<]
TUDelft

Delft University of Technology

SMI2PDB

A self-contained Python tool to generate atomistic systems of organic molecules using
their SMILES notations

Assaf, Eli |.; Liu, Xueyan; Lin, Peng; Erkens, Sandra

DOI
10.1016/j.simpa.2024.100655

Publication date
2024

Document Version
Final published version

Published in
Software Impacts

Citation (APA)

Assaf, E. |, Liu, X,, Lin, P., & Erkens, S. (2024). SMI2PDB: A self-contained Python tool to generate
atomistic systems of organic molecules using their SMILES notations. Software Impacts, 20, Article 100655.
https://doi.org/10.1016/j.simpa.2024.100655

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.simpa.2024.100655
https://doi.org/10.1016/j.simpa.2024.100655

Software Impacts 20 (2024) 100655

journal homepage: www.journals.elsevier.com/software-impacts

Contents lists available at ScienceDirect

Software Impacts

Original software publication

SMI2PDB: A self-contained Python tool to generate atomistic systems of M)

organic molecules using their SMILES notations [

Eli I. Assaf®", Xueyan Liu?, Peng Lin *", Sandra Erkens *"

2 Delft University of Technology, Delft, The Netherlands
b Ministry of Infrastructure and Water Management (Rijkswaterstaat), The Netherlands

Check for
updates

ARTICLE INFO ABSTRACT

Keywords:

Molecular dynamics
Chemistry

Atomistic simulation
LAMMPS

The advent of computational techniques, particularly atomistic simulations, has lessened the dependency on
physical experiments in various scientific fields. Yet, the preparation complexity for simulations using platforms
like LAMMPS and GROMACS persists. We introduce SMI2PDB, a Python tool that automates molecular systems
assembly from SMILES to PDB format, easing molecular dynamics simulation setups. SMI2PDB manages
molecule configuration and quantification effortlessly, establishes stable conformers, applies random rotations,

and positions them in a simulation box with a Sobol sequence to reduce overlaps. This script facilitates the
rapid preparation of complex organic mixtures for use in simulations, enhancing the exploration of novel

materials.

Code metadata

Current code version

Permanent link to code/repository used for this code version
Permanent link to reproducible capsule

Legal code license

Code versioning system used

Software code languages, tools and services used

Compilation requirements, operating environments and dependencies
If available, link to developer documentation/manual

Support email for questions

1.0.0

https://github.com/Softwarelmpacts/SIMPAC-2024-81
https://codeocean.com/capsule/9730644/tree/v1

GNU General Public License (GPL)

None

Python 3.12

Python 3.7+, Numpy, Numba, Rdkit, and Sobol-seq
https://codeocean.com/capsule/9730644/tree/v1/code/readme.md
e.i.assaf@tudelft.nl

1. Introduction

Computational methods are now integral to scientific research,
significantly reducing the need for physical experimentation. Atomistic
modeling is a prime example of this trend, where molecular dynamics
(MD) simulations, once limited to the fields of physics and chemistry,
are now utilized across diverse fields [1]. This shift allows for the
accurate exploration of novel materials, circumventing the need for
extensive experimental work. Simulation tools like LAMMPS [2] and
GROMACS [3] have set industry standards but are not without their
complexities, particularly in system preparation for simulations, which
requires exact molecular configurations as starting points [4].

Researchers often resort to combining tools like Packmol [5], Open-
Babel [6], and OVITO [7] to ready simulations for platforms like

LAMMPS, a less than optimal use of their time, more so for those
examining organic mixtures needing numerous models for their studies.
Hence, an accessible, standalone script like SMI2PDB is of great value,
offering a straightforward method for assembling molecular systems,
easing the technical and time constraints often encountered in this
preparatory phase (see Fig. 1).

2. Software description

SMI2PDB is a Python-based script that takes in a molecular system
described by the SMILES [8] notation of the molecules needed, their
number, and some additional system-describing parameters, and out-
puts a molecular system in PDB format, a popular atomistic file format,

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.

* Corresponding author.

E-mail addresses: e.i.assaf@tudelft.nl (E.I. Assaf), x.liu@tudelft.nl (X. Liu), p.lin-2@tudelft.nl (P. Lin), s.m.j.g.erkens@tudelft.nl (S. Erkens).

https://doi.org/10.1016/j.simpa.2024.100655

Received 13 April 2024; Received in revised form 23 April 2024; Accepted 3 May 2024

2665-9638/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2024.100655
https://www.journals.elsevier.com/software-impacts
https://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2024.100655&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2024-81
https://codeocean.com/capsule/9730644/tree/v1
https://codeocean.com/capsule/9730644/tree/v1/code/readme.md
mailto:e.i.assaf@tudelft.nl
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:e.i.assaf@tudelft.nl
mailto:x.liu@tudelft.nl
mailto:p.lin-2@tudelft.nl
mailto:s.m.j.g.erkens@tudelft.nl
https://doi.org/10.1016/j.simpa.2024.100655
http://creativecommons.org/licenses/by/4.0/

E.L Assaf, X. Liu, P. Lin et al.

500

Cc1c2cc(O)cec3c2c(cc1C)eicc(cc2ecee3c12)CC

Software Impacts 20 (2024) 100655

Fig. 1. Molecular system comprised of 500 phenolic asphaltene molecules generated using SMI2PDB visualized using OVITO. This system has a density of 200 kg/m® and is

generated in about 10 s.

ready to be used by many simulation packages and other third-party
software [9]. The user is only expected to modify an inputs.py file which
then the smi2pdb.py script uses to run the expected task. The overall
description of the steps performed by the script are described as follows:

1. The user configures the inputs.py file, setting the necessary
parameters to define the molecular system. These parameters
include molecular types, quantities, and various simulation prop-
erties outlined in a Table 1.

2. The smi2pdb.py script is executed, which begins by interpreting
the molecules_dictionary. It initializes stable molecular conform-
ers for each molecule type using RDKit [10], which involves
hydrogenation and energy minimization.

3. Each molecule is duplicated until the required quantity is achie-
ved for each type. If enabled, molecules are subjected to random
rotations around their geometric center.

4. The software then initiates the mixture generation process by
creating an empty cubic simulation box. The box’s dimensions
are determined by the density value from the input.py file.

5. Positions within the simulation box are determined using a Sobol
sequence to ensure an even spatial distribution of molecules with
minimal overlap.

6. A confinement margin is established by ensuring that the mole-
cules are placed within the box’s boundaries, offset by half the
value given by inputs.layer_offset.

7. The molecular objects are translated to their assigned positions
in the simulation box by aligning their geometric center with the
Sobol sequence points.

8. The software calculates the interatomic potential energy us-
ing a Lennard-Jones potential utilizing energy and equilibrium
distance parameters set to 1.0.

9. If the calculated potential energy is below the inputs.energy_
threshold, the configuration is accepted. This mixture is then
exported in PDB format.

10. In case the potential energy threshold is not met, the mixture
is discarded. The process generates a new simulation box with
a fresh set of Sobol positions and repeats the evaluation with
newly generated molecular conformations and rotations.

11. This cycle continues until the desired number of mixtures, as
defined by inputs.nbr_of mixtures_needed, is produced.

A pictographic representation of these steps is presented in Fig. 2.

3. Software architecture

The software, implemented in Python 3.12 and reliant on Numpy,
Numba [11], Rdkit [10], and Sobol-seq libraries, comprises seven
primary components: “output/”, ‘“static_functions.py”, “inputs.py”,
“log_functions.py”, “smi2pdb.py”, “mixture.py”, and “molecule.py”.
Auxiliary modules “log_functions.py” and “‘static_functions.py” are cal-
led upon for their utility functions, including logging, file i/o, and
generic computations. The script commences with “smi2pdb.py”, initi-
ating a “JobRunner()” instance that manages job execution and output
storage in the directory “output/$job_id”. It proceeds by interpreting
the “inputs.py” file to instantiate a “Mixture()” from “mixture.py”,
encapsulating global attributes of the mixture such as molecule types,
spatial coordinates, and other relevant properties. This ‘“Mixture()”
then generates “Molecule()” instances, each representing a singular
molecule’s objects that include their SMILES string, 3D conformations
and relevant methods to alter them as needed (e.g., randomly rotate,
translate, or minimize them). Upon populating the “Mixture.molecules”
array, the system’s molecular positions are determined, translated, and
the overall mixture’s potential energy evaluated. Conforming mixtures
are saved as PDB files in “output/$job_id/Mixture_$i”. This iterative
process is repeated by “JobRunner()” until the requisite number of
mixtures is reached. A through depiction of the programmatic elements
involved in the execution of the script is shown in Fig. 3.

4. Impact

SMI2PDB is a Python-based script specifically designed to enhance
the efficiency and scope of MD materials research. Developed over a
two-year period, this script addresses critical needs in the generation
of molecular systems by facilitating the rapid construction of complex
hydrocarbon mixtures. The script utilizes SMILES notation to quickly
generate atomistic models, making it invaluable for studies involving
heavy oils, bitumens, and their interactions with various additives and
rejuvenators.

One of the primary advantages of SMI2PDB is its ability to facili-
tate the creation of molecular systems without the extensive manual
definition typically required. This includes automating the placement
of molecules within a simulation box, ensuring stable spatial confor-
mations, and minimizing interatomic overlaps. The output generated
by SMI2PDB is compatible with most open-source MD visualization
and engine programs, simplifying the integration into existing research
workflows.

E.L Assaf, X. Liu, P. Lin et al.

1 2

Generate 2D molecules Parse SMILES to molecules
Celc2cc(0)ec3c2c({cc1C)clecl{cc2ccec3cl 2)CC

5 6

Generate Sobol positions Copy, translate, rotate molecules

gi}_

reject

Software Impacts 20 (2024) 100655

3 4

Hydrogenate and minimize Create systems

7

Measure final potential energies

¥ Y

W
L W

B

%" accept
or
Energy < Threshold

pdb

Energy < Threshold

Fig. 2. Depiction of the steps performed by SMI2PDB to generate molecular mixtures using the SMILES notation of molecules.

Table 1

Description of the required parameters in inputs.py for SMI2PDB to run.

Parameter Description

Typical range

mixtures_needed
density
(kg/m"3)
layer_offset
(Angstroms)
energy_threshold

Number of independent molecular systems required (unitless)
Density of the simulation box to place the molecules into

Distance (from the boundaries) to confine the molecules into

Lennard-Jones interatomic potential energy limit for a mixture

1 to 10
1.00 to 400

0.0 to 50

-5.0 to 5.0

to be accepted or rejected (LJ units)

molecules_dictionary

Dictionary whose keys are the name of the molecules, and its -

items are subdictionaries with keys: “smiles”,
“nbr_of_molecules”, and “rotate”

nbr_of trials

Number of iterations beyond which the program stops trying to

100-10000

place molecules without being rejected

The tool has significantly contributed to the field by enabling the
development of over 8000 molecular models used to parameterize a
new United Atom force field in LAMMPS. Additionally, it has facilitated
the creation of over 2000 diverse molecular models to study the impact
of different molecular structures on bituminous materials. These capa-
bilities have been crucial for advancing the understanding of material
properties and their modification through modeling techniques or by
introducing a wide variety of chemical additives [12-14].

SMI2PDB’s design emphasizes simplicity and self-containment, mak-
ing it adaptable to various computational environments, including High
Performance Computing setups. This aspect is particularly beneficial
for researchers working in environments with restricted computational
privileges. The script’s lightweight, standalone nature allows for ef-
ficient parallel execution, enabling the simultaneous production of
numerous molecular systems. This efficiency is critical for projects
requiring the rapid generation of a large array of models, which would
otherwise be impractical due to the time-consuming nature of manual
model construction.

The success and utility of SMI2PDB are evidenced by its ability to
integrate seamlessly into more extensive Python projects, providing a
robust tool for researchers not primarily focused on MD methods but
who require detailed molecular simulations to support their research in
bituminous materials.

5. Limitations and future work

While tools like PackMol exist that provide extensive features for
initializing molecular systems, SMI2PDB will deliberately not expand in
this area. The primary goal is to preserve the simplicity, autonomy, and
self-contained nature of SMI2PDB. This focus is designed to ensure that
the program remains effective when integrated into broader scripts and
automated frameworks, which is crucial for its use during the feasibility
assessment phases of molecular modeling research.

Efforts will be directed towards enhancing SMI2PDB’s ability to han-
dle inputs and outputs that are fundamental and universally applicable.
This is to reduce the reliance on third-party chemistry software for
defining molecular systems. Additionally, future updates will aim to
refine the process of positioning molecules within the simulation box—
a task that currently demands significant computational resources. The
objective is to reduce the program’s execution time while maintaining
the production of valid molecular systems.

This will necessitate the development of more sophisticated par-
ticle distribution algorithms, especially to accommodate the diverse
spatial conformations of organic molecules. For example, placing a
highly branched hydrocarbon in the simulation box requires different
algorithms compared to less complex molecules. Such improvements
are expected to enhance the efficiency and robustness of SMI2PDB,
particularly in unattended operations, minimizing potential issues and
maximizing reliability.

E.I Assaf, X. Liu, P. Lin et al.

main.py—» main.run() —|

Software Impacts 20 (2024) 100655

main.JobRunner()

main.run_trials()

inputs.number_of mixtures_needed

inputs.number_of_trials

nbr_of_|

A

inputs.molecules_dictionary mil

 rotate-

inputs.initial_density

molecule.Molecule()

Nm

> duplicate()

sort_molecules_by_type()

|

generate_sobol_positions()

|

update_name_and_id()

v

randomly_rotate_mol

'
'
'
'
'
'
'
'
'
'

¢ | update_mixture_information()
i
'
'
'
'
'
'
v
'
'
'

translate_to_sobol_positions()

inputs.layer_offset:

inputs.energy_threshold

|

calculate_lj_potential_energy()

inputs.cutoff_distanc

Fig. 3. A diagram depicting how the program elements’ (files, instances, functions, and variables) calls to generate molecular systems.

CRediT authorship contribution statement

Eli 1. Assaf: Writing — review & editing, Writing — original draft,
Visualization, Validation, Software, Resources, Methodology, Inves-
tigation, Formal analysis, Data curation, Conceptualization. Xueyan
Liu: Writing — review & editing, Supervision, Project administration,
Investigation, Funding acquisition. Peng Lin: Validation, Supervision,
Investigation. Sandra Erkens: Supervision, Investigation, Funding ac-
quisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Declaration of Generative AI and Al-assisted technologies in the
writing process

During the preparation of this work the author(s) used OpenAlI’s
ChatGPT4.0 to simplify verbose paragraph descriptions. After using this
tool/service, the author(s) reviewed and edited the content as needed
and take(s) full responsibility for the content of the publication.

Acknowledgments

This paper/article is created under the research program Knowledge-
based Pavement Engineering (KPE). KPE is a cooperation between
Rijkswaterstaat, TNO, and TU Delft in which scientific and applied
knowledge is gained about asphalt pavements and which contributes to
the aim of Rijkswaterstaat to be completely climate neutral and to work
according to the circular principle by 2030. The opinions expressed in
these papers are solely from the authors.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

H. Gould, J. Tobochnik, W. Christian, An introduction to computer simulation
methods, Comput. Phys. 10 (2007) 652-653.

A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S.
Crozier, P.J. In’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, LAMMPS-a
flexible simulation tool for particle-based materials modeling at the atomic, meso,
and continuum scales, Comput. Phys. Comm. 271 (2022) 108171.

M.J. Abraham, T. Murtola, R. Schulz, S. Pall, J.C. Smith, B. Hess, E. Lin-
dahl, GROMACS: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers, SoftwareX 1 (2015) 19-25.

S. Sharma, Molecular Dynamics Simulation of Nanocomposites using BIOVIA
Materials Studio, Lammps and Gromacs, Elsevier, 2019.

L. Martinez, R. Andrade, E.G. Birgin, J.M. Martinez, PACKMOL: A package for
building initial configurations for molecular dynamics simulations, J. Comput.
Chem. 30 (13) (2009) 2157-2164.

N.M. O’Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R.
Hutchison, Open babel: An open chemical toolbox, J. Cheminform. 3 (2011)
1-14.

A. Stukowski, Visualization and analysis of atomistic simulation data with
OVITO-the open visualization tool, Model. Simul. Mater. Sci. Eng. 18 (1) (2009)
015012.

D. Weininger, SMILES, a chemical language and information system. 1. Intro-
duction to methodology and encoding rules, J. Chem. Inform. Comput. Sci. 28
(1) (1988) 31-36.

S.K. Burley, H.M. Berman, G.J. Kleywegt, J.L. Markley, H. Nakamura, S.
Velankar, Protein data bank (PDB): The single global macromolecular structure
archive, Protein crystallogr.: Methods Protoc. (2017) 627-641.

G. Landrum, RDKit: A software suite for cheminformatics, Comput. Chem.
Predict. Model. Greg Landrum 8 (31.10) (2013) 5281.

S.K. Lam, A. Pitrou, S. Seibert, Numba: A llvm-based Python jit compiler, in:
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in
HPC, 2015, pp. 1-6.

E.I Assaf, X. Liu, P. Lin, S. Erkens, S. Nahar, L.I. Mensink, Studying the impact
of phase behavior in the morphology of molecular dynamics models of Bitumen,
Mater. Des. 230 (2023) 111943.

Y. Gao, X. Liu, S. Ren, E.I. Assaf, P. Liu, Y. Zhang, Nanostructure and damage
characterisation of Bitumen under a low cycle strain-controlled fatigue load based
on molecular simulations and rheological measurements, Composites B (2024)
111326.

E.I Assaf, X. Liu, P. Lin, S. Erkens, Introducing a force-matched united atom force
field to explore larger spatiotemporal domains in molecular dynamics simulations
of Bitumen, Mater. Des. (2024) 112831.

http://refhub.elsevier.com/S2665-9638(24)00043-5/sb1
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb1
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb1
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb2
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb2
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb2
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb2
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb2
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb2
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb2
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb3
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb3
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb3
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb3
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb3
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb4
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb4
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb4
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb5
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb5
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb5
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb5
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb5
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb6
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb6
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb6
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb6
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb6
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb7
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb7
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb7
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb7
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb7
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb8
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb8
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb8
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb8
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb8
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb9
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb9
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb9
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb9
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb9
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb10
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb10
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb10
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb11
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb11
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb11
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb11
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb11
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb12
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb12
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb12
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb12
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb12
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb13
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb13
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb13
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb13
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb13
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb13
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb13
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb14
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb14
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb14
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb14
http://refhub.elsevier.com/S2665-9638(24)00043-5/sb14

	SMI2PDB: A self-contained Python tool to generate atomistic systems of organic molecules using their SMILES notations
	Introduction
	Software description
	Software architecture
	Impact
	Limitations and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Acknowledgments
	References

