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A B S T R A C T

Choice-based optimization problems are the family of optimization problems that incorporate the stochasticity
of individual preferences according to discrete choice models to make planning decisions. This integration
brings non-convexity and nonlinearity to the associated mathematical formulations. Previously, the authors
have tackled these issues by introducing a simulation-based approximation of the choice model with the aim
of linearizing it. Nevertheless, already existing exact methods and state-of-the-art commercial solvers fail to
solve relevant instances. In this paper, we propose a novel Lagrangian decomposition method inspired by
scenario decomposition and scenario grouping in the stochastic programming framework for the purpose of
solving choice-based optimization problems. In addition, we develop a tailored algorithm to generate feasible
solutions to the original problem from the solution of the Lagrangian subproblem. Hence, at each iteration
of the subgradient method, which is used to solve the Lagrangian dual, we provide both an upper and a
lower bound to the original problem. This enables the calculation of the duality gap to assess the quality of
the generated solutions. Computational results show that the decomposition method provides solutions with
optimality gaps below 0.5% and restricted duality gaps within low computational times. We also show that
scenario grouping leads to high-quality feasible solutions and lower duality gaps.
1. Introduction

Choice-based optimization problems assist a planner in the making
of decisions associated with the products or services it offers while
accommodating a discrete choice model to capture the stochasticity of
individual preferences. They are receiving increasing attention because
they allow to explicitly capture the interplay between these decisions
and the expected demand of the offered products or services provided
that the decisions are explanatory variables of the choice model. In this
paper, we focus on parametric discrete choice models rooted in the
random utility theory. They assume that each individual associates a
utility with every alternative and chooses the alternative with the high-
est utility. Optimization problems that consider these models can be
found in facility location (e.g., Benati, 1999, Haase and Müller, 2013),
revenue management (e.g., Talluri and Van Ryzin, 2004, Shen and Su,
2007), network pricing (e.g., Palma et al., 2005, Gilbert et al., 2014b)
and routing and pricing for same-day deliveries (e.g., Prokhorchuk
et al., 2019, Ulmer, 2020), to name a few.

∗ Corresponding author at: Transport and Mobility Laboratory (TRANSP-OR), School of Architecture, Civil and Environmental Engineering (ENAC), École
Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

E-mail addresses: meritxell.pacheco@unifr.ch (M. Pacheco Paneque), bernard.gendron@cirrelt.ca (B. Gendron), s.sharifazadeh@tudelft.nl
(S. Sharif Azadeh), michel.bierlaire@epfl.ch (M. Bierlaire).

As utilities are random variables, the expected demand of each
alternative is derived from the associated probability functions. These
probabilities are highly non-convex and nonlinear in the explanatory
variables of the random utility model, and might not be available in
closed form. This comes into conflict with the fact that the mathemati-
cal models that formulate the planner’s decisions typically require lin-
earity or convexity of the involved expressions in order to ensure their
tractability. Furthermore, choice-based optimization problems come
with the computational burden associated with the individual represen-
tation of demand from a planning viewpoint (e.g., capacity allocation).
This makes only small to moderate size problems solvable to optimality
(e.g., Andersson, 1998, Benati and Hansen, 2002).

To address these issues, Pacheco Paneque et al. (2021) propose a
mixed-integer linear formulation of a random utility model such that
it can be embedded in the mixed-integer linear programming (MILP)
model that formulates the planner’s decisions. To this end, we charac-
terize a general choice-based optimization problem by assuming that a
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planner needs to decide on some features of a discrete set of alternatives
that is offered to a set of individuals whose choice behavior is described
with a random utility model. More precisely, in order to overcome the
stochastic nature of the random utility model, we simulate realizations
of the probability distribution associated with its random components,
called scenarios. The individual choice probabilities, and therefore the
expected demand, are approximated by means of the sample-average
approximation (SAA) principle on the scenarios. This comes at the cost
of large MILP formulations. Although small to medium-size instances
can be optimally solved with general-purpose MILP solvers, practically
relevant problems might involve a larger number of individuals and a
considerable number of scenarios to enhance precision.

Each scenario can be seen as an independent behavioral situation
where individuals consider to make a choice. These scenarios provide
the problem with a decomposable structure that can be exploited to
address the computational complexity of the exact method. In this
paper, we propose a heuristic method inspired by scenario decompo-
sition in the stochastic programming (SP) framework for the general
choice-based optimization problem described in Pacheco Paneque et al.
(2021). In scenario decomposition, copies of the first-stage decisions of
multi-stage SP problems are introduced for each scenario. The so-called
non-anticipativity constraints, which impose that these copies should
be the same across scenarios, are dualized. Then, the subproblems as-
sociated with each scenario are independently solved (i.e., Lagrangian
decomposition or variable splitting in combinatorial optimization). The
main advantage of this approach is that the interplay between the
decisions and the expected demand is preserved in the subproblems.
The bound yielded by scenario decomposition can be improved by
grouping scenarios at the expense of solving larger subproblems. To
this end, we test different strategies based on similarity measures
(i.e., Euclidean distance).

We enhance the proposed method with an algorithm that solves a
restricted MILP formulation of the original problem. This formulation
uses information from the solutions of the subproblems at each iteration
of the subgradient method applied to solve the Lagrangian dual. The
algorithm exploits the properties of the choice-based optimization prob-
lem and allows to efficiently generate feasible solutions. Computational
experiments show that the proposed methodology outperforms the
considered commercial solver with respect to the best feasible solution
found for a given time budget. At the same time, the generation of fea-
sible solutions at each iteration of the subgradient method enables the
calculation of the duality gap. This gap allows to assess the quality of
the generated solutions, and therefore the performance of the method,
as optimal solutions cannot be obtained for large instances.

This paper is organized as follows. Section 2 reviews the related
work and discusses our main contributions. Section 3 introduces the
general problem and its MILP formulation. Section 4 explains how
the problem is decomposed via scenario decomposition and outlines
the algorithm to generate feasible solutions. Section 5 describes the
revenue maximization problem upon which the proposed methodology
is tested and includes the numerical experiments. Finally, Section 6
concludes with some final remarks and future research avenues.

2. Related work

Because of the probabilistic nature of random utility models, the
formulations resulting from their integration in optimization problems
are typically non-convex and nonlinear. Researchers have therefore
focused on the development of reformulations and efficient algorithms
to solve practical problems. In Section 2.1, we provide an overview
of the solution methodologies that have been recently proposed to
different problem types. In this paper, we investigate the decomposable
structure provided by the simulation scenarios in order to develop a
solution methodology for choice-based optimization problems. As a
result, we also review the literature on scenario decomposition and
scenario grouping in Section 2.2. To conclude, Section 2.3 outlines the
2

main contributions and discusses the positioning of the paper.
2.1. Solution methodologies for various problem types

In the last years, there has been a growing body of literature on fa-
cility location problems that rely on random utility models (mainly the
logit model) to represent the behavior of customers. Benati and Hansen
(2002) were the first to introduce a logit-based model for the optimal
location of new facilities. The resulting formulation is a hyperbolic sum
integer programming (IP) model. They develop a branch-and-bound
algorithm with a concave relaxation of the problem as a dual bound.
Computational results show that only problems of moderate size (50
nodes) can be solved to optimality. For the same problem, Freire et al.
(2016) propose a branch-and-bound algorithm that embeds a greedy
algorithm to solve a relaxation of the original problem. Ljubić and
Moreno (2018) propose a branch-and-cut algorithm based on outer-
approximation and submodular cuts. This approach has been recently
enhanced in Mai and Lodi (2020) with a cutting-plane algorithm that
requires less cuts thanks to the clustering of demand points. The last
three algorithms have been tested on a real instance for the location
of park-and-ride facilities in New York City, with 59 candidate loca-
tions and more than 82,000 customers. In general, the branch-and-cut
algorithm is better in terms of number of solved instances but the
cutting-plane algorithm is remarkably faster.

Other works consider linear reformulations of the original nonlinear
models. Three of such reformulations are compared in Haase and
Müller (2014). Numerical experiments with up to 400 customer zones
and 50 candidate locations show that the linearization by Haase (2009)
outperforms the other two. This formulation was later strengthened
in Freire et al. (2016). Nevertheless, Ljubić and Moreno (2018) show
that the proposed branch-and-cut algorithm outperforms the existing
exact approaches, including the discussed linear reformulations. Lin
et al. (2020) formulate the optimal location of self-service lockers as
a multi-ratio linear-fractional 0–1 programming model and provide
two solution methodologies: an MILP reformulation for small-scale
problems (networks with up to 100 nodes) and a quadratic transform
with linear alternating algorithm for large-scale problems that out-
performs the MILP approach. In school location, Haase and Müller
(2013) propose a linear IP formulation under a mixed logit model.
The performed experiments show that real instances (up to 113,000
students and 26 candidate locations) are solved (close) to optimality
within a few minutes.

In the context of transportation, Gilbert et al. (2014a) consider
the toll setting problem on a network where users are assigned to
paths according to the logit model. The resulting optimization model
is nonlinear and non-convex, and may have several local optima. An
exhaustive algorithmic study of this problem is carried out in Gilbert
et al. (2015). To solve the problem, they implement a mixed-integer
approximation scheme that provides starting points from which a local
search converges to near-optimal solutions. Numerical experiments on
dense circular networks (20 nodes, 90 arcs, 10 origin–destination pairs
and up to 10 toll arcs) show that near-optimal solutions are obtained.
In Gilbert et al. (2014b), the path assignment is performed according
to a mixed logit model, whose probabilities do not have a closed form.
A similar solution method is considered to solve the problem. The large
duality gaps obtained for some of the tested instances (for a given time
budget) confirm the fact that the combinatorial approximation of the
problem is hard to solve.

Customer-behavior-oriented models of demand represent a com-
monly employed methodology for revenue management. Gallego et al.
(2004) introduce a dynamic programming (DP) model for a choice-
based general network revenue management problem. They show that
its optimal value can be closely approximated by the optimal solution
of an appropriately constructed linear programming (LP) model. Since
then, researchers have focused on various approximations of the un-
derpinning DP formulation, offering provable bounds on the optimal
expected revenue instead of performance guarantees on the optimality

gap (Strauss et al., 2018). Yan et al. (2008) address the problem on
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fleet routing and flight scheduling with both stochastic market demands
(via scenarios) and market shares (via a logit model). To solve the
two-stage SP model, they propose two heuristic algorithms that fix a
market demand scenario and approximate the resulting mixed-integer
nonlinear programming (MINLP) model by fixing the decisions that are
explanatory variables of the logit model.

2.2. Scenario decomposition and scenario grouping

Scenario decomposition is applied to the deterministic equivalent
formulation that results from considering a finite number of scenarios
of a multi-stage SP problem. Carøe and Schultz (1999) developed an
algorithm for multi-stage SP problems with mixed-integer variables in
all stages. They introduce copies of the first-stage variables (which
do not depend on the random data) for each scenario and relax the
non-anticipativity constraints in a Lagrangian manner. This method
is incorporated as a bounding procedure within a branch-and-bound
algorithm to achieve convergence. Numerical experiments with up
to 10 scenarios show that the Lagrangian dual provides considerably
better lower bounds than the LP relaxation and that feasible solutions
within 0.2% of the optimum are found.

Scenarios can be gathered into groups such that a copy of the first-
stage variables is introduced for each group. Escudero et al. (2013)
are the first to explore such an idea. They propose a cluster-based
Lagrangian decomposition procedure for the two-stage SP mixed 0–1
problem. Each cluster is a set of scenarios built at random where the
non-anticipativity constraints are implicitly considered. Computational
experiments on instances with up to 500 scenarios show that this
technique outperforms traditional Lagrangian decomposition for single
scenarios both in the quality of the bounds and computational effort.
This idea has been extended to the multi-stage SP problem (Escudero
et al., 2016 for the binary case, Gade et al., 2016 for the integer case).
Scenario grouping has also been considered together with scenario
reduction techniques in van Ackooij et al. (2018) to dynamically update
the groups during the iterative solution process.

Crainic et al. (2014) evaluate multiple grouping strategies for the
two-stage network design problem. They are defined by the type of
splitting (cover or partition), grouping (at random or based on a
similarity/dissimilarity measure inspired by the 𝑘-means clustering
algorithm), and scenario characteristics according to which the simi-
larity/dissimilarity is measured. Numerical experiments for up to 32
scenarios on instances with 10 nodes, up to 83 arcs and up to 50
commodities show that the covering strategy is the one reporting the
highest quality solutions. More recently, Ryan et al. (2020) have intro-
duced an optimization problem for grouping scenarios to maximize the
bound improvement. This technique provides stronger initial relaxation
bounds when compared with random and 𝑘-means clustering (at the
cost of an increase in computational time). The main advantage is
that it can be incorporated into any general scenario decomposition
algorithm as a preprocessing step.

2.3. Contributions

The works analyzed in Section 2.1 illustrate the complexity of solv-
ing choice-based optimization problems, especially for large instances.
In this paper, we rely on the mixed-integer linear formulation of
random utility models introduced in Pacheco Paneque et al. (2021). The
MILP model that formulates the choice-based optimization problem is
sensitive from a computational point of view. Indeed, the exact method
fails at solving instances with a large number of scenarios, alternatives
and/or individuals, which usually arise in real-life problems. To tackle
such instances, we introduce a heuristic solution method that takes
advantage of the simulation-based linearization in the MILP model
by exploiting the principles of scenario decomposition and scenario
3

grouping.
The proposed approach solves a general choice-based optimization
problem. This problem aims at deciding on (some of) the features
(e.g., price) of a given set of alternatives such that an objective function
determined by the planner (e.g., revenue) is optimized (see Section 3).
Notice that these decisions are the same across scenarios. As seen in
Section 2.2, they play the role of first-stage variables in multi-stage SP
problems. To the best of our knowledge, this is the first time that a
scenario-based decomposition method is used to solve a choice-based
optimization problem.

Our method is also general with respect to the random utility model.
This is an important feature because we observe that, in most cases,
the proposed methods are specific to the assumed model, which is
typically the logit model because of the simplicity of its closed-form
probability formula. However, advanced models like the mixed logit
model overcome the main limitations of the logit model and have
shown a better prediction power. We numerically test our method on a
revenue maximization problem under a mixed logit model. The results
show that it outperforms by a considerable margin a general-purpose
MILP solver for a given time budget and that the obtained duality gaps
are as well restricted.

3. Problem definition and mathematical model

The optimization problem considered in this paper involves the
planner’s decisions on the alternatives it offers and accommodates
a random utility model (whose parameters have been exogenously
estimated) to explicitly represent the expected demand. Let 𝑁 be the
number of individuals in the sample (population) and 𝐽 the number
of alternatives that can be chosen by the individuals according to the
random utility model. For each alternative 𝑖, we assume a capacity
denoted by 𝑐𝑖 ≥ 1, which indicates the maximum number of individuals
who can choose it. We denote the number of scenarios by 𝑅. These
scenarios are generated outside of the optimization problem (known as
exterior approach in the SP framework).

In a random utility model, 𝑈𝑖𝑛 represents the utility that individ-
ual 𝑛 obtains from choosing alternative 𝑖. It consists of a systematic
component and a random component that captures everything that has
not been explicitly included. The behavioral assumption is that each
individual wants to maximize their own utility. For each scenario 𝑟,
we introduce a deterministic utility 𝑈𝑖𝑛𝑟 that has the same systematic
component as 𝑈𝑖𝑛 but replaces the random component by a realization
of its probability distribution (scenario).

To formulate the problem, we denote by 𝑥𝑖𝑛1,… , 𝑥𝑖𝑛𝐾 the 𝐾 deci-
sions associated with alternative 𝑖 and individual 𝑛 that the planner
needs to make. These variables are assumed to be bounded, i.e., 𝑥𝑖𝑛𝑘 ∈
[𝑎𝑖𝑛𝑘, 𝑏𝑖𝑛𝑘],∀𝑖, 𝑛, 𝑘, and might be binary. We denote by 𝐷𝑅

𝑖 the expected
demand of alternative 𝑖 for a given number of scenarios 𝑅. Model (1)
presents the general form of the choice-based optimization problem.
The objective function 𝑓 (𝑥,𝐷𝑅) relates the planner’s decisions to the
expected demand, where 𝑥 is the 𝐽 × 𝑁 × 𝐾-dimensional vector con-
taining the variables 𝑥𝑖𝑛𝑘 and 𝐷𝑅 is the 𝐽 -vector that contains the
expected demands 𝐷𝑅

𝑖 . Without loss of generality, we assume 𝑓 (𝑥,𝐷𝑅)
is to be maximized. Constraint (1b) corresponds to the domain of 𝑥,
where 𝑋 ⊆ R𝐽×𝑁×𝐾 , and constraint (1c) characterizes the expected
demand as described by the random utility model, where 𝑥𝑖𝑛 is the 𝐾-
dimensional vector containing the decisions associated with alternative
𝑖 and individual 𝑛. Notice that the individual probabilities 𝑃𝑛(𝑖|𝑥𝑖𝑛) may
also depend on other variables that are exogenous to the optimization
problem and, therefore, not included here.

max 𝑓 (𝑥,𝐷𝑅) (1a)

s.t. 𝑥 ∈ 𝑋 (1b)

𝐷𝑅 = (𝐷𝑅
1 ,… , 𝐷𝑅

𝐽 ) =

(

∑

𝑛
𝑃𝑛(1|𝑥1𝑛),… ,

∑

𝑛
𝑃𝑛(𝐽 |𝑥𝐽𝑛)

)

(1c)
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The expected demand 𝐷𝑅 is approximated with a mixed-integer
linear formulation based on the SAA principle in the space of the
utilities (we refer the reader to Pacheco Paneque et al., 2021 for
further details). To characterize this approximation, we define the
following auxiliary variables. The binary variables 𝑦𝑖𝑛𝑟 represent the
availability of alternatives, i.e., they are equal to 1 if the capacity
of alternative 𝑖 has not been reached for individual 𝑛 in scenario 𝑟.
The auxiliary variables 𝑧𝑖𝑛𝑟 prevent an unavailable alternative from
obtaining the highest utility. They take value 𝑈𝑖𝑛𝑟 if alternative 𝑖 is
available to individual 𝑛 in scenario 𝑟, and a given low value otherwise.
The behavioral assumption of the random utility model is expressed
in terms of 𝑧𝑖𝑛𝑟, i.e., individual 𝑛 chooses alternative 𝑖 in scenario 𝑟
if 𝑖 = argmax1≤𝑗≤𝐽 𝑧𝑗𝑛𝑟. The variables 𝑈𝑛𝑟 = max1≤𝑗≤𝐽 𝑧𝑗𝑛𝑟 capture the
highest utility for individual 𝑛 in scenario 𝑟, and the binary variables
𝑤𝑖𝑛𝑟 indicate the choice, i.e., they are equal to 1 if 𝑈𝑛𝑟 is achieved at
alternative 𝑖. The expected demand 𝐷𝑅

𝑖 of alternative 𝑖 is then obtained
by

𝐷𝑅
𝑖 = 1

𝑅

𝑁
∑

𝑛=1

𝑅
∑

𝑟=1
𝑤𝑖𝑛𝑟. (2)

Model (3) defines the general choice-based optimization problem
considered in this paper. We assume that the objective function (3a) is
linear in 𝑥 and the choice variables. Eqs. (3b) define 𝑈𝑖𝑛𝑟 as the sum
of the systematic component that depends on the planner’s decisions
and a constant term denoted by 𝑑𝑖𝑛𝑟. This term includes the 𝑟th scenario
associated with alternative 𝑖 and individual 𝑛 and other elements of the
systematic component that are constant to the optimization problem.
As 𝑥𝑖𝑛𝑘,∀𝑖, 𝑛, 𝑘, is bounded and 𝑑𝑖𝑛𝑟,∀𝑖, 𝑛, 𝑟, is constant, we can derive
bounds on 𝑈𝑖𝑛𝑟: 𝓁𝑖𝑛𝑟 ≤ 𝑈𝑖𝑛𝑟 ≤ 𝑚𝑖𝑛𝑟. Constraints (3c)–(3f) provide the
linear formulation of the variables 𝑧𝑖𝑛𝑟, where 𝓁𝑛𝑟 = min1≤𝑗≤𝐽 𝓁𝑗𝑛𝑟 and
𝑀𝑖𝑛𝑟 = 𝑚𝑖𝑛𝑟 − 𝓁𝑛𝑟. Constraints (3g)–(3h) provide the linear formulation
of 𝑈𝑛𝑟, where 𝑚𝑛𝑟 = max1≤𝑗≤𝐽 𝑚𝑗𝑛𝑟 and 𝑀𝑛𝑟 = 𝑚𝑛𝑟 − 𝓁𝑛𝑟. Constraints (3i)
ensure that one and only one alternative is chosen per individual and
scenario. Constraints (3j) prevent an unavailable alternative from being
chosen. Constraints (3k)–(3l) handle capacity constraints on the alter-
natives. We assume that the access of individuals to the alternatives for
each scenario is modeled by an exogenously given priority list. This list
determines the access order of individuals, i.e., if individual 𝑛 does not
have access to the alternative in that scenario, neither does individual
𝑛 + 1, and consequently the upcoming individuals. Constraints (3k)
forbid the access to an alternative for a scenario when its capacity has
been reached, whereas constraints (3l) ensure its availability otherwise.
Constraint (3m) represents the set of linear constraints that identify the
requirements of 𝑥.

𝑧MILP = max 𝑓 (𝑥,𝐷𝑅) (3a)

s.t. 𝑈𝑖𝑛𝑟 =
𝐾
∑

𝑘=1
𝛽𝑖𝑛𝑘𝑥𝑖𝑛𝑘 + 𝑑𝑖𝑛𝑟 ∀𝑖, 𝑛, 𝑟 (3b)

𝓁𝑛𝑟 ≤ 𝑧𝑖𝑛𝑟 ∀𝑖, 𝑛, 𝑟 (3c)

𝑧𝑖𝑛𝑟 ≤ 𝓁𝑛𝑟 +𝑀𝑖𝑛𝑟𝑦𝑖𝑛𝑟 ∀𝑖, 𝑛, 𝑟 (3d)

𝑈𝑖𝑛𝑟 −𝑀𝑖𝑛𝑟(1 − 𝑦𝑖𝑛𝑟) ≤ 𝑧𝑖𝑛𝑟 ∀𝑖, 𝑛, 𝑟 (3e)

𝑧𝑖𝑛𝑟 ≤ 𝑈𝑖𝑛𝑟 ∀𝑖, 𝑛, 𝑟 (3f)

𝑧𝑖𝑛𝑟 ≤ 𝑈𝑛𝑟 ∀𝑖, 𝑛, 𝑟 (3g)

𝑈𝑛𝑟 ≤ 𝑧𝑖𝑛𝑟 +𝑀𝑛𝑟(1 −𝑤𝑖𝑛𝑟) ∀𝑖, 𝑛, 𝑟 (3h)
𝐽
∑

𝑖=1
𝑤𝑖𝑛𝑟 = 1 ∀𝑛, 𝑟 (3i)

𝑤𝑖𝑛𝑟 ≤ 𝑦𝑖𝑛𝑟 ∀𝑖, 𝑛, 𝑟 (3j)
𝑛
∑

𝑤𝑖𝑚𝑟 ≤ (𝑐𝑖 − 1)𝑦𝑖𝑛𝑟 + (𝑛 − 1)(1 − 𝑦𝑖𝑛𝑟) ∀𝑖, 𝑛 > 𝑐𝑖, 𝑟 (3k)
4

𝑚=1
𝑐𝑖(1 − 𝑦𝑖𝑛𝑟) ≤
𝑛
∑

𝑚=1
𝑤𝑖𝑚𝑟 ∀𝑖, 𝑛 > 1, 𝑟 (3l)

ℎ(𝑥) ≤ 0 (3m)

𝑎𝑖𝑛𝑘 ≤ 𝑥𝑖𝑛𝑘 ≤ 𝑏𝑖𝑛𝑘 ∀𝑖, 𝑛, 𝑘 (3n)

𝑦𝑖𝑛𝑟, 𝑤𝑖𝑛𝑟 ∈ {0, 1} ∀𝑖, 𝑛, 𝑟 (3o)

This mathematical model can be used to formulate a large family of
optimization problems that arise in many service industries in which
the supply-related decisions and the expected demand closely interact.
For instance, it can be employed in the maximization of the profit
obtained by transportation or hospitality operators that decide on the
price of the offered services given their available capacity. Concrete
examples can be found in facility location and revenue management.
From a service level point of view, this framework can be adapted
to model the pricing and design (e.g., frequency) of a transportation
system when a public authority aims at maximizing a measure of social
welfare.

Despite its versatility, Model (3) lacks efficiency for solving large
instances with a general-purpose MILP solver, as shown in the nu-
merical experiments performed in Pacheco Paneque et al. (2021).
Indeed, the individual representation of the expected demand and
the simulation-based linearization of the random utility model, which
involves the presence of the so-called big-M constraints (i.e., (3c)–(3f)
and (3g)–(3h)), contribute to the complexity of the formulation.

4. Scenario decomposition method

We introduce a heuristic solution method that exploits the proper-
ties of the choice-based optimization problem described in Section 3.
With the aim of reducing the complexity of the problem, we de-
crease the number of scenarios by gathering them into groups. Sec-
tion 4.1 describes the decomposition of the problem by scenario groups
and outlines the considered scenario grouping strategies. Such de-
composition is achieved by relaxing the non-anticipativity constraints
in a Lagrangian fashion. The Lagrangian subproblem associated with
Model (3) provides an upper bound to the choice-based optimization
problem, but not necessarily a feasible solution. We propose an algo-
rithm in Section 4.2 to generate feasible solutions from the Lagrangian
solution, and therefore lower bounds to the choice-based optimization
problem. Finally, Section 4.3 describes the subgradient method that is
applied to solve the Lagrangian dual to find the best possible upper
bound. The algorithm to generate feasible solutions is accommodated
in the subgradient method such that at each iteration both a lower and
an upper bound to Model (3) are obtained. This allows the calculation
of the duality gap to evaluate the quality of the generated solutions.

4.1. Decomposition by scenario groups

Let 𝑆 be the number of scenario groups (indexed by 𝑠) and 𝑅𝑠
the set that contains the scenarios belonging to group 𝑠. Notice that
the scenarios are partitioned into groups, i.e., each scenario belongs to
one and only one group. Both 𝑆 and 𝑅𝑠,∀𝑠, are determined according
to one of the grouping strategies described below. The copy of 𝑥𝑖𝑛𝑘
associated with group 𝑠 is denoted by 𝑥𝑠𝑖𝑛𝑘. Constraints (4) represent the
non-anticipativity constraints imposing that the copied variables 𝑥𝑠𝑖𝑛𝑘
must be equal across groups. Constraints (4b) are redundant, but allow
to obtain tighter upper bounds, as shown by preliminary experiments
performed on the instances described in Section 5.2. Note that other
characterizations of the non-anticipativity constraints are possible, such
as relating all copies with each other (e.g., Escudero et al., 2013).

𝑥𝑠𝑖𝑛𝑘 − 𝑥𝑠+1𝑖𝑛𝑘 = 0,∀𝑖, 𝑛, 𝑘, 𝑠 < 𝑆, (4a)

𝑥𝑠𝑖𝑛𝑘 − 𝑥1𝑖𝑛𝑘 = 0,∀𝑖, 𝑛, 𝑘, 𝑠 = 𝑆. (4b)

The Lagrangian relaxation of constraints (4) with associated mul-
tipliers 𝛼𝑠 ∈ R,∀𝑖, 𝑛, 𝑘, 𝑠, yields independent subproblems for each
𝑖𝑛𝑘
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group 𝑠. As the objective function 𝑓 (𝑥,𝐷𝑅) is linear, it can be split into
the functions denoted by 𝑓 𝑠(𝑥𝑠, 𝐷𝑅,𝑠) such that 𝑓 (𝑥,
𝐷𝑅) =

∑𝑆
𝑠=1 𝑓

𝑠(𝑥𝑠, 𝐷𝑅,𝑠), where 𝑥𝑠 is the 𝐽 × 𝑁 × 𝐾-vector containing
the variables 𝑥𝑠𝑖𝑛𝑘, 𝐷𝑅 =

∑𝑆
𝑠=1 𝐷

𝑅,𝑠 and 𝐷𝑅,𝑠 is the 𝐽 -vector containing
the demands 𝐷𝑅,𝑠

𝑖 :

𝐷𝑅,𝑠
𝑖 = 1

𝑅

𝑁
∑

𝑛=1

∑

𝑟∈𝑅𝑠

𝑤𝑖𝑛𝑟. (5)

The subproblem associated with group 𝑠 is formulated in Model (6). It is
essentially Model (3) for a reduced number of scenarios whose objective
function has been modified. As shown in Pacheco Paneque et al. (2021),
the computational complexity of Model (3) grows exponentially with
respect to 𝑅. Hence, for a given number of individuals, it is usually
more efficient to solve multiple problems with a small number of
scenarios each rather than a single problem containing all scenarios.
This trade-off is analyzed in Section 5.4.

𝑧UB
s (𝛼𝑠, 𝛼𝑠−1) = max 𝑓 𝑠(𝑥𝑠, 𝐷𝑅,𝑠) +

𝐽
∑

𝑖=1

𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
(𝛼𝑠𝑖𝑛𝑘 − 𝛼𝑠−1𝑖𝑛𝑘 )𝑥

𝑠
𝑖𝑛𝑘

(6a)

s.t. 𝑈𝑖𝑛𝑟 =
𝐾
∑

𝑘=1
𝛽𝑖𝑛𝑘𝑥

𝑠
𝑖𝑛𝑘 + 𝑑𝑖𝑛𝑟 ∀𝑖, 𝑛, 𝑟 ∈ 𝑅𝑠 (6b)

𝓁𝑛𝑟 ≤ 𝑧𝑖𝑛𝑟 ∀𝑖, 𝑛, 𝑟 ∈ 𝑅𝑠 (6c)

𝑧𝑖𝑛𝑟 ≤ 𝓁𝑛𝑟 +𝑀𝑖𝑛𝑟𝑦𝑖𝑛𝑟 ∀𝑖, 𝑛, 𝑟 ∈ 𝑅𝑠 (6d)

𝑈𝑖𝑛𝑟 −𝑀𝑖𝑛𝑟(1 − 𝑦𝑖𝑛𝑟) ≤ 𝑧𝑖𝑛𝑟 ∀𝑖, 𝑛, 𝑟 ∈ 𝑅𝑠 (6e)

𝑧𝑖𝑛𝑟 ≤ 𝑈𝑖𝑛𝑟 ∀𝑖, 𝑛, 𝑟 ∈ 𝑅𝑠 (6f)

𝑧𝑖𝑛𝑟 ≤ 𝑈𝑛𝑟 ∀𝑖, 𝑛, 𝑟 ∈ 𝑅𝑠 (6g)

𝑈𝑛𝑟 ≤ 𝑧𝑖𝑛𝑟 +𝑀𝑛𝑟(1 −𝑤𝑖𝑛𝑟) ∀𝑖, 𝑛, 𝑟 ∈ 𝑅𝑠 (6h)
𝐽
∑

𝑖=1
𝑤𝑖𝑛𝑟 = 1 ∀𝑛, 𝑟 ∈ 𝑅𝑠 (6i)

𝑤𝑖𝑛𝑟 ≤ 𝑦𝑖𝑛𝑟 ∀𝑖, 𝑛, 𝑟 ∈ 𝑅𝑠 (6j)
𝑛
∑

𝑚=1
𝑤𝑖𝑚𝑟 ≤ (𝑐𝑖 − 1)𝑦𝑖𝑛𝑟 + (𝑛 − 1)(1 − 𝑦𝑖𝑛𝑟) ∀𝑖, 𝑛 > 𝑐𝑖, 𝑟 ∈ 𝑅𝑠 (6k)

𝑐𝑖(1 − 𝑦𝑖𝑛𝑟) ≤
𝑛
∑

𝑚=1
𝑤𝑖𝑚𝑟 ∀𝑖, 𝑛 > 1, 𝑟 ∈ 𝑅𝑠 (6l)

ℎ(𝑥𝑠) ≤ 0 (6m)

𝑦𝑖𝑛𝑟, 𝑤𝑖𝑛𝑟 ∈ {0, 1} ∀𝑖, 𝑛, 𝑟 ∈ 𝑅𝑠 (6n)

The Lagrangian subproblem associated with Model (3) is defined as
follows:

𝑧UB(𝛼) =
𝑆
∑

𝑠=1
𝑧UB

s (𝛼𝑠, 𝛼𝑠−1). (7)

It provides an upper bound on 𝑧MILP for any values of 𝛼. Notice that
𝛼0𝑖𝑛𝑘 (obtained when 𝑠 = 1) refers to 𝛼𝑆𝑖𝑛𝑘,∀𝑖, 𝑛, 𝑘.

We consider various scenario grouping strategies that are inspired
y the strategies introduced in Crainic et al. (2014). In our case,
he descriptive statistics for each scenario 𝑟 are given by the 𝐽 ×

-dimensional vector that contains the realizations associated with 𝑟.

Random (RAN). This strategy serves as a benchmark to evaluate the
more refined strategies described below. To balance the number of
scenarios per group, we define 𝜎 groups with ⌈𝑅∕𝑆⌉ scenarios and 𝑆−𝜎
groups with ⌊𝑅∕𝑆⌋ scenarios, where 𝜎 is the remainder in the Euclidean
division of 𝑅 by 𝑆.

Similar (SIM). This approach is inspired by the 𝑘-means clustering
algorithm. In this case, the distance between scenarios is defined by
the Euclidean distance between the associated descriptive vectors. In
addition to creating the scenario groups, this strategy determines the
5

number of groups by assuming an integer lower (𝑆) and an integer
upper bound (𝑆) on 𝑆 and selecting an integer 𝑆 ∈ {𝑆,… , 𝑆} such
hat the difference between the error associated with 𝑆 and 𝑆 − 1 is
aximized. Since this strategy might generate very unbalanced groups
ith respect to the number of scenarios, we set ⌈𝑅∕𝑆⌉ as the maximum

number of scenarios in a group. As soon as this value is reached,
the group is no longer updated. The scenarios are assigned to groups
according to the difference between their distance to the nearest and
the farthest group. Algorithm 1 outlines the pseudocode of this strategy.
Algorithm 1: Similar grouping
1 Initialize error_diff = −∞, max_error_diff = error_diff, 𝑆∗ = 𝑆;
2 for 𝑆 ∈ {𝑆,… , 𝑆} do
3 Initialize one group with a randomly chosen scenario 𝑟1:

𝑔1 = {𝑟1}, mean(𝑔1) = 𝑟1;
4 for 𝑠 = 2…𝑆 do
5 Initialize 𝑔𝑠 = {𝑟𝑠}, 𝑟𝑠 selected at random with a higher

probability for distant scenarios with respect to 𝑟𝑠−1,
mean(𝑔𝑠) = 𝑟𝑠;

6 for 𝑟 ∉ ∪𝑆
𝑠=1𝑔𝑠 do

7 Assign 𝑟 to the group with the closest mean;
8 while groups change do
9 Update mean(𝑔𝑠),∀𝑠;
10 for 𝑟 = 1…𝑅 according to distance difference do
11 Assign 𝑟 to the group with the closest mean;
12 if |𝑔𝑠| ≥ ⌈𝑅∕𝑆⌉ then
13 𝑔𝑠 becomes unavailable;

14 Calculate error(𝑆) = ∑𝑅
𝑟=1 dist(𝑟,mean(𝑔𝑠)|𝑟 ∈ 𝑔𝑠);

15 if 𝑆 > 𝑆 then
16 error_diff = error(𝑆) − error(𝑆 − 1);
17 if error_diff > max_error_diff then
18 max_error_diff = error_diff;
19 Update 𝑆∗ = 𝑆 and store the associated scenario groups

𝑔𝑠,∀𝑠 = 1…𝑆∗;

20 Return 𝑆∗ and the associated scenario groups 𝑔𝑠,∀𝑠 = 1…𝑆∗;

Similar without dissimilar scenarios (SIM-D). This strategy first creates
similar groups using SIM and generates additional dissimilar groups that
contain one scenario from each similar group. The selected scenario is
the one that is closest to its mean. To balance the number of scenarios,
we also set a maximum of ⌈𝑅∕𝑆⌉ scenarios per group. As soon as this
value is reached, a new dissimilar group is created.

Dissimilar (DIS). As opposed to SIM, scenarios are assigned to the
groups that are the farthest away from the mean. They are ranked in
increasing order of the difference between the distance to the nearest
and to the farthest group. The selected number of groups 𝑆 ∈ {𝑆,… , 𝑆}
is the one with the largest average of the distances between each group
mean and the scenario closest to that mean.

4.2. Generation of feasible solutions

The decomposition technique described in Section 4.1 does not
necessarily yield a feasible solution to Model (3). A feasible solution
provides a lower bound to the optimal solution of Model (3). It allows
to compute the duality gap at each iteration of the subgradient method.
This gap is defined according to the relative difference between the
decomposition’s upper bound and the generated lower bound.

To efficiently generate a feasible solution, we solve the restricted
MILP formulation to Model (3) that fixes the 𝑥-variables to the values
these variables obtain in the Lagrangian solution. When the 𝑥-variables
are fixed, the resulting problem can be iteratively solved with Algo-
rithm 2. It iterates over the scenarios and the individuals in the order

provided by the priority list. For each individual 𝑛 and scenario 𝑟, it
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generates the associated choice according to the values of the variables
𝑧𝑖𝑛𝑟,∀𝑖, and updates the occupancy level of the chosen alternative.

Notice that 𝑆 values from the Lagrangian solution are available to
each variable 𝑥𝑖𝑛𝑘. Let �̄�𝑠𝑖𝑛𝑘,∀𝑖, 𝑛, 𝑘, 𝑠, be the value associated with the
copied variable 𝑥𝑠𝑖𝑛𝑘. We evaluate all combinations that can be charac-
terized from �̄�𝑠𝑖𝑛𝑘,∀𝑖, 𝑛, 𝑘, 𝑠, as shown in Algorithm 3. This results into
𝑆𝐽×𝑁×𝐾 combinations, where 𝐽 represents the number of alternatives,
𝑁 the number of individuals and 𝐾 the number of decisions. For each
combination, Algorithm 2 is performed to find a feasible solution, and
the one with the largest objective function value is selected. Despite Al-
gorithm 3 being efficient (see Section 5.3), evaluating all combinations
might prompt a considerable computational burden. If so, Algorithm 3
can be simplified by only evaluating one combination per group, which
generates 𝑆 feasible solutions.
Algorithm 2: Solution method for Model (3) with 𝑥𝑖𝑛𝑘 =
̄ 𝑖𝑛𝑘,∀𝑖, 𝑛, 𝑘.

1 for 𝑟 = 1…𝑅 do
2 Initialize occupancy level 𝑜𝑖𝑟 = 0,∀𝑖, and availability

variables 𝑦𝑖𝑛𝑟 = 1,∀𝑖, 𝑛;
3 for 𝑛 = 1…𝑁 do
4 for 𝑖 = 1… 𝐽 do
5 if 𝑜𝑖𝑟 < 𝑐𝑖 then
6 Calculate 𝑈𝑖𝑛𝑟 =

∑𝐾
𝑘=1 𝛽𝑖𝑛𝑘�̄�𝑖𝑛𝑘 + 𝑑𝑖𝑛𝑟 and set

𝑧𝑖𝑛𝑟 = 𝑈𝑖𝑛𝑟;
7 else
8 Set the alternative unavailable: 𝑦𝑖𝑛𝑟 = 0;
9 Set the variable 𝑧𝑖𝑛𝑟 to the corresponding lower

bound: 𝑧𝑖𝑛𝑟 = 𝓁𝑛𝑟;

10 Determine 𝑈𝑛𝑟 = max{1≤𝑖≤𝐽 |𝑦𝑖𝑛𝑟=1} 𝑧𝑖𝑛𝑟 and
𝑗 = argmax𝑈𝑛𝑟;

11 Set 𝑤𝑗𝑛𝑟 = 1 and 𝑤𝑖𝑛𝑟 = 0,∀𝑖 ≠ 𝑗;
12 Update the occupancy level 𝑜𝑗𝑟 = 𝑜𝑗𝑟 + 1;

13 Obtain 𝐷𝑅 by calculating 𝐷𝑅
𝑖 = 1

𝑅
∑𝑁

𝑛=1
∑𝑅

𝑟=1 𝑤𝑖𝑛𝑟,∀𝑖;
14 Obtain the objective function 𝑓 (�̄�, 𝐷𝑅);

Algorithm 3: Method to generate feasible solutions to Model (3)
with �̄�𝑠𝑖𝑛𝑘,∀𝑖, 𝑛, 𝑘, 𝑠.

1 Initialize the best lower bound 𝑧LB = −∞;
2 for all 𝑆𝐽×𝐾×𝑁 combinations from �̄�𝑠𝑖𝑛𝑘,∀𝑖, 𝑛, 𝑘, 𝑠 do
3 Solve Model (3) with 𝑥𝑖𝑛𝑘,∀𝑖, 𝑛, 𝑘 fixed to the corresponding

combination (�̄�) with Algorithm 2 and obtain
𝑧LB

current = 𝑓 (�̄�, 𝐷𝑅);
4 if 𝑧LBcurrent > 𝑧LB then
5 Update 𝑧LB = 𝑧LB

current and keep the associated feasible
solution;

6 Return the best lower bound 𝑧LB and the associated feasible
solution;

4.3. Subgradient method

To obtain the best possible upper bound to Model (3), we need to
solve the Lagrangian dual

𝑧LD = min
𝛼∈R𝐽×𝑁×𝐾×𝑆

𝑧UB(𝛼). (8)

The Lagrangian function 𝑧UB(𝛼) is non-differentiable. However, sub-
gradient directions can be easily generated. The subgradient method
constructs a sequence {𝛼𝜈}𝜈 using
𝜈+1 = 𝛼𝜈 + 𝛾𝜈𝑑𝜈 , ∀𝜈, (9)

here 𝜈 denotes the iteration, 𝛾𝜈 is a positive scalar called step size and
𝜈

6

is a vector representing the direction of motion called step direction.
The step direction 𝑑𝜈 can be directly defined as the subgradient
irection. The 𝐽 × 𝑁 × 𝐾 × 𝑆-dimensional vector 𝑣 defined by 𝑣𝑠𝑖𝑛𝑘 =
𝑠
𝑖𝑛𝑘 − 𝑥𝑠+1𝑖𝑛𝑘 ,∀𝑖, 𝑛, 𝑘, 𝑠, and evaluated at the Lagrangian solution, is a

subgradient of 𝑧UB(𝛼) at any value of 𝛼. Nevertheless, preliminary
experiments showed that the angle between 𝑣𝜈 and 𝑣𝜈−1 is obtuse in

ultiple occasions. This leads to a next Lagrangian multiplier 𝛼𝜈+1 that
s close to the previous one, which slows down the convergence of the
rocedure. This effect is known as zigzagging of kind I, and can be
vercome by deflecting the step direction (Camerini et al., 1975):
𝜈 = −(𝑣𝜈 + 𝜁𝜈𝑑𝜈−1), (10)

here 𝜁𝜈 ∈ R≥0 is a suitable scalar called deflection parameter (notice
he negative sign because the Lagrangian dual is to be minimized). By
efining this parameter as

𝜈 =

{

−𝜏 𝑣𝜈𝑑𝜈−1

‖𝑑𝜈−1‖2
if 𝑣𝜈𝑑𝜈−1 < 0,

0 otherwise,
(11)

ith 1 ≤ 𝜏 < 2, the step direction is forced to always form an acute
ngle with the preceding direction, which eliminates the zigzagging of
ind I. Notice that in the absence of zigzagging of kind I (i.e., 𝑣𝜈𝑑𝜈−1 ≥
), the step direction 𝑑𝜈 is equal to −𝑣𝜈 (the negative subgradient). We
onsider the step size most commonly used in practice (Held et al.,
974):

𝜈 = 𝜆𝜈
𝑧UB(𝛼𝜈 ) − 𝑧LB,best

‖𝑑𝜈‖2
, (12)

where ‖𝑑𝜈‖2 is the norm of the step direction, i.e.,
‖𝑑𝜈‖2 =

∑𝐽
𝑖=1

∑𝑁
𝑛=1

∑𝐾
𝑘=1

∑𝑆
𝑠=1(𝑑

𝑠,𝜈
𝑖𝑛𝑘)

2, and 𝜆𝜈 is a step size decreasing
parameter satisfying 0 < 𝜆𝜈 ≤ 2. Fisher (1973) suggests to halve this
value whenever 𝑧UB(𝛼𝜈 ) has failed to decrease in a given number 𝜃 of
onsecutive iterations.

Algorithm 4 presents the pseudocode of the subgradient method.
otice that unlike the ordinary gradient method, the subgradient
ethod is not a descent method. This is why we keep track of the best
pper and lower bounds found throughout the process. We set a time
udget as stopping criterion.
Algorithm 4: Deflected subgradient method.
1 Initialize 𝜈 = 0, 𝑧UB,best = +∞, 𝑧LB,best = −∞, 𝛼0, 𝜆0 and 𝑑0 = 0;
2 while elapsed time < time budget do
3 for 𝑠 = 1…𝑆 do
4 Solve Model (6);
5 Obtain �̄�𝑠𝑖𝑛𝑘,∀𝑖, 𝑛, 𝑘, 𝑠, and 𝑧UB(𝛼𝜈 );
6 if 𝑧UB(𝛼𝜈) < 𝑧UB,best then
7 Update 𝑧UB,best = 𝑧UB(𝛼𝜈);
8 Run Algorithm 3 and obtain 𝑧LB;
9 if 𝑧LB > 𝑧LB,best then
10 Update 𝑧LB,best = 𝑧LB;
11 if 𝑧UB(𝛼𝜈) has not improved in the last 𝜃 consecutive iterations

then
12 Set 𝜆𝜈 ← 𝜆𝜈∕2;
13 Calculate 𝛾𝜈 according to (12);
14 Update 𝛼𝑠,𝜈+1𝑖𝑛𝑘 = 𝛼𝑠,𝜈𝑖𝑛𝑘 + 𝛾𝜈𝑑𝑠,𝜈𝑖𝑛𝑘,∀𝑖, 𝑛, 𝑘, 𝑠, where

𝑑𝑠,𝜈𝑖𝑛𝑘 = −(𝑣𝑠,𝜈𝑖𝑛𝑘 + 𝜁𝜈𝑑𝑠,𝜈−1𝑖𝑛𝑘 ) and 𝜁𝜈 is calculated according to
(11);

15 Set 𝜈 ← 𝜈 + 1;

5. Computational experiments

The goal of the experiments carried out in this section is three-
fold. First, we evaluate the performance of the decomposition method
against a general-purpose MILP solver for a given time budget and
compare the different scenario grouping strategies against each other
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(Section 5.3). Second, we assess the trade-off between the solution qual-
ity and duality gap and the number of scenarios per group (Section 5.4).
Third, we analyze the impact in the algorithm’s performance of scaling
up the problem size by increasing the dimensions not involved in the
decomposition (Section 5.5 for an increase in the number of alternatives
and Section 5.6 for an increase in the number of individuals). Before
that, Section 5.1 characterizes the revenue maximization problem. This
choice-based optimization problem yields a concrete MILP formulation
that we use to run the experiments. Section 5.2 describes the case study
and the calibration of parameters for the subgradient method.

5.1. Revenue maximization problem

The planner aims at finding the best pricing strategy in order to
maximize its revenue by offering services to a market. Each service in
the set of services  has a given associated capacity. The market is
omposed of 𝑁 individuals, which are assumed to be heterogeneous
nd price elastic. In a revenue maximization context, we need to
odel competition so that individuals are not captive. To this end,
e incorporate an opt-out option into the model to capture individuals

eaving the market, either because they choose a competitor’s service
r because they do not choose anything at all. The opt-out option is
enoted by 𝑖 = 0 and is always available to all individuals.

We assume that the price is the only planner’s decision. We define
𝑝𝑖 ∈ [𝑎𝑖, 𝑏𝑖] as the price to be paid to access service 𝑖 ∈ . The expected
revenue obtained from the services in  is calculated as

𝑓 (𝑝,𝐷𝑅) =
∑

𝑖∈
𝑝𝑖𝐷

𝑅
𝑖 = 1

𝑅
∑

𝑖∈

𝑁
∑

𝑛=1

𝑅
∑

𝑟=1
𝑝𝑖𝑤𝑖𝑛𝑟. (13)

odel (14) comprises the MILP formulation of the revenue maximiza-
ion problem. Notice that the product of the price (continuous variable)
nd the choice (binary variable) can be linearized because bounds on
he former are assumed. We introduce the variables 𝜂𝑖𝑛𝑟 = 𝑝𝑖𝑤𝑖𝑛𝑟 to
apture the product of the two, with linearizing constraints (14o)–(14r).
e denote by ̄ =  ∪ {0} the set containing all services and the opt-

ut option. The utilities associated with the opt-out option for each
ndividual and scenario are included in (14b), and since the opt-out
ption is always available, we add constraints (14h) to enforce the
vailability variables 𝑦𝑖𝑛𝑟 to be equal to 1 when 𝑖 = 0.

𝑧MILP = max 1
𝑅

∑

𝑖∈

𝑁
∑

𝑛=1

𝑅
∑

𝑟=1
𝜂𝑖𝑛𝑟 (14a)

s.t. 𝑈0𝑛𝑟 = 𝑑0𝑛𝑟 ∀𝑛, 𝑟 (14b)

𝑈𝑖𝑛𝑟 = 𝛽𝑖𝑛𝑝𝑖 + 𝑑𝑖𝑛𝑟 ∀𝑖 ∈ , 𝑛, 𝑟 (14c)

𝓁𝑛𝑟 ≤ 𝑧𝑖𝑛𝑟 ∀𝑖 ∈ ̄, 𝑛, 𝑟 (14d)

𝑧𝑖𝑛𝑟 ≤ 𝓁𝑛𝑟 +𝑀𝑖𝑛𝑟𝑦𝑖𝑛𝑟 ∀𝑖 ∈ ̄, 𝑛, 𝑟 (14e)

𝑈𝑖𝑛𝑟 −𝑀𝑖𝑛𝑟(1 − 𝑦𝑖𝑛𝑟) ≤ 𝑧𝑖𝑛𝑟 ∀𝑖 ∈ ̄, 𝑛, 𝑟 (14f)

𝑧𝑖𝑛𝑟 ≤ 𝑈𝑖𝑛𝑟 ∀𝑖 ∈ ̄, 𝑛, 𝑟 (14g)

𝑦0𝑛𝑟 = 1 ∀𝑛, 𝑟 (14h)

𝑧𝑖𝑛𝑟 ≤ 𝑈𝑛𝑟 ∀𝑖 ∈ ̄, 𝑛, 𝑟 (14i)

𝑈𝑛𝑟 ≤ 𝑧𝑖𝑛𝑟 +𝑀𝑛𝑟(1 −𝑤𝑖𝑛𝑟) ∀𝑖 ∈ ̄, 𝑛, 𝑟 (14j)
∑

𝑖∈̄
𝑤𝑖𝑛𝑟 = 1 ∀𝑛, 𝑟 (14k)

𝑤𝑖𝑛𝑟 ≤ 𝑦𝑖𝑛𝑟 ∀𝑖 ∈ ̄, 𝑛, 𝑟 (14l)
𝑛
∑

𝑚=1
𝑤𝑖𝑚𝑟 ≤ (𝑐𝑖 − 1)𝑦𝑖𝑛𝑟 + (𝑛 − 1)(1 − 𝑦𝑖𝑛𝑟) ∀𝑖 ∈ , 𝑛 > 𝑐𝑖, 𝑟

(14m)

𝑐𝑖(1 − 𝑦𝑖𝑛𝑟) ≤
𝑛
∑

𝑚=1
𝑤𝑖𝑚𝑟 ∀𝑖 ∈ , 𝑛 > 1, 𝑟 (14n)

𝑎 𝑤 ≤ 𝜂 , ∀𝑖 ∈ , 𝑛, 𝑟, (14o)
7

𝑖𝑛 𝑖𝑛𝑟 𝑖𝑛𝑟 T
𝜂𝑖𝑛𝑟 ≤ 𝑏𝑖𝑛𝑤𝑖𝑛𝑟, ∀𝑖 ∈ , 𝑛, 𝑟, (14p)

𝑝𝑖 − (1 −𝑤𝑖𝑛𝑟)𝑏𝑖𝑛 ≤ 𝜂𝑖𝑛𝑟, ∀𝑖 ∈ , 𝑛, 𝑟, (14q)

𝜂𝑖𝑛𝑟 ≤ 𝑝𝑖 − (1 −𝑤𝑖𝑛𝑟)𝑎𝑖𝑛, ∀𝑖 ∈ , 𝑛, 𝑟, (14r)

𝑦𝑖𝑛𝑟, 𝑤𝑖𝑛𝑟 ∈ {0, 1} ∀𝑖 ∈ ̄, 𝑛, 𝑟 (14s)

.2. Experimental setting

We consider the case study on parking services in a park-and-ride
ontext used in Pacheco Paneque et al. (2021). The random utility
odel for parking choices (mixed logit model) is specified and esti-
ated in Ibeas et al. (2014). They interview 197 individuals to model

heir preferences with respect to three parking services: paid on-street
arking (PSP), paid parking in an underground car park (PUP) and
ree on-street parking (FSP). We assume that FSP represents the opt-out
ption because it does not provide any revenue to the parking manager.

For the integration of the random utility model in Model (14), we
eplace 𝛽𝑖𝑛,∀𝑖 ∈ �̄�, 𝑛, with their estimates, and we compute 𝑑𝑖𝑛𝑟,∀𝑖 ∈
̄, 𝑛, 𝑟, with the values of the other explanatory variables of the ran-
dom utility model in the data and the scenario 𝜉𝑖𝑛𝑟. We determine
the capacity associated with PSP and PUP (the opt-out option, FSP,
is assumed to have unlimited capacity) according to the number of
individuals in the instance, so that it is appropriate for the sample under
consideration but restrictive enough so that some users are forced to
choose FSP because PSP and/or PUP become unavailable. For the sake
of simplicity, we assume 𝑐PSP = 𝑐PUP, and denote it simply by 𝑐. We
assume lower price bounds for PSP than for PUP, i.e., 𝑝PSP ∈ [0.5, 0.65]
nd 𝑝PUP ∈ [0.7, 0.85].

The instances used in the upcoming sections are characterized from
he available data by setting specific values for 𝑁 , 𝑅 and 𝐽 = |̄|.
ore precisely, for each configuration of these parameters, we generate

arious instances by randomly selecting 𝑁 individuals from the whole
ataset, together with the associated 𝑅 scenarios for the 𝐽 parking
ervices. The configurations are labeled as NX_RY_JZ_cT, where X in-
icate the number of individuals, Y the number of scenarios, Z the
umber of services and 𝑇 the capacity. After performing some tests on
ifferent settings for the subgradient method, we resolve to initialize
he Lagrangian multipliers to 0, and we consider 𝜆0 = 0.5, 𝜃 = 5
nd 𝜏 = 1.5. The code is implemented in C++ using ILOG Concert
echnology to access CPLEX 12.8, and all the instances were run using
2 threads in a 3.33 GHz Intel Xeon X5680 server running a 64-bit
buntu 16.04.2.

.3. Performance and scenario grouping strategies

In this experiment, we compare the results obtained with the de-
omposition method for a given time budget against the exact ap-
roach while evaluating the different grouping strategies. We consider
wo configurations: N50_R100_J3_c20 and N50_R200_J3_c20. As shown
n Pacheco Paneque et al. (2021), very large values of 𝑅 are not
equired to ensure stability of the obtained quantities (e.g., revenue,
rices). Furthermore, we need to restrict the number of scenarios to be
ble to solve Model (14) with CPLEX to optimality. Nevertheless, the
ecomposition method can be applied for larger values of 𝑅. Note that
n this case a larger time budget might have to be considered to ensure
hat the algorithm runs for a few iterations.

To increase statistical significance, we allow for 10 instances of each
onfiguration (see Table 1 for computational details). Furthermore, we
etermine 10% and 25% of the average computational time (reported
y CPLEX) as two time budget values to evaluate the performance of
he algorithm at different stages of the search. Notice that the com-
utational time of an iteration of the subgradient method is unknown
efore being executed. At every iteration, we compute an average
omputational time per iteration to avoid exceeding the time budget.

he subgradient method is then terminated as soon as the expected
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Table 1
Computational details on the tested configurations (10 instances per configuration).

Configuration 𝑁 𝑅 𝐽 𝑐 CPLEX time (min) Time budget (min)

Average Lowest Highest 10% 25%

N50_R100_J3_c20 50 100 3 20 191.4 112.8 318.2 19.1 47.9
N50_R200_J3_c20 50 200 3 20 1038.8 725.2 1508.0 103.9 259.7
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computational time, i.e., the sum of the current computational time and
the average time per iteration, is larger than the time budget.

Given the size of the instances, we consider scenario groups that
have approximately five scenarios each. We could consider a larger
number of scenarios per group while still being able to solve the
subproblems within the given time budget at the expense of performing
a smaller number of iterations. In the case of random grouping, we
define 𝑆 such that the number of scenarios per group does not exceed
five, i.e., 𝑆 = ⌈𝑅∕5⌉. For the other strategies, we define the lower and
upper bound on 𝑆 as 𝑆 = ⌈𝑅∕5⌉ − 2 and 𝑆 = ⌈𝑅∕5⌉ + 2, respectively
(see Section 4.1). For example, when 𝑅 = 100, 𝑆 ∈ {18, 19, 20, 21, 22}.
Table 2 summarizes the computational results obtained for the four
grouping strategies and the two time budget values. We report the
average, lowest and highest values of the duality and optimality gaps
over the 10 instances, which are calculated as follows:

gapopt =
𝑧MILP − 𝑧LB,best

𝑧RM , (15a)

apdual =
𝑧UB,best − 𝑧LB,best

𝑧LB,best . (15b)

urthermore, we include the results on the best feasible solution found
y CPLEX for the given time budget. Note that in this case the duality
ap is replaced by the gap reported by CPLEX, which is computed as the
elative difference between the best integer solution and the solution
ssociated with the best node of the branch-and-bound tree.

We observe that the average computational time for any grouping
trategy is lower than the time budget because of the above-mentioned
topping criterion. The average number of scenario groups 𝑆 is larger
n SIM-D because more scenario groups are created in addition to the
nes generated by SIM. Even though more subproblems are solved,
ach of them has in average less scenarios, which results in a lower
verage UB time per iteration. This has also an impact on the average
B time, as more price combinations are evaluated. In any case, the
lgorithm to generate feasible solutions is much faster compared to
olving the Lagrangian subproblem. Notice that more iterations are
erformed for 𝑅 = 200 than 𝑅 = 100 within each time budget. This
s due to the fact that the time budget values are obtained from the
verage computational time of the exact method, that does not increase
inearly with respect to 𝑅 (see Table 1). In the case of 𝑅 = 200,
e observe a decrease both in the average UB time and LB time per

teration from 10% to 25% time budget. These results indicate that
he subproblems and the restricted MILP formulations are more rapidly
olved in the long run. We also notice that the best LB is reached earlier
han the best UB. This means that the method is able to find high-
uality feasible solutions at a relatively early stage whereas the best UB
ets refined throughout the iterations. Thus, as long as the duality gap
s low, the subgradient method can be terminated after a small number
f iterations without improvement of the best LB.

The optimality gaps are very low for any strategy (below 0.16% in
ll cases), and they decrease as the time budget increases. We notice
hat they are lower on average for 𝑅 = 200 than 𝑅 = 100 because
f the larger time budget values. On the contrary, the optimality gaps
ith respect to the best feasible solutions provided by CPLEX are much
igher and more dispersed. This is especially the case for 𝑅 = 100 and a
0% time budget, where the optimality gap fluctuates between 2.35%
nd 8.78% with an average value equal to 5.77%. The duality gaps are
arger and of the same order of magnitude across grouping strategies
they are below 2.31% in all cases). As expected, the average duality
8

aps decrease as the time budget increases by a relatively low margin. i
or instance, for N50_R200_J3_c20 and RAN, it decreases from 1.82%
or a 10% time budget to 1.62% for a 25% time budget. This reveals
he slow convergence behavior of the subgradient method.

Regarding the grouping strategies, we observe an impact on the
btained results but we do not identify a clear winner. This is statisti-
ally supported by the ANOVA test, that evaluates whether optimality
nd duality gap means are equal across strategies. This is indeed the
ase, and post hoc tests to evaluate these means for each pair of
trategies show that there is no significant difference between them.
n general, DIS (dissimilar) reports the largest optimality and duality
aps. As opposed to Crainic et al. (2014), the obtained results are
ot superior to RAN (random). They also show that SIM-D (similar
ithout dissimilar scenarios) often leads to higher quality solutions at

he expense of longer computational times. In our case, this strategy
rovides the smallest optimality gaps for 𝑅 = 100 but not for 𝑅 = 200.
ith respect to the duality gap, other strategies yield lower values.
s analyzed in Section 5.4, this has to do with the fact that the
ubproblems have on average less scenarios, and despite the method
s able to perform more iterations, it does not contribute to reducing
he duality gap. RAN and SIM (similar) report reasonable duality gaps
or both values of 𝑅. SIM reports a lower average optimality gap for the
0% time budget, whereas RAN reports lower values for the 25% time
udget. Therefore, we cannot conclude that any of the refined grouping
trategies outperforms random grouping. RAN is easier to implement
nd shows slightly faster solution times with relatively lower duality
aps.

.4. Size of the scenario groups

To analyze the trade-off between the size of the scenario groups and
he performance of the method, we consider various values of 𝑆 and
un the configuration N50_R200_J3_c20 (5 instances) for a 2-hour time
udget using RAN. Table 3 includes the obtained results for groups
ith 1–5, 10, 15, 20 and 25 scenarios each. As expected, the larger

he number of scenarios per group, the larger the average UB time per
teration, resulting in a lower average number of iterations within the
ime budget.

Concerning the optimality gap, we notice an increasing trend in the
btained values as 𝑆 decreases. Indeed, as the number of scenarios per
roup increases, the number of subproblems to solve decreases, and
hus less price combinations are evaluated. Nevertheless, the average
ptimality gaps remain below 0.06% in all cases. The decrease in 𝑆
as a more noticeable impact on the duality gaps, which decrease as
decreases. Fig. 1 shows for each instance the evolution of the best

B obtained with respect to the number of scenarios per group. We
bserve a decrease in their values as the number of scenarios per group
ncreases.

In the case of 𝑆 = 200 (1 scenario per group), even though the
ethod performs on average 101.2 iterations, it can only reach an

verage duality gap of 3.67%. For larger groups (i.e., 15, 20 and 25
cenarios per group), the algorithm runs for a very limited number of
terations, but the resulting duality gaps are below 1.02% in average.

e observe that despite the lower number of iterations and combina-
ions for the generation of feasible solutions, it is beneficial to define
ubproblems with a large number of scenarios per group as long as they
an be efficiently solved within the considered time budget. Notice that
e might need to consider groups of lower size in other settings that
nvolve more individuals, more scenarios, a lower time budget, etc.
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Table 2
Performance by scenario grouping strategies and comparison with the best feasible solution provided by CPLEX for a given time budget (10 instances per configuration).

10% time budget 25% time budget

RAN SIM SIM-D DIS CPLEX RAN SIM SIM-D DIS CPLEX

N50_R100_J3_c20

Avg. time (min) 15.26 17.81 17.84 16.02 19.16 45.77 42.84 44.99 44.73 47.90
Avg. UB time per iter. (min) 7.61 7.60 5.05 6.79 – 7.75 7.90 4.75 6.55 –
Avg. LB time per iter. (s) 0.09 0.10 0.14 0.11 – 0.09 0.10 0.14 0.11 –

Avg. num. iter. 2.1 2.4 3.6 2.4 – 6.0 5.6 9.8 7.1 –
Avg. iter. best UB is reached 2.1 2.4 2.9 2.3 – 5.1 5 6.6 5.7 –
Avg. iter. best LB is reached 1.6 2 1.9 1.7 – 3.4 3.1 4.7 3.1 –

Avg. 𝑆 20 20.3 24.6 21.9 – 20 20.3 24.6 21.9 –

gapopt (%)
Average 0.08 0.07 0.05 0.10 5.77 0.05 0.05 0.04 0.08 0.10
Lowest 0.00 0.00 0.00 0.05 2.35 0.00 0.00 0.00 0.02 0.25
Highest 0.16 0.12 0.10 0.16 8.78 0.12 0.12 0.08 0.13 3.91

gapdual (%)
Average 1.88 1.85 1.93 2.03 25.69a 1.62 1.65 1.74 1.73 16.48a

Lowest 1.52 1.55 1.47 1.63 20.25a 1.29 1.25 1.42 1.42 11.46a

Highest 2.25 2.10 2.30 2.31 30.26a 1.97 1.98 2.03 2.03 20.16a

N50_R200_J3_c20

Avg. time (min) 98.47 99.35 100.4 94.79 103.9 251.0 253.7 256.3 249.1 259.6
Avg. UB time (min) 16.35 16.79 11.67 18.90 – 15.02 16.12 8.69 16.32 –
Avg. LB time (s) 0.79 0.80 1.18 0.78 – 0.77 0.77 1.10 0.73 –

Avg. num. iter. 6.1 6.0 8.7 5.3 – 16.9 15.9 29.9 15.7 –
Avg. iter. best UB is reached 5.6 5.6 7.8 4.3 – 15.3 14 28.7 13.8 –
Avg. iter. best LB is reached 2.6 4.6 4.5 3.2 – 6.5 6.2 8.7 7.8 –

Avg. 𝑆 40 40.2 48.4 39.5 – 40 40.2 48.4 39.5 –

gapopt (%)
Average 0.03 0.03 0.03 0.03 1.46 0.02 0.02 0.02 0.03 0.54
Lowest 0.01 0.00 0.01 0.02 0.22 0.00 0.00 0.01 0.02 0.08
Highest 0.05 0.06 0.04 0.05 4.16 0.04 0.03 0.04 0.04 1.83

gapdual (%)
Average 1.82 1.82 2.03 1.84 19.05a 1.62 1.64 1.73 1.64 16.71a

Lowest 1.53 1.57 1.54 1.62 17.43a 1.36 1.38 1.38 1.46 13.05a

Highest 2.07 2.13 2.39 2.13 22.57a 1.85 1.90 2.00 1.83 19.02a

aIn this case, gapdual corresponds to the gap reported by CPLEX (i.e., relative difference between the best integer solution and the solution associated with the best node of the
branch-and-bound tree).
Table 3
Impact of the size of scenario groups for the configuration N50_R200_J3_c20 for a 2-hour time budget (5 instances).

Number of scenario groups (𝑆)

200 100 66 50 40 20 13 10 8

Number of scenarios per group 1 2 3a 4 5 10 15b 20 25
Avg. time (min) 119.2 118.6 116.9 116.1 110.7 109.5 96.0 85.8 72.1

Avg. UB time per iter. (min) 0.86 2.78 4.60 7.83 12.41 32.62 43.97 56.05 72.14
Avg. LB time per iter. (s) 19.13 4.75 2.05 1.15 0.75 0.18 0.08 0.05 0.03

Avg. num. iter. 101.2 41.6 25.8 15 9 3.4 2.2 1.6 1
Avg. iter. best UB is reached 100 41.2 24.2 14.2 8.2 3 3 1.4 1
Avg. iter. best LB is reached 7.8 7.4 8.8 8.4 3.6 1 1 1 1

gapopt (%)
Average 0.02 0.01 0.02 0.03 0.03 0.04 0.04 0.06 0.06
Lowest 0.00 0.00 0.00 0.02 0.01 0.03 0.00 0.03 0.03
Highest 0.04 0.03 0.04 0.05 0.05 0.06 0.08 0.08 0.09

gapdual (%)
Average 3.67 2.80 2.30 2.02 1.83 1.31 0.99 0.90 0.78
Lowest 3.56 2.68 2.12 1.85 1.73 1.22 0.87 0.83 0.61
Highest 3.84 2.97 2.38 2.18 1.96 1.38 1.09 1.02 0.98

a2 groups have 4 scenarios.
b5 groups have 16 scenarios.
5.5. Impact of the number of alternatives

We now evaluate the performance of the method when the problem
is scaled up by increasing the number of services 𝐽 . To do so, we
segment the prices associated with PSP and PUP by residency, which
is one of the explanatory variables of the random utility model. This
means that different prices are proposed to the residents in the study
area and to non-residents. It can be seen as extending ̄ from 𝐽 = 3
to 𝐽 = 5 services where residents have only access to PSP and PUP
9

associated with the resident price (and the opt-out option FSP) and
analogously for non-residents. Since non-residents are willing to pay
larger prices than residents, we modify the price bounds as follows:
𝑝res

PSP, 𝑝
non-res
PSP ∈ [0.5, 0.75] and 𝑝res

PUP, 𝑝
non-res
PUP ∈ [0.75, 1.0].

Table 4 shows the results for three configurations (5 instances) for a
2-hour time budget using RAN. Due to the complexity induced by the
increase in 𝐽 , solely the MILP formulation for N50_R25_J5_c20 could
be solved to optimality in a reasonable time (18.72 h on average). We
therefore consider 3 scenarios per group in the decomposition method.
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Fig. 1. Best upper bounds (𝑧UB,best) across scenario groups (each shape represents a different instance).
Table 4
Impact of an increase in the number of alternatives for a 2-hour time budget (5 instances per configuration).

N50_R25_J5_c20 N50_R50_J5_c20 N50_R100_J5_c20

Avg. time (min) 116.8 110.9 114.9
Avg. UB time per iter. (min) 7.61 20.03 34.38
Avg. LB time per iter. (s) 0.00 0.03 0.28

Avg. num. iter. 16.2 5.8 3.4
Avg. iter. best UB is reached 13.8 4.8 1
Avg. iter. best LB is reached 4.2 3.4 1.4

𝑆 8 16 33

gapopt (%)
Average 0.38 N/Aa N/Aa

Lowest 0.21 N/Aa N/Aa

Highest 0.49 N/Aa N/Aa

gapdual (%)
Average 3.34 4.57 5.19
Lowest 2.79 3.72 4.69
Highest 3.91 5.09 5.59

aInstances could not be solved to optimality with CPLEX in a reasonable time.
he average UB time per iteration is much larger for 𝐽 = 5. For
nstance, it increases from 7.8 min for N50_R100_J3_c20 to 34.4 min
or N50_R100_J5_c20. The average LB time per iteration is also higher
ut remains below 0.3 s for all configurations. The optimality gaps are
arger than the ones obtained for 𝐽 = 3 in Section 5.3 but they remain
elow 0.5%. As expected, the duality gaps are also larger and they
ncrease as 𝑅 increases for the given time budget.

.6. Impact of the number of individuals

In this experiment we test the method on configurations with
arger values of 𝑁 , i.e., 𝑁 ∈ {50, 100, 150, 197}, with capacities 𝑐 ∈
{20, 40, 60, 80}, respectively. Table 5 shows the results for these four
configurations (5 instances) with 𝑅 = 100 and 𝐽 = 3 for a 2-hour time
budget using RAN. We consider scenario groups of 2 scenarios each.
The average UB time per iteration grows exponentially. In the case of
𝑁 = 197, it even exceeds the 2-hour time budget (the first iteration
is always performed). The average number of iterations follows the
opposite trend, as it decreases in average from 98.2 iterations for
𝑁 = 50 to a single iteration for 𝑁 = 197. Interestingly, we observe
that the duality gaps decrease as 𝑁 increases.

6. Conclusions

In this work, we introduce a tailored heuristic solution approach
for choice-based optimization based on scenario decomposition and
scenario grouping. It is built upon the mathematical model for a general
10

choice-based optimization problem introduced in Pacheco Paneque
et al. (2021). This decomposition strategy allows to preserve the in-
terplay between the supply-related decisions and the expected demand
that is explicitly captured by the model because all the constraints
from the original optimization problem are also included in the La-
grangian subproblem. We also develop an algorithm to efficiently
generate feasible solutions to the original problem from the solution
of the Lagrangian subproblem. To gather the scenarios into groups, we
adapt several strategies from Crainic et al. (2014). The grouping strate-
gies are implemented as a preprocessing step of the subgradient method
applied to solve the Lagrangian dual, which iteratively generates upper
bounds (by solving the Lagrangian subproblem) and lower bounds (by
generating feasible solutions) to the optimization problem.

To experimentally test the Lagrangian decomposition scheme, we
characterize a revenue maximization problem for a case study on park-
ing choices. We show that near-optimal solutions can be obtained for
all scenario grouping strategies and various values of 𝑅 in a much lower
computational time in comparison with the exact method. Such solu-
tions are usually generated at an early stage of the subgradient method,
which allows to promptly terminate the algorithm if the best feasible
solution has not improved after a certain number of consecutive itera-
tions (provided that the duality gap is below an acceptable threshold).
We cannot identify a scenario grouping strategy that outperforms the
others, so we resolve to rely on the random partition for the performed
experiments. As long as the subproblems are computationally manage-
able, a large number of scenarios per group is recommended, as it leads
to smaller duality gaps for a given computational time. We also observe
low duality gaps for configurations with a larger number of alternatives

and individuals.
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Table 5
Impact of an increase in the number of individuals for a 2-hour time budget (5 instances per configuration).

N50_R100_J3_c20 N100_R100_J3_c40 N150_R100_J3_c60 N197_R100_J3_c80

Avg. time (min) 119.5 110.2 98.2 193.2a

Avg. UB time per iter. (min) 1.21 15.11 61.58 193.18
Avg. LB time per iter. (s) 0.59 1.21 1.80 2.89

Avg. num. iter. 98.2 7.4 1.6 1
Avg. iter. best UB is reached 96.6 6 1.6 1
Avg. iter. best LB is reached 18.2 3.6 1.2 1

𝑆 50 50 50 50

gapopt (%)
Average 0.03 N/Ab N/Ab N/Ab

Lowest 0.00 N/Ab N/Ab N/Ab

Highest 0.07 N/Ab N/Ab N/Ab

gapdual (%)
Average 2.38 1.98 1.91 1.56
Lowest 2.05 1.91 1.75 1.49
Highest 2.63 2.05 2.25 1.63

aThe first iteration of the solution method is always performed (even if it exceeds the given time budget).
bInstances could not be solved to optimality with CPLEX in a reasonable time.
In conclusion, Lagrangian decomposition provides a relevant scheme
o address the tractability of choice-based optimization problems. Ad-
itionally, the proposed method could be combined with other decom-
osition techniques according to the model requirements. For instance,
f the capacity of the alternatives is included as a decision variable
that is formulated with a reduced set of binary variables), Benders
ecomposition could be as well explored. Furthermore, parallelization
outines that allow to solve multiple subproblems simultaneously could
e implemented within the subgradient method in order to reduce the
otal computational time. These approaches allow to further enhance
nd expand the applicability of the method to the application areas
iscussed in Section 1, such as facility location, revenue management
nd transportation-related problems.
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