around 15%. With measurement noise level 𝑙2 (plot

(c)), 𝐸𝑅𝐶𝐼𝑉
errors exhibit severe fluctuations, starting above 20%, with significant variations

up to 62%. While 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛
errors maintain a relatively lower and more stable error rate

converging around 0%.

For a 6 m/s wind with measurement noise level 𝑙0 (plot (d)), 𝐸𝑅𝐶𝐼𝑉
errors hover around -7%,

whereas𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛
errors remain consistently around -12%. At measurement noise level 𝑙1 (plot

(e)), 𝐸𝑅𝐶𝐼𝑉
errors show an initial value of -38% but increases to around 58% and converges to

around 10% as emission rate increases, while 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛
errors start around 18% but converges

to 0% as emission rate increases. With measurement noise level 𝑙2 (plot (f)), 𝐸𝑅𝐶𝐼𝑉
errors are

significant and variable, starting at around -80% but converging around 25% from the positive

side. While𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛
shows a stable performance with errors converging to 0% starting at 50%.

For a 10 m/s wind with measurement noise level 𝑙0 (plot (g)), 𝐸𝑅𝐶𝐼𝑉
errors are relatively

stable around 2%, while 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛
maintains consistent performance with errors around -1%.

At measurement noise level 𝑙1 (plot h), 𝐸𝑅𝐶𝐼𝑉
errors show significant variations starting at

-60% but converge to 15% as emission rate increases, while 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛
errors start at 52% and

converge stably to 10%. With measurement noise level 𝑙2 (plot i), 𝐸𝑅𝐶𝐼𝑉
exhibits significant

errors starting at -120% and converging to 20%, while 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛
errors are more stable

converge to 10% without the variations seen in 𝐸𝑅𝐶𝐼𝑉
.

The general observations indicate that the CFM exhibits better and more stable performance

across varying emission rates when using wind velocities estimated by CVision-CIVnet

compared to the CIV Algorithm. The error margins corresponding to 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛
are tighter

and show less fluctuation, indicating higher reliability in emission estimations. Conversely,

emission estimation errors display significant fluctuations, especially at higher measurement

noise levels (𝑙2), when relying on wind velocities estimated by the CIV Algorithm, suggesting

sensitivity to noise and varying emission rates. This observation aligns with the results

discussed in Sections 3.2.2 and 3.3.2, where the negative effects of noise were most significant

in wind velocity fields estimated by the CIV Algorithm.

Comparing Figure 3.11 and Figure 3.16 with Figure 3.20, it is evident that the behavior and

trends of 𝐸𝑅𝐶𝐼𝑉
and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛

errors show similarity with those of the average MEs. This is

caused by the linear relationship between the estimated emission rate and estimated wind

velocity. The contribution of the average RMSEs is less significant since this contribution

can cancel out in the averaging procedure of the CFM. Since the concentration values used

in Equation 3.6 are constant, regardless of whether the CFM relies on the CIV Algorithm

or CVision-CIVnet, the difference between 𝐸𝑅𝐶𝐼𝑉
and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛

can only originate from

differences in estimated wind velocities. These similarities are not perfect, however, since

emission rates estimated by the CFM rely on the estimated wind velocity in a manner weighted

by concentration, not weighted equally. This effect is observed in plot (d) in Figure 3.20, where

𝐸𝑅𝐶𝐼𝑉
outperforms 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛

, whereas the performance of the CIV Algorithm corresponding

with 6 m/s wind, 𝑙0 measurement noise level are considerably worse than that of CVision-

CIVnet. This behavior is limited to this combination of plume characteristics however, as, for

all other combinations, 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛
more accurately estimates emission rate compared to 𝐸𝑅𝐶𝐼𝑉

.

Hence, the CFM performs better in the vast majority of cases, when it relies on wind velocity

fields estimated by CVision-CIVnet, especially in scenarios where the SNR is relatively low.

Constant Δt
At last, the accuracy of 𝐸𝑅𝐶𝐼𝑉

and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡
for a constant Δt of 20 seconds is analyzed.

Figure 3.21 displays the averaged error (𝜖𝐶𝐼𝑉 and 𝜖𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡
) of 𝐸𝑅𝐶𝐼𝑉

and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡
over

all four image pairs that correspond with one combination of plume characteristics. These

errors are represented in % relative to the true emission rate with a corresponding error-bar

computed from the standard deviation of the average errors of 𝐸𝑅𝐶𝐼𝑉
and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡

.

Within each figure, emission rate estimates that rely on wind velocities estimated by the CIV

Algorithm and CVision-CIVnetcst for a constant Δt scenario, are compared.
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Figure 3.21: Plots (a), (b), and (c) show the average error of 𝐸𝑅𝐶𝐼𝑉
and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡

for a Δ𝑡 of 20 s and a wind

velocity of 3 m/s, corresponding to measurement noise levels 𝑙0, 𝑙1, and 𝑙2, respectively. Plots (d), (e), and (f) show

the average error of 𝐸𝑅𝐶𝐼𝑉
and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡

for a Δ𝑡 of 20 s and a wind velocity of 6 m/s, corresponding to

measurement noise levels 𝑙0, 𝑙1, and 𝑙2, respectively. Plots (g), (h), and (i) show the average error of 𝐸𝑅𝐶𝐼𝑉
and

𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡
for a Δ𝑡 of 20 s and a wind velocity of 10 m/s, corresponding to measurement noise levels 𝑙0, 𝑙1, and 𝑙2,

respectively. All plots are complemented by a single standard deviation error-bar of the average errors of 𝐸𝑅𝐶𝐼𝑉
and

𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡
.

Figure 3.21 presents a comparative analysis of emission estimation errors using wind velocity

fields estimated by the CIV Algorithm and CVision-CIVnetcst. This analysis is conducted

across different wind velocities (3, 6, and 10 m/s) and measurement noise levels (𝑙0, 𝑙1, and 𝑙2).

Each plot depicts the emission estimation error as a function of the emission rate computed us-

ing Equation 3.8, providing insights into the performance of the CFM under various conditions.

For a 3 m/s wind with measurement noise level 𝑙0 (plot (a)), 𝐸𝑅𝐶𝐼𝑉
begins with an error

around -39%, and remains stable as the emission rate increases, while 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑣𝑐𝑠𝑡
starts with

an error of 3% at low emission rate and decreases to around -6% as emission rate increases.

At measurement noise level 𝑙1 (plot (b)), 𝐸𝑅𝐶𝐼𝑉
errors exhibit high variability, increasing

from 15% to 190% ending up at around 80%, whereas 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡
errors increase from -300%

to around -50%. With measurement noise level 𝑙2 (plot (c)), 𝐸𝑅𝐶𝐼𝑉
errors start at -180%

converging to 200%, while 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑣𝑐𝑠𝑡
errors converge from around -250% to -50%.

For a 6 m/s wind with measurement noise level 𝑙0 (plot (d)), 𝐸𝑅𝐶𝐼𝑉
errors hover around -14%,

whereas 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡
errors remain consistently around 18%. At measurement noise level 𝑙1

(plot (e)), 𝐸𝑅𝐶𝐼𝑉
errors show an initial value of around -175% which rapidly increases and

converges to around 0% as emission rate increases, while 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡
errors start around

-80% but increase to 20% as emission rate increases. With measurement noise level 𝑙2 (plot (f)),

𝐸𝑅𝐶𝐼𝑉
errors start at -260%, converging to 30%. 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡

shows a converging trend with



3.4. Estimating CO2 Emission Rate 49

with errors converging from 10% to -30%.

For a 10 m/s wind with measurement noise level 𝑙0 (plot (g)), 𝐸𝑅𝐶𝐼𝑉
and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡

errors

are relatively stable around 6%. At measurement noise level 𝑙1 (plot h), 𝐸𝑅𝐶𝐼𝑉
errors show

significant variations starting at -140% but converging to 10% as emission rate increases, while

𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡
errors start at -45% and decrease significantly to around 15%. With measurement

noise level 𝑙2 (plot i), 𝐸𝑅𝐶𝐼𝑉
exhibits significant errors starting at -280% and converging to

0%, while 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡
errors are more stable and converge to 0% starting at -125% for low

emission rates.

The performance of 𝐸𝑅𝐶𝐼𝑉
and 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡

indicates that the CFM achieves better and more

consistent results when using wind velocities estimated by CVision-CIVnetcst compared to

those from the CIV Algorithm. The error margins for 𝐸𝑅𝐶𝑉𝑖𝑠𝑖𝑜𝑛𝑐𝑠𝑡
are narrower and exhibit

less fluctuation, signifying greater reliability in emission estimations. Conversely, the emission

estimation errors show significant variability, especially at higher measurement noise levels

(𝑙2), based on wind velocities estimated by the CIV Algorithm. As mentioned previously, the

bias of the wind velocity field mainly dictates the accuracy of CO2 emission rate estimates.

Thus the wind fields with the lower bias - those estimated by CVision-CIVnetcst - result in

the most accurate CO2 emission rate estimates in cases where nonzero measurement noise is

applied.

In general, the average error of estimated CO2 emission rates is significantly higher in the

constant Δt scenario relative to the variable Δt scenario. This was expected since the accuracy

of the estimated wind velocity fields is worse in the variable Δt scenario relative to the constant

Δt scenario. In Figure 3.21, a trend can be observed that is similar to trends observed in

Figure 3.12 and Figure 3.17, where the performance of the emission rate estimates increases

displacements grow larger. For 10 m/s wind velocities with a displacement of 200 meters

for both the CIV Algorithm and CVision-CIVnetcst with nonzero measurement noise, the

emission rate estimates seem to converge to 0% average error as the emission rate increases,

however for 3 m/s wind velocities with a displacement of 60 meters, they converge to nonzero

average error. This is attributed to the relative contribution of random error to the estimated

wind velocity fields which increases as displacements decrease.



4
Conclusion and Discussion

This thesis explored the feasibility of the TANGO mission in enhancing the monitoring of CO2

emissions through direct measurements of emission plume velocities. The TANGO mission,

a pioneering satellite initiative, aims to improve the accuracy of anthropogenic greenhouse

gas emission measurements. Comprising two satellites, TANGO-Carbon and TANGO-Nitro,

it captures high-resolution data at 300m x 300m, significantly enhancing spatial resolution

compared to its predecessors. Once TANGO becomes operational in 2027, its data product is

designed to establish a framework for more accurate emission rate estimates. Even though it

will take at least three years before TANGO becomes operational, simulated TANGO data,

combined with wind velocity and emission rate estimation methods, can address the three

questions posed in this thesis:

1. How can the TANGO mission facilitate a framework for directly measuring the velocity

of emission plumes from concentrations of CO2 and NO2?

2. Can direct measurement of emission plume velocities contribute to a more accurate

estimation of emission source rates?

3. How can mission or measurement parameters be optimized to enhance the accuracy of

emission source rate estimations?

The subsequent sections address these research questions in detail. Section 4.1 evaluates the

potential of the TANGO mission to establish a framework for direct measurement of emission

plume velocities. Section 4.2 discusses how direct measurements of plume velocities could

contribute to a more accurate estimation of emission rates. Finally, Section 4.3 explores the

optimization of mission and measurement parameters to further enhance the accuracy of

emission source rate estimates.

4.1. Wind Field Estimation
The TANGO mission’s potential to directly measure emission plume velocities was confirmed

through comprehensive simulations and analysis. Firstly, the TANGO data product was

simulated using LES with MircoHH software, resulting in imagery corresponding to the

image and temporal resolution of TANGO’s data-product, consisting of CO2 and NO2 plume

images. A variation of emission plume for different wind velocities, emission rates, Δt’s and

measurement noise levels was simulated.

The simulated plume imagery was used to estimate the wind velocity of emission plumes

through two distinct methods: the CIV method and the CVision-CIV method, where the

CVision-CIV method comprised two networks: CVision-CIVnet and CVision-CIVnetcst.

Both methods estimated wind velocity fields of emission plumes spaced by a variable and

constant Δ𝑡 across different wind velocities, emission rates, and measurement noise levels. A

distinction was made between scenarios with a variable and constant Δ𝑡 to separately analyze

constant and variable displacements for different wind velocities, respectively.

The CIV Algorithm relied on cross-correlating specific interrogation windows within the

image pair to estimate displacement between them and transform estimated displacements

50
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into wind velocities. The CIV Algorithm was capable of estimating wind velocity fields from

the image pairs for both variable and constant Δ𝑡 scenarios, but it encountered significant

limitations. Firstly, the CIV Algorithm significantly underestimated the wind velocity near

the emission source due to high concentrations and the inherent stationarity of the emission

source. Additionally, the CIV Algorithm could not accommodate low SNR image pairs;

when measurement noise was introduced, the accuracy of its wind velocity field estimates

quickly deteriorated. In the variable Δt scenario with constant displacements across all wind

velocities, the wind velocity field estimated by the CIV Algorithm had, on average, a RMSE of

20% relative to the true wind velocity field. However, in the constant Δ𝑡 scenario with variable

displacements across all wind velocities, the limitations of the CIV Algorithm were amplified.

The CIV Algorithm became more susceptible to introduced measurement noise, resulting

in significantly worse accuracy of its wind velocity fields compared to the variable Δ𝑡 sce-

nario. Low SNR in this scenario led to RMSEs of wind velocity fields increasing by up to 1000%.

CVision-CIVnet demonstrated superior performance compared to the CIV Algorithm, with

wind velocity fields outperforming those estimated by the CIV Algorithm in the majority of

combinations of plume characteristics and the vast majority of combinations with nonzero

measurement noise. Due to the training procedure of CVision-CIVnet, the underestimation

of the wind velocity field near the emission source was significantly reduced. CVision-

CIVnet was more capable of dealing with low SNR imagery relative to the CIV Algorithm

due to its training true wind velocity fields. In the case of a variable Δ𝑡, CVision-CIVnet

showed relatively stable performance over all different image pairs varying in SNR and

wind velocities: on average, the RMSE of the estimated wind velocity field was 16% relative

to the true wind velocity field, outperforming the CIV Algorithm, especially for low SNR

image pairs. In the case of a constant Δ𝑡, CVision-CIVnetcst performed differently than its

CVision-CIVnet counterpart. Its performance was significantly affected by the change in

displacement magnitude and measurement noise on sub-pixel displacements, despite being

trained on similar image pairs. Although CVision-CIVnetcst was less robust to introduced

measurement noise compared to CVision-CIVnet, it still outperformed the CIV Algorithm for

the majority of plume characteristic combinations. However, its performance was significantly

worse compared to CVision-CIVnet for similar plumes.

Significant limitations with respect to the method of wind velocity estimation relate to the

expected wind velocity field and plume imagery. Firstly, the flow direction of all emission

plumes was aligned with x axis, thus the wind velocity was most pronounced in the x

direction. As mentioned, the component of the wind velocity in the y direction was negligibly

small and omitted from the analysis. However, emission plumes are not numerically aligned

with the horizontal axis of an image taken by TANGO. It would be interesting to look into

the performance of the CIV Algorithm and the CVision-CIVnet’s that are trained on both

components of the wind velocity field. Note that newly developed algorithms can artificially

align non-aligned plumes by detecting and aligning them automically using satellite im-

agery, limiting the effect of multi-component wind velocity estimation. Additionally, data

augmentation techniques could be employed to enhance the training dataset, providing a

broader range of emission plumes and potentially improving the robustness of wind velocity

estimations (Hernández-García and König (2018)). Secondly, the simulated CO2 and NO2

plumes were not affected by clouds in any way. However, in the real world, this is the

case. Therefore, it is unknown how the CIV Algorithm and the CVision-CIVnet’s respond to

image pairs affected by clouds. Extending the CO2 and NO2 plume simulations to account

for the effects of cloud interference (Twomey (1991)) and quantifying its contribution to

the accuracy of wind velocity estimation by the CIV Algorithm and the CVision-CIVnet’s

would be interesting. Third, it would be interesting to examine the performance of the CIV

Algorithm and CVision-CIVnetcst as Δ𝑡 varies from 10 to 60 seconds, covering the entire range

of TANGO with Δt< 60 seconds. As a result, displacements could range from 30 meters to 600

meters, depending on the observed wind velocity. This range allows for a comprehensive

categorization of the performance of the CIV Algorithm and CVision-CIVnetcst as a function

of displacement, facilitating the potential quantification of random error encountered in

displacement estimation. Further in-depth analysis of the peak fitting function and procedure

for the CCMs encountered in this thesis could limit the adverse effects of random error.

For both CVision-CIVnet models, it would be interesting to investigate the impact of in-

corporating more complex loss functions on performance. Since the current loss function
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(RMSE) does not cover all desirable traits of an estimated wind velocity field, enhancing

the loss function could improve the effectiveness of the transfer learning procedure. For

instance, using a weighted combination of different performance metrics such as Endpoint

Error, RMSE, and ME could provide a more robust training approach. Furthermore, applying

the unsupervised learning procedure from Zhang and Piggott (2020) to the CVision-CIVnet’s

training procedures and investigating the effect on the quality of wind velocity field estimation

would offer valuable insights into the use of real TANGO imagery in unsupervised training

procedures.

In summary, this thesis demonstrates that flow fields, especially atmospheric wind velocity

fields, can be estimated using traditional CIV and novel CVision-CIV techniques based on

continuous concentration distributions, relying on simulated plume imagery intended to

mimic the data-product of TANGO. However, the relatively low resolution, relatively small

displacements and expected levels of measurement noise did affect the accuracy of wind

velocity field estimates significantly.

Presently, atmospheric winds are often estimated from coarse and spatially sparse meteoro-

logical data, yet access to accurate wind velocity estimates with high temporal and spatial

resolution is a significant improvement. The framework introduced in this thesis offers

the capability to obtain these desirable wind velocity estimates, potentially eliminating the

uncertain wind velocity estimates originating from meteorological data. Furthermore, this

framework is not limited to the TANGO mission. Additional satellite networks exist in low-

and geostationary orbit with data products compatible with the input requirements of the

framework, that is, an image pair of the same plume spaced by Δ𝑡 (Watine-Guiu et al. (2023)).

These satellite networks are not only limited to observing CO2 and NO2 plumes, as CH4

and CO are also included with varying SNR imagery. However, the flow velocity estimation

techniques introduced in this thesis are not restricted to atmospheric wind velocity fields

though. In general, any accurately observed continuous concentration distribution can provide

a framework for estimating flow fields through the CIV methods introduced in this thesis.

The traditional technique of CIV, while proving to be flexible (key parameters can be tuned

based on expected contrast and SNR) and advantageous in some cases (high SNR imagery),

encountered significant limitations related to low SNR imagery. The novel CVision-CIV

techniques were more capable of dealing with low SNR imagery than the traditional technique.

4.2. Emission Rate Estimation
To show the potential of estimated wind velocity fields with respect to emission rate estimation

techniques, wind velocity fields estimated by the CIV Algorithm and the CVision-CIVnet’s

were used in the CFM to estimate CO2 emission rates for plumes with emission rates ranging

from 2.5 to 25 MT/y. The CFM was chosen for its simplicity and complementarity to a

wind velocity field instead of the average wind velocity of a plume. The emission rate

estimation results showed that the CFM, combined with estimated wind velocity fields, was

capable of estimating CO2 emission rates relatively accurately for the variable Δ𝑡 scenario

and inaccurately for the constant Δ𝑡 scenario. The accuracy of its emission rate estimates

depended greatly on the bias of estimated wind velocity fields.

For a variable Δ𝑡 resulting in a constant displacement across all wind velocities, the CFM was

capable of estimating CO2 emission rate at ±20% accuracy for over 93% of plumes for the

lowest expected measurement noise level in TANGO (𝑙1) relying on CVision-CIVnet, including

plumes with an emission rate of 2.5 MT/y. For the highest expected measurement noise level

in TANGO (𝑙2), the CFM estimated CO2 emission rate at ±25% accuracy for over 85% of plumes

relying on CVision-CIVnet, including plumes with an emission rate of 2.5 MT/y. Plumes for

which the emission rate was not estimated with an accuracy of ±20% and ±25% respectively,

all belonged to the lowest SNR categories, characterized by low emission rate or high wind

velocity, or both. For a constant Δ𝑡 where the displacement varied based on wind velocity, the

CFM was unable to accurately estimate the CO2 emission rate due to the inaccurate wind

velocity estimates provided by both the CIV Algorithm and CVision-CIVnetcst. For the

majority of plumes with nonzero measurement noise, CO2 emission rates were overestimated

by at least 50%, with cases below this overestimation threshold all having relatively high SNR,

that is, high emission rate and low wind velocity.
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In the constant Δt scenario, CO2 emission rate estimates depended greatly on SNR and

wind velocity estimation methods. However, the accuracy of CO2 emission rate estimations

worsened greatly compared to the variable Δt scenario. Similar to the trend observed in

the accuracy of wind velocity estimates, the CFM performed better relying on the CIV

Algorithm for small displacements (60 meters). While the CFM performed better relying on

CVision-CIVnet for larger displacements (200 meters). Only as the emission rate increased

to 20-25 MT/y did the CO2 emission rate estimates reach accuracy bandwidths similar to

those encountered in the variable Δ𝑡 scenario. For smaller emission rates (≤10 MT/y), the

CFM significantly underestimated the CO2 emission rates when relying on both wind velocity

estimation methods.

From the CFM results, it is evident that the ME of the wind velocity significantly affects the

accuracy of the CO2 emission rate estimates, as the CFM’s averaging procedure mitigates the

impact of RMSE. Estimating emissions with the CFM, incorporating a different loss function

in the CVision-CIVnet models, one that relies solely or partly on the ME of the wind velocity

field would be worthwhile. Such a loss function could potentially reduce the bias in wind

velocity field estimates produced by the CVision-CIVnet models, thereby directly improving

the accuracy of the CFM results.

It would be interesting to explore the use of estimated wind velocity fields in other emission

rate estimation techniques, particularly atmospheric dispersion models. Traditional methods

for estimating emission rates often rely on simplified assumptions about wind velocity, which

can be refined with access to an estimated wind velocity field. Tartakovsky et al. (2015)

have demonstrated the promise of accurate wind velocity fields for improving atmospheric

dispersion modeling. Validating this significance by comparing emission rate estimates from

atmospheric dispersion models that rely on simplistic assumptions versus those that utilize

a complete wind velocity field would be highly beneficial. Additionally, incorporating esti-

mated wind velocity fields into existing machine learning approaches that estimate emission

rates directly from plume imagery would be an intriguing path for future research. The

estimated wind velocity fields can serve as an additional input layer alongside plume imagery

in a CNN designed to estimate CO2 emissions. This technique was applied by Dumont

Le Brazidec et al. (2023) using simulated wind velocity fields but has never been tested with

estimated wind velocity fields. Dumont Le Brazidec et al. (2023) demonstrated that their

CNN achieved unmatched accuracy in CO2 emission rate estimation compared to the CFM

and other inversion methods when using true simulated wind velocity fields. Investigating

how the performance of their CNN is affected by using estimated wind velocity fields would

be valuable. Additionally, the CVision-CIVnet could be extended with one or more layers

to include a regression output layer that estimates the CO2 emission rate directly, similar to

the CH4 emission rate estimation networks developed by Jongaramrungruang et al. (2019)

and Jongaramrungruang et al. (2022). Exploring the performance of this relatively simple

approach with additive layers is worthwhile, given that CO2 plume imagery typically has

lower SNR compared to the CH4 plume imagery used in Jongaramrungruang et al. (2019)

and Jongaramrungruang et al. (2022).

In present research, dependency on uncertain wind velocities estimated from coarse meteo-

rological data affected the accuracy of CO2 emission rates significantly. A recent study by

Meier et al. (2024) indicates that inaccurate wind velocity estimates from meteorological data

are the main limiting factor in emission rate estimation using the CFM. Never before has the

wind velocity of an emission plume been measured remotely from space, let alone used in

CO2 emission rate estimation. This thesis has shown the former and the latter to be possible

to a certain extent. Previous research has mainly focused on estimating CO2 emission rates

of power plants through various measurements and estimation techniques. However, due

to the inherent limitations of low resolution and high detection limits of emission rates, the

focus has mainly been on estimating the largest emission rates. Currently, limited studies are

focusing on estimating emission rates from 25 MT/y down to 2.5 MT/y against which the

accuracy of the emission rate estimation technique in this thesis can be compared. In one

such study, Kuhlmann et al. (2020) demonstrated the ability to estimate CO2 emission rates

ranging from 3.7 to 40.3 MT/y at a 1x1 km resolution and low measurement noise levels, with

accuracy in a bandwidth of 39–150% relative to the true emission rate using a mass balance

method that relies on meteorological data. However, there exist too few other studies with

similar image resolution and emission rates to confidently and definitively conclude that the
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wind velocity estimation methods introduced in this thesis offer significant improvements

in the estimation of emission rates. However, it can be stated that this thesis has shown the

feasibility and potential of relying on estimated wind velocity which does not depend on

meteorological data but on emission plume directly. Further research is needed to validate

the potential of combining direct wind velocity estimation with emission rate estimation.

This research should assess whether relying on wind velocity fields derived directly from

plume imagery can lead to more accurate emission rate estimates. In an ideal world, such a

validation could take place directly once TANGO becomes operational.

4.3. Mission and Measurement Optimization
The analysis of the accuracy of wind velocity and emission rate estimates uncovered valuable

insights into their dependency on the mission and measurement parameters of TANGO.

These parameters include the image resolution, measurement noise level of the measure-

ment equipment in, and the Δt between TANGO-Carbon and TANGO-Nitro. Even though

the TANGO mission has already been proposed to ESA and its requirements and speci-

fications are relatively fixed (Landgraf et al. (2024)), some wiggling room does exist with

respect to mission and measurement parameters. As a result, this thesis investigated the ef-

fect of this mission and measurement parameters on wind velocity and emission rate estimates.

The CIV Algorithm and its corresponding emission rate estimates showed a clear dependency

on SNR, where higher SNRs yielded better results and vice versa. As a result, wind velocity

fields could not accurately be estimated for relatively low emission rates. However, the effect

of SNR could partly be mitigated by training a machine learning network to deal with low

SNR imagery. For sub-pixel displacement, however, the adverse effects of measurement

noise were present still in wind velocity fields estimated by the machine learning network.

Additionally, the performances of the CIV Algorithm and CVision-CIVnet showed that the

relative contribution of random error on wind velocity fields decreases as the displacements

between image pairs increase. Therefore, maximizing the Δ𝑡 between TANGO-Carbon and

TANGO-Nitro would minimize the relative contribution of this random error on wind velocity

field estimates, resulting in more accurate wind velocity field estimates.

Once TANGO becomes operational, it would be interesting to look into the possible advantages

that forward motion compensation (FMC) of imagery, a capability TANGO offers (Landgraf

et al. (2024)). FMC in satellite imagery is a technique used to correct for the motion of the

satellite as it orbits the Earth. As a satellite moves, it captures images while continuously

changing its position, which can cause blurring in the captured images due to the relative

motion between the satellite and the Earth’s surface. In the case of TANGO, FMC involves

adjusting the imaging sensor to counteract this motion, thereby reducing or eliminating

the blur. This is achieved by predicting the satellite’s motion and applying compensatory

adjustments to the sensor’s position or the captured image data. As FMC is applied, both CO2

and NO2 plumes are imaged in a continuous fashion spanning a certain period of time. As a

result, the CO2 and NO2 plume imagery spans a certain time interval per plume, enabling

the selection of several image pairs varying in Δ𝑡. Essentially, Δ𝑡 is no longer constant and

can be adjusted slightly (Landgraf et al., 2024) based on one’s preference. Since measurement

noise has an increased negative effect on the accuracy of wind velocity fields estimated from

sub-pixel displacements, Δ𝑡 should be optimized to convert sub-pixel displacements into pixel

displacements, reducing susceptibility to measurement noise in wind velocity estimation

methods. However, for Δ𝑡 to be optimized, the true displacement, which is inherently

unknown, must be known. Meteorological data, however, could be used to provide a rough

estimate of the expected displacement of the observed emission plume. As a result, Δ𝑡 could

be optimized for the expected displacement, providing more accurate wind velocity field

estimates.

The CO2 and NO2 plume imagery can potentially benefit from super-resolution techniques,

enabled by the continuous nature of the imagery, to enhance image resolution and improve

the accuracy of wind velocity field estimations using both the CIV Algorithm and the

CVision-CIVnet’s. Super-resolution is a technique employed to enhance an image’s resolution

beyond the limitations of the original sensor by estimating and adding finer details, effectively

increasing the image’s pixel density and clarity. This process can be achieved through various

methods, including interpolation, machine learning models, and iterative reconstruction
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techniques. Super-resolution has been extensively applied to remote sensing imagery (Lu et al.

(2019), Karwowska and Wierzbicki (2022), Cornebise et al. (2022)). However, it is important

to acknowledge the limitations and potential pitfalls associated with these techniques (Park

et al. (2003)). Basic interpolation, for instance, does not add any new information to the image.

While machine learning models can generate visually appealing higher-resolution images, the

details added through upscaling are highly dependent on the training of the neural network.

In some cases, the additional information might reflect the characteristics of the training

dataset rather than the actual scene, potentially interfering with measurements. Future

research could explore the application of super-resolution techniques within the framework

introduced in this thesis, with a clear understanding of their limitations.
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A
MircoHH Initial Specifications

This appendix provides a comprehensive overview of the input parameters used in the

MicroHH (MicroHH (2024)) software that performs the Large Eddy Simulation conducted

for this thesis. Detailed parameters, including computational settings, physical models, and

boundary conditions, are outlined to offer insight into the simulation setup. These parameters

are essential for replicating the simulation conditions and for validating the results presented

in this thesis.

[master]
npx=2
npy=2

[grid]
itot=192
jtot=128
ktot=96

xsize=19200.
ysize=12800.
zsize=5000.

swspatialorder=2

[advec]
swadvec=2i5
cflmax=1.4
fluxlimit_list=co2

[diff]
swdiff=smag2
dnmax=0.4

[thermo]
swthermo=moist
swbasestate=anelastic
pbot=100000.

[force]
swlspres=uflux
uflux= (3, 6, or 10 m/s)
swls=0
swwls=0

[boundary]
mbcbot=noslip
mbctop=freeslip
sbcbot=flux
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sbctop=neumann
sbot=0
stop=0
sbot[thl]=0.2
stop[thl]=0.00384
sbot[qt]=0.1e-3
stop[qt]=-2.8e-7
swboundary=surface
z0m=0.1
z0h=0.1

scalar_outflow=co2
flow_direction[north]=outflow
flow_direction[east]=outflow
flow_direction[south]=outflow
flow_direction[west]=inflow

[fields]
visc = 1.e-5
svisc = 1.e-5
slist = co2
rndseed = 2
rndamp[thl] = 0.1
rndz = 300.
rndexp = 2.

[source]
swsource = 1
# Source with only CO2:
sourcelist = co2
source_x0 = 670.0
source_y0 = 6400.0
source_z0 = 300
sigma_x = 25
sigma_y = 25
sigma_z = 100
strength = (1.8 up to 18 kilomoles/s)
swvmr = True
line_x = 0
line_y = 0
line_z = 0

[buffer]
swbuffer = 1
zstart = 4000.
sigma = 0.00223
beta = 2.

[time]
endtime = 60000
dt = 1.
dtmax = 30.
savetime = 1800
outputiter = 10
adaptivestep = true
starttime = 0
rkorder = 4

[stats]
swstats = 1
sampletime = 300

[cross]
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swcross = 0
sampletime = 100
crosslist = co2, thl, qt, ql, w
xy = 300
xz = 1600



B
NOX:NO2 Conversion

This appendix details the conversion method between NOX and NO2 concentrations in

emission plumes, which is crucial for accurately interpreting and comparing emission data.

The data used for this conversion is obtained from the study by Krol et al. (2024), which

provides an empirical relationship between the NOX to NO2 mass ratio and the distance from

the emission source.

Figure Figure B.1 displays the NOX:NO2 mass ratio plotted against the distance from the

emission source in kilometers. The red lines on the plot represent the exponential function

fitted to the data. This fitted function is essential for understanding how the NOX:NO2 ratio

varies with distance from the emission source.

The mathematical expression for the fitted function is given in Equation B.1. This equation

models the NOX to NO2 mass ratio as a function of distance to the emission source, incorpo-

rating both exponential and linear terms.

Figure B.1: Simulated NOX/NO2 mass ratios plotted against the distance form the source in km.

NOX/NO2 = −0.526 · exp(−3.726 · 𝑥

1000

) − 0.15𝐸 − 3

𝑥
1000

+ 0.012 · 𝑥

1000

+ 0.731 (B.1)
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C
CIV Algorithm Performance Tables

This appendix presents detailed tables summarizing the performance of the CIV Algorithm.

The CIV Algorithm applies the principle of Correlation Image Velocimetry to estimate a wind

velocity field from an image pair which is spaced by a certain Δt. The performances of the CIV

Algorithm is separated into two different scenarios of Δ𝑡. Specifically, it includes performance

metrics for both the variable Δ𝑡 and constant Δ𝑡 scenarios.

C.1. Scenario: Variable Δt
Table C.1 presents the average RMSE values of wind velocity fields for a variable Δt of 100, 50

and 30 seconds for wind velocities of 3, 6, 10 m/s respectively. For all different combinations of

wind velocities, emission rates and measurement noise levels. The average RMSE is displayed.

Each cell in the table represents the average RMSE computed from four IP’s per combination.

Similarly, Table C.2 shows the average ME values for the same combinations.

3m/s Wind (Δt=100s) 6m/s Wind (Δt=50s) 10m/s Wind (Δt=30s)

ER [MT/y] 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2

2.5 0.761 11.530 12.833 1.190 25.858 27.430 2.007 41.938 45.690

5 0.627 5.154 10.905 1.138 18.211 25.998 2.177 36.382 45.049

7.5 0.761 5.177 8.199 1.190 8.665 20.791 2.003 19.203 37.179

10 0.761 4.524 7.185 1.190 5.975 16.135 2.001 13.854 31.492

12.5 0.761 4.009 6.206 1.190 4.616 12.898 1.993 9.164 24.702

15 0.761 3.347 5.534 1.190 3.620 8.688 2.007 6.474 19.963

17.5 0.761 2.932 5.088 1.190 3.255 6.876 2.009 5.567 17.206

20 0.761 2.561 4.555 1.190 2.664 6.043 1.997 4.521 14.012

22.5 0.761 2.315 4.210 1.190 2.339 5.327 1.993 4.008 12.120

25 0.761 1.947 4.004 1.190 2.095 4.664 2.000 3.746 9.205

Table C.1: Average RMSE’s of the CIV Algorithm for a variable Δt and varying wind velocities, emission rate (ER)

and measurement noise levels. Average RMSEs are displayed in m/s.
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C.2. Scenario: Constant Δt 68

3m/s Wind (Δt=100s) 6m/s Wind (Δt=50s) 10m/s Wind (Δt=30s)

ER [MT/y] 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2

2.5 -0.011 -3.060 -3.283 0.027 -10.702 -11.568 -0.130 -16.068 -19.776

5 0.082 -0.984 -3.279 0.410 -6.382 -10.963 -0.156 -10.129 -14.934

7.5 -0.011 -1.175 -1.453 0.027 -2.683 -8.761 -0.116 -2.707 -10.108

10 -0.011 -1.286 -0.930 0.027 -1.642 -6.838 -0.119 -2.747 -5.634

12.5 -0.011 -1.176 -0.900 0.027 -1.459 -4.815 -0.114 -1.857 -3.477

15 -0.012 -1.057 -1.041 0.027 -1.229 -2.704 -0.125 -1.788 -2.681

17.5 -0.012 -0.887 -1.293 0.027 -1.051 -1.746 -0.125 -1.551 -2.846

20 -0.011 -0.793 -1.294 0.027 -0.773 -1.681 -0.122 -1.294 -2.704

22.5 -0.011 -0.694 -1.297 0.027 -0.663 -1.534 -0.109 -0.998 -2.341

25 -0.011 -0.627 -1.175 0.027 -0.567 -1.488 -0.118 -0.826 -1.777

Table C.2: Average ME’s of the CIV Algorithm for a variable Δt and varying wind velocities, emission rate (ER), and

measurement noise levels. Average MEs are displayed in m/s.

C.2. Scenario: Constant Δt
Table C.3 presents the average RMSE values of wind velocity fields for a constant Δt of 20

seconds for wind velocities of 3, 6, 10 m/s respectively. For all different combinations of wind

velocities, emission rates and measurement noise levels. The average RMSE is displayed.

Each cell in the table represents the average RMSE computed from four IP’s per combination.

Similarly, Table C.4 shows the average ME values for the same combinations.

3m/s Wind (Δt=20s) 6m/s Wind (Δt=20s) 10m/s Wind (Δt=20s)

ER [MT/y] 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2

2.5 1.512 54.435 62.824 1.457 60.313 64.904 2.075 60.803 66.107

5 1.504 23.701 54.094 1.532 39.814 61.297 2.604 55.486 66.709

7.5 1.512 24.171 40.376 1.457 18.093 45.682 2.085 27.710 54.039

10 1.512 20.420 35.698 1.457 12.773 30.372 2.095 18.960 46.119

12.5 1.512 18.465 30.104 1.457 9.903 22.279 2.086 11.923 36.114

15 1.512 16.206 25.642 1.457 8.001 18.068 2.110 8.880 29.458

17.5 1.512 14.545 22.212 1.457 7.317 14.593 2.077 7.363 24.305

20 1.512 11.964 20.370 1.457 5.616 12.860 2.096 6.259 19.108

22.5 1.512 9.741 19.920 1.457 4.530 11.479 2.082 5.532 15.780

25 1.512 8.609 18.469 1.457 3.643 9.954 2.091 5.188 12.084

Table C.3: Average RMSEs of the CIV Algorithm for a constant Δt of 20s and varying wind velocities, emission rate

(ER), and measurement noise levels. Average RMSEs are displayed in m/s.

3m/s Wind (Δt=20s) 6m/s Wind (Δt=20s) 10m/s Wind (Δt=20s)

ER [MT/y] 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2

2.5 0.704 -6.265 -6.771 0.492 -20.606 -19.501 -0.570 -18.332 -25.097

5 0.847 -3.889 -14.567 0.667 -13.436 -21.748 -1.031 -13.350 -18.532

7.5 0.704 -4.015 -4.188 0.492 -6.926 -15.440 -0.570 -2.287 -10.031

10 0.704 -5.290 -3.270 0.492 -3.970 -12.197 -0.575 -1.636 -4.804

12.5 0.704 -5.512 -4.383 0.492 -2.702 -9.315 -0.572 -1.662 -3.257

15 0.704 -4.884 -3.900 0.492 -2.063 -6.970 -0.578 -1.890 -2.754

17.5 0.704 -3.940 -4.553 0.492 -1.557 -5.283 -0.567 -1.678 -2.387

20 0.704 -3.561 -5.339 0.492 -1.043 -3.960 -0.579 -1.189 -1.504

22.5 0.704 -3.167 -5.563 0.492 -0.618 -3.124 -0.572 -1.205 -2.172

25 0.704 -2.439 -5.756 0.492 -0.451 -2.765 -0.571 -1.066 -1.723

Table C.4: Average MEs of the CIV Algorithm for a constant Δt of 20s and varying wind velocities, emission rate (ER)

and measurement noise levels. Average MEs are displayed in m/s.



D
CVision-CIV Performance Tables

This appendix presents detailed tables summarizing the performance of the CVision-CIV

method. The CVision-CIV method relies on a machine learning network to perform the

principle of Correlation Image Velocimetry to estimate a wind velocity field from an image

pair which is spaced by a certain Δt. The performances of the CIV Algorithm is separated

into two different scenarios of Δ𝑡. Specifically, it includes performance metrics for both the

variable Δ𝑡 and constant Δ𝑡 scenarios.

D.1. Scenario: Variable Δt
Table C.1 presents the average RMSE values of wind velocity fields for a variable Δt of 100, 50

and 30 seconds for wind velocities of 3, 6, 10 m/s respectively. For all different combinations

of wind velocities, ER’s and measurement noise levels. The average RMSE is displayed. Each

cell in the table represents the average RMSE computed from four IP’s per combination.

Similarly, Table C.2 shows the average ME values for the same combinations.

3m/s Wind (Δt=100s) 6m/s Wind (Δt=50s) 10m/s Wind (Δt=30s)

ER [MT/y] 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2

2.5 0.815 0.639 0.704 0.977 0.995 1.011 1.267 1.361 1.362

5 0.647 0.583 0.672 0.901 1.037 1.011 1.108 1.003 1.047

7.5 0.804 0.626 0.634 0.974 0.961 0.975 1.267 1.305 1.343

10 0.801 0.644 0.619 0.973 0.907 0.974 1.267 1.277 1.330

12.5 0.797 0.688 0.615 0.972 0.868 0.969 1.267 1.183 1.320

15 0.794 0.737 0.621 0.970 0.879 0.961 1.267 1.095 1.315

17.5 0.791 0.777 0.621 0.969 0.902 0.948 1.267 1.082 1.286

20 0.788 0.809 0.628 0.968 0.921 0.917 1.267 1.126 1.279

22.5 0.785 0.834 0.638 0.967 0.940 0.882 1.267 1.147 1.243

25 0.782 0.854 0.655 0.966 0.954 0.871 1.268 1.160 1.197

Table D.1: Average RMSE’s of CVision-CIVnet for a variable Δt and varying wind velocities, ER and measurement

noise levels. Average MEs are displayed in m/s.
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D.2. Scenario: Constant Δt 70

3m/s Wind (Δt=100s) 6m/s Wind (Δt=50s) 10m/s Wind (Δt=30s)

ER [MT/y] 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2

2.5 -0.360 0.244 0.165 0.185 0.343 0.263 0.128 0.185 0.132

5 0.097 0.280 0.131 0.303 0.698 0.610 -0.096 0.037 -0.103

7.5 -0.344 -0.044 0.233 0.188 0.364 0.400 0.130 0.313 0.266

10 -0.339 -0.157 0.196 0.189 0.232 0.388 0.131 0.283 0.311

12.5 -0.333 -0.271 0.095 0.190 0.083 0.399 0.131 0.264 0.340

15 -0.328 -0.357 0.019 0.191 -0.036 0.374 0.132 0.163 0.327

17.5 -0.322 -0.423 -0.041 0.192 -0.129 0.308 0.133 -0.016 0.322

20 -0.317 -0.467 -0.107 0.193 -0.191 0.259 0.134 -0.216 0.298

22.5 -0.312 -0.496 -0.168 0.194 -0.237 0.193 0.135 -0.354 0.293

25 -0.307 -0.514 -0.214 0.195 -0.277 0.119 0.136 -0.415 0.282

Table D.2: Average ME’s of CVision-CIVnet for a variable Δt and varying wind velocities, ER and measurement

noise levels. Average MEs are displayed in m/s.

D.2. Scenario: Constant Δt
Table D.3 presents the average RMSE values of wind velocity fields for a constant Δt of 20

seconds for wind velocities of 3, 6, 10 m/s respectively. For all different combinations of wind

velocities, ER’s and measurement noise levels. The average RMSE is displayed. Each cell in

the table represents the average RMSE computed from four IP’s per combination. Similarly,

Table D.4 shows the average ME values for the same combinations.

3m/s Wind (Δt=20s) 6m/s Wind (Δt=20s) 10m/s Wind (Δt=20s)

ER [MT/y] 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2

2.5 2.498 11.768 13.184 3.398 10.163 10.417 2.947 7.307 7.568

5 3.267 8.364 10.617 3.398 8.804 9.536 2.546 6.722 7.058

7.5 2.563 5.579 10.274 3.406 7.007 9.665 2.944 6.050 7.011

10 2.587 4.628 8.735 3.409 5.364 8.855 2.942 5.005 6.836

12.5 2.617 3.704 7.579 3.413 4.047 8.355 2.941 3.897 6.607

15 2.649 3.243 6.282 3.417 3.224 7.155 2.939 3.114 6.216

17.5 2.679 3.240 5.343 3.420 2.783 6.188 2.938 2.778 5.704

20 2.709 3.465 4.739 3.424 2.623 5.486 2.936 2.739 5.109

22.5 2.739 3.624 4.270 3.428 2.733 4.852 2.935 2.853 4.566

25 2.768 3.711 3.824 3.432 2.956 4.218 2.934 3.051 4.038

Table D.3: Average RMSEs of CVision-CIVnetcst for a constant Δt of 20s and varying wind velocities, ER, and

measurement noise levels. Average RMSEs are displayed in m/s.

3m/s Wind (Δt=20s) 6m/s Wind (Δt=20s) 10m/s Wind (Δt=20s)

ER [MT/y] 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2

2.5 -0.089 10.794 11.952 -1.285 8.762 9.028 -0.738 5.080 5.188

5 0.405 7.493 9.479 -2.075 7.744 8.388 -0.513 4.116 4.183

7.5 -0.022 4.598 9.388 -1.265 5.455 8.251 -0.725 4.174 4.928

10 0.001 3.436 7.929 -1.255 3.804 7.375 -0.719 2.918 4.855

12.5 0.030 2.302 6.697 -1.246 2.283 6.699 -0.713 1.541 4.742

15 0.059 1.673 5.394 -1.235 1.002 5.613 -0.706 0.547 4.370

17.5 0.087 1.423 4.366 -1.226 0.020 4.693 -0.700 -0.181 3.790

20 0.114 1.400 3.649 -1.217 -0.734 3.981 -0.693 -0.776 3.060

22.5 0.140 1.460 3.058 -1.208 -1.266 3.277 -0.687 -1.293 2.397

25 0.165 1.493 2.520 -1.199 -1.637 2.543 -0.680 -1.698 1.737

Table D.4: Average MEs of CVision-CIVnetcst for a constant Δt of 20s and varying wind velocities, ER and

measurement noise levels. Average MEs are displayed in m/s.



E
SNR Quantification

This appendix provides a quantification of the Signal-to-Noise Ratio (SNR), for CO2 plumes

simulated in this thesis with varying wind velocities, emission rates and measurement

noise levels. The SNR represents the clarity and quality of a signal by comparing the level

of the desired signal to the level of background noise. In the context of emission plume

measurements, a higher SNR indicates that the concentration variations are more distinct and

easily detectable against the variability inherent in the measurement process. Essentially, a

higher SNR signifies more reliable and accurate measurements, where the true signal stands

out prominently from the noise. The SNR is defined as follows:

Signal-to-Noise-Ratio =
max(𝛿𝐶𝑃𝑃𝑀)

𝜎𝑃𝑃𝑀
(E.1)

where max(𝛿𝐶𝑃𝑃𝑀) represents the maximal background-subtracted concentration in PPM in a

plume image. 𝜎𝑃𝑃𝑀 represents the noise level of a plume image in PPM. Table E.1 and Table E.2

summarize the SNR values for CO2 and NO2-converted-to-CO2 plume imagery for various

wind velocities, emission rates and measurement noise levels, providing a comprehensive

overview of the SNR’s for different combinations of plume characteristics.

3m/s Wind 6m/s Wind 10m/s Wind

ER [MT/y] 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2

2.5 ∞ 11.8067 5.9034 ∞ 4.3914 2.1957 ∞ 2.6561 1.3280

5 ∞ 14.0275 7.0137 ∞ 8.1666 4.0833 ∞ 4.6319 2.3160

7.5 ∞ 33.6319 16.8160 ∞ 12.6199 6.3100 ∞ 8.0379 4.0190

10 ∞ 40.1214 20.0607 ∞ 16.4800 8.2400 ∞ 10.2172 5.1086

12.5 ∞ 47.7567 23.8783 ∞ 20.1842 10.0921 ∞ 12.6104 6.3052

15 ∞ 54.6959 27.3480 ∞ 23.7418 11.8709 ∞ 14.9441 7.4720

17.5 ∞ 61.0302 30.5151 ∞ 27.1614 13.5807 ∞ 17.2203 8.6101

20 ∞ 66.8352 33.4176 ∞ 30.4508 15.2254 ∞ 19.4412 9.7206

22.5 ∞ 72.1747 36.0874 ∞ 33.6173 16.8087 ∞ 21.6088 10.8044

25 ∞ 77.1026 38.5513 ∞ 36.6678 18.3339 ∞ 23.7249 11.8625

Table E.1: Quantification of Signal-to-Noise-Ratio’s of CO2 plume with varying wind velocities, emission rates and

measurement noise levels. The Signal-to-Noise-Ratio is computed using Equation E.1.
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3m/s Wind 6m/s Wind 10m/s Wind

ER [MT/y] 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2 𝑙0 𝑙1 𝑙2

2.5 ∞ 23.6134 11.8068 ∞ 8.7828 4.3914 ∞ 5.3122 2.6560

5 ∞ 28.0550 14.0274 ∞ 16.3332 8.1666 ∞ 9.2638 4.6320

7.5 ∞ 67.2638 33.6320 ∞ 25.2398 12.6200 ∞ 16.0758 8.0380

10 ∞ 80.2428 40.1214 ∞ 32.9600 16.4800 ∞ 20.4344 10.2172

12.5 ∞ 95.5134 47.7566 ∞ 40.3684 20.1842 ∞ 25.2208 12.6104

15 ∞ 109.3918 54.6960 ∞ 47.4836 23.7418 ∞ 29.8882 14.9440

17.5 ∞ 122.0604 61.0302 ∞ 54.3228 27.1614 ∞ 34.4406 17.2202

20 ∞ 133.6704 66.8352 ∞ 60.9016 30.4508 ∞ 38.8824 19.4412

22.5 ∞ 144.3494 72.1748 ∞ 67.2346 33.6174 ∞ 43.2176 21.6088

25 ∞ 154.2052 77.1026 ∞ 73.3356 36.6678 ∞ 47.4498 23.7250

Table E.2: Quantification of Signal-to-Noise-Ratio’s of NO2-converted-to-CO2 plume with varying wind velocities,

emission rates and measurement noise levels. The Signal-to-Noise-Ratio is computed using Equation E.1.
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