
Stacking High-Level Fuzz Mutations in Big Data Applications

M.W.M. Oudemans , B.K. Özkan

TU Delft, Computer Science and Engineering

27 June 2021

Abstract
The big data technology market size is expected to
grow in the coming years. The advantages of hav-
ing automated test tools for big data applications
are becoming increasingly important. Fuzzing is
an automated testing method which has been used
in many different fields, but has not been frequently
used in the big data domain as it poses several chal-
lenges. BigFuzz, a new method which was pro-
posed by a recent study, solves these problems and
shows promising results. One of the BigFuzz con-
tributions are high-level mutations, which are er-
ror type guided and schema aware mutations. This
paper is answering the question: How does stack-
ing high-level fuzz mutations affect the test per-
formance for big data applications? It does so by
creating different stacking strategies and evaluat-
ing the effect compared to the BigFuzz method. As
evaluation metrics the research looks at the amount
of unique failures per trial and the distribution of
unique failures found. The three stacking strate-
gies that have been developed for this project are:
Random Stack, Smart Stack and Single Stack. This
research has shown that there appear to be bene-
fits to stacking high-level mutations. The results
show that stacking algorithms find on average more
unique failures in less trials than a non-stacking ap-
proach. Furthermore, is Smart Stack able to find
unique failures more frequently. Empirical results
suggest that stacking high-level mutations can pro-
vide an advantage over only mutating once.

1 Introduction
The big data technology market size for 2027 is expected
to grow up to 116 billion USD [1]. This increase in market
share for big data applications attracts attention and it implies
an expected increase in the amount of big data applications.
If it would be possible to generate automatic tests for these
applications it could potentially speed up development and
increase software quality.

One way to automatically test software is called fuzz
testing. The key of fuzz testing is that the software is tested

by automatically generating many different inputs for the
program. The goal is to find as many bugs and cover as much
of the code as possible. There are different ways to generate
said inputs by either randomly creating bit-strings, using an
example input or having a grammar describing the syntactical
structure of the program. Even though fuzzing has been
proven feasible and often useful in different fields [2; 3; 4; 5],
it is not yet fully developed for big data applications as there
are problems with applying fuzz testing on these systems [6;
7].

The work towards a fuzz testing tool for big data appli-
cations has only emerged in the past few years. In 2013
SEDGE was proposed as an example input generating tool
for complex dataflow programs [8]. This generation tool was
not yet applied on big data applications nor in the fuzz testing
context. In 2019 BigTest surpassed SEDGE as it was a new
input generation tool which could be applied to data-intensive
scalable computing (DISC) systems. Moreover, compared to
SEDGE, BigTest promised to reduce the amount of test data
significantly while improving the user defined function path
coverage [9]. However, BigTest has its limitations as it relies
on the support of symbolic execution of data flow operators
and the exploration capabilities of the symbolic execution
engine [7].

BigFuzz has presented a new method of generating
fuzz tests for DISC systems in 2020 [7]. It does this in
three steps. First it creates a dataflow abstraction using
source-to-source transformation with user-defined functions,
then it creates an application specific coverage guidance and
lastly it generates input by applying high-level mutations
to an initially provided input. These are error type guided,
schema-aware mutations, meaning these are designed to
apply data type specific changes to program inputs to trigger
common errors occurring in big data applications. BigFuzz
has collected these common errors by collecting known bugs
in existing programs, from GitHub and Stack Overflow. The
BigFuzz paper has reported promising results compared to
random fuzzing and BigTest.

A possible way to improve the BigFuzz algorithm is to
stack the high-level mutations, meaning multiple high-level
mutations are applied at once. This is different from BigFuzz

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



which always applies only one of the high-level mutations
before passing it to the program that is to be tested. This new
method could possibly find new, more complex bugs as the
stacking of mutations can produce inputs which might never
be reached by applying only single mutations. Additionally,
the new method could speed up the bug finding process.
Since more mutations are applied at once, more errors can
be searched for at once. It can also backfire as the usage of
multiple mutations can mask errors because other errors are
found at the same time. This could eventually cause less
errors to be found or requiring a longer amount of time to
find the errors.

Whether stacking mutations can provide a benefit has
led to the main question of this research: How does stack-
ing high-level fuzz mutations affect the test performance
for big data applications? To do so, the following three
sub-questions have been constructed:

1. Which mutation methods are used in existing fuzzing
algorithms?

2. What kind of high-level mutation strategies are used in
existing fuzzing algorithms?

3. How do different kinds of stacking strategies affect the
test performance?

The stacking strategies constructed during this research
are Random Stack, Smart Stack, and Single Stack. These
implementations stack mutations randomly, based on a set of
rules, and one mutation per data point respectively.

This paper has been organized in the following way; in
Section 2 the approach for each sub-question will be dis-
cussed. The algorithms developed in this research and
essential parts of the algorithms will be explained in Section
3. In Section 4, the experimental setup, the literature
found for the first two sub-questions and the results of the
evaluation will be presented. Then in Section 5 the ethical
side of the research will be discussed. Section 6 will reflect
on the results found and Section 7 will be dedicated to the
conclusion of the research including suggestions for possible
future works.

2 Methodology
Below, for each sub-question the approach to answer said
question is described.

1. WHICH MUTATIONS METHODS ARE USED IN EX-
ISTING FUZZING ALGORITHMS?

The research started with finding existing literature and
extracting the mutation methods. Collecting these methods
provided a better understanding of how mutations work
and provided inspiration for the implementation of new
algorithms. In order to comment on the general usage
of mutations and potentially the lack of literature, it was
important to include all literature available in the field. A
formal search query was developed and then the results of

said search query were used1.

2. WHAT KIND OF HIGH-LEVEL MUTATION STRATE-
GIES ARE USED IN EXISTING FUZZING ALGORITHMS?

For the second sub-question, again literature was collected
to provide a better understanding of mutation techniques and
to be an inspiration for the development of new algorithms.
The same approach as for the first sub-question was used.

3. HOW DO DIFFERENT KIND OF STACKING STRATE-
GIES AFFECT THE TEST PERFORMANCE?

To answer this sub-question the research continued towards
implementing an algorithm which would stack high-level
mutations. Before a new algorithm was developed, the
BigFuzz algorithm was implemented using the descriptions
provided in the BigFuzz paper. The implementation is used
as a baseline to compare with the new implementations.

We have developed three different algorithms, each im-
plementation following a different approach but relied on
the same concept of stacking high-level mutations. The
implementations, Random Stack, Single Stack, and Smart
Stack will be discussed in detail in section 3.3. The Smart
Stack implementation requires a set of rules which describe
which mutations can be stacked on top of each other. Defin-
ing the rules was done by creating a mutation matrix and
reasoning about which mutations should not be stacked. To
finalise the rules the Random Stack implementation was run
against different benchmarks. Because this implementation
generates random mutation combinations it can generate
mutation combination which would not be generated by the
Smart Stack. The rules were adjusted such that the random
combinations that found faulty branches could still be created
using the rules set. Single Stack was developed to give an
insight in whether applying multiple mutations to the same
column or mutating different columns was affecting the
performance.

After implementation the algorithms are run on a set of
benchmarks. This set of benchmarks is a sub-set of the
benchmarks used in the BigFuzz paper. For the evaluation,
the effectiveness and the reliability of the implementations
was tested. For these characteristics the number of unique
errors found per trial and the unique failure distribution are
used as metrics respectively. If the distribution is low, that
means there is more certainty the average amount of unique
failures is found.

3 Stacking Mutations
This section will first describe what kind of high-level muta-
tions have been used in this research. Then the BigFuzz algo-
rithm is explained in more details to provide a better under-
standing of the stacking algorithms. Next, the new algorithms
will be introduced and the contributions will be explained.

1If the University library did not have access to the paper or the
paper was in a foreign language the result was omitted

2



Finally, a more detailed description of the set of rules for the
Smart Stack algorithm will be presented.

3.1 High-Level Mutations
High-level mutations are error type guided and schema-aware
mutations, meaning these are designed to apply data type spe-
cific changes to program inputs to trigger common errors oc-
curring in big data applications. Most high-level mutations
used in this research have been presented in the BigFuzz pa-
per. Below the list of mutations and the description, as pre-
sented in the BigFuzz paper [7].

• Data Distribution (M1): mutate value to be either in-
side or outside the provided range2

• Data Type (M2): mutate the value such that it is the
same value, but a different data type

• Data Format (M3): modify the column separating de-
limiter

• Data Column (M4): insert one or several characters in
the value

• Null Data (M5): remove the value column

• Empty Data (M6): empty the value column

Additionally, we present a seventh mutation: adding a new
column (M7). This can be seen as the counterpart of M5 and
is designed such that it can discover potential new paths of the
program where there are more data columns than expected.
An example would be a program that tries to split a text file
and then uses an IF or SWITCH statement to determine which
path to take [10].

• Data Add (M7): add value column

3.2 BigFuzz Fuzzing Algorithm
The BigFuzz algorithm can be summarized in two steps. First
it transforms a Spark program to a Java program, then it ap-
plies the transformed program to a fuzzing loop. A low-level
description of these two processes is given below:

• The program transformation creates a dataflow abstrac-
tion to apply a source to source transformation. This
transformation creates an executable class and a class for
each operation performed in the Spark program. The ex-
ecutable class calls each operation class in the sequential
order and can be run by the test framework. This process
is only done once and is independent of the rest of the
test process.

• When the BigFuzz fuzz process is started, a fuzzing loop
is created and a the BigFuzz guidance class will be used
to feed the inputs. This guidance class manages the mu-
tation class and the evaluation of the test run. The muta-
tion class will mutate the seed by applying a single high-
level mutation to one of the input columns. The mutated
value is run on the transformed Spark program and the
result of the test is evaluated.

2Value is random when no input specification is provided

3.3 Mutation Stacking Algorithms
This work extends the fuzzy loop with stacked mutation
methods. The implemented algorithms have similar func-
tionality to each other, but differ in why and how multiple
mutations are selected.

When one of the stacking algorithms is asked to apply
the mutation to a provided input, it generates a list of all the
mutations before applying it to the input. The number of
mutations is randomly selected between one and a parameter
provided by the user. Figure 1 provides an abstract visual-
isation of the a fuzz loop in the BigFuzz algorithm and the
contribution of the new algorithms.

Per implementation, the list of mutations is generated
as follows:

• Random Stack: the algorithm applies randomly se-
lected high-level mutations on randomly selected input
columns. There are no rules when stacking the high-
level mutations. Mutations can nullify previously se-
lected mutations.

• Single Stack: the algorithm applies randomly selected
high-level mutations, but can only apply one mutation
per input column. The number of stacked mutations is
therefore limited by the amount of columns of the input.

• Smart Stack: the algorithm applies randomly selected
high-level mutations following the defined set of rules.
If an input column can not stack anymore mutations,
other input columns are selected. The number of mu-
tations being stacked is therefore limited by the combi-
nations being made by the algorithm and the amount of
columns the input has.

To nullify a mutation means the first mutation is removed by
applying a new mutation (e.g. removing a value of a data
point after changing the value of said data point).

Figure 1: Visualisation of mutation stacking in a fuzz loop

3.4 Mutation Stacking Rule Set
The Smart Stack algorithm utilises a set of rules to determine
which mutations can be stacked. Applying these rules pre-
vents mutations nullifying each other and should decrease the

3



M1 M2 M3 M4 M5 M6 M7
M1
M2
M3
M4
M5
M6
M7

Can be stacked
No benefit of stacking
Should not be stacked

Table 1: Mutation rules matrix

amount of tests needed to find bugs. Reasons as to why a mu-
tation should not be stacked on another mutation is described
in Appendix A. Using the rules, a mutation matrix has been
constructed which can be seen in Table 1. In the matrix, the
coloured cells indicate whether the mutation on the left can
be stacked on the mutations shown in the top row, e.g. the
green cell next to ”M2” on the left indicates ”M2” can be ap-
plied to a column after ”M1” has already been applied. Only
the green cells are stacked. The Smart Stack algorithm looks
at all mutations on the stack when excluding mutations from
being stacked. e.g, The stack M5-M3-M7 is not allowed as
M5 does not allow M7 to be stacked.

4 Evaluation
This section will first discuss how the data for the evaluation
were collected. Then the findings from the literature for the
first two sub-questions will be discussed. Lastly, the results
for the benchmarks suite will be presented.

4.1 Experimental Setup
Evaluating new fuzzing implementations is not trivial. As
shown by an empirical study from 2018, every fuzzing paper
they considered had problems in their evaluation [11]. These
problems had different causes. One of the problems had to
do with the assumption that more code coverage correlates
with finding more bugs. However, this might not always be
the case as the correlation between the coverage of a test
suite and the effectiveness of its error detection capabilities
is generally low for controlled test suite sizes [12]. Other
problems discovered were incorrectly counting the unique
failures found, too small of a benchmark suite and using
different benchmarks across papers [11]. To empirically
demonstrate that a fuzzer has an advantage, one has to have a
baseline fuzzer, a benchmark suite, a performance metric and
a meaningful set of configuration parameters [11]. Moreover,
an evaluation should be applied on multiple iterations as the
results could differ due to the randomness of fuzz testing.

To avoid these common mistakes, the evaluation has
been set up the following way. The new implementations
have been evaluated using the BigFuzz method as a baseline.
The benchmark suite that has been used was retrieved
from the BigFuzz repository3. As performance metrics, the

3https://github.com/qianzhanghk/BigFuzz/

amount of unique failures per trial and the distribution of the
total unique failures was used. Each metric was collected
over multiple independent runs. To prevent an incorrect
count of unique failures, the stack trace of the error was used.
This stack trace contained at which point the error originated
and is extended until the last line of the program that is tested.

Each implementation was run for 25 independent exe-
cutions, applying 5000 trials each execution. Because the
process of fuzzing is dependent on randomization, each
independent execution had a different number of unique
failures per trial. Running the program for 25 independent
runs and taking the average of all runs resulted in a relative
smooth graph. Most unique failures were found within the
first 1000 trials after which the number of unique failures
found drops significantly. 5000 trials was used as the amount
of times an input is mutated and tested. This number of trials
was selected as the experiments showed that most algorithms
were stabilizing in the amount of failures found per trial,
while the time required to run each benchmark was feasible
for this research project.

Data was collected for each of the stacking implemen-
tations and the BigFuzz implementation. For the evaluation
the same stack size was used for the stacking algorithms
per benchmark, but has changed per benchmark. Per bench-
mark a suitable stack size was selected proportional to the
amount of input columns the benchmark required. The four
implementations have been run on six different benchmarks.

4.2 Results
This section will first present the literature results for the first
two sub-questions and then show the evaluation for the im-
plementation of the third sub-question.

4.2.1 Which mutation methods are used in existing
fuzzing algorithms?

There are different mutation methods a fuzzer can use and
it is dependent on the amount of given information about
the program that is tested. When the grammar is known of
the program, the fuzzer has a lot of information on what
kind of inputs the program does and does not accept. From
this information, the fuzzer can create a structure in which
syntactical valid inputs have been derived from the grammar
[13]. This is not possible when there is no grammar, as is the
case in this research.

Without any information about the program, one of the
most straightforward mutation methods is to begin with a
random bit string and perform bit-wise mutations, i.e. chang-
ing one of the bits from 0 to 1 or vice versa. However, this
method produces a lot of inputs that are syntactically invalid
and can not cover a lot of the program as they are quickly
rejected [14]. Instead of beginning with a random bit-string
and single bit flips, one could pass an initial seed file and
apply flip multiple bits. One of the earliest and most known
fuzzers, AFL, uses this strategy [15]. Unsurprisingly, fuzzers
that built on top of AFL and others apply this method [16; 17;
18; 19; 20; 21]. For many of these fuzzers, the differences

4

https://github.com/qianzhanghk/BigFuzz/


to the fuzzing process is mostly in what and why data is
mutated, rather than how it is mutated. The benefit of these
methods is that the user only has to provide an initial seed
that is accepted by the program. The downside is that the bit
mutations are sometimes not as effective as when the fuzzer
would know what kind of datatype the program requires.

This leads to the next method, where the fuzzer applies
specific mutations depending on the field or datatype the mu-
tation is applied to. One possible method is to use a dynamic
approach, where it first starts byte mutations during which
it tries to discover the type, and then switches to a group
specific mutation strategy [22]. This dynamic approach
is not needed when the user provides the input specifica-
tions, like proposed in BigFuzz[7] and other projects [23;
24].

4.2.2 What kind of high-level mutation strategies are
used in existing fuzzing algorithms?

A possible strategy to apply high-level mutations is to define
a set of mutation operators specific to the input domain [19;
25]. These operators are based on a special bit-wise mutation.
AFLSmart, which targets programs that parse complex chunk
based files, has three different operators: addition, deletion
and splicing [19]. This method also allows their high-level
mutations to be stacked, which is not trivial as mutations can
interfere. Their solution is to keep a copy of the original and
use indices which can point to a location for the mutation.
If the indices overlap, no mutation is applied. However, this
strategy requires the fuzzer to bo custom designed for a target
program.

A different approach would be to describe high-level
mutation on a data type level. This approach would have
a high-level description like change the data type, instead
of a low level description of which bits need to be flipped.
Examples for these kinds of mutations would be the mu-
tations described in section 3.1 and the program FaFuzzer
[13]. FaFuzzer would for example test for boundary values
in integer values or would extend characters to a longer string.

Besides BigFuzz and FaFuzzer, no literature could be
found on fuzzers that describe high-level mutation on a
data type level. This is supported by a systematic literature
review from 2017 which inspected more than 160 research
articles and found that only 5.6 % of the research is centered
on constructing more realistic high-level mutations and no
research has been done on the relation between high-level
mutations and real faults [26].

4.2.3 How do different kinds of stacking strategies
affect the test performance?

In Table 2 the benchmark names with the corresponding
codes can be found which will be used in the interpretation
of the results. In Figures 2 to 7 the number of unique failures
per trial and the unique failures distribution at 5000 trials can
be seen for the 6 different benchmarks. This section will first
explain the results for the unique failures per trial and then
the results for the unique failure distribution at 5000 trials.

Code Name
B1 ExtermalUDF
B2 FindSalary
B3 StudentGrades
B4 MovieRating
B5 SalaryAnalysis
B6 Property

Table 2: Benchmark names

Unique failures per trial
The total amount of unique failures found per trial is av-
eraged over 25 independent runs. An implementation is
considered to be outperforming another implementation if it
finds on average more total unique failures in less amount of
trials. The stacking implementations finds on average more
bugs than the BigFuzz algorithm in 5 of the 6 benchmarks
(B1, B2, B4, B5, B6). Below are the stacking algorithms
compared with the BigFuzz algorithm:

• Random Stack
– Performs better on B2, B5, B6
– Performs similar on B1, B3, B4

• Smart Stack
– Performs better on B2, B5, B6
– Performs similar on B1, B3, B4

• Single Stack
– Performs better on B2, B5, B6
– Performs similar on B1, B3, B4

Unique failures distribution
The unique failures distribution is created from the total
unique failures found at 5000 trials over 25 independent runs.
An implementation is considered to be outperforming another
implementation if the interquartile range of the boxplot is on
average higher and the maximum unique failures found is at
least equal. Below are the distributions of the stacking algo-
rithms compared with the BigFuzz algorithm distribution at
5000 trials:

• Random Stack
– Performs better on B5, B6
– Performs similar on B1, B2

• Smart Stack
– Performs better on B2, B5, B6
– Performs similar on B1, B3, B4

• Single Stack
– Performs better on B1, B6
– Performs similar on B2, B4

4.3 Empirical Results Summary
There are two observable benefits of stacking mutations.
First, more unique failures are found in less trials as each
implementation performed better in three benchmarks, and
the same in the other three benchmarks. Secondly, the stack-
ing of mutations could find the unique failures at 5000 trials

5



Figure 2: ExternalUDF benchmark results

Figure 3: FindSalary benchmark results

Figure 4: StudentGrades benchmark results

Figure 5: MovieRating benchmark results

6



Figure 6: SalaryAnalysis benchmark results

Figure 7: Property benchmark results

more reliably as the distribution of the Smart Stack performs
better in three benchmarks, and the same in the other three
benchmarks. Which stacking strategy performs best is un-
clear as the best algorithm differs per benchmark. In gen-
eral, the Smart Stack algorithm performs better than the other
implementations over all six benchmarks, but the differences
between the stacking algorithms are negligible.

5 Responsible Research
In this section the ethical aspects of the use of the proposed
test method will be expanded on first. Then, the reproducibil-
ity of BigFuzz will be discussed and finally the reproducibil-
ity of this project will be explained.

5.1 Ethical Reflection
A possible reaction to the reported results is to believe that
this method removes the need for tests written by the devel-
oper. While these results might be promising in the field,
it is not yet thoroughly tested. One can not assert that this
method is finding every bug in a program and might actually
be deceiving as described in section 6. Moreover, the new im-
plementations have only been tested on a few benchmarks for
a limited amount of high-level mutation focusing on a lim-
ited amount of error types. There is more work required to
make a robust tool for developers which can produce exhaus-
tive testing capabilities. Even when such a tool is created,
the developer should never fully rely on an automated testing
tool.

5.2 BigFuzz Reproducibility
As this research is built upon the BigFuzz paper, discussing
the reputability of said research is important as it has had an
impact on the reproducibility of this research paper. The Big-
Fuzz paper has made a very good effort in collecting infor-
mation from various sources and establishing a method for
testing big data applications which looks promising. Their
contribution is making a big step forward in this field. How-
ever, to reproduce and expand their prototype implementation
was very challenging. The BigFuzz paper referred to their
Github repository containing the artifacts that have been used
in their implementation, which is incomplete and seems to be
in development. After thoroughly investigating the code the
following unresolved problems have been found:

• Mutation methods seemed to be benchmark specific and
are not schema aware. While in the paper they present
six different mutations operations, there are mutation
implementations per benchmark where the code has
been manually changed and optimized to fit the bench-
mark. Many times only a subset of the high-level muta-
tions was used rather than all the high-level mutations.

• The source-to-source transformation tool did not work
as it required a UDF generator tool which was not in-
cluded in the repository. An attempt was to implement
the UDF generator tool from the BigTest repository4, but
without success. This means that the Spark benchmarks
could not be generated and existing benchmarks from

4https://github.com/maligulzar/BigTest/

7



the BigFuzz repository, which are not reproducible, had
to be used.

5.3 Reproducibility
During this research, special attention was given to the
reproducibility. Both the literature research, implementa-
tion and evaluation have been described in detail in this paper.

For the first two sub-questions, formal search plans
have been created to collect the literature available. Sections
2 and 3 can be used to recreate the implementations created
for this research. These implementations can also be found
on a copy of the research repository5. This repository
contains other contributions by the same research group who
were working on other methods. The repository contains
a Readme file which contains more technical details as to
how to run the project. On the repository the data used to
construct the results of this paper can be found. Additionally
the seeds used to produce the data can be found to reproduce
the results. Not all data produced by the algorithm is stored
due to storage restrictions.

6 Discussion
This section will expand on some of the limitations and
observations concerning this research.

The results that have been reported in the previous sec-
tion have been collected by running the benchmarks provided
by BigFuzz. It is not known whether these benchmarks are
an accurate representation of the possible DISC systems that
should be tested. Therefore, it is possible that this research
has an incomplete sample of DISC programs and other
programs could yield different results.

The stacking algorithms were given the best configura-
tions per benchmark such that it was performing well. It has
not been tested how the implementations behave with other
configurations.

The implementations that have been made and tested
do no have an input specification and are therefore not
schema aware. The BigFuzz method had to be recreated
from the methods described in the paper and due to time
limitations of the project the input specifications could not be
added.

One of the noteworthy observations made during eval-
uation is the uniqueness of the failures found. In some
benchmarks the StackTrace of the found error was empty.
This issue seemed to only appear for one certain kind of error
and would only appear if the said error was already found
in a previous iteration. During development the issue was
investigated and seemed to originate from the frameworks
on which the implementation was built. The issue could not
be resolved during this research, because it was a too time
consuming task due to the complexity of the framework.
The issue can be reproduced using the code and instructions

5https://github.com/moudemans/StackedMutation

provided on one of the branches of the repository6. Because
the issue was occurring for every implementation the results
for comparison were not effected. The amount of actual
unique failures for each implementation might be incorrect
and should not be used as a measure to the total amount of
errors. The issue caused an incorrect unique failure count in
the results in B5 for the Random Stack implementation. The
9th unique failure in one of the runs was not really a unique
as it did not have a StackTrace.

7 Conclusions and Future Work
This section will first discuss the sub-questions. Then it
answer the main research question and present the conclusion
of this research. Finally, it will provide some recommenda-
tions for future work.

In this paper the different kinds of mutation strategies
that are used in existing fuzzing algorithms was researched.
The knowledge gained from the literature has helped in the
development of new implementation strategies.

While there are examples of methods using high-level
mutation strategies, these are often bit-wise and do not
describe a high-level mutation on a data type level. These
high-level of mutations are centered on constructing more
realistic high level mutations and have a relation to real
software faults. Only a small portion of the literature in this
field discusses the high-level mutations and its relation to
real software faults.

As for how the different kind of stacking strategies af-
fect the performance, from the results can be concluded
that stacking high-level mutations can provide an advantage
over only mutating once. In almost all benchmarks one of
the stacking algorithms outperformed the traditional one
mutation method. The stacking of mutations shows two
advantages. First, it performs better as more unique failures
are found in less amount of trials. Second, the Smart Stack
implementation is more reliable as the algorithm is able to
find more unique failures more frequently.

This research has provided a potential benefit of stack-
ing high-level mutations. A future study could apply the
new proposed method on more benchmarks. Furthermore,
one could improve the proposed stacking methods by further
developing the stacking rules and using biased high-level
mutations.

References
[1] A. Arora, “Big data technology market 2021 top man-

ufacturers, industry size, global demand and covid 19
impact on revenue growth,” May 2021.

[2] A. Alsharif, G. Kapfhammer, and P. McMinn, “Domino:
Fast and effective test data generation for relational
database schemas,” pp. 12–22, 2018.

6https://github.com/moudemans/StackedMutation/tree/
MO bugReport 1

8

https://github.com/moudemans/StackedMutation
https://github.com/moudemans/StackedMutation/tree/MO_bugReport_1
https://github.com/moudemans/StackedMutation/tree/MO_bugReport_1


[3] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unas-
sisted and automatic generation of high-coverage tests
for complex systems programs,” pp. 209–224, 2019.

[4] B. Ghit, N. Poggi, J. Rosen, R. Xin, and P. Boncz,
“Sparkfuzz: Searching correctness regressions in mod-
ern query engines,” 2020.

[5] F. Langner and A. Andrzejak, “Detection and root cause
analysis of memory-related software aging defects by
automated tests,” pp. 365–369, 2013.

[6] E. M. Fredericks and R. H. Hariri, “Extending search-
based software testing techniques to big data applica-
tions,” pp. 41–42, Association for Computing Machin-
ery, Inc, 5 2016.

[7] Q. Zhang, J. Wang, M. A. Gulzar, R. Padhye, and
M. Kim, “Bigfuzz: Efficient fuzz testing for data an-
alytics using framework abstraction,” in Proceedings -
2020 35th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2020, pp. 722–733,
2020.

[8] K. Li, C. Reichenbach, Y. Smaragdakis, Y. Diao, and
C. Csallner, “Sedge: Symbolic example data generation
for dataflow programs,” pp. 235–245, 2013.

[9] M. Gulzar, S. Mardani, M. Musuvathi, and M. Kim,
“White-box testing of big data analytics with complex
user-defined functions,” pp. 290–301, 2019.

[10] C. Fregly, “Arrayindex out of bound excep-
tion.” https://forums.databricks.com/questions/585/
how-do-i-get-around-an-arrayindexoutofboundsexcept.
html, Apr 2015.

[11] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,
“Evaluating fuzz testing,” pp. 2123–2138, 2018.

[12] L. Inozemtseva and R. Holmes, “Coverage is not
strongly correlated with test suite effectiveness,”
pp. 435–445, IEEE Computer Society, 5 2014.

[13] J. Wang, B. Chen, L. Wei, and Y. Liu, “Supe-
rion: Grammar-aware greybox fuzzing,” vol. 2019-May,
pp. 724–735, 2019.

[14] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and
C. Holler, “Breaking things with random inputs -
the fuzzing book.” https://www.fuzzingbook.org/html/
Fuzzer.html, 2019.

[15] M. Zaleski, “Binary fuzzing strategies: what works,
what doesn’t.” https://lcamtuf.blogspot.com/2014/08/
binary-fuzzing-strategies-what-works.html, Aug 2014.

[16] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation
strategy for increasing greybox fuzz testing coverage,”
pp. 475–485, 2018.

[17] M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu,
X. Zhao, and J. Sun, “Safl: Increasing and accelerating
testing coverage with symbolic execution and guided
fuzzing,” pp. 61–64, IEEE Computer Society, 2018.

[18] S. Rawat and L. Mounier, “Offset-aware mutation based
fuzzing for buffer overflow vulnerabilities: Few prelim-
inary results,” pp. 531–533, 2011.

[19] V. T. Pham, M. Boehme, A. E. Santosa, A. R. Caci-
ulescu, and A. Roychoudhury, “Smart greybox fuzzing,”
IEEE Transactions on Software Engineering, 2019.

[20] M. Bohme, V.-T. Pham, and A. Roychoudhury,
“Coverage-based greybox fuzzing as markov chain,”
IEEE Transactions on Software Engineering, vol. 45,
pp. 489–506, 2019.

[21] M. Böhme, V. T. Pham, M. D. Nguyen, and A. Roy-
choudhury, “Directed greybox fuzzing,” pp. 2329–2344,
Association for Computing Machinery, 10 2017.

[22] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang,
and B. Liang, “Profuzzer: On-the-fly input type probing
for better zero-day vulnerability discovery,” vol. 2019-
May, pp. 769–786, Institute of Electrical and Electron-
ics Engineers Inc., 2019.

[23] L. Liu, X. Huang, A. Zhou, P. Jia, and L. Liu, “Fuzzing
the android applications with http/https network data,”
IEEE Access, vol. 7, pp. 59951–59962, 2019.

[24] Y. Wang, Z. Wu, Q. Wei, and Q. Wang, “Field-aware
evolutionary fuzzing based on input specifications and
vulnerability metrics,” vol. 2019-October, pp. 226–232,
IEEE Computer Society, 2019.

[25] X. Wang, C. Hu, R. Ma, D. Tian, and J. He, “Cmfuzz:
context-aware adaptive mutation for fuzzers,” Empirical
Software Engineering, vol. 26, 2021.

[26] A. Ghiduk, M. Girgis, and M. Shehata, “Higher order
mutation testing: A systematic literature review,” Com-
puter Science Review, vol. 25, pp. 29–48, 2017.

9

https://forums.databricks.com/questions/585/how-do-i-get-around-an-arrayindexoutofboundsexcept.html
https://forums.databricks.com/questions/585/how-do-i-get-around-an-arrayindexoutofboundsexcept.html
https://forums.databricks.com/questions/585/how-do-i-get-around-an-arrayindexoutofboundsexcept.html
https://www.fuzzingbook.org/html/Fuzzer.html
https://www.fuzzingbook.org/html/Fuzzer.html
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html


A Mutation rules reasoning

First mutation Second mutation Reason
M1 M1 Changing the value twice does not provide a benefit because the value is random.
M1 M2 No reason to not allow it.
M1 M3 No reason to not allow it.
M1 M4 No reason to not allow it.
M1 M5 Removing the column after the value has been changed nullifies the first mutation
M1 M6 Emptying the column after the value has been changed nullifies the first mutation
M1 M7 No reason to not allow it.
M2 M1 No reason to not allow it.

M2 M2 Changing the datatype twice does not provide a benefit as the first datatype change
appears to have never happened

M2 M3 No reason to not allow it.
M2 M4 No reason to not allow it.
M2 M5 Removing the column after the datatype has been changed nullifies the first mutation
M2 M6 Emptying the column after the datatype has been changed nullifies the first mutation
M2 M7 No reason to not allow it.
M3 M1 No reason to not allow it.
M3 M2 No reason to not allow it.

M3 M3 Changing the delimiter twice does not provide a benefit as the first delimiter change
appears to have never happened

M3 M4 No reason to not allow it.
M3 M5 No reason to not allow it.
M3 M6 No reason to not allow it.
M3 M7 No reason to not allow it.
M4 M1 Changing the value after a random insert nullifies the first mutation

M4 M2 Changing the datatype after a random insert does not make a difference
as the column was already changed to a string with the first mutation

M4 M3 No reason to not allow it.
M4 M4 No reason to not allow it.
M4 M5 Removing the column after a random insert has been done nullifies the first mutation
M4 M6 Emptying the column after a random insert has been done nullifies the first mutation
M4 M7 No reason to not allow it.
M5 M1 Changing the value after the column has been removed is not possible
M5 M2 Changing the value after the column has been removed nullifies the first mutation
M5 M3 No reason to not allow it.
M5 M4 Adding a random character after the column has been removed is not possible
M5 M5 Removing the column after the column has been removed is not possible
M5 M6 Emptying the column after the column has been removed is not possible
M5 M7 Adding a new column after removing one nullifies the first mutation
M6 M1 Changing the value after the column has been emptied nullifies the first mutation
M6 M2 Changing the datatype after the column has been emptied is not possible
M6 M3 No reason to not allow it.
M6 M4 Adding a random character after the column has been emptied nullifies the first mutation
M6 M5 Removing the column after the column has been emptied nullifies the first mutation
M6 M6 Emptying a column that has already been emptied does nothing
M6 M7 No reason to not allow it.
M7 M1 No reason to not allow it.
M7 M2 No reason to not allow it.
M7 M3 No reason to not allow it.
M7 M4 No reason to not allow it.
M7 M5 Adding a column after a column has been added the first mutation
M7 M6 No reason to not allow it.

M7 M7 Adding a column after a column has been added targets the same error
and does not provide a known benefit

Mutations do not interfere
Mutations can interfere if the mutation is performed on the same column
No benefit of again mutating

Table 3: Mutation rules reasoning

10


	Introduction
	Methodology
	Stacking Mutations
	High-Level Mutations
	BigFuzz Fuzzing Algorithm
	Mutation Stacking Algorithms
	Mutation Stacking Rule Set

	Evaluation
	Experimental Setup
	Results
	Which mutation methods are used in existing fuzzing algorithms?
	What kind of high-level mutation strategies are used in existing fuzzing algorithms?
	How do different kinds of stacking strategies affect the test performance?

	Empirical Results Summary

	Responsible Research
	Ethical Reflection
	BigFuzz Reproducibility
	Reproducibility

	Discussion
	Conclusions and Future Work
	Mutation rules reasoning

