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Abstract

In the past, many research on the topic of size effect on concrete structures were mainly focused on the phe-
nomenon of size effect in flexural cracking. The result of those studies can be found today in the concrete
structure design specifications of well-known building codes, such as the Eurocode. Nevertheless, the in-
clusions of the results of those studies into the design specifications are still minimum and therefore, it is
necessary to conduct more studies on size effect, especially on other types of cracking.

In this thesis, an investigation focused on the size effect in shear tension cracking at prestressed concrete
beams was conducted. The model used for investigating the size effect is a prediction that a shear tension
crack will occur when the principal tensile stress at a certain location on the web of a beam is equal to the
concrete mean uniaxial tensile strength

(
σ1 = fctm

)
. The investigation was conducted by studying prema-

ture shear tension cracking on a group of several I-profile prestressed reinforced concrete beams, called the
trusted specimens, which were experimented by Hanson (1964), Choulli (2005), and Elzanaty (1986) under
four-point bending tests. These tested beams were numerically investigated using linear elastic finite ele-
ment analysis (LEFEA) with an aim to find the nearly realistic principal tensile stresses that caused the shear
tension crack to initiate below the designated tensile strength of the beams.

To study the size effect, the obtained principal tensile stress distributions were analyzed using two new
approaches proposed by the author, namely the σ1 area approach and the ratio-of-distances approach. The
σ1 area method is a technique for detecting a structural size dependency of the uniaxial tensile strength by
comparing rectangles which areas represents a group of σ1 values that have a higher likelihood in achiev-
ing the deviated values of fctm and initiate shear tension cracking on the web of the trusted specimens. In
contrast, the ratio-of-distances approach investigates the size dependency of the uniaxial tensile strength by
observing the locations of σ1max where a shear tension crack initiated in the web of each trusted specimen
under an assumption that a shear tension crack is more likely to originate from near the beam neutral axis
instead of near the web-flange junction due to the change of thickness at that interface.

In conclusion, the result of the investigation was presented. Theσ1 area approach confirmed the presence
of size effect in shear tension cracking at the trusted specimens by giving a relation that showed a tendency
for the smaller specimens to have a higher resistance towards principal tensile stresses compared to the larger
specimens. The ratio-of-distances result, on the other hand, implied that the approach has failed to detect
the presence of size effect. In that result, the shear cracks from the smaller specimens and the shear cracks
from the larger specimens had similar starting points locations, at which the σ1max was located.

In addition, several recommendations are provided for future studies on size effect in shear tension crack-
ing. It was recommended to do research this topic on different physical problems and shear tension cracking
with the presence of flexural cracks.
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1
Introduction

In today’s engineering practice, engineers are well aware that life-size structures, especially the ones that were
made of quasi-brittle material such as concrete, tend to fail prematurely at a stress level that is lower than the
structure’s designated strength. This phenomenon is commonly known as the size effect. The size effect oc-
curs because the material used to build a life-size structure has more strength deviation when compared with
the same material used in an experimental-size structure due to material strength randomness. The discov-
ery of the size dependency of nominal strengths of structure contradicts the assumption of classical theories
of elasticity and plasticity in which it is stated that a nominal strength is size independent.

In the past, numerous studies on the topic of size effect on concrete structures were conducted with an
aim to prevent the occurrence of premature cracks on structural members. Many of those studies were mainly
focused on the phenomenon of size effect in flexural cracking and the result of those studies can be found
today in the concrete structure design specifications of well-known building codes, such as the Eurocode.
In the Eurocode, the inclusions of size effect can be recognized in expression 3.23 for defining the concrete
flexural strength

(
fctm, f l

)
and expression 6.2.a for defining the shear resistance

(
VRd ,c

)
in members that do

not require shear reinforcement. Nevertheless, the inclusions of the results of those studies into the design
specifications are still minimum and therefore, it is necessary to conduct more studies on size effect, espe-
cially on other types of cracking.

In the Netherlands, the studies on size effect can be related to the recent reassessment process on the
strength of dated concrete structures around the country performed by its government. In this on-going re-
assessment process, the government is working with their engineers to do evaluations on those structures
that include premature crack occurrence as one of the evaluation points. The goal of this evaluation is to
know if the old structures can still be safely used for another several decade before there is a necessity for
them to be replaced. The knowledge about the size effect comes as a basis for the engineers to gain the actual
nominal strength of the structures and to help them determine the additional service lifetime of those aged
structures.

As an addition to the studies on the size dependency of structural strengths, the author presented this
thesis which was aimed to answer the following research questions:

1. Is there any presence of size effect regarding the resistance of prestressed concrete beams on shear tension
cracking?

2. Is the resistance of the shear tension crack at the web-flange junction higher than anywhere in the web?

The research for this thesis was focused on the size effect in shear tension cracking on prestressed con-
crete beams. The model used for investigating the size effect is a prediction that a shear tension crack will
occur when the principal tensile stress at a certain location on the web of a beam is equal to the concrete
mean uniaxial tensile strength

(
σ1 = fctm

)
. The subjects of this research were I-profile prestressed concrete

beams which were tested by Hanson (1964), Choulli (2005), and Elzanaty (1986) under four-point flexural
tests. The beams were then numerically investigated using linear elastic finite element analysis (LEFEA) with

1



2 1. Introduction

a goal to find the true principal tensile stress distribution in the beams at the occurrence of the shear tension
crack.

Then, two new approaches proposed by the author were used to observe the principal tensile stress dis-
tributions to detect the presence of the size effect. They are the σ1 area approach and the ratio-of-distances
approach. These approaches are essential for this numerical investigation since the research only involved
experimental-size beams and there was no established approach yet for studying the size effect in shear ten-
sion cracking when the author started this study. These approaches were created to help the author to find an
explanation that can describe the influence of structural size to the deviation of the uniaxial tensile strength
in an I-profile prestressed concrete beam.



2
Literature Review

2.1. Stress
In continuum mechanics, stress is known as the intensity of internal forces inside a material body in equilib-
rium, as shown in Figure 2.1, that is continuously distributed over a specific cross-sectional area of the body
while the body itself is loaded with external forces [9]. The magnitude of stress is defined by the amount of
resultant force per unit area of the surface on which they act.

Figure 2.1: A Material Body in Equilibrium [11]

2.1.1. Normal Stress and Shear Stress
Based on its direction on a plane, stress can be divided into two types of stress components: normal stress
and shear stress. Normal stress is defined as stress that acts in the direction normal to a plane and conversely,
stresses that act in the direction parallel to a plane is called shear stress. In many references, a normal stress
component can be denoted by a σ followed with one or two repeated subscript indexes. For a shear stress
component, it can be denoted by τ or σ followed with two different subscript indexes. The first index indi-
cates the plane at which stress acts on and the second index indicates the direction of stress. For instance,
normal stress working in the direction of x-axis and on an x-plane will be denoted as σx or σxx and shear
stress acting on the x-plane in the direction of y-axis will be indicated as σx y or τx y .

In a 3D Cartesian coordinate system, each plane parallel to a coordinate axis can have three positive com-
ponents of stress: one normal stress component and two shear stress components, as presented in Figure 2.2.
The positive direction of these components depends on the coordinate direction they coincide with. For ex-
ample, on a positive x-plane, a stress component is positive when it acts in the positive coordinate direction
and, conversely, on a negative x-plane, a stress component is positive when it works in the negative coordi-
nate direction. Based on these sign convention descriptions, the positive direction of the stress components

3



4 2. Literature Review

acting of the six sides of a cubic element, that represents a point in a body, can have a definition indicated in
Figure 2.3.

Figure 2.2: Normal Stress and Shear Stress in Positive and Negative Planes [11]

Figure 2.3: Positive Directions of Stress Components on A Cubic Element [11]

Despite having different positive directions, the normal stresses and the shear stresses on each pair of
parallel sides of a cubic element are similar in magnitude. As a result, these stress components can be placed
into groups according to the plane they are located on:

• On x-plane: σxx , σx y , and σxz

• On y-plane: σy x , σy y , and σy z

• On z-plane: σy x , σy y , and σy z

In tensor form, these nine stress components can be presented as a 3 x 3 second-order tensor known
as the Cauchy stress tensor. This stress tensor is often used in stress analysis on material bodies under the
assumption of small deformations. This tensor is a symmetrical tensor by having σx y = σy x , σxz = σzx , and
σy z = σz y , which means that the general stress state of a point inside a body can be characterized by only
six independent normal and shear stress components instead of nine. Following all those descriptions, the
Cauchy stress tensor can be expressed as follows:

σ=
σxx σx y σxz

σy x σy y σy z

σzx σz y σzz

 (2.1)
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In a condition where an element solely experiences a moment, its normal stress component that acted in
the x-axis direction can be computed analytically using the following expression[7]:

σxx = M y E(y)∫
y2 E(y) d A

(2.2)

On the other hand, if there are only axial forces acting of an element, the following formula can be used
to define its normal stress component in the x-axis direction[7]:

σxx = F

A
(2.3)

In case of the shear stress component, it can be calculated analytically using the following formula[7]:

τx y =
V

∫
y E(y) d A

t
∫

y2 E(y) d A
(2.4)

where:

M internal bending moment

y a certain distance in the y-axis direction from the beam neutral axis

E modulus of elasticity

F axial forces acting on the surface of a cross-section

A element cross-sectional area

V internal shear force

t thickness of the element

2.1.2. Plane Stress Situation
In a certain condition, a material body can have a situation in which all stress components on one of its plane
are equal to zero and it is known as the plane stress situation. Plane stress situation on a y-plane causes the
stress at a point to be described only by σx , σy ,and τx y which act on four faces of the cubic element, while
the stress components working on the faces parallel to the y-plane are equal to zero (σz = τxz = τy z = 0), as
presented in Figure 2.5. In other words, the plane stress causes the stress components to become indepen-
dent of y.

Figure 2.4: Plane Stress Situation [7]
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Plane stress situation is frequently used in engineering practice, especially in analyzing a beam. The clas-
sical beam theories, such as Euler-Bernoulli beam theory, made the simplification of on the load modeling
on a beam so that the stress produced in a structural member can be analyzed in a single plane, which, in
this case, is the vertical cross section of a beam. Due to that, the normal and shear stresses are assumed to be
distributed over the depth of a beam. Also, if a very small specimen of a beam at a distance z from the neutral
axis is considered, it is safe to assume that the stresses on that specimen are uniform.

Figure 2.5: Plane Stress Situation Applied in Beam Analysis [11]

2.1.3. Principal Stress
Principal stress is a stress condition at which normal stress component reaches an extreme value while its
shear counterpart has a value of zero. Normally, principal stresses are distinguished into two types of stress:
the maximum principal stress and the minimum principal stress which are often denoted as σ1 and σ2, re-
spectively. Nevertheless, in common engineering practice, σ1 is often used to represent the principal tensile
stress and σ2 is to represent the principal compressive stress. In a condition where the minimum principal
stress is less than zero and the maximum principal stress is zero or negative, a cubic element will experience
a pure compressive state, and in a complete opposite state, that same element will experience a pure tensile
state. Moreover, since principal stress is a vector, its direction is often referred to as the trajectory.

One way of obtaining in-plane principal stress value of a plane stress element is by doing stress transfor-
mation. Through the transformation, the x-y Cartesian coordinate system used to define global normal and
shear stresses of an element will be rotated as much as θ into an x’-y’ coordinate system at which new normal
and shear stress components can be acquired. Furthermore, to get the principal stress values, θ has to reach
a certain angle at which the normal stresses can yield maximum value.

An expression that defines the principal stress value can be obtained through several mathematical deriva-
tions. As a starting point, a plane stress element is cut along an arbitrary inclined plane and one part of its
segments is separated, as shown in Figure 2.6. If the area of the segment is assumed to be ∆A, the area of the
horizontal and vertical faces of the separated segment is ∆A sinθ and ∆A cosθ, respectively. The free-body
diagram of the segment can be seen in Figure 2.6(b).

Then, the unknown normal and shear stress components, σx′ and τx ′y ′ which were generated at the new
x’-y’ coordinate system can be determined using the force equilibrium equation:

ΣFx′ = 0; σx′ =σx cos2θ =σy sin2θ+τx y (2sinθcosθ) (2.5)

ΣFy ′ = 0; τx′y ′ = (σy −σx )sinθcosθ+τx y (cos2θ− sin2θ) (2.6)

Using trigonometric identities sin2θ = 2sinθcosθ, sin2θ = (1−cos2θ)/2, and cos2θ = (1+cos2θ)/2, Equa-
tion 2.5 and 2.6 can be simplified into:

σx ′ = σx +σy

2
+ σx −σy

2
cos2θ+τx y sin2θ (2.7)

σy ′ = σx +σy

2
− σx −σy

2
cos2θ−τx y sin2θ (2.8)
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(a) (b)

Figure 2.6: (a) Plane Stress Element with A Cut (b) Segment of The Cut Plane
Stress Element [7]

τx′y ′ =−σx −σy

2
sin2θ+τx y cos2θ (2.9)

After Equation 2.7, 2.8, and 2.9 are acquired, stress transformation can be applied by substituting the
known values of σx , σy , τx y , and θ in accordance with the given sign convention. It is apparent from these
equations that the magnitude of σx , σy , and τx′y ′ have a dependency on the orientation of the plane stress
element which is represented by θ. To obtain the value of the principal stresses, a certain inclination angle
has to be determined in order for the normal stresses to be able to produce their maximum and minimum
value and that angle θ = θp can be calculated using the following equation:

dσx′

dθ
=−σx −σy

2
(2 sin2θ)+2 τx y cos2θ = 0 (2.10)

which can be solved into:

tan2θp = τx y(
σx −σy

)/
2

(2.11)

Solving Equation 2.11 gives us θp1 and θp2 that describe the direction of maximum and minimum normal
stress. Specifically, the values of 2θp1 and 2θp2 should be 180° apart. Substituting θp1 and θp2 into Equation
2.7 gives:

σ1,2 =
σx +σy

2
±

√(
σx −σy

2

)2

+τ2
x y (2.12)

In addition, substituting θp1 and θp2 into Equation 2.9 yields τx′y ′ = 0. This means that at this orientation,
the plane stress element does not experience any shear stresses and θp1 and θp2 have indeed produced the
principal stresses.

2.2. Shear Tension Crack
Shear tension crack, which also known as diagonal tension crack, is an inclined crack that occurs from an in-
terior point in the web of a concrete beam due to the principal tensile stress reaches the tensile strength of the
beam in an area which is uncracked by the flexural stress. The diagonal crack, as shown in Figure 2.7 together
with other common types of cracks, generally form normal to the direction of the principal tensile stress and
more likely to occur on prestressed concrete beams than on reinforced concrete beam. In an ultimate limit
state, a shear tension crack can cause a diagonal tension failure to a concrete beam with an amount of stir-
rups that is lower than its minimum requirement.
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Figure 2.7: Diagonal Tension Crack Compared with Other Types of Cracks [6]

By neglecting the small contribution of the normal stress component to the y-direction
(
σy y

)
in the

Bernoulli region to the overall stress, the principal tensile stress in the web can be calculated using the Mohr’s
circle in Figure 2.8(b) which produced a simpler mathematical expression [10] than Equation 2.12, as shown
below:

σ1 = σN

2
+

√√√√(
τ2 + σ2

N

4

)
(2.13)

(a) (b)

Figure 2.8: Calculation of Shear Tension Capacity with Mohr’s Circle [10]

After obtaining the σ1 value, the capacity of the beam to resist shear tension crack can be calculated. By
substituting τ=VRd ,ct S

/
bw I and σN =αl σcp into Equation 2.13, an expression for shear tension capacity,

as written in equation 6.4 of Eurocode 2 EN 1992-1-1:2004 [1], is obtained:

VRd ,ct =
I bw

S

√(
fctd

)2 −αl σcp fctd (2.14)

where:

I the second moment of area

bw the width of the cross section at the centroidal axis

S the first moment of area above and about the centroidal axis

αl = lx
/

lpt2 ≤ 1.0 for pretensioned tendons

= 1.0 for other types of prestressing
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lx the distance of section considered from the starting point of the transmission length

lpt2 the upper bound value of the transmission length of the prestressing element

σcp the concrete compressive stress at the centroidal axis due axial loading and/or prestressing

Since this formula is used in an experimental fashion for this study, the mean uniaxial tensile strength(
fctm

)
is used instead of the design tensile strength

(
fctd

)
and σcp is assumed to be equal to σxx . Thus,

Equation 2.14 changes into:

Vcr = I bw

S

√(
fctm

)2 −αl σxx fctm (2.15)

2.3. Uniaxial Tensile Strength
In common engineering practice, uniaxial tensile strength is generally used to define a concrete structure
capacity in resisting tension. Since it is difficult to test a concrete sample in pure axial tension, its value is
often determined from indirect tests at which certain parameters can be measured, such as the modulus of
rupture which comes from a bending test, the splitting strength which is produced by splitting a concrete
cylinder with a line load, or concrete compressive strength from a compression test on concrete cylinder. In
an axial tension experiment, a concrete sample usually shows a strain-stress response that is nearly linear
until it reaches its cracking phase.

2.3.1. Based on Eurocode
In the Eurocode, the uniaxial tensile strength is derived from the value of concrete compressive strength.
According to table 3.1 in Eurocode 2 1992-1-1:2004 [1], the mean uniaxial tensile strength

(
fctm

)
of a concrete

that has a fck value above C50/60 can be determined using the following equation:

fctm = 2.12 ln

(
1+ fcm

10

)
(2.16)

and for a concrete structure that has a fck value equal to or below C50/60, the fctm can be defined with the
following formula [1]:

fctm = 0.3
(

fck
) 2

3 (2.17)

where:

fck characteristic cylinder strength (5%)

fcm mean compressive strength at 28 days

In addition, based on table 3.1, fcm can be found using the following relation [1]:

fcm = fck +8 N
/

mm2 (2.18)

But, because experimental samples usually have better quality control and thus, fewer strength devia-
tions, Equation 2.18 can be replaced with the following relation:

fcm = fck +4 N
/

mm2 (2.19)

2.3.2. Based on ACI
In determining the uniaxial tensile strength, American Concrete Institute (ACI) took the size effect into the
consideration. It is based on the fact that the uniaxial tensile stress (or the cracking stress) tends to decrease
when a volume of concrete subjected to high tensile stress is increased. Hence, larger concrete structural
members tends to crack at a lower tensile stress than at its designated tensile strength. Moreover, this crack-
ing stress is inversely proportional to about the fourth root of the size. For instance, a beam which has its
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depth doubled in size will have its cracking strength decreased by a factor 0.50.25 = 0.84 [3].

According to the ACI, an estimation of the direct cracking strength, fcr , can be obtained using the follow-
ing empirical expression [3]:

fcr = 0.33λ
√

f ′
c in MPa (2.20)

where:

f ′
c cylinder crushing strength

λ factor accounting for the density of the concrete

λ= 1.00 for normal-weight concrete

λ= 0.85 for sand-lightweight concrete

λ= 0.75 for all-lightweight concrete



3
Basis Experiments

The specimens used as the subjects of this numerical investigation were taken from three past experiments on
I-profile prestressed concrete beams. Those experiments are Hanson’s (1964), Choulli’s (2005) and Elzanaty’s
(1986). From all prestressed beams they studied, the author picked some of those beams that specifically
experienced shear tension cracking during their tests. The description of the beams, the test procedure, and
the result of each experiment were briefly described in this chapter.

3.1. Experiment by Hanson
John M. Hanson completed an experiment on prestressed concrete beams with web reinforcement as part of
his graduation project as a Ph.D. student at Lehigh University in 1964. His research was based on the grow-
ing interest of studying the shear strength of concrete and the prestressed concrete beams around the early
1950s. The goal of his experiment was to assess the static ultimate shear strength of his prestressed members
which were designed and fabricated as representative as possible to the actual precast prestressed bridge
girders. The amount of web reinforcement and the length of the shear span were the two main variables of
his investigation.

Test Specimens Description
Hanson conducted 38 tests on 23 doubly symmetric I-shaped cross-section prestressed concrete beams in
his experiment. All twenty-three beams had 9 inches of flange width, 18 inches of total depth and a flange-to-
web-width ratio of 3, which is shown in the beam cross-section picture in Figure 3.1. The prestressed concrete
beams were referred to as the F series, ranging from F-X1 to F-22, and their deformation data was taken with
a 5 inches and a 10 inches Whittemore Strain Gage.

The total span of the beam is divided into two segments: a test segment which was located between the
supports and two reinforced anchorage segments which had a length of 1 feet at each end of the beams, as
shown in Figure 3.1. In addition, all beams, except for F-17 and F-18, were also divided into three imaginary
regions: Region A, B, and C, in which different vertical web reinforcement quantities were given. These re-
gions, which will also be called the specimens in further descriptions, are labeled in a similar fashion as their
beams, but with an additional letter at the end of the name which refers to the region’s letter. For example,
specimen A of the F-1 beam would be named F-1A, and in the same manner, its specimen B would be named
F-1B.

Then, to apply the prestressing force, six high-tensile-strength strands with 7/16 inches diameter were
used. These strands had a straight profile along the length of the beams which added 0.64 percent to the
longitudinal-reinforcement ratio. Pretension was applied to each strand with a nominal initial force of 18.9
kips which gave the beams a total initial design prestressing force of 113.4 kips. The pretensioning caused the
beams to have an initial tensile stress of 210 psi at the top fibers and an initial compressive stress of 2,150 psi
at the bottom fibers.

11
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Figure 3.1: Dimensions and Properties of F Series Test Beams (in Imperial
Units)[6]

Test Procedure
Two types of testing procedure were used in the experiment: the concentrated load test and the uniform load
test. The concentrated load test was applied on all prestressed concrete beams, except on F-17 and F-18.
Each beam tested for the concentrated load test was typically tested in two stages. The end of the first stage
was marked by any failure modes that a beam first experienced. The test was then stopped and the loads
were lifted. After the first failure mode was recorded, the second stage of the test would be initiated on the
remaining intact part of the beam and would end when that remaining part reached its ultimate limit state.
In the test, the point loads were incrementally applied with the amount of approximately 5 percent of the
expected failure load. After each load increment, the beam deflections would be recorded by level reading
the targets proceeded to the nearest 0.01 inches.

On the other hand, the uniform load tests were given to beam F-17 and F-18 using the load arrangement
shown in Figure 3.2. To simulate a uniform loading, two salvaged fire hoses filled with water were centered
on the top flange of the beams. Then, four 8WF steel beams, with each had a length of a quarter of the total
beam span, were used as loading beams to apply the distributed load from the hydraulic jacks. Lateral dis-
placement between the ends of adjacent loading beams was prevented.

The concentrated load test itself had two different loading arrangements. The first arrangement, which
shown in Figure 3.3, was applied on all beams designated for concentrated loading test, with an exception
for F-20, F-21, and F-22 which used the loading arrangement in Figure 3.4. In the first loading arrangement,
two point loads were applied to the beams which resulted in a constant moment region between the loading
locations. In contrast, the second arrangement had a three-point loading system which divided one of the
loading points in the first arrangement into two equal loads.
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Figure 3.2: Testing Arrangement for Uniform Load Test (in Imperial Units) [6]

Figure 3.3: Testing Arrangement for All Concentrated Load Tests except for F-20,
F-21 and F-22 (in Imperial Units) [6]
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Figure 3.4: Testing Arrangement for Concentrated Load Tests on F-20, F-21 and
F-22 (in Imperial Units) [6]

Experiment Result
In conclusion, this experiment by Hanson showed that a prestressed concrete beam with an I-shaped cross
section loaded with concentrated loads can have four different modes of shear failure: crushing of concrete
in the web, shearing of the compression flange, fracture of the web reinforcement, and shear compression.
The first three modes can occur because of the formation of inclined cracks that propagated entirely within
a shear span, and the fourth mode can occur after an inclined crack penetrated the constant moment region
that is adjacent to a shear span.

With the first concentrated loading arrangement, all beams experienced shear failures in their Region B
at the end of the first stage of the test, except on F-9 which had a shear failure in Region A. Then, in the end
the second stage, shear failures occurred in Region A of the tested beams, except on F-9 which have the shear
failure in Region B.

Similarly, the second loading arrangement also caused shear failures in Region B of F-20, F-21 and F-22.
Unfortunately, on the second stage of the test, none of the tested beams reached the expected shear strength.
It was found that shear strength of these beams were reduced due to: the yielding of the strands during the
first stage of test of these three beams, inclined cracks developing across existing flexural or shear tension
cracks, and the loss of flexural bond strength. Thus, none of the test results from these beams were included
in Hanson’s dissertation.

In addition, it was concluded that the ultimate shear strength of a simply supported prestressed concrete
beams with vertical web reinforcements under combined concentrated and distributed loadings can be pre-
dicted using the following equation [6]:

Vu =Vc +
βd Av fy

s
(3.1)

where:

Vu ultimate shear strength at a section located a distance x from the support

Vc shear carried by the concrete, assumed equal to the shear causing significant inclined cracking

βd effective horizontal projection of a significant inclined crack, assumed equal to the distance from the
extreme fiber in compression (in composite beams from the top of the precast element) to the lowest
level at which the stirrups are effective

Av cross-sectional area of one stirrup

s spacing of stirrups

fy yield point of the web reinforcement
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Equation (3.1) can be used under the following assumptions:

• that the ultimate shear at any section which can be carried by the concrete is equal to the shear causing
significant inclined cracking

• that the shear carried by the web reinforcement at the same section is equal to the force in the web
reinforcement at the same section is equal to the force in the web reinforcement, stressed to the yield
point, crossed by an idealized inclined crack.

3.2. Experiments used by Kroeze
In investigating the approach of Eurocode 2 1992-1-1:2004 for determining the capacity of a concrete struc-
ture in resisting shear tension crack, Kroeze (2018) made use of several past experiments on single-span I
and T prestressed concrete beams tested by Elzanaty (1986) and Choulli (2005) as the basis of his numerical
analyses. These experiments helped Kroeze to find the reason why the design of shear tension capacity using
the Eurocode approach is often insufficient in practice and also to suggest a better model for designing the
shear tension capacity. In modeling the specimens of these experiments on a finite element analysis soft-
ware, Kroeze assumed that the beams behaved in a linear elastic manner until the first shear tension crack
occurred.

3.2.1. Experiment by Choulli
In the hype of the development of Self-Compacting Concrete (SCC), Choulli did his experiment on pre-
stressed concrete beams with an objective of finding specific mechanical properties of this new type of con-
crete mix. Specifically, he focused his research on gaining more understanding of the shear performance of
prestressed concrete beams produced using the SCC. As a comparison, Choulli matched the SCC with a more
commonly used concrete mix named the Conventional Vibrated Concrete (CVC) to find their differences in
shear performance.

Test Specimens Description
Choulli conducted twelve experiments in his study by testing six prestressed beams at both of their ends. Each
beam had the same monosymmetrical I-shaped cross-section, as shown in Figure 3.5, and had a length of 10
metres. Four beams were produced using the SCC and were named HAP1, HAP2, HAP1T, and HAP2T. The last
two beams were created using the CVC and were named HCP1T and HCP2T. The beams were designed specif-
ically to experience web-shear cracking under the combination of shear and bending. Specifically, HAP1 and
HAP2 were designed without vertical reinforcements and had different prestressing reinforcement ratio.

Figure 3.5: The Cross Section of All Choulli’s Beams (in metre) [2]

Four essential variables were monitored in his experiment to allow him to observe their influences on
the shear performance of the beam. Those variables are the type of concrete, the level of prestressing, the
amount of longitudinal reinforcement in the web and the presence of vertical reinforcements. The verti-
cal reinforcements were the Spanish standard B500S which have the yield strength

(
fy

)
of 525 MPa and the

ultimate strength
(

fu
)

of 691 MPa. The longitudinal reinforcements, on the other hand, were the Spanish



16 3. Basis Experiments

standard B500SD with yield strength equal to 581 MPa and ultimate strength equal to 691 MPa.

For the prestressing strands, 0.5 inches in diameter Y1860S7 strands with 99 mm2 sectional area were
installed. Those prestressing strands had yielding strength

(
fpy

)
and ultimate strength

(
fpu

)
of 1776 MPa and

1941.4 MPa, respectively. In HAP2, HAP2T, and HCP2T, ten strands were placed and in HAP1, HAP1T, and
HCP1T, 16 strands were placed. Furthermore, the information about the concrete compressive and flexural
strength is presented in Table 3.1 and the detail of the prestressing in each beam is presented in Table 3.2,
where σcp is the average concrete stress due to prestressing.

Table 3.1: Compressive and Flexural Strength Properties of Choulli Beams [2]

Beam
Compressive Strength(

fcm
)

(MPa)
Flexural Tensile Strength(

fctm
)

(MPa)
Modulus of Elasticity

(E)(MPa)

HAP1 99.15 5.07 39,788
HAP2 96.34 5.01 42,409

HAP1T 91.23 4.91 39,855
HAP2T 95.97 5.00 39,569
HCP1T 81.00 4.68 33,675
HCP2T 90.24 4.89 39,788

Table 3.2: Choulli Beams Prestressing Details [2]

Beam Amount of Strands
σcp Excluding Losses

(MPa)
σcp Including Losses

(MPa)

HAP1 16 11.37 9.56
HAP2 10 7.11 6.30

HAP1T 16 11.37 9.56
HAP2T 10 7.11 6.30
HCP1T 16 11.37 9.56
HCP2T 10 7.11 6.30

Test Procedure
As previously mentioned, every beam in this experiment was tested twice. Each beam had its left-end span
treated as one specimen called the east-side specimen and the right-end span treated as another specimen
called the west-side specimen. Each specimen has a span of 6.1 metres. The east side specimen had the same
code name as its beam with a letter ’E’ added to the end of the code name. Similarly, the west-side specimen
also had the same code name, but with a letter ’W’ instead added in the end.

Every test was set in a condition shown in Figure 3.6. All beams were simply supported with its fixed pin
was put near the applied load and its sliding pin on the opposite side. The supports were spaced 0.6 metres
from the end of a beam to ensure the anchorage of the pretensioned strands. Prior to the start of the data
recording, 30 kN load was applied to a specimen to stabilize the test system.

The loads given to the beams were point loads. They were displacement controlled loads which were
applied monotonically until the beams reached their failures. These loads were applied in a constant 2.1-
metre distance from the support which was located near to the beam end. Particularly, when the west-side
specimen of HAP1T and HCP1T had to be tested, their span had to be increased from 6.1 metres to 6.76
meters to guarantee an ultimate failure. An overview of shear-span-to-depth ratio of all specimens is given in
Table 3.3.
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Figure 3.6: A Sketch of Choulli’s Test Setup (in metre) [2]

Table 3.3: Shear-Span-to-Depth Ratio Overview [2]

Beam
Shear-Span-to-Depth

Ratio (a
/

d)

HAP1 3.13
HAP2 3.00

HAP1T 3.13
HAP2T 3.00
HCP1T 3.13
HCP2T 3.00

Experiment Result
An overview of several test results from Choulli’s experiment is presented in Table 3.4. The applied loads pre-
sented in that table are the loads that caused the specimens to exceed the linear elastic phase and experienced
the first shear tension crack.

Table 3.4: Applied Loads and Shear Forces on Choulli Beams up to The First Shear Crack [2]

Beam
Applied Load

(excluding 30kN)(kN)
Applied Load

(including 30kN)(kN)
Shear Force (kN)

HAP1E 519 549 416
HAP1W 603 633 419
HAP2E 418 448 340
HAP2W 514 544 361
HAP1TE 508 538 409

HAP1TW* 635 665 438
HAP2TE 441 471 359
HAP2TW 529 559 368
HCP1TE 629 659 502
HCP1TW 579 609 421
HCP2TE 578 608 463
HCP2TW 580 610 404

*) a re-check calculation showed that the test configuration for this specimen had not been re-adapted

3.2.2. Experiment by Elzanaty
Elzanaty’s research was part of numerous investigations in finding the correct properties of the high strength
concrete. At that time, well-known building codes, such as the ACI code, provided engineers with only em-
pirically derived criteria that were attained from extrapolating previously-tested normal-strength concrete.
Therefore, further investigations on this new type of concrete were needed in order to allow engineers to
design it better. Elzanaty focused his study on investigating the effect of using high-strength concrete on
the shear strength of reinforced and prestressed concrete beams and also compared his test results with the
established design code provisions at that time.
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Test Specimens Description
Fifty-three beams in total produced using high-strength concrete were experimented by Elzanaty. These
beams were divided into two groups: nineteen rectangular reinforced concrete beams were in the first group
and thirty-four prestressed concrete beams were in the second group. The variables in this experiment were
the concrete strength, the longitudinal reinforcement ratio, the shear-span-to-depth ratio, and the amount
of shear reinforcement.

The group of prestressed concrete beams was then divided again into another two groups based on their
cross-section, as shown in Figure 3.7. They are the CW series and the CI series which consisted of 17 beams
each. Particularly, CW/CI 10 until CW/CI 17 had vertical reinforcements installed while the others were not.

(a) CI series (b) CW series

Figure 3.7: Cross Section of Elzanaty’s Prestressed Concrete Beams (in mm) [4]

Because only CW series beams that were used in this study, from here on the descriptions are focused
solely on this beam series. The detail of CW series beams compressive strength is provided in Table 3.5 and
their prestressing detail in Table 3.6. For the prestressing strands, low relaxation seven-wire grade 270 strands
were used. Each CW beam had four this type of strands installed in them. The location of these strands inside
a CW beam is shown in Figure 3.8.

Figure 3.8: Orientation of CW Series Strands [4]
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Table 3.5: Compressive Strength of CW Series Beams [4] [5]

Beam
Compressive Strength(

fcm
)

(MPa)
Flexural Tensile Strength(

fctm
)

(MPa)

CW1 76.55 4.58
CW2 76.55 4.58
CW3 76.55 4.58
CW4 78.62 4.63
CW5 77.93 4.61
CW6 77.93 4.61
CW7 77.59 4.60
CW8 41.38 3.35
CW9 61.03 4.16

CW10 73.08 4.49
CW11 55.86 4.00
CW12 39.99 3.27
CW13 72.41 4.47
CW14 73.79 4.51
CW15 70.34 4.42
CW16 73.10 4.49
CW17 69.66 4.40

Table 3.6: Prestressing Detail of CW Series Beams [4] [5]

Beam Strand Diameter (mm)
Strands

Cross-Sectional Area(
mm 2

) Effective σcp (MPa)

CW1 15.4 568 11.20
CW2 15.4 568 11.13
CW3 15.4 568 11.01
CW4 15.4 568 11.60
CW5 15.4 568 11.18
CW6 15.4 568 8.40
CW7 12.7 395 8.19
CW8 15.4 568 8.33
CW9 15.4 568 8.25

CW10 15.4 568 8.40
CW11 15.4 568 8.20
CW12 15.4 568 8.20
CW13 15.4 568 11.50
CW14 15.4 568 11.60
CW15 12.7 395 8.20
CW16 15.4 568 11.60
CW17 15.4 568 11.60

Test Procedure
For the test, all CW series beams were given a setup as shown in Figure 3.9. The setup was depended on the
beams dimensions which were determined according to their shear-span-to-depth ratio (a

/
d). The shear

spans of these beams had several values, as shown in Table 3.7, while the depth of the beams was constant at
369 mm. Furthermore, these beams were all simply supported with a fixed pin bearing put near the applied
load and a sliding pin bearing on the other side. Both supports were placed 381 mm from the beam ends.

Moreover, the loads which were applied to the beams were point loads. These point loads were applied
incrementally until the beams reached their ultimate limit state. As for specimens that had no stirrups, the
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point loads were given in the increments of 22.2 kN until failure occurred for CW beams and until flexural
cracks appeared, alternatively, for CI beams. On the other hand, the same load increment was applied for
specimens with stirrups, but only until failure was almost reached and then smaller load increment was used
until the ultimate limit state was reached.

Figure 3.9: A Sketch of CW Series Beams Test Setup [4]

Table 3.7: Shear-Span-to-Depth Ratio for CW Beams [5]

Beam
Shear-Span-to-Depth

Ratio (a
/

d)
a (mm)

CW1 2.90 1070
CW2 3.75 1384
CW3 5.00 1845
CW4 3.75 1384
CW5 3.75 1384
CW6 3.75 1384
CW7 3.75 1384
CW8 3.75 1384
CW9 3.75 1384

CW10 3.80 1402
CW11 3.80 1402
CW12 3.80 1402
CW13 3.80 1402
CW14 3.80 1402
CW15 3.80 1402
CW16 3.80 1402
CW17 3.80 1402

Experiment Result
Partial results of Elzanaty’s experiment for CW series beams are presented in Table 3.8. The shown results
were limited only to loads that caused the CW specimens to experience their first shear tension crack. At the
applied load level, shear tension crack quickly appeared throughout the depth of the web from the top web-
flange junction to another web-flange junction at the bottom. It propagated in the region of a shear span
from a support location to the load point with an angle ranged from 15 to 30 degrees. As for beams without
stirrups, a shear tension crack represented the ultimate shear strength of the beams and, additionally, it is
only CW6 beam that had a single flexural crack when the shear crack appeared.
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Table 3.8: Applied Load and Shear Force on CW Series Beams up to The First Shear Crack [4]

Beam Applied Load (kN) Shear Force (kN)

CW1 138.33 138.33
CW2 124.55 124.55
CW3 117.43 117.43
CW4 127.22 127.22
CW5 124.11 124.11
CW6 112.10 112.10
CW7 105.87 105.87
CW8 89.85 89.85
CW9 100.97 100.97

CW10 108.54 108.54
CW11 95.64 95.64
CW12 85.41 85.41
CW13 122.77 122.77
CW14 123.66 123.66
CW15 100.53 100.53
CW16 122.33 122.33
CW17 123.22 123.22





4
Proposed Approaches for Investigating The

Size Effect

For this study, the author proposes two new approaches for studying the size effect in shear tension cracking,
namely the σ1 area approach and the ratio-of-distances approach. These approaches are essential for this
numerical investigation since there were only experimental samples available to the author and there was
no established approach yet for studying the size effect in shear tension cracking when the author started
this study. The aim of these approaches is to help the author to find an explanation that can describe the
influence of structural size to the deviation of the uniaxial tensile strength in an I-profile prestressed concrete
beam.

4.1. σ1 Area Approach
Theσ1 area approach is a technique for detecting a structural size dependency of the uniaxial tensile strength
by finding the relation between the size of σ1 areas with the maximum principal tensile stress

(
σ1max

)
of a

number of shear cracks that is normalized with the concrete mean uniaxial tensile strength
(

fctm
)
. The σ1

area is a rectangle that represents a group of σ1 values that have a higher likelihood in achieving the deviated
value of fctm and initiate shear tension cracking on the web of a prestressed concrete beam. The length of
this rectangle is the distance between two intersection points made by a plot of the σ1 along a shear tension
crack and a constant line of the reduced value of maximum principal tensile stress

(
σ1max,r ed .

)
. That length

is then multiplied with the beam’s web thickness to form a rectangle. The σ1max,r ed . value is set at 90% of
σ1max under an assumption that it is more likely for maximum principal tensile stress aboveσ1max,r ed . value
to trigger shear tension cracking. An illustration of the σ1 area is shown in Figure 4.1.

Subsequently, every σ1 rectangle is compared with another rectangle created from other shear cracks.
The comparison shown in a graph of normalized maximum principal tensile stress

(
σ1max

/
fctm

)
of each

crack vs. the σ1 rectangles area allows the size effect on the fctm values to be observed. fctm is size depen-
dent when there is a significant decremental differences of σ1max

/
fctm values along the axis of the areas,

and conversely, fctm is size independent when σ1max
/

fctm is relatively constant along that same axis.

The idea for creating this approach was based on the deviation of material properties in a structure. In re-
ality, every element in a structural body has its strength diverged from its designated value after the structure
is constructed. Because of this, it is possible that a shear crack can propagate through each element that fails
at a lower uniaxial tensile strength level due to the stresses generated by the acting loads. This means that
the longer a potential crack length is, the more elements and the more material strength randomness that the
shear crack encounters. Based on this fact, an area made of multiplication between a potential crack length
and a web thickness can be used to study the size effect.

23
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Figure 4.1: An Illustration of σ1 Rectangle

4.2. Ratio-of-Distances Approach
In ratio-of-distances approach, the size effect in shear tension cracking is investigated by observing the loca-
tions of σ1max where a shear tension crack initiated in the web of each studied prestressed concrete beam.
This approach was created based on the assumption that a shear tension crack is more likely to originate
from near the beam neutral axis instead of near the web-flange junction due to the change of thickness at
that interface. Therefore, it is also more probable for σ1max to be located near a beam neutral axis.

The result of the investigation is given in the form of a graph that relates the volume of the web part of a
prestressed concrete beam and the ratio of distances

(
`σ1max

/
`c.o.g .

)
. The ratios of distances, which are pre-

sented at the vertical axis of the graph, show a quantitative relation between the vertical distance from σ1max

location to the web-flange junction
(
`σ1max

)
and the vertical distance from the same web-flange junction to

the beam’s neutral axis
(
`c.o.g .

)
, as presented in Figure 4.2. The ratio gives a normalized value that represent

the location of σ1max between the neutral axis and the web-flange junction. In the horizontal axis of the
graph, the web-part volumes represent the structural size differences between each investigated beam and it
is calculated using the web width, the web length and the shear span of each studied beam. The web-flange
junction used for this purpose is the junction at the observed area that has the closest distance to the extreme
tensile fiber of a beam.

As a result, it is expected that the size effect can cause a prestressed concrete beam to have shear tension
cracking that originates closer to the web-flange junction. The reason is that the uniaxial tensile strength in
a larger beam should have a larger strength deviation, and therefore, there is a possibility that σ1max can en-
counter a lower uniaxial tensile strength near the web-flange junction and a shear tension crack occurs from
that location.
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Figure 4.2: An Illustration of `σ1max and `c.o.g .





5
Numerical Investigation into Size Effect in

Shear Tension Cracking

5.1. LEFEA on Hanson’s Beams
As part of the investigation, several test samples from a past experiment mentioned in Chapter 3 were re-
assessed using finite element analysis (FEA). Those samples are the prestressed concrete beams tested by
Hanson (1964) which experienced shear tension cracking at their web of Region A and B, which will also be
called the specimen A and B in further descriptions. The shear tension cracks were the result of the first stage
of a 4-point bending test, especially, the test which used the first concentrated loading arrangement, as men-
tioned in subchapter 3.1. After being reassessed, only some of the specimens of the test samples were going
to be used for further analyses. The selected specimens are presented in Table 5.1.

The test samples were remodeled on DIANA FEA 10.1 and reanalyzed using linear elastic finite element
analysis (LEFEA). The analysis aimed to obtain nearly realistic principal tensile stress distribution at the re-
gion where a shear tension crack formed. The choice for using linear elastic analysis was based on the in-
formation mentioned by Hanson in his dissertation [6] that the shear tension cracks were the first cracks
the specimens experienced, and therefore, the specimens should be analyzed in the service limit state (SLS)
which lays on the linear elastic region as stated in the Eurocode 2.

Nearly realistic principal tensile stresses were essential data for this study because the information about
the principal stress distribution provided by Hanson in his dissertation [6], as shown in Figure 5.1 as an ex-
ample, was deemed to be unreliable for studying the size effect. It is unreliable because Hanson calculated
these principal stress values using analytical calculations which were based on the Bernoulli theory. It is safe
to assume that Hanson did the analytical analyses to obtain those stresses instead of numerical analysis be-
cause of the limited computer capacity at his era to do a finite element analysis. Consequently, the principal
stresses values printed in Figure 5.1 did not represent the stress distribution at the beam’s disturbed regions
correctly.

5.1.1. Properties of The Finite Element Models
As part for the inputs to the finite element models, the properties of the test samples, such as the cross-
section, dimension, and material characters were inserted into the finite element software. These properties
helped the finite element models, which were built with several simplifications, to mimic the actual behavior
of the beams under the 4-point bending test and to generate the principal tensile stresses that are somewhere
close to the reality.

The cross-section, as one of the properties, were inputted into DIANA FEA using a function, as shown in
Figure 5.2. This function then drew half of the cross-section which then used as the element geometry of the
beam model after it was multiplied by 2. Since all Hanson’s beams had same I-shaped profile as shown in the

27
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Figure 5.1: Hanson’s F-X1A Specimen with Crack

cross-section picture in Figure 3.1, the same element geometry was applied to all models of the test samples.

Figure 5.2: Cross-Section Function in DIANA FEA

Next, the dimension and material properties were also typed into the software as parts of the properties of
the finite element models. In his experiment, Hanson gave each of his specimen unique dimensional and ma-
terial properties in order to allow him to study the ultimate shear strength of the prestressed beams. Hence,
every model built for the numerical analyses of this study had a particular test span and Young’s modulus, as
shown in Table 5.1. Nevertheless, since all prestressed beams were made of concrete, all specimens had the
same density and Poisson’s ratio of 2,500 kg/m3 and 0.2, respectively.

Besides the aforementioned properties, the other beam character which was used for further crack anal-
yses but was not inputted into the models was the strength property. That essential strength property is the
mean uniaxial tensile strength

(
fctm

)
which were used as a comparison to the principal tensile strength (σ1).

Since there was only information about the compressive strengths of the beams
(

f ′
c

)
in the dissertation[6],

fctm values had to be derived analytically using several formulas from Eurocode 2. For that purpose, Equa-
tion 2.19 can be used to determine the characteristic cylinder strength or fck

(
f ′

c = fcm
)
. The calculation using

that equation showed that all selected specimens had characteristic strengths below C50/60 which means
that equation 2.17 can be used to define the fctm values from the provided f ′

c values. All f ′
c and fctm values of

the selected specimens are presented in Table 5.1.
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Table 5.1: Properties of The Selected Specimens of Hanson’s

5.1.2. Finite Element Modeling
The finite element models were generated based on the mechanical model of Hanson’s prestressed beams.
More specifically, the mechanical model is a simply-supported prestressed concrete beam which had a 4-
point bending test as its physical problem. It has a great resemblance to its physical model with several
simplifications as presented in Figure 5.3(b). Those simplifications came in the form of point loads and point
supports as a form of idealization to the actual condition which helped to simplify the numerical analysis.

(a) Physical Model

(b) Mechanical Model

Figure 5.3: The Physical Model and The Mechanical Model of Hanson’s Beams
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The point loads in the mechanical model helped to idealize the external forces that worked on the pre-
stressed beams. Those external forces can be categorized as the cracking loads and the prestressing loads.
The cracking loads are concentrated vertical loads which were applied with the configuration of the first
loading arrangement, as shown in Figure 3.3. In the finite element models, the point loads were inputted
with a magnitude that induced the formation of shear tension crack on the specimens. The location of these
symmetrical point loads on the models depended on the length of the test span, which also simultaneously
defined the length of specimen A, B, and C.

On the other hand, the prestressing loads are symmetrical horizontal loads which were generated by six
pretensioned-high-tensile-strength strands which were installed in 3 different levels inside the experimented
beams, as shown in the cross-section picture in Figure 3.1. The strands were not modeled as bonded tendons
in the finite element model because the specimens were analyzed in a linear elastic region, and therefore,
modeling the reinforcement and the prestressing tendons became unnecessary. The values of the cracking
load per load point and the total prestressing force on each selected specimens are available in Table 5.2.

Table 5.2: The Cracking Loads and The Prestressing Loads on The Selected Specimens

In a similar manner, the supports were also idealized as point supports in the finite element models. The
point support acted as the boundary conditions for the models and located at 1 foot or 304.8 mm from the
beam ends. Their distance from each other varies following the length of their beam’s test span.

Besides the simplification on the loads and the supports, the beam itself was also simplified into 2D mod-
els in the numerical analysis. The 2D models were realized using quadratic quadrilateral plane stress ele-
ments which were chosen by the author to model the discretization of the prestressed beams. The quadratic
elements, which has a code name of CQ16M, was picked to help the models obtaining nearly realistic stress
distributions and displacement results. Specifically, CQ16M has 8 nodes in total, with 4 corner nodes and 4
middle nodes. At each node, the element has two degrees of freedom (DOF) which have directions to the x
and y-axis of its coordinate system. By default, CQ16M has 2 x 2 integration points and uses the Gauss inte-
gration scheme in DIANA FEA 10.1, as shown in Table 5.3.

In addition, this quadratic element also includes shear deformation in analyzing the deformation of the
element. The inclusion of shear deformation means that the finite element models automatically incorpo-
rated deflections due to shear into the total deflection of the beam.
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Table 5.3: The Detail of CQ16M

As for the mesh generation, the element size was selected to be 0.25 inches or 6.35 mm. This element
size can be considered to be a very fine size, as can be seen in Figure 5.4. The determination of this ele-
ment size was based on practicality issue for later rearrangement of DIANA FEA’s output data using a Python
script which is presented in Appendix B. It was governed by the location of the prestressing loads due to their
center-to-center distances which are the multiples of 0.25 inches. As a verification to the accuracy of the FEA
result, a plot of element size vs. maximum midspan deflection is presented in Figure 5.5. It shows that the FEA
results have reached convergence by showing negligible differences (0.01-0.02 mm) between each maximum
midspan deflection result which were produced by the finite element models at element size of 50.8 mm, 25.4
mm, 12.7 mm, and 6.35 mm. Unfortunately, the plot line does not show a normal convergence curve which
most probably caused by local deformation at the location of the point supports due to their idealization.

Figure 5.4: Meshed Finite Element Model of F-X1A

Figure 5.5: Element Size vs. Maximum Midspan Deflection of F-X1A
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After the modeling of the test samples were complete and the meshes have been generated, LEFEA was
run to obtain the results. The linear elastic analysis provided several output data including the principal ten-
sile stresses (σ1) which were used for the study of size effect. All output data were collected from the nodes
and nodal averaging function was not activated.

Since there were only several specimens from the tested samples that were going to be included in further
size effect study, the output data were grouped based on their region. From each group, only the data that
originated from the elements inside a shear span of a region were used. An example of selected elements for
output data collection is shown in Figure 5.6 for F-X1A specimen model.

Figure 5.6: Selected Elements (in Red) in The Shear Span of F-X1A Specimen
Model

5.1.3. Rearrangement of DIANA FEA Output Data
Since the principal tensile stress data outputted by DIANA FEA came in bulk and was sorted based on the
order of the element number (element-id), it was necessary to rearrange this data to allow the author to study
the size effect more conveniently. The data bulk came from every node which contained four σ1 values orig-
inating from one of the integration points in the elements connected to the node. The data rearrangement
was done with the help of a Python script, which can be found in Appendix B, and it went through the several
steps: data reorganization based on its nodal coordinates, removal of redundant data, and manual nodal av-
eraging.

The reorganization of σ1 data according to its nodal coordinates set these quantities into their actual po-
sition in a shear span of a specimen model, as presented in Figure 5.7(b). In this step, the author chose to
remove the σ1 data from the middle nodes of each element to reduce the amount of data to analyze. The
σ1 data from the corner nodes was deemed sufficient to represent the stress distribution of the specimens
due to the fine size of the elements. By having this new arrangement, the data formed a mirror image for a
specimen’s finite element model at which the location of the shear tension crack at the web of the specimen
can be re-imagined on the mirror image, and thus, theσ1 values along the crack can be obtained and studied.
The process of crack re-imagination at this data set is explained in subchapter 5.3.

Furthermore, after the σ1 data was reassigned to its nodal coordinates, it went through an elimination
process in the Python script to remove some redundant principal tensile stress data. The elimination was
done by removing one row of elements (the outer row) which was located precisely outside the web area at
each web-flange junction of the I beams. The removal was a necessary step in order to disregard the outliers
in the σ1 data which existed due to an abrupt change of geometry at the web and flange interfaces. If com-
pared to the σ1 data originated from an element row adjacent to the eliminated row (the inner row), these
outliers have a significant difference in value which can be up to 30%. By deleting these rows of elements,
each node from the inner rows that previously shared with the elements from the outer rows will then collect
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(a) DIANA FEA σ1 Output Data of F-X1A’s

(b) Partial Sample of Rearranged F-X1A’s σ1 Output Data

Figure 5.7: Rearrangement of DIANA FEA Output Data

only two σ1 data that comes from the integration points of the elements in the inner row.

The issue of redundant σ1 values at the web-flange interface has also been brought up by Kroeze (2018)
in his report. In the same manner, he also removed the outer row of elements in the web-flange junction of
a HAP1E beam cross-section and other I beam models in order to obtain more realistic σ1 results from his
finite element models. An example of a deleted outer row from a HAP1E model, which is colored in red, is
presented in Figure 5.8.

Additionally, to make sure that the Python script has done the elimination process correctly, the author
created a manual check using Ms. Excel by coloring the excel sheets provided by the Python script that con-
tains information about the number of data collected by each node. Nodes that had collected only two σ1

data will be colored red, the ones that had collected only one σ1 data will be colored green and the ones with
four σ1 data will be colored yellow. In Figure 5.9, a check on F-X1A specimen FEA result showed that the
nodes that were previously connected with the outer row had a red color which means that they only carried
two data with them.
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Figure 5.8: A Row of Elements at Web-Flange Interface which was Removed from
HAP1E Model[8]

Figure 5.9: Elements Removal Check on F-X1A Specimen Model

Besides restructuring and eliminating data, the Python script also simultaneously averaged the princi-
pal stress data possessed by each node. The averaging has to be done manually since the nodal averaging
function was not used during the linear analysis. As a result, every node had only one σ1 value that used for
studying the size effect.

5.2. FEA Result Verification with Analytical Checks
Since DIANA FEA is just a tool to do numerical analyses, it is necessary to check if the inputs that had been
inserted into the software had generated the correct results. This type of check is often known as the sanity
check. The sanity check for this study was done by comparing the numerical results with the results from
analytical calculations. The analytical calculations produced the exact values instead of the estimated values
generated by the finite element software for the same physical problem.

The sanity check was conducted on the principal tensile stress distributions in the non-disturbed region,
or also known as the Bernoulli region, of the specimens. The check was not done in the disturbed region since
the stress distribution in that area is irregular due to the nonlinear distribution of the normal stress and shear
stress components. The author chose the F-X1A specimen to be the subject of this verification and it became
the reference model for the other specimens.

The analytical results of the principal tensile stress distributions were obtained through a series of calcu-
lations. Before the principal tensile stress distributions could be obtained using Equation 2.12, the normal
stress and shear stress components had to be defined first using Equation 2.2, 2.3, and 2.4 based on the phys-
ical problem of F-X1 beam, as shown in Figure 5.10. The values of the normal stress and the shear stress
components along the shear span of F-X1A were the results of the point loads and the prestressing loads act-
ing on the F-X1.

Figure 5.10: F-X1 Physical Problem
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As previously mentioned in subchapter 2.2, due to the relatively small contribution of the normal stress
components to the y-axis direction in a beam, σ1 values can be found using Equation 2.13 instead of Equa-
tion 2.12. The σ1 values resulted by Equation 2.13 is presented in Table 5.4. As a comparison, the σ1 values
generated from the numerical analysis of F-X1A in DIANA FEA is presented in Table 5.5.

Table 5.4: F-X1A’s σ1 Analytical Values Along Its Shear Span

Table 5.5: F-X1A’s σ1 Numerical Values Along Its Shear Span

The comparison between the analytical and the numerical values of σ1 along F-X1A’s shear span is pre-
sented in the form of percentages which indicated the level of similarity between the two. The result of the
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comparison is shown in Table 5.6. Since the sanity check was designated only for theσ1 values in the Bernoulli
region of the specimen, differentiation on the percentages based on their location in the regions had to be
done. The percentages located on the disturbed region was colored in blue that ended at a beam height dis-
tance (18 inches or 457.2 mm) from the location of the left point support and the left point load of F-X1 beam
finite element model, and conversely, the percentages located on the Bernoulli region was colored in red.

The result of the comparison in the red columns of Table 5.6 showed a high degree of similarity between
the numerical values and the analytical values of σ1 with the percentages ranging from 91.11% to 100.06%.
This means that the finite element model had passed the sanity check and given the correct values as ex-
pected through the analytical calculations.

The 0% values in the red columns didn’t mean that the comparison showed a dissimilarity between both.
In fact, their analytical and numerical values are very similar, but they are zeros, as shown in Table 5.4 and
Table 5.5. Thus, because the comparisons were made by dividing the analytical and the numerical values,
their comparison showed a 0%.

Table 5.6: Ratio of The Analytical and The Numerical Values of σ1 Along F-X1A’s Shear Span

5.3. Re-imagination of The Diagonal Cracks
One last step before the size effect study could commence is the re-imagination of the shear tension crack.
In this step, the author simply redrew the actual shear tension crack, such as the one pictured in Figure 5.1,
on the mirror images of the specimens which were created in one of the steps of the data rearrangement ex-
plained in subchapter 5.1.3. The goal for doing this step is to find the σ1 values along the crack for further
analyses.

An example of the redrawn shear tension crack is presented in Figure 5.11. In this example, the shear
tension crack from the F-X1A specimen was copied to its mirror image by selecting every cell that was located
at the coordinates of the crack, which was then marked with a red color. To obtain the σ1 values more con-
veniently, the crack was drawn as a straight line instead of following the actual propagation path of the shear
tension crack. This simplification was allowed to be done since the actual crack itself almost formed a linear
line that had just some minor deviations on specific points of the crack, and also because the finite element
models of the specimens had a relatively fine element size.
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Figure 5.11: Redrawn Shear Tension Crack on The Mirror Image of F-X1A
Specimen

5.4. Size Effect Investigation and Its Results
After all numerical analyses and data rearrangements on the selected specimens of Hanson’s were complete,
the data was ready to be used for studying the structural size dependency of the uniaxial tensile strength. To
narrow the scope of the study, the investigation into the size effect was focused only on the web part of the
specimens where the shear tension cracks occurred. The σ1 area approach, which was explained in Chapter
4, was utilized to assist the author in detecting the size effect and its results are described in the following
subchapters.

In addition to the numerical results from Hanson’s selected beams, other results from another report were
added into the pool of data to sharpen the outcome of the study. They were the numerical results from the
Elzanaty’s and the Choulli’s specimens which were produced by Kroeze (2018) using LEFEA for his own study
on shear tension cracks. Similar to Hanson’s, these additional numerical results were also processed through
the data rearrangement and reimagination-of-the-shear-tension-crack processes for the purpose of obtain-
ing the σ1 values along their shear tension cracks.

Unfortunately, after further observation, several selected specimens of Hanson’s were deemed to be unfit
to be included in the analyses because it was found that the stress distribution in the specimens with flexural
cracks could not be predicted accurately when analyzed using the LEFEA. The error in the stress distribution
of the specimens with flexural cracks was evident when the maximum principal tensile stress from the whole
web was compared to the maximum principal tensile stress from a shear crack

(
σ1max,wholeweb

/
σ1max,cr ack

)
,

as shown in Table 5.7. The comparison showed that σ1max,wholeweb
/
σ1max,cr ack ratios were consistently

larger than one, while the σ1max,wholeweb located at the bottom web-flange junction of the specimens, ex-
cept for F-1A and F-1B specimens. These results from Table 5.7 gave an indication that the shear tension
cracks on Hanson’s specimens with flexural cracks should have initiated from the bottom web-flange junc-
tion of the specimens instead from the actual location where the shear tension cracks occurred as reported
by Hanson in his dissertation.

This inaccuracy of LEFEA result in specimens with flexural cracks was mentioned in the study by Kroeze
(2018) in which he assumed that it was caused by the presence of the flexural cracks. The error can possibly
be explained by the force redistribution when the flexural cracks appeared which formed a new force equilib-
rium and also by the tension softening that the specimens might experience at the location ofσ1max,wholeweb

which cannot be predicted by the LEFEA. As a side note, the σ1max,cr ack values for F-1A and F-1B were not
exactly located at the crack because the shear tension cracks were assumed as a linear crack on the mirror
images, but its differences with σ1max,cr ack values were negligible. For further references, σ1max is referred
to σ1max,cr ack .

Because of this issue with Hanson’s selected specimens, only the data collected from F-1A and F-1B was
kept in the data pool. They are kept together with the other data originated from the Elzanaty’s and Choulli’s
specimens and put together into a list of ’trusted’ specimens presented in Table 5.8.
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Table 5.7: σ1max,cr ack , σ1max,wholeweb , Their Ratio, and σ1max,wholeweb Location

note: W-F = Web-Flange
STC = Shear Tension Crack

Table 5.8: List of The Trusted Specimens

5.4.1. Investigation into The Size Effect Using σ1 Area Approach
In this section, the steps for obtaining the results from the application of σ1 area approach on all trusted
specimens are described. The results are presented in the form of a graph that plot the relation between the
areas of the σ1 rectangles and the values of normalized maximum principal tensile stress

(
σ1max

/
fctm

)
from

the shear tension cracks of the trusted specimens. The σ1max
/

fctm values, in particular, shows how close
the maximum principal tensile stress was to the mean uniaxial tensile strength when a shear tension crack
occurred. The relation between these two variables was then used to determine if the structural size can have
an effect on the fctm values and causes a premature shear tension cracking.

Firstly, in order to obtain the areas of the σ1 rectangles, plots between σ1 values along a shear tension
crack of each trusted specimen vs. the crack length were created in combination with a constant line of re-
duced maximum principal tensile stress value

(
σ1max,r ed .

)
. The plot ofσ1 values vs. the crack length is shown

as a curvy blue line and the σ1max,r ed . constant line is shown as a grey line, as shown in Figure 5.12 as an ex-
ample. The other similar graphs from other trusted specimens can be found at Appendix A. The curvy blue
line and the grey line were then created two intersection points which produced a length that was later mul-
tiplied with the thickness of the web to form the σ1 rectangle, as illustrated in Figure 4.1. Additionally, a line
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of a constant fctm value was also added to each of these graphs as an upper bound limit to the plot of σ1

values. The purpose of this line is to show the repetitive occurrence of shear tension cracking on the trusted
specimens that happened at a principal tensile stress level that was lower than the designated uniaxial tensile
strength of the specimens.

Figure 5.12: σ1 Along The Crack vs. The Crack Length of F-1A Specimen

Next, after the rectangles areas were found, a plot between the areas of theσ1 rectangles and σ1max
/

fctm ,
shown in Figure 5.13, was created. In this plot, it appears that the data points were concentrating at two dif-
ferent ranges of areas: one is at around 10,000 mm2 to 20,000 mm2 where the data points of Elzanaty’s and
Hanson’s are located and the other is at around 50,000 mm2 to 60,000 mm2 where Choulli’s data points are.
The data of σ1max , σ1max

/
fctm , and σ1 rectangles areas used for generating this plot is presented in Table

5.9.

Figure 5.13: σ1max
/

fctm vs. The σ1 Rectangles Areas with Trusted Specimens
(in SI units)
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Table 5.9: Values of σ1max , σ1max
/

fctm , and σ1 Rectangles Areas

Lastly, in the same plot, a trendline was generated to show the relationship between the two variables of
the plot based on the available data points, as shown in Figure 5.14. A linear trendline was chosen after all
other types of trendline because it had the largest coefficient of determination

(
R2

)
value at 0.4213 indicating

that this trendline had the best fit for this data set. In the plot area, it appears that the trendline had a negative
slope, which means that the value of σ1max

/
fctm tend to decrease with the increase of the σ1 rectangle area.

A mathematical equation that represents the linear relation between the two variables is y = −3×10−6x +
0.9409.

Figure 5.14: Trendline of σ1max
/

fctm vs. The σ1 Rectangles Areas Plot (in SI
units)

5.4.2. Investigation into The Size Effect using Ratio-of-Distances Approach
A description of how the ratio-of-distances approach produced its results was presented in this section. Sim-
ilar to the σ1 area method, the result of this method is also given in the form of a graph that shows a relation-
ship between the volumes of the web part of the trusted specimens and the ratio of distances

(
`σ1max

/
`c.o.g .

)
.

In ratio of distances, `σ1max is the vertical distance from σ1max location to the web-flange junction and `c.o.g .
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is the vertical distance from the same web-flange junction to the beam’s neutral axis.

To begin with, the values of `σ1max , `c.o.g ., and the web-part volumes needed to be defined. The web-part
volumes were calculated using the web width, the web length, and the shear span of each trusted specimen as
reported by Hanson, Elzanaty, and Choulli in their theses. On the other hand, `σ1max and `c.o.g . were defined
straightforwardly by having their length measured in the mirror images of the trusted specimens. The defined
values of `σ1max , `c.o.g ., and the web-part volumes and their related information for each trusted specimen
are given in Table 5.10.

Table 5.10: `σ1max

/
`c.o.g . , Web-Part Volumes, and Their Related Information for Each Trusted Specimen

After all data was collected, the graph of `σ1max

/
`c.o.g . vs. web-part volume was produced, as shown in

Figure 5.15. In the plot area, it is clear that there is a relatively large distance between Hanson’s and Elzanaty’s
data points and Choulli’s data points in the axis of web-part volume. It indicates that the group of Hansons’s
and Elzanaty’s trusted specimens are comparatively much smaller in size than the group of Choulli’s. Never-
theless, it appears that both groups have a similar spread of data points in the axis of `σ1max

/
`c.o.g . at values

around 0.74 to 1, except for HAP2E which had `σ1max

/
`c.o.g . value of 0.49.

Figure 5.15: `σ1max

/
`c.o.g . vs. The Web-Part Volume with Trusted Specimens (in

SI units)
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5.5. Discussion
The result obtained from the σ1 area approach provides some hints that indicate the size effect played a sig-
nificant role in premature shear tension cracking on the web of the trusted specimens. Firstly, a hint was
given by how the data points of Hanson’s and Elzanaty’s are more concentrated on the range of σ1max

/
fctm

level that is closer to 1 than the data points of Choulli’s. Hanson’s and Elzanaty’s had σ1max levels at around
90-95% of their fctm , except for CW8, and Choulli’s had σ1 levels that were a bit lower than 80% of their fctm ,
except for HCP2TW. If the two outliers are neglected, these results show a clear proof that the tensile strength
of the concrete structure is size dependent.

Secondly, another hint can also be found from the linear trendline of σ1 area method result. The ef-
fect was revealed by the negative slope of the linear trendline that represents the declining relation between
σ1max

/
fctm and σ1 rectangles areas. This trendline proves that, even by including the two outliers, there is

a trend of declining tensile strength with the increase of structural size. The trend is shown by the location of
the data point on the trendline where Hanson’s and the Elzanaty’s data points, which represent the smaller
specimens, are located at the higher left side of the trendline and the Choulli’s, which represent the larger
specimens, are located at the lower right side of the trendline.

Unfortunately, the reliability of the linear trendline chosen for the result ofσ1 area approach suffered from
the lack of data. The trendline shows low reliability by having a relatively low value of R2 despite being the
best fit for the data sets of the approach. This issue can be easily resolved by adding more data that comes
from similar specimens into the analyses to increase the R2 value closer to 1.

In contrast, the result of the ratio-of-distances approach seems to give no indication of the presence of
the size effect. It shows that the data points of Hanson’s and Elzanaty’s has a similar spread along the axis
of `σ1max

/
`c.o.g . to the data points of Choulli’s, except for the data point of HAP2E which had `σ1max

/
`c.o.g .

value of 0.49. When the outlier of HAP2E was removed, it was obvious that the shear cracks from the smaller
specimens and the shear cracks from the larger specimens had a similar starting points locations, at which
the σ1max was located. This means that, even though the Hanson’s and Elzanaty’s webs were much smaller
in volume than Choulli’s, their shear cracks initiated at similar distance ratios. Thus, it can be concluded that
the structural size does not give any influence to the location of σ1max and this approach cannot be used for
detecting size effect in shear tension cracking.

Moreover, according to the results, it is obvious that the area around the neutral axis of the beam is more
vulnerable to shear tension cracking than the area around the web-flange junction of the trusted specimens.
The vulnerability is again shown through the values of `σ1max

/
`c.o.g . of the trusted specimens which showed

that most of the shear cracks started from near the neutral axis
(
`σ1max

/
`c.o.g . = 0.74−1.00

)
, except for HAP2E

that had a shear tension crack that started closer to the web-flange junction
(
`σ1max

/
`c.o.g . = 0.49

)
. This re-

sult gave a sign that the resistance of the web against shear tension cracking is possibly higher around the
web-flange junction than around the beam neutral axis, which agrees with the base assumption of the ratio-
of-distances approach.

In addition, these results also verify the capability of the two new approaches to identifying the size effect
in shear tension cracking. In this case, it appears that the σ1 area approach is more reliable than the ratio-of-
distances approach in finding the size dependency of the uniaxial tensile strength. Theσ1 area approach was
able to show the presence of size effect on the trusted specimens while the ratio-of-distances method was not.
It seems that the reason is that the assumption used for the latter approach is not correct because the location
of σ1max is not governed by the size of the structure. Thus, for a future attempt on studying the size effect
in shear tension cracking, the author suggests the use of the σ1 area approach over the ratio-of-distances
approach.
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Conclusion and Recommendation

6.1. Conclusion
This thesis had an objective of verifying the concrete uniaxial tensile strength dependency on structural size
in its relation with the premature shear tension cracking on the web of prestressed concrete beams. For this
purpose, a group of several I-profiled prestressed concrete beams experimented by Hanson (1964), Choulli
(2005), and Elzanaty (1986), named the trusted specimens, were numerically investigated using linear elastic
finite element analysis (LEFEA) to generate the true principal tensile stress distributions at the occurrence of
shear tension cracking. The principal tensile stress along the crack of each specimen was observed using two
new approaches proposed by the author in an attempt to detect the presence of the size effect. These two
approaches are the σ1 area approach and the ratio-of-distances approach.

The results of the research that answer the given research questions are briefly described below:

1. Is there any presence of size effect regarding the resistance of prestressed concrete beams on shear tension
cracking?

The σ1 area approach presented a result that confirmed the presence of size effect in shear tension
cracking at the trusted specimens. The confirmation was given by how the data points of Hanson’s and
Elzanaty’s were widely separated from the Choulli’s at the axis of the area of the rectangles while having
higher σ1max

/
fctm values than the Choulli’s. This condition showed that there was a tendency for the

smaller specimens to have a higher resistance towards shear tension cracking compared to the larger
specimens, which gave a clear indication to the presence of the size effect. Alternatively, the evidence of
the size dependency was also found in the negative slope of the linear trendline that gave the declining
relation between σ1max

/
fctm and the rectangles areas. This relation described a trend of the larger

specimens having resistance against tensile stress that is lower than its designated strength.

On the contrary, the ratio-of-distances approach did not manage to detect the size effect in shear ten-
sion cracking on the trusted specimens. The result of this approach implied that the shear cracks from
the smaller specimens and the shear cracks from the larger specimens had a similar starting points
locations, at which the σ1max was located. This means that, even though the Hanson’s and Elzanaty’s
webs were much smaller in volume than Choulli’s, their shear cracks initiated at similar distance ratios.
Consequently, it is evident that the structural size does not give any influence to the starting location
of the shear tension cracks and the ratio-of-distances approach cannot be relied on detecting the size
effect.

2. Is the resistance of the shear tension crack at the web-flange junction higher than anywhere in the web?

The result of the ratio-of-distances approach indicated that the area around the neutral axis of the
trusted specimens is more susceptible to shear tension cracking than the area around the web-flange
junction. The susceptibility is shown through the values of `σ1max

/
`c.o.g . of the trusted specimens

which showed that most of the shear cracks started from near the neutral axis, except for HAP2E. This

43
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result was considered as a sign that the resistance of web towards shear tension cracking is possibly
higher around the web-flange junction than around the beam neutral axis, which agrees with the base
assumption of the ratio-of-distances approach.

Also, these results also verify the capability of the proposed approaches in identifying the size effect in
shear tension cracking. In this case, it appears that the σ1 area approach is more reliable than the ratio-of-
distances approach in finding the size dependency of the uniaxial tensile strength. Theσ1 area approach was
able to show the presence of size effect on the trusted specimens while the ratio-of-distances method was not.
It seems that the reason is that the assumption used for the latter approach is not correct because the location
of σ1max is not governed by the size of the structure. Thus, for a future attempt on studying the size effect
in shear tension cracking, the author suggests the use of the σ1 area approach over the ratio-of-distances
approach.

6.2. Recommendation
For future research related to the work in this thesis, the author recommended the following research topics:

Nonlinear Finite Element Analysis on Specimens with Flexural Cracks near the Shear Tension Cracks
One of the limitations for observing the size effect in this thesis is the presence of flexural cracks near the shear
tension cracks. Their presence rendered the principal tensile stress distribution generated by the LEFEA to
be inaccurate since there must be force redistribution from the concrete to the reinforcements when the flex-
ural cracks formed. It is recommended for the coming study to use the nonlinear finite element analysis for
obtaining the true principal tensile stress distribution along the crack to be used for detecting the size effect.

Size Effect on Specimens under Uniformly Distributed Load
Studying the early formation of shear tension crack on the web of prestressed concrete beams under the
influence of uniformly distributed load is another interesting case to be investigated. An investigation on this
case will give a new relation that describes the influence of structural size on the reduction of tensile strength
on larger size concrete structures.
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A
Data and Graphs of Hanson’s, Choulli’s,

and Elzanaty’s Selected Specimens

A.1. Result from Hanson’s

Figure A.1: σ1 Along The Crack vs. The Crack Length of F-X1A and Other
Information

Figure A.2: σ1 Along The Crack vs. The Crack Length of F-X1B and Other
Information
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50 A. Data and Graphs of Hanson’s, Choulli’s, and Elzanaty’s Selected Specimens

Figure A.3: σ1 Along The Crack vs. The Crack Length of F-1A and Other
Information

Figure A.4: σ1 Along The Crack vs. The Crack Length of F-1B and Other
Information

Figure A.5: σ1 Along The Crack vs. The Crack Length of F-2A and Other
Information



A.1. Result from Hanson’s 51

Figure A.6: σ1 Along The Crack vs. The Crack Length of F-2B and Other
Information

Figure A.7: σ1 Along The Crack vs. The Crack Length of F-3A and Other
Information

Figure A.8: σ1 Along The Crack vs. The Crack Length of F-3B and Other
Information



52 A. Data and Graphs of Hanson’s, Choulli’s, and Elzanaty’s Selected Specimens

Figure A.9: σ1 Along The Crack vs. The Crack Length of F-4B and Other
Information

Figure A.10: σ1 Along The Crack vs. The Crack Length of F-5A and Other
Information

Figure A.11: σ1 Along The Crack vs. The Crack Length of F-5B and Other
Information
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Figure A.12: σ1 Along The Crack vs. The Crack Length of F-19A and Other
Information



54 A. Data and Graphs of Hanson’s, Choulli’s, and Elzanaty’s Selected Specimens

A.2. Result from Choulli’s

Figure A.13: σ1 Along The Crack vs. The Crack Length of HAP1E and Other
Information

Figure A.14: σ1 Along The Crack vs. The Crack Length of HAP1W and Other
Information



A.2. Result from Choulli’s 55

Figure A.15: σ1 Along The Crack vs. The Crack Length of HAP2E and Other
Information

Figure A.16: σ1 Along The Crack vs. The Crack Length of HAP2W and Other
Information

Figure A.17: σ1 Along The Crack vs. The Crack Length of HAP1TE and Other
Information



56 A. Data and Graphs of Hanson’s, Choulli’s, and Elzanaty’s Selected Specimens

Figure A.18: σ1 Along The Crack vs. The Crack Length of HCP2TW and Other
Information
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A.3. Result from Elzanaty’s

Figure A.19: σ1 Along The Crack vs. The Crack Length of CW1 and Other
Information

Figure A.20: σ1 Along The Crack vs. The Crack Length of CW8 and Other
Information
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1/4/2019 S1 Stress_Corner Node

http://localhost:8888/notebooks/%5BAdd.%20Thesis%5D/S1%20Stress_Corner%20Node.ipynb 1/5

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import xlsxwriter
from collections import OrderedDict
%matplotlib inline
beam_case = 'F-19A' # change beam name here

file = beam_case+'_ps_raw.xlsx'
xl = pd.ExcelFile(file)

df1 = xl.parse('NEAT') #calling the data from tab 'NEAT'

print (df1)

x = np.array(df1.X) # storing X data in an array called x
y = np.array(df1.Y) # storing Y data in an array called y
elid = np.array(df1.EL_ID) # storing EL_ID data in an array called elid
z = np.array(df1.S1) # storing S1 data in an array called z
z1 = np.array(df1.S2) # storing S2 data in an array called z1

y2 = np.array(df1.Y)
y2.sort()
print(y2)

y3 = list(OrderedDict.fromkeys(y2)) # list of Y coordinate in order (duplicate removed)
y3_as = np.asarray(y3)
y3_l = y3_as.tolist()
y3_l.insert(39,4.875)
y3_l.insert(105,13.125)
y3_as = np.asarray(y3_l)
y3 = y3_as
print(y3)
print(len(y3))
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http://localhost:8888/notebooks/%5BAdd.%20Thesis%5D/S1%20Stress_Corner%20Node.ipynb 2/5

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

y4 = y3[-1::-2] # list of Y coordinate in reverse order in step of 2
#y4[19] = y3[0]
y5 = y4[-1::-1] # list of Y coordinate in order
print(y4)
print(len(y4))
print(y5)
print(len(y5))

x2 = np.array(df1.X)
x2.sort() # list of sorted x coordinate 
print(x2)

x3 = list(OrderedDict.fromkeys(x2)) # list of sorted x coordinate (duplicate removed)
x4 = x3[::2]
print(x3)
print(len(x3))
print(x4)
print(len(x4))

qw = np.zeros((len(y4), len(x4))) # zero matrix to store S1 data
qw2 = np.zeros((len(y4), len(x4))) # zero matrix to store data of numbers of S1 data per co
qw3 = np.ones((len(y4), len(x4)))
qw5 = np.zeros((len(y4), len(x4)))
qw6 = np.zeros((len(y4), len(x4)))

qwsyy = np.zeros((len(y4), len(x4))) # zero matrix to store S2 data
qw2syy = np.zeros((len(y4), len(x4))) # zero matrix to store data of numbers of S2 data per
qw3syy = np.ones((len(y4), len(x4)))
qw5syy = np.zeros((len(y4), len(x4)))

for i in range(len(y4)):
    for j in range(len(x4)):
        for k in range(len(x)):
            if y5[i] == y[k]:
                if x4[j] == x[k]:
                    qw[i,j] += z[k] # storing S1 data at qw matrix
                    qw2[i,j] +=1 # counting S1 data per coordinate
                    qwsyy[i,j] += z1[k] # storing S2 data at qw matrix
                    qw2syy[i,j] +=1 # counting S2 data per coordinate
            
                            
#step for doing manual nodal averaging
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http://localhost:8888/notebooks/%5BAdd.%20Thesis%5D/S1%20Stress_Corner%20Node.ipynb 3/5

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

workbook = xlsxwriter.Workbook(beam_case+'_ps_raw(OUT_CNode).xlsx')
worksheet = workbook.add_worksheet('S1')

row = 0
col = 0
row1 = 1
col1 = 1

for Y in (y4): # writing the sorted, duplicate-free Y coordinate on Excel tab S1
    worksheet.write(row1, col, Y)
    row1 += 1

for X in (x4): # writing the sorted, duplicate-free Y coordinate on Excel tab S1
    worksheet.write(row, col1, X)
    col1 += 1

for q in range(len(y4)):
    for r in range(len(x4)):
        if qw2[q,r] >=1:
            qw3[q,r] = qw2[q,r] # to replace or the zero in qw2 matrix with 1 for division 

print (qw3)

qw4 = (qw/qw3) # nodal averaging
print (qw4)
plt.imshow(qw4, interpolation='nearest')
plt.colorbar()

for t in range(len(y4)):
    qw5[len(y4)-1-t,:] = qw4[t,:] # storing nodal averaging data at qw4 in reverse order (i
    #to mimic the stress distribution of the model at DIANA

for o in range(len(y4)):
    for p in range(len(x4)):
        worksheet.write(o+1, p+1, qw5[o,p]) # write the qw5 data at Excel
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http://localhost:8888/notebooks/%5BAdd.%20Thesis%5D/S1%20Stress_Corner%20Node.ipynb 4/5

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

print (qw5)
plt.imshow(qw5, interpolation='nearest')
plt.colorbar()

worksheet2 = workbook.add_worksheet('S2')

row = 0
col = 0
row1 = 1
col1 = 1

for Y in (y4): # writing the sorted, duplicate-free Y coordinate on Excel
    worksheet2.write(row1, col, Y)
    row1 += 1

for X in (x4): # writing the sorted, duplicate-free X coordinate on Excel
    worksheet2.write(row, col1, X)
    col1 += 1

for q in range(len(y4)): # writing the sorted, duplicate-free X coordinate on Excel
    for r in range(len(x4)):
        if qw2syy[q,r] >=1:
            qw3syy[q,r] = qw2syy[q,r]

print (qw3syy)

qw4syy = (qwsyy/qw3syy)
print (qw4syy)
plt.imshow(qw4syy, interpolation='nearest')
plt.colorbar()

for t in range(len(y4)):
    qw5syy[len(y4)-1-t,:] = qw4syy[t,:] # storing nodal averaging data at qw4 in reverse or
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In [ ]:

In [ ]:

In [ ]:

In [ ]:

for o in range(len(y4)):
    for p in range(len(x4)):
        worksheet2.write(o+1, p+1, qw5syy[o,p]) # write the qw5syy data at Excel

print (qw5syy)
plt.imshow(qw5syy, interpolation='nearest')
plt.colorbar()

worksheet3 = workbook.add_worksheet('node_num')
 
for l in range(len(y4)):
    qw6[len(y4)-1-l,:] = qw2[l,:]
 
for g in range(len(y4)):
    for h in range(len(x4)):
        worksheet3.write(g+1, h+1, qw6[g,h])
 

workbook.close()
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