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Abstract
This paper addresses the topology optimization of thermocouples for cooling applications, considering stress constraints to 
enhance reliability under service loads. We provide a first approach to derive sensitivities using SIMP (solid isotropic material 
with penalization) for thermo-electro-mechanical systems with temperature-dependent material properties. The proposed 
formulation decouples the thermoelectrical system from the mechanical degrees of freedom reducing computational memory 
usage from a fully coupled approach. The study focuses on the formulation of thermocouples for cooling applications using 
the Peltier effect, which considers electrical power limits, electrical working points, and material stress thresholds. Further-
more, while the thermoelectrical problem does not show the need for filtering techniques, including the mechanical degrees 
of freedom, we show that we recover undesirable porous optimized designs. We provide 2D thermocouple example optimiza-
tions with geometries and boundary conditions based on a practical case for the implementation of thermoelectric coolers in 
the Minimum Ionizing Particle Timing Detector (MTD) at CERN. The optimizations are performed with increased complex-
ity, including the unfiltered thermoelectrical and thermo-electro-mechanical problems and a Helmholtz-filtered examples. 
The optimizations are compared with constant and nonlinear material properties with temperature and with respect  to the 
consideration of air-conductance losses within the devices. Although more efficient topologies can be achieved without the 
need for volume constraints, we include an example with a constraint of 60% volume to understand its effect on the design 
and provide a methodology to reduce semiconductor-associated costs at lower efficiency costs. Finally, we explore the same 
formulation in 3D. The results provide guidelines for manufacturing compliant thermocouples, increasing their reliability 
without decreasing efficiency.

Keywords  Topology optimization · Thermoelectric-cooler (TEC) · Power constraint · Temperature minimization · SIMP · 
Non-convexity · Stress constraint

1  Introduction

Thermoelectric coolers utilize the Peltier effect to induce a 
heat flux by connecting dissimilar semiconductor materials. 
Compared to traditional vapour compression refrigeration, 

thermoelectric cooling offers static operation, miniaturiza-
tion, subambient temperature capability, high reliability, 
absence of gaseous emissions, and noiseless operation. 
These benefits have led to the application of Thermoelec-
tric Coolers (TECs) in diverse fields such as cryogenics 
(Goswami and Kanetkar 2020), on-chip thermal manage-
ment (Chen et al. 2022b), laser and fibre optics with precise 
temperature regulation requirements (Gupta et al. 2024; 
Zhang et al. 2015), medical devices (Zaferani et al. 2021), 
and localized cooling in space vehicles (Singh et al. 2023). 
Despite ongoing research on its large-scale implementa-
tion, such as building refrigeration (Duan et al. 2021), cost-
effectiveness remains a challenge due to its lower efficien-
cies compared to vapour compression systems. These lower 
efficiencies are due to the need to balance the properties of 
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the thermoelectric material within the semiconductor com-
ponents (Al-Fartoos et al. 2023).

The material composition of a TEC determines its intrin-
sic properties. However, the arrangement of materials in 
each semiconductor leg can also modify the device’s overall 
characteristics. The impact of the semiconductor leg shape 
was investigated in Fabián-Mijangos et al. (2017), who pro-
vided a manufacturing method and demonstrated a higher 
efficiency for asymmetric pyramidal or trapezoidal ther-
mocouple shapes compared to regular cubic shapes. In Sun 
et al. (2024), these shapes are combined with segmented 
legs containing more than a single semiconductor material to 
train a neural network to provide the optimal combination of 
geometric parameters and output power. Additionally, topol-
ogy optimization (TO) through the SIMP (solid isotropic 
material with penalization) method with volume constraints 
can be employed to improve the efficiency of heat recov-
ery thermoelectric devices. Takezawa and Kitamura (2012) 
introduce this methodology for thermoelectric generators 
with all material penalization coefficients equal to unity and 
a 1D model to validate the sensitivities. In Xu et al. (2019), 
the previous method is extended to segmented semiconduc-
tor legs using multimaterial TO. There is also literature on 
the system integration of thermoelectrical devices with Sop-
rani et al. (2016), optimizing the thermal coupling material 
from the TECs to its thermal contacts with simplifications 
of the thermoelectrical module as a single material block for 
a downhole oil well intervention tool. Finally, Lundgaard 
and Sigmund (2018) examine the TO formulation for differ-
ent thermoelectrical objectives and problem formulations, 
including power output, conversion efficiency, temperature, 
heat flux, and coefficient of performance using two different 
materials in direct contact. Together, these studies highlight 
the importance of material arrangement and leg optimization 
in shaping TEC performance.

TO algorithms can reduce semiconductor materials’ vol-
ume and material costs—up to a third of the system cost 
(Leblanc et al. 2014)—maintaining efficiency. However, the 
topology shapes that arise can compromise their mechanical 
reliability. Mechanical ageing, which occurs from the dis-
similar materials in the thermocouple composition, intro-
duces efficiency losses. A single thermocouple involves a 
solder and an electrode with thermoelastic properties differ-
ent from the semiconductor’s, leading to mechanical load-
ing. Additionally, these devices experience temperature 
variations through their thickness, influencing the properties 
of the semiconductor material and the fatigue conditions. 
This ageing process, which increases electrical resistivity 
and decreases Seebeck coefficients of the affected thermo-
couples, decreases efficiency over time. Due to the impor-
tance of this efficiency loss, multiple approaches have been 
proposed to predict it. For instance, Merienne et al. (2019) 
and Williams et al. (2022) highlight the effect of thermal 

cycling on commercial thermoelectric generators, revealing 
the increased resistance due to material cracking over time. 
Wang et al. (2019) use digital image correlation to experi-
mentally identify the cracking spot at the copper–Bi2Te3 
interface to provide a diagnostic method. Gong et al. (2019) 
present a model to estimate thermal loads and proposes 
improvements over previous models considering copper 
and ceramic layers. The electrical operation also impacts 
the ageing process, as demonstrated by Fan et al. (2022), 
who showed that pulse operation could reduce thermally 
induced stresses. The effect of the shape of the thermoelec-
tric semiconductor is highlighted in the literature through 
FEM (finite element method) models. Erturun et al. (2015) 
look into the effect of the shape of the pellets of the thermo-
electro-mechanical performance of thermoelectric genera-
tors in ANSYS, and Zhang et al. (2023) use COMSOL to 
perform similar measures within a thermoelectric cooler 
and a parametric analysis of the dimensions of the design. 
Finally, Suhir and Shakouri (2013) develop an analytical 
model to estimate the shear stress along the bonded layers of 
a TEC and compare it to an ANSYS model. The results from 
these works emphasize the higher induced thermal stresses 
at the edges of the legs and their contact with the solder 
layer. Different leg designs, including truncated cones or 
trapezoidal shapes with variable cross-sections, show prom-
ise in reducing stress at material interfaces (Liu et al. 2023; 
Al-Merbati et al. 2013; Lu et al. 2020).

TO can alleviate local stresses, with formulations dating 
back to Yang and Chen (1996). Verbart (2015) and Yvonnet 
and Da (2024) summarize recent advances in fracture TO, 
which presents commonly used stress aggregations to miti-
gate fatigue and crack initiation in materials. Verbart et al. 
(2017) outline various options for structural stress aggre-
gation, highlighting their distinct impacts on optimal out-
comes. Lastly, Meng et al. (2021) explore the thermoelastic 
stress-based TO. These techniques are readily applicable to 
thermoelectric devices, and their thermoelastic behaviour 
is incorporated to minimize induced thermal stresses and 
enhance operational reliability. In Mativo et al. (2020), a 
simplified thermomechanical model using SIMP is further 
used to reduce shear loading-induced stresses. Another 
example of designs of thermo-electro-mechanical compliant 
mechanisms through the level-set method can be found in 
Furuta et al. (2017) with linear material properties with tem-
perature. In essence, TO methods offer a versatile approach 
to reducing stress and optimizing thermoelectric device per-
formance and reliability.

There are limited examples of multiphysics thermo-
electro-mechanical optimizations considering the Peltier 
effect in the literature. Some of the relevant work in the 
field include Furuta et al. (2017), which provides a level-
set optimization formulation for thermoelectric mechanical 
actuators based on the Peltier effect or Xing et al. (2024), 
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which uses a Kriging optimization and COMSOL to opti-
mize a flexible thermoelectric generator without the use of 
sensitivities. Pérez-Aparicio et al. (2024) perform shape 
optimization using simulated annealing for transient pulse 
shapes and associated temperature profiles with limits to the 
induced stresses using linear elasticity. Chen et al. (2022a) 
use ANSYS and multi-objective genetic optimization algo-
rithms to reduce stresses in a full thermoelectric module 
through the parameterization of the cooling fin distribution. 
Maduabuchi (2022) shows the use of deep learning network 
techniques trained through ANSYS simulations for paramet-
ric optimization of thermoelectrical for faster calculations 
using power, efficiency, and induced stresses as objectives.

The numerical implementation and performance of fully 
coupled thermo-electro-mechanical topology optimization 
remains largely unexplored compared to parametric analysis 
on these structures. Particularly, the SIMP method—widely 
adopted in structural optimization—has seen little applica-
tion in this field. Despite the critical impact of stresses on 
device reliability and failure, the influence of optimization 
parameters on the resulting designs has not been studied 
in detail. Current optimization approaches for thermo-
electro-mechanical problems lack sensitivity formulations 
to account for stress concentrations in these devices. Fur-
thermore, existing studies rely on idealized fixed boundary 
conditions and neglect thermal losses to the environment, 
limiting the accuracy of the optimized designs.

This work presents a topology optimization framework for 
thermoelectric devices that incorporates mechanical stress 
considerations using the SIMP method, an approach not 
seen in the literature for this class of multiphysics problems. 
Unlike existing studies that focus solely on thermal and electri-
cal behaviour, this method introduces mechanical degrees of 
freedom into the optimization process, enabling the inclusion 
of stress constraints critical to device reliability. We explore 
decoupled thermoelectrical and mechanical equations for the 
FEM simulations, examining their optimization convergence 
and optimized designs. A simplified model is proposed to 
simulate the electrical operating conditions of TECs using its 
voltage gradient across a thermocouple. We use this model to 
analyse the optimization results with and without stress con-
straints, addressing the impact of length scale on optimized 
designs through filtering techniques. We evaluate the effect of 
the results of Heaviside and Helmholtz filters and the need for 
filtering techniques due to the addition of stress constraints. 
This further contemplates studying the effect of grey regions in 
optimal thermo-electro-mechanical designs as opposed to pure 
thermoelectrical optimization. The examples consider both 
vacuum and air-filled environments to capture realistic thermal 
losses during operation. Prior work shows that air conduction 
dominates, while convection is negligible and radiation contri-
butions depend on leg geometry with less than 10% effect for 
the device efficiency with leg gaps under 1 mm (Bjørk et al. 

2014). A detailed study confirms the limited impact of radia-
tion at low temperatures, particularly on power output rather 
than conversion efficiency Cai et al. (2020). Additionally, we 
present illustrative 2D and 3D results for a thermocouple under 
various constraint conditions, demonstrating convergence to 
lower semiconductor volumes with larger efficiencies and 
compliance compared to the initial design.

2 � Governing equations

The physics of thermoelectric coolers in steady-state condition 
is governed by the thermoelectric coupling given by the elec-
tric charge and energy balance or equilibrium equations, i. e.,

In these equations, we find the balance of current density j 
and heat flow q within our material depending on the applied 
electric field � and the internal heat generation q� . Further-
more, to study the induced stress, we also need to consider 
the mechanical static equilibrium

with � being the Cauchy stress tensor, b the body forces.
The constitutive equations in this problem rely on Ohm’s 

equation, i. e.,

This equation relates the current density j with the electric 
potential � , the electrical conductivity � , with the thermo-
electric coupling to the temperature field T, through the 
Seebeck coefficient � . The coupling of the thermoelectric 
equations also involves Fourier’s equation

which represents the contributions to the total energy flow 
of the current flow and the heat conduction. From Eq. (4), 
we see that the thermal conduction term depends on the tem-
perature gradient and thermal conductivity � , while the heat 
due to the current flow depends on the Seebeck coupling 
and current flow. Finally, the generalized Hooke equation or 
the isotropic linear thermoelastic constitutive equation for 
small displacements assumption in a 2D plane stress situa-
tion using the Voigt notation is

(1)
�⋅ j = 0,

�⋅ q + j ⋅ �� = q�.

(2)�⋅ � + b = 0,

(3)j = −�(�� + ��T) .

(4)q = �Tj − ��T ,

(5)�̂ = C� − �T𝜃 ,

(6)� = (T − Tref) ,
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where the isotropic coefficient of expansion �T affects the 
normal stresses through a trace operator e . This equation 
relates the stresses with the material properties considering 
the thermoelastic problem where we define E as the Young’s 
modulus of the material, and � the Poisson’s ratio, the refer-
ence temperature Tref , the temperature at which there are 
no thermally induced stresses, � is the strains tensor, and 
C is the constitutive relation between the mechanical strain 
and stresses without thermal stresses. In a 2D plane stress 
problem, we define this constitutive relation as

The strong form of the problem is completed by the bound-
ary conditions

In these boundary conditions, we impose fixed DOFs in the 
form of voltages V� , temperatures T� , and displacements U� , 
and external loads along their respective boundaries �V , �T , 
and �U . The boundaries that prescribe primal and dual varia-
bles must be disjoint, i. e., , 𝛤 = ̄𝛤V ∪ 𝛤j and �V ∩ �j = � for 
the electrical problem. Similarly, for the thermal problem, 
we have 𝛤 = ̄𝛤T ∪ 𝛤q and �T ∩ �q = � and for the mechani-
cal equilibrium 𝛤 = ̄𝛤U ∪ 𝛤t and �U ∩ �t = �.

We approach the nonlinear thermoelectric problem previ-
ously presented through numerical procedures to overcome 
the challenge posed by an analytical solution.

2.1 � Finite element modelling

To solve the coupled thermo-electro-mechanical through 
FEM, we reformulate the equations in weak form and dis-
cretize them by approximation functions. Using the residual, 
Garlekin’s, and the divergence theorems, we get

where � is the weight function.

(7)�T =
E

1 − 2�

[
1 1 0

]⊺
�T = Cetr�T , ,

C = EC0 =
E

1 − �2

⎡
⎢⎢⎣

1 � 0

� 1 0

0 0
1−�

2

⎤
⎥⎥⎦
.

(8)
V = V� on�V

j ⋅ n = jc on�j

T = T� on�T

q ⋅ n = qc on�q

Up = U� on�U

� ⋅ n = tc on�t.

(9)

− ∫�

� �⋅ qd� + ∫�

�j ⋅ �� d� + ∫�q

�qc d�

= ∫�

�q� d�,

− ∫�

�� ⋅ j d� + ∫�j

� ⋅ �� d� = 0,

∫�

� ⋅ � d� − ∫�

� ⋅ �� = 0,

To discretize the weak forms in Eq. (9), we use standard 
bilinear shape functions. For the thermoelectric problem, tem-
perature T and electric potential � are interpolated using N . For 
the mechanical problem, the displacement field Up is interpo-
lated using �� . All these vectors are represented in column 
form. This interpolation is written as

where vectors t , v , and u are the temperature, electric poten-
tial, and displacement DOFs at element level, respectively. 
We use these shape functions and discretized displacements 
to define strain–displacement matrix B as

The strain–displacement matrix can be introduced into the 
mechanical weak-form equation and using the Hooke ther-
moelastic relation, Eq. (5), to obtain the residual from the 
mechanical coupling ��

The residuals of the remaining thermoelectrical coupling 
given by Eq. (9) are

The residual and element level state vectors are assembled 
into

The derivative of this residual concerning the unknown 
DOFs is tangent matrix K . Considering the null derivatives 
of the residual, this matrix can be written at the element 
level as

(10)T = N⊺t, � = N⊺v, Up = 𝐍𝐔
⊺u, � = N⊺

(

t− Tref

)

,

(11)� = B u.

(12)

�� = ∫�

��
⊺� d� − ��� + ��� = 0,

�� = ∫�

B⊺CBd�,

k� = ∫�

B⊺�TN
⊺ d�.

(13)

�� = − ∫�

N �⋅ q d� + ∫�

Nj ⋅ �N⊺v d�+

∫�q

Nqc d� − ∫�

Nq� d� = 0,

�� = − ∫�

�N ⋅ j d� + ∫�j

N ⋅ �� d� = 0.

(14)
r =

[
�� �� ��

]⊺
and

s =
[
u t v

]⊺
.

(15)k(k) =
dr

ds
=

⎡
⎢⎢⎢⎢⎣

�r
(k)
u

�u

�r
(k)
u

�t
0

0
�r

(k)

t

�t

�r
(k)

t

�v

0
�r

(k)
v

�t

�r
(k)
v

�v

⎤
⎥⎥⎥⎥⎦
,
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where the development of each derivative of the residual 
can be found in Appendix A. The global stiffness matrix can 
be obtained through the standard FEM assembly procedure

with R and S the global residual and state vectors arising 
from the assembly of k and for all elements e.

From the definition in Eq. (15), we see that the thermo-
electrical DOFs are decoupled from the mechanical DOFs u . 
This decoupling allows us to use the reduced thermoelectrical 
tangent stiffness

to compute the global thermal and electrical DOFs [
T V

]
 using the Newton–Raphson method, starting with [

T V
]
= 0 as an initial solution. Each system is solved using 

MATLAB’s direct sparse linear solver. Subsequently, global 
displacements U are determined in a second step, incorporat-
ing the computed temperature field into the thermoelastic 
equation Eq. (12). Notably, the solution step of the thermoe-
lastic equation is only nonlinear in scenarios featuring the 
temperature-dependent Young’s modulus or the coefficient 
of thermal expansion.

To validate the MATLAB implementation, a test routine 
was developed using analytical benchmarks from Pérez-Apa-
ricio et al. (2007), supplemented with analytically calculated 
thermoelastic deformations. Matrix dimensions and imple-
mentation details are provided in Appendix A. For a fully 
coupled FEM formulation including thermoelectricity, dis-
placement, and magnetic flux, see Pérez-Aparicio et al. (2016).

3 � Problem formulation

With the finite element formulation of the coupled thermo-
electro-mechanical problem in place, we define our design 
optimization procedure. We use a density-based TO formu-
lation, following the three-field-density formulation from 
Lazarov et al. (2016). In this material representation, we use 
three density fields (x̄𝜌,�x𝜌, x𝜌) . Each one represents the density 
design variables used by the optimizer x� , the filtered density 
design variables x̃� , and the physical density design variables 
x̄𝜌.

The filtered density field is obtained through the Helmholtz 
equation Lazarov and Sigmund (2011)

(16)K(k) =
dR(k)

dS
=

ne∑
e=1

k(k),

(17)K
(k)

TV
=

⎡
⎢⎢⎣

�R
(k)

T

�T

�R
(k)

T

�V
�R

(k)

V

�T

�R
(k)

V

�V

⎤
⎥⎥⎦
,

(18)− d2
r
∇2x̃� + x̃� = x�,

where x̃� and x� represent filtered density design variables 
and the density variables used by MMA at element level. In 
the equation, dr is a characteristic radius that introduces a 
length scale in the optimization.

We discretize the Helmholtz equation using standard 
linear interpolation functions Nh at the element level, 
based on standard 8-node hexahedral elements (in 3D) or 
4-node quadrilateral elements (in 2D). We use the relation 
x� = N

⊺

h
xe and x̃� = N

⊺

h
x̃e . In these relations, xe and x̃e are 

the nodal density values for each field at element level. 
The discretized Helmholtz equation is written as

Applying the divergence theorem and Neumann boundary 
conditions, we obtain

We can write the previous equation as a system of linear 
equations using a filtering stiffness matrix Kh using our 
design variables x� and an assembly procedure, i.e.

In this formulation, H is a matrix whose column i contains 
the element level integration ∫ Nhd� for the nodes of the 
element e == i.

The preconditioned conjugate gradients method pro-
vides the solution to this system. As this Kh matrix only 
depends on the mesh, we use a single preconditioning and 
store it throughout the optimization procedure, reducing 
the computational cost of filtering the design space Lund-
gaard and Sigmund (2018). Finally, to recover the element 
density after filtering, we use the approximation function 
for the centroid of each element Nh(0, 0, 0).

To provide a sharp change between void and solid mate-
rial, we apply a Heaviside projection to the filtered design 
that provides the physical density design variable

The � variable determines the sharpness of the projection 
and � the step location.

The physical density design variable provides the 
relation

(19)
− ∫ Nhd

2
r
∇2(N

⊺

h
x̃e)d� + ∫ NhN

⊺

h
x̃ed�

= ∫ N
⊺

h
xed� .

(20)
∫ ∇Nhd

2
r
∇(N

⊺

h
x̃e)d� + ∫ NhN

⊺

h
x̃ed� = ∫ N

⊺

h
xed�.

(21)

Khx̃� = Hx�, where

Kh =

ne∑
e

(
∫

(
∇N

⊺

h
d2
r
∇Nh + N

⊺

h
Nh

)
d�

)
.

(22)x̄𝜌 =
tanh(𝛽𝜇) + tanh

(
𝛽(�x𝜌 − 𝜇)

)

tanh(𝛽𝜇) + tanh
(
𝛽(1 − 𝜇)

) .
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where the physical density design variable of the e-th design 
element is directly related to the density of the eth element 
�e , with respect to its solid density �s.

The rest of the material properties can be written for 
each element using a power law following a modified SIMP 
approach (Bendsøe and Kikuchi 1988; Rozvany et al. 1992), 
as follows:

The properties of the solid material are indicated by the 
subscript ◻s in Eq. (24), and we define them according to 
experimental data. Minimum material properties for void 
elements are imposed to avoid the singularity in the tangent 
matrices with a user-defined value ◻v . pS , p� , p� , and pE are 
the penalization coefficients for their corresponding mate-
rial property. Intermediary densities in the optimal design 
are equivalent to non-manufacturable porous materials. For 
this reason, the penalization coefficient tries to ensure the 
optimized results lead to a fully black-and-white design.

Furthermore, we use nonlinear temperature-dependent 
properties for each material. We modelled the properties of 
the semiconductors following the measurements for Bi2Te3 
by Witting et al. (2019), using the lowest doping values for 
each semiconductor. The provided values are fitted to a con-
tinuous polynomial as detailed in Appendix C within the 
measured temperature range. We enforce constant material 
properties for temperatures outside of this range. If the out-
come from the optimization falls within this constant mate-
rial property range, their results should be reevaluated, or 
the material properties extended to accommodate a broader 
range. In addition to semiconductor material, we need to 
define the properties of copper for electrical terminals, alu-
minium nitride (AlN) for the thermal ceramic contacts, and 
SAC 305 (tin-silver-copper) as solder. These material prop-
erties are kept constant with temperature to avoid further 
nonlinearities in the optimization procedure. We summa-
rize all temperature-constant material properties used in this 
model in Table 7.

3.1 � Topology optimization formulation

With the density design variables and filtering techniques 
established, we need to define the optimization problem that 
will guide the design variables. We can define this problem 
for cooling applications through a temperature-based objec-
tive, power constraints, and voltage design variables to limit 

(23)𝜌e = x̄𝜌𝜌s,

(24)

𝛼 = 𝛼v + x̄
p𝛼
𝜌 (𝛼s(T) − 𝛼v),

𝜅 = 𝜅v + x̄p𝜅
𝜌
(𝜅s(T) − 𝜅v),

𝛾 = 𝛾v + x̄
p𝛾
𝜌 (𝛾s(T) − 𝛾v),

E = Ev + x̄pE
𝜌

(
Es(T) − Ev

)
.

the electrical working point, stress constraints for reliability, 
and volume fraction limits to reduce costs. We can describe 
this formulation as 

 where we look for the design variables x� that minimize 
an objective function � submitted to several constraints. 
For this optimization, we define a vector of design variables 
�� =

[
x� xS

]⊺
, containing the density design variables x� 

and the design variables controlling the voltage Dirichlet 
imposed boundary conditions xS which for our model can be 
reduced to a single boundary condition V�  between a given 
minimum and maximum voltages defined as Vmin as Vmax.
This allows us to take into account the optimum efficiency 
of thermocouples with respect to the current flow across 
the device for all geometries, which is a nonlinear effect. 
The overall objective of our optimization is then the tem-
perature of our heat injection surface, considering a power 
limit and controlling the power consumption of the system. 
Furthermore, we limit the stresses at which the device is 
submitted and incorporate a volume constraint to reduce 
semiconductor material volume and associated costs. The 
objective function depends on a temperature field �� on �� 
and an aggregation function �  . The problem is subjected to 
various constraints, including a stress constraint c� , a power 
constraint cP , and a volume constraint cv . The stress con-
straint is based on limiting stress �0 and a field of von Misses 
stresses aggregated through the same function as the objec-
tive function. The power constraint requires a ratio between 
the overall power consumption of the device P and a limit 
power P0 . The volume constraint depends on the summa-
tion of the volume of each element ve compared to the total 
volume of the original design v0 and a limiting volume vobj.

As aggregation function �  , we use the P-mean, which 
increases the influence on the function of the values that 
deviate most from the mean of the input values using a 
penalization factor p� . The P-mean is defined as

(25a)�∗
�
= argmin

��

� = �
(
��

)
,

(25b)such that c� = �

(
�VM

�0

)
− 1 ≤ 0 ,

(25c)cP =
P

P0

− 1 ≤ 0 ,

(25d)cv =

ne∑
e=1

vex�

v0vobj
− 1 ≤ 0 ,

(25e)V� = Vmin + xS(Vmax − Vmin) ,

(25f)R = 0 ,
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with f a vector field and ni its size. � provides a lower-bound 
of the maximum value stored in f,

leading to an underpenalization of the constraints or maxi-
mum values in the field Fernández et al. (2019). This func-
tion has an asymptotic behaviour towards the maximum in 
the distribution with increasing p� values (Verbart et al. 
2017). This means its behaviour will also lead to higher 
nonlinearities, the larger the penalization coefficient p� . 
The stress constraint and the objective functions use this 
formulation to avoid stress concentrations and hot spots in 
the optimized designs. The values used within the exponen-
tial aggregation function must be rescaled to values close to 
unity to avoid singularities in the numerical calculation. This 
can be done in each case through a reference temperature, 
where we use the initial device temperature of 25◦ C, and the 
limiting stress �0.

We also rescale the other constraints to maximum values 
between 1 and 100 using the objective volume and power to 
improve the convergence of the MMA optimizer (Svanberg 
2014). This algorithm, proposed by Svanberg (1987), uses a 
local convex approximation function in successive iterations 
to find local minima. MMA has been repeatedly tested in 
TO problems with success in finding minima. The stopping 
criteria of the algorithm used is based on a total number of 
iterations or the relative change between the design vari-
ables x̄Φ,

Because MMA is a gradient descent algorithm, we must 
formulate the sensitivities for the objective and constraint 
functions.

3.2 � Sensitivity calculation

To apply a gradient-based optimization algorithm, we need 
analytical expressions for the sensitivities of each objective 
and constraint function concerning the design variables and 
validate them against finite differences methods according to 
Appendix B. We calculate these sensitivities for the filtered 
field, x̄� =

[
x̄𝜌 xS

]⊺ , although these can be easily extended 
to any number of boundary condition control variables. 
Given the use of x� by the optimizer and the x̄𝜌 by our FEM, 
to recover the sensitivities of a function � , with respect to 
the density design variables, we need to follow the chain rule

(26)� (f) =

(
1

ni

ni∑
i=1

f
p�
i

) 1

p�

,

(27)� (f) ≤ max(f1, f2, ..., fni) ,

Stop if
1

dim(x̄𝛷)

‖‖‖‖
(
x̄
(i−2)

𝛷
− x̄

(i)

𝛷

)
⊘ x̄

(i)

𝛷

‖‖‖‖2 < 𝜀KKT

or i ≥ imax.

We can express the derivative of the filtered design space 
relative to the density values as

We can recalculate the result of the modified sensitivities 
through the vector containing the sensitivities to the filtered 
design variables and a single calculation using the conjugate 
gradients method. The nodal sensitivities can then be recov-
ered as the mean of each element, as we do for the filtered 
densities.

The derivative of the physical field concerning the filtered 
field is given by

The sensitivities with respect to the physical density field are 
then solved through the adjoint method through the defini-
tion of the Lagrangian

In this definition, L represents the Lagrangian, � is the 
adjoint vector, and � is the objective or constraint function. 
The general solution to the total derivative of any Lagran-
gian functional can be solved through the definition of a � 
constant vector that removes from the equation the deriva-
tive of the state vector S concerning our design variables x . 
The general equation that solves � looks like

Given that the first component of the equation is the tangent 
stiffness matrix, we can decompose this calculation as we 
do for the Newton-Raphson iterative procedure, reducing 
memory allocation. The solution can then be the following 
2 steps:

In the previous separation of the mechanical and thermoelec-
tric solutions of the adjoint vector, we separate it as

(28)
𝜕𝜓

𝜕x𝜌
=

𝜕𝜓

𝜕x̄𝜌
⋅

𝜕x̄𝜌

𝜕�x𝜌
⋅

𝜕�x𝜌

𝜕x𝜌
.

(29)
�x̃�

�x�
= K−1

h
H.

(30)
𝜕x̄𝜌

𝜕�x𝜌
=

𝛽
(
tanh2

(
𝛽(𝜇 −�x𝜌)

)
− 1

)

tanh
(
𝛽(𝜇 − 1)

)
− tanh(𝛽𝜇)

.

(31)L = � +�⊺R.

(32)−
(
�R

�S

)⊺

� =

(
��

�S

)⊺

.

(33)−

(
�RU

�U

)⊺

�U =

(
��

�U

)⊺

,

(34)−
(
KTV

)⊺
�TV =

[
��

�T

��

�V

]⊺
+

(
�RU

�T

)⊺

�U .

(35)�⊺ =
[
�U �T �V

]
=
[
�U �TV

]
.
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Substituting these solutions into the Lagrangian derivative, 
we can calculate the derivatives of the function � as

This solution still requires the derivative of the residual and 
the function � concerning each design variable in x . This 
x̄� comprises filtered density design variables and boundary 
condition control variables. We can identify two different 
cases. In the case of the derivatives concerning a density var-
iable x̄𝜌 , the calculation can be taken to the element level as

In the previous equation, �e represents the adjoint solution 
for the DOFs associated with element e and x̄𝜌 its associ-
ated density design variable. The second case refers to the 
sensitivity concerning a boundary condition. In this case, we 
can use the chain rule as

In this equation, we require the derivative of � concerning 
the state vector, already calculated for the adjoint vector sys-
tem. Now, we need to define the derivative of the state vector 
concerning the fixed value used in our boundary condition 
S�  . While this is a general formulation that can be applied 
to Dirichlet boundary conditions in U, T or V as expressed 
in Eq. (8), we particularize it for a voltage boundary condi-
tion V�  as

where �V is the location of the boundary condition we con-
trol through xS and x is the coordinates of node i.

The last component needed is the derivative of the value 
associated with the boundary condition concerning its con-
trol variable following the description in Eq. (25e). The 
derivative of the voltage boundary condition concerning 
the control variable can be expressed as

(36)
dL

dx̄�
=

d𝜓

dx̄�
=

𝜕𝜓

𝜕x̄�
+�⊺

(
𝜕R

𝜕x̄�

)
.

(37)
d𝜓

dx̄𝜌
=

𝜕𝜓

𝜕x̄𝜌
+�⊺

e

(
𝜕r

𝜕x̄𝜌

)
.

(38)
d�

dxS
=

��

�S

�S

�S�

�S�

�xS
−�⊺

(
�R

�S

�S

�S�

�S�

�xS

)
.

(39)
�U

�V�

=0,

(40)
�T

�V�

=0,

(41)
�Vi

�V�

=

{
1 if x(i) ∈ �V ;

0 otherwise,

(42)
�V�

�xS
= Vmax − Vmin,

where Vmax and Vmin define the minimum and maximum volt-
age that we apply across our thermoelectrical device.

Given the previous formulation, the derivative of the � 
function with respect to a design variable controlling bound-
ary condition is nonzero only if the domain affected by the 
constraint or objective ψ includes the nodes associated with 
that boundary condition. We can state this fact for our volt-
age boundary condition as

where �� are the DOFs used by �.
These equations provide all the quantities that need to be 

defined to calculate for each objective and constraint. In the 
following subsections, we provide the derivatives of each � 
function with respect to S and x̄� . The common derivatives 
for all functions of r and material properties are provided in 
the Appendix A.

3.2.1 � Objective function

We use the P-mean of the nodal temperature values in the 
cold surface of the thermocouple as our objective, �� . This 
equation is written in Eq. (25).

To calculate its derivative with respect to the state vector, 
we can rewrite it in terms of the of all DOFs using a vec-
tor L� which stores the components of T present in �� and 
performs the division concerning the number of elements in 
the summation. This multiplier L� contains

where n� is the number of DOFs used to summate the 
P-mean function and x are the coordinates of node i. The 
objective function can then be written as

The derivative of this objective with respect to the global 
temperature DOFs can now be written as

This can be rewritten in terms of the global state vector S as

The partial derivative of the objective function with respect 
to any density design variable is zero

(43)
��

�S

�S

�V�

=
��

�V�

= 0 if �� ∩ �V = �,

(44)L�(i) =

{
1

n�
if x(i) ∈ ��;

0 otherwise.
,

(45)� (��) =
(
L
⊺

�
T◦p�

) 1

p� .

(46)��

�T
= L�◦T

◦(p�−1)
(
L
⊺

�
T◦p�

)( 1

p�
−1

)
.

(47)
��

�S
=

⎡⎢⎢⎢⎣

��

�U
��

�T
��

�V

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎣

0
��

�T

0

⎤⎥⎥⎦
.
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Notice that these equations do not depend on the mechanical 
DOFs. Therefore, the two-step adjoint equation calculation 
can be simplified with

3.2.2 � Stress constraint

For each element, we consider a single �̂ value calculated at 
its centroid—equivalent to a zero value for its local coordi-
nates � = 0 . The space of these centroids makes up �� . The 
centroid reference for the stresses provides an exact value for 
hexahedral serendipity elements (H20) without the need for 
extrapolation for Gauss integration schemes if � = 0 is used 
as an integration point (Sharma 2016). The lack of extrapo-
lation and use of a single evaluation point per element sim-
plifies the calculation of this constraint at the cost of a lower 
number of evaluation points for the stress constraint. Given 
these assumptions, we can reduce the derivative of the von 
Misses stress with respect to each one of the stresses stored 
in the Voigt notation to the element level.

The partial derivative of the P-mean function of the stress 
within the design domain requires the calculation of a sum-
mation along all nodes n� included in the design domain. 
Following the chain rule, we have

In this equation, we have a k� constant arising from the 
derivative of the P-mean function and defined as

Each derivative of a single von Misses stress value with 
respect to the local stresses is given by

and the derivatives of the local stress vector with respect to 
the element level DOFs are

(48)
��

�x̄𝝆
= 0 .

(49)�U = 0.

(50)
𝜕c𝜎

𝜕S
= k𝜎

n𝜎�
e=1

⎛⎜⎜⎜⎜⎝

�
𝜎
(e)

VM

𝜎0

�p𝛹−1
⎡⎢⎢⎢⎢⎣

𝜕𝜎
(e)

VM

𝜕�̂

𝜕�̂

𝜕u

𝜕𝜎
(e)

VM

𝜕�̂

𝜕�̂

𝜕t

𝜕𝜎
(e)

VM

𝜕�̂

𝜕�̂

𝜕v

⎤⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎠
.

(51)k� =
1

n��0

(
1

n�

n�∑
e=1

(
�
(e)

VM

�0

)p�
) 1

p�
−1

.

(52)
𝜕𝜎

(e)

VM

𝜕�̂
=

1

2𝜎
(e)

VM

⎡⎢⎢⎢⎢⎢⎢⎣

(2𝜎x − 𝜎y − 𝜎z)

(2𝜎y − 𝜎x − 𝜎z)

(2𝜎z − 𝜎y − 𝜎x)

6𝜏yz
6𝜏xz
6𝜏xy

⎤⎥⎥⎥⎥⎥⎥⎦

⊺

,

The derivative of the stress constraint with respect to the 
density design variables can be calculated at element is

where the element level derivative of the Voigt notation 
stress of each element as

3.2.3 � Power constraint

We calculate the thermocouple power through the summa-
tion of the integration of the current density multiplied by 
the voltage gradient within each one of the elements in the 
mesh used for the power calculation nP , i. e.,

The integral is performed at the element level, so the deriva-
tive can also be calculated at the element level and assem-
bled through the summation of each element’s component. 
The derivative of this function with respect to the state vec-
tor can be written as

The derivative of the power with respect to the density 
design variables can also be reduced to element level as

The partial derivatives of the current density with respect 
to the density design variables and element level DOFs are 
provided in Appendix A.

(53)
𝜕�̂

𝜕u
= CB,

(54)𝜕�̂

𝜕t
=

𝜕C

𝜕T
BuN⊺ −

𝜕𝛽T

𝜕T
�N⊺ − 𝛽TN

⊺,

(55)
𝜕�̂

𝜕v
= 0.

(56)
𝜕c𝜎

𝜕x̄𝝆
= k𝜎

⎛
⎜⎜⎝

n𝜎�
e=1

�
𝜎
(e)

VM

𝜎0

�p𝛹−1
𝜕𝜎

(e)

VM

𝜕𝝈̂

𝜕𝝈̂

𝜕x̄𝜌

⎞
⎟⎟⎠
,

(57)
𝜕�̂

𝜕x̄𝜌
=

𝜕C

𝜕x̄𝜌
Bu −

𝜕C

𝜕x̄𝜌
𝛼T�,

(58)P =

nP∑
e=1

Pe =

nP∑
e=1

(
−∫�

j⊺�N⊺v d�

)
.

(59)
�cp

�S
=

1

P0

nP�
e=1

∫�

⎡⎢⎢⎢⎣

0

−
�j

�t

⊺

∇N⊺v

−
�j

�v

⊺

∇N⊺v − ∇Nj

⎤⎥⎥⎥⎦
d�.

(60)
𝜕cp

𝜕x̄𝜌
=

−1

P0
∫𝛺

(
𝜕j

𝜕x̄𝜌

)⊺

∇N⊺v d𝛺.
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As in the case of the temperature objective, the mechani-
cal adjoint vector is zero. This can simplify the calculation 
of these derivatives.

3.2.4 � Volume constraint

This constraint does not depend on the state vector or the 
boundary conditions, leading to the values:

Nevertheless, this equation does depend on the element level 
densities

Given the previous equations, this solution does not require 
the calculation of the adjoint as the solution to the system 
Eq. (32) provides the trivial solution.

4 � Results

This section provides examples of how we apply our formu-
lation to the standard thermoelectrical element mechanical 
assembly. This is commonly done by introducing the TEC 
between two plates that can be tightened together using fas-
teners, adding a compression force into the thermoelectric 
device. These two plates act as cooling surfaces and heat 
sinks, respectively. After assembly, the entire thermocouple 
is under compression loading and cannot expand through its 
thickness.

4.1 � 2D results

Each TEC usually consists of multiple thermocouples, with 
each thermocouple being an in-series connection between 
dissimilar semiconductors. For our model, we simplify it to 
a single thermocouple, considering they are all submitted to 
the same loads. A 2D cross-section of a single thermocouple 
is depicted in Fig. 1. In this figure, we can appreciate a cross-
section of the yz plane of a thermoelectrical pellet composed 
of a p+ and n− semiconductor pellets joined together by a 
solder (white blocks) and a copper layer (solid grey blocks). 
Two ceramic layers (hatched blocks) act as the thermal con-
tacts in this assembly. This figure also shows the bound-
ary conditions at each of the outer edges. The mechanical 
boundary conditions include a zero displacement in the heat 
sink and cooling surface along the z axis to simulate the 
mechanical assembly and at the connection with the sur-
rounding thermocouples with zero displacements along the 
ceramic and copper connections to the surrounding material 

(61)
�cv

�S
= 0.

(62)
𝜕cv

𝜕x̄𝜌
=

ve

v0vobj
.

in the x direction. The thermoelectrical model imposes a 
heat flux qin at the cold surface of the TEC and a heat sink 
with a prescribed temperature T0 on the opposite surface. 
Both these thermal boundary conditions are imposed in the 
ceramic layers. Electrical boundary conditions are applied 
to each copper electrode, i. e., a voltage Vf > 0 at one end 
and V0 = 0 in the opposite one, according to the definition 
of the p+ and n− materials. Reversing this definition would 
warm the objective surface instead of cooling it. Finally, 
as ceramic materials are not electrically conductive, we fix 
the voltage value of these solids to zero to avoid numerical 
instabilities. The nodes in contact between both solids, the 
copper and the ceramic layer, are not fixed and are solved 
in each iteration.

With our 2D model, we now set the optimization param-
eters. The TO computational domain within the design in 
Fig. 1 is set only to the thermoelectrical elements, i. e., 
Bi2Te3 material regions. While the copper, ceramic, and 
solder layers can impact the objective and constraint func-
tions, we do not include their topology in the design space. 
We create the mesh of Bi2Te3 using a regular 60 × 60 grid, 
totalling 3600 serendipity 8-node elements (Q8) per semi-
conductor leg. The dimensions of the default thermoelectri-
cal pellet are based on standard thermoelectrical devices and 
are equal to 1mm × 1.2mm . The solder, copper, and ceramic 
layers measure 0.05, 0.1, and 0.2mm, respectively, and the 
gap between two pellets is 0.2mm. We set the limits of the 
voltage gradient across the thermocouple defined by the xS 
design variable to 0.01V and 0.06V and equal to Vf  . The 
initial value imposed to xS during the optimization is 0, pro-
viding the smallest voltage possible according to Eq. (25e).

Fig. 1   Thermocouple FEM simplified model. The figure includes the 
heat injection qin and temperature boundary conditions T0 in red, volt-
ages (V0,Vf ) in green, and displacements in blue Ux0 . The different 
layers include a grey copper connection, a hashed ceramic layer, and 
two thermoelectrical pellets soldered to the copper through a solder 
layer
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For subsequent optimizations without any filter-
ing scheme, we start from the full-density design, 
x̄𝜱 = x𝜱 = �.� , given the lack of information on a better 
initialization design and the need for a fully connected 
design. The minimum material property value for all mate-
rials according to Eq. (24) is set to 10−6 to avoid numerical 
instabilities. Furthermore, we fix the heat flux to 7500 W∕m2 
and the power consumption to 15mW per thermocouple. 
We can translate this power consumption limit for the 2D 
case to 15W/m, considering a thickness of 1 mm for the 
thermocouple. Finally, the MMA algorithm requires the 
definition of some parameters, including a hyperparameter 
cm , to penalize the problem for infeasible design spaces. All 
cm values are set to 20,000, and the optimization is run for a 
number of iterations im of 150. Notice that we obtain these 
values by trial and error, and if set too low, we might end 
up with an infeasible design. The penalization coefficient 
for each material property involved in the optimization has 
been selected by combinatorial analysis from an analytical 
model in Gutiérrez et al. (2024) to achieve convergence. For 
all optimizations, we use the set of penalization coefficients 
satisfying

We summarize all parameters required for the optimizations 
in Table 1 following the methodology in Sect. 3.

We increase the complexity through multiple optimiza-
tions to better understand the problem and the successive 
nonlinearities introduced. For this reason, we successively 
add stress constraints and filtering techniques to a pure 
thermoelectrical optimization with power constraints. 
Furthermore, we repeat this analysis for different material 
conditions for the model, from constant material properties 
at 350K, to nonlinear material properties with temperature, 
to the introduction of air material in the void regions and 
in between the thermocouple legs. The results from these 
successive optimizations are represented in Fig. 2 with an 

(63)pS < pk = p𝛾 < pE.

increased number of constraints and filtering techniques 
towards the right and increased model and material com-
plexity further down. Each plot in this figure represents the 
density field for the 150th iteration or convergence condi-
tions for each optimization with a linear colour scale with 
white representing void material and black full-density 
material.

The pure thermoelectrical TO with power constraints but 
without stress or volume constraints is shown in Fig. 2a, e, 
and i. These plots show an asymmetry between each pellet, 
given their different thermoelectrical properties of p+ and 
n-type semiconductors. Notice that the Peltier effect is based 
on the change of energy of the electrons moving between 
different outer valence energy levels between two dissimilar 
semiconductors. Therefore, the effect only requires contact 
between dissimilar semiconductors. The optimization objec-
tive tries to reach an optimal configuration between decreas-
ing the thermal conductivity and increasing the electrical 
conductivity of each semiconductor. Given the material 
properties used, see Appendix C, we use the same thermal 
conductivity for both semiconductors, and the optimiza-
tion should leave the largest amount of the material with 
the lowest electrical conductivity at each operational tem-
perature to compensate for it. Indeed, we observe that the 
electrical conductivity provided in Appendix C decreases 
with temperature; with the highest temperature located at 
the bottom surface of the thermocouple, the heat sink, the 
optimized pellets present the largest amount of material at 
this location, with the lowest amount of material at the cold 
top surface contact with the higher electrical conductivity. 
The optimizer also tries to reduce Joule heating concentra-
tions by creating multiple electrical paths, avoiding hot spots 
and distributing the Peltier effect through multiple contacts 
along the cold surface.

A second set of optimizations include a stress constraint 
to 10 MPa (Fig. 2b, f and j). These optimizations maintain 
features of the pure thermoelectrical TO such as continuous 
paths for the electrical and thermal flow but also present 
joints and smaller contacts to the top and bottom surfaces to 
reduce the thermally induced stresses in the thermocouple. 
These joints are made through features of a single element 
and porous material. This is an undesirable and difficult-
to-manufacture topology. A Helmholtz filter can introduce 
a length scale, removing all single-element features and 
providing mesh independence to the results. A third set of 
optimizations using a filter radius dr = 0.11mm is shown in 
Fig. 2c, g, and k. A larger feature size increases the overall 
stresses in the structure, and the use of the same mechanical 
properties under an active stress constraint for both semi-
conductors leads to an increased symmetry between both 
legs. However, these results maintain intermediate density 
elements between the solid and void material. These inter-
mediate densities can introduce thermoelectric artefacts due 

Table 1   MMA optimization parameter summary according to Eqs. 
(25), (18), and (24) for the optimization results in Fig. 2

Parameter Value Parameter Value

Vmin 0.01V cm 20,000
Vmax 0.06V dr 0.11 mm
pE 5 Pobj 15 mW/mm
pS 1 �0 10E6
p� 3 Tref 298.15K
pk 3 Th 350K
qin 7500 W∕m2 �KKT 10−8

� 64 x
(i=0)

S
0.5

� 0.4 im 150
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to changes in Seebeck coefficient, the Thompson’s effect, 
and temperature gradients.

To remove these intermediate densities, we introduce a 
Heaviside projection after the Helmholtz filtering to obtain 
a sharper transition between the void and solid material in 
Fig. 2d, h, and l. We use a Heaviside projection with � = 0.4 
and a � = 64 . This optimization requires modifying the ini-
tial x� = 0.4 and default parameters of MMA to obtain con-
vergence and avoid a thermoelectric disconnection of the 
design. We reduce the movement of the asymptotes in MMA 
using a move limit, adjusting the increase and decrease rates 
of the asymptotes, and setting an initial asymptote value of 
2% . The results maintain previously found design character-
istics, with a crisp transition between solid and void mate-
rial. We can see that each electrical path develops a rota-
tional joint to accommodate thermal deformation. Between 

each joint, the algorithm increases the material amount to 
compensate for the reduced electrical conductance at the 
joints with smaller cross-sections.

To justify the Heaviside filtering and the impact of grey 
regions in Helmholtz filtering, the optimal configuration 
in Fig. 2f to h was modified by retaining elements with 
xe > 0.85 . These elements were assigned full density, while 
others were set to xe = 1e − 6 . Figure 3 compares the new 
black-and-white designs with the original optimal geome-
try as �� = �BW − �opt , where � represents the respective 
objective or constraint. The black design is coloured based 
on its temperature difference from the optimal design and 
deformed according to the displacement field difference, 
scaled by 1000. In Fig. 3a, grey areas are electrically dis-
connected, resulting in minimal thermal variation, with a 
total deviation of 0.38◦ C in localized areas, specifically at 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2   Physical density field for 2D thermocouple optimizations, 
ranging from full-density elements (in black) to full-void elements 
(white). Grey elements represent regions with intermediate density 
values. Subfigures Fig.  2a to d use constant material properties at 
350K. Subfigures Fig. 2e to h apply nonlinear properties with temper-
ature. The nonlinear material properties and their values at 350K are 
described in Appendix C. Subfigures Fig. 2i to l also include air as a 
material in voids and between pellets. Fig. 2a, e, and i shows results 

from pure thermoelectric optimizations under power constraints, 
without filtering or stress constraints. Figure  2b, f and j includes 
stress and power constraints without filtering. Figure  2c, g, and k 
applies a Helmholtz filter in addition to stress and power constraints. 
Figure 2d, h, and l combines stress and power constraints with both 
Helmholtz and Heaviside filters. The values for each constraint and 
filtering technique are summarized in Table 1
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the smallest electrical path contact with the cold surface. 
In contrast, Fig. 3b shows larger temperature changes up to 
1.4◦ , particularly near the device centre along z. Figure 3c 
improves on the behaviour of Fig. 3b, with temperature dif-
ferences of 0.38 in localized areas compared to the optimal 
design, without single-element joints. Table 2 presents the 
final values of the objectives and constraints for each black-
and-white design, along with the differences from the opti-
mal designs. The grey areas in Fig. 3a have minimal impact 
on the metrics compared to the filtered designs. The filtered 
designs show similar corrected objectives, differing only in 
the second decimal for the black-and-white designs. How-
ever, the objective difference from the optimized designs 
is two orders of magnitude larger in the design that uses 
only the Helmholtz filter. Finally, the stress constraint is not 
satisfied in all black-and-white designs, with the largest dif-
ference found in the design with only the Helmholtz filter.

Although the material properties are nonlinear, the study 
focuses on the range from 333 to 350K, where nonlinear 
effects are moderate compared to the full temperature range, 

as shown in Appendix C. This suggests that approximating 
the material properties at a fixed temperature may yield a 
sufficiently accurate geometry without requiring full non-
linear modelling. Therefore, optimization is performed 
using properties evaluated at 350K, as shown in Fig. 2a to 
d. The resulting density fields are then reevaluated using 
nonlinear material properties and the same voltage gradi-
ent. Table 3 presents the results, comparing the constant-
property-based optimal design to the nonlinear case using 
�� = �nonlin − �cte . These results show lower objective and 
stress values but fail to meet the power constraint. The power 
deviation corresponds to a maximum increase of 0.7mW per 
thermocouple in the design shown in Fig. 2d. In this case, 
grey elements in Fig. 2c appear to limit both the increase in 
power and the reduction in stress. Nonlinear evaluation leads 
to temperatures up to 0.46◦ lower than those from constant-
property models.

To account for conduction losses, an air model is intro-
duced between the thermoelectric legs. This model uses a 
void thermal conductivity �v of 0.033 K/W and assigns the 
minimum value for the Young’s modulus, electrical con-
ductivity, and the Seebeck coefficient. The resulting den-
sity fields are shown in Fig. 2i to l. These fields resemble 

Fig. 3   Difference in the thermomechanical response between the 
black-and-white design (thresholded with xe > 0.85 assigned full 
density and xe = 0.001 otherwise) and the corresponding optimized 
design. The field differences are calculated for Fig. 2f to h in Fig. 3a 
to c, respectively. The coloured map illustrates the temperature field 

difference, computed as ��T = �T ,BW − �T ,opt . The displacement 
field difference is shown as in the deformation of the geometry cal-
culated as ��u = �u,BW − �u,opt , scaled 1000 times for visualization, 
with respect to the original edges of the undeformed design

Table 2   Comparison between the optimized design results (shown in 
Fig. 2e to g) and the corresponding black-and-white design, obtained 
by thresholding elements with x𝜌 > 0.85 to full material and the rest 
to void

The values for � , C
p
 , and C� correspond to the black-and-white 

design, and the differences are computed as �� = �BW − �opt , where 
� denotes any of the considered objective or constraints, with sub-
scripts BW and opt indicating the black-and-white design and the 
optimized design, respectively

Fig. 3a Fig. 3b Fig. 3c

� 333.484419 334.142404 333.239808
Cp 5.9 × 10−5 −8.3961 × 10−2 −2.072 × 10−3

C� 1.0 × 10−6 2.10919 × 10−1 1.9486 × 10−2

�� −1.129 × 10−3 −1.153401 −4.6457 × 10−2

�Cp 5.9 × 10−5 −8.3961 × 10−2 −1.974 × 10−3

�C� 4.0 × 10−6 2.1092 × 10−1 2.003 × 10−2

Table 3   Comparison between the results obtained using constant 
material properties defined at 350K and those obtained from the same 
optimal designs using nonlinear material optimization (Fig. 2e to h)

The values of � , C
p
 , and C� correspond to the results obtained using 

constant material properties, while the differences are computed as 
�� = �nonlin − �cte , where � ∈ {�,C

p
,C�}

Fig. 2a Fig. 2b Fig. 2c Fig. 2d

� 335.53 333.10 334.91 332.81
Cp 4.14 × 10−2 4.69 × 10−2 3.99 × 10−2 4.57 × 10−2

C� – −3.72 × 10−3 −3.10 × 10−3 −4.98 × 10−3

�� −2.40 × 10−1 −3.93 × 10−1 −3.61 × 10−1 −4.59 × 10−1

�Cp 4.14 × 10−2 4.69 × 10−2 3.99 × 10−2 4.58 × 10−2

�C� – −1.04 × 10−2 −9.49 × 10−3 −1.17 × 10−2
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previous designs but show greater separation between solid 
regions near the cold and hot surfaces due to the increased 
thermal resistance through the air. Grey regions vanish 
in these designs, as higher densities in those areas would 
worsen performance due to non-negligible thermal conduc-
tivity. Table 4 summarizes the objectives and constraints, 
comparing the air model designs to those with void materials 
Fig. 2e to h using �� = �air − �void . These optimizations 
show a temperature increase of up to 0.84◦ in the optimal 
geometries. The lowest difference arises in the pure ther-
moelectric optimization due to the larger optimal volume 
of semiconductors compared to stress-constrained optimi-
zations. Air inclusion also raises stress levels, as the opti-
mizer increases semiconductor material to counteract heat 
flux, expanding the contact area with mismatched �T values. 
Compared to constant property assumptions, these losses 
have a more pronounced impact, making them significant 
for accurate optimization.

We perform one last optimization with all filters, con-
sidering air-conduction losses, and a volume constraint of 
50% , close to 10% lower than the obtained volume for Fig. 2l 
optimization. We show the deformation field of the physical 
density field in Fig. 4 with a scale 90 times the actual defor-
mation superposed to the undeformed edges. This figure 
shows the elements in the mesh with x𝜌 > 0.1 . The colour 

plot shows the temperature of this design for the maximum 
power allocation allowed of P = 15mW/mm. In these results, 
we can observe a contraction in the middle of the thermo-
couple and an expansion towards its outer edges, pivoting 
around the joint in each leg. The temperature field shows a 
similar profile to that of previous optimization, with losses 
in the order of 1.15◦C.

The values of the objective function and all constraints 
for the first 150 MMA iterations for all optimizations are 
shown in Fig. 5. This figure includes the values for the 
objective aggregated temperature � (��) (Fig. 5a), the power 
consumption (Fig. 5b), the stress aggregated value � (�VM) 
(Fig. 5c), the voltage gradient across the thermocouple 
(Fig. 5d), and percentage of the original semiconductor vol-
ume (Fig. 5e). The objective for the filtered and volume con-
straint optimization, Fig. 4, is the one with highest moving 
rate by the end of the 150 iterations. Even for this case, the 
change in the objective is lower than a 0.2% between the last 
ten iterations. The delay in convergence for the Heaviside-
filtered designs arises from the slow-moving limits imposed 
on the MMA optimizer. The temperature objective remains 
stable after 50 iterations for the rest of optimizations. There 
is also an initial jump in temperature caused by the excessive 
power consumption of the initial designs and by its subse-
quent lowering by MMA. The power constraint is satisfied 
for all optimizations and equal to the maximum available. 
The oscillation present for its value can also be correlated to 
the stress constraint. In the unfiltered and Helmholtz-filtered 
designs, there is a peak in the stress constraint that induces a 
lower voltage and power consumption, reducing the current 
and joule heating along the device and thermal deformations 
to satisfy it. These peaks are not present when we reduce the 
moving limits for MMA or in pure thermoelectrical optimi-
zation. While the stress constraint increases the complexity 
of the problem, it is active for all final results. It can reduce 
the stresses compared to the pure thermoelectrical optimiza-
tion to a fifth of its initial value without compromising the 
temperature achieved.

We can observe the complexity of the design space field 
from the multiple designs obtained in Fig. 2, which can 
provide similar temperature profiles according to Fig. 5a. 
This can partly be achieved through the different final xS 
shown in Fig. 5d. This plot shows that no design shares the 
same voltage gradient for the optimized temperature profile. 
Furthermore, the fact that the temperature obtained for the 
pure thermoelectrical optimization is higher than for the rest 
of the optimizations, with a difference of ≈ 2.5◦ C implies 
that there are multiple local optima and the stress constraint 
steers the optimizer towards new optima not reachable by 
MMA with the imposed parameters from the initial optimi-
zation. Furthermore, while the stress-constrained optimiza-
tion provides one of the lowest temperature profiles and the 
Helmholtz filter decreases these gains due to the introduced 

Table 4   Comparison of optimal results considering two modelling 
approaches for void regions: treated as true void and as air

The values of � correspond to the results where void is modelled 
as air (shown in Fig. 2i to l), while the differences are computed as 
�� = �air − �void

Fig. 2i Fig. 2j Fig. 2k Fig. 2l

� 336.41 334.20 336.14 334.06
�� 0.24 0.71 0.84 0.77

Fig. 4   Thermomechanical response of the optimal thermo-electro-
mechanical design after 150 iterations with the power and stress con-
straints defined in Table 1 and a volume constraint of 50% . The fig-
ure shows all elements with x𝜌 > 0.1 , the mechanical deformation is 
shown in a coloured map that represents the temperature range. The 
displacements are introduced with a scale of 90 times their nominal 
value
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intermediate densities, the Heaviside filter can recover these 
results with a more manufacturable design.

The higher sensitivity to the voltage design variable com-
pared to the density design variables can be seen as the over-
all volume of the design keeps changing. Still, the impact 
on the objective temperature is lower than 1% of its value. 
In particular, for the volume-unconstrained and unfiltered 
models, there is an increase in the volume of disconnected 
areas in the latter iterations of the optimizer. Furthermore, 
the convergence to lower design volumes without volume 
constraints due to the search for low thermal conductiv-
ity reduces the semiconductor material we need to use in 
these designs. We can see that while we converge to lower 
volumes for stress-constrained optimisations, this does 
not lead to worse objective performance. In all cases, the 
lower volume is compensated by a higher voltage gradient 
across the thermocouple, leading to multiple local minima 
present, dependent on this design variable. The intermedi-
ate densities are also considered adverse for the objective 
as the design obtained by only using the Helmholtz filter 
increases its value compared to the other stress-constrained 
designs. Regarding convergence, we present the first 100 
MMA iterations, which are sufficient to ensure convergence 
for all objective functions. However, in the case of the Heav-
iside-filtered optimizations, the lower bounds for the MMA 

parameters lead to larger movements of the density design 
variables when we reach the maximum iteration value.

4.2 � 3D results

The 3D model dimensions are the same as those of the 2D 
model. However, we extend the design space outside the 
contact area. The parameters of the model’s yz plane are 
shown in Fig. 6. The square cross-section across z is of 
0.5 mm with a symmetry condition is at z = 0 . Given this 
symmetry condition, we use a power constraint of 7.5mW. 
l1 = 0.2mm and l2 = 0.05mm delineate the extra design 
space along the third dimension. Each semiconductor leg is 
meshed with a 24 × 24 × 13 and regular grid, with a total of 
7488 serendipity 20-node elements (H20) per leg.

We perform two 3D optimizations without air modelling 
between pellets to reduce DOFs, including a thermal con-
ductivity of �v = 0.033WK∕m . Each optimization is run with 
either no volume constraint or 40% volume constraint. Both 
optimizations use Helmholtz and Heaviside filters. The same 
power and stress constraints, filtering, density, and voltage 
design variables and limits, and MMA parameters as in the 
2D optimizations are applied, as summarized in Table 1. The 
filtering parameters are � = 0.4 , � = 64 , an initial semicon-
ductor density of 0.4, and MMA moving limits of 2%.

Fig. 5   Convergence results for the 2D TO for the 4 different cases summarized in Fig. 2. Each plot shows the evolution of a different variable, 
including Fig. 5a the objective temperature; Fig. 5b power; Fig. 5c stress; Fig. 5d voltage gradient; and Fig. 5e volume constraints
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We show the physical density design variables with val-
ues x𝜌 > 0.1 for an optimization of the 3D geometry follow-
ing the values in Table 1, using the Helmholtz and Heaviside 
filter in Fig. 7, and the MMA parameters are those used for 
the results in Fig. 2h. This plot includes the non-semicon-
ductor materials as a transparent volume and the semicon-
ductor material as a colour plot representing its tempera-
ture. The two results represent an optimized design with no 
volume constraint in Fig. 7a and an optimized design with 
a volume constraint of 40% in Fig. 7b. These plots lead to a 
quasi-symmetrical design for both pellets. As with the 2D 
results, the mechanical stress constraint dominates the prob-
lem. The volume-constrained model leads to a tuning fork or 

U-shaped geometry featuring a central contact line along x 
on the heat sink surface aligned with the middle of the z axis. 
This central contact then branches into two separate contacts 
located at the edges in z of the heat injection surface. The 
unconstrained volume optimization leads to a structure with 
larger changes along the x axis and a rhomboid hole in the yz 
plane cross-section turning around the y axis. In both cases, 
the resulting topology accommodates the deformations with 
a topology focussed on the yz cross-section.

The convergence history is plotted in Fig. 8 for the tem-
perature and volume. The volume-constrained optimization 
has found a 35% original volume design compared to the 
original design with temperature objectives with less than 
0.1◦ difference with a voltage up to 4 times higher than in the 
volume-unconstrained optimization. This indicates the pres-
ence of non-convex local minima dependent on the voltage 
that can be reached through the volume constraint. We can 
further compare the 2D and 3D results by extruding the 2D 
design into the third dimension (i.e. 2.5D) to the equivalent 
3D dimension. The equivalent final volumes of the optimal 
designs in the 3D configuration are lower than in the 2.5D 
case. The 3D model also provides a lower optimal tempera-
ture of 326K compared to the  334K obtained by the 2.5D 
design given its larger design space freedom.

5 � Summary and conclusions

This paper deals with the thermo-electro-mechanical opti-
mization of thermocouples. We do so by linearizing and 
decoupling the mechanical and thermoelectric DOFs. This 
approach reduces the memory required to solve the thermo-
electro-mechanical problem and is valid for problems with 
small thermal deformations. As a result, this approach can 
provide designs that minimize stress concentrations and 
increase their expected lifetime for thermoelectrical devices.

Fig. 6   3D thermocouple FEM model modifications to Fig.  1. The 
figure shows the lateral view of Fig.  1 for a 3D TO model with an 
increase in material along the z direction and a symmetry boundary 
condition for the mechanical DOFs

Fig. 7   Results of a 3D TO of a thermocouple with stress constraints 
using no volume constraint Fig. 7a or a volume constraint of 40% the 
original volume Fig. 7b. We plot the topology results either for con-
vergence conditions or the 150th iteration. The figure shows the result-
ing elements with more than 10% density in the design domain and 
the axis system for each figure. The colour plot shows the temperature 
gradient of the semiconductor material

Fig. 8   Temperature objective in blue and volume percentage in reds 
for both results in Fig. 7 along each iteration of the optimizer
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In the model proposed, we consider a single pellet, and 
the resulting TEC could be built, making all pellets follow it. 
However, in reality, some effects are not taken into account 
when we model the entire device. In particular, the edges and 
inner regions of the TEC will not absorb the same amounts 
of heat. This could be considered through homogenization 
techniques, where each thermocouple can be a unit cell of 
the final design. The optimization could also incorporate the 
orientation, location, and number of thermocouples. How-
ever, the use of homogenization may increase the number 
of FEM solves. Neglecting Joule heating in the device can 
convert the nonlinear thermoelectric equations into a linear 
system without needing a Newton–Raphson solver for tem-
perature-constant material properties (Fragoso et al. 2005). 
If these simplifications are taken, the optima found must 
be post-processed to verify their accuracy compared to the 
nonlinear models. Future studies could also be conducted on 
the effect of the overall dimensions of the initial thermocou-
ple design and surrounding materials to optimize the design 
further. These further studies should also involve integrat-
ing boundary-dependent radiation loads into the optimiza-
tion procedure as radiation is shown by Bjørk et al. (2014) 
to have a significant contribution to thermoelectric devices 
efficiency the larger the internal spacing between thermo-
electric legs. Onodera and Yamada (2025) already show a 
methodology to integrate these loads in thermomechanical 
level-set TO problems, and a simple boundary identification 
algorithm could also be adapted to environment radiation 
loading (Ibhadode et al. 2020).

Even with our simplifying assumptions, the optimiza-
tions led to multiple optima with similar objective values 
and different geometries. This seems to be related to the use 
of the voltage as a design variable, allowing further flex-
ibility in the design space. However, this flexibility over the 
electric working point can flatten the design space, hinder-
ing convergence. Although the volume constraint can steer 
the algorithm towards a new solution, this is not ideal as 
we do not know the optimal volume for a given working 
point. Techniques for exploring the overall design space, 
such as genetic algorithms, could be helpful in understand-
ing the location of these multiple minimum values. Defla-
tion, relaxation, or preconditioning techniques could be used 
to find other minima (Farrell et al. 2015). Furthermore, the 
effect of penalization coefficients on the material properties 
and their relative ranges has already been shown to affect 
the overall non-convexity and the convergence of the prob-
lem objective and constraints. In the past, heuristic algo-
rithms have been used to study the effects of optimization 
parameters, (Ait Ouchaoui et al. 2023). However, heuristics 
are computationally expensive and must be applied to each 
problem studied separately. While analytical models help 
understand the physics behind the problem, techniques to 
evaluate the fitness of an objective or constraint in higher 

dimensionality should be explored. New high-dimension-
ality projection techniques could be used for this purpose, 
allowing the selection between different initial parameter 
values (Espadoto et al. 2023).

We also see the need for a length scale filter to avoid 
single-element features in thermo-electro-mechanical opti-
mizations and to decouple the solution from the mesh reso-
lution in the problem involving material nonlinearities. We 
find that the Helmholtz filter can introduce this length scale. 
Still, a Heaviside filtering is also needed to provide a sharp 
design and avoid the intermediate densities from the Helm-
holtz filter that provides worse optimized objective values. 
Convergence to lower objectives is also achieved without 
the need to reinitialize the optimization to gradually increase 
the filter sharpness. We find that a � ≥ 64 is enough pro-
vide a black-and-white design with minimal grey regions in 
the thermo-electro-mechanical optimization problem. Zhou 
et al. (2015) provide an alternative approach to introduce a 
length scale function based on constraints on the filtered 
fields that could also improve the problem solution without 
introduction of grey regions. We notice as well the tendency 
of the pure thermoelectrical TO with air losses to remove 
grey elements, which itself could act as a filter to provide 
sharp edges geometries with the cost of a single thermoelec-
trical calculation per MMA iteration for different problems. 
Different constraints could also be implemented to prevent 
small features. In particular, the current flow seems attrac-
tive for this purpose. Smaller feature sizes lead to higher 
electrical resistance; avoiding small current flows in our full-
density design could remove these features. Furthermore, the 
imposed constraints do not limit the possibility of dangerous 
or fatal situations during dynamic situations regarding cur-
rent flow concentrations or thermal shocks, which should 
be considered.

The use of stress constraints, while reducing stresses 
within the assembly that elongate the device’s lifespan, 
further increases the complexity of the problem. Note that 
we use no contact formulation, and the small size of these 
devices and the more flexible designs can lead to short 
circuits that must be avoided. This could be considered a 
displacement constraint in our optimization or the addition 
of material between the legs in our model. To simplify the 
problem formulation further, we could also consider only 
the most critical solder regions as defined in Awrejcewicz 
et al. (2020). Another further simplification could be reduc-
ing the design space of the mechanical constraints to a single 
pellet, given the dominance of the stress constraint over the 
thermoelectric variables. This would require special mesh 
preconditioning between both pellets and mirroring the sen-
sitivities to each pellet.

In summary, we propose a TO approach that uses stress 
constraints in thermoelectrical problems for cooling appli-
cations. Although the proposed formulation can lower 
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stress concentration measurements—up to 5 times lower 
compared to regular thermoelectrical optimization in the 
proposed examples—the non-convexity problem still leads 
to challenges in finding local minima. Furthermore, manu-
facturing the optimized thermocouples should still be stud-
ied and further implemented in the optimization process.

Residual derivatives

In this appendix, we develop the required derivatives of 
the residual for the thermo-electro-mechanical FEM sys-
tem for the calculation related to of the adjoint sensitivities 
and tangent matrix.

To derive the residual derivatives for the thermo-elec-
tro-mechanical finite element system, the element level 
dimensions of the involved matrices and vectors must be 
established. These sizes vary with the element type and 
determine the structure of both the tangent matrix and the 
adjoint sensitivities. Table 5 presents the relevant quanti-
ties at the element level for quadratic 2D (Quad8) and 3D 
(Hex20) elements, including field variables, constitutive 
matrices, and shape function representations. This infor-
mation defines the computational framework used in the 
derivation of the sensitivity equations.

The first derivatives we need to define are the deriva-
tives of the residual with respect to the element level state 
vector s composed of the element level displacement u , 
temperature t , and voltage v degrees of freedom. These 
derivatives are

  The temperature derivatives of C and �T are

From these equations, we can recognize that the derivatives 
of the thermoelectrical degrees of freedom concerning the 
displacements are zero,

These equations still require the calculation of the deriva-
tive of the heat and current flows with respect to the nodal 
degrees of freedom,
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Table 5   Matrix and vector sizes in thermo-electro-mechanical FEM 
(Quad8/Hex20)

Symbol Description 2D (Q8) 3D (H20)

j Curr. density 2 × 1 3 × 1

q Heat flux 2 × 1 3 × 1

𝜎̂ Stress (Voigt) 3 × 1 6 × 1

u Displacement 16 × 1 60 × 1

t Temperature 8 × 1 20 × 1

v Elec. potential 8 × 1 20 × 1

C0 Elastic matrix 3 × 3 6 × 6

�T Thermal stress 3 × 1 6 × 1

etr Trace operator vector 3 × 1 6 × 1

�N Shape func. (scalar) 8 × 3 20 × 3

N Shape func. (scalar) 8 × 1 20 × 1

NU Shape func. (disp) 16 × 1 60 × 1

B Strain-displ. mat 3 × 16 6 × 60

ru Mech. residual 16 × 1 60 × 1

rt Thermal residual 8 × 1 20 × 1

rv Elec. residual 8 × 1 20 × 1
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 The derivative and formulation of the thermoelectrical 
material properties with respect to the temperature are 
shown in Appendix C, completing these sensitivities.

We also require the sensitivities of the residual with respect 
to its physical density design variable for the MMA algorithm. 
The sensitivities of the thermoelectrical element level residuals 
with respect to the physical design are

Knowing that the heat and current flow derivatives, with 
material properties dependent only on each elemental den-
sity variable,

Finally, the derivatives of the material properties with 
respect to their elemental, following Eq. (24), value are

where the last two components have been calculated in Eq. 
(73). Finally, the derivative of the displacement associated 
residual at element level is

Depending on the derivative of the constitutive equation and 
thermoelastic material properties

(73)

𝜕��

𝜕x̄𝜌
= − ∫𝛺

�N
𝜕q

𝜕x̄𝜌
d𝛺 + ∫𝛺

N(
𝜕j

𝜕x̄𝜌

⊺

�N⊺v)⊺ d𝛺,

𝜕��

𝜕x̄𝜌
= − ∫𝛺

�N
𝜕j

𝜕x̄𝜌
d𝛺.

(74)

𝜕j

𝜕x̄𝜌
= −

𝜕𝛾

𝜕x̄𝜌
(�N⊺v + 𝛼�N⊺t) − 𝛾

𝜕𝛼

𝜕x̄𝜌
�N⊺ t,

𝜕q

𝜕x̄𝜌
=

𝜕𝛼

𝜕x̄𝜌

(
N⊺t

)
j + 𝛼

(
N⊺t

) 𝜕j

𝜕x̄𝜌
−

𝜕𝜅

𝜕x̄𝜌
�N⊺t.

(75)

𝜕𝛼

𝜕x̄𝜌
= p𝛼 x̄𝜌

p𝛼−1(𝛼0 − 𝛼min),

𝜕𝜅

𝜕x̄𝜌
= p𝜅 x̄𝜌

p𝜅−1(𝜅0 − 𝜅min),

𝜕𝛾

𝜕x̄𝜌
= p𝛾 x̄𝜌

p𝛾−1(𝛾0 − 𝛾min).

𝜕E

𝜕x̄𝜌
= pEx̄𝜌

pE−1(E0 − Emin).

(76)

𝜕ru

𝜕x̄𝜌
= −

𝜕kU

𝜕x̄𝜌
u +

𝜕k𝛩

𝜕x̄𝜌
�,

𝜕��

𝜕x̄𝜌
= ∫𝛺

B⊺ 𝜕C

𝜕x̄𝜌
Bd𝛺,

𝜕��

𝜕x̄𝜌
= ∫𝛺

B⊺
𝜕�T
𝜕x̄𝜌

N⊺ d𝛺.

The derivatives of each material property with respect to the 
temperature field are provided in Appendix C as Eq. (85) 
using the coefficients in Table 7.

Finite differences and sensitivity validation

To validate the sensitivities within our code, we use forward 
finite differences for a simplified problem to obtain and com-
pare the sensitivity values.

Let the objective function or constraint be denoted by 
f (xi) , where xi is the design variable. The finite difference 
approximation of the sensitivity with respect to the design 
variable xi is given by

where � is a small perturbation. The error between the finite 
difference and the FEM formulation for the sensitivities in 
Sect. 3 can be quantified by the relative error between both

Using the Taylor approximation for f (xi + �) , we can also 
observe that the relative error scales with

In a log–log plot of �rel(�) versus � , we can make a prediction 
of the expected shape of the convergence of finite differ-
ences, expressing this relationship as

where the first variable is a constant, the slope of this plot is 
≈ 1 , indicating first-order convergence.

We now apply finite differences to the same model as 
for the optimization in Fig. 2f with a reduced mesh to 
3 x 3 within each semiconductor and all possible design 
variable configurations (Fig. 9). To validate the sensitivity 

(77)
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results obtained via topology optimization, the error is 
plotted as a function of � . The perturbation � is varied, 
and the error is computed for each value. This comparison 
provides insight into the accuracy of the finite difference 
method relative to the FEM solution. This figure shows 
a linear rate of convergence for all objectives and con-
straints until the rounding errors dominate the problem for 
𝜖 < 10−6 and errors under 10−5 at these perturbation levels. 
The volume constraint is removed from this validation as 
it can be validated through the volume calculation of the 
elements themselves (Fig. 10).

Material properties

There are multiple studies of the properties of thermoelec-
trical materials within the literature. We use the measured 
thermoelectric values for Bi2Te3 from Witting et al. (2019), 
where the effect of doping agents in Bi2Te3 over its material 
properties is studied. The thermal expansion values with 
respect to temperature for Bi2Te3 are taken from Pavlova 

et al. (2011). The experimental data have been fitted to a 
sixth-order polynomial,

which allows the capture of the quadratic behaviour of the 
materials. For each material property, we fit this polynomial 
to the temperature ranges provided and to a constant value 
for higher or lower values to avoid discontinuities in the 
definition,

To have a continuous material model up to C1 , we enforce 
a zero derivative in the intersection point of the functions, 
f �
p
(T0) = f �

p
(T1) = 0 . Notice that for an accurate result, we 

must ensure the optimization lies within the measured tem-
perature range.

The derivatives of these functions with respect to the tem-
perature required to calculate the residual can be written as

where f �(T) is

The temperature-dependent material properties used are 
plotted in Fig. 11 together with the experimental data as 
dots and the polynomial coefficients for each are provided 
in Table 6.

The other materials involved in a thermocouple are 
treated as temperature constants for simplicity purposes, 
and their properties are summarized in Table 7.

In all these materials, the Seebeck coefficient is consid-
ered to be zero, either due to the lack of electrical conductiv-
ity of the material or for a symmetrical material distribution 
in the models.

Note that E represents Young’s modulus, � represents 
Poisson’s ratio, � represents thermal conductivity, � repre-
sents the Seebeck coefficient, �T represents the coefficient 
of thermal expansion, and � is the electrical conductivity. 
The � value of the ceramic AlN is not provided as there is 
no expected electrical current flow through the material. The 
mechanical properties of Bi2Te3 are also considered equal 
for the p+ and n− semiconductors. In terms of the � , all 
materials are considered to have zero thermal stresses at 
25.15◦C.

(82)
fp(T) = a6T

6 + a5T
5 + a4T

4 + a3T
3 + a2T

2 + a1T + a0

(83)f (T) =

⎧
⎪⎨⎪⎩

fp(T0) if T < T0,

fp(T) if T0 ≤ T ≤ T1
fp(T1) if T > T1

(84)f �(T) =

⎧⎪⎨⎪⎩

0 if T < T0
f �
p
(T) if T0 ≤ T ≤ T1

0 if T > T1

(85)
f �
p
(T) = 6a6T

5 + 5a5T
4 + 4a4T

3 + 3a3T
2 + 2a2T + a1.

Fig. 9   Mesh simplification 
description for a coarse mesh 
from the model used in Sect. 4 
and location of the studied 
design variables for the finite 
differences validation, x1 and x2 , 
in one of the thermocouple legs

Fig. 10   Convergence of error with � for each constraint and objective 
function used
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Table 6   Coefficients for the 6th order polynomial fit for each semiconductor material according to Eq. (85)

The temperature range for the fit is represented in the last 2 columns as T0 and T1 . The evaluated value at T = 350K is shown in the last column

Fit a
0

a
1

a
2

a
3

a
4

a
5

a
6

T
0
(K) T

1
(K) fp(350K)

� −76.4 1.23 −0.00764 2.45e−05 − 4.36e−08 4.09e−11 − 1.59e−14 235.48 605.34 2.717 W K/m
�p − 2.73e7 5.88e5 − 4996 21.95 −0.053 6.70e−05 − 3.46e−08 173.46 451.56 1.839e05 S/m
�n − 3.31e7 4.75e5 − 2768 8.48 −0.0144 1.29e−05 − 4.75e−09 289.17 618.62  1.787E05 S/m
�p 0.00396 − 8.22e−05 7.00e−07 − 3.09e−09 7.47e−12 − 9.40e−15 4.80e−18 177.19 478.23 1.296e− 04 V/K
�n −0.0253 0.000379 − 2.37e−06 7.81e−09 − 1.44e−11 1.42e−14 − 5.75e−18 292.82 529.42 -1.385E-04 V/K
�T 2.841e−06 9.245e−08 − 2.341e−10 3.668e−13 − 9.482e−16 1.636e−18 − 9.464e−22 35 650 14.86e− 6 1/K

Fig. 11   Material properties of the semiconductor materials used in 
the optimization, including their Seebeck coefficients, and their ther-
mal and electrical conductivities with respect to the temperature in 

◦ C. The results are plotted for the p+ and n− semiconductors when 
the used data differ for each one of them

Table 7   Temperature constant material properties for the models used 
in Sect. 4

E � � � × 107 �T × 10−6

(GPa) (W K/m) (S/m) (1/K)

Cu 130 0.34 385 59.9 17
AlN 300 0.21 319 – 5
SAC 70 0.42 50 8.5 24
Bi2Te3 61.6 0.241 Fig. 11 Fig. 11 Fig. 11
Air – – 0.033 – –
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