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The advent of computational techniques, particularly atomistic simulations, has lessened the dependency on
physical experiments in various scientific fields. Yet, the preparation complexity for simulations using platforms
like LAMMPS and GROMACS persists. We introduce SMI2PDB, a Python tool that automates molecular systems
assembly from SMILES to PDB format, easing molecular dynamics simulation setups. SMI2PDB manages
molecule configuration and quantification effortlessly, establishes stable conformers, applies random rotations,

and positions them in a simulation box with a Sobol sequence to reduce overlaps. This script facilitates the
rapid preparation of complex organic mixtures for use in simulations, enhancing the exploration of novel

materials.
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1. Introduction

Computational methods are now integral to scientific research,
significantly reducing the need for physical experimentation. Atomistic
modeling is a prime example of this trend, where molecular dynamics
(MD) simulations, once limited to the fields of physics and chemistry,
are now utilized across diverse fields [1]. This shift allows for the
accurate exploration of novel materials, circumventing the need for
extensive experimental work. Simulation tools like LAMMPS [2] and
GROMACS [3] have set industry standards but are not without their
complexities, particularly in system preparation for simulations, which
requires exact molecular configurations as starting points [4].

Researchers often resort to combining tools like Packmol [5], Open-
Babel [6], and OVITO [7] to ready simulations for platforms like

LAMMPS, a less than optimal use of their time, more so for those
examining organic mixtures needing numerous models for their studies.
Hence, an accessible, standalone script like SMI2PDB is of great value,
offering a straightforward method for assembling molecular systems,
easing the technical and time constraints often encountered in this
preparatory phase (see Fig. 1).

2. Software description

SMI2PDB is a Python-based script that takes in a molecular system
described by the SMILES [8] notation of the molecules needed, their
number, and some additional system-describing parameters, and out-
puts a molecular system in PDB format, a popular atomistic file format,
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Fig. 1. Molecular system comprised of 500 phenolic asphaltene molecules generated using SMI2PDB visualized using OVITO. This system has a density of 200 kg/m® and is

generated in about 10 s.

ready to be used by many simulation packages and other third-party
software [9]. The user is only expected to modify an inputs.py file which
then the smi2pdb.py script uses to run the expected task. The overall
description of the steps performed by the script are described as follows:

1. The user configures the inputs.py file, setting the necessary
parameters to define the molecular system. These parameters
include molecular types, quantities, and various simulation prop-
erties outlined in a Table 1.

2. The smi2pdb.py script is executed, which begins by interpreting
the molecules_dictionary. It initializes stable molecular conform-
ers for each molecule type using RDKit [10], which involves
hydrogenation and energy minimization.

3. Each molecule is duplicated until the required quantity is achie-
ved for each type. If enabled, molecules are subjected to random
rotations around their geometric center.

4. The software then initiates the mixture generation process by
creating an empty cubic simulation box. The box’s dimensions
are determined by the density value from the input.py file.

5. Positions within the simulation box are determined using a Sobol
sequence to ensure an even spatial distribution of molecules with
minimal overlap.

6. A confinement margin is established by ensuring that the mole-
cules are placed within the box’s boundaries, offset by half the
value given by inputs.layer_offset.

7. The molecular objects are translated to their assigned positions
in the simulation box by aligning their geometric center with the
Sobol sequence points.

8. The software calculates the interatomic potential energy us-
ing a Lennard-Jones potential utilizing energy and equilibrium
distance parameters set to 1.0.

9. If the calculated potential energy is below the inputs.energy_
threshold, the configuration is accepted. This mixture is then
exported in PDB format.

10. In case the potential energy threshold is not met, the mixture
is discarded. The process generates a new simulation box with
a fresh set of Sobol positions and repeats the evaluation with
newly generated molecular conformations and rotations.

11. This cycle continues until the desired number of mixtures, as
defined by inputs.nbr_of mixtures_needed, is produced.

A pictographic representation of these steps is presented in Fig. 2.

3. Software architecture

The software, implemented in Python 3.12 and reliant on Numpy,
Numba [11], Rdkit [10], and Sobol-seq libraries, comprises seven
primary components: “output/”, ‘“static_functions.py”, “inputs.py”,
“log_functions.py”, “smi2pdb.py”, “mixture.py”, and “molecule.py”.
Auxiliary modules “log_functions.py” and “‘static_functions.py” are cal-
led upon for their utility functions, including logging, file i/o, and
generic computations. The script commences with “smi2pdb.py”, initi-
ating a “JobRunner()” instance that manages job execution and output
storage in the directory “output/$job_id”. It proceeds by interpreting
the “inputs.py” file to instantiate a “Mixture()” from “mixture.py”,
encapsulating global attributes of the mixture such as molecule types,
spatial coordinates, and other relevant properties. This ‘“Mixture()”
then generates “Molecule()” instances, each representing a singular
molecule’s objects that include their SMILES string, 3D conformations
and relevant methods to alter them as needed (e.g., randomly rotate,
translate, or minimize them). Upon populating the “Mixture.molecules”
array, the system’s molecular positions are determined, translated, and
the overall mixture’s potential energy evaluated. Conforming mixtures
are saved as PDB files in “output/$job_id/Mixture_$i”. This iterative
process is repeated by “JobRunner()” until the requisite number of
mixtures is reached. A through depiction of the programmatic elements
involved in the execution of the script is shown in Fig. 3.

4. Impact

SMI2PDB is a Python-based script specifically designed to enhance
the efficiency and scope of MD materials research. Developed over a
two-year period, this script addresses critical needs in the generation
of molecular systems by facilitating the rapid construction of complex
hydrocarbon mixtures. The script utilizes SMILES notation to quickly
generate atomistic models, making it invaluable for studies involving
heavy oils, bitumens, and their interactions with various additives and
rejuvenators.

One of the primary advantages of SMI2PDB is its ability to facili-
tate the creation of molecular systems without the extensive manual
definition typically required. This includes automating the placement
of molecules within a simulation box, ensuring stable spatial confor-
mations, and minimizing interatomic overlaps. The output generated
by SMI2PDB is compatible with most open-source MD visualization
and engine programs, simplifying the integration into existing research
workflows.
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Fig. 2. Depiction of the steps performed by SMI2PDB to generate molecular mixtures using the SMILES notation of molecules.

Table 1

Description of the required parameters in inputs.py for SMI2PDB to run.

Parameter Description

Typical range

mixtures_needed
density
(kg/m"3)
layer_offset
(Angstroms)
energy_threshold

Number of independent molecular systems required (unitless)
Density of the simulation box to place the molecules into

Distance (from the boundaries) to confine the molecules into

Lennard-Jones interatomic potential energy limit for a mixture

1 to 10
1.00 to 400

0.0 to 50

-5.0 to 5.0

to be accepted or rejected (LJ units)

molecules_dictionary

Dictionary whose keys are the name of the molecules, and its -

items are subdictionaries with keys: “smiles”,
“nbr_of_molecules”, and “rotate”

nbr_of trials

Number of iterations beyond which the program stops trying to

100-10000

place molecules without being rejected

The tool has significantly contributed to the field by enabling the
development of over 8000 molecular models used to parameterize a
new United Atom force field in LAMMPS. Additionally, it has facilitated
the creation of over 2000 diverse molecular models to study the impact
of different molecular structures on bituminous materials. These capa-
bilities have been crucial for advancing the understanding of material
properties and their modification through modeling techniques or by
introducing a wide variety of chemical additives [12-14].

SMI2PDB’s design emphasizes simplicity and self-containment, mak-
ing it adaptable to various computational environments, including High
Performance Computing setups. This aspect is particularly beneficial
for researchers working in environments with restricted computational
privileges. The script’s lightweight, standalone nature allows for ef-
ficient parallel execution, enabling the simultaneous production of
numerous molecular systems. This efficiency is critical for projects
requiring the rapid generation of a large array of models, which would
otherwise be impractical due to the time-consuming nature of manual
model construction.

The success and utility of SMI2PDB are evidenced by its ability to
integrate seamlessly into more extensive Python projects, providing a
robust tool for researchers not primarily focused on MD methods but
who require detailed molecular simulations to support their research in
bituminous materials.

5. Limitations and future work

While tools like PackMol exist that provide extensive features for
initializing molecular systems, SMI2PDB will deliberately not expand in
this area. The primary goal is to preserve the simplicity, autonomy, and
self-contained nature of SMI2PDB. This focus is designed to ensure that
the program remains effective when integrated into broader scripts and
automated frameworks, which is crucial for its use during the feasibility
assessment phases of molecular modeling research.

Efforts will be directed towards enhancing SMI2PDB’s ability to han-
dle inputs and outputs that are fundamental and universally applicable.
This is to reduce the reliance on third-party chemistry software for
defining molecular systems. Additionally, future updates will aim to
refine the process of positioning molecules within the simulation box—
a task that currently demands significant computational resources. The
objective is to reduce the program’s execution time while maintaining
the production of valid molecular systems.

This will necessitate the development of more sophisticated par-
ticle distribution algorithms, especially to accommodate the diverse
spatial conformations of organic molecules. For example, placing a
highly branched hydrocarbon in the simulation box requires different
algorithms compared to less complex molecules. Such improvements
are expected to enhance the efficiency and robustness of SMI2PDB,
particularly in unattended operations, minimizing potential issues and
maximizing reliability.
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Fig. 3. A diagram depicting how the program elements’ (files, instances, functions, and variables) calls to generate molecular systems.
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