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Cuiting Chen, Hans-Gerhard Gross and Andy Zaidman
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Abstract—Due to the loosely coupled and highly dynamic
nature of service-oriented systems, the actual configuration
of such system only fully materializes at runtime, rendering
many of the traditional quality assurance approaches useless.
In order to enable service systems to recover from and adapt
to runtime failures, an important step is to detect failures and
diagnose problematic services automatically.

This paper presents a lightweight, fully automated,
spectrum-based diagnosis technique for service-oriented soft-
ware systems that is combined with a framework-based online
monitor. An experiment with a case system is set up to validate
the feasibility of pinpointing problematic service operations.
The results indicate that this approach is able to identify
problematic service operations correctly in 72% of the cases.

Keywords-residual defect, fault localization, online monitor-
ing, oracle, service framework;

I. INTRODUCTION

Service-oriented software systems offer many benefits in
realizing flexible, interoperable, and adaptable distributed
ICT infrastructures. These benefits are mainly attributable
to the loose coupling of services, facilitated through modern
underlying communication platforms, and their natural dis-
position to dynamic deployment, reconfiguration, and evo-
lution. However, this nature of service-oriented system also
presents many challenges [1], particularly concerning quality
assurance. The fact that service-based applications only
fully materialize when deployed in production, i.e., ultra-late
binding [2], renders many of the traditional (offline) quality
assurance methods useless [3]. In particular, many failures
only emerge during operation time, triggered through run-
time re-configuration or re-deployment of services [3], or
resulting from incompatibilities in service versioning [4].

Although, by their very nature, service-oriented systems
provide all the ingredients necessary to recover from and
adapt to operation time failures [5], there is no standard
means in those systems to detect and diagnose emerging
problems automatically, and make propositions as to what
to recover and where to adapt? The fact that a problem is
detected in a particular service does not necessarily mean
that this service is corrupt and should be exchanged. Faults
located in other services may propagate through the system
and cause an otherwise healthy service to break [6].

Automated software fault diagnosis can be applied to
service-oriented systems in order to trace a detected problem
back to the service where it originated. Fault diagnosis refers
to the detection of a failure, i.e., a discrepancy between

expected and observed behaviour, plus the localization of
its root cause, i.e., the fault that caused an erroneous system
state [7]. Being able to perform automated fault diagnosis
in an operational service system with minimal performance
impact demands a fault localization technique with ultra-
low computational overhead such as spectrum-based fault
localization (SFL) [8], and inbuilt monitoring approaches
for detecting failures.

In this paper, we identify, discuss and address the issues
concerning the application of SFL as fully automated diag-
nosis technique in service-oriented systems. Our research fo-
cuses on diagnosing problems emerging from combinations
of services and their interactions, rather than identifying
faulty code blocks in the services themselves. A specific
issue arises through the fact that a single service is typically
part of many application contexts, participating in many
business goals, and, therefore, interacting with potentially
many other services. This diversity in service interactions
cannot typically be assessed a priori, and it cannot be
guaranteed that all permutations of service connections will
not eventually lead to residual defects in the overall system.
We concentrate on the following research questions:
RQ1 How can a failure be detected in an operational

service-oriented system? This is concerned with ex-
tracting relevant information from a running service-
oriented system for initiating diagnosis.

RQ2 How can SFL be applied in a service-oriented system
in order to trace a failure back to its respective root
cause? This focuses on identifying and providing the
right input for SFL in a service-oriented system.

RQ3 How well does SFL perform in a service-oriented
system in terms of correctness of the diagnosis?

Our main contributions can be summarized as follows. We
demonstrate the application of online SFL in service oriented
systems, discuss the requirements of such an application and
show how it can be realized in a concrete service platform.
We evaluate to which extent online SFL can pinpoint faulty
service operations automatically in a case system.

The article is organized as follows: Sect. II presents
the research field and techniques related to our approach.
Sect. III focuses on the concepts and implementation of
SFL for service-oriented systems. Sect. IV describes the case
system and the setup of the experiment. Sect. V discusses
the experimental results and the limitations of the approach.
Related work is presented in Sect. VI. Finally, Sect. VII
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concludes this paper.

II. BACKGROUND

A. Quality Assurance for Services

Quality assurance for services is difficult, specifically, for
checking their interactions and integration [9][10]. This is
mainly attributable to their loose coupling, late (runtime)
binding, and deployment in many application contexts. Run-
time integration testing [1][11] can alleviate the detection of
failures in dynamic systems. However, it requires specific
architectures that support it, and eliminate side effects,
for example, interference with normal system operation.
Runtime integration testing also requires test suites that
must be built and maintained. In addition, it only detects
a problem, but does not identify it.

B. Online Monitoring vs. Online Testing

Instead of performing proactive online testing, we fa-
vor passive online monitoring plus online diagnosis for
identifying residual defects. Monitoring is less intrusive,
requires fewer assumptions about the system, and is easier
to incorporate into a service-oriented system. Many mod-
ern service platforms such as Apache’s Axis21, Redhat’s
JBoss2, or Ebay’s Turmeric3 come equipped with extensive
monitoring/profiling frameworks that can be adapted to
diagnosis. Our case system makes heavy use of Turmeric’s
monitoring functionality. The disadvantage of monitoring:
errors hiding in seldom used parts of a service-oriented
system cannot be triggered on purpose, and are unlikely to
be identified. However, this is not an urgent issue, since only
those services or parts thereof which are actually used in a
particular application, will be exercised and monitored.

C. Spectrum-based Fault Localization

SFL is a statistics-based technique that automatically
infers a diagnosis from symptoms. The diagnosis is a
ranking of potentially faulty components (block, source code
line, etc.) in a system, with the most likely faulty one
ranked top. The symptoms are observations about component
involvement in a system execution, plus pass/fail informa-
tion about that execution [12]. Component involvement is
expressed in terms of block-hit-spectra (hence its name),
producing for each execution a binary coverage value per
component [13][14]. Further, each system execution (test),
is associated with a binary verdict (pass=0, fail=1) from an
oracle. Several tests lead to an activity matrix, representing
coverage of each component over time. The binary verdicts
lead to an output vector. The diagnosis is calculated through
applying a similarity coefficient (SC) to each component
activation vector and the outcome vector. The similarity
denotes the likelihood of a component being the faulty one,

1http://axis.apache.org
2http://www.redhat.com/products/jbossenterprisemiddleware/
3https://www.ebayopensource.org/index.php/Turmeric

Table I
ILLUSTRATION OF BASIC SFL

C Character counter t1 t2 t3 t4 t5 t6 SC
def count(string) [Activity Matrix]

C0 let = dig = other = 0 1 1 1 1 1 1 0.87
C1 string.each char { |c| 1 1 1 1 1 1 0.87
C2 if c===/[A-Z]/ 1 1 1 1 0 1 0.93
C3 let += 2 1 1 1 1 0 0 1.00
C4 elsif c===/[a-z]/ 1 1 1 1 0 1 0.93
C5 let += 1 1 1 0 0 0 0 0.71
C6 elsif c===/[0-9]/ 1 1 1 1 0 1 0.93
C7 dig += 1 0 1 0 1 0 0 0.71
C8 elsif not c===/[a-zA-Z0-9]/ 1 0 1 0 0 1 0.47
C9 other += 1 } 1 0 1 0 0 1 0.47
C10 return let, dig, other 1 1 1 1 1 1 0.87

end
Output vector (verdicts) 1 1 1 1 0 0

and, therefore, determines its position in the ranking. Any
SC may be used; however, the Ochiai SC has been found
to work best [15]. This technique mimics how a human
diagnostician would infer a diagnosis from observing which
parts of a system were involved in producing a failure.

SFL is illustrated in Table I by means of a Ruby program.
This example is comprised of components C0 − C10 with
a source code line as component granularity. It is exercised
with six tests/transactions, leading to the component activa-
tion for each transaction t1 − t6 noted down in the activity
matrix. Four transactions have failing test outcomes (1); two
have passing test outcomes (0), noted in the output vector.
The Ochiai SC is calculated for the output vector and each
component activation vector. Then, the similarity values are
brought in a descending order. This results in component
3 being ranked top with 100% likelihood, which represents
the location of the fault in this example system.

III. SFL FOR SERVICE-ORIENTED SYSTEMS

A. Concepts of SFL for service-oriented system

Applying SFL in service-oriented systems requires the
SFL concepts to be adapted to the service context.

1) Component granularity: A service is the basic unit
that can be restarted, exchanged, or otherwise treated in a
service-oriented system, in case it is convicted in a diagnosis.
It is a natural choice for determining the component granu-
larity. Alternatively, a service operation, which represents a
business functionality of a service, may denote the finer level
of the component granularity. The component granularity
affects the monitor required for measuring the component
involvement (see below).

2) System activation: In traditional, monolithic systems
a component instance will always be activated or exercised
from within its own application context. Subordinate com-
ponents deeper in the call graph will be activated from
superordinate components, and those will be activated from
users in the system context. Here, the notion of a system
execution is obvious.

In service-oriented systems, this is not the case. Because
a service instance serves many applications, it will not be
activated exclusively from within one application context,
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Figure 1. Monitoring and diagnosis architecture

but from a potentially arbitrary number of other applications
in other contexts. To apply SFL in a service-oriented system,
a system execution needs to be made explicit through
introduction of a unique transaction ID. This allows a clear
separation of system executions in the activity matrix of
SFL.

3) Component involvement: In the basic SFL approach,
component involvement is measured through coverage tools.
However, in service-oriented systems, coverage is a delicate
issue. Because of its inherent distributed nature, there is no
single controlling authority that is able to produce service
coverage information, by overseeing all service invocations
and associating them with the different application contexts
in which a service is used. This can only be done by the
services themselves, or an underlying service framework.
Applying SFL in service-oriented system requires dedi-
cated monitors that observe the service communication and
associate the services/operations with their corresponding
transaction IDs.

4) Oracle: The oracle turns a system activation into a
pass/fail-verdict. Runtime errors, exceptions, warnings and
logs are natural choices for realizing oracles. These obser-
vations of the system state are readily available through the
platforms managing the communication between individual
services, or they are initiated through the business logic, i.e.,
the services themselves.

In summary, applying SFL in a service-oriented system
requires that services participating in the processing of a
transaction can be associated with a pass/fail observation
from an oracle, thereby forming an activity matrix and an
error vector. The computation of their similarity yields a
diagnosis.

B. Implementation of SFL for service-oriented systems

The first step in applying SFL to a service-oriented system
requires online monitoring to obtain information about each
user transaction with the system. The second step involves
the construction of a diagnosis engine that maintains the
SFL activity matrix, and calculates the diagnosis. Third,
component granularity is set to the service operation, be-
cause it permits a more fine-grained diagnosis. The SFL
implementation for our case study is summarized in Fig. 1
and explained in the following sub-sections.

1) System Activation: Typically, a system is invoked
through its user interface. However, in our case, user interac-
tion is automated in order to evaluate our approach. We use
SoapUI4 to create XML templates of SOAP messages which
are required for calling the services. Then, the templates are
passed to JMeter5 in order to generate multiple user requests
that are exercised automatically.

2) Online Monitoring: Online monitoring follows a
framework-based approach [16], realized in Turmeric6,
eBay’s open source service framework. Turmeric offers
many inbuilt features supporting the implementation of
online monitoring required in our approach, and it confines
the necessary amendments for online SFL to the absolute
minimum, yielding a slender implementation.

Turmeric’s internal communication is based on a pipelined
architecture and controlled by two components. The Service
Provider Framework (SPF) carries all messages sent to and
received from a service at the service’s provided interface,
and the Service Invocation Framework (SIF) carries all
messages sent to and received by a service at its required
interface. These components handle all incoming and out-
going communication of a service. All messages sent to
and received from a service are funneled through these four
pipelines, where each can be accessed through a custom built
handler, i.e, our online monitor. That way, we can retrieve
the (unique) transaction ID, the message content, and the
service plus the operation name that created the message.
The transaction ID denotes all messages that belong to one
transaction. This is very specific to Turmeric and essential
in our approach for deducting service involvement, and,
consequently, creating an activity matrix. In addition to the
information encoded in the message, we retrieve information
about which pipeline handled the message. With this setup,
we are able to determine service operation involvement in a
transaction.

Another monitoring requirement is the observation of
exceptional behavior in the service-oriented system. This is
used as oracle by the diagnosis engine (explained later in
Sect. III-B3), but it is also realized in the four handlers
already introduced. All services in our case system are
designed to log their occurring exceptions in a data store.
The handlers constantly monitor the data store for new ex-
ceptions. Once an exception is detected, it will be associated
with the correct transaction through the transaction ID in the
data store.

In summary, we use the following monitoring data:
• Transaction ID: Turmeric generates a unique ID to

associate messages involved in the same transaction.
• Service and operation name: the name of a component

in the diagnosis is made up of the service name plus
the operation name.

4http://www.soapui.org
5http://jmeter.apache.org
6https://www.ebayopensource.org/index.php/Turmeric/
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• Message body: the content of the message can be
checked for failures.

• Exception: indicates that a transaction threw an excep-
tion.

• Pipeline: information about which pipeline handled
the message; this distinguishes between requests and
responses in provided and required interfaces.

3) Diagnosis Engine: This denotes the core component of
our SFL implementation. It automatically reads the monitor-
ing data from the data store, generates service involvement
from each transaction, creates the output vector with the
verdicts, and calculates a diagnosis by applying the Ochiai
similarity coefficient.

A transaction is associated with a transaction ID, and it
refers to a test case in the basic SFL approach (shown in
Table I). It translates to a column in the activity matrix by
associating a ‘1’ with a service operation that took part in
the transaction, and a ‘0’ with one that did not.

The output vector with the pass/fail verdicts comes from
applying a built-in oracle. For demonstration purposes, we
decided to focus on serious faults that either cause services
to crash, or represent unexpected behavior of a service,
or a faulty internal state. In general, any arbitrary oracle
can be used as long it distinguishes a passing transaction
from a failing one. Our oracle operates in three phases (for
simplicity):

1) Serious problems that cause a complete service to crash
result in missing responses from the service. The first
phase of the oracle checks whether a service request
generates a response, or not. If no response is returned,
the oracle issues a fail.

2) If there is a response, the next phase assesses poten-
tial exception entries in the data store (generated by
the monitor). If the transaction is associated with an
exception, this second oracle phase will issue a fail.

3) Otherwise, the third phase will check the correctness
of the message content, and the internal data states of
the services involved. In case of deviations from the
expectations encoded in this last phase, the oracle will
issue a fail.

In all other cases, the transaction is assigned a pass.
Once the activity matrix and the output vector are com-

plete, the similarity coefficient can be applied to calculate
the likelihood of each service operation to be the faulty one
in the range [0..1]. Sorting the service operations according
to decreasing similarity coefficients results in the diagnosis.

IV. EXPERIMENTAL SETUP

A. Case System

We devised a case study based on Spicy Stonehenge7 [17]
to demonstrate how online SFL can be applied in service
oriented architectures, and validate to which extent SFL

7https://github.com/SERG-Delft/spicy-stonehenge
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Figure 2. Architecture of the extended Spicy Stonehenge

helps to pinpoint problematic service operations. Spicy
Stonehenge is a service-based system simulating the stock
market. It was deployed on top of the Turmeric platform.

We extended the original Spicy Stonehenge system8,
because we required more complex service interactions, so
that an error seeded in one service can propagate to other
services and make them fail. That way, we could assess to
what extent our diagnosis approach is able to pinpoint the
real erroneous service, instead of the failing, but healthy one.

The extension of Spicy Stonehenge concerned adding new
functionality, so that users could buy and sell stocks in
different currencies. When a user subscribes to shares in
a foreign currency but intends to buy in domestic currency,
the system will automatically calculate and apply the correct
exchange rate. This extension introduces more complicated
transactions in the system and makes it more realistic. In
addition, some service operations are modified in order
to impose more and more interesting service interactions.
Moreover, we split some services that contain large sets of
operations into smaller ones, which makes the interactions
more complex, and fault injection easier (see Section V).

Figure 2 illustrates the architecture for the extended
Spicy Stonehenge which is comprised of 10 web services
including one external currency exchange service, plus a web
application for user interaction. BusinessBasicService and
BusinessAccountService provide the functions for user au-
thentication, login, and the user account. BusinessOPService
and BusinessStockService are used for buying and selling
stock, and checking orders and market summaries. Quote-
Service and OrderProcessorService are used to process the
stock orders placed by a user. ExchangeCurrencyService
and ExchangeCheckService are responsible for the currency
operations, and the ConfigurationService binds all the other
services together, and acts like a registry.

8https://github.com/SERG-Delft/sfl-stonehenge
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In the following, we show typical system transactions
that can be performed with our extended version of Spicy
Stonehenge.
BusinessBasicService.login -->

ConfigurationService.getBSAccountLocations
BusinessAccountService.getAccountProfile
BusinessAccountService.updateAccountForLogin

BusinessBasicService.logout -->
ConfigurationService.getBSAccountLocations
BusinessAccountService.updateAccount

BusinessBasicService.register -->
ConfigurationService.getBSAccountLocations
BusinessAccountService.getAccountProfile

BusinessOPService.sell -->
ConfigurationService.getOPSLocations
OrderProcessorService.submitOrder -->

ConfigurationService.getQSLocations
QuoteService.getQuotes
ConfigurationService.getBSAccountLocations
BusinessAccountService.updateWallet

ExchangeCurrencyService.exchCurrency -->
ConfigurationService.getECheckLocations
ExchangeCheckService.checkCurrency
ExchangeCheckService.checkAmount
ConfigurationService.getBSAccountLocations
BusinessAccountService.updateWallet

B. Conducting the experiment

We created 160 faulty versions of our case system outlined
in Fig. 2, by applying the PIT mutation tool9. For each
faulty version, we applied JMeter to execute 48 web service
requests consecutively to cover all service operations. Upon
completion of all transactions for one faulty system version,
the diagnosis engine was invoked to parse the monitoring
data, identify the failures in the system, and create an activity
matrix with an output vector. Then, it was assessed whether
the resulting diagnosis correctly pinpoints the faulty service
operation. The whole experiment was designed for the single
fault case, i.e. we ensured that each version of the system
contains only one fault.

Fault Injection: In our experiment we focused only on the
correct functioning of the service-oriented architecture. Non-
functional aspects were not considered. We were interested
only in detecting a failure in the system, and tracing it back
to its root cause in a service, or service operation. The scope
of faults seeded into the system was, therefore, limited to
this aspect. However, in general, SFL is able to identify and
trace back all types of faults.

There are many mutation tools available such as µJava,
Jumble, Javalanche. However, we chose PIT, because it
mutates the byte-code, rather than the source code. This
represents a quick way to mutate code, and it is also safe, i.e.,
generation of invalid programs is avoided. Moreover, PIT
provides extensive documentation, a wide range of useful
mutators (i.e., mutation operations)10, and a comprehensive
reporting function. Its only drawback comes from the fact
that it maintains its mutated classes in memory, so that we
have to extend it with the ability to save the mutants as files.

9http://pitest.org/
10http://pitest.org/quickstart/mutators/

Table II
ACTIVE MUTATORS IN THE EXPERIMENT

ID Mutator # Error in the system Oracle

1 Negate Conditionals 44 wrong internal state or re-
sponse, null or runtime excep-
tion

1-3

2 Return Values 50 wrong response, null or run-
time exception

1-3

3 Conditionals Boundary 3 wrong internal state or re-
sponse

3

4 Void Method Call 60 wrong internal state 3
5 Math Mutator 1 wrong internal state 3
6 Increments Mutator 2 wrong response 3

Only the service implementation classes are mutated, nei-
ther platform code, nor library code. The mutation operations
applied to a subject depend on what PIT finds in the service’s
implementation logic. Several mutators may be applied per
implementation class, of which we choose one for generating
one fault in the system. This is due to the single fault
scenario, and it explains the high number of faulty system
versions. For every version of the system, we replace the
original class with its respective mutated one in the service’s
.war-file, and execute the system. All nine internal services
shown in Fig. 2 are mutated that way.

Table II shows six mutators that PIT applies to the services
of our system. In addition, the total number of each type of
mutation applied in the system is shown, the kind of failure
produced by this mutation, and the phases of the oracle used.

V. RESULTS AND DISCUSSION

Using the experimental setup described in Section IV, we
conducted an experiment in order to assess to which extent
our approach can diagnose faulty service-oriented systems.

A. Experimental Results

A diagnosis refers to a component ranking according to
the similarity coefficients. If the diagnosis is not accurate,
it might well rank healthy services before the faulty one.
Accuracy of a diagnosis can be measured through residual
diagnosis cost [18], i.e., the cost of unnecessarily treating
healthy services before arriving at the real faulty one.

We are not so much interested in the accuracy of an
individual diagnosis, but rather look at the overall diagnosis
capability of our proposed approach in a service-oriented
architecture. We refer to this as the correctness of the
diagnosis. This is a stronger criterion than residual diagnosis
cost, but it simplifies the analysis. Here, a correct diagnosis
is achieved, if the real faulty service is always ranked at the
top. If the faulty service is ranked lower (e.g., 2nd, 3rd, ...),
we consider the diagnosis to be incorrect.

Table III summarizes the diagnosis results for our ex-
tended version of Spicy Stonehenge. For each service, the
table indicates the type of the mutation operations used (IDs
displayed in Table II), the total number of mutations per-
formed, the correctly and incorrectly performed diagnoses,
and the percentage of correct diagnoses.
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In total, 115 out of the 160 faulty system versions are
diagnosed correctly, yielding a 72% success rate for our
experiment. Faulty versions of five out of the nine services
used in our system can always correctly be diagnosed by
SFL. However, the mutants of four services cannot be
diagnosed so successfully. A careful analysis of these cases
presents a number of issues to be discussed in the following.

Reasons for Incorrect Diagnoses: We can identify two
significant reasons for why diagnoses are incorrect (summa-
rized in Table IV):

(1) No activation of the fault: if the fault in a service
implementation is not triggered, e.g. through user interaction
with the system, there will be no failure, and, consequently,
the diagnosis will be incorrect. This is the case in five system
versions, and it must be regarded as a general problem in all
passive monitoring-based approaches. Residual defects in a
service-oriented system can only be diagnosed when they
are actually triggered and detected.

(2) Tight service interaction: this presents a particular
challenge in SFL. When services are always invoked to-
gether, the similarity coefficient will assign the same value
to all tightly linked services. They are treated as if they
were one combined service. However, in our case system,
a peculiar situation can be observed. Some services work
together in combination in one transaction and make it fail,
while they participate as individuals in other transactions
that pass. Here, these services are not treated as if they
were one combined faulty service, and it is attributable to
the calculation of the similarity between the outcome vector
and the activity vector. Involvement in a passing transaction
weighs more than non-involvement in a failing transaction.
Services that participate in a failing transaction may be
convicted by the similarity coefficient, but if one service
participates in a passing transaction, its conviction will be
exonerated, which leads to an incorrect diagnosis in such
cases. Table IV indicates that this happens quite often in

Table III
EXPERIMENTAL RESULTS

Services Applied # of Diagnosis Correct
Mutators Mut. Correct Incor. Diagn.

BusinessAccountService 2,4 7 7 0 100%
BusinessBasicService 1,2,4 27 23 4 85%
BusinessOPService 1-4 19 14 5 75%
BusinessStockService 2 8 8 0 100%
ConfigurationService 2 9 9 0 100%
ExchangeCheckService 1-3 8 8 0 100%
ExchangeCurrencyService 1,2,4 24 3 21 13%
OrderProcessorService 1-5 41 26 15 63%
QuoteService 1-4,6 17 17 0 100%

Table IV
REASONS FOR INCORRECT DIAGNOSES

Services Incorrect No Acti- Tight
Diagnoses vation Interaction

on Failure

BusinessBasicService 4 2 2
BusinessOPService 5 1 4
ExchangeCurrencyService 21 2 19
OrderProcessorService 15 0 15

our example system.
Multiple Faults: Initially, we stated that we are only

interested in the single fault case, and the Ochiai similarity
coefficient represents a single-fault approach. However, in
our example system, we observe that one mutation in a
service implementation may affect more than one service
operations. Since the granularity is at the service operation-
level, rather than at the service-level, we actually introduce
multiple faults into our system. This problem is attributable
to a mismatch between the granularity of the fault injection
and the granularity of the diagnosis. SFL always ranks one
of the faulty service operations at the top (but not all of
them), meaning it finds the fault. Which of the several faulty
service operations will be ranked top, depends on its number
of activation. According to our definition of correctness, we
treat this result as a correct diagnosis.

B. Discussion and Lessons Learned

The experiment demonstrates the feasibility of applying
online SFL to diagnose service-oriented systems. The results
indicate that our approach is able to pinpoint problematic
service operations with high correctness in many cases.

Methodological Limitations: The experimental results
also demonstrate that no activation of a fault causes incorrect
diagnoses, i.e., in our evaluation. In a real setting, a fault
that is not activated does not exist, and it highlights a
fundamental problem in all coverage-based quality assurance
approaches. The online monitor can only passively wait for
the system invocations to appear. Monitoring cannot actively
initiate relevant transactions to cover a fault. In order to
trigger such residual defects, it is possible to conduct online
testing and compensate the deficiency of monitoring by
actively running test cases to add the required coverage.
However, this is out of the scope of our current research,
and it will be considered in the future.

We also observe that tight service interaction can influence
the diagnosis. Service operations that are always invoked
together in passing as well as in failing transactions, actually
behave as if they were one single component, and the
diagnosis treats them as such. If one component contains the
fault, every one of its tightly coupled peers will also receive
the blame for this fault according to the diagnosis. This is an
interesting observation, and it raises the question of what an
adequate architecture is. Could services be designed in order
to become better diagnosable, e.g. increase their cohesion?
Or, can their interactions be designed in different ways, as to
permit more variety in their invocations, e.g. increase their
coupling, so that alternative invocation paths may yield more
or better diagnostic information? These are also interesting
questions for future work.

A special case of tight coupling comes from service oper-
ations that always cooperate in failed transactions, but pass
when invoked individually. This is attributable to how the
similarity coefficient is biased towards convicting services
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that participate in faulty transactions, and exonerating ser-
vices that participate in passing transactions. Future research
should carefully assess the relation between the architecture
and the similarity coefficient applied, and evaluate to which
extent additional information can improve the diagnosis.
This is also related to the previous discussion.

Although, in this work, we specifically target the single
fault case for demonstration purposes, we acknowledge the
fact that this is not realistic. The Ochiai coefficient is limited
to the single fault. Even though Ochiai identifies the root
cause of the failure, it cannot pinpoint all operations involved
in exhibiting it. In this case Ochiai fails to convict all faulty
operations, which is to be expected. Heavy-weight, bayesian-
and model-based diagnosis approaches [19] do work in the
multiple fault case. However, it remains to be evaluated in
future work how such techniques can be applied online and
in the context of service-oriented architectures.

Implementation Limitations: A fundamental concern that
we have not considered in our experiment is the performance
overhead incurred, through incorporating online diagnosis
in a service-oriented system. In our current setting, only
the monitoring is performed online. The other steps are
done by the diagnosis engine which is completely detached
from the service-oriented system, and are, therefore, not
creating any overhead in the services. Monitoring is heavily
based on Turmeric’s internal profiling mechanisms. These
are permanently activated in the framework. The handler
code we added is marginal, but obviously not negligible.
In future work, we intend to measure not only our own
overhead incurred by the handlers, but, more importantly,
also assess the performance overhead of Turmeric’s internal
profiling mechanisms. This is an important research question
for the future, since many modern service frameworks come
well equipped with similar monitoring and profiling tools.

Other implementation limitations also concern the service
framework, i.e. Turmeric. For example, our first oracle
phase checks for missing responses. This is very specific to
Turmeric. A Turmeric service is supposed to always return
a message. Otherwise, it indicates a serious problem.

Another issue which is not documented in the experimen-
tal results is the fact that our online monitoring implemen-
tation cannot fully support asynchronous communication in
our case system. During the implementation of our example
system, we realized that the SFL monitor sometimes misses
a service response coming from an asynchronous invocation.
This might be attributable either to faulty behavior of
Turmeric, or due to an undocumented feature of Turmeric. In
any case, this makes the diagnosis fail, and eventually, we
resigned from including asynchronous service invocations.
In future work, we will definitely aim at resolving these
issues and include asynchronous service invocation.

VI. RELATED WORK

Chen et al. present Pinpoint [20], a tool based on
similarity coefficients. However, they do not address the
problems of inter-service diagnosis (that services are used in
different contexts), and use a weaker similarity coefficient.
Zhang et al. [21] propose a hybrid approach, combining a
matrix- [22] and a Bayesian-based probabilistic diagnosis
method for SOA systems. Since the dependency matrix
is generated before operation, the diagnosis cannot adapt
well to the dynamic nature of SOA. Even though, the
authors considered various ways to reduce the computa-
tional complexity, bayesian approaches are still heavyweight
compared to spectrum-based approaches. Mayer et al. [23]
diagnose faults in business processes for SOA systems. Their
approach requires partial information of process executions
by reasoning about possible activities in system behavior.
However, the models for diagnosis are rather complex, and
proper evaluation is still pending.

Grosclaude describes a model-based monitoring approach
for component-based systems, and suggests to use trans-
actions IDs in order to associate messages sent between
components [24]. This is also proposed by [20], and we
see it as a standard approach to determine which service
takes part in which system transaction. Although slightly less
related, Zhang et al. [22] present a framework for diagnosing
QoS problems in SOA through monitoring service states.
Another interesting approach is introduced by Heward et
al. [25], in which they propose an algorithm for optimization
of monitoring configurations for web services. They use an
optimization algorithm in order to reduce the monitoring
overhead in a service-based system, something that would
also benefit our proposed techniques.

VII. CONCLUSION AND FUTURE WORK

The goal of our work presented in this article is to
demonstrate a first realization of automated online fault
diagnosis for service-oriented architectures. Referring to our
original research questions, we looked at:

RQ1: How a failure can be detected in an operational
service-oriented system: We enabled framework-based mon-
itoring, reusing the tools of an existing service platform, i.e.
Turmeric, for transaction tracing. In addition, we devised
a three-phased oracle using the monitoring in order to
associate failure information with the transaction traces.
Both monitor and oracle generate component involvement
and pass/fail information required in fault diagnosis.

RQ2: How SFL can be applied in a service-oriented
system: The fault localization technique is implemented in
a dedicated (external) diagnosis engine for efficiency. This
accesses the information generated by the monitor and the
oracle and turns that into an activity matrix and an output
vector, and then, calculates the diagnosis.
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RQ3: How well SFL can identify faults seeded into service
implementations: The results confirm the feasibility of the
approach, and indicate a high success rate of the diagnoses,
i.e., 72% correctness. The fraction of incorrect diagnoses
can be explained after careful analysis, which results in a
number of feasible directions for future work.

The limitations of our current approach are readily rec-
ognized: diagnosis based only on passive monitoring and
implementation-specific monitoring, influence on the diag-
nosis through the service topology, and the single fault case.
Our next steps in future work will address multiple faults in
a service-oriented system, which is more realistic. Later, we
will assess the performance overhead, in order to optimize
the monitoring and the oracle. Finally, it would be interesting
to see how different topologies of service-oriented system
affect the accuracy of diagnosis.
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