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A B S T R A C T

This paper presents a machine learning methodology to improve the predictions of traditional RANS turbulence
models in channel flows subject to strong variations in their thermophysical properties. The developed formu-
lation contains several improvements over the existing Field Inversion Machine Learning (FIML) frameworks
described in the literature. We first showcase the use of efficient optimization routines to automatize the
process of field inversion in the context of CFD, combined with the use of symbolic algebra solvers to generate
sparse-efficient algebraic formulas to comply with the discrete adjoint method. The proposed neural network
architecture is characterized by the use of an initial layer of logarithmic neurons followed by hyperbolic
tangent neurons, which proves numerically stable. The machine learning predictions are then corrected using
a novel weighted relaxation factor methodology, that recovers valuable information from otherwise spurious
predictions. Additionally, we introduce L2 regularization to mitigate over-fitting and to reduce the importance
of non-essential features. In order to analyze the results of our deep learning system, we utilize the K-fold
cross-validation technique, which is beneficial for small datasets. The results show that the machine learning
model acts as an excellent non-linear interpolator for DNS cases well-represented in the training set. In the
most successful case, the L-infinity modeling error on the velocity profile was reduced from 23.4% to 4.0%. It
is concluded that the developed machine learning methodology corresponds to a valid alternative to improve
RANS turbulence models in flows with strong variations in their thermophysical properties without introducing
prior modeling assumptions into the system.
1. Introduction

1.1. Turbulence modeling

The governing equations of fluid flow have long been established,
yet modeling turbulence remains one of the biggest challenges in engi-
neering and physics. While it is possible to resolve the smallest scales of
turbulent flows using direct numerical simulations (DNS), DNS is still
unfeasible for real-world engineering applications. Due to this reason,
engineers must rely on RANS turbulence models to describe turbulent
flows. However, most of the development of turbulence models has
focused on isothermal incompressible fluids. Therefore, these models
can be inaccurate when applied to flows with strong variations in
their thermophysical properties [1,2], such as supercritical fluids or
hypersonic flows. Understanding the behavior of flows subject to strong
property gradients is critical for several engineering applications, such
as heat exchangers, supersonic aircraft, turbomachinery, and various
applications in the chemical industry [3–7]. Even incompressible fluids,
such as water, can present large changes in viscosity when subjected to
temperature variations.

∗ Corresponding author.
E-mail address: R.G.DiezSanhueza-1@tudelft.nl (R.D. Sanhueza).

For incompressible constant-property flows, the governing param-
eter in the description of turbulent boundary layers is the Reynolds
number. For compressible flows, the Mach number and the associated
changes in properties become additional parameters that characterize
turbulent wall-bounded flows. From past studies, it is known that
differences between a supersonic and a constant-property flow can be
explained by simply accounting for the mean fluid property variations,
as long as the Mach number remains small [8]. This result is known
as Morkovin’s hypothesis [9]. DNS of compressible channel flows [10]
also suggest that in the near-wall region most of the density and
temperature fluctuations are the result of solenoidal ’passive mixing’
by turbulence. Previous work by Patel et al. [11] has provided a
mathematical basis for the use of the semi-local scaling as proposed
by Huang et al. [12]. It was concluded that under the limit of small
property fluctuations in highly turbulent flows, a change in turbu-
lence is governed by wall-normal gradients of the semi-local Reynolds
number, defined as

𝑅𝑒⋆𝜏 ≡
√

𝜌∕𝜌𝑤
𝜇∕𝜇𝑤

𝑅𝑒𝜏 , (1)
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where 𝜌 is the density, 𝜇 dynamic viscosity, the bar denotes Reynolds
veraging, the subscript 𝑤 indicates the value at the wall, and 𝑅𝑒𝜏 is the
riction Reynolds number based on wall quantities and the half channel
eight, ℎ. Thus, 𝑅𝑒⋆𝜏 provides a scaling parameter which accounts for
he influence of variable properties on turbulent flows.

With the semi-local scaling framework and the fact that variable
roperty turbulent flows can be successfully characterized by 𝑅𝑒⋆𝜏 ,

two main developments followed. First, in Patel et al. [13], a velocity
transformation was proposed which allows to collapse mean velocity
profiles of turbulent channel flows for a range of different density and
viscosity distributions. Although following a different approach, this
transformation is equivalent to the one proposed by Trettel and Larsson
[14]. Second, this insight has later been used in Pecnik and Patel [3] to
extend the semi-local scaling framework to derive an alternative form
of the turbulent kinetic energy (TKE) equation. It was shown that the
individual budget terms of this semi-locally scaled (TKE) equation can
be characterized by the semi-local Reynolds number and that effects,
such as solenoidal dissipation, pressure work, pressure diffusion and
pressure dilatation, are indeed small for the flows investigated. Based
on the semi-locally scaled TKE equation, Rodriguez et al. [1] derived a
novel methodology to improve a range of eddy viscosity models. The
major difference of the new methodology, compared to conventional
turbulence models, is the formulation of the diffusion term in the
turbulence scalar equations.

While these corrections improve the results of RANS turbulence
models significantly, they can still be subject to further improvements.
Due to these reasons, the present investigation will focus on building
ML models to improve the performance of existing RANS turbulence
models.

1.2. Machine learning

In recent years, machine learning has been successfully applied in
fluid mechanics and heat transfer due to its inherent ability to learn
from complex data, see for instance Chang et al. [15]. While different
ML methods are available, deep neural networks have emerged as
one of the most promising alternatives to improve turbulence model-
ing [16]. These systems are able to approximate complex non-linear
functions by using nested layers of non-linear transformations, which
can be adapted to the context of every application to optimize the usage
of computational resources and to mitigate over-fitting. Different types
of neural networks currently hold the state-of-the-art accuracy record
in challenging domains, such as computer-vision or natural-language
processing [17]. During the last decade, one of the main reasons behind
the success of deep learning has been the ability of neural networks to
approximate general non-linear functions while still providing multiple
alternatives to optimize their design.

Significant works in the context of deep learning applied to CFD can
be found in the studies of Ling et al. [18], who developed deep neural
networks to model turbulence with embedded Galilean invariance, or in
the work of Parish and Duraisamy [19], where field inversion machine
learning (FIML) is proposed in the context of CFD. Despite the abun-
dance of recent works, significant research is still required regarding
the application of ML in the context of CFD, and rich datasets to study
turbulence in complex conditions must still be outlined. The future
availability of datasets to study turbulence in complex geometries is
particularly promising, as this could yield new models with strong
applications to industrial and environmental problems.

The methodology for the present study is based on the FIML frame-
work proposed by Parish and Duraisamy [19]. This methodology fo-
cuses on building corrections for existing RANS turbulence models
instead of attempting to rebuild existing knowledge entirely. In the
FIML framework, the process of building machine learning models is
split into two stages. In the first stage, a data gathering process known
as field inversion is performed, where the objective is to identify an
2

ideal set of corrections for the RANS turbulence model under study.
Then, in the second stage, a machine learning system is trained in
order to replicate the corrections identified. The main advantage of this
procedure is that the training process of a neural network is effectively
decoupled from the CFD solver, thereby improving the efficiency of the
procedure by several orders of magnitude.

For the present work, several modifications are proposed with re-
spect to the study made by Parish and Duraisamy [19] and the sub-
sequent publications of Singh et al. [20,21,22]. The modifications
considered cover different stages of the problem; such as the optimiza-
tion methods employed in field inversion, the generation of automatic
formulas to compute the gradients of the CFD system, the possibility to
automate the process of generating feature groups for the ML system,
and novel methods to improve the stability of the FIML methodology
while making predictions.

2. Fully developed turbulent channel flows

In this work we consider fully developed turbulent channel flows for
which a large number of available DNS studies exist, and for which the
time and space averaged conservation equations can be substantially
simplified.

2.1. DNS database

The DNS database of turbulent planar channel flows, which we
will consider, consists of three different sets of simulations. The first
set represents variable property low-Mach number channel flows with
isothermal walls, heated by a uniform volumetric source to induce an
increase of temperature within the channel [3,13,23]. Using different
constitutive relations for viscosity 𝜇, density 𝜌 and thermal conduc-
tivity 𝜆 as a function of temperature, different DNS cases are used
to study the effect of varying local Reynolds and Prandtl number on
near wall turbulence. The cases with their respective relations for
the transport properties and their corresponding wall-friction velocity
based Reynolds number and local Prandtl number are summarized
in Table 1 (low-Mach number cases). Most of the cases have a fric-
tion based Reynolds number at the wall of 𝑅𝑒𝜏=395. Depending on
the distribution of density, viscosity, and conductivity, the semi-local
Reynolds number 𝑅𝑒⋆𝜏 and the local Prandtl number are either constant,
increasing or decreasing from the walls to the channel center. More
details on the cases can be found in Refs. [3,13,23]. The second
set of DNS consists of high-Mach number compressible channel flow
simulations with air modeled as a calorically perfect gas [14] (high-
Mach number cases). The Mach number ranges from 0.7 to 4 and the
corresponding constitutive laws for the transport properties, 𝑅𝑒𝜏 and
Prandtl number 𝑃𝑟 are summarized in Table 1 as well. The third set of
simulations contains incompressible channel flows [24] (incompress-
ible cases). These cases been added as an additional set to train the
FIML framework to account for a large range in Reynolds numbers.

For all of the variable property DNS cases, it is possible to show
that Morkovin’s hypothesis applies [11]. This hypothesis establishes
that only the averaged values in thermophysical properties can be used
to characterize the changes in turbulence, and that any higher-order
correlations of turbulent fluctuations observed in these properties have
a negligible impact in the mean balances [10,11].

2.2. RANS equations

To model the turbulent channel flows described above, we use the
Reynolds/Favre averaged Navier–Stokes equations. For a fully devel-
oped turbulent channel flow, the only in-homogeneous direction of
the averaged flow corresponds to the wall-normal coordinate, lead-
ing to a set of one-dimensional partial differential equations for the
mean momentum, mean energy and any additional transport equations

for the turbulence quantities used to close the RANS equations. The
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Table 1
DNS database of turbulent channel flows with variable properties (low-Mach) [3,
13], with ideal gases at high-Mach numbers [14], and with constant properties
(incompressible) [24].

Number Case ID 𝜌 𝜇 𝜆 𝑅𝑒𝜏,𝑤 𝑃𝑟𝑤 𝐸𝑐𝜏,𝑤 𝜙

Low-Mach number cases [3,13,23]

1 𝐶𝑃150 1 1 1 150

1 0

0
2 𝐶𝑃395 1 1 1 395 17.55
3 𝐶𝑅𝑒⋆𝜏 𝑇 −1 𝑇 −0.5 1 395 17.55
4 𝑆𝑅𝑒⋆𝜏𝐺𝐿 1 𝑇 1.2 1 395 18.55
5 𝐺𝐿 𝑇 −1 𝑇 0.7 1 395 17.55
6 𝐿𝐿1 1 𝑇 −1 1 150 29
7 𝑆𝑅𝑒⋆𝜏𝐿𝐿 𝑇 0.6 𝑇 −0.75 1 150 31.5
8 𝑆𝑅𝑒⋆𝜏𝐶𝜈 1 𝑇 −0.5 1 395 17.55
9 𝐶𝜈 𝑇 −1 𝑇 −1 1 395 16
10 𝐿𝐿2 1 𝑇 −1 1 395 17.55
11 𝐶𝑅𝑒⋆𝜏 𝐶𝑃𝑟⋆ 𝑇 −1 𝑇 −0.5 𝑇 −0.5 395 17.55
12 𝐺𝐿𝐶𝑃𝑟⋆ 𝑇 −1 𝑇 0.7 𝑇 0.7 395 17.55
13 𝑉 𝜆𝑆𝑃𝑟⋆𝐿𝐿 1 1 𝑇 1 395 17.55
14 𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 𝑇 −1 𝑇 −0.5 1 395 95
15 𝐽𝐹𝑀.𝐺𝐿 𝑇 −1 𝑇 0.7 1 950 75
16 𝐽𝐹𝑀.𝐿𝐿 1 𝑇 −1 1 150 62

High-Mach number cases [14]

17 𝑀0.7𝑅400 437 5.736⋅10−4
18 𝑀0.7𝑅600 652 5.190⋅10−4
19 𝑀1.7𝑅200 322 2.804⋅10−3
20 𝑀1.7𝑅400 663 2.394⋅10−3
21 𝑀1.7𝑅600 ∝ 𝑇 −1 𝑇 0.75 𝑇 0.75 972 0.7 2.135⋅10−3 0
22 𝑀3.0𝑅200 650 4.751⋅10−3
23 𝑀3.0𝑅400 1232 4.185⋅10−3
24 𝑀3.0𝑅600 1876 3.752⋅10−3
25 𝑀4.0𝑅200 1017 5.574⋅10−3

Incompressible cases [24]

26 𝐼𝐶.𝑅𝑒180 180
27 𝐼𝐶.𝑅𝑒550 550
28 𝐼𝐶.𝑅𝑒950 – – – 950 – – –
29 𝐼𝐶.𝑅𝑒2000 2000
30 𝐼𝐶.𝑅𝑒4200 4200

Reynolds/Favre averaged streamwise momentum and energy equations
for a fully developed turbulent channel flow read

𝜕
𝜕𝑦

[(

𝜇
𝑅𝑒𝜏,𝑤

+ 𝜇𝑡

)

𝜕𝑢
𝜕𝑦

]

= −1, (2)

𝜕
𝜕𝑦

[(

𝜆
𝑅𝑒𝜏,𝑤𝑃𝑟𝑤

+
𝑐𝑝𝜇𝑡
𝑃𝑟𝑡

)

𝜕𝑇
𝜕𝑦

]

= −𝐸𝑐𝜏,𝑤

(

𝜇
𝑅𝑒𝜏,𝑤

+ 𝜇𝑡

)(

𝜕𝑢
𝜕𝑦

)2

−
𝜙

𝑅𝑒𝜏,𝑤𝑃𝑟𝑤
, (3)

ith the variables 𝑢 and 𝑇 referring to the Favre-averaged streamwise
elocity and the cross-sectional temperature profiles, respectively. The
ariables 𝑐𝑝, 𝑃𝑟𝑡 and 𝜙 refer to the isobaric heat capacity, the turbulent
randtl number, and an arbitrary volumetric heat source term. The
oordinates 𝑥 and 𝑦 further refer to the streamwise and the wall-normal
irections for the channel flow. The wall based friction Reynolds num-
er, the Prandtl number and the friction based Eckert number are
efined as

𝑒𝜏,𝑤 =
𝜌𝑤𝑢𝜏,𝑤ℎ

𝜇𝑤
, 𝑃 𝑟𝑤 =

𝜇𝑤𝑐𝑝,𝑤
𝜆𝑤

, 𝐸𝑐𝜏,𝑤 = 𝑢2𝜏,𝑤∕(𝑐𝑝,𝑤𝑇𝑤)

= (𝛾 − 1)𝑀𝑎2𝜏,𝑤,
(4)

with 𝑢𝜏,𝑤 =
√

𝜏𝑤∕𝜌𝑤 the friction velocity, ℎ the channel half width, 𝛾
he ratio of specific heats and 𝑀𝑎𝜏,𝑤 = 𝑢𝜏,𝑤∕𝑎𝑤, where 𝜏𝑤 is shear stress
nd 𝑎𝑤 the speed of sound at the wall. Given these non-dimensional
roups, the non-dimensional density, temperature, viscosity, thermal
onductivity are one at the wall, while the non-dimensional isobaric
eat capacity is 𝑐𝑝 = 1 in the whole domain.

The mean momentum and energy equations make use of the Boussi-
esq approximation and the strong Reynolds analogy to model the
urbulent shear stress, the turbulent heat transfer, and the turbulent
3

dissipation in the energy equation (first term on the right-hand-side).
As such, a turbulent eddy viscosity 𝜇𝑡 appears in Eqs. (2) and (3), which
s commonly provided by an eddy viscosity model. While many eddy
iscosity models exist in literature, in this work we choose the Myong–
asagi 𝑘− 𝜀 turbulence model (MK) [25], which has also been used in
ur previous studies to model turbulence in variable property turbulent
hannel flows [1]. The equations for the turbulent kinetic energy 𝑘 and
urbulent dissipation 𝜀 read

𝜇𝑡

(

𝜕𝑢
𝜕𝑦

)2

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑃𝑘

− 𝜌 𝜀
⏟⏟⏟

𝐷𝑘

+ 𝜕
𝜕𝑦

[(

𝜇 +
𝜇𝑡
𝜎𝑘

)

𝜕𝑘
𝜕𝑦

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇𝑘

= 0, (5)

𝐶𝜀1 𝑃𝑘
𝜀
𝑘

⏟⏞⏞⏟⏞⏞⏟
𝑃𝜀

−𝐶𝜀2 𝑓𝜀 𝜌
𝜀2

𝑘
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝐷𝜀

+ 𝜕
𝜕𝑦

[(

𝜇 +
𝜇𝑡
𝜎𝜀

)

𝜕𝜀
𝜕𝑦

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇𝜀

= 0, (6)

with the supporting damping functions

𝑓𝜀 =
(

1 − 2
9
𝑒−(𝑅𝑒𝑡∕6)

2)(

1 − 𝑒−𝑦
⋆∕5

)2
,

𝑓𝜇 =
(

1 − 𝑒−𝑦
⋆∕70

)

(

1 + 3.45
√

𝑅𝑒𝑡

)

,
(7)

and the definition of the turbulent Reynolds number, the semi-locally
scaled wall distance and the eddy viscosity, respectively,

𝑅𝑒𝑡 =
𝜌 𝑘2

𝜇 𝜀
, 𝑦⋆ = 𝑦+

√

𝜌
𝜌𝑤

𝜇𝑤
𝜇

, 𝜇𝑡 = 𝐶𝜇 𝑓𝜇 𝜌 𝑘2

𝜀
. (8)

The constants take the following values: 𝐶𝜀1 = 1.4, 𝐶𝜀2 = 1.8, 𝐶𝜇 =
0.09, 𝜎𝑘 = 1.4 and 𝜎𝜀 = 1.3. Note, the original model uses the wall
istance based on viscous wall units 𝑦+ in the damping functions. Here,
e replaced 𝑦+ with 𝑦⋆ to account for the changes in viscous length

scales due to changes in density and viscosity close to the wall [1].
The turbulent Prandtl 𝑃𝑟𝑡 is set to unity in all cases. For the high-
Mach number cases, a detailed analysis showed that 𝑃𝑟𝑡 ≈ 1 in the
buffer layer, where the largest turbulent heat fluxes can be found.
Similarly, Patel [26] found that 𝑃𝑟𝑡 ≈ 1 in the buffer layer for the low-
Mach number cases in our database. The Python and the Matlab source
codes to solve the set of RANS equations with the associated boundary
conditions can be found on Github [27].

The velocity profiles for a few selected cases with the original MK
turbulence model are shown in Fig. 1. Large deviations occur in flows
subject to strong variable-property gradients. The largest deviations
found in such regimes can be found in the DNS case 𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 from
Table 1. Here, it can be noted that the maximum error margin reaches
a magnitude of 22.8% at the channel center (𝑦 = 𝐻). Based on these
results, it can be noted that the MK turbulence model corresponds to an
interesting target for ML optimization, since there exist large deficits to
be mitigated.

3. Improved field inversion machine learning methodology for
variable property turbulence

In this section we present an improved methodology of the FIML
as proposed by Parish and Duraisamy [19], which is also suitable to
account for turbulence in variable-property flows.

3.1. Field inversion

In order to minimize the difference between the DNS and the
modeled velocity obtained with the RANS approach, the original 𝑘 − 𝜀
equations are modified by introducing field inversion multipliers 𝛽. The
turbulent kinetic energy 𝑘 and the turbulent dissipation 𝜀, Eqs. (5) and
(6), can then be written as

𝑃𝑘 − 𝛽𝑘𝐷𝑘 + 𝑇𝑘 = 0, (9)

𝑃𝜀 − 𝛽𝜀𝐷𝜀 + 𝑇𝜀 = 0. (10)
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Fig. 1. Velocity profiles obtained with the original MK turbulence model using the density and viscosity profiles obtained from DNS. The black dashed lines correspond to the
DNS data, whereas the red solid lines correspond to the RANS simulations.
Contrary to Parish and Duraisamy [19], we multiply the dissipation
rather than the production terms, in order to adhere to energy con-
servation, i.e. turbulent kinetic production also appears in the mean
kinetic energy equation with an opposite sign [28]. On the other hand,
introducing 𝛽𝑘 in the 𝑘-equation can lead to an imbalance of turbulent
roduction and dissipation in the log-layer region. Therefore, we also
resent results where only 𝛽𝜀 is used to perform the field inversion,
ince the 𝜀-equation contains the largest amount of empiricism. Another

reason to modify the dissipation instead of the production terms is
because the production is active in a smaller region of turbulent bound-
ary layers. This implies that field inversion optimizers modifying the
dissipation term have a larger capacity to build corrections in regions
where other budget terms of RANS turbulence models are still active,
such as the diffusion terms.

It is important to note that field inversion optimizers build correc-
tions, which are ideal with respect to the cost function formulated. As a
result, the cost function for the field inversion process must be carefully
designed, to minimize not only the differences between the velocity
profiles, but also the shape of the corrections that will be applied to
the turbulence model. A suitable cost function  is defined as

 =
𝑁
∑

𝑖=1
𝐼𝑈

( 𝑢𝑖 − 𝑢∗𝑖
𝑆𝑈

)2

+ 𝐼𝑘

(

𝛿𝑘
𝑆𝑘

)2
+ 𝐼𝜀

(

𝛿𝜀
𝑆𝜀

)2
, (11)

with individual weights 𝐼𝑈 , 𝐼𝑘 and 𝐼𝜀 for each term in the cost function.
The first term represents the difference between the RANS velocity
profiles (𝑢) and the DNS data (𝑢∗), whereas the subsequent terms are
equivalent to source/sink terms in the turbulence modeling equations.
It can easily be shown that 𝛿 is related to 𝛽 as

𝛿𝑘 = 𝐷𝑘
(

𝛽𝑘 − 1
)

, (12)

𝛿𝜀 = 𝐷𝜀
(

𝛽𝜀 − 1
)

. (13)

Finally, 𝑆𝑈 , 𝑆𝑘 and 𝑆𝜀 are used to normalize the variations in the
cost function, and they are defined as

𝑆𝑈 = 𝑚𝑎𝑥(|
|

𝑢∗|
|

), (14)
(

| | | | | |

)

4

𝑆𝑘 = 𝑚𝑎𝑥
|

𝑃𝑘| , |

𝐷𝑘| , |

𝑇𝑘| , (15)
𝑆𝜀 = 𝑚𝑎𝑥
(

|

|

𝑃𝜀
|

|

, |

|

𝐷𝜀
|

|

, |
|

𝑇𝜀||
)

. (16)

𝛿𝑘 and 𝛿𝜀 are normalized such that the importance factors, 𝐼 , are easier
to interpret among all DNS cases considered in this study. As it can
be seen in the present formulation, the final field inversion study must
include an hyper-parameter optimization analysis for the values of 𝐼𝑈 ,
𝐼𝑘 and 𝐼𝜀. The selection method is based on the elbow method [29],
since it was found that each field inversion shows clear inflection points
(discussed in detail later).

3.1.1. Optimization algorithm
To solve the field inversion problems, we will use gradient-descent

(GD) algorithms. In general, GD algorithms are preferred over Hessian
methods to solve complex non-linear optimization problems across
different fields. Moreover, for our specific application, it can be shown
that the Hessian matrix is non-invertible at the channel center due
to the vanishing gradients near the symmetry plane. Accordingly, the
𝛽 multipliers at the channel center have a negligible effect on the
solution, and thus their influence on the cost function  is nearly zero.
Another favorable property of GD algorithms is that their results yield
continuous spatial distributions due to the smoothness of the gradients
associated with the turbulence model. Furthermore, GD algorithms tend
to leave the 𝛽 multipliers near the channel center at their initial values
(𝛽 = 1), since these algorithms do not modify parameters which are not
relevant to the cost function  .

The GD algorithm used in the present study is based on the tradi-
tional bold drive method [30]. However, we also introduced gradient
inertia to increase the convergence speed. The final approach for the
optimizer is shown in algorithm 1. In this algorithm, the optimizer
starts by taking a traditional step using gradient-descent with added
momentum. The values generated for the gradient inertia and the
optimization parameters are stored using the auxiliary variables 𝑚′ and
𝛽′ respectively. If the updated value for the cost function 

(

𝛽′
)

is
lower than before, the temporary values for 𝑚′ and 𝛽′ are accepted
as the new state of the system. Additionally, the learning rate 𝛼 is
increased according to the expansion ratio 𝑘+. This allows the optimizer
to dynamically search for a learning rate schedule that maximizes

( ′)
the convergence speed. If divergence is detected ( 𝛽 > 𝑛−1), the
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

optimizer retains the 𝛽 parameters from the previous iteration (𝛽𝑛−1),
resets the gradient inertia (𝑚) to the current Jacobian, and decreases
he learning rate according to the ratio 𝑘−. These simple steps allow the

optimizer to perform a line-search process, seeking optimal values for
the learning rate 𝛼. Gradient inertia must be necessarily removed from
the system during the line-search process, since otherwise it cannot
be guaranteed that the algorithm will converge to an optimized 𝛽
distribution.

Algorithm 1 Modified bold drive method with added momentum to
accelerate optimization.
1: while 𝛼𝑛−1 > Threshold do
2: 𝑚′ ← 𝑐 ⋅ 𝑚𝑛−1 + (1 − 𝑐) ∇𝛽𝑛−1
3: 𝛽′ ← 𝛽𝑛−1 − 𝛼𝑛−1 ⋅ 𝑚′

4: if 
(

𝛽′
)

< 𝑛−1 then
5: 𝛽𝑛 ← 𝛽′

6: 𝑚𝑛 ← 𝑚′

7: 𝛼𝑛 ← 𝑘+ ⋅ 𝛼𝑛−1
8: else
9: 𝛽𝑛 ← 𝛽𝑛−1

10: 𝑚𝑛 ← ∇𝛽𝑛−1
11: 𝛼𝑛 ← 𝑘− ⋅ 𝛼𝑛−1
12: end if
13: end while

The recommended values from literature for the parameters 𝑘+ and
− are 1.1 and 0.5, respectively. However, in the present study, we
mploy a more aggressive expansion value of 𝑘+ = 1.2. The constant 𝑐
orresponds to the gradient inertia hyper-parameter. For this variable,
recommended value of 𝑐 = 0.9 can be found across a wide variety

f algorithms described in the literature [31,32]. It was found that
he introduction of the gradient inertia decreased the running times
y a factor three with respect to the original bold drive method. The
roposed algorithm allows to fully automatize the process of field
nversion, and to subsequently run over 450 optimization cases in total.

.1.2. Jacobian matrix calculation
The Jacobian associated with the field inversion process is com-

uted using the discrete adjoint method. In this method, the discretized
ANS equations are written as a residual vector (𝑊 (𝛽), 𝛽) = 0,

that contains one entry per every discretized cell and scalar equation.
The variable 𝑊 (𝛽) corresponds to the vector of discretized degrees of
freedom present in the RANS equations, such as the velocities (𝑢) or the
turbulent scalar quantities 𝑘 and 𝜀. According to the discrete adjoint
method, the Jacobian ∇𝛽 can be calculated as

∇𝛽 = 𝛹𝑇 ⋅
𝜕
𝜕𝛽

+ 𝜕
𝜕𝛽

, (17)

here the vector 𝛹 can be obtained from the following system of linear
quations
[ 𝜕
𝜕𝑊

]𝑇
⋅ 𝛹 = −

[

𝜕
𝜕𝑊

]𝑇
. (18)

The main advantage of the discrete adjoint method is that only the
vector 𝛹 must be calculated from Eq. (18), whereas a direct calculation
method based on chain-rule differentiation would require the compu-
tation of the rank 2 sensitivity matrix 𝜕𝑊 ∕𝜕𝛽. Since the latter matrix
is orders of magnitude larger than the vector 𝛹 , the discrete adjoint
method constitutes a better alternative.

In order to generate explicit formulas for all the entries present in
the matrices 𝜕∕𝜕𝑊 and 𝜕∕𝜕𝛽, we utilize symbolic algebra packages,
such as Sympy [33]. As a result, the coefficients of these matrices are
described by long arithmetic formulas, which can be inserted into the
source code of a function written in any programming language. The
use of explicit formulas increases the speed of our optimizer as any
zero coefficients are immediately cancelled by the algebraic package.
5

Moreover, commonly repeated algebraic sub-terms, such as the eddy
viscosity 𝜇𝑡 = 𝐶𝜇 𝑓𝜇 𝜌 𝑘2∕𝜀, can be replaced by auxiliary variables to
void redundant calculations.

.2. Neural networks

In order to complete the FIML methodology, we construct a pre-
ictive system using neural networks. Our neural networks utilize
yperbolic tangent neurons in their deeper layers, due to their inherent
bility to produce smooth output distributions and since they fulfill the
niversal approximation theorem [34,35]. An early reference to the use
f hyperbolic tangent neurons in the context of fluid mechanics can
e found in the work of Milano and Koumoutsakos [36]. In the first
ayer of our neural networks we introduce logarithmic neurons [37],
hich reduce the dimensionality of the input features, identifying the
est parameter groups relevant to a regression problem. Therefore,
he introduction of logarithmic neurons in neural networks allows
he optimizer to determine which feature groups are optimal in the
ontext of fluid mechanics, even in the absence of previous modeling
nowledge.

All the neural networks trained during the current study are based
n a mean-squared error (MSE) loss function for the 𝛿 corrections, plus
n additional L2 regularization term for the weights 𝑤 in the neural
etwork:

𝑡𝑟𝑎𝑖𝑛 =
1
𝑁

𝑁
∑

𝑖=1

(

𝛿𝑁𝑁,𝑖 − 𝛿𝐹𝐼,𝑖
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
‖𝛿𝑒𝑟𝑟𝑜𝑟‖2

+𝜆 1
𝑀

𝑀
∑

𝑗=1
𝑤2

𝑗

⏟⏟⏟
‖𝑤‖

2

. (19)

In Eq. (19), the variables 𝛿𝑁𝑁 and 𝛿𝐹𝐼 correspond to the corrections
predicted by each neural network and the reference field inversion
data, respectively. The hyper-parameter 𝜆 corresponds to a constant
which must be calibrated to mitigate over-fitting in the system. During
the current study, the values for 𝜆 were calibrated by applying the
elbow method to the training datasets exclusively, without considering
external cross-validation datasets. This is possible, since the inflection
point in the residual errors ‖𝛿𝑒𝑟𝑟𝑜𝑟‖ with respect to the training data
can be tracked to establish the magnitude at which 𝜆 is able to pro-
duce changes, and likely mitigate over-fitting. Therefore, all DNS cases
which are not included in the training set of a neural network can be
considered as purely held-back test cases.

Beyond reducing over-fitting, another important consequence of
introducing L2 regularization is that the final neural networks will
assign small weights, and thus low importance, to the input features
𝑋𝑖 which do not facilitate the regression process. Therefore, the fea-
ture importance rankings generated after using L2 regularization will
display more consistent trends regarding the most valuable features to
perform predictions. The methodology used to rank the importance of
every feature in the neural networks is presented later in Section 3.4.

3.2.1. K-fold validation
Due to the relatively small size of our database for the machine

learning procedure, in combination with the diversity of cases, it
proved difficult to split the data between training, cross-validation
(CV) and test sets. Picking relevant CV sets that were unbiased by
prior turbulence modeling knowledge is difficult, since the uniqueness
of many DNS samples contained in our database implied that the
cases picked for cross-validation could greatly underestimate the error
margins found in the test set. As a result, employing CV sets proved
to be ineffective. Therefore, the study was performed using the K-
fold validation method [38]. This method assesses the robustness of
machine learning models by picking ‘‘K’’ random training sets, and
subsequently evaluating the results with the remaining test set. If a
large variance is detected among the K-fold trials, this may indicate
that more data is required to train the ML system effectively, or that
a different ML architecture is required. The K-fold validation method
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Table 2
Configuration considered during the implementation of the K-fold validation methodology. All test
cases are marked with checkmarks.

Case ID K-1 K-2 K-3 K-4 K-5 K-6 K-7 K-8 K-9 K-10

Low-Mach number cases
𝐶𝑃 150 ✓ ✓

𝐶𝑃 395 ✓ ✓ ✓

𝐶𝑅𝑒⋆𝜏
𝑆𝑅𝑒⋆𝜏𝐺𝐿 ✓

𝐺𝐿 ✓

𝐿𝐿1 ✓

𝑆𝑅𝑒⋆𝜏𝐿𝐿 ✓ ✓

𝑆𝑅𝑒⋆𝜏𝐶𝜈 . ✓

𝐶𝜈 ✓ ✓ ✓

𝐿𝐿2 ✓

𝐶𝑅𝑒⋆𝜏 𝐶𝑃𝑟⋆ ✓ ✓ ✓ ✓

𝐺𝐿𝐶𝑃𝑟⋆ ✓ ✓ ✓

𝑉 𝜆𝑆𝑃𝑟⋆𝐿𝐿 ✓ ✓

𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 ✓ ✓ ✓ ✓ ✓ ✓

𝐽𝐹𝑀.𝐺𝐿 ✓ ✓ ✓

𝐽𝐹𝑀.𝐿𝐿 ✓ ✓ ✓

High-Mach number cases
𝑀0.7𝑅400 ✓ ✓ ✓

𝑀0.7𝑅600
𝑀1.7𝑅200 ✓ ✓

𝑀1.7𝑅400 ✓

𝑀1.7𝑅600 ✓

𝑀3.0𝑅200 ✓ ✓

𝑀3.0𝑅400
𝑀3.0𝑅600 ✓

𝑀4.0𝑅200 ✓ ✓ ✓ ✓

Incompressible cases
𝐼𝐶.𝑅𝑒180 ✓

𝐼𝐶.𝑅𝑒550 ✓ ✓ ✓

𝐼𝐶.𝑅𝑒950 ✓ ✓ ✓

𝐼𝐶.𝑅𝑒2000 ✓

𝐼𝐶.𝑅𝑒4200 ✓
corresponds to one of the best alternatives available to assess the
performance of ML systems trained with small datasets [39].

The test sets for the different K-fold combinations are listed in
Table 2. The DNS cases for testing the machine learning framework are
picked randomly, except for the K-1 set. The test set K-1 contains cases
with the most extreme property variations, such as 𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 and
𝑀4.0𝑅200. As a result, the K-1 set represents a scenario where challeng-
ing predictions are required, despite the absence of adequate training
samples. The incompressible DNS cases from the work of Jiménez and
Hoyas [24] are added to the test sets of the K-fold validation trials
(K-2 to K-10) in order to assess the response of the ML system for
different Reynolds numbers. Each trial in the K-fold methodology is
an independent machine learning study, with five or six completely
unknown test cases for model validation; see Table 2. All the hyper-
parameters in the model were calibrated by using only the training set
in conjunction with the elbow method. The test cases were not used for
the calibration of any of hyper-parameter in the study.

The selection procedure to determine the final machine model for
the study is based on finding the smallest neural network architecture
which is capable of fitting the training data available for the K-fold
combination (K-1) listed in Table 2. According to the principles of the
elbow method, the smallest system which can fit the training data is
less likely to produce over-fitting than larger machine learning models.
The K-fold set (K-1) is chosen, since this combination represents a
realistic scenario where a selection of the most challenging CFD cases
remain hidden from the training data. In summary, the neural network
architecture is not pre-conditioned to perform well under the most
complex test conditions available.

3.2.2. Weighted relaxation factor
In a preliminary analysis of the ML methodology, spurious oscil-

lations could occur in the predicted 𝛿 corrections. Such oscillations
could result in numerical instabilities in the CFD-solver. To avoid this
6

behavior, a novel weighted relaxation factor method is introduced,
which is able to filter spurious oscillations in the predicted 𝛿 correc-
tions. To explain this, we show in Fig. 2 the turbulent kinetic energy
budgets (𝑃𝑘, 𝐷𝑘, 𝑇𝑘) and three profiles of 𝛿 corrections for the DNS case
𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 . The variable 𝛿𝐹𝐼 presents the ground-truth labels obtained
through field inversion, whereas 𝛿𝑖𝑛𝑖 corresponds to a fictitious set of
corrections with added noise in the form of 𝛥 = 0.6 𝑦3 𝑠𝑖𝑛 (8𝜋𝑦). The
goal of the weighted relaxation factor is to obtain corrections 𝛿𝑀𝐿 that
closely represent 𝛿𝐹𝐼 , without any significant oscillations.

The derivation of the weighted relaxation factor starts by noting
that the magnitude of the final corrections that will be applied to the
RANS model, 𝛿𝑀𝐿, only corresponds to a fraction, 𝛼, of the original
corrections predicted by a neural network, 𝛿𝑖𝑛𝑖. This relation can be
stated as

‖

‖

𝛿𝑀𝐿
‖

‖

= 𝛼 ‖

‖

𝛿𝑖𝑛𝑖‖‖ , (20)

or alternatively,

𝛿 =
𝑁
∑

𝑖=1
𝛿2𝑀𝐿,𝑖 =

𝑁
∑

𝑖=1

(

𝛼 𝛿𝑖𝑛𝑖,𝑖
)2 (= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). (21)

In order to assess the true compatibility of the final 𝛿𝑀𝐿 corrections
with a given RANS turbulence model, we express 𝛿𝑀𝐿 in Eq. (21) as 𝛽
times the production term 𝑃 , namely

𝛿𝑀𝐿 = 𝛽𝑃 (22)

in the corresponding turbulence modeling equations. The key idea
to build a robust methodology is to recognize that spurious machine
learning corrections, such as 𝛿𝑖𝑛𝑖 in Fig. 2, create large oscillations in
the 𝛽 multipliers defined by Eq. (22). As a result, the introduction of
a L2-regularization hyper-parameter, 𝜆, for these 𝛽 multipliers would
immediately penalize the presence of large oscillations in regions where
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Fig. 2. Turbulence budgets for the optimized k-equation of the MK turbulence model after applying the independent set of 𝛿𝑘 corrections obtained during the field inversion
study for the DNS case 𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 . The initial machine learning predictions (𝛿𝑖𝑛𝑖), shown in blue, contain the fictitious perturbation term: 𝛥 = 0.6 𝑦3 𝑠𝑖𝑛 (8𝜋𝑦). The red line 𝛿𝑀𝐿
corresponds to the corrections obtained after applying the weighted relaxation factor methodology.
RANS turbulence models are inactive. The cost function associated with
this problem is

𝛽 =
𝑁
∑

𝑖=1

(

𝛿𝑀𝐿,𝑖 − 𝛿𝑖𝑛𝑖,𝑖
)2 + 𝜆𝛽2𝑖

=
𝑁
∑

𝑖=1

(

𝑃𝑖𝛽𝑖 − 𝛿𝑖𝑛𝑖,𝑖
)2 + 𝜆𝛽2𝑖 .

(23)

Eq. (23) states that the final 𝛽 multipliers must produce the greatest
degree of similarity between 𝛿𝑀𝐿 and 𝛿𝑖𝑛𝑖, while minimizing the mag-
nitude of ‖‖

‖

𝛽2‖‖
‖

according to a regularization hyper-parameter 𝜆. In order

to minimize the cost function defined in Eq. (23), its Jacobian can be
forced to form a null vector:

∇𝛽𝛽 = 0. (24)

Replacing Eq. (23) into the previous condition, yields the following
element-wise array equation:

𝑃
(

𝑃𝛽 − 𝛿𝑖𝑛𝑖
)

+ 𝜆𝛽 = 0. (25)

Re-arranging the terms of Eq. (25) further reveals that

𝛽 =
𝛿𝑖𝑛𝑖 𝑃
𝜆 + 𝑃 2

. (26)

ote, Eq. (26) is evaluated element-wise. Replacing Eq. (26) back into
q. (22) gives a direct residual equation for 𝜆

𝜆 =
𝑁
∑

𝑖=1

(

𝛿𝑖𝑛𝑖,𝑖
𝑃 2
𝑖

𝜆 + 𝑃 2
𝑖

)2

−
𝑁
∑

𝑖=1

(

𝛼 𝛿𝑖𝑛𝑖,𝑖
)2 = 0. (27)

ince Eq. (27) only contains one unknown (𝜆), a simple root-finding
lgorithm can be used to solve this optimization problem, such as the
ewton–Raphson method. For reference, the gradient of the previous

esidual equation (𝜆) is given by the following formula:

𝜆𝜆 = −2
𝑁
∑

𝑖=1

(

𝛿𝑖𝑛𝑖,𝑖𝑃 2
𝑖
)2

(

𝜆 + 𝑃 2
𝑖
)3

. (28)

After obtaining the regularization hyper-parameter, 𝜆, the final ML
corrections (𝛿𝑀𝐿) are given by:

𝛿𝑀𝐿 =
𝛿𝑖𝑛𝑖 𝑃 2

𝜆 + 𝑃 2
. (29)

Eqs. (27)–(29) constitute the only required components to imple-
ment our weighted relaxation factor methodology in a computer envi-
ronment. The results depicted in Fig. 2, show clearly that the weighted
7

a

relaxation factor method is able to filter the added noise. The final
distribution obtained, effectively resembles the ground-truth labels,
𝛿𝐹𝐼 , which were hidden from the system.

3.3. Final framework

The final machine learning framework for the study can be found
in Fig. 3, which is split into two stages. In the first stage, shown in
Fig. 3(a), DNS data is used to generate 𝛿𝐹𝐼 field inversion corrections
for each case, and to subsequently train neural networks that can
predict the identified 𝛿(𝑦) distributions. The predictions of the neural
networks are based on stacks of input features 𝑋𝑓 extracted from
the uncorrected version of the MK model (𝛿 = 0). One of the main
differences between the framework described in Fig. 3(a) and the
original approach proposed by Parish & Duraisamy [19] is that our field
inversion corrections 𝛿 are subject to L2-regularization based on their
absolute magnitude as a fourth budget-term in the RANS equations,
instead of their values as relative 𝛽 multipliers with respect to existing
RANS terms. This enables the field inversion optimizer to build correc-
tions that follow patterns which are not captured by the baseline RANS
models. Additionally, the framework described in Fig. 3(a) has been
adapted to account for the changes observed in flows subject to strong
variations in their thermophysical properties, namely, 𝜌, 𝜇 and 𝜆. The
approach effectively decouples the analysis of the RANS momentum
equations from the energy equation or any associated equation-of-state
for fluids. This is achieved by passing the DNS profiles for the density
and dynamic viscosity to the baseline RANS turbulence models during
the field inversion process. However, one challenge introduced by this
procedure is that the stack of input features 𝑋𝑓 to predict the field
inversion corrections 𝛿 must be based on accurate estimations of the
profiles for the thermophysical properties of fluids.

This challenge was solved in the second stage of the ML framework
presented in Fig. 3(b), where an iterative feedback loop is used to
create predictions for unknown CFD cases. At the start of this feedback
loop, the uncorrected version of the MK turbulence model is solved,
which yields an initial estimate for 𝜌 and 𝜇. Then, a stack of input
features 𝑋𝑓 is created to describe the behavior of the uncorrected MK
model, and to subsequently generate neural network predictions for the
optimal 𝛿𝑀𝐿(𝑦) corrections. Before injecting these 𝛿𝑀𝐿 corrections into
a CFD solver, the weighted relaxation factor methodology described
in Section 3.2.2 is applied. The final 𝛿𝑀𝐿(𝑦) corrections are then
inserted back into the MK turbulence model as an explicit source term
(+ 𝛿𝑀𝐿(𝑦)). The feedback loop described in Fig. 3(b) is completed by
generating a new estimate for the thermophysical properties 𝜇 and 𝜌,

nd by repeating the previous steps until convergence is achieved.
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Fig. 3. Final framework established for the FIML methodology. The dashed lines indicate the additional steps which are necessary to handle the presence of variable-property
flows, with respect to the original scheme proposed by Parish and Duraisamy [19]. The diagram on the left (a) presents the methodology employed to obtain field inversion
corrections and to train deep learning systems, whereas the scheme on the right (b) corresponds to the feedback loop used to perform predictions at runtime.
Fig. 4. Neural network architecture created to predict the field inversion corrections (𝛿𝑘) required by the MK turbulence model.
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Fig. 5. Application of the elbow method to determine the magnitude of 𝐼𝑈 during
he initial field inversion study for the MK turbulence model (𝐼𝑘 = 𝐼𝜀 = 1). The black

dashed line represents the position where 𝐼𝑈 = 100.

The final neural network architecture is depicted in Fig. 4. The
neural network contains only three logarithmic neurons in the initial
layer and 77 trainable parameters. The initial stack of features, pre-
sented in Fig. 4, corresponds to different physical quantities that may be
considered by the neural network. The previous quantities are intended
to be computed based on the initial turbulence budgets found in the
uncorrected RANS equations. The sub-scales 𝑀𝑘 and 𝑀𝜀 correspond
to references used to normalize the scalar fields 𝑘 and 𝜀 based on the
magnitude of the destruction terms in the RANS equations:

𝑀𝜀 =
𝑆𝑘 , 𝑀𝑘 =

𝜌𝑤𝑀2
𝜀 . (30)
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𝜌𝑤 𝑆𝜀
.4. Interpretation of machine learning results

Regarding the interpretation of the final machine learning results,
he integrated gradients (IG) [40] method was used to estimate the im-
ortance of every feature passed to the neural network shown in Fig. 4.
his method performs a numerical integration for the gradients of the
L predictions (𝛿(𝑋)) with respect to the stack of input features 𝑋, fol-

owing a linear path starting from a common baseline state 𝑋0 [40,41]:

𝐺𝑖 = (𝑋𝑖 −𝑋𝑖,0) ∫

1

𝛼=0

𝜕
𝜕𝑋𝑖

[

𝛿(𝑋0 + 𝛼(𝑋 −𝑋0))
]

𝑑𝛼. (31)

In Eq. (31), the term 𝐼𝐺𝑖 corresponds to the importance score assigned
to every feature 𝑋𝑖 passed to the neural network. Here, 𝑋0 represents
the average values of every feature at each 𝑦-location 𝑋0 = 𝑋0(𝑦). The
main benefit of this method is that the final scores are not subject to the
sensitivity of the ML predictions with respect to infinitesimal changes in
𝑋𝑖, but rather represent the importance of global changes in the input
features.

4. Field inversion results

This section will describe the results of the FIML study for the MK
turbulence model. First, the different hyper-parameter combinations for
the field inversion study will be analyzed. Then, the observed trends in
the final machine learning predictions will be presented, followed by a
brief discussion of the results.

The field inversion study of the MK turbulence model focuses on de-
termining the values of the hyper-parameters 𝐼𝑈 , 𝐼𝑘 and 𝐼𝜀 in Eq. (11).
In the first combination, an equal importance is assigned to the correc-
tions used in each scalar equation (𝑘 and 𝜀) by setting 𝐼𝑘 = 𝐼𝜀 = 1.
The value of 𝐼𝑈 was calibrated by applying the elbow method to the

system. The results obtained can be found in Fig. 5, where it can be
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Fig. 6. Effect of the cross-interactions between 𝐼𝑘 and 𝐼𝜀 for 𝐼𝑈 = 100 during the field inversion study for the MK turbulence model considering the DNS case 𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 . The
corrections (𝐼𝑘 , 𝐼𝜀) = (1,−) and (𝐼𝑘 , 𝐼𝜀) = (−, 1) refer to studies where independent sets of 𝛿𝑘 and 𝛿𝜀 corrections were generated without their counterpart in the MK turbulence
model.
Fig. 7. Independent set of field inversion corrections 𝛿𝑘 and 𝛿𝜀 obtained for the MK turbulence model while employing 𝐼𝑈 = 100.
seen that clear inflection points exist for each case. For any subsequent
ML analysis, it is possible to either choose the 𝐼𝑈 values located at
the inflection point of each DNS case, or to pick a common value of
9

𝐼𝑈 for all cases. It was decided to pick a common value of 𝐼𝑈 = 100
for all DNS cases, since this creates smooth trends across the whole
dataset. Additionally, selecting a unique value for 𝐼𝑈 can simplify the
creation of deep learning models, since all the target 𝛿𝐹𝐼 corrections

correspond to the solution of a single optimization problem. If different
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Table 3
Error margins for each test case in the different K-fold trials. The percentages under each case name indicate the error margins for the baseline MK turbulence model (left), and
the deep learning predictions (right). All error percentages are calculated using the L-infinity norm for the difference between the velocity profiles of the models and the respective
DNS data.

K-1 𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 𝐶𝜈 𝐶𝑅𝑒⋆𝜏 𝐶𝑃𝑟⋆ 𝑀3.0𝑅200 𝑀4.0𝑅200
23.4% → 4.0% 7.8% → 2.9% 8.3% → 2.2% 9.4% → 5.2% 11.6% → 2.2%

K-2 𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 𝑆𝑅𝑒⋆𝜏𝐿𝐿 𝐺𝐿𝐶𝑃𝑟⋆ 𝑀1.7𝑅200 𝑀4.0𝑅200 𝐼𝐶.𝑅𝑒950
23.4% → 6.3% 4.6% → 2.8% 6.6% → 1.3% 6.6% → 2.4% 11.6% → 5.4% 2.4% → 0.7%

K-3 𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 𝐽𝐹𝑀.𝐺𝐿 𝐽𝐹𝑀.𝐿𝐿 𝑀3.0𝑅600 𝑀4.0𝑅200 𝐼𝐶.𝑅𝑒550
23.4% → 5.2% 9.6% → 4.8% 4.8% → 5.8% 10.0% → 5.9% 11.6% → 2.8% 2.4% → 1.0%

K-4 𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 𝐿𝐿2 𝐶𝑃150 𝑉 𝜆𝑆𝑃𝑟⋆𝐿𝐿 𝑀3.0𝑅200 𝐼𝐶.𝑅𝑒950
23.4% → 10.2% 2.4% → 0.6% 2.9% → 1.1% 3.3% → 1.5% 9.4% → 7.4% 2.4% → 0.6%

K-5 𝐽𝐹𝑀.𝐿𝐿 𝐿𝐿1 𝐶𝜈 𝐶𝑃395 𝑀0.7𝑅400 𝐼𝐶.𝑅𝑒550
4.8% → 3.4% 2.8% → 2.4% 7.8% → 3.2% 2.4% → 1.2% 3.2% → 1.4% 2.4% → 0.9%

K-6 𝐽𝐹𝑀.𝐺𝐿 𝐶𝜈 𝐶𝑅𝑒⋆𝜏 𝐶𝑃𝑟⋆ 𝑀0.7𝑅400 𝑀4.0𝑅200 𝐼𝐶.𝑅𝑒2000
9.6% → 3.3% 7.8% → 4.1% 8.3% → 2.8% 3.2% → 1.5% 11.6% → 2.7% 2.4% → 2.5%

K-7 𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 𝐺𝐿 𝐶𝑅𝑒⋆𝜏 𝐶𝑃𝑟⋆ 𝐺𝐿𝐶𝑃𝑟⋆ 𝑀1.7𝑅200 𝐼𝐶.𝑅𝑒550
23.4% → 4.2% 8.0% → 3.5% 8.3% → 1.5% 6.6% → 3.4% 6.6% → 2.3% 2.4% → 1.1%

K-8 𝐽𝐹𝑀.𝐺𝐿 𝑆𝑅𝑒⋆𝜏𝐺𝐿 𝑆𝑅𝑒⋆𝜏𝐿𝐿 𝑉 𝜆𝑆𝑃𝑟⋆𝐿𝐿 𝑀1.7𝑅400 𝐼𝐶.𝑅𝑒4200
9.6% → 1.0% 3.9% → 3.8% 4.6% → 3.8% 3.3% → 1.6% 4.7% → 1.6% 2.3% → 14.0%

K-9 𝐽𝐹𝑀.𝐿𝐿 𝐺𝐿𝐶𝑃𝑟⋆ 𝐶𝑃395 𝐶𝑃150 𝑀1.7𝑅600 𝐼𝐶.𝑅𝑒180
4.8% → 3.4% 6.6% → 1.4% 2.4% → 1.3% 2.9% → 2.2% 5.0% → 3.0% 3.0% → 1.6%

K-10 𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 𝑆𝑅𝑒⋆𝜏𝐶𝜈 𝐶𝑅𝑒⋆𝜏 𝐶𝑃𝑟⋆ 𝐶𝑃395 𝑀0.7𝑅400 𝐼𝐶.𝑅𝑒950
23.4% → 8.6% 2.3% → 1.6% 8.3% → 2.5% 2.4% → 1.4% 3.2% → 2.2% 2.4% → 0.6%
𝐼𝑈 values were picked for each DNS case, additional training data
might be required to allow the deep learning system to approximate
the selection criterion employed.

The second stage of the hyper-parameter optimization study consists
in analyzing the effect of changing the individual values of 𝐼𝑘 and
𝐼𝜀 in the field inversion results. The effects of varying these hyper-
parameters are depicted in Fig. 6 for the DNS case 𝐶𝑅𝑒⋆𝜏 , which
corresponds to the case with the highest modeling errors using the
MK turbulence model. The results show that different combinations
for the values of 𝐼𝑘 and 𝐼𝜀 yield similar shapes for the corrections,
since only the magnitude of the peaks change. Moreover, even building
independent sets of either 𝛿𝑘 or 𝛿𝜀 corrections yields similar results. It
was verified that the trends observed in Fig. 6 are also present across
all the other DNS cases.

Based on the results presented in Fig. 6, it was decided to study the
effect of building independent sets of 𝛿𝑘 and 𝛿𝜀 corrections. Employing
a unique set of corrections can simplify the subsequent ML study, since
the need to produce two-dimensional output pairs (𝛿𝑘, 𝛿𝜀) is avoided.
By applying the elbow method to calibrate the values of 𝐼𝑈 for each
set of independent predictions, it is found that 𝐼𝑈 = 100 corresponds
to a reasonable approximation as well. The individual corrections of
𝛿𝑘 and 𝛿𝜀 can be found in Fig. 7 for all DNS cases, categorized in
incompressible, high- and low-Mach number cases. Here, it must be
noted that the maximum corrections for the low-Mach number cases
are up to 4.5 times larger than the maximum of the corrections in
the incompressible cases. Moreover, the different peaks and valleys
found in the 𝛿 corrections for each DNS case present different shapes,
relative magnitudes and even 𝑌 ⋆ locations. For a few low-Mach number
cases (right column), the 𝛿𝑘 distributions have values which are almost
entirely positive.

While both 𝛿𝑘 and 𝛿𝜀 corrections appear similar in Fig. 7, a detailed
analysis revealed that the 𝛿𝜀∕𝑆𝜀 corrections contain gradients up to
83.5% higher than the maximum gradients observed for 𝛿𝑘∕𝑆𝑘. Such
sharper gradients would result in training a neural network which
yields large changes in the predicted 𝛿 corrections based on smaller
variations in the input features. Therefore, we decided to build a system
based in 𝛿𝑘∕𝑆𝑘 corrections only.

5. Machine learning predictions

The final ML predictions were obtained by training the neural
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network architecture described in Fig. 4, and subsequently applying
a weighted relaxation factor of 𝛼 = 0.95 in Eq. (27). This hyper-
parameter was found to yield numerically stable CFD predictions for all
cases, without modifying the 𝛿 corrections significantly. The variations
in the error margins for every test case defined within the K-fold
validation trials can be found in Table 3. Here, the percentages for
every validation case refer to the L-infinity norm of the differences
between the velocity profiles for the baseline MK model (left) and the
ML predictions (right) with respect to the DNS data. As can be seen,
the ML predictions reduce the error margins in almost all CFD cases.

The best improvement margin can be found in the case 𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏
from the K-fold trial K-1, where the L-infinity norm of the errors was
reduced from 23.4% to 4.0%. This result is important, since the DNS
case 𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 contains with the highest modeling errors with respect
to the baseline MK model, and it requires the highest level of 𝛿𝑘∕𝑆𝑘
corrections according to Fig. 7. On the other hand, the worst deep
learning predictions can be found in the case 𝐼𝐶.𝑅𝑒4200 from the K-fold
trial K-8, where the L-infinity norm is increased from 2.3% to 14.0%.
This increase in error was expected, since the DNS case 𝐼𝐶.𝑅𝑒4200
has the highest Reynolds number in our database: 𝑅𝑒𝜏,𝑤 = 4200. The
closest 𝑅𝑒𝜏,𝑤 value found in the remaining cases of the DNS database
is 𝑅𝑒𝜏,𝑤 = 2000, which is 2.1 times lower. Thus, the large error is
simply the result of extrapolation. From a broader perspective, it can
be concluded that our ML system is more accurate than the baseline
MK model for the majority of the DNS cases in our database. In the
few cases where deep learning performs slightly worse, the predictions
are still reasonable.

A selection of the results for the K-fold trials with the best (K-1) and
the worst (K-8) deep learning predictions can be found in Fig. 8. Here,
the DNS cases shown contain the highest errors in the ML predictions
for the velocity profiles within each K-fold trial. As can be observed
in the sub-figures, the ML predictions (blue) for the velocity profiles
are substantially closer to the DNS data (black) than the baseline MK
model (red). The only exception in the sub-figures is the case 𝐼𝐶.𝑅𝑒4200
within the K-fold trial (K-8), where the ML system was required to
extrapolate as it was discussed before. Furthermore, Fig. 8 also presents
the 𝛿𝑀𝐿,𝑘 corrections predicted by deep learning (blue), together with
the reference 𝛿𝐹𝐼,𝑘 field inversion data (black). In most cases, the
𝛿𝑀𝐿,𝑘 corrections are qualitatively similar to 𝛿𝐹𝐼,𝑘, although significant
differences can be observed at a given 𝑦⋆ location. However, these
differences are small in magnitude, and the results indicate that they

only produce minor changes in the velocity profiles.
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Fig. 8. Selection of results at the extreme ends of the test error ranking for the K-fold validation trials after generating ML predictions for the independent sets of 𝛿𝑘 corrections
required by the MK turbulence model. The upper 𝑈+ curves represent the initial RANS velocity profiles (red lines), the deep learning velocity predictions (blue lines) and the
reference DNS data (black dotted lines). The lower 𝛿𝑘∕𝑆𝑘 curves present the deep learning predictions after applying a weighted relaxation factor of 0.95 (blue lines) and the
ground-truth labels for the field inversion values (black dotted lines).
The results for the DNS case 𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 are analyzed in greater
detail in Fig. 9. Here, a comparison is presented for the distribution
in the errors of the velocity profiles between the baseline MK model
and the ML predictions. The results for the ML predictions were sam-
pled across all K-fold trials where the case 𝐽𝐹𝑀.𝐶𝑅𝑒⋆𝜏 appeared as a
validation case. The shaded area (gray) corresponds to the maximum
and minimum bound of the ML errors observed across all the different
K-fold trials. As can be observed, all the deep learning predictions
are substantially more accurate than the baseline MK model. As it
was discussed before, the 𝐽𝐹𝑀.𝐶𝑅𝑒⋆ case is the most challenging.
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𝜏

Therefore, the stability observed in the deep learning predictions for
this DNS case shows that our ML architecture is able to achieve a robust
behavior even in the presence of adverse modeling conditions.

The results of the non-dimensional feature importance ranking can
be found in Fig. 10, which is determined using the integrated gradients
(IG) method described in Section 3.4. The eddy viscosity 𝜇𝑡∕𝜇𝑤 is the
most important feature in the ranking. From a physical perspective, the
eddy viscosity is the leading parameter that determines the diffusion
of momentum, the turbulent kinetic energy and its dissipation. Other
features, such as the turbulent production rate 𝑃 ∕𝑆 , the turbulent
𝑘 𝑘
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𝐽

Fig. 9. Results of the uncertainty quantification process followed for the DNS case
𝐹𝑀.𝐶𝑅𝑒⋆𝜏 while employing the results of the K-fold validation runs K-1, K-2, K-3,

K-4, K-7, K-10 after the prediction of the independent set of 𝛿𝑘 corrections for the MK
turbulence model. The gray area corresponds to the maximum deviations observed in
the neural network predictions across all K-fold trials.

kinetic energy 𝑘∕𝑀𝑘, the specific dissipation rate 𝜀∕𝑀𝜀 show less
importance. On the other hand, the relatively low importance of the
density and dynamic viscosity indicate that their variations are ac-
counted for in 𝑌 ⋆. This is in agreement with the modeling work
performed by Rodriguez et al. [1].

6. Conclusions

In this paper we used machine learning to improve the predictions
of RANS turbulence modeling in channel flows subject to strong vari-
ations in their thermophysical properties. The methodology is based
on a technique known as FIML proposed by Parish and Duraisamy
[19]. In order to apply this method for our study, we have introduced
several adaptations. For the field inversion methodology, we suggested
a bold drive method with added momentum to drive the field inversion
optimization proved to be stable and numerically efficient in over 450
optimization runs. As a result, this method can operate automatically
requiring minimal attention from the user. The use of symbolic algebra
solvers to generate expressions for the entries present in the matrices
required by the discrete adjoint method in CFD is a valuable alternative,
since the closed-form expressions generated are sparse-efficient. The
overall shape of the corrections obtained can be controlled by employ-
ing cost functions containing adequate conversion terms (e.g., 𝛽 vs. 𝛿).
Furthermore, L2 regularization helped to mitigate over-fitting and to
reduce the importance of non-essential features.

Regarding the machine learning methodology, the use of an initial
layer of logarithmic neurons followed by layers of hyperbolic tangent
12
neurons resulted in a robust architecture, which was able to yield accu-
rate predictions in nearly every case tested. By introducing a weighted
relaxation factor methodology, the model was able to recover valuable
trends from otherwise spurious predictions. It was demonstrated that
our final deep learning predictions coupled with a CFD solver remained
stable during all the cases tested. The overall behavior of the ML
models indicates that the system is able to act as an excellent non-
linear interpolator between DNS cases which are well-represented in
the training set, and that the majority of the predictions for DNS cases
sparsely represented in the dataset also show positive improvements.
For the most challenging case, the baseline turbulence model produced
an error of 23.4%, while the deep learning model displayed an average
error of only 6.2%. Here, the error refers to the L-infinity norm of the
difference between mean velocity of the model and the mean velocity of
the DNS case. The case with the highest modeling errors only presented
minor deviations in its velocity profile, and it corresponded to a case
where the neural network was performing an extrapolation.

Finally, the importance of every feature in our system was ranked
using the integrated gradients (IG) method. The IG method showed
that the dimensionless eddy viscosity 𝜇𝑡∕𝜇𝑤 corresponded to the most
important feature, and that the semi-locally scaled wall distance 𝑦⋆ had
greater importance than the individual values of 𝜇∕𝜇𝑤 or 𝜌∕𝜌𝑤, since
the variation in thermophysical properties is already accounted for in
𝑦⋆.
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