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Summary

Understanding the fatigue load history of wind turbines in operation can be critical
when taking decisions regarding the lifetime of a project. However, direct measure-
ment of fatigue loads at each turbine in a wind farm is unfeasible, especially at critical
locations such as the mudline level where placing a sensor is more expensive. For this
reason, surrogate models offer a useful alternative. In this thesis, a methodology for
creating surrogate models for emulating fatigue loads of offshore wind turbines is
presented. The methodology is unique in that it accounts for the variability of site-
specific conditions that may be present between wind turbines of the same power
rating and pitch control behavior. First, a method for creating simplified structural
models which depends only on a few degrees of freedom is derived. A sensitivity
study is conducted on this simplified model to further understand the relationship
between the degrees of freedom and the dynamics, and then the simplified model is
validated against a corresponding detailed model of a real offshore site to ensure the
accuracy of the load estimation of the simplified model.

After this, a database of simulation data is assembled by varying the geometric,
dynamic, and environmental degrees of freedom selected from a range which cap-
tures a high degree of variability of site-specific conditions. Two different strategies
are proposed for selecting the degrees of freedom of each simulation, one using a
Monte Carlo method and one using the Sobol low-discrepancy sequence. Neural net-
works are trained on these data sets and their results are compared. It was found
that using low-discrepancy sequences resulted in lower errors as measured by MAPE,
MPE, RMSE, and the total DEL error than when using Monte Carlo sampling. In gen-
eral, the load emulators were capable of predicting fatigue loads with a MAPE of 6%
and the total DEL load is estimated with less than a 3% error in the majority of cases.
A global sensitivity study using Sobol indices revealed that the standard deviation of
the nacelle acceleration, the rotor speed, the wind direction, and the tower frequency
were critical inputs for all the load emulators. Wave-related parameters proved to be
important inputs for mudline and interface load estimation but not for tower top and
blade loads.
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m Wöhler slope that describes the fatigue properties of a material

n Number of samples

ninputs Number of input units to the neural network

nmodels Number of structural models

tint Wall thickness at the interface level

tMG Marine growth thickness

twl Wall thickness at the water level

u Wind speed

xdof Vector which encodes the values of all degrees of freedom

z Height above the water level (coordinate) OR z-score

z∆d Level to which the additional hydrodynamic diameter extends

DELpredict Damage equivalent load predicted by the load emulator

DELtest,avg Average damage equivalent load from the test data set

DELtest Damage equivalent load from the test data set

EFi i-th engineered feature

H1 Structural transfer function of the first eigenmode

Hs Significant wave height

M Mass

xiii



Mb,edge Damage equivalent bending moment at the blade root in the edgewise
direction

Mb,flap Damage equivalent bending moment at the blade root in the flapwise
direction

Mb,tors Damage equivalent bending moment at the blade root in the torsional
direction

Mint Damage equivalent bending moment at the interface level

Mmud Damage equivalent bending moment at the mudline level

Mtowertop Damage equivalent bending moment at the tower top

Nhidden Number of hidden layers in a neural network (depth of the neural net-
work)

Pele Electrical power generated

R2 Coefficient of determination

S1,i First order Sobol index of the i-th parameter

ST,i Total Sobol index of the i-th parameter

Tp Peak spectral wave period

Vij Variance contribution of the interaction of the i-th and j-th parameter
towards the total variance of the model

Vi Variance contribution of the i-th parameter towards the total variance of
the model

Zint Reference level of the interface

Zmud Reference level of the mudline

Greek symbols

α Normalized deflection at the water level

αNN Learning rate

σ(x) Standard deviation of x

θmisalign Wind-wave misalignment

θpitch Blade pitch angle

θwave Wave direction

θwind Wind direction

θyaw,bearing Yaw bearing angle of the rotor-nacelle assembly

ε Finite difference

ζ1 Damping ratio

∆d Additional hydrodynamic diameter

∆zPPD Additional pile penetration depth

Ω The domain of all degrees of freedom OR rotor speed



Others

I Integration of the loss function across the domain

L Loss or cost function

Abbreviations

BHawC Bonus Horizontal Axis Windturbine Code

DEL Damage Equivalent Load

DLA Design Load Assessment

DLC Design Load Case

DoF Degree of Freedom

FA Fore-Aft direction

FLM Fatigue Load Monitoring

LAT Lowest Astronomical Tide

LCOE Levelized Cost of Energy

MAF Modified Apparent Fixity

MAPE Mean Absolute Percentage Error

MC Monte Carlo

MPE Mean Percentage Error

MSL Mean Sea Level

NN Neural Network

NSS Normal Sea State

PCE Polynomial Chaos Expansion

PPD Pile Penetration Depth

ReLU Rectified Linear Unit

RMS Root Mean Square

RMSE Root Mean Square Error

RNA Rotor-Nacelle Assembly

RS Response Surface

SCADA Supervisory Control and Data Acquisition

SGRE Siemens Gamesa Renewable Energy

SM Surrogate Model

SS Soil Springs

tDELE Total Damage Equivalent Load Error

TI Turbulence Intensity



xvi



Chapter 1

Introduction

In this chapter, a general introduction of the research topic is provided. The mo-
tivation behind the topic of the thesis is described in section 1.1. Followed this, a
summary of the literature review is included in section 1.2. Having presented the
literature review, the key knowledge gaps and their respective research questions are
described in section 1.3. In section 1.4, the general methodology used throughout the
thesis is presented. Finally, section 1.5 describes the general outline that is followed
for the thesis.

1.1 Motivation

The goals placed by nations and organizations for achieving a timely energy transition
as a means to combat climate change place a large importance on the continued
growth of the wind energy industry. The IEA roadmap for Net Zero Emissions by
2050 calls for a 11 fold increase of installed capacity from wind energy by 2050
[1]. To achieve this, annual additions of 390 GW by 2030 are required. Of these
annual additions, 80 GW are budgeted to be sourced from offshore wind (Figure 1.1).
This represents a 400% increase when compared to the added offshore wind capacity
in 2021 (21.1 GW), which itself was 3 times that of 2020 [2]. In order achieve
the planned growth for 2030 and 2050, the wind energy industry must continue
to develop new technologies that will lower the Levelized Cost of Energy (LCOE),
currently estimated at $77/MWh [2], in order to compete with other energy projects.

For this purpose, having a better understanding of the fatigue loads of an offshore
wind turbine can lead to more accurate estimation of the damage accumulation of
a turbine and aid decision-making of existing projects, lowering the levelized costs
of projects. By being able to reconstruct the fatigue load history of a wind turbine,
decisions regarding lifetime extension or controller upgrades can be made. Obtaining
the fatigue loading history of a wind turbine is difficult, however. Direct measurement
of loads is unfeasible due to the high costs and logistical challenges of installing strain
gauges, particularly in the foundation.

As an alternative, Surrogate Models (SMs) can be used to estimate the loads

1



2 1. INTRODUCTION

Figure 1.1: Global electricity generation by source in the IEA Net Zero Emissions by
2050 roadmap [1].

through a process of load emulation. The SM is provided with measurement data
that is readily available at offshore wind turbines and the model predicts the fatigue
loads that would be measured at the fatigue hotspots. By doing so, the fatigue loading
history of a wind turbine can be recreated without the need of additional sensors.

Nevertheless, the SM approach is limited. Turbines of the same class may differ
greatly in their site-specific conditions. Within the same windfarm, wind turbines can
have different foundation designs, water depths, soil characteristics, among other
differences, as illustrated in Figure 1.2. These differences affect their dynamics and
therefore the expected behavior of the fatigue loads. A model derived on a single
site-specific design will not perform well when tested on a separate design.

Figure 1.2: Differences in site-specific conditions among turbines of the same class.

A way to resolve this is by ensuring that the process for obtaining the SM accounts
for the differences in design that may arise. Instead of building a SM for the specific
site, a SM for the entire class is built. With this approach it is potentially possible
to construct a single SM applicable to any turbine of the same operating behavior
(power, rotor speed, and pitch control).
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With this in mind, the goal of this thesis is to present a methodology for creating
a generic SM (i.e. one that can be applied to any wind turbine of the same class) that
emulates the fatigue loads during normal operation and idling conditions, at several
fatigue hotspots along the foundation, tower, and blades. After this, the generic SM is
tested against site-specific hydro-aeroelastic models in order to assess its performance
in terms of various error metrics.

1.2 Literature review

In previous literature, SMs for load emulation have been applied successfully to off-
shore wind turbines. These models can be classified in two categories according to
their underlying principles. These categories are (1) physics informed models and (2)
data-driven models.

Physics informed models, also referred to as white- or grey-box models, emulate
the fatigue loads using a physical relationship between the measurable inputs and
the target outputs. For example, a fully white-box model can be a hydro-aeroelastic
model used to run simulations using measured input wind and wave conditions. Grey-
box models may use physics along with other supplemental data to reconstruct the
fatigue load history. These methods include Kalman filter techniques [3, 4] and modal
expansion methods [5–8].

On the other hand, data-driven models (i.e. black box models) use available
data of known pairs of measurable inputs and target outputs to derive an empirical
relationship between input and output. Examples of models that have been applied
to load emulation in offshore wind turbines include Neural Networks (NNs) [9–17],
Polynomial Chaos Expansion (PCE)[17–19], Response Surfaces (RS) [16, 17], and
Kriging [19].

In addition to the different types of models, literature has also been divided in
the target application of these models. Some load emulators have been used with
environmental data as input, with the objective of performing Design Load Assess-
ment (DLA), e.g. as part of an initial load calculation of a new project. Other load
emulators have been used for Fatigue Load Monitoring of existing projects (FLM). Al-
though the target variables in both cases are the same, the input variables for the two
applications differ. In a design load assessment application, only inputs related to the
wind-wave climate are used, while the application for load monitoring utilizes only
measured signals such as SCADA data or accelerometer data. A summary of the load
emulators that have been used in literature, together with their target application, is
included in Table 1.1.

A comparison of the SMs that have been used in literature for load emulation is
provided in Table 1.2. When comparing the SMs, the potential of NNs for use in load
emulation is particularly appealing. Once trained, a NN has a very low computational
cost and has been shown to achieve low errors in load prediction. Additionally, it has
the advantage that it requires no calibration of physics-sensitive parameters that the
physics-informed models require and, most importantly, does not explicitly require a
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Table 1.1: Summary of literature on surrogate models for fatigue load emulation.

Method Study Data Offshore? Case

Kalman filter Maes et al. [3] Real Yes FLM
Branlard et al. [4] Sim. No FLM

Modal expansion Baqersad et al. [5] Real No FLM
Iliopoulos et al. [8] Real Yes FLM
Noppe et al. [7] Real Yes FLM
Iliopoulos et al. [6] Real Yes FLM

PCE Murcia et al. [18] Sim. No DLA
Dimitrov [17] Sim. Yes DLA
Dimitrov et al. [19] Sim. No DLA

Neural networks Cosack [9] Sim. No FLM
Obdam et al. [10] Real Yes FLM
Smolka et al. [11] Real Yes FLM
Souliotis [12] Sim. Yes FLM
Lee [13] Real Yes FLM
Venu et al. [14] Real Yes FLM
De Nolasco et al. [15] Real Yes FLM
Schröder et al. [20] Sim. No DLA
Dimitrov [17] Sim. Yes DLA

Quadratic RS Schröder et al. [20] Sim. No DLA
Dimitrov et al. [19] Sim. No DLA

Kriging Dimitrov et al. [19] Sim. No DLA

new SM to be constructed for each new application.
With that said, previous studies on the applicability of SMs for load emulation

have focused solely on site-specific models. This means only data from a single site
is used to train a SM. Although the resulting model performs well on data from the
same site, they have failed to generalize well to different sites [13]. Different sites of
the same class may differ in foundation design, reference levels, dynamic properties,
environmental conditions, and other variables. This poses a challenge when trying to
use a SM that has been built using a site-specific concept. A white or grey-box model
requires a new physical model for the new site, and the black-box model cannot
extrapolate beyond the domain of data it was trained on [21]. To be able to apply a
black-box model on multiple sites, the model must be built using a generic approach.
SMs that use a generic concept for gathering training data have yet to be studied in
literature.
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Table 1.2: Advantages and disadvantages of surrogate models for fatigue load assess-
ment.

Model Advantages Disadvantages

Kalman filter + Based on physics (solution - Memory intensive
space is unbounded) - Requires a system model

Modal expansion + Based on physics (solution - Memory intensive
space is unbounded) - Requires a structural model
+ Higher accuracy than - Quasi-static loads difficult
Kalman filter to model

Polynomial chaos + Highly interpretable - Depends on training data
expansion + Propagation of uncertainty - Bounded solution space

easier to model - Needs the distribution
+ No physics required of input variables

Kriging + High accuracy - Depends on training data
+ Interpretable - Bounded solution space
+ No physics required - High computational cost

Artificial neural + Low computational cost - Depends on training data
networks + High accuracy - Bounded solution space

+ Can be used with SCADA, - Not easily interpreted
accelerometer data
+ No physics required

1.3 Research questions

As was discussed in the summary of the literature review, there has yet to be a SM
developed for load emulation that is applicable for any wind turbine of the same
class. Previous studies of data-driven models have used data from only one site.
Therefore the performance of the SM failed to generalize to other sites. This is the
principle knowledge gap that will drive the objective of the thesis. To address this
knowledge gap, NNs are chosen as the SM for the reasons presented in section 1.2.
The training data will be obtained via hydro-aeroelastic simulations as this data is
more readily available than measurement data, is less noisy, and the samples can be
carefully selected in order to ensure a large domain of inputs and thus a wide solution
space. If measurement data were to be used, the solution space would be limited by
the choice of sites where the measurements are obtained from, and the model would
have difficulties generalizing beyond those cases.

In order to achieve a SM capable of generalizing to different sites, the data used
to train this model must also be generic. This is to allow for the performance of the
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SM on the training data to transfer well when testing on different sites. To obtain the
data, simulations are to be performed on many structural models that represent var-
ious possible geometric configurations and foundation designs. This process requires
having a structural model that can be easily modified to reflect differences between
potential sites. The structural models are usually very detailed and are the result of a
refined design process. Obtaining the models in this way is unfeasible as this would
be extremely demanding and time consuming, at time requiring site-specific infor-
mation that is not available in a generic concept (e.g. soil characteristics). For this
reason, simplified models are preferred. In these models, reference detailed models
are reduced to their most important characteristics, reducing the number of degrees
of freedom required to describe the model. In this way, new models can be easily
generated by selecting different combinations of degrees of freedom. Using this ap-
proach, the main research question is as follows:

How accurately can artificial neural networks emulate the fatigue loads
in fatigue-critical locations when trained with data from simulations of
multiple simplified structural models?

In order to answer this question, a series of sub-questions are used to guide the re-
search. Firstly, it is necessary to study the process with which the simplified models
are created, and determine their accuracy with respect to detailed models. It is criti-
cal for the generic SM that the simplified structural models accurately represent their
corresponding detailed model. Otherwise, the accuracy of the NN would not transfer
well when testing on site-specific, detailed models. Therefore, the first sub-question
is:

Can a model with simplified tower and foundation geometry be used to
accurately estimate fatigue loads, when compared to a model with corre-
sponding detailed geometry?

When creating simplified models, choices are made regarding the modeling assump-
tions and the hyperparameters that control the generation of the simplified models.
These choices will have an effect on the geometry, dynamics, and resulting fatigue
loads of the simplified model. Therefore, understanding the effects of these choices
plays a pivotal role in being able to create a generic model that can be used accurately
as a substitute for the detailed model. To do this, a series of sensitivity studies on the
simplified models are to be conducted. The sub-question related to this is:

What is the sensitivity of the dynamics and fatigue loads of a model with
simplified geometry, with respect to the hyperparameters and modeling
assumptions?

As a product of the first two sub-questions, a methodology for generating generic
simplified models has been developed. This allows the focus to be shifted towards the
SM itself. To create a database that is generic (applicable to many possible sites), a
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strategy for constructing a database that encompasses many geometric combinations
and environmental conditions at a low computational cost is required. This leads to
the sub-question:

How should the environmental and geometric degrees of freedom be se-
lected to create a training database that can be used to train a surrogate
model with a broad solution space?

By answering this sub-question, a methodology for building a generic training database
is developed. A load emulator can then be trained on this data. However, to optimize
the training of the NN, it is beneficial to identify the key features that are relevant for
fatigue load emulation. To do this, a final sub-question is formalized:

Which SCADA and accelerometer variables and features should be used as
inputs to the surrogate model for estimating fatigue loads?

Once the set of sub-questions are answered, the main research question can be an-
swered fully.

1.4 Methodology

In this section, the methodology used in the thesis will be briefly described. Through-
out the thesis, various SGRE in-house tools are used. Structural models are created
using SGRE’s Matlab-based tools. Various in-house tools are available for performing
eigenvalue analysis or wave load generation based on linear wave theory on these
models. These models are then transferred to input files that are compatible with
BHawC (Bonus Horizontal Axis Windturbine Code), the in-house hydro-aeroelastic
simulation engine. To perform the analysis, 10-minute simulations are used. Fa-
tigue loads are calculated as Damage Equivalent Loads (DELs) using the in-house
post-processing tools. These tools count the number of loading cycles and output the
corresponding DEL load using Dirlik’s method [22].

For training the NN, the results are transferred to Python to make use of the Ten-
sorFlow library. This library was chosen because it allows for fast implementation of a
feed-forward neural network. Results are quantified in terms of their error using sev-
eral metrics, namely Mean Absolute Percentage Error (MAPE), Mean Percentage Error
(MPE), Root Mean Square Error (RMSE), total DEL error (tDELE) and the coefficient
of determination (R2).

1.5 Thesis framework

In this section, the outline of the thesis is presented. The research questions identified
in section 1.3 are used to organize the structure of the thesis.

In chapter 1, the thesis topic is introduced. A motivation for the topic is first
presented, followed by a summary of a comprehensive literature review on the subject
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of fatigue load emulation of wind turbines. The knowledge gaps are identified and
the research questions are presented.

Followed this, chapter 2 briefly presents the theoretical framework of NNs. This
is done here because many of the choices performed throughout the thesis are driven
by the strength, limitations, and requirements of NNs.

Then, chapter 3 describes the process in which simplified structural models are
created, the choices in modeling assumptions and degrees of freedom, as well as
sensitivity studies regarding the influence of the hyperparameters on the dynamic
response of the model and on the wave loads generated based on this model.

In chapter 4 the methodology for creating simplified structural models is validated
by comparing the fatigue loads of the simplified model against a corresponding de-
tailed model. This is done for cases in which the wind turbine is in normal operation
and in standstill.

Afterwards, chapter 5 presents the methods by which the different environmental
conditions, geometric properties, and dynamic properties are selected in order to
create a generic database of simulation data.

In chapter 6 shows the process of training and testing of the load emulators. The
load emulators are tested against simulation data from detailed structural models that
lie within the solution space of the training data. This chapter is key in that it tests
the accuracy of the SM and its ability to generalize to any wind turbine geometry and
environmental condition.

Lastly, chapter 7 contains an analysis of the relative importance of the input fea-
tures using a global sensitivity analysis. Some permutations of the load emulators are
considered in this section, namely to test the accuracy of the surrogate if some of the
input data used (such as wave statistics) were not available.

Finally, chapter 8 provides a conclusion on the applicability of a generic SM for
load emulation, along with recommendations for future work.



Chapter 2

Neural Networks as Surrogate
Models

A neural network is a type of regression and/or classification algorithm that utilises a
series of simple successive regressions to estimate outputs from a given set of inputs.
The concept of a neural network model is loosely inspired by the firing mechanisms
of neurons in the brain. A neural network contains many units, or neurons, arranged
in l layers. Each unit holds a value a denoted the unit’s activation. The first layer is
referred to as the input layer, while the last layer is referred to as the output layer.
All the layers in between are hidden layers. A schematic representation of a neural
network is shown in Figure 2.1.

Figure 2.1: Diagram of a typical neural network with two hidden layers.

In a simple feed-forward neural network, the activation of any given unit is a
nonlinear function of the activations of all the units in the previous layer. To compute
the nonlinear function, first a linear combination of the previous layer’s activations is

9
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calculated. This intermediate value is referred to as z. To calculate z, each activation
of the previous layer’s units is assigned a weight value w and the combination of
all the units is summed, together with a bias term b. Then, a nonlinear function is
applied to z, in the form a = g(z), where g is a function such as the sigmoid function,
hyperbolic tangent, or a rectified linear unit (ReLU). Using these nonlinear activation
function in layers allows for neural networks to achieve high levels of nonlinearity in
their output. When this process is applied sequentially, starting from the input units
until the last layer L is reached, the process is called forward propagation.

For each unit, each weight and bias term used to calculate its activation is a pa-
rameter of the model. Therefore, a neural network with many layers and units can
have a high number of parameters to tune so that the model has the desired out-
puts. For this, supervised learning is used. In supervised learning, a large group of
known inputs and outputs are used to calibrate the model by comparing the predicted
outputs and the known outputs to a given set of inputs, and then adjusting the pa-
rameters in such a way that the errors of the predictions are minimized. The method
for determining how to adjust each parameter follows a workflow process that starts
in the output layer and works its way backward all the way up to the first layer. This
process is called backward propagation.

2.1 Forward and backward propagation

In this section, forward and backward propagation is described with mathematical
rigor. The following theoretical background is adapted from [23]. The neural network
takes in an input x and produces an output y. Here, x is a column vector of the values
of each input feature of a single data point. In a generalized form, for m examples,
Y = f(X), where X and Y are the set of inputs and outputs in matrix form:

X =
[
x(1), x(2), ..., x(m)

]
(2.1)

Y =
[
y(1), y(2), ..., y(m)

]
(2.2)

Where x(i) and y(i) are the column vectors of inputs and outputs, respectively, of the
i-th data point.

In a feed-forward neural network a layered structure is used to map the inputs
X to the output Y . In this way, the activations of each layer are determined by the
activations of the previous layer. If X is considered as the activations of the 0-th layer
and Y the activations of the L-th layer, the activation A{l} of any layer l is given by:

A{l} = g
(
W {l}A{l−1} + b{l}

)
(2.3)

Where W {l} is a matrix of weights that tune the sensitivity of each unit in layer l
to the values of the previous layer. In the weight matrix, wij contains the weight
applied to the j-th unit in the previous layer for computing the i-th unit of the next



2.1. FORWARD AND BACKWARD PROPAGATION 11

layer. The linear combination Z{l} = W {l}A{l−1} + b{l} can be seen as a simple
linear regression. The power of neural networks comes from subjecting this linear
combination to a nonlinear activation function, denoted g. This function, typically
a ReLU function, sigmoid, or hyperbolic tangent, is used to introduce a degree of
nonlinearity which can allow the neural network to model more complex functions.
The process of calculating the activations of each layer from the activations of the
previous is known as forward propagation. The procedure is outlined in pseudocode
in Algorithm 1.

Algorithm 1 Forward Propagation

procedure FORWARDPROP(X,W {1}, . . . ,W {L}, b{1}, . . . , b{L})
A{0} = X
for l = 1 to L do

Z{l} = W {l}A{l−1} + b{l}

A{l} = g{l}
(
Z{l})

end for
return A{1}, . . . , A{L}

end procedure

In order to achieve the desired response of the model, the weights and biases need to
be calibrated in such a way that the predicted outputs are close to the known outputs.
For this, a large set of training examples are used. These are data points where the
input and outputs are already known. The inputs are fed through the model and the
predicted outputs A{l} are compared to the known outputs Y through a loss function
L. Tuning the weight and bias terms is treated as an optimization problem in which
the objective is to minimize the total losses of the training data. It is typical for these
optimization algorithms to use the gradient of the loss function to search for a local
minimum. To determine the derivatives with respect to each weight and bias term,
chain rule is applied from the output layer to the input layer in a method called
backward propagation. For the last layer:

∂L
∂W {L} =

∂L
∂Z{L}

∂Z{L}

∂W {L} =

(
∂L

∂A{L}
∂A{L}

∂ZL

)
∂Z{L}

∂W {L} =
∂L

∂A{L} g
′(Z{L})A{L−1}

(2.4)
For the second to last layer:

∂L
∂W {L−1} =

∂L
∂Z{L}

∂Z{L}

∂A{L−1}
∂A{L−1}

∂Z{L−1}
∂Z{L−1}

∂W {L−1} (2.5)

∂L
∂W {L−1} =

(
∂L

∂Z{L}

)
W {L}g′(Z{L−1})A{L−1} (2.6)

And more generally:

∂L
∂W {l−1} =

(
∂L

∂Z{l}

)
W {l}g′(Z{l−1})A{l−1} (2.7)
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∂L
∂Z{l−1} =

(
∂L

∂Z{l}

)
W {l}g′(Z{l−1}) (2.8)

This procedure is applied starting from the last layer step-by-step until the first layer
is reached. A similar method is used to determine the derivatives with respect to the
bias terms b{l}. The procedure is outlined in pseudocode in Algorithm 2. Once the
gradient is calculated with backward propagation, the parameters can be updated. A
detailed explanation is provided in section 2.4.

Algorithm 2 Backward Propagation

procedure BACKPROP(Y,X,Z{1}, A{1},W {1}, b{1}, . . . , Z{L}, A{L},W {L}, b{L})
m = number of columns of Y
A{0} = X
dZ{L} =

(
A{L} − Y

)
· g′{L} ▷ If the loss function is Mean Squared Error

dW {L} = 1/m · dZ{L} ·A{L−1}T

db{L} = 1/m · dZ{L}· ones(m, 1)
for l = L− 1 to 1 do

dZ{l} = W {l+1}T · dZ{l+1} ∗ g′{l}
(
Z{l})

dW {l} = 1/m · dZ{l} ·A{l−1}T

db{l} = 1/m · dZ{l}· ones(m, 1)
end for
return dW {1}, db{1}, . . . , dW {L}, db{L}

end procedure

2.2 Bias and variance

Two important concepts when assessing the performance of a neural network are
bias and variance. To understand the concepts of bias and variance, it is useful to
separate the data into a training set used during backward propagation to determine
the weights and biases, and test set which the model has never seen before.

A model with high bias is unable to fit the training data well and will therefore also
perform poorly on the test data. The loss function L will be large in both cases. When
this happens, it is said that the model underfits the data. A model with high variance
will perform poorly on test data when compared to the training data. Therefore
LTest >> LTrain. In this case, it is said that the model overfits the training data.

To diagnose if a model has high bias and/or high variance, it is useful to plot
learning curves. In these plots, the loss function of the training and test sets are
plotted as a function of m, the number of training examples used. If the loss function
converges to a high value for both training and test sets, then the model has high
bias. If there’s a large gap between the converged values of the loss function of the
training set and the test set, then the model has high variance. Additionally, if the
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loss function does not converge asymptotically to a value, then it is indicative that not
enough training examples were used.

The following strategies can be used for solving problems of bias and variance. To
reduce bias, more layers and/or units per layer can be added to the neural network
in order to increase the complexity of the model and allow for more nonlinearities.
Alternatively, it’s possible that better results can be achieved when adding more input
features. On the other hand, to reduce variance, using more data in the training phase
can be useful, as well as introducing regularization to the training of the model. More
details on regularization methods are given in section 2.3.

For large neural networks, the amount of parameters that are tuned during the
training phase makes these models more prone to overfit than to underfit. This holds
especially true for deep neural networks with many hidden layers. As a consequence,
a large focus is placed on acquiring more data. For more shallow neural networks,
there is a higher risk of underfitting.

2.3 Regularization

Regularization is a strategy that can be employed to reduce the risk of overfitting the
data during training. The intuition behind regularization is that high variance comes
from weight terms that are very high. High weight terms means that small changes
in the input will have large changes in the output thanks to being scaled by a large
weight. Regularization methods try to keep weight terms low while still minimizing
the loss function as much as possible.

One of these strategies is L2 regularization. To implement this regularization, an
additional term is added to the loss function, denoted LReg. This term scales with the
magnitude of the coefficients in the weight matrices W . By applying this to the loss
function, the algorithm will be penalized if coefficients are too large, and therefore
will be incentivized to keep them small. By minimizing the combined loss function
LTotal = L + LReg, the optimization algorithm will not only try to minimize the
error of the model, but will also try to keep the parameters small. The loss due to
regularization is expressed as the sum of the Frobenius norms of all weight matrices:

LReg =
λ

2m

L∑
l=1

∣∣∣∣∣∣W {l}
∣∣∣∣∣∣2
F

(2.9)

where λ is the regularization parameter and controls the degree to which L2 regular-
ization is applied. Higher values of λ will increase bias and decrease variance. Note
that when L2 regularization is used, the backward propagation algorithm shown in
Algorithm 2 should be slightly modified to include the loss introduced by regulariza-
tion in the derivative terms.

A second strategy that can be used to prevent overfitting is dropout regularization.
In this method, the model is taught not to rely too heavily on any given connection
between units of consecutive layers by randomly eliminating units during training.
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This forces the magnitudes of weight terms to be similar and small, and thus has a
regularizing effect. For each layer a probability p of eliminating a unit on the layer
is chosen. This probability is used to determine if each activation value should be
kept or eliminated (set to zero). After this, the activations are re-scaled by dividing
by the probability that an activation is kept (1− p). This is done so the activations of
susequent layers keep the same magnitude. A description on how this is applied in
practice is shown in pseudocode in Algorithm 3. When dropout regularization is used,
dropout should only be applied with the training set. During testing, the full, densely
connected neural network should be used. Like for L2 regularization, increasing the
parameter p will increase the regularization effect, thus increasing bias and lowering
variance.

Algorithm 3 Dropout regularization

procedure APPLYDROPOUT(A, p)
ε = 1− p
d =rand(shape(A)) < ε ▷ d is a matrix of logicals
A = A ∗ d ▷ Element-wise product
A = A/ε
return A

end procedure

2.4 Optimization algorithms

When the gradient is computed using a backward propagation algorithm like the one
shown in Algorithm 2, the newly computed gradient can be used to update each pa-
rameter in an effort to minimize the loss function. In its simplest form, this process
is known as gradient descent. Other complexities can be included to make gradient
descent more efficient. Each iteration of gradient descent takes a step in the direction
opposite of the gradient (since the objective is to minimize the loss function) propor-
tional to the gradient itself, scaled by a learning rate parameter αNN . Weight and
bias parameters are updated as follows:

W {l} := W {l} − αNN

(
∂L

∂W {l}

)
(2.10)

b{l} := b{l} − αNN

(
∂L
∂b{l}

)
(2.11)

This is a hyperparameter of the model and can be tuned to improve the perfor-
mance of the neural network. Increasing αNN generally leads to faster convergence
to the local minimum, however, it may cause the gradient descent algorithm to be
unstable and the solution will diverge.
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When training with large datasets, it can be inefficient to wait until all the training
examples have gone through forward propagation and backward propagation to take
a single gradient descent step. A small subset of the entire training set can already
provide gradient descent with a general direction that it should search in. Therefore,
it can be advantageous to divide the training set in smaller batches of data and ap-
ply forward propagation, backward propagation, and update the parameters for each
batch sequentially. When gradient descent has been calculated for all batches, it is
said that one epoch has been completed. Using gradient descent with batches can
sometimes lead to the gradient descent steps being taken in many different direc-
tions. To reduce some of the noise encountered in the gradient, it can be beneficial to
implement gradient descent with momentum. This algorithm using an exponentially
weighted moving average to “remember” the gradient of previous batches and weighs
it with the gradient of the new batch.

Further acceleration of convergence of gradient descent can be achieved by divid-
ing the gradient by the magnitude of the exponentially weighted moving average of
the gradient. This procedure is known as RMSProp. The Adam algorithm uses a com-
bination of momentum and RMSProp to speed up gradient descent. This algorithm
is one of the more commonly used optimization algorithms for training neural net-
works, and will be the optimization scheme that will be used throughout this thesis.
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Chapter 3

Simplified Support-Structures

In order to create a load emulator that can predict fatigue loads at many possible
sites, a method for creating generic structural models that accurately approximate the
response of a wind turbine is required. The generic models should be easy to modify
in order to create many permutations of possible wind turbines. In this chapter, a
methodology for creating and fine-tuning generic, simplified models is presented. In
section 3.1, the modeling assumptions and degrees of freedom selected for the model
are presented. This is followed by a sensitivity analysis in section 3.2, whereby the
dynamic response and hydrodynamic properties of the simplified models are studied
with respect to the degrees of freedom and hyperparameters. Finally, a methodology
for selecting the hyperparameters to fine-tune the simplified model is presented in
section 3.3.

3.1 Modeling assumptions and degrees of freedom

A first step towards creating a load emulator that can represent loads of many possi-
ble sites of the same turbine type is to build a model which is generic and adaptable
to fit the properties of any given site. To obtain the generic model, the approach
taken is to start with a detailed model and simplify it, stripping away details in the
model that are of low importance. The goal of the simplification process is to reduce
the number of degrees of freedom (DoFs) of the detailed model as much as possible,
such that the resulting model conserves only the essential parameters useful to de-
scribe the turbine’s dynamics, operation, loading, and response. This simplification
process is essential for limiting the computational expense of creating permutations
of the model. Nevertheless, the simplification must preserve a high degree of versa-
tility, whereby many possible configurations can be represented by few DoFs. For this
purpose the following degrees of freedom related to the structural model are selected:

• Reference levels: Mudline level (Zmud) and interface level (Zint).

• Geometric properties: External diameter at the interface level (dint), wall thick-
ness at the interface (tint) and external diameter at the water level (dwl).

17
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• Dynamic properties: Fore-aft frequency (f1), damping ratio (ζ1), and normal-
ized displacement at water level (α).

Figure 3.1: Schematic representation of the geometry of an offshore wind turbine and
the selected DoFs for simplified modeling of the support structure.

Figure 3.1 shows a schematic diagram of an offshore wind turbine where the
selected DoFs are illustrated. The mudline and interface levels (Zmud and Zint re-
spectively) are chosen as DoFs as these are fundamental to describing the geometry
and dynamics of the support structure. Dynamic properties such as the first mode fre-
quency in the fore-aft direction (f1) and the normalized deflection at water level (α)
are strongly related to the mudline level, while wave loading can be highly dependent
on the water depth and mudline level [24, 25]. The interface level is preserved as
this is a hotspot for fatigue loading and loads at this location can be important drivers
in the design of offshore wind turbines. For this same reason it was chosen to include
the diameter and wall thickness at the interface level as DoFs. The diameter at the
water level (dwl) is chosen as a DoF because, as dictated by the Morison equation, the
wave loading is highly dependent on the external diameter and the loading occurs
primarily near the water level. This diameter is then extended to the mudline and
pile tip, therefore the pile diameter and other possible changes to diameter below the
water level are not considered. This choice was motivated by the desire to limit the
computational cost of the generation of generic models. Including these parameters
would increase the number of DoFs and therefore the computational cost of the type-
generic process. Furthermore, as it will be discussed in section 3.3, the differences
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in the dynamics of the simplified model arising from omitting these parameters are
expected to be bridged by a fine-tuning process.

Finally, three key dynamic properties of the first fore-aft mode are selected as
DoFs: the frequency (f1), damping ratio (ζ1), and the normalized deflection at water
level (α). The frequency and damping are key parameters that describe the response
of the model to dynamic loads [26]. They are tied to the amplification of loads
occurring at the resonant frequencies and therefore have a high impact on the fatigue
loads [27]. Treating them as DoFs adds versatility to the simplified model as the
same geometry can be independently adjusted to represent different possible dynamic
responses, therefore representing variabilities of different offshore sites. This is not
only helpful to capture differences between sites due to site-specific conditions such as
soil stiffness, pile penetration depth, or support structure design, but also potentially
could be used to close the gap between measured and simulated dynamic properties.
While the scope of the thesis is using simulated data, this is a key outcome for the
practical applicability of the method.

Similarly, the α value is also treated as a DoF as this parameter is crucial in un-
derstanding the relationship between the stiffness of the support structure relative
to the stiffness of the tower. As such, it is expected that the parameter will play an
important role in the model in terms of hydrodynamic loading and the interaction
between the hydrodynamic loads and the foundation displacements [28]. Therefore
this parameter is important for modeling wave induced fatigue loads.

3.2 Sensitivity analysis

In order to understand the impact of the different DoFs that were selected for the
simplified support structure model, a sensitivity analysis is conducted. For this, a ref-
erence detailed model provided by SGRE, representative of a 7.0MW wind turbine in
the German North Sea, is simplified. First, the DoFs related to the structure dynamics
are modified within a range of values in a one-at-a-time approach and the dynamic
response is studied in order to further understand the impact of the selected DoFs.
After this, the DoFs and other hyperparameters which relate to the hydrodynamics
(and therefore the wave loading) are modified one-at-a-time and the resulting wave
loads (generated with SGRE in-house software) are studied in terms of accuracy with
respect to wave loads generated using the detailed model.

3.2.1 Dynamic properties

First, the dynamic properties are studied when perturbations are applied to the geo-
metric parameters of the simplified model. Four hyperparameters which are expected
to play a significant role in the dynamics of the wind turbine are selected. The chosen
parameters are: tint (which extends from interface level to pile tip), dint, dwl, and the
pile penetration depth (PPD).
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The analysis consists of varying each parameter independently within a range of
−25% and +25% of the value of the detailed model. For most of the parameters,
a variance of ±25% is considerably high and can be considered nonphysical for a
detailed model. It is unlikely for turbines of the same type to exhibit such large
variations for thickness and diameter. Nonetheless, the objective of the sensitivity
study is to describe the impact of the modeling assumptions that are used. While the
dwl for detailed models may vary only slightly, the simplified model uses this value
for the diameter of the foundation, from water level to pile tip. In the simplified
model, the dwl is used to define both the diameter at water level as well as the pile
diameter. With this in mind, the the range of ±25% can be physically realistic, as the
typical variations of pile diameters are expected to fall within this range. Similarly,
an increase of 25% in tint can capture the variations in foundation thicknesses along
the monopile. On the other hand, decreasing the thickness 25%, is however largely
unrealistic, as such a large decrease is likely to result in a structure that does not
satisfy the design criteria for extreme and fatigue loading. This is not problematic as
the scope of the sensitivity study is to study the interaction between the DoFs and the
dynamic response, regardless of the physical interpretation of the perturbations that
are applied.

For each DoF that is varied, the dynamic response of the resulting model is evalu-
ated. The dynamic properties of interest are f1, α, the frequency of the second mode
in the fore-aft direction (f2), and ζ1. These four responses are intrinsically linked to
the response of the model under dynamic loads, playing a role in the fatigue loads
produced from wind and wave conditions. By analyzing these dynamic responses, the
effects of the simplification process and the sensitivity of the model to these changes
are shown.

Table 3.1: Summary of the geometric degrees of freedom of the detailed and simplified
models.

DoF Detailed Model 1 Model 2

Zint ✓ ✓ ✓

Zmud ✓ ✓ ✓

Zpile ✓ ✓ ✓

tint ✓ ✓ ✓

tmud ✓

tpile ✓

dint ✓ ✓ ✓

dwl ✓ ✓ ✓

dmud ✓ ✓

dpile ✓ ✓

Coning angle ✓ ✓

For the sake of comparison and for assessing the impact of the simplification
strategies, a simplified model with an alternate geometric definition which requires
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more DoFs is considered at this stage. By using more DoFs, this geometry is a more
accurate approximation of the geometry of the detailed model. As such, it is expected
that it will also show a more similar response to the detailed model. The two geome-
tries are compared to the detailed model in Figure 3.2. In addition to the DoFs of the
simplified geometry derived in section 3.1, this model introduces a geometric coning
near the water level (z = 0) and the pile diameter as additional DoFs. A summary of
the DoFs of the two models is presented in Table 3.1. While the practical applications
of this model are limited, the results of the sensitivity analysis on this model can be
indicative of overall trends in the detailed model as hyperparameters are changed
between sites.
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Figure 3.2: Comparison of the geometry of the two simplified models to the detailed
model.

The analysis is carried out for the two modeling strategies, and for each modeling
strategy two soil models are adopted: the modified apparent fixity model (MAF) [29]
and the traditional soil spring model. For the cases which use a soil spring model,
the soil springs are taken from the reference detailed model which also uses this soil
model.

It should be noted that the sensitivity analysis on the simplified models are carried
out using a different SGRE in-house tool (referred to herein as “Tool 2”) than what
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was used to gather the values of the detailed model which are used to normalize the
results (referred as “Tool 1”). Because of this the dynamic properties of the detailed
model as evaluated by Tool 2 are also reported.

In Figure 3.4 the sensitivity of the first mode frequency in fore-aft direction is
presented. The results are compared to the values of the reference model. The trends
of all the models are consistent with our understanding of the underlying physics.
For example, it is shown that increasing tint, dint, and dwl has a stiffening effect,
increasing f1. To illustrate this effect, the wind turbine can be approximated by a
cantilever beam with a lumped mass M and a stiffness k. The frequency of this
system is given by,

f =
1

2π

√
k

M
(3.1)

The stiffness is proportional to the second moment of area of the cross section I,
which for a hollow, thin-walled cylinder approximately scales with the cube of the
external diameter (d3) and linearly with the wall thickness (t). Because dint is only
extended between the interface level and water level, its overall effect on the fre-
quency is less than that of dwl.

A similar analysis is applied for understanding the effects of modifying the PPD.
It is seen that increasing PPD has the tendency to decrease f1 for the MAF models,
while having little effect for the Soil Spring (SS) models (Figure 3.4(d)). Internally,
the MAF model applies a rigid constraint to the pile tip and replaces the beams below
mudline with beams with modified stiffness. Increasing the PPD has the effect of
increasing the overall length of the tower. This is illustrated in Figure 3.3.

Figure 3.3: Effect of increased pile penetration depth on a MAF soil model.

Using the cantilever beam analogy, increasing the length of the beam has the effect
of decreasing the stiffness and therefore the frequency of the beam. This means that
increasing the pile penetration makes the MAF models more flexible. For soil spring
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models, the effect is different. Because the soil spring models add stiffness via p − y
springs, increasing the pile penetration does have a stiffening effect. However, a large
contribution of the stiffness of the soil is due to the first few layers, with the deeper
layers having a lesser effect on the stiffness. This is why the soil spring models were
largely unaffected by the changes in PPD. The exception is that the decrease in PPD
for Model 1 had a large effect on f1. The interpretation of this is that Model 1, having
lower stiffness, is more sensitive to the added stiffness of the top layers of soil. Model
2, having a more rigid foundation, is less sensitive to this effect.

From Figure 3.4 it’s also noted that Model 2 with a spring soil model (“2 Soil
Springs”) most accurately resembles the detailed model when the base values of the
DoFs are used. Additionally, Model 1 with a modified apparent fixity (MAF) soil model
shows the largest error in f1, exhibiting a 25% underprediction. This difference can
be explained when comparing the geometry of the simplified model with that of the
detailed model. The simplified model does not account for the larger diameter of the
monopile thus having a softening effect.
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Figure 3.4: Sensitivity of the first fore-aft frequency with respect to geometric degrees
of freedom.

Similarly, the sensitivity of the α value is shown in Figure 3.5. As with f1, in-
creasing the wall thickness or the diameters has a stiffening effect, resulting in lower
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values for α. This is because the foundation becomes stiffer while the tower remains
the same, meaning that the normalized deflection of the foundation is lower.

However when it comes to interpreting the effects of increasing the PPD, the anal-
ysis is more involved. Increasing PPD has the effect of increasing α (Figure 3.5(d)).
If the turbine is again viewed as a cantilever beam, increasing the pile penetration
increases the total length of the beam. Because the tower height is kept constant, the
water level–where the α value is extracted–is kept in the same position relative to
the free end of the beam. Relative to the fixed end, the water level is further away
from the fixed end. Since the mode shape as a function of height is approximately
hyperbolic, the value α increases with increased PPD in the MAF models despite soft-
ening the structure in terms of frequency. In other words, the increased α is a result
of a more flexible foundation on MAF models, as the fixed end is placed further away
from the water level. This same analysis is consistent with the results found for the
frequency dependence on the PPD, as increasing the PPD had a softening effect on
the MAF models resulting in a lower frequency. This phenomenon is illustrated in
Figure 3.6.
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Figure 3.5: Sensitivity of the α value with respect to geometric degrees of freedom.
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Figure 3.6: Effect of increased pile penetration depth for MAF models on the α value.

Additional checks on the second mode frequency (Figure 3.7) and the damping
ratio of the first mode in the fore-aft direction (Figure 3.8 show similar trends to
the ones observed for frequency and α value. Overall, the models that use a MAF
approach tend to be softer than models with soil springs. This reduction in stiffness
is then reflected in a lower damping ratio, as damping is defined for these models
proportional to stiffness.
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Figure 3.7: Sensitivity of the second fore-aft frequency with respect to geometric de-
grees of freedom.
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Figure 3.8: Sensitivity of the damping ratio with respect to geometric degrees of free-
dom.

The analysis presented in this section points towards a method with which the sim-
plified model can be modified to more closely match the detailed model. In terms of
first fore-aft frequency, mode shape value, second fore-aft frequency, and first fore-aft
damping ratio, decreasing the PPD for models with a MAF soil model almost entirely
eliminates the difference between the simplified model and the detailed model. It is
proposed that by modifying the depth of the pile penetration, when combined with
minor modifications to Rayleigh damping parameters and beam stiffness factors, a
simplified model can be altered to match a target first mode frequency, α value, and
damping ratio ζ1. It is expected that matching these three dynamic properties will
result in a simplified model with a response very similar to a corresponding detailed
model. This process is presented in section 3.3.

Evaluating the four modeling approaches that were analyzed, Model 1 with a
MAF soil model is preferred due to its simplicity and versatility. Although Model
2 had more similar dynamics to the detailed model, the geometry of this model is
not easy to generalize. The diameters used to define the foundation are highly site-
specific, dependent on the type of connection between tower and foundation, among
other variables. This introduces many several more DoFs that would require a higher
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computational cost and ultimately detract from the overall objective of creating a
generic, simplified model that is versatile and robust. With the same reasoning, the
MAF model is chosen over the soil-spring model as changes in the soil stiffness be-
tween sites are easily applied to the MAF model by changing the pile penetration
depth. If the soil-spring model where to be used, a soil study at each (potential) site
to construct the p − y curves would be needed. Because the generic models do not
correspond to a specific site, it is impossible to assign generic p − y curves for each
generic model.

3.2.2 Wave loading

Having studied the effect of various hyperparameters on the dynamic response, a sim-
ilar study is conducted related to the hydrodynamics of the simplified model. This is
an important step, as the wave loads are dependent on the geometry of the founda-
tion. Therefore, when a new simplified foundation is created, appropriate wave loads
must be generated using the geometry of the simplified foundation. To conserve accu-
racy in the generated wave loads, it is crucial to understand the effects of the relevant
DoFs and the hyperparameters that govern the generation of wave loads.

The SGRE wave generation engine, which is based on linear wave theory, is used
to generate the wave loads. The wave loads are analyzed in terms of accuracy when
compared to waves generated on a detailed model. The waves generated from the
simplified model and the detailed model are compared using the relative Root Mean
Squared Error (relative RMSE). Because the wave loads are represented as a time
series of lateral loads at the fluid nodes of the model, it is convenient to summarize
the loads in terms of a single value. It was chosen to use the time series RMS of the
overturning moment for this purpose. The calculation of the relative RMSE is shown
in Equation 3.2, where n is the number of wave load cases, y is the overturning
moment RMS of the detailed model, and ŷ is the overturning moment RMS of the
simplified model.

Relative RMSE =

√√√√ 1

n

n∑
i

(
ŷi − yi

yi

)2

(3.2)

For this analysis, four key parameters are studied. These parameters are the ma-
rine growth thickness tMG, an additional hydrodynamic diameter ∆d, the level to
which the additional hydrodynamic diameter extends z∆d, and the diameter at water
level dwl. These parameters have been shown in literature to have a large effect on the
fatigue loading of offshore wind turbines [30]. The additional hydrodynamic diame-
ter is a modification to the external diameter within the range where it applies that
is intended to capture additional hydrodynamic loads from appurtenances (ladder,
boat landings, etc.) which are not modeled in the simplified structure. The additional
hydrodynamic diameter can also serve as a means to reduce the differences in the
external diameter between the simplified and detailed model that can have a large
effect on the generation of wave loads. The model used to determine the sensitivity
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of the wave loads is the “1 MAF” model, which was chosen in the previous subsection
due to its versatility.

Similar to the methodology used to assess the sensitivity of the dynamic response,
the parameters are varied within a range of ±25% around a base value using a one-
at-a-time approach. The base values for tMG and dwl are extracted directly from the
detailed model. The additional hydrodynamic diameter is not present in the detailed
model because the appurtenances are explicitly included. For this reason, generic
values for ∆d and z∆d are used. For each case, 125 wave load files are selected at
random from a pool of 6264 sea states that correspond to a normal sea state (NSS) in
the German North Sea. This was done so that the trends across all sea states could be
captured while also reducing the computational cost of the sensitivity analysis. The
stochastic nature of the process means some fluctuations in the relative RMSE are
expected due to random error. These should not affect the overall trends that are
observed as a result of the analysis.
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Figure 3.9: Sensitivity of the overturning moment RMS with respect to the wave-
related hyperparameters and degrees of freedom.

As is shown in Figure 3.9, the diameter at water level plays a predominant role in
the accuracy of the wave loads derived from the simplified model. This is expected
as the hydrodynamic loading is strongly dependent on the external diameter, as is
described by the Morison Equation [31]. Also to note is that the hydrodynamic pa-
rameters (marine growth and additional diameter) play a lesser but still important
role as their modification can lead to better accuracy between the detailed and sim-
plified models. The clear trend that is observed for these parameters is that increasing
the effective diameter will result in more accurate wave loads. When comparing with
Figure 3.2, increasing the values of the hydrodynamic hyperparameters serves as a
means to increase the effective diameter of the Morison Equation, reducing the dif-
ferences in diameters between the detailed model and the simplified model.
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3.3 Selection of hyperparameters

As discussed in the previous section, the simplified model presents some differences in
dynamic and hydrodynamic response with respect to the detailed model. These differ-
ences can be reduced by modifying the pile penetration depth, the Rayleigh damping
parameters, and introducing a stiffness factor for matching the dynamics, and se-
lecting optimal hyperparameters that govern the wave load generation to match the
wave loading. This section presents the methods used to systematically modify the
dynamics and hydrodynamic properties to achieve the best possible match between a
simplified model and a corresponding detailed model.

3.3.1 Tuning of dynamic properties

The sensitivity analysis on the structural dynamics of the simplified model indicates
that the PPD, damping parameters, and stiffness factors can be used to modify its
dynamics. These three variables work together to tune the simplified model to a
target value in terms of f1, α value, and ζ1. It should be noted, however, that the
interaction between pile penetration depth and stiffness factors (roughly equivalent
to modifying the wall thickness) with frequency and α is a coupled system. For this
reason, the tuned parameters must be selected simultaneously.

The approach taken to select the tuned parameters is to combine changes to the
pile penetration depth with a SGRE in-house tool that can apply changes to the stiff-
ness matrix via stiffness factors and select Rayleigh damping parameters to target a
specific fore-aft frequency and damping ratio. To resolve the coupling problem, sev-
eral simplified models are created which are identical to each other with the exception
of the pile penetration depth. For each model, a different pile penetration depth is
selected such that a broad range of values are considered. Each of these models is
then tuned to the same frequency and damping ratio as the detailed model, and the
mode shape value for these models is extracted.

After this process, a curve of α value versus PPD can be constructed similar to
the one shown in Figure 3.10. Since all the models have been tuned in frequency
and damping, the resulting curve represents all models with the same frequency and
damping as the detailed model, but with different pile penetration and α. Through
interpolation, the PPD which results in the same mode shape value as the detailed
model can be extracted. Using this approach, the tuning problem is reduced from
having three tunable inputs and three output targets to a single input, single output
problem.
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Figure 3.10: Differences in site-specific conditions among turbines of the same class.

3.3.2 Optimization of hydrodynamic parameters

Additionally, for determining the best combination of hydrodynamic parameters such
that the waves resulting from the simplified model most accurately match those of a
detailed model an optimization problem is proposed. For this, the relative root mean
square error of the overturning moment RMS is chosen as the objective function and
is minimized via gradient descent. The root mean squared error is computed across a
sample of 360 wind-wave environments representative of a NSS in the German North
Sea. The variables considered for optimization are tMG, ∆d, and z∆d. These are
chosen among the four parameters studied in the sensitivity analysis of the previous
subjection. The diameter at water level dwl was not modified as the sensitivity studied
proved that the accuracy of the wave loads are highly sensitive to this value. Therefore
the optimized values may not generalize well between sites which have different
diameters around the water level.

The optimization problem is presented as

min
tMG,∆d,z∆d

L (tMG,∆d, z∆d) (3.3)

Where the objective, loss, or cost function L is defined as

L (tMG,∆d, z∆d) =

√√√√ 1

n

n∑
i=1

(
ŷi (tMG,∆d, z∆d)− yi

yi

)2

(3.4)

With n indicating the number of samples in the batch and y representing the
overturning moment RMS, which is a function of the geometry of the model and the
wave generation engine:

ŷi (tMG,∆d, z∆d) = f (tMG,∆d, z∆d) (3.5)
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The values of these parameters are initialized at their generic value used for the
sensitivity analysis in Figure 3.9. It is not possible to obtain the gradient of the ob-
jective function analytically, therefore the gradient is estimated via centered finite
differences. These choices mean that the computational cost of this process is high,
as one step in the gradient descent can involve thousands of wave load generations.
To mitigate the computational cost, an approach using mini-batch gradient descent
is preferred, where the total sample is split in groups of 20 sea state conditions and
each group is used to take a step in the gradient descent.

For the mini-batch gradient descent, the gradient is estimated as follows [32]:

∂L
∂xi

≈ L(x1, ..., xi + ε, ..., xn)− L(x1, ..., xi − ε, ..., xn)

2ε
(3.6)

with
x = {tMG,∆d, z∆d} (3.7)

After computing the gradient of the objective function, a step is taken in the di-
rection opposite to the gradient proportional to the size of the gradient to minimize
the error:

xj+1 = xj − α

(
∂L
∂x

)
(3.8)

where j denotes the mini-batch number.
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(a) Convergence of the loss function.
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Figure 3.11: Convergence history of the optimization algorithm for determining the
optimal hyperparameters for wave load generation.

Applying this process for one full epoch (a full run through the entire dataset)
yields the results shown in Figure 3.11(a). It is shown that in terms of the loss func-
tion, the root mean squared error is approximately converged around 2.4%, reduced
from a starting 6.4% error. This shows that with only a few mini-batches it is possible
to already optimize the parameters of the hydrodynamics of the model and reduce the
error to one third of what was obtained with generic wave parameters. The adopted
values show similar trends in convergence as shown in Figure 3.11(b). It can be seen
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that the overall trend of the optimization process was to increase the parameters, in-
creasing the effective diameter of the foundation. This is consistent with what was
found in the sensitivity analysis presented in the previous section, and the comparison
of the simplified model with the detailed model (Figure 3.2).



Chapter 4

Validation of the Simplified Model

In this chapter, the methodology for creating simplified models of offshore wind tur-
bines is validated. A simplified model is generated based on a corresponding detailed
model and their response in terms of fatigue loads are compared. For this, time do-
main hydro-aeroelastic simulations are performed on both models and the damage
equivalent loads (DELs) at fatigue critical locations are compared. The simulations
for this study are pre-processed, run, and post-processed using the in-house tools of
SGRE for fatigue load calculation.

To further understand the effects of the methods used to match the dynamics re-
sponse (i.e. f1, α value, and ζ1) and wave loading, additional simplified models in
which these methods are omitted are compared to the detailed model. The models
included in the comparison are then (1) a model tuned to the target frequency, damp-
ing ratio, and α value with generic wave load hyperparameters, (2) a model tuned to
the target frequency, damping ratio, and α value with optimized wave load hyperpa-
rameters, (3) a model with tuned frequency and α value with an un-tuned damping
ratio and using optimized wave load hyperparameters, (4) a model with tuned fre-
quency and damping ratio but with an un-tuned α value, and using optimized wave
load hyperparameters, and (5) a model that utilizes optimized wave load parameters
but is otherwise not tuned to the target frequency, damping, or α value. In all cases,
the target values correspond to the values of the detailed model.

In section 4.1, a description of the Design Load Cases (DLCs) used for the val-
idation of the models is presented. Followed this, the results for a normal power
production case are shown in section 4.2. In section 4.3 the responses for an idling
case are shown. Finally, section 4.4 summarizes the conclusions drawn from the vali-
dation process.

4.1 Description of load analysis cases

The load cases studied for the validation analysis are the DLC 1.2 and DLC 7.2, as
defined by the IEC 61400-3:2019 [33]. These two cases were chosen because they
capture the two operating conditions that represent the majority of fatigue damage

33
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accumulation in wind turbines: normal power production and idling/standstill. The
normal power production case represents the conditions in which the wind turbine
is operating normally, generating power as intended. Typically, upwards of 95% of
the lifetime of a wind turbine is spent during normal operation. When the turbine
is not operating, e.g. due to maintenance operations, the wind turbine is set to idle.
The loading during this condition still contributes to the fatigue loading of the wind
turbine and therefore is accounted for in DLC 7.2. The description of the simulation
conditions used to analyze both DLCs are presented in Table 4.1.

In DLC 1.2, the power production case, the wind environment is composed by
wind speeds every 1 m/s from 3 m/s to 31 m/s and a normal turbulence model.
Wind-wave misalignments from -60 to 90 degrees are considered in sectors of 30
degrees. These are typical ranges of wind-wave misalignment in the North Sea [34].
While a typical analysis for certification would include wind directions according to
the site-specific wind-rose, for validation purposes it is sufficient to only consider a
single wind direction. The comparison between the simplified model and the detailed
model is conducted in terms of the RMSE of the DELs for the individual wind-wave
combinations of each DLC. For each wind speed and wave direction combination,
three turbulence seeds are considered to capture the statistical variability at each
wind speed. For each, simulation, a matching wave environment (defined by Hs and
Tp) is assigned, consistent with the site-specific joint-probability distribution for the
site in the German North Sea. This process yields 522 total simulations for this DLC
case.

Table 4.1: Description of the design load cases used for validating the fatigue loads of
the simplified model.

DLC 1.2 DLC 7.2

Description Normal operation Idling/Standstill
Turbulence Normal Turbulence Model Normal Turbulence Model

Sea state Normal Sea State Normal Sea State
Wind speeds 3 to 31 m/s, every 1 m/s 2 to 32 m/s, every 2 m/s

Wind directions 0 deg 0 to 360 deg, every 30 deg
Wave misalignments -60 to 90 deg, every 30 deg 0 deg

Yaw misalignments -5.6, 0 and 5.6 deg 0 deg
Turbulence seeds 3, one per yaw misalignment 6

Simulation duration 10 minutes 10 minutes
Total simulations 29× 6× 3 = 522 16× 12× 6 = 1152

For DLC 7.2, the idling case, wind speeds every 2 m/s are considered from 2
m/s up to 32 m/s. In this case, no wind-wave misalignment is considered according
to the IEC 61400-3 [33], meaning that wind and waves are co-directional. Wind
and wave directions are included in sectors of 30 degrees, from 0 degrees to 330
degrees for a total of 12 possible directions. For each wind speed and wind direction
pair, six turbulence seeds are simulated, each with its own wave load defined by the
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appropriate wave height and period. This process in total yields 1152 simulations
for this load case. Although similar reasoning could be applied to consider only one
wind direction, doing so would result in only 96 simulations. This is too low of a low
sample number, therefore all 12 wind directions are considered.

The DELs compared in the validation exercise are the bending moments at the
mudline level (Mmud), at interface level (Mint), and tower top (Mtowertop). The bend-
ing moments at each location are composed of a bending moment about the global
X-axis and about the global Y -axis. In the case of DLC 1.2, because only a wind
direction of 0 degrees is considered, the moment about the X-axis corresponds to the
moment in the fore-aft direction, and the moment about the Y -axis corresponds to
the moment in the side-side direction. For DLC 7.2, since all directions are consid-
ered, they do not correspond to moments in fore-aft or side-side directions. The DELs
selected are summarized in Table 4.2.

Table 4.2: Summary of the fatigue DELs used for validation of the simplified model.

Load Description Wöhler slope

Mmud Bending moment at the mudline (DEL) 3.5
Mint Bending moment at the interface level (DEL) 3.5
Mtowertop Bending moment at the tower top (DEL) 3.5

4.2 DLC 1.2: Normal power production

Figure 4.1 shows the mudline DELs for DLC 1.2. The results of each simulation are
plotted against wind speed in a scatter plot, and the binned average according to
wind speed is plotted as a continuous line. It is apparent from Figure 4.1 that an
un-tuned model is not viable to accurately represent the loads of the detailed model.
The dynamic properties of the model that results from the simplification process is too
different from those of the detailed model to be able to make any meaningful conclu-
sions about the detailed model using the un-tuned simplified model. Moreover, the
importance of tuning for target values in the dynamics is magnified by the close accu-
racy achieved by the two fully tuned models that use either generic or optimized wave
load parameters; while the difference between the two wave parameter strategies is
small, Figure 4.1 indicates that better accuracy is found when using the optimized
wave parameters. This validates the optimization process of these hyperparameters.



36 4. VALIDATION OF THE SIMPLIFIED MODEL

0 10 20 30

Wind speed [m/s]

0

0.5

1

1.5

2

2.5

3

D
E

L
 /
 D

E
L

* d
e
t [

-]

DEL
*

det
 = DEL of detailed model at u=15 m/s

(a) Bending moment in fore-aft
direction.

0 10 20 30

Wind speed [m/s]

0

0.5

1

1.5

2

2.5

3

D
E

L
 /
 D

E
L

* d
e
t [

-]

Detailed model

Tuned, optimized waves

Tuned, generic waves

Without tuning damping

Without tuning 

Untuned

DEL
*

det
 = DEL of detailed model at u=15 m/s

(b) Bending moment in side-side
direction.

Figure 4.1: Bending moment at mudline (DEL) for DLC 1.2 as a function of average
wind speed.

In addition to this, the cases with an un-tuned damping ratio or mode shape value
can shed some light into the importance of the two tuning processes. By comparing
the tuned simplified model that is properly tuned to the model without a tuned α
value (shown in purple), it is seen that tuning the α value is of great importance
for producing accurate estimations of the mudline loads for DLC 1.2. The loads at
this hotspot are expected to have contributions from wind-related loading and wave-
related loading. Similarly, comparing the tuned model to a model where the damping
ratio has not been tuned (depicted in green), shows that the importance of tuning this
parameter is less than that of the α value, but not negligible. This can be attributed
to the presence of aerodynamic damping which is predominant over the contribu-
tion of the structural damping. Additional evidence for this claim is obtained when
comparing the behavior of the un-tuned damping model in the FA and SS directions.
The differences between the tuned and untuned model are greater in the SS direction
than in the FA direction. Aerodynamic damping acts largely in the FA direction rather
than the SS direction, therefore the structural damping is more important in the SS
direction.
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Figure 4.2: Bending moment at the interface (DEL) for DLC 1.2 as a function of aver-
age wind speed.
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Figure 4.3: Bending moment at the tower top (DEL) for DLC 1.2 as a function of
average wind speed.

Similar trends are found for the interface loads (Figure 4.2) and tower top loads
(Figure 4.3). It is noteworthy that as the importance of the wave-related hyperpa-
rameters, α value, and damping ratio decreases as the location of the DEL moves
further up the tower. This is because the loads near the tower top are driven by aero-
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dynamic loads while loads near the tower bottom and at the foundation are a result
of the combination of wind and wave loading. To illustrate this, Figure 4.3(a) shows
that the FA bending moment at the tower top is almost completely independent to
the choices made in the dynamic tuning process or the support structure model as
a whole. This is due to the fact the loading at the tower top for the normal power
production case is dominated by the aerodynamic loading of the rotor (i.e. the thrust
loading produced by power generation). This makes this load channel insensitive to
differences in wave loading and dynamics for this DLC. Contrary to this, the side-side
loads in Figure 4.3(b) show some sensitivity to the frequency, but not the other pa-
rameters. This is because, with zero yaw misalignment, the side-side loads in normal
operation are a product of free vibration of the tower. This is supported by the fact
that side-side loads in this location are approximately 1/5th of the fore-aft loads. This
was not the case for the previous load channels because loading was a product of the
interaction of wind and wave conditions at those locations.
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Figure 4.4: MPE and RMSE of the DELs for DLC 1.2.

Quantitative comparisons in terms of the mean percentage error (MPE) and rela-
tive root mean square error (RMSE) are presented in Figure 4.4. The MPE is chosen
as a measure of whether the simplified model underestimates or overestimates the
loads when compared to the detailed model, while the relative RMSE is a measure of
the dispersion in the results of the simplified model when compared to the detailed
model. The axes for the models with un-tuned dynamics have been truncated in or-
der to make the data more readable. From Figure 4.4, similar conclusions can be
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drawn regarding the importance of the different tuning strategies for the load loca-
tions studied. The resulting simplified model is shown to estimate the loads with an
accuracy of ±2% at mudline, tower bottom, and tower top, while having a dispersion
of approximately 2% across all load locations for DLC 1.2.

4.3 DLC 7.2: Idling

The same comparisons are carried out for DLC 7.2. As this is a standstill case, loading
conditions are mostly dependent on wave loads and thus the effects of the simplified
support structure are expected to be amplified. As was the case for DLC 1.2, the
un-tuned model completely overestimates the loads when compared to the detailed
model and the other simplified models (Figure 4.5). The differences between the
un-tuned simplified model and the detailed model are reduced by adequately tuning
the dynamics of the model (frequency, damping, and α value). Because DLC 7.2 is
influenced more by the wave loading than DLC 1.2, the models un-tuned α value
shows a larger difference with respect to the detailed model for this DLC. Similarly, as
aerodynamic damping from the rotor operation is no longer present, the importance
of tuning the damping ratio is amplified. Without aerodynamic damping and a MAF
soil model, the only source of damping is the structural damping.
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Figure 4.5: Bending moment at mudline (DEL) for DLC 7.2 as a function of average
wind speed.

Additionally, in DLC 7.2 – as opposed to DLC 1.2 – since wind directions ranging
from 0 to 360 degrees are considered, the global X and Y directions do not necessar-
ily correspond to FA and SS directions. However, because the rotor is not operational,
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there is little differences between the the FA and SS directions in terms of loading
and dynamics. On an operational rotor (e.g. DLC 1.2) aerodynamic loading will
be primarily concentrated in the fore-aft direction. Because the loads reported are
in the global reference frame and no transformations are applied in post-processing,
the moment about the X-axis can sometimes represent the load in FA direction, SS
direction, or a direction in between the two, depending on the wind direction.

As is seen in Figure 4.6 and Figure 4.7, the importance of tuning the α value is
greater across all load channels than tuning the damping ratio, and its importance is
greatest near the bottom of the tower and diminishes towards the top of the tower.
These results are in-line with the results found for DLC 1.2. Between the optimized
wave parameters and the generic wave parameters, it is seen that the optimized wave
parameters increase the accuracy of the model, especially for mudline level loads.
The tower top loads shown in Figure 4.7 for DLC 7.2 are comparable in magnitude to
the side-side loads for DLC 1.2. This is because these loads are primarily a result of
the vibration induced by wave-loading.
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Figure 4.6: Bending moment at the interface (DEL) for DLC 7.2 as a function of aver-
age wind speed.
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Figure 4.7: Bending moment at the tower top (DEL) for DLC 7.2 as a function of
average wind speed.
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Figure 4.8: MPE and RMSE of the DELs for DLC 7.2.

In terms of the MPE and RMSE (Figure 4.8), the observations made in the previous
figures are corroborated. The accuracy of the simplified model is greatly increased via
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adequate tuning of the model, and the use of optimized wave parameters as opposed
to generic parameters increases the accuracy of the model, particularly at mudline
level. At tower top, the error actually increases when using the optimized parameters
however it should be pointed out that the absolute value of the moment at tower top
for this DLC case is much smaller than for DLC 1.2.

Compared to DLC 1.2, the importance of tuning to the target damping ratio on
the first mode is highlighted in DLC 7.2. While the errors in DLC 1.2 for the case
without tuning the damping ratio remained largely below 10%, in DLC 7.2 these rise
above 20%. This is because in the idling case the rotor is not providing aerodynamic
damping (which is much higher than the structural damping), and thus the only
source of damping is the structural damping.

Thus, the simplified model with all the tuning measures in place can achieve the
same DELs as the detailed model within ±6%, while having a dispersion between 3%
and 6% depending on the DEL location for DLC 7.2.

4.4 Discussion

The complete exercise of validation of the simplified model for DLCs 1.2 and 7.2
shows that the simplified model, when adequately tuned to the dynamics of a corre-
sponding detailed model, can accurately simulate the DELs at mudline level, tower
bottom, and tower top within about a 2% error for DLC 1.2 and 6% for DLC 7.2. The
higher error for the idling case is expected as the wave loading has a higher influence
on the DELs during idling than in normal operation. The simplified model primarily
modifies the support structure, which mainly affects the generated wave loads and
the response of the wind turbine to wave loading.

Although the simplified model has been tuned to match the dynamics of the first
mode of the detailed model, there responses are not identical. This is because the
behavior of the wind turbine is not only described by first mode dynamics but also the
interaction of the higher modes which have not been specifically tuned. Nevertheless,
it is shown that their effect is relatively minor and high accuracy can be achieved
through tuning the first mode only.

These results show that the simplified model can be used to estimate the damage
equivalent loads in lieu of the detailed model within a tolerance for error of approx-
imately 2-6%. The simplified model achieves this while conserving a small number
of DoFs and eliminating the need for excessive modeling detail. This exercise shows
the potential of the simplified support structure model to be used in a generic load
emulator concept, where only a few parameters need to be changed on the simplified
model to represent many potential site-specific designs.



Chapter 5

Database Generation

To be able to train a machine learning algorithm to predict and emulate fatigue
loads through a supervised learning approach it is necessary to have a robust training
database that covers the solution space desired for the load emulator. As black-box
models, neural networks and other machine learning algorithms are unable to ex-
trapolate beyond the domain of the data they were trained on [21]. This is the core
reason why site-specific load emulators trained on a given offshore site cannot be
generally applied to different sites without domain generalization [13]. Creating a
broad solution space for a single emulator is the central objective of this thesis, and
therefore special care must be applied when creating the training database.

The process of creating the database is divided in two stages. In the first stage,
a variety of simplified models is created based on permutations of the DoFs identi-
fied for the simplified model in chapter 3. In the second stage, the environmental
conditions related to the specific design load cases (representative of DLC 1.2 i.e.
normal production or DLC 7.2 i.e. idling) are created based on a distribution and a
sampling method, and these conditions are assigned to the various simplified mod-
els. The training database consists of nmodels simplified models that capture a range
of geometric and dynamic properties, each with several possible wind-wave climatic
conditions, for a total of n simulations.

In section 5.1 the distributions for the geometric and dynamic degrees of freedom
are defined. Later, in section 5.2 the distributions for the environmental DoFs are
specified. A discussion of the sampling methods used to create the databases is in-
cluded in section 5.3. Finally, the catalog of simplified models generated is described
in section 5.4.

5.1 Geometric and dynamic degrees of freedom

In this section, the process of selecting the ranges and distributions for the geometric
and dynamic degrees of freedom is described. The simplified model was extensively
studied in chapter 3 and the degrees of freedom for this model were identified. As was
detailed in chapter 3, the process of tuning a simplified model to a target combination

43
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of f1, ζ1, and α is an iterative process. When creating dozens of simplified models that
each need to be tuned to different targets, this can represent a sizable computational
cost. The main reason for the computational cost is the interpolation method for
determining the required PPD that achieves a desired α value, which involves several
calls to the frequency tuning algorithm provided by SGRE.

To mitigate the computational cost of this process, it was chosen to treat the PPD
as a DoF rather than the α value. Compared to determining the PPD that corresponds
to the target α value, treating the PPD as the DoF involves only a single call to the
frequency tuning algorithm rather than 8 calls of this function (8 points used for
interpolation). This means that the computational cost is reduced by 87.5%. The
trade off is that there is less control over the resulting α values of the created models.
Careful selection of possible PPDs is required and a final sanity check that the achieved
α value is realistic for the wind turbine is performed.

5.1.1 Ranges and distributions of each degree of freedom

To determine which values are to be used for each DoF for a specific sample, each DoF
is defined by a distribution and its parameters. For all DoFs, the distribution selected
was a uniform distribution, with parameters specifying the range of the DoF. The
ranges were determined using the values of 3 site-specific, detailed models provided
by SGRE. These models are composed by one offshore site at the German North Sea
and one offshore site at the Belgian North Sea. The minimum and maximum values
of the 3 locations are used to define an initial range, and then the range is padded
at both ends to augment the solution space. In the case of the PPD, a range is first
defined using the values of the three reference cases. An additional DoF for the
adjustment of the PPD is then defined (∆zPPD) that covers a range from increasing
the depth by 10 meters to decreasing the depth to 1 meter below the surface level.
This method of using two DoFs to define the PPD is chosen because it preserves a
physical meaning of the “real” PPD of a model and then applies via the ∆zPPD a
possible tuning adjustment to an α value.

Finally, the reference models contain minor differences in the geometry of the
tower (i.e. the diameter and thickness distribution above the interface level). To
address this, the tower geometries of the 3 reference models are used “off the shelf”
through a DoF that specifies which of the 3 geometries to assign to the simplified
model, referred to as itower. With this the set of DoFs are:

• Reference levels: Zmud, Zint, PPD, and ∆zPPD.

• Geometric properties: dwl and itower

• Dynamic properties: f1 and ζ1

The resulting ranges of the DoFs are shown in Figure 5.1, along with a comparison
with the values of the three reference sites. The values are normalized with respect
to the center (mean) of the resulting range. For some DoFs, the two models at the
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Belgian North Sea location share the same value as they are part of the same project.
This is the case for Zint, dwl, and ζ1 (Figure 5.1(b), Figure 5.1(d), and Figure 5.1(f)).
Six of the eight DoFs selected are shown in this figure. The tower index itower is
omitted since this is a discrete variable that can only adopt itower ∈ {1, 2, 3}. The PPD
adjustment ∆ZPPD is also omitted as its range is dependent on the PPD value.
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Figure 5.1: Distribution ranges and reference values for the geometric and dynamic
degrees of freedom.

In all the cases, the reference sites are comfortably within the range. This shows
that the reference sites are well covered in the solution space. Beyond this, the ranges
defined allow for deviations from the values observed in the reference sites. Of all
the DoFs, the frequency f1 (Figure 5.1(e)) was given the widest range relative to the
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reference sites. This was chosen intentionally to cover a very broad range of tower and
foundation stiffness, and therefore increase the robustness of the SM trained on this
data. In practical applications, allowing a wide range of frequencies may allow the
SM to cover for discrepancies between measured and modeled natural frequencies.
The diameter at the water level also stands out (Figure 5.1(d)) as the reference values
show little variation (±5%) compared to the other DoFs. This is largely due to the
standardization of this turbine type, which results very similar exterior diameters for
the tower and the foundation near the water level.

5.1.2 Discussion of the independence assumption

It should be noted that in the process for assigning values to each DoF, the DoFs are
treated as independent variables. This is a strong assumption of the methodology
which warrants highlighting. In reality, the dynamics are a result of the geometric
definitions. This means that the dynamic DoFs are highly coupled to the reference
levels and geometric properties. However, dynamics are also a result of many fac-
tors that are omitted from the simplified model, such as more detailed geometric
definitions and unknown soil properties. By treating the dynamics and the geometry
independently, it is possible to capture the effects of the uncertain factors which are
not explicitly modeled. If a strict relationship between the geometric and dynamic
degrees of freedom had been used, the resulting models would be limited to the as-
sumptions made for soil stiffness and foundation stiffness.

Typically, the dynamic properties are obtained as a consequence of the geometric
definition, which in turn results from an iterative design process for a specific site.
Therefore, the dynamics of each wind turbine are coupled to the specific site con-
ditions. Attempting to account for all the variabilities in dynamics possible due to
differences in site-specific conditions is a more complex process than treating the two
groups independently. More DoFs would be required to describe each model and each
model would need to be constructed specifically for each site, incurring in a higher
computational cost.

Nevertheless, a limitation of this assumption is that some of the sampled combi-
nations of DoFs can be un-physical or unrealistic. For example a hypothetical model
may be assigned to have a deep mudline level and PPD, small diameters dint and dwl,
and at the same time determined to have a high frequency. Such a model may be
physically unrealistic as the specified reference levels and geometric properties sug-
gest a soft model, while the target frequency implies a stiffer model. Additionally, it
is possible that the ranges considered are too broad, meaning computational cost is
expended in models that are not as helpful for training the load emulator to predict
loads for the realistic applications. Improving on the independence assumption is a
topic for future work, as will be discussed in chapter 8.



5.2. ENVIRONMENTAL DEGREES OF FREEDOM 47

5.1.3 Discussion on the generality of the database

It is noted that although 3 reference sites are used to define the ranges of the DoFs,
the resulting domain is not limited in any way to application on only those 3 sites.
The reference sites are only used to provide insights on the degree of variability that
is present in the DoFs for wind turbines of the same class. These ranges are then used
to define a domain which is expected to encompass most (if not all) wind turbines of
this type. A solution space generated by sampling this domain is as applicable to any
site within the domain (i.e. within the ranges of each DoF) as it is for the 3 reference
sites. In this way, the generic nature of the solution space is ensured.

With the distribution and ranges of each of the geometric and dynamic degrees of
freedom defined, generic, simplified models can be created by sampling these distri-
butions and building the models. In section 5.3, the sampling methods are discussed
in detail.

5.2 Environmental degrees of freedom

After the simplified models are created, the environmental conditions are to be de-
fined. This is done through the environmental degrees of freedom which encode
the wind and wave loading conditions of the DLC, and assigns one of the m created
models to the analysis case. The chosen degrees of freedom are:

• Wind parameters: Average wind speed (ū), turbulence intensity (TI), wind
direction (θwind), and seed number.

• Wave parameters: Wave direction (θwave), significant wave height (Hs), peak
spectral wave period (Tp), and seed number.

• Model: Structural model index (imodel).

The air density and wind shear exponent were set to constant values across all
simulations as they are not expected to play a large role in the support structure loads,
which are the main focus of the thesis. The effect of these two parameters is expected
to be more apparent for blade loads [18]. In future applications and for deployment
of a load emulator tool based on this methodology, it may be convenient to include
them as DoFs and their values derived from measurement data across representative
sites. This exercise is however beyond the scope of the thesis.

The definition of the distributions and their parameters for the environmental
degrees of freedom requires special attention as they will shape the resulting load
emulator. It is desirable that the distributions cover a broad range of environmen-
tal conditions, such that the solution space derived from the training database is
generic and robust. On top of this, combinations of environmental conditions should
be weighed according to their likelihood, so that the machine learning algorithm is
incentivized to minimize the error of the more likely wind-wave conditions. The way
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to accomplish this is to define suitable probability distributions to each DoF without
loss of generality across sites.

The mean wind speed ū is defined using a Weibull distribution representative of
the wind climate in the North Sea. The shape parameter of this distribution is 2.3 and
the scale parameter is 11.5. These distribution parameters were were obtained from
data provided by SGRE. The distribution is shown in Figure 5.2.
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Figure 5.2: Weibull distribution representative of the North Sea.

For the turbulence intensity, many approaches are possible to define its values
depending on the desired application of the load emulator. For the sake of the thesis
that shows the potential of the methodology, the turbulence intensity is chosen as
the ambient turbulence of IEC Class C [33]. Therefore, the turbulence intensity is
determined by the wind speed as follows:

TI =
0.12 (0.75ū+ 5.6)

ū
(5.1)

Future potential use of this methodology can adopt a more complex definition of the
turbulence intensity that allows the consideration of wake turbulence. For example, a
a lower and upper envelope can be defined for the turbulence intensity according to
the wind speed, and the TI can be obtained by sampling uniformly between the two
envelopes.

Along with the turbulence intensity, a seed number for the turbulence model is
assigned using a discrete uniform distribution, assigning a seed number between 1
and 45. Looping through the seed numbers helps guarantee that the DoFs and the
individual samples are not auto-correlated.

Finally, the wind direction is defined by a uniform distribution from 0 to 360
degrees to conserve the generality of the data base.

For defining the wave parameters, some dependence on the wind parameters is
required. This is to reflect the coupled nature of the wind-wave climate. For the
wave direction, this was defined in terms of the wind direction and a wind wave
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misalignment term of the form θwave = θwind + θmisalign. The misalignment term
θmisalign is modeled by a uniform distribution between -90 and 90 degrees. This
ensures that unrealistic or highly unlikely misalginment cases are not included in the
database.

The wave statistics Hs and Tp are known to be highly site-specific, as their values
can vary greatly even within the same region (e.g. the North Sea). Normally measure-
ment data is required to define the wave climate at a particular site, however this is
unavailable for the database generation as the database is composed of hypothetical
sites. To resolve this, wind-wave correlation equations and envelopes are proposed
based on the climate conditions of three sites in the North Sea. This wind-wave cli-
mate data was provided by SGRE. An upper and lower bound is defined for each as a
function of the wind speed such that the normal sea states of the three sites lie inside
the region enclosed by the envelopes. The significant wave height is approximately
quadratic with the wind speed, while the peak wave period is approximately linear.
A minimum wave period is assigned to guarantee convergence of the SGRE in-house
wave generation engine without loss of generality. The envelopes defined capture
more than 99% of the sea states of the 3 sites. This is illustrated in Figure 5.3. Note
that the wave statistics of the three sites correspond to whole number wind speeds
but they are plotted slightly off-center to make the data points visible.
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Figure 5.3: Wind-wave correlation envelopes and comparison with wind-wave climate
at three sites in the North Sea.

To sample an Hs and Tp value, the wind speed is used to determine the maximum
and minimum values for each according to the envelope and a uniform distribution is
used. Additionally, each sample is assigned looping seed numbers between 1 and 99
to be used in the wave generation engine.

Finally, for each of the n climate conditions created during this process, it is nec-
essary to assign it to one of the m previously created models. For this, a discrete
uniform distribution is used with parameters {1,m}.

This section defined a total of 9 DoFs related to the environmental conditions
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and their distribution. Although the climate conditions are dictated by site-specific
parameters, it is expected that the broad definition used for these DoFs will yield a
training database that includes a wide variety of scenarios and possible sites.

5.3 Sampling methods

In the previous sections, the distributions for the geometric, dynamic, and environ-
mental DoFs were defined. However, there is still the question of how to sample
points within the distributions. Because of the high number of DoFs, systematically
sampling every combination of the DoFs is impractical and inefficient, as the cost of
this method scales with n

ndof

∆ , with n∆ representing the number of values used to
discretize each DoF and ndof the number of degrees of freedom. For example us-
ing 3 values for each of the geometric/dynamic degrees of freedom would require
38 = 6561 simplified models.

An alternative approach is to utilize random sampling in a Monte Carlo (MC)
approach. This has been shown to outperform grid sampling in terms of cost and
efficiency. In this method, a total number of samples is selected n, and each DoF for a
specific sample is determined stochastically by sampling the probability distribution.

Fundamentally, the MC method is an integration method. In the context of this
application, the function that is being integrated is the loss function of the machine
learning model. The true loss of the model is

I =

∫
Ω
L(xdof )dxdof (5.2)

where L is the loss function and xdof is a vector xdof ∈ Rndof that encodes the
values of the DoFs that describe each simulation. The domain Ω is ndof -dimensional,
with ndof being the number of DoFs. The MC method approximates the true loss by
sampling the domain n times, in the form

I ≈ 1

n

n∑
i=1

L
(
x′

dof ,i

)
(5.3)

where x′
dof ,i is a random sample of the domain Ω. As n increases, the MC method

converges to the true loss value. The error of the estimation scales with 1/
√
n [35].

The advantage of the MC method is that it is easy to implement and provides
superior performance when compared to a regular grid. However, because of the
stochastic nature of the sampling method, it is not guaranteed that the domain will be
sampled evenly across all sub-regions. Therefore not all features of the loss function
may be captured and some combinations of DoFs may not be represented at all. For
machine learning applications the resulting model may be forced to extrapolate to
cover the unwanted gaps in the domain, leading to a decrease in performance.

The problem of sampling across the domain “evenly” is known in mathematics
as a problem of discrepancy. A sequence of numbers (e.g. a sample) is said to have
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high discrepancy if there are regions in the domain with high density of samples and
regions with low density of samples. The lowest possible discrepancy is achieved by
using an equidistributed regular grid. Random sampling is known to have relatively
high discrepancy. Low-discrepancy sequences are quasi-random sequences generated
deterministically that are designed to have a low discrepancy and therefore guarantee
a more even sampling of the domain. It is possible to use these sequences in lieu of
a random sampler in a MC method. This approach is known as a quasi-Monte Carlo
(quasi-MC) method . For quasi-MC, the integral is approximated in the same way as
in the MC method (Equation 5.3) with the exception that the samples xi are obtained
from a low discrepancy sequence.

By using a low discrepancy sequence, the error of the quasi-MC method is approx-
imately proportional to 1/n [35]. This is a faster convergence rate than the traditional
MC approach and means that for a given error tolerance in the estimation, quasi-MC
will require less sample points. This has the potential of reducing the computational
cost needed for generating the samples and may improve the accuracy of the resulting
model during testing, as there will be smaller gaps in the domain where the emulator
needs to generalize.

Although there are several low discrepancy sequences available, the Sobol se-
quence was preferred for this application because of its property that the sample size
can be increased if needed without requiring the generation of a completely new
batch of samples; the additional samples are appended to the existing ones. In other
words, the first n1 samples of the Sobol sequence with n2 samples are identical to
the Sobol sequence of n1 samples. This is a notable advantage as it is unknown a
priori how many samples are needed for the training database. Therefore if it is seen
that more samples are required to improve the performance of the model, the Sobol
sequence allows these to be easily added to the existing set. Other low discrepancy
sequences such as the Halton sequence do not share this property and therefore in-
creasing the sample size would represent a large computational cost.

For the study, two training databases will be generated. One database will use
a traditional MC method to sample all the DoFs (geometric, dynamic, and environ-
mental), while the other database will use a quasi-MC to sample the DoFs. The two
databases will be used to train separate load emulators and the performance of the
two will be compared in terms of the trade-offs of database size, computational cost,
training time, and testing accuracy.

5.4 Database of simplified models

Having defined the distributions for the geometric and dynamic DoFs in section 5.1
and the two sampling methods to be used in section 5.3, the m simplified models can
be generated. It is noted that the process of tuning the simplified models to the target
values is not always successful. The reasons why some models are not successfully
tuned to the targeted dynamics are discussed briefly in subsection 5.4.1. Then, the
samples obtained by the two sampling methods are compared in subsection 5.4.2.
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5.4.1 Discussion of the non-convergence of the dynamic tuning process

For both sampling methods, a sample size of nmodels = 100 was used for generating
the database of simplified models. In the case of MC sampling, 17 of the models
generated failed to tune correctly to the target frequency and damping combination.
For the quasi-MC sample, there were 18 such cases. Initially it was suspected that
the reason some models failed to converge was linked to high discrepancies between
the target and initial frequency, however no clear trend was found between the two.
Thorough investigation on the failed cases revealed that the causes of failed models
fall into two categories, (1) instabilities in the convergence algorithm for frequency
and damping tuning leading to unresolved exceptions in the tool provided by SGRE
and (2) problems with achieving convergence for the target damping ratio in the
torsional vibration mode. It was found that for the quasi-MC method 13 models fall
into the first category and the remaining 5 into the second.

While it is difficult to trace the cause of the instability produced in some of the
models it is likely that attempting to tune models that are un-physical or on the fringe
of being physically possible plays a hidden role. The instability arises when nega-
tive values are proposed by the internal solver for the stiffness proportional damping
parameters. This could potentially be resolved by modifying the algorithm used to
select the parameters to make it more robust and improve its stability. However, this
lies outside of the scope of the thesis.

Similarly, the failure to achieve convergence for the torsional damping could be
linked to the robustness of the algorithm. The models are tuned to the target damp-
ing ratio for the first mode in the FA and side-side directions, and to a fixed ratio in
the torsional direction. Models falling into the second group achieved convergence in
frequency and damping ratio in the two translational directions but failed to converge
in the torsional direction. This may be linked to a wrong identification of the torsional
mode during the eigenvalue analysis of the iteration or to a scenario where the value
of the attempted torsional stiffness proportional damping parameter falls below the
minimum amount that this parameter can be updated by, as dictated by the SGRE
algorithm. In the latter case, the stiffness proportional damping in the torsional di-
rection cannot be decreased further and leads to non-convergence. Modifying this
algorithm to resolve these issues fell outside the scope of the thesis and therefore was
not attempted. Nevertheless, the database generation process is continued only using
the models that were tuned successfully to the target dynamics.

5.4.2 Comparison between sampling methods

Comparing the resulting samples from the database is difficult as the samples cannot
be viewed in the hyperspace that they belong to. Projections of the hyperspace in
two dimensions can be helpful to observe the behavior of two DoFs at a time. For
example, the mudline level can be plotted against the target frequency, as shown
in Figure 5.4. Visual inspection of this plot highlights the advantages of the low
discrepancy sequence. The samples obtained from a pure MC method have regions
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of high density of sampled points and regions of low density of points, whereas the
quasi-MC samples have an approximately uniform density.
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Figure 5.4: Comparison of Monte Carlo and quasi-Monte Carlo sampling of frequency
and mudline level.

In Figure 5.5, similar trends are observed across other DoFs, such as the pile tip
level PPD∗ = PPD +∆ZPPD.
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Figure 5.5: Comparison of Monte Carlo and quasi-Monte Carlo sampling of frequency
and pile tip level.

While the qualitative comparison is helpful in understanding the difference be-
tween the two methods, a quantitative comparison is also desirable to measure the
effect the differences may have on the sample. To do this, an additional 105 samples
are taken randomly within the ranges of the DoFs and the minimum Euclidean dis-
tance (normalized) to one of the obtained samples is determined. This is effectively
the distance to the nearest neighbor. Their average across the 105 gives an indication
of the size of the gaps in hyperspace within the domain. This exercise is performed
for both databases, for all the original samples and for only the samples which were
successfully tuned.
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Table 5.1: Normalized average Euclidean distance to the Nearest Neighbor in the sam-
pled database.

All Successful

Monte Carlo 0.3840 0.3973
Quasi-Monte Carlo 0.3674 0.3827

To better understand the behavior of the nearest neighbor distance, a similar ex-
ercise is performed on the sets with the full samples in which only subsets of the
database are used. In this way, the average nearest neighbor distance is determined
for the hypothetical case of using m ∈ {10, 20, ..., 100} simplified models. The results
are compared in Figure 5.6.
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Figure 5.6: Dependence of the average nearest neighbor distance on the number of
samples used for the database of simplified models.

It can be seen that the average distance to the nearest neighbor for the quasi-
MC method is consistently lower than that of the MC. Moreover, the distance to the
nearest neighbor is shown to follow a power law, whereby the average distance is
proportional to n−0.2

models, with nmodels representing the number of structural models
generated. Here it is also shown that even though some models are discarded during
the process due to the non-convergence of the algorithm for frequency tuning, the
effect of the missing models is minimal when more than 40 models are sampled.
Finally, the nearest neighbor distance achieved by the MC method when using 100
samples (0.38) is equivalent to that of the quasi-MC when using 80 samples. This
result shows that the quasi-MC can lead to a reduction in computational cost in the
order of 20%. This illustrates the advantage of using a low-discrepancy, quasi-MC
method over a MC method for the generation of the simplified models to ensure that
the database of simplified models cover the domain more evenly.



Chapter 6

Load Emulation Using Artificial
Neural Networks

Having constructed a database of simulation data, a machine learning algorithm can
now be trained to predict fatigue loads at selected locations. The process of select-
ing the input channels, features, and encoding strategies is outlined in section 6.1.
Successively, section 6.2 explains the process in which the architecture and hyper-
parameters of the NN are selected. In section 6.3, the selected hyperparameters are
used to train the load emulators and their performance is evaluated by testing on data
from simulations of detailed structural models.

6.1 Input channels and features

The selection of inputs to the NN is a vital step towards building an accurate load
emulator. The predictive power of the NN is intrinsically tied to the inputs that are
made available to it. In other words, the input variables provided to the model should
be able to capture the variance of the output variables in order for the NN to find an
accurate model. First, the basic features selected are described. Then, a series of
engineered features are derived from the basic features.

6.1.1 Basic features

Because simulation data is used for the training of the model, many inputs channels
are available. However the selection of input variables should be done thoughtfully,
as not all of these channels can be obtained from real measurement data. Since
the objective of this work is to show the potential of this methodology for practical
applications, it is preferred to only consider load channels and features that could be
available from measurement data. The chosen inputs consist of the standard SCADA
measurements, accelerometer data at the nacelle, geometric and dynamic properties,
and wave statistics. These are summarized in Table 6.1.

55
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Table 6.1: Input variables and features selected for fatigue load emulation.

Channel or variable Type Features

Pel SCADA x̄, σ(x), min(x), max(x)
θpitch SCADA x̄, σ(x), min(x), max(x)
Ω SCADA x̄, σ(x), min(x), max(x)
θyaw,bearing SCADA sin(x), cos(x)
anacelle,x Accelerometer x̄, σ(x), min(x), max(x)
anacelle,y Accelerometer x̄, σ(x), min(x), max(x)
f1 Dynamic property x
ζ1 Dynamic property x
dwl Geometric property x
Zmud Geometric property x
Zint Geometric property x
α Geometric property x
θwave Wave statistics sin(x), cos(x)
Hs Wave statistics x
Tp Wave statistics x

The yaw bearing is encoded in two inputs, as the sine and cosine of the angle. This
is chosen because the transformation through trigonometric functions encode more
physical meaning in the mathematical operations within the neural connections. This
improves the performance of the model for two reasons. First, the NN is not forced to
model internally the non-linearities of the trigonometric function. Second, decoupling
in sine and cosine eliminates the discontinuity in the angle around 360 or 0 degrees,
and directly encodes the symmetries present. This encoding strategy allows the model
to learn faster and improves it accuracy of the model.

Finally, wave properties are included at this stage as loading conditions at the
mudline and interface level are expected to have a high dependence on wave loads
and the wave environment is not directly reflected in the other inputs. The effect of
wave loads is only indirectly visible in the nacelle acceleration, which combines wind
and wave conditions. These wave properties are not part of the standard measure-
ments of wind turbines, but are included at this stage nonetheless, since they can be
practically measured with a wave buoy or a wave radar. The chosen input variables
and features consist of a total of 32 basic inputs to the NN.

6.1.2 Engineered features

In addition to these basic inputs, additional inputs are derived from these 32 in-
puts through a process of feature engineering. The engineered features are a result
of mathematical operations between the basic inputs. Knowledge of the underlying
physics involved in the fatigue loading of wind turbines is helpful in guiding the pro-
cess with which the engineered features are created. When done successfully, the en-
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gineered features can help reduce the depth (number of layers) of a NN, the training
time, and can even help improve the accuracy of the NN. All this without increasing
the amount of input data collected.

The first set of engineered features originate from to the relationship between the
nacelle acceleration and the coordinate systems. The nacelle acceleration is recorded
in a local frame of reference, with the axes aligned with the wind direction. However,
tower and foundation loads are in a global coordinate system. To aid the NN in
relating the direction of the acceleration with respect to the global coordinate system,
the following features are included:

EF 1 = σ (anacelle,x) sin θyaw,bearing (6.1)

EF 2 = σ (anacelle,x) cos θyaw,bearing (6.2)

EF 3 = σ (anacelle,y) sin θyaw,bearing (6.3)

EF 4 = σ (anacelle,y) cos θyaw,bearing (6.4)

Additionally, the ranges of nacelle accelerations are included as engineered features:

EF 5 = max anacelle,x −min anacelle,x (6.5)

EF 6 = max anacelle,y −min anacelle,y (6.6)

The next group of engineered features target the relationship between the wave di-
rection and the global reference system. Projections of various parameters related to
wave intensity are considered as engineered features. These parameters are Hs, Tp,
and d2wl. The engineered features then include:

EF 7 = Hs sin θwave (6.7)

EF 8 = Hs cos θwave (6.8)

EF 9 = Tp sin θwave (6.9)

EF 10 = Tp cos θwave (6.10)

EF 11 = d2wl sin θwave (6.11)

EF 12 = d2wl cos θwave (6.12)



58 6. LOAD EMULATION USING ARTIFICIAL NEURAL NETWORKS

After this, a set of engineered features is constructed using powers of the fre-
quency and diameter. These powers have been shown to appear in simplified calcu-
lations of fatigue loads [28].

EF 13 = f0.5
1 (6.13)

EF 14 = f2
1 (6.14)

EF 15 = f3
1 (6.15)

EF 16 = d2wl (6.16)

EF 17 = d3wl (6.17)

Finally, knowledge of the response of a structure when subjected to periodic load-
ing is useful for defining the last batch of engineered features. The periodic loading
and the response (in the form of displacements) can be related via a transfer func-
tion. A structure with natural frequency f1, damping ζ, and stiffness K1 has a transfer
function of the first mode of the form [28]:

H1(f) =
1

1−
(

f
f1

)2
+ i2ζ f

f1

1

K1
(6.18)

The absolute value of this transfer function of the first mode is:

H1(f) =
1√(

1−
(

f
f1

)2)2

+ 4ζ2
(

f
f1

)2 1

K1
(6.19)

Using this knowledge, a set of engineered features relating to the absolute value of
the transfer function for different excitation frequencies is defined. Namely, the peak
wave frequency 1/Tp and the rotor frequencies of 1P and 3P. In all these features, the
total damping ζ is approximated as the aerodynamic damping for normal operation
and the structural damping for idling.

EF 18 =

(1− (1/Tp

f1

)2
)2

+ 4ζ2
(
1/Tp

f1

)2
−1/2

(6.20)

EF 19 =

(1− ( Ω̄/60
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)2
)2
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(6.21)

EF 20 =

(1− (minΩ/60

f1

)2
)2

+ 4ζ2
(
minΩ/60

f1

)2
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(6.22)
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EF 21 =
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EF 22 =
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EF 23 =
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EF 24 =
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As such, a total of 24 engineered features are appended to the list of 32 basic
features for a total of 56 inputs.

A final step in the feature engineering is the normalization or transformation of
the input and output variables. To ensure that all inputs are approximately in the
same scale, the z-score of the input variable is used. Even though the inputs may
not be normally distributed, the z-score is still effective in normalizing the scale of all
inputs. For the outputs, skewed distributions of the target DEL loads motivated the
use of transformations for some load channels (mudline, interface, and tower top).
The applied transformation was taking the logarithm of the 10-minute DEL load.
Doing so transforms the target variable to a symmetric, centered distribution which
facilitates the training of the NN. This is possible because tower and foundation loads
are approximately Weibull distributed. Independent of whether the transformation is
applied, scaling of the outputs is not necessary as the activation function of the last
layer is a linear activation.

zi =
xi − x̄

σ
(6.27)

6.2 Selection of architecture and hyperparameters

To maximize the performance of the SM, it was chosen to create separate models for
each of loading hotspot. This increases the overall accuracy of the load predictions
as the learning algorithm can minimize the error across each output channel inde-
pendently with no trade-offs between output channels. In a one-for-all architecture,
the learning algorithm must balance improving the accuracy of, for example, mud-
line level loads at the expense of decreasing accuracy at other locations. In total, 6
load emulators are created: (1) mudline level moment in x and y, (2) interface level
moment in x and y, (3) tower top moment in x and y, (4) flapwise moment at the
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root of the blade, (5) edge-wise moment at the root of the blade, and (6) torsion at
the root of the blade. In all cases, the target channel is the DEL over a 10-minute
simulation period. Of these 6, primary focus is given to the foundation and tower
loads as the modeling assumptions to simplify the support structure will mainly affect
these load channels. The blade root load emulators are developed to serve as a point
of comparison as it is expected that these load channels will be largely unaffected by
the modeling assumptions made during the modeling process.

For each, a suitable NN architecture must be selected. As described in section 6.1,
the input layer consists of 56 units. The output layer, depending on the load channel,
consists of 1 or 2 units. In all cases, hidden layers are implemented using ReLU
activation functions, and linear activation is used for the output layer. To guide the
optimization algorithm, the Mean Absolute Percentage Error (MAPE) loss function is
used with an Adam optimization algorithm.

When training a NN, there are many possible choices for the hyperparameters that
define the model. These choices include selecting a NN architecture and selecting a
learning rate and mini-batch size. It is impossible to know a priori which parameters
will yield the best performance. To determine this, a cross-validation set is used. In
this case, 80% of the available data is used for training while 20% of the data is set
aside for cross-validation. However, conducting an exhaustive grid search for the op-
timal hyperparameters is computationally expensive. To alleviate the computational
cost, random sampling is used instead.

While there is no definite rules for selecting a NN architecture, a common rule of
thumb is to employ somewhere between ninputs/2 and 2ninputs units in each hidden
layer. In this exercise, hidden units are considered in the range of 30 to 60 per layer.
This is on the lower end of the range as it is expected that the engineered features
will provide sufficient information to the NN such that less hidden units are required.
For the depth of the NN, NNs with 2 to 5 hidden layers are considered. Both the
number of hidden layers (depth) and number of hidden units per layer are sampled
using discreet, uniform distributions.

On the other hand, the learning rate αNN and the mini-batch size are sampled
using logarithmic distributions to cover several orders of magnitude. For αNN , the
value is defined as 10x1 with x1 sampled uniformly between -4 and -1. For the mini-
batch size a similar technique is employed, however the mini-batch is constrained to
exact powers of 2. This choice is to take full advantage of the numerical methods
inherent to the TensorFlow library, which are more efficient when using mini-batch
sizes which are multiples of 2. Therefore, the mini-batch size is defined as 2x2 , where
x2 is sampled from a discreet uniform distribution between 6 and 10.

For each load emulator, 60 random combinations of these parameters are chosen
and 60 models are trained based on the same training data for 400 epochs. The
models are ranked in terms of their performance on the cross-validation set and the
best performing parameters are chosen for each load emulator.

At this stage, only the results for the load emulators created using a Monte-Carlo
sampling method are presented. In chapter 7 the differences between load emulators
created using the quasi-random sampling strategies and the Monte-Carlo sampling
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will be compared.

Table 6.2: Neural network architectures and hyperparameters selected for each load
emulator.

Load emulator Nhidden nunits Parameters αNN Batch size

Mmud,X ,Mmud,Y 4 53 11715 2.44× 10−3 128
Mint,X ,Mint,Y 4 46 9202 2.39× 10−3 64
Mtowertop,X ,Mtowertop,Y 3 42 6092 1.89× 10−3 64
Mb,flap 4 54 12043 5.37× 10−2 64
Mb,edge 4 48 9841 3.22× 10−2 64
Mb,tors 3 39 5383 4.24× 10−2 128

A summary of the best performing hyperparameters for each load emulator is
presented in Table 6.2. In general, the complexity as measured by the number of
parameters is comparable across the different load channels. The most complex load
emulators are the mudline and flapwise load emulators, while the tower-top load
emulator and the torsional blade load emulator have the least trainable parameters.
It is seen that the optimal batch size for the load emulators is around 64 and 128.
It is also noted that the order of magnitude of the learning rate αNN is also similar
across the load emulators. As a reminder, it is noted that blade load emulators are
trained on the DEL load itself, while the other three load emulators are trained on the
logarithm of the DEL load. This explains the differences in αNN between these two
groups.

Because a training dataset of approximately 22000 samples is used, there is some
risk of overfitting the most complex NNs. In most cases, there is only 2 or 3 samples
per trainable parameter. This risk is managed by analyzing the convergence of train-
ing and cross-validation losses. Later analysis in chapter 7 will determine how much
training data is actually required.

6.3 Testing on detailed models

Once the hyperparameters are chosen using the mentioned process, the resulting
load emulator is then used on the testing data set. Testing is performed on a dataset
separate from the training and cross-validation to detect possible overfitting of the
hyperparameters to the data. This data set was obtained by performing simulations
on 2 site-specific, detailed models provided by SGRE representing real sites in the
North Sea. Approximately 9000 simulations between the two models are used to
build the test set. The results for each load emulator when tested on this dataset are
presented in this section.
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6.3.1 Mudline load emulator

The hyperparameters selected in the previous subsection are used for a load emulator
for predicting mudline-level bending DELs. In Figure 6.1, the convergence of the
loss function (MAPE) for the training and cross-validation data is shown. Because
the target values are the natural logarithm of the load, the value of the loss function
is relatively low. Since two output units are present in this load emulator, the loss
function is the average of both load channels (X and Y axes). Some noise is present
in the cross-validation loss which may indicate that the size of the cross-validation
set is slightly small. Future implementations of the methodology may see increased
reliability in the cross-validation set by using a larger cross-validation set.
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Figure 6.1: Convergence of loss function of training and cross-validation sets for the
mudline load emulator.

The results for each output unit are also analyzed separately in Figure 6.2 and
Figure 6.3 for the moments about the X-axis and Y -axis respectively. In Figure 6.2(a)
the predicted loads are compared directly with the known test loads. It is seen that
the cloud of points closely follows the line DELtest = DELpredict, which indicates
a good performance of the load emulator. The quantitative metrics support this, as
the coefficient of determination was found to be 0.9606 and the MAPE for this load
channel was 7.95%. One downside of the data representation of the scatter plot in
Figure 6.2(a) is that the large number of scatter points makes it difficult to see the
density of the data points. For this reason, the distribution of known test values is
included in Figure 6.2(c), and binned box-plots are presented in Figure 6.2(b).

In Figure 6.2(c) it is seen that the mudline loads follow a skewed distribution in
which the majority of the values are concentrated around DELtest/DELtest,avg = 1.
Because of this, it is reasonable to expect that the algorithm will perform best at
this load level and exhibit higher percentage errors for other load levels since they
are less common. This is visible in the box-plots of Figure 6.2(b). The boxes are
narrowest and closer to a percentage error of 0% for loads between 0.5 and 1.5
times the average load. It is also seen that very low DELs (less than 50% of the
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mean DEL) have higher variations in the tails of the box plots. This is due to the
nature of MAPE being a relative performance metric: small absolute errors become
higher relative errors when the load is smaller. A few outliers are present in the fitted
data, as some predictions overestimate the loads by more than 20% (shown in red
crosses). However, Figure 6.2(d) shows that these represent a very small fraction of
the test data. The percentage errors are shown to follow an approximately Gaussian
distribution, with a mean of -6.63% and a standard deviation of 6.76%. Additionally,
the RMSE for this load channel is 9.74%. The percentage error of the total DEL for
this location is -5.91%.
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Figure 6.2: Performance of the load emulator for mudline level bending loads (X-axis)
on the test data.
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The results for the mudline level bending load about the Y -axis are very similar.
This is expected as the full 360 degrees were considered for the wind and wave di-
rections. Therefore, the distributions of inputs and outputs are analogous. This is
confirmed by comparing the target distributions in Figure 6.2(c) and Figure 6.3(c).
The behavior of the load emulator is very similar as for the X-axis, as the metrics of
R2 and MAPE are found to be very similar to those of the X-axis load (Figure 6.3(a)).
A similar analysis of Figure 6.3(b) shows that the NN under-predicts the DEL by about
4% throughout the range of DELs. The error in the Y -axis load follows a Gaussian
distribution. The mean of the Gaussian distribution is -4.41% and the standard devi-
ation is 7.59%. The RMSE for this channel is 9.15% and the error in the total DEL is
-3.86%.
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Figure 6.3: Performance of the load emulator for mudline level bending loads (Y -axis)
on the test data.
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6.3.2 Interface load emulator

In this section, the optimal hyperparameters for the interface load emulator were
used to train a SM, which was then evaluated on the test data set. It is shown in
Figure 6.4 that the cross-validation loss is approximately converged after 400 epochs.
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Figure 6.4: Convergence of loss function of training and cross-validation sets for the
interface load emulator.

The results for emulating the interface bending load about the X-axis are shown
in Figure 6.5. Figure 6.5(a) shows that the predicted loads closely match the known
loads from the test data set. Quantitatively, the coefficient of determination is 0.9670
and the MAPE is 6.70%. As was the case for mudline loads, the distribution of the
test DELs follow a skewed distribution with the majority of the data between 0.2 and
1.5 times the mean of the test DELs (Figure 6.5(c)). The box-plots in Figure 6.5(b)
show that the error is kept around 0% throughout most of the range of DELs. The
exception is for low DELs, the NN tends to overestimate these loads by around 20-
30%. In Figure 6.5(d) the error is shown to follow a Gaussian distribution with a
mean of -0.90% and a standard deviation of 7.99%. The RMSE for this load channel
is 8.46% and the total DEL is estimated with an error of -0.74%.
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Figure 6.5: Performance of the load emulator for interface level bending loads (X-
axis) on the test data.

Similarly, Figure 6.6(a) shows that the metrics of the load emulator for the bend-
ing loads about the Y -axis are similar to those of the X-axis. The reason for this is
the same as was described when discussing the mudline loads: the input and output
distributions for the two loads are essentially identical given that all wind directions
and wave directions are considered with equal probability and the loads are emulated
in a global coordinate system. Because of this, the distribution of the test data (Fig-
ure 6.6(c)) is very similar to that of load about the X-axis. In Figure 6.6(b) the NN is
shown to maintain low errors across the entire range of DELs, with a slight tendency
to under-predict the DELs. The distribution of the error shown in Figure 6.6(d) is
approximately Gaussian with a mean of 3.65% and a standard deviation of 8.30%.
The RMSE is 9.46% and the total DEL is estimate within a margin of 3.46%. Com-
pared to the X-axis load emulator, the Y − axis load emulator presents slightly more
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dispersion and bias.
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Figure 6.6: Performance of the load emulator for interface level bending loads (Y -
axis) on the test data.

6.3.3 Tower-top load emulator

The load emulator for tower-top loads is used on the test data in order to assess its
accuracy. The convergence history of the training process is shown in Figure 6.7. In
this figure, the tower-top DEL emulator is shown to reach approximate convergence
after 400 epochs. The training and cross-validation losses are very similar, suggesting
that overfitting of the data was successfully avoided.
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Figure 6.7: Convergence of loss function of training and cross-validation sets for the
tower-top load emulator.

The tower-top bending load about the X-axis is analyzed in Figure 6.8. From Fig-
ure 6.8(a) it is seen that the predicted loads closely match the test loads, achieving
an R2 of 0.9859 and a MAPE of 5.10%. Like the load emulators for the previous
hotspots, the error is approximately Gaussian (Figure 6.8(d)), with a mean of -0.22%
and a standard deviation of 6.16%. These metrics indicate that the accuracy of this
load emulator is slightly better than the accuracy of the load emulators for mudline
and interface level loads. The test data is again shown to have a skewed distribu-
tion, with a mode just below the mean value (Figure 6.8(c)). The load emulator is
shown to have a good performance across the range of test DELs considered, with a
slight tendency to overestimate lower loads and underestimate the higher loads (Fig-
ure 6.8(b)). As was the case in the mudline and interface level load emulators, the
load about the Y -axis is predicted to a very similar accuracy as the load about the
X-axis (see Figure 6.9). The RMSEs and total DEL errors obtained for this hotstpot
were 6.54% and -2.49% for the loads about the X-axis and 8.99% and -4.51% for the
loads about the Y -axis, respectively.
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Figure 6.8: Performance of the load emulator for tower top bending loads (X-axis) on
the test data.
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Figure 6.9: Performance of the load emulator for tower top bending loads (Y -axis) on
the test data.

6.3.4 Blade root load emulator

Finally, the results of the blade-root load emulators are shown in this section. The
blade root loads were emulated using three separate NNs, therefore three different
training loss convergence plots are presented in Figure 6.10. In all cases, the loss
function is approximately converged after 400 epochs. The training loss and cross-
validation loss are very similar to each other, indicating low variance in the trained
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model.
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Figure 6.10: Convergence of loss function of training and cross-validation sets for the
blade-root load emulators.

The emulation of the flapwise moment at the blade-root is evaluated in Fig-
ure 6.11. It is seen that the loads are predicted with high accuracy, achieving a
MAPE of 4.39% and an R2 of 0.9766 (Figure 6.11(a)). The distribution of this load
channel is different to that of the previous loads analyzed. The distribution shows a
strong peak around the mean value and is approximately symmetric around this value
(Figure 6.11(c)). In Figure 6.11(d), the prediction error is approximately Gaussian,
with a mean value of -1.02% and a standard deviation of 5.19%. The box-plots in
Figure 6.11(b) show that the error is distributed very similarly independent of the
intensity of the load that is to be emulated, with a slight tendency to under-estimate
very high loads. The RMSE for this channel is 5.33% while the error in the total DEL
load is -2.73%.
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Figure 6.11: Performance of the load emulator for blade root bending loads (flapwise)
on the test data.

A similar analysis is shown in Figure 6.12 for the edgewise load. It is highlighted
that the distribution of the DELs of this location is much narrower than the previ-
ous locations, with the majority of the loads being within 10% of the average test
DEL (Figure 6.12(c). As such, the performance of the model as measured by the
MAPE is extremely good; the load is estimated on average within a 1.03% error (Fig-
ure 6.12(a). However, the performance as measured by the R2 is 0.9581, which is
lower than the other load emulators. The reason for this is that the narrow distribu-
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tion of target values causes the load emulator to estimate close to the mean value and
this is not punished severely by the training algorithm as the MAPE is kept low. The
error for this load is approximately Gaussian with an average of 0.07% and a standard
deviation of 1.26% (Figure 6.12(d)). There is a slight tendency to over-estimate lower
loads and underestimate the higher loads, as shown in Figure 6.12(b). The RMSE for
the edgewise moment at the blade root is 1.33% and the total DEL is estimated with
an error of -0.09%.

0.8 0.9 1 1.1 1.2

DEL
test

 / DEL
test,avg

, [-]

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

D
E

L
p
re

d
ic

te
d
 /
 D

E
L

te
s
t,
a

v
g
, 
[-

] R
2
 = 0.9581

MAPE = 1.03%

Test data

DEL
test

 = DEL
predict

(a) Predicted vs test DELs

0.85 0.9 0.95 1 1.05 1.1 1.15

DEL
test

 / DEL
test,avg

, [-]

-10

-5

0

5

10

P
e

rc
e

n
ta

g
e

 e
rr

o
r,

 [
%

]

(b) Binned percent error distribution of
DEL prediction

(c) Distribution of test DELs (d) Total percent error distribution of
DEL prediction

Figure 6.12: Performance of the load emulator for blade root bending loads (edgewise)
on the test data.
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Finally, the torsional moment at the blade root is analyzed in Figure 6.13. As in
previous load emulators, the accuracy is shown to be high, with a MAPE of 3.30% and
a coefficient of determination of 0.9750. The RMSE was found to be 4.32% while the
error in the total DEL is 2.03%.
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Figure 6.13: Performance of the load emulator for blade root bending loads (torsional)
on the test data.
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Table 6.3: Neural network architectures selected for each load emulator.

Load MAPE [%] RMSE [%] R2 MPE [%] tDELE [%]

Mmud,X 7.95 9.74 0.9606 -6.62 -5.91
Mmud,Y 7.17 9.15 0.9701 -4.40 -3.86
Mint,X 6.70 8.46 0.9670 -0.86 -0.74
Mint,Y 7.45 9.46 0.9591 -3.64 -3.46
Mtowertop,X 5.10 6.54 0.9859 -0.22 -2.49
Mtowertop,Y 5.49 8.99 0.9817 -1.78 -4.51
Mb,flap 4.39 5.53 0.9766 -1.00 -2.73
Mb,edge 1.03 1.33 0.9581 0.08 -0.09
Mb,tors 3.30 4.32 0.9750 0.65 2.03

6.3.5 Summary

The results of the six load emulators are presented in Table 6.3. In general terms,
the load emulators showed that they can accurately predict the fatigue loads at the
locations studied for site-specific cases. This proves the generic concept of the load
emulator methodology presented in this work, as the load emulator is successfully
applied to predict loads of two detailed models it has not seen during training. The
results show that the load emulator could be applied to any site which is within the
ranges of geometric, dynamic, and environmental DoFs used to create the SMs.

The value of studying various error metrics is shown in Table 6.3. No single error
metric can fully describe the accuracy of each load emulator. Using several error
metrics that measure goodness of fit, central tendencies, and dispersion of estimates
allows for a holistic assessment of each load emulator. Dispersion metrics for the load
emulators at mudline and interface level are the highest of all the load emulators.
However, when compared in terms of the coefficient of determination or the total
DEL error, these load emulators compared well with the other load channels.

A common trend throughout the load emulators is the tendency of these models
to under-predict the DEL loads. This may come as a consequence of having used the
MAPE as the loss function. This loss function has some known disadvantages which
affect the performance of the trained model [36]. Notably, the MAPE is unbounded
for over-prediction error but is bounded at 100% for under-prediction. This means
that over-estimates are penalized more severely by this loss function and therefore the
trained model is incentivized to under-predict. Alternatives to the MAPE loss function
are proposed in literature to overcome this issue, however, they were not considered
within the scope of this work.
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Chapter 7

Feature Importance and Sensitivity
of Training Data

In this chapter, the load emulators created in chapter 6 are studied more closely. The
two sampling techniques presented in chapter 5 are compared in section 7.1. There,
NNs are compared when trained on data obtained through Monte Carlo sampling and
quasi-Monte Carlo sampling. The comparison includes a study on the size of the train-
ing data is performed to determine how much training data is required. Afterwards, a
study on the importance of each input feature is performed in subsection 7.1.2. This
is done through a global variance analysis that can quantify the relative importance
of each input feature.

7.1 Sensitivity to training data

The relationship between the training data provided to the NN and the performance
of the resulting load emulator is not well understood at this stage. It is unknown what
effect the two sampling strategies considered can have on the overall performance of
the trained model. This section aims to gain a deeper understanding by comparing
load emulators trained on random data and quasi-random data. First, NNs trained on
data from a quasi-Monte Carlo sampling method are compared to NNs trained on data
from a Monte Carlo sampling method in terms of performance metrics. Afterwards,
an analysis on the dependence of the NN on the size of training data set is performed
on both variants.

7.1.1 Sampling method

Using the hyperparameters obtained in the previous chapter for each load emulator, 6
new load emulators are trained using data obtained via a quasi-Monte Carlo sampling
method. The size of the training data set and the distributions are identical, only the
method in which the samples are taken is changed. Performance metrics are calcu-
lated on the test data set which is composed of simulations of site-specific, detailed
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structural models at 2 sites in the North Sea. Training is performed in both cases for
400 epochs.

Comparison of each metric to those obtained with MC data is shown in Fig-
ure 7.1. The results show that the quasi-MC sampling method performs well on
the test set, and even outperforms the NNs trained on MC sampling in most metrics.
For most models, quasi-MC sampling performs better than the MC sampling for all
metrics. Only the load emulator concerned with the edgewise blade-root load chan-
nel is shown to perform better when using quasi-MC sampling, and the differences in
this case are in the order of 0.1% across all metrics. Overall, the quasi-MC method
outperforms the MC method for more than 80% of the metrics.
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Figure 7.1: Comparison of performance metrics for load emulators trained on random
and quasi-random data.

Moreover, the improvement of each performance metric can be quantified. On
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average, NNs trained on quasi-MC data resulted in MPEs and tDELEs 1% closer to 0
than the NNs trained on MC data. Similarly, the quasi-MC NNs obtained MAPEs and
RMSEs 0.5% lower than their counterparts, and an R2 0.003 greater than for the NNs
trained on MC data.

7.1.2 Training data size dependence

It is desirable to understand the effect of the size of training data used on the overall
performance of the network. So far, a sample of approximately 17500 samples is used
for training, and 7500 samples for cross-validation. However this sample size was not
rigorously determined. Therefore, it is not known if less samples are sufficient to train
the model (reducing computational time) or if additional samples are required. The
use of the cross-validation data during the optimization of parameters does have an
effect of limiting high variance (overfitting) of the trained models.

To perform this analysis, several NNs are trained for two different load emulators
in which some data is withheld during training. The load emulators selected were the
mudline load emulator and the flapwise moment at the blade root. Training is per-
formed on the network for 100%, 50%, 33%, 25% and 20% of the available training
data. For each case, cross-validation is performed on the same set of approximately
7500 samples. The size of the training data set can be compared to the training and
cross-validation losses to visualize the convergence of the model and identify possible
overfitting. For consistency across each case, the number of epochs used to train is
defined inversely proportional to the training data size. For example, when 100% of
the data is used, the NN is trained for 400 epochs. When 25% of the data is used,
the NN is trained for 1600 epochs. This ensures that the same number of gradient
descent steps are made in each case.

The results of this analysis is shown in Figure 7.2. For the mudline load emula-
tor shown in Figure 7.2(a), it is seen that using less data with the current network
architecture can result in high variance as a result of overfitting. This is visible from
the differences between the training loss and cross-validation loss for both MC and
quasi-MC (qMC) sampling methods. This observation also holds true for the the
flapwise blade load emulator in Figure 7.2(b). The amount of training data used
is shown to have adequate results, greatly limiting the differences between training
and cross-validation losses. However, for both load emulators there is some room
for improvement by increasing the training data size. Following the trends of both
figures, it is expected that with training data in the order of 30,000 samples the cross-
validation loss and training loss would be nearly identical. This however represents a
doubling of the computational cost required to obtain the training data for relatively
small improvements in performance.

Comparing the behavior of the quasi-MC NNs to the MC NNs, the quasi-MC
NNs have consistently lower training losses and a faster convergence of the cross-
validation losses. This means that in general, quasi-MC data is easier for the NN to fit
to, and fitting to this data generally aids in reducing overfitting.
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Figure 7.2: Dependence of load emulator performance on training data size.

7.2 Feature importance

As black-box models, it is difficult to quantify the relative importance of each input
feature in NNs. This is specially true for deeper NNs, where the relationship between
inputs can be confounded. One method to understand the sensitivities of the built
model to the inputs given to the model is through global variance analysis. This
analysis relates the total variance observed in the output of the model to the variance
of the inputs.

A black-box model Y = f(X) can be decomposed in several sub-models in the
form [37]:

Y = f0 +

d∑
i=1

fi(Xi) +

d∑
i<j

fij(Xi, Xj) + ... (7.1)

In this representation, f0 is the expected value of f(X), while fi(Xi) is the ex-
pected value of f(X|Xi). Just as the model can be decomposed in terms of contribu-
tions of each input individually, and their combinations, so can the variance. Taking
the variance of Equation 7.1 yields the following expression for the variance of the
model:

V ar(Y ) =
d∑

i=1

Vi +
d∑

i<j

Vij + ... (7.2)

where Vi is the 1st order contribution of the parameter Xi to the variance of the
model amd Vij is the joint contribution of second order of the parameters Xi and Xj .

Using this definition, the Sobol index is defined. The first order Sobol index [37]
is

S1,i =
Vi

V ar(Y )
(7.3)
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The total Sobol index, which captures the higher order interactions with other vari-
ables can be similarly defined by including all the higher order interactions [37]:

ST,i =
Vi + Vij + Vijk + ....

V ar(Y )
(7.4)

In order to compute the variance terms to determine the Sobol index of each input,
integration is carried out over the d-dimensional space. To optimize this integration,
the Sobol sequence is used and the SALib library in Python is used to perform the
calculations.

In this way, only the ranges of each input parameter need to be defined. A very
large sample of inputs can be collected using the Sobol sequence, which can be given
to the trained NN for quick evaluation. The results can be integrated and the Sobol
index of each input calculated.

Conveniently, the inputs used when training the model were first normalized as
their z-score. Therefore, each parameter is varied from -3 to 3 as this will roughly
represent 99% of the observed variation in each parameter. The exception to this rule
is the dynamic amplification factors defined as engineered features which were not
normalized. In these cases, the range is defined from 0 to 3.5, which also roughly
represents 99% of these inputs.

This analysis is performed on all six load emulators to determine the contribution
of each input variable on the 9 different load channels. The results are summarized in
Figure 7.3. Here, the total Sobol index of each input is shown in a colormap. In this
figure, it is apparent that the accelerometer data at the nacelle is critical for emulating
the tower and foundation loads. In these load channels, the features involving the
standard deviation of the nacelle accelerations are among the most important inputs
as measured by the Sobol index.

The sine and cosine of the wind direction, along with the projections of the nacelle
acceleration according to the bearing angle (features EF1-EF4) are critical features.
This is an expected result as the differences between the local and global frame of
reference need to be accounted for by the SM. It is also seen that the relative impor-
tance of the cosine and sine of wind or wave angles are dependent on the direction of
the load. For loads about the X-axis, the cosine is more important. For loads about
the Y -axis, the sine is more important.

It is also visible in Figure 7.3 that the wave properties have a high degree of
importance for loads below the water depth but their relevance recedes as the location
of the load is closer to the rotor. This is visible in the wave direction, Hs, Tp, α, and the
engineered features EF7-EF12 which all involve the projection of wave statistics. This
is consistent with expectations, as wave loading will be more critical for foundation
loads. The loads at tower top and blade root depend more on the wind loading and
therefore have low Sobol indices for most of the wave-related features.

For the engineered features, EF13 and EF15, a moderate importance is found
across the majority of load channels. These features are the f0.5

1 and f3
1 respectively.

It is therefore seen that these powers of the first mode frequency are critical in pre-
dicting the DELs. Especially when comparing with the Sobol indices found for f1,
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it is seen that the engineered features are more helpful to the model than the basic
feature.

The engineered features which attempt to resemble the absolute value of a trans-
fer function (EF18-EF24) have a relatively low importance across the different load
channels, however their contribution is not negligible.

SCADA-like metrics encoded in the first 12 basic features are shown to be fun-
damental for blade load emulation, as the variance in the load emulator is almost
entirely described by these features. Their influence on tower and foundation loads
is less dominant but still present.

Lastly, some features can be identified to have negligible influence on the load
emulators. For example, the average, minimum and maximum nacelle accelerations
in both directions, as well as the ranges of the accelerations (EF5 and EF6). This anal-
ysis provides a quantitative justification for trimming these features from the model
in future iterations. Similar pruning could also be performed for each emulator indi-
vidually, such as eliminating the wave related inputs for the blade load emulator.



84



Chapter 8

Conclusions

8.1 Conclusions

The work presented here-in has successfully demonstrated the potential use of load
emulators in a type-generic process for prediction of fatigue loads of any potential site.
Load emulators were developed using simplified models representative of multiple
generic sites. These were then tested using data from simulations of two site-specific
designs in the North Sea to test the surrogate model’s ability to generalize the load
emulation to different sites.

In chapter 3 it was shown that the simplified models are sensitive to changes in
parameters such as the diameter at water level and the pile penetration depth. These
parameters have a strong effect on the dynamic behavior of the model as well as
the hydrodynamic loading that would correspond to this model. It was also shown
that the act of reducing the number of degrees of freedom inherently introduces dif-
ferences in the dynamics of the model, as the act of simplifying changes the overall
model. Nevertheless, a strategy for performing a calibration of the simplified model
was developed in this chapter, such that a simplified model could be built with the
same dynamics of a detailed model by affecting the stiffness, damping, and pile-
penetration depth. Finally, this chapter showed a methodology for selecting appropri-
ate hydrodynamic hyperparameters which control the generation of wave load files
to ensure an accurate representation wave loading on the simplified models.

The methodology for creating simplified models was tested in chapter 4, where
the fatigue load calculation was performed on a simplified model and a corresponding
detailed model. The simplified model, when appropriately tuned using the techniques
described in chapter 3, proved to accurately match the fatigue loading of the detailed
model within 2% RMSE for DLC 1.2 and 5% RMSE for DLC 7.2. This shows that the
methodology successfully creates simplified models capable of accurately represent-
ing potential site-specific designs.

In chapter 5, the strategies used to select the DoFs of each simulation that would
be included in the training database were presented. Here two strategies were an-
alyzed, one in which the training data is obtained from a purely random process
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(Monte Carlo), and one in which low-discrepancy sequences are used to deterministi-
cally select samples which are evenly spaced across the domain (Quasi-Monte Carlo).
The effects on the resulting load emulator are compared afterwards in chapter 7.

To train the load emulator chapter 6 showed a method for selecting suitable hy-
perparameters which describe the optimizer and network architecture using random
sampling. A total of 6 load emulators for the 9 load channels were trained, and
subsequently tested on data from simulations of two detailed models of separate site-
specific designs. It was shown that surrogate model trained on generic data per-
formed well when testing on site-specific cases as measured by several error metrics
such as MAPE, MPE, RMSE, R2, and the total DEL error. Across all channels the co-
efficient of determination obtained was above 0.95, the MAPE below 7%, and bias
(MPE and total DEL error) was generally found in the order of 1-5%.

In chapter 7, the final research questions were answered successfully via a series
of analyses on the trained NNs. It was shown that the sampling strategy of using
low-discrepancy sequences such as the Sobol sequence results in improved perfor-
mance overall as measured by several error metrics when compared to using a simple
Monte Carlo approach. This strategy was shown to have the additional advantage
in limiting the variance of the trained model. These results show that a quasi-Monte
Carlo sampling method should be the preferred strategy for constructing a training
database for fatigue load emulation. Finally, it was also shown in this chapter that
the features related to nacelle accelerations, wind direction, rotor speed, and tower
frequency were the most important overall. For mudline and interface loads, features
related to wave statistics such as Hs, Tp, and the wave direction proved to be critical
for load emulation at these locations.

8.2 Future Work

Although this work successfully answered the research questions initially proposed,
there are still many aspects of the load emulation methodology that are yet to be
explored. In this section, the research questions which emerge from this thesis and
can be used to guide future research are listed.

• How do the load emulators presented perform on measurement data? This the-
sis focused on using simulation data for training, cross-validation, and testing,
however the load emulator should later be tested on real measurement data
to fully evaluate it’s capabilities. This brings new challenges of data manage-
ment, as measurement data is more noisy than simulation data and it’s possible
that not all of the input channels used in this thesis are available when using
measurements.

• Is it possible to relate the degrees of freedom that define the structural model?
Throughout the thesis, the degrees of freedom that define the dynamics and
geometry of the structural model were considered independent. However, it is
recognized that the two are intrinsically coupled. It may be beneficial for the
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training of the load emulator to derive a relationship between the geometric
degrees of freedom and the dynamics which may result in more realistic struc-
tural models. This could potentially be done using physics-informed criteria or
through machine learning techniques using data of existing turbines.

• How do other machine learning algorithms compare to neural networks for load
emulation? The thesis presented only the use of neural networks for load emu-
lation, however there is a great variety of machine learning algorithms that can
be applied for regression modeling such as decision trees and gradient boost-
ing. It is not known if these algorithms could perform better than the neural
networks.

• Can a similar methodology be derived to estimate design loads as an initial loads
assessment? The methodology for creating simplified structural models and
creating a training database could potentially be applied for estimating design
loads of new projects. In this case, instead of using SCADA-like measurements,
wind and wave properties would be used as inputs to estimate fatigue loads.
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