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SUMMARY 

The stability of the differential equation 

~ + B (x) ^ + C(x) = Q, Q = 0, t<0 , 

with B(x) and C(x) a s an t i - symmet r i c power s e r i e s , is shown to be determined by the nature 
of the singulari ty at the s teady-s ta te value given by C(x) = Q, with certain additional r e s t r i c ­
tions on the initial and final value of x. Fu r the r , the character of the transient settling down 
motion is direct ly re la ted to the nature of this singularity and, together with the stability, is 
accurate ly predicted by c r i t e r i a derived. 

It is shown that the previous stability c r i t e r i a can be applied to the problem of an 
a i r f rame subject to a step-function elevator deflection, provided that the aerodynamic der iv­
ative ZTJ is negligible. When zjj is not smal l , special t reatment of the stability problem is 
required and it i s shown that the cr i t ica l value of the elevator step-function which will cause 
instability can fairly readi ly be obtained from quantities taken from the elevator t r im curves . 
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1.0 Introduction 

The differential equation 

^ + B ' ( x ) ^ + C(x) = Q, Q = 0. t<0 (1.1) 

descr ibes the motion of a c lass of second-order sys tems with displacement dependent stiffness 
and damping and subject to a step function disturbance of magnitude Q. It is charac ter i s t ic of 
many physical problems, for example in the stability theory of synchronous e lect r ica l motors 
(Refs. 1 and 2) and in the aerodynamic response of a i r f rames having non-linear normal force 
and pitching moment curves (Ref. 4). The step function i s , of course , a standard function for 
test ing the t ransient response of sys tems and gives r i s e to many other examples whose gover­
ning equation is (1 .1) . 

The equation 

d*x , d x - , , „V 

^ + b - + cx = Q (1.2) 

is a degenerate l inear form of (1 .1) , where b and c a re constants, and it is of interest to com­
pare the linear with the non-linear problem. In the case of (1 . 2) the solution is made up of the 
sum of the complementary function, which is the solution of the homogeneous equation given by 
Q aO, and any part icular in tegral , the lat ter necessar i ly involving Q. Provided that Q is of finite 
magnitude it follows direct ly from the principle of l inear superposition that if the homogeneous 
equation, Q^O, can be shown to have stable solutions then (1.2) has a completely stable solution. 
In the l inear problem, therefore , stability analysis can be res t r ic ted to the homogeneous equation. 

Except in those cases where it is possible to separate the variables or the equation 
is exact, no explicit general solutions to non-linear differential equations a r e known. It is of 
course cer tain that the principle of linear superposition is invalid for such equations and as a 
resul t the stability c r i te r ia for the homogeneous, QaO, and non-homogeneous, Ql'O, cases a r e 
different. This means that the stability and response problems cannot be considered separate ly , 
a s they a r e in a l inear sys tem, but involve an analysis of the stability of the response and t h e r e ­
fore will depend on the nature and magnitude of the forcing te rm Q. 

When the damping t e r m is absent from (1.1) it i s usually possible to obtain a first 
integral in the form 

iv» + f(Q,x) = E, ' (1.3) 

dx where v = — and E is a constant. This equation is then expressive of the energy balance in the 

sys tem, which is conservative when the damping is absent . The t e r m |v* corresponds to the 
kinetic energy, f(Q,x) the potential energy and E the total energy which is of course constant. 
A second integral is then possible by quadra tures . Depending on the form of C(x) the second 
integral may be analytic in t e r m s of known functions (very often elliptic integrals) or it m.ay be 
necessa ry to r e s o r t to numerical or graphical methods to evaluate the integral . 

When damping is present the system is dissipative or non-conservative and a first 
integral corresponding to the energy balance equation (1 . 3) is no longer obtainable or approp­
r i a t e . If the damping is not too large the solution may be obtained by an analj'tic i teration p ro ­
cedure the s tar t ing point of which is the solution to the degenerate problem of zero damping. 
The success of this method will depend on the ra te at which the process converges, rapid con-

dx 
vergence being consistent with small values of the damping t e rm B* (x) — 



- 2 -

The stability of the response , i . e . whether or not the system set t les down to a steady 
value, or at least an oscillation of finite amplitude, is of importance in many applications and 
par t icular ly so when dealing with sys tems whose damping or stiffness change sign. In the case 
of second or lower order sys tems with a step function input, it is not necessa ry to have an ex­
plicit expression for the response in order to determine the stability of the motion since this 
can be t reated much more conveniently and elegantly by Poincare ' s theory of singular points in 
the phase plane. (See Refs. 2, 3, and 4). The advantage of this method can only be fully ap ­
preciated when it is recal led that the al ternat ive is to consider the stability within the f r ame­
work of the interation procedure the conditions for convergence of which a r e generally not fully 
known.* There is in fact a second al ternat ive method known as Lyapunov's second or direct 
nnethod (see Ref. 5) but this will not be considered he re . 

The object of the paper is to obtain stability c r i te r ia for a specific equation of form 
(1.1) and compare these with numerical solutions from a digital computer. Having established 
the usefulness of the c r i t e r i a they a r e then to be applied to the problem of the stability of the 
shor t -per iod motion of an a i r f rame having non-linear aerodynamic charac te r i s t i cs in pitch and 
subject to a step-function deflection of the elevator . 

* This a r i s e s because it is usually impossible to state the form of the general t e rm in the 
resul t ing s e r i e s solution and therefore tes ts for convergence a r e ei ther impossible or incomplete. 



NOTATION 

a, b , c, d 
a,, a^, a , 
b , , b 3 , . . . 

C j . 

m 
q 
t 

e .g . 

"w 

constants in Po inca re ' s theory of singular points 
constants in the expression for cr i t ical initial velocity W ^ p , equation (6.9) 

constants in the an t i - symmet r i c functionB(x) 
constants in the an t i - symmet r i c function C(x) 
a i r f rame m a s s 
angular velocity about axis of pitch 
t ime 

^^/dt 

perturbation in velocity along axis of yaw 
any dependent var iable ; often displacement. See equation (1 .1) . 
distance of centre of gravity aft of reference line 

m \ 3 w / w = 0 

'w 

n i r 

mv(, = 

Z 3 . Z s . 

m, , m, , 
A,. = 

A3. = 
B 
B , . = 

B3, = 

B(x) = 

C(x) = 

D 

t> 
F 

M 
P(x,v) 1 
Q(x.v) J 
Q 
U 
U„ 

mVaqy q = 

m \^9T) J 77 = 

B U W J W 

B Uq q = 0 

1 ^ 3 M \ 
B V 9 V w 0 

constants in the force and moment relat ions 
of equation (5.1) 
(Uo+Zq)m^-mqZ^ 

(Uo+Zq)m3-mqZ3 

moment of inert ia about the axis of pitch 
(Uo+Zq)m^+mq+z^ 

3Z3 

b , x + b j X ' + 

the operator "^/^j^ 

the discr iminant [ B ' ( X ) J *- 4C'(x) 

the elevator forcing function r(UQ+Zg)m,j-^ m„lH 

moment about axis of pitch 
functions in Po incare ' s theory of singular points. 
See equation (2.4) 
magnitude of forcing step-function, equation (1.1) 
velocity tangential to flight path 
velocity along the longitudinal body axis 
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NOTATION (continued) 

W velocity along axis of yaw 
Z force along axis of yaw 

Wy 

« a i r f rame geometr ic incidence» /UQ • when « smal l . 
H total elevator angle of l-p + 1 

r\ perturbation in elevator angle 
6 angle of pitch 
3 perturbation in angle of pitch 
X root of charac te r i s t i c equation (2. 7), (3 . 6) or (5.14). 

? ordinate in x or w re fe r red to singularity away from the origin. 

Suffixes 

T r e fe r s to t r immed condition 
S.S. r e f e r s to s teady-s ta te condition 
M re fe r s to maxima or minima on pitching moment curve. 
P r e fe r s to unstable singularity at point P on t r im curve. 

A dot over a var iable indicates differentiation with respect to t ime, whilst a pr ime 
indicates differentiation with respect to x or w. 



2. O Po inca re ' s Theory of Singular Points in the Phase-Plane 

The stability of the solution to (1.1) can be analyzed by the phase-plane method which 
is given in detail in Refs. 2, 3 and 4. 

Writing v = -;^ , then -r-j = v — and (1.1) becomes 
dt 

v ^ + B ' (x)v + C(x) = Q 
dx (2.1) 

The graphs of the solutions of this equation in the xv-plane, known as the phase plane, a r e r e f e r ­
red to as "integral cu rves" and through each ordinary point in the plane there passes only one 
such curve. Alternatively equation (2.1) may be writ ten as an equivalent pair of equations. 

^ = Q - C(x) - B ' (x). V ) 
dt . 

d_x 
dt 

) ' 
(2.2) 

dv dx 
which define a field vector having components — and — ; this vector is always tangential to 
the integral curve and indicates the direction in which t is increasing. 

The stat ionary positions of equilibrium of (2.1) or (2. 3) correspond with the singulari t ies 
of the equivalent equation 

dv ^ Q - C(x) - B' (x).v ^2 3j 
dx V ' 

which defines the slope of the field vector , and analysis of the charac ter of these singulari t ies 
gives considerable insight into the nature of the motion near these points. More generally, 
consider the singulari t ies of the equation 

dv 
dx 

P(x.v) 
Q(x,v) ' 

(2.4) 

which a r e defined by P(x,v) = Q(x,v) = 0. Since the origin can always be changed to correspond 
with the singular point, then analysis can be res t r i c ted to singularit ies at the origin. 

When (2.4) has a singularity at the origin then it is assumed (Poincaré) that it may be 
writ ten in the s e r i e s form 

dv _ ax + bv + p(x,v) 
dx ex + dv + q(x, v) 

(2.5) 

where p(x,v) and q(x,v) a r e the remaining t e r m s of se r ies whose lowest t e r m s a r e of second 
degree at least . Fu r the r , if the constants obey the inequality , 

A = | ; ^ | = a d - b c ^ 0. 

then the integral curves behave, in the neighbourhood of the singularity, a s if p(x, v) and q(x, v) 
were absent . 

The singulari t ies of the reduced equation 

ax + bv dv 
dx ex + dv 

(2.6) 

a r e of four distinct types known as nodes, cen t res , spiral points and saddles respect ively and 
each has a charac te r i s t ic geometry, sometimes re fe r red to as i ts "topological configuration". 
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NOTATION (continued) 

W velocity along axis of yaw 
Z force along axis of yaw 

W) 
05 airframe geometric incidence" /UQ • whence small. 
H total elevator angle of »Jrp + n 

n perturbation in elevator angle 
6 angle of pitch 
3 perturbation in angle of pitch 
X root of characteristic equation (2.7), (3.6) or (5.14). 
C ordinate in x or w referred to singularity away from the origin. 

Suffixes 

T refers to trimmed condition 
S.S. refers to steady-state condition 
M refers to maxima or minima on pitching moment curve. 
P refers to unstable singularity at point P on trim curve. 

A dot over a variable indicates differentiation with respect to time, whilst a prime 
indicates differentiation with respect to x or w. 



2 . O P o i n c a r e ' s T h e o r y of S ingu la r P o i n t s in the P h a s e - P l a n e 

T h e s t a b i l i t y of the so lu t ion to ( 1 . 1 ) can be a n a l y z e d by the p h a s e - p l a n e m e t h o d which 
i s g iven in d e t a i l in R e f s . 2, 3 and 4 . 
,Tr -̂ ^ dx ., (?x dv J /i i \ • 
W r i t i n g V = -Tj- , t h e n -r—5 = v — and ( 1 . 1 ) b e c o m e s 

v ^ + B ' (x)v + C(x) = Q . 
dx 

( 2 . 1 ) 

T h e g r a p h s of the s o l u t i o n s of t h i s e q u a t i o n in t h e x v - p l a n e , known a s t h e p h a s e p l a n e , a r e r e f e r ­
r e d to a s " i n t e g r a l c u r v e s " and t h r o u g h e a c h o r d i n a r y point in t h e p lane t h e r e p a s s e s only one 
s u c h c u r v e . A l t e r n a t i v e l y equa t ion ( 2 . 1 ) m a y be w r i t t e n a s an equ iva l en t p a i r of e q u a t i o n s . 

^ = Q - C(x) - E ' ( x ) . V ) 
dt . 

dx 
dt 

= V 
) • 
) 

(2.2) 

dv dx 
which define a field vector having components — and — ; this vector is always tangential to 
the integral curve and indicates the direction in which t is increasing. 

The stat ionary positions of equilibrium of (2.1) or (2.3) correspond with the singulari t ies 
of the equivalent equation 

dv 
dx 

Q - C(x) - B' (x).v 
(2.3) 

which defines the slope of the field vector , and analysis of the character of these singulari t ies 
gives considerable insight into the nature of the motion near these points. More generally, 
consider the singulari t ies of the equation 

dv 
dx 

P(x,v) 
Q(x,v) ' (2.4) 

which a r e defined by P(x,v) = Q(x,v) = 0. Since the origin can always be changed to correspond 
with the singular point, then analysis can be res t r i c ted to singulari t ies at the origin. 

When (2.4) has a singularity at the origin then it is assumed (Poincaré) that it may be 
wri t ten in the se r i e s form 

dv _ ax + bv + p(x,v) 
dx ex + dv + q(x, v) 

(2.5) 

where p(x,v) and q(x,v) a r e the remaining t e r m s of s e r i e s whose lowest t e r m s a r e of second 
degree at least . Fu r the r , if the constants obey the inequality 

A = | ; ^ | = a d - b c ^ 0. 

then the integral curves behave, in the neighbourhood of the singularity, as if p(x,v) and q(x,v) 
were absent. 

The singulari t ies of the reduced equation 

ax + bv dv 
dx ex + dv 

(2.6) 

a r e of four distinct types known as nodes, cen t res , spira l points and saddles respectively and 
each has a charac te r i s t ic geometry, somet imes re fe r red to as its "topological configuration". 
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C r i t e r i a for d i s t i n g u i s h i n g the t ype of s i n g u l a r i t y a r e ob ta ined f r o m t h e c h a r a c t e r i s t i c equa t ion 

\' - X ( b + c) - (ad - be) = 0 ( 2 . 7 ) 

which h a s t h e r o o t g 

T h r e e i m p o r t a n t c a s e s a r e d i s t i n g u i s h e d , a s fo l lows . 

lOtg .. 

i| (b + c) inb+c)" + 4(ad - be)! ^j 

R o o t s r e a l and u n e q u a l . T h e s e a r i s e w h e n t h e d i s c r i m i n a n t (b + c) * + 4(ad - be) i s 
p o s i t i v e . T h e s u b - c a s e s a r e : if A>0 then '^a /x, i s n e g a t i v e and c o r r e s p o n d s to a s a d d l e po in t , and 
if A< 0 then ^«/x, i s p o s i t i v e and c o r r e s p o n d s to a n o d e . In the l a t t e r c a s e , if X, and Xj a r e both 
n e g a t i v e the node i s s t a b l e , w h e r e a s if X, and X̂  a r e bo th pos i t i ve t h e node i s u n s t a b l e . 

R o o t s c o m p l e x con juga t e . C o m p l e x r o o t s o c c u r when the d i s c r i m i n a n t i s n e g a t i v e . If 
t h e r e a l p a r t of t h e r o o t i s n e g a t i v e t h e i n t e g r a l c u r v e s a r e s t a b l e s p i r a l s , w h e r e a s if t h e r e a l 
p a r t i s p o s i t i v e t h e c u r v e s a r e u n s t a b l e s p i r a l s . When the r o o t s a r e p u r e l y i m a g i n a r y the s i n ­
g u l a r i t y is a c e n t r e ; h o w e v e r , u n d e r t h e s e cond i t i ons the s i n g u l a r i t y of ( 2 . 6 ) i s not n e c e s s a r i l y 
t ha t of ( 2 . 5 ) and t h e h i g h e r o r d e r t e r m s in p (x ,v ) and q (x ,v ) h a v e t o b e c o n s i d e r e d . 

R o o t s r e a l and e q u a l . T h e s i n g u l a r i t y i s a node and i t s s t a b i l i t y i s gove rned the s a m e 
w a y a s if t h e r o o t s w e r e u n e q u a l . 

3 . 0 S tab i l i t y C r i t e r i a for a P a r t i c u l a r S e c o n d - O r d e r E q u a t i o n . 

T h e s i n g u l a r i t i e s of (2 . 3) a r e def ined by Q - C(x) = 0, v = 0 and t h e r e f o r e the n u m b e r 
of s i n g u l a r po in t s wi l l depend on t h e f o r m of C(x ) . It w a s shown in Ref . 4 t ha t t h e a n t i - s y m m e t r i c 
f o r m for c(x) i s p a r t i c u l a r l y v a l u a b l e , i . e . 

C ( x ) = C,X + CjXS + C X5 + 

and can be used to r e p r e s e n t a wide c l a s s of p r a c t i c a l non l i n e a r i t i e s . F o r t h e r e m a i n d e r of 
t h i s p a p e r a t t e n t i o n wi l l be r e s t r i c t e d to e q u a t i o n s in which B(x) and C(x) a r e c a p a b l e of r e p r e s e n t ­
a t i on by power s e r i e s in odd p o w e r s of x . The n u m b e r of s i n g u l a r po in t s of ( 2 . 3 ) i s t hen equa l 
t o the n u m b e r of unequa l r o o t s of the equa t ion 

c,x -I- CjX^ + c^xs + = Q , ( 3 . 1 ) 

and t h e r e f o r e dependen t on the n u m b e r of t e r m s , n, u s e d to r e p r e s e n t C(x) . F o r s i m p l i c i t y 
only t h e f i r s t two t e r m s a r e u s e d in the r e m a i n d e r of t h e a n a l y s i s , a l though t h i s c a n r e a d i l y be 
ex tended to any o t h e r r e a s o n a b l e n u m b e r of t e r m s . 

F o r a g iven v a l u e of Q t h e s i n g u l a r po in t s of ( 3 . 1 ) a r e in fact the e q u i l i b r i u m or s t e a d y -
s t a t e p o s i t i o n s of the s y s t e m and c a n r e a d i l y be e v a l u a t e d . S e v e r a l c a s e s ex i s t depend ing of the 
s i g n s of c, and Cj. T h o s e of e n g i n e e r i n g i n t e r e s t a r e : 

(a) c ,>0, C3>0, c o r r e s p o n d i n g to a " h a r d " s y s t e m in which the s t i f fness i s i n i t i a l l y p o s i t i v e , 
(b) c, >0, c ,<0 , c o r r e s p o n d i n g to a "sof t " s y s t e m in wh ich t h e s t i f fness i s i n i t i a l l y p o s i t i v e 
and 
(c) c, <0, C3>0, c o r r e s p o n d i n g to a " h a r d " s y s t e m in which the s t i f fness i s i n i t i a l l y n e g a t i v e . 

In add i t i on if B i s t a k e n in the f o r m 

B ( x ) = b , x + bjX3 

t hen 

B' (x) = ^ = b , -I- 3b,x2. ( 3 . 2 ) 
dx ' 
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in which the cases of pract ica l in teres t a r e bi>0, b3>0; bi>0, b3<0; and bi<0, b3>0. 

Typical curves of the steady state values of x ve r sus Q for the cases considered a r e shown 
in F ig . 1. It can be seen that for a given positive value of Q there exists one singular point for 
case (a) and three each for cases (b) and (c) when Q is relat ively smal l , reducing to one each when 
Q is g rea te r than the maximum or less than the minimum in the curve. Restr ic t ing attention to 
positive values of Q only, the singular point in (a) has a value, Xg g >0; in (b) two of the values 
a r e positive and one negative, whilst in (c) one value is positive and two are negative. Only in the 
degenerate case Q̂ Ô i s the singular point at the origin. In addition, on F ig . 1, curves of B'(x) 
a r e shown. 

Since the singular points of (2. 3) a r e in general away from the origin then it may be writ ten 

dv Q - B'(xg g -h ?)v - C(Xg g + ?) 
(3.3) 

where x^ g , 0 a r e the co-ordinates of the singular point and J is the displacement co-ordinate 
re fe r red to the singular point. Substituting for B'(x) and C(x) then gives 

dv Q - C i ( x s . s . + g) - C3(xs.s . + g ) ' - T b , + 3b3(xB.s. + gy] v 
d | " V 

Expanding, r emember ing that for the present case 

Q = C(x S . S . ) = c,x S . S . C j X ^ 

the equation for the slope of the field vector becomes 

dv _ -c,g - C3(3x^s.s.g -̂ 3x „ ^ ĝ -H g )̂ - [ b , + 3b,(x„ „ + Q^v 
dg V 

which in the first approximation reduces to 

dv = -(c,-H 3 c , x | . s . )g - (b, -t- 3b3X»e.s.)v 
dg V 

Comparing with the standard form, equation (2 .6) , 

a* -(c, -I- ScjX's, s_), b«i -(b, + SbjX^g^ g ), c E 0 and d a l . 

The roots of the charac te r i s t ic equation a re 

T^i.ï = i [ - ( b , + SbjX^g.g.) ± [ ( b , + Sh.x's.a.)' " 4(c, + Sc^xag. g.)] ' J 

(3.4) 

( 3 . 5 a ) 

( 3 . 5 b ) 

= i [ B'(x)±D = 

where j ) = [B'(xy]^ - 4C'(x), is the discr iminant . 

(3.6) 

The stability of the motion near the s teady-s ta te value of the sys tem, as expressed by 
(3.6) and discussed in Section 2, can conveniently be summarized on a diagram of the type shown 
in F ig . 2. Starting with Q = 0, the variation of Xg g and thereby of B''(x) and C'(x) may be ob­
tained and the appropriate curves superimposed on Fig . 2. This then permi ts a ready a s ses smen t 
of the nature of the singulari ty at Xg. g, , 0. Typical curves for the various cases a r e shown in 
F ig s . 3 and 4. Consider each of these in turn: 

b,>0, ci>0, C3>0 

In F ig . 3(a), A corresponds to the origin at which Q = 0, B'(x) = b, and C'(x) = c^. 



The value of b, has been taken relat ively small and the singularity is a stable spiral ; al ternatively 
with higher damping the singulari ty at the origin could be a stable node, point E . With b3>0, 
increase or decrease of Q now gives r i s e to an increase of B'(x)and C* (x) along curve AB , until at B the 
charac ter of the singularity changes from a stable spira l to a stable node; the value of xg. s .a t 
which this change takes place corresponds to the disappearance of the discriminant and is given by 

J ) = (b, -h SbjX^s.s.)* - 4(c,-f 303X^8. s . ) = 0 

or 

9h,»(3^s.s.)a-h (6b,b3 - 12c,)x2s,g. -1- (b, * - 4c,) = 0 

which has the solution 

x s . s . = [ ^ 2 [ 2 c 3 - b , b 3 ± 2 ( c 3 2 + c,b3* -b,b3C3) ^] l i (3.7) 

in which only r ea l values a r e appropr ia te . In the degenerate case when bj = 0, the value of Xg, g. 
corresponding to (3. 7) beconnes 

''S.S. { i k < b , ^ - 4 c , ) ^ (3.8) 

which can only have rea l values when b,2>4ci_ i . e . the initial point A on Fig. 3(a) must be above 
the curve £ ) = 0. Such a point is marked E, and increase or decrease of Q takes place along the 
curve E F , F corresponding to the value Xg g_ given by (3.8) at which the singularity changes from 
a stable node to a stable sp i ra l . 

When b3<0 the damping dec reases as Q inc reases or decreases until at C, Fig . 3(a), the 
curve meets the damping boundary B'(x) = 0. At this point the singularity at xg. g. , 0 becomes 
an unstable sp i ra l , thereby demonstrat ing that t rans ien ts having values of Q which cause B* (x) 
to become negative a r e unstable since the motion in the neighbourhood of the s teady-state value, 
predicted by stiffness considerations alone, Fig . 1, is unstable. The cri t ical value of xg .g . 
for which the system goes unstable is given by 

B'(x) = b, -̂  3b33t'g 0 = 0 

or 
I 

1 b , \ 2 
* s . s . ^ 3 b^ 

j , > 0 , Q O , C3<0 

(3.9) 

Again A corresponds to the origin Q = 0. With increase or dec rease of Q the stiffness 
C'(x) dec reases and provided hj is not too large and negative, the nature of the change in the 
singulari t ies at xg. g. 0 a re typified by curve ABC or AEF. The first change in the charac ter of 
the singulari t ies occurs at B or E where the change to nodal point takes place. The steady-
state value for3j = 0 a re again given by (3.7) or (3 .8) . 

With further increase or decrease of Q a point is reached, C or F , where the stiffness 
changes sign i . e . 

C ' ( x ) = c, -H 3c3Xa a. = 0 

or 

3 

i 
' , (3.10) C3 

corresponding to the maxima or minima on the Q, Xg_ ĝ  curves of Fig 1(b). It follows that 



t rans ients having values of Q which would make xg. s . ,on the basis of the curves of F ig . 1(b), lie 
outside the region between the maxima and minima, a r e unstable. 

With b3<<0 it is possible for the system to reach the damping boundary, G, before the 
stiffness boundary. The value of Xg g for which this occurs is given by (3.9) 

b , > 0 , c ,<0 , C3>0 

The singularity at the origin is a saddle point and with bj, not too large and negative the 
singulari t ies change along typical curves ACEF or AGHJ. At the stiffness boundary, C'(x) = 0, 
corresponding to the minima and maxima on the Q, Xg. g. curves of F ig . 1(c), the singulari t ies 
become stable nodes. In a pract ica l system this means that the system will never settle down 
to s teady-s ta te values such as C or H, F ig . 1(c), but will depart to one or other of the al ternative 
stable s ingulari t ies A or B, or E or F . The direction in which the system moves will depend on 
the initial accelerat ion. 

X = Q. t = 0 

i . e . the stable singularity at which the system set t les will have a displacement of the same sign 
as Q. In F ig . 1(c), B and E will be the appropriate settling points, r a the r than A or F , when 
subject to t rans ien ts of magnitudes numerical ly less than those corresponding to the maxima or 
minima. This means that at Q = 0 the system will r e s t at values given by 

Q = c,x s.s.-i- Cjx ' s . s . = 0, X g . s . ^ 0, 

or 

Xs . s . = 
C 3 

the values of stiffness corresponding to (3.11) a r e 

C''(x) = c, + 3c. 
C3 

-2c. 

(3.11) 

(3.12) 

Taking E, F ig . 3, a s a typical point given by (3.11), then application of step^function disturbances 
Q of the same sign as the displacement will cause the singularity at xg. g. , 0 to move along E F ; 
al ternat ively if the sign of the dis turbance, Q, is of opposite sign to the displacement then the 
singularity moves along EC becoming unstable at the stiffness boundary. In this lat ter case the 
instability at the stiffness boundary is not indicative of unbounded displacement, since further 
increase in the numerical value of Q will cause the system to jump to the other stable singularity, 
this being of opposite sign in displacement. 

b,<0, b3>0, c,>0, c,>0 

All the cases where b,<0, b3>0 a re character ized by the possible existence of ' l imit 
cycles" , see Ref. 6. In F ig . 4(a), A is an unstable spi ra l point about which oscillations of increasing 
amplitude will develop. With increasing displacement from the origin the damping, B'(x), inc reases 
until it r eaches ze ro . At this condition there is established a stable oscillation known as a limit 
cycle whose amplitude corresponds to the displacement OL in Fig. 1(f) i . e . the limit cycle amp­
litude is given by B'<'x) = 0, or 

'LC ^ b 3 
(3.13) 

With vanishingly small values of Q the amplitude of the limit cycle is that of (3.13) . 
Increasing values of Q, corresponding to moving along curve A to B in F ig . 4(a), causes a shift 
in the point about which the limit cycle oscillation occurs and a reduction in the amplitude. 
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The new origin of the limit cycle motion will be at the value of Xg 
i . e . at solutions of 

s. 
given by stiffness considerations 

Q '1-^S. s . + C T X ' s. s . 

and the amplitude will be 

b . 
'LC, -̂̂ S^ • • S . S . (3.14) 

When Q i s of sufficient magnitude to cause B'(Xg g ) to be zero , corresponding to B, then the 
amplitude of the limit cycle becomes zero and the t ransient response becomes very s imi lar to 
that obtained if the singular point at Xg g ,0 were a stable node, 

For l a rger values of Q the singular point at Xg g , 0 is a stable sp i ra l , or eventually 
a node. These a r e s imi la r to the cases of F ig . 3(a), but the nature of the t ransient motion will 
differ a s a resul t of the negative damping experienced in the ea r l i e r portion of the motion. 

b, <0, b3>0, c, >0, C3<0 

In this case two possibil i t ies exist , Fig . 4(b), With a relat ively small amount of neg­
ative damping initially, inc rease or decrease of Q is associated with a limit cycle whose a m p ­
litude dec reases in a s imilar way tb the previous case . The nature of the singularity from B 
through C to E is then s imi la r to the second case . F ig . 3(b), bj>0. Alternatively the variation 
may follow the curve FG in which the singulari t ies a r e always unstable. 

b,<0, b3>0, c,<0, C3>0 

The initial point F , F ig . 4(c), i s a saddle point. Small values of Q cause the system 
to diverge, however, with increase of displacement the stiffness changes sign and the motion 
changes, during the t rans ient , to a limit cycle whose origin is the value of Xg_ g_ at the stiffness 
boundary and amplitude corresponds to the difference of xg, g. , as given by stiffness considerations 
alone, at the points G and H. i . e . the origin of the limit cycle is given by 

C(x) = c 1 - S . s . + ^Tl- S . S = 0 

or 

- . < ^ ) * 

and its amplitude is 

^LC. = ( - * ^ ) * 
-

( • ^ ; 

(3.15) 

(3.16) 

With increase of Q the amplitude of the limit cycle dec reases in a s imilar way to that 
discussed in the fourth case . F ig . 4(a). 

Alternatively, following the curve ABCE, the damping boundary may be reached pr ior 
to the stiffness boundary. In this case no limit cycle develops and the singular point variation 
is s imi la r to that of the third case , F ig . 3(c), bj>0. 

These then a r e the six cases of engineering interest and descr ibe the nature of the 
singular points at the s teady-s ta te values given by C(x) = 0. They a re not in themselves suf­
ficient to determine the stability of the t ransient motion. 
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Returning to equation (3 .5a) , it can be seen that the slope of the field vector in the phase 
plane depends on Xĝ  g_ , g and v. This means that if the system is initially at res t at a singularity 
X v = 0 in the phase plane, then the stability can be decided by an instantaneous change in the 
orientation of the singular points, corresponding to the changed values of Q. On this basis the 
initial position of r e s t becomes an ordinary point in the phase plane and the system will either 
move to a stable singulari ty, not necessar i ly the neares t one, diverge indefinitely or limit cycle. 
The t ransient m.otion of the system is described by the integral curve through this ordinary initial 
point and the stability or o therwise . This movement can only be completely determined by ref­
erence to the form of the integral curves . 

It is convenient to use the curves of F ig . 10, where for the present purpose x and v a r e 
identified with W and W respect ively, x^ is the s tar t ing point, Xg the position of the neares t stable 
singularity and Xp the neares t saddle point. Taking the cases in turn 

b,>0, c,>0, C3>0 

There is only one singular point for a given value of Q, fig. 10(a), and since this is a 
stable L-piral or node all integral curves move into it . 

b,>0, c,>0, c,<0 

A stable singularity can only exist if Q l ies between the points of maxima and minima 
on the Q, x curve. For Q between these l imits there a re three singulari t ies consisting of a stable 
spira l or node lying between two saddle points. Fig . 10(b). In order that the system will sett le 
at the stable singularity the initial point x^ must lie between the saddle points, i . e . the initial 
and final positions must not be separated by an integral curve which passes through a saddle. 

b,>0, c,<0. c,>0 

When Q lies between the minima and maxima of the Q, x curve three singulari t ies exist , 
these consisting of a saddle point lying between two stable spira ls or nodes. Fig . 10(c). If A 
l ies between a stable singularity and a saddle it will always settle at that stable singularity. When 
x^ is numerical ly grea te r than the x co-ordinate of the stable singularity the system will con­
tinue to sett le at this singularity until an initial displacement is reached at which A is separated 
from E by an integral curve passing through the saddle. The integral curve through A now moves , 
not into E, but to the stable singularity on the other side of the saddle. 

The complete c r i te r ia for stability of the response of a step function a r e therefore 

(1) The singular point at the steady state value given by C(x) = Q must be stable. 

(2) On the phase plane diagram associated with the final steady state values, the final and 
initial positions of the system must not be separated by an integral curve passing through a 
saddle point. 

4 . 0 A Numerical Example. 

As a check on the validity and accuracy of the stability c r i te r ia obtained in Section 3 .0 , 
a limited number of solutions of th.> equation 

X + hx + c , x -H CjXï = Q , Q ~ 0 , t < 0 

have been obtained on the Fe r r an t i "Pegasus" digital computer at The College of Aeronautics . 
In these examples the damping was taken constant and positive, thereby excluding limit cycling 
from the solutions. The values of the coefficients used were as follows: 
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(a) (1) b = 0 . 6 , c , = 1 . 0 , C3= 1 .0 , Q = O to 2 . 1 

( l i ) b = 0 . 6 , c = 0 . 0 5 , 0 3 = 0 . 0 4 , Q = 0 to 0 . 6 

(b) b = 0 . 6 , C i = 1 . 0 , C 3 = - 1 . 0 , Q = 0 t o 0 . 5 

(c) b = 0 . 6 , c , = 1 . 0 , c , = 1 . 0 , Q = 0 t o l . 0 . 

T h e t r a n s i e n t r e s p o n s e s ob ta ined a r e shown p lo t t ed in F i g s . 5 , 6 , 7 and 8 in which t h e d i s p l a c e m e n t 
c o - o r d i n a t e h a s been n o r m a l i z e d by d iv i s i on by t h e a p p r o p r i a t e s t e a d y s t a t e v a l u e . T a k i n g the 
c a s e s in turn: 

(a) (i) 

H e r e t h e i n i t i a l s t i f fnes s i s p o s i t i v e a n d £ ) < O f o r a l l v a l u e s of Q . A s e x p e c t e d t h e 
s e t t l i n g down m o t i o n i s o s c i l l a t o r y for a l l v a l u e s of Q . The r e s p o n s e c u r v e s t end to the l i n e a r 
r e s u l t a s Q-»0, i n c r e a s e of Q p r o d u c e s an i n c r e a s e of f r e q u e n c y of the o s c i l l a t i o n about the 
s t e a d y - s t a t e . It i s a l s o ev iden t tha t t h e a m o u n t of " o v e r s h o o t " and " u n d e r s h o o t " i s dependen t 
on Q . T h i s f e a t u r e of the c u r v e s i s o u t s i d e the s c o p e of the p r e s e n t s t a b i l i t y i n v e s t i g a t i o n and 
to a n a l y s e i t , in t e r m s of b , c , , C3 and Q, would r e q u i r e an a n a l y t i c so lu t i on t o t h e e q u a t i o n . 

(a) ( i i ) 

Aga in the i n i t i a l s t i f fness i s p o s i t i v e , butX)>0. At l a r g e v a l u e s of Q the d i s c r i m i n a n t 
35 b e c o m e s n e g a t i v e , c o r r e s p o n d i n g to the t r a n s i e n t s e t t l i n g down m o t i o n b e c o m i n g o s c i l l a t o r y . 
With i n c r e a s e of Q the m o t i o n b e c o m e s m o r e d a m p e d unt i l at jD=0 b o u n d a r y t h e t r a n s i e n t b e c o m e s 
n o n - o s c i l l a t o r y in c h a r a c t e r . T h i s o c c u r s when Xg g h a s t h e v a l u e g iven by ( 3 . 8 ) , i . e . 

Xg g = ( i )2 = 0 . 5 8 0 

and 

Q = 0. 05 X 0. 580 -t- 0. 04 X 0. 5 8 0 ' = 0. 037 . 

(b) 

With Q s m a l l , jL)<0, and the s i n g u l a r i t y at x g g i s a s t a b l e s p i r a l . I n c r e a s e of Q 

c o r r e s p o n d s to i n c r e a s e o f ^ , un t i l D = 0 when 

' • S . S . 
= r — ^ (0 .62 - 4 X l ) r = 0 .551 

(_12 X 1 J 

and 

Q = 0 . 5 5 1 - 0 . 5 5 1 ' = 0 . 3 8 4 . 

F u r t h e r i n c r e a s e of Q c a u s e s a r e d u c t i o n in s t i f f n e s s , t he z e r o s t i f fness b o u n d a r y be ing r e a c h e d 
when 

X s . s . = < - i - J i ) ' = 0 -580 

and 

Q = 0 . 5 8 0 - 0 . 5 8 0 ' = 0 . 3 8 5 
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F r o m this it can be seen that in t e r m s of Q theXJ =0 and C'(x) = 0 boundaries a r e very close 
together . The computer r e s u l t s , F ig . 7, indicate that instability occurs at the lower value 
Q = 0.36 - 0 .37. This difference is probably due to instability in the Runge-Kutta i teration p ro ­
cedure used to perform the machine integration. 

(c) 

In this case the singularity at the origin is a saddle and any positive initial accelerat ion 
will cause the system to move to the stable sp i ra l point at a positive value of Xg g The mag­
nitude of Q determines Xg g_ and has a marked influence on the " r i se t ime" and frequency of 
the settling down motion, F ig . 8. The r e su l t s of Fig . 8 do not have very much engineering s ig­
nificance since if such a system were employed any transient would normally commence from a 
stable condition of equil ibrium. If for instance the initial condition corresponded to a stable sp i ra l 
point at a positive value of x, then positive step-functions of Q would produce response curves 
s imi la r to Fig . 5. Small negative step-functions of Q would produce curve s imi lar to F ig . 7. 
Large negative step-functions of Q would cause the system to jump to negative values of Xg_ g and 

would presumably have a t rans ien ts s imi lar to that sketched in F ig . 9. 

Summarizingi the computer solutions show that the character of the t ransient settling 
down motion is direct ly related to the nature of the singularity at the s teady-sta te condition and 
is accurate ly predicted by the c r i t e r i a of Section 3 .0 . 

5. 0 Stability of the Short -Per iod Motion of an Airframe Subject to a Step-Function Elevator 
Disturbance. 

In Ref. 4 the author has shown how to introduce non-linear normal force and pitching 
moment charac te r i s t i cs into the equations of motion of an airframe whose dontiinant mode of 
oscillation is the "shor t -per iod" motion. For this purpose the charac te r i s t i cs a r e taken to be 
of an t i - symmet r i c form and a r e expressed analytically as 

Z(w) 
= z ^ W -I- Z j W ' + ZsW' -I-

and 

M(w) 
B 

m^W + mjW' -1- nijW' -H 

(5.1) 

Upon substituting these expressions into the equations of motion and eliminating 3 between them, 
the equation of motion in the ver t ica l velocity, W, becomes 

^ - [ (Uo + Zq)mvt + mq + Zw + ^ZjW' . • • •] \^ " [(U,, + Zq)m^ - mqZ^^ W 

- [(Uo+ V " 3 - m q Z 3 ] W ' = [z„D-f (Uo + Zq)m„ - z „ m q ] H , (5.2) 

where 

W = w,j, -f w, (5.3) 

B =ri^ + n (5.4) 

and suffix rr, r e fe r s to initial t r immed conditions. In the present problem the increment in v e r ­

t ical velocity, w, a r i s e s from the application of a step-function disturbance of the elevator , ?} . 

Rest r ic t ing (5.1) to two t e r m s , then (5.2) becomes 
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where 

w - [ B , -I- B3(w,p + v/)^]^ - [ A,(w,j, + v/) + Aj(v/rj, + w ) ' ] 

= [ z ^ + (UQ + Zq)m;j - ZrjmqJ (r)rp +r]), 

A, = (UQ -I- Zq)mw - mqZ^ 

A, = (UQ + Zq)m, - mqZ3 

B , = (U^ + Zq)m^ + "iq + ^w 

B3 = 3Z3 

(5.5) 

(5.6) 

It i s now convenient to refer the w co-ordinate to the final s teady-sta te value Wg_ c. Write 

" S . S . + g , (5.7) 

(5.8) 

s. s . 
5)+A3(Wg_g_ +g ) ] 

and (5.5) becomes 

w - [B , + B3(Wg_g_ + g) ' ] w - [A,(W 

= [ Z T P + (UQ -)- ZQ)m„- z^mqj (;j,p +v) 

The s teady-s ta te condition i s defined by 

-AiWg.g. -A3w'g_g_ =[ (UQ+Zq)m^ - z ^ i q ] (n^ + r,), 

which upon substitution into (5.9) gives 

w- - [ B , + B3(Wg_ g+ g)^j w - [A ,g -f A3 [3W^g_ 6. ? + 3Wg_ g_ g % g^] J 

= 2„ ri 

(5.9) 

(5.10) 

(5.11) 

Following Poincaré , an expression is sought for the slope of the field vector in the g,g 
plane in the region of the singularityW ,0 . F o r t>0, ri , which is a Dirac delta function, i s 

zero , therefore in the first approximation (5.11) becomes 

g - ( B , + B3W'g_g )g - ( A , + 3A3W'g g )g = 0 (5.12) 

The problem described by (5.11) differs from that of Section 3 because of the t e rm 
Zr)'^, which gives r i s e to an initial velocity 

^ t = 0 1 = 1 ^») I W (5.13) 

and can have an important influence on the system stability. (See Ref. 7 for a discussion on the 
determination of initial conditions). For many a i r f rames with small elevators situated well away 
from the centre of gravity the value of z„ is smal l and the effect of initial velocity may in many 
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c i rcumstances be neglected. For moving wing configurations the effect is dominant and requ i res 
special t rea tment . In the present discussion attention will be focussed on the former , whilst 
cer tain aspec ts of the effect of initial velocity on the stability will be discussed in Section 6. 0 

Neglecting then the initial velocity, the stability of the response to a step-function e l e ­
vator deflection may be t reated in a s imi lar way to the problem of Section 3. The roots of the 
charac te r i s t i c equation become 

X , _ , = i [ ( B , + B 3 W \ . g _ ) ±[(B, +B3W%.g.)^-f 4(A, + 3A3W%.g.)] ^ J (5.14) 

Write the equation of t r im , (5.10), in the form 

F = [ (Uo + Zq)m^ - z^mq 1 (rirj, + n) = -A,Wg_g_ - AjW^^g , ; 

identify F , W, -A, , -Aj, -B , and -B3 with Q, x, c ,̂ Cj, b , and3b3 respect ively in Section 3 and 
the discussion of a i r f rame stability can then proceed on the basis of F igs . 1 and 3. 

For a normal a i r f rame (aeroplane or miss i le) B, is negative, thereby excluding the 
possibili ty of a change from negative to positive damping and the associated limit cycling. The 
cases to be considered a r e therefore s imi la r to the first three discussed in 3 .0 . Taking these 
in turn: 

B.<0, A,<0, A3<0 

The dominant t e r m in A is Ugm^. Since m.̂ ,̂ is proportional to the centre of gravity 

margin then A, <0 implies that the a i r f rame is statically stable at low incidence. The t e r m Ugmj 

is dominant in A3 and with A3<0 the a i r f rame increases i ts static stability with increase of incid­
ence. Alternatively this may be descr ibed by saying that the aerodynamic stiffness inc reases 
with incidence,thereby constituting a "hard" sys tem. 

B3 can be of ei ther sign. Many a i r f rames having wings of low aspec t - ra t io of ax i -
symmetr ic body configurations exhibit W, C^, charac te r i s t ics whose slope inc reases 
over the whole of the useful incidence range, corresponding to Z3 and B3 being negative. Others 
have wings of higher a spec t - ra t io which stall at relat ively small incidences, an effect which can 
be represented approximately by taking Z3>0. The approximation involved is satisfactory provided 
the t ransient motion does not cause the incidence to increase very much above the s tal l . When 
oscillating through the stal l it is fairly certain that aerodynamic hys te res i s will occur, ( i . e . the 
W, Cg curve followed during the nose-up swing of the a i r f rame will not be r e - t r a ced during the 
subsequent nose-down swing) and the form used in (5.1) to represent the forces and moments 
will be inadequate. 

The point A, in Fig . 3(a), now corresponds to the origin of the F , W curve and the 
problem reso lves itself into deciding the stability of t ransients when moving from any typical 
singular point, corresponding to the final t r immed condition, along curves such as AB or AC. 
With B3 <0 the charac ter of the settl ing down motion can change from oscil latory to heavily damped 
and the boundary between these conditions is given by 

(B,-I- B3W^g_g_)% 4(A, -f- 3A,W%_g_) = 0 

[W,. [ - ^ ^ - S i S 3 i 6 [ A 3 + i A 3 B , B 3 - i A , B ; ] * | ƒ (5.15) 

or 

W s . s 
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With B3>0 the curve AC will meet the damping boundary when 

-B, -B3W'g .g . =0, 

or 

{ BjNi r (Uo + zq)m-vfr -̂  mg -f zw T ,:• i«v 

Now from (5.1) 

Z(w) „ , ,1,3 
- ^ = z^W + Z3W 

which upon differentiation with respec t to W gives 

1 dZ(w) . 
m dW ^w ^ "^'^'^ • 

The s tal l , which occurs at symmetr ica l values about zero incidence, is defined by 

dZ(w) 
dW 

or 

= 0, 

Wgtall = i-^S" (5.17) 

The values of z^ ,̂, mq and m^ will normally be negative and for this case Zj will have to be 
positive. It follows that the s teady-s ta te incidence for which the damping becomes zero is numer­
ically g rea te r than the stalling incidence by an amount 

^[l,-|.,i| - i ig / l ] , 
W/ where the incidence has been taken to be /u„ • This resul t must , of course , be t rea ted with 

some reserva t ion since it is unlikely that the "damping in pitch" t e rm 

(UQ + Zq)mv5, -I- mq 

will be constant for an oscillation which includes the s ta l l . However, it is equally unlikely that 
this t e r m will change sign and therefore it may be concluded that the previous statement r ega rd ­
ing the damping boundary is qualitatively t rue , but leaves uncertainty as to the amount the damping 
boundary exceeds the stalling incidence. 

B,<0. A.<0, A,>0 

Again the a i r f rame is statically stable at low incidence, but now the static stability dec reases 
with incidence, thereby constituting a "soft" sys tem. A notable example cf such an a i r f rame is 
the canard miss i le configuration which experiences considerable non-linear body lift and, as a 
resul t of the centre of p r e s su re of the non-linear body lift being ahead of the centre of gravity, 
develops a nose-up pitching moment. This configuration would normally have A3>0 associated 
with B,<0. 
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T h i s c a s e w i l l h a v e b o u n d a r i e s s i m i l a r t o t h o s e e x p r e s s e d by (5 .15 ) and ( 5 . 1 6 ) , 
add i t i on w i l l h a v e a z e r o s t i f fness b o u n d a r y g iven by 

but 

S A j W ^ . g . 0, W 
s . s . / 0. 

o r 

W S . S . 
' 3 • A, V r 1 1 i 

" 3 - (Ur. + zq)mw - mqZw 2 
( U Q + Zq)m3 - m q Z , J 

(5 .18 ) 

F r o m ( 5 . 1 ) 

M(w) 

m 
= m ^ W 4 m3W 

and the s y m m e t r i c a l l y d i s p o s e d po in t s of m a x i m a and m i n i m a on the p i t ch ing m o m e n t v e r s u s 
i n c i d e n c e c u r v e w i l l o c c u r a t 

W M (5 .19 ) 

Now z ^ and m„ wi l l n o r m a l l y be n e g a t i v e and it fo l lows tha t if Z3<0 then the s t e a d y - s t a t e i n c i d e n c e 

W M 
for wh ich t h e s t i f fness b e c o m e s z e r o i s n u m e r i c a l l y g r e a t e r than 

U 
. When Z3>0, the z e r o 

s t i f fness b o u n d a r y m a y be a t s m a l l o r g r e a t e r v a l u e s of i n c i d e n c e than M depend ing on the 
r e l a t i v e m a g n i t u d e of z ^ and Zj. U 

B ,<0 , A,>0 , A^<0 

H e r e the a i r f r a m e i s s t a t i c a l l y u n s t a b l e a t low i n c i d e n c e . With F = 0 the a i r f r a m e wi l l 
t r i m out a t v a l u e s of Wg g_ , g iven by 

F = - A , W g . g . - A 3 W g . g . 0, w, ^ 0, 

o r 

W. •A^^i 
A, 

and the c o r r e s p o n d i n g v a l u e of t h e s t i f fness wi l l be 

1̂ -'^AA; =-'^'-

( 5 . 2 0 ) 

( 5 . 2 1 ) 

T h e l ine C' (x) = - 2 c , , in F i g . 3(c) , i s now i n t e r p r e t e d a s a l ine of cons t an t s t i f fness - 2 A , . 
I n c r e a s i n g v a l u e s of F now c a u s e the s i n g u l a r i t y to m o v e a long E F o r H J . If F i s n e g a t i v e then 
the m o v e m e n t i s a l ong E C o r HG, b e c o m i n g u n s t a b l e a t t h e s t i f fness b o u n d a r y a s g iven by ( 5 . 1 8 ) . 
S ince m.^ >0 and m3<0, the va lue of W c o r r e s p o n d i n g to the s t i f fness b o u n d a r y can be e i t h e r g r e a t e r 
o r s m a l l e r t han Wjyj and in p a r t i c u l a r when z ^ < 0 , Z3<0 then W a t z e r o s t i f fness wi l l be >^j^-

T h e i n s t a b i l i t y a t t he s t i f fness b o u n d a r y c o n s i s t s of a j u m p to t h e r e m a i n i n g s t a b l e s i n g u l a r i t y , 
c o r r e s p o n d i n g to a change in s ign and i n c r e a s e of m a g n i t u d e of the t r i m m e d i n c i d e n c e . Obv ious ly 
t h i s s o r t of b e h a v i o u r i s out of the q u e s t i o n for an a e r o p l a n e , but p o s s i b l e on a m i s s i l e hav ing no 
a u t o m a t i c c o n t r o l s y s t e m . A s i n d i c a t e d in Ref. 8, when dea l ing wi th a r e a r - c o n t r o l l e d m i s s i l e a 
usefu l i n c r e a s e in a e r o d y n a m i c gain,(W/^)g_ g ^ can be obta ined by m a k i n g the a i r f r a m e s t a t i c a l l y 
u n s t a b l e a t s m a l l i n c i d e n c e . T h i s wi l l be offset by hav ing a r e g i o n a r o u n d W = 0 for which a s t a b l e 
t r i m cond i t ion cannot be ob t a ined , a t l e a s t not wi thout the u s e of a c l o s e d - l o o p c o n t r o l s y s t e m . 
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It was shown in Section 3. 0 that in addition to having a stable singularity at Xg g , the 
conditions for complete stability imposed limitations on the initial and final values of t r i m , 
i . e . limited the magnitude of the step function imposed. This condition has not been included 
in the present section since it will be seen to constitute a special case of the c r i te r ia developed 
in Section 6 .0 . 

6. 0 Stability of Short -Per iod Motion When ZT; is Not Small. 

As indicated in Section 5.0, when z^ is not smal l , the initial velocity | Ŵ  = Q I "" I T̂? I 
can under certain c i rcumstances have an important influence on the stability. Again the stability 
is t reated by assuming an instantaneous change in the orientation of the singular points, c o r r e s ­
ponding to a step-function change in F . When Zj, is not small there will be an appreciable value 
of W|. _ Q and thereby the initial position of r e s t i s t ransformed to an ordinary point in the phase-
plane with a known displacement from the new singulari t ies and an initial velocity W^ _ Q. Consider 
each case in turn: 

B, <0, A, <0, A,<0 

For each value of F there exists only one singularity, which will be stable if the damping 
is posit ive. In this case the system will always settle to the singularity r ega rd le s s of the sign 
of W^ = 0 . although the settl ing t ime will be l e s s for negative values of W, shown as W, in 
F ig . 10(a). 

B, <0, A, <0.A,>0 

For small positive values of F three singular points exist . Fig . 10(b), one stable spira l 
at positive W, one saddle at l a rger positive W and another saddle at negative W. Now when z_ 
and hence W, or Wg a re zero then a sufficient condition for stability is that the dashed line, r e p ­
resent ing the initial value of W, shall lie between the saddle points, bearing in mind that the 
orientation changes with F , Obviously when W, and Ŵ  a re small the same cr i ter ion is approx­
imately t rue . With increasing values of W^ = Q SL point is reached at which the integral curves 
no longer spi ra l in to the stable singulari ty. When W, is numerical ly grea te r than a cr i t ical 
value, (W^)^. which lies on the integral curve passing through the saddle point at negative W, 
then the motion diverges indefinitely in the negative sense . A s imilar divergence occurs if 
%>(%)c-

The interest ing problem here is to determine the cr i t ical values of W^ _ Q or the c o r r e s ­
ponding value of zjj for a given step change of F or v. Alternatively if z^ is fixed the problem i s 
to determine the magnitude of the step change in F or r; for which W^ = o reaches a cr i t ical value. 
As will be seen from Ref. 2, pp. 61-80, this problem is very s imi lar to that of determining the 
cr i t ical disturbance of a damped pendulum or the "pull-out torque" of a synchronous motor . 

Assuming that the a i r f rame is t r immed at a small positive incidence and z_ is negative 
(this is always t rue for the convention adopted), then for a r e a r controlled miss i le an increase 
of incidence is obtained by making 7?more negative and the associated value of Wj- = o = "^n 
will be positive. For a canard or moving wing arrangement an increase of incidence is achieved 
by making 77 more positive and therefore W^ = 0 = '^r} will be negative. 

Consider the case of a canard a i r f rame , for which the conditions A^<0, A3>0 a re cha rac ­
t e r i s t i c (a feature ar i s ing from the centre of gravity being behind the centre of p res su re of the 
non-linear body lift) and assume that it is t r immed at a positive incidence corresponding to the 
point A on Fig. 10(b) and below the maximum on the W,F curve. A negative step-function of V 
is applied to the elevator and the new t r im value will be at the centre , E, of the stable spira l 
shown. However, in this case W^ = Q = -Zj^ is positive and will oppose the motion toward the 
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stable condition. If W^ = g * ^ A c ^^^ c r i t ica l value, the response will finally settle at the 

stable s ingulari ty, whereas if W^ = Q ^^Ar^ the a i r f rame will become unstable. 

The problem then is to develop an expression describing the integral curves through the 
unstable singularity P with the intention of using the expression to determine W^ . If g is the 
W co-ordinate relat ive to P.then 

W = Wp + g 

and the integral curves in the region of Wp a r e described by 

k' - [ B , + B3(Wp + g)*] g - [̂  A,g + A3 [3W'p. g + 3Wpg + C']J = 0 (6.1) 

Now g = g -rr- and (6.1) may be re -wr i t t en in the form 
dg 

g [ ^ - [ B ^ + B3(Wp+ g)*] J= (A, + 3A,W*p) g + 3A3Wpg^+ g' (6.2) 

A t g = 0, W = g = 0 and g may be developed as a power se r i e s in the form 

g = a,g + a,g"+ a j g ' t (6.3) 

which upon differentiation with respec t to g, gives 

^ = a, -h 2ajg + 2a^g + 3a3g^ + (6.4) 

Substitution from (6.3) and (6.4) into (6.2) then gives 

(a,g + a^g'-f ajg ' + ) [ ( a , - B, - B3W'p) + 2(a, - B3Wp)g 

-I- (3a3 - B3)g^-^ ] = (A, 4- 3A3W'p)g + 3A3Wpg% A3g' (6.5) 

Since (6. 5) is to be t rue for all values of g, then the coefficients of like powers of g may be 
equated giving the indicial equations: 

1) a ' - (B, + B j W y a , - (A, + SAjW^) = 0 

or 

1, = I ["(B, + B3W' )± [ (B, + B,W' f+ 4(A, + 3A,W' )] * 1 (6.6) 

2) a,(2a2 - 2B,W ) 4- a^ia, - B, - B3W* ) = 3A,W 

or 

(3a34 2a,B,)W 
a, = ^ 

3a, - B , - B3W 1 1 p 

3) a,(3a3 - B3) 4- a2(2a^ - 2B3W ) 4- a,(a, - B, - B3W^ ) = A, 

(6.7) 

or 
A3 - 2a2(a a - B 3Wp) + a,B 3 

4a, - B , - B 3 W ^ p 
(6.8) 
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The value of W^ will then be 

WA^ = a,(wT^ - Wp) + a,(w,j,^ - W p ) * + ^ ' < * T A " V ' ^^"^^ 

F r o m (6 .6) , a, has two values . Since P is a saddle point then (A, + 3A3W*p)> 0 

and the values of a, must be r e a l , positive and negative respect ively. These two values c o r r e s ­
pond to the initial slopes of the two integral curves passing through the singularity. In the present 
problem the negative value of a, is appropr ia te . 

With known aerodynamic cha rac te r i s t i c s , A, , A j , . . . e tc . , it is now possible to 
determine the cr i t ical value of W^ = Q or Zjj for a range of various initial and final t r immed 
incidences . 

B,<0, A, >0, A3<0 

When flying t r immed in the lower range of positive incidence three singular points 
ex is t s , F ig . 10(c). This case would be typical of the r e a r controlled a i r f rame if it were s ta t ­
ically unstable at low incidence. 

A positive step-function of n is applied in order to reduce the t r immed incidence to 
a point corresponding to E. When Z77 = 0, it is a sufficient condition for the motion to settle 
at E, that the s tar t ing point A shall not lie outside the integral curve passing through the saddle 
point complementary to the stable spi ra l at E. This means that if the magnitude of the s tep-
function is too great the motion will not settle at E, but will pass over to the other stable spira l 
at negative incidence. The limiting value can only be obtained by constructing the integral curve 
through the unstable singularity at P . 

When ZTJ ^ 0, the value of W. _ „ = Zrj , which is negative, and if this value is 

numerical ly g rea te r than W A „ the a i r f rame will not t r im at E but will depart to the other stable 
singular it J'. 

F r o m these three cases it can be seen that the t e r m z^. does not a l ter the stability 
c r i t e r i a of Section 3 .0 , provided these a r e interpreted in a slightly more general manner . As 
before the final steady state condition must be a stable singularity, and the initial and final 
points on the phase plane must not be separated by an integral curve passing through a saddle 
point which is complementary to the stable singularity at the steady state value. Whereas 
previously the initial value was at a point x^ , v = 0, when ẑ ) ^ 0 the initial value will be 
X. , v ^ 0. The cases described in Section 3.0 and 5.0 a re special cases for which v = 0. 

A Numerical Example 

In order to demonstra te the calculation of W^ and show its influence on the effective 
stability boundaries , an example has been chosen of a r e a r controlled miss i le conforming to the 
conditions B,<0, B3<0, A^>0, A3<0. The miss i le is a cruciform, a i r - t o - a i r type having a u se ­
ful speed range of 1,500 to 3,500 f. p . s . Its operation and aerodynamic charac te r i s t i cs a r e given 
in detail in Ref. 8. 

Taking a flight altitude of 60, 000 feet at a speed of 2, 000 f. p. s. and a centre of gravity 
position X = 0 . 5 feet, the aerodynamic derivat ives become 

z^ = -0 . 227 sec . ' ' , Zj = - 1 . 33 x lO'^ft. "^ sec . , 

m^= 0.00566 f t . ' ' s e c . ' \ m , = -0 . 354 x lO'^ft. '^ sec . , 

Zn = -86. 7 ft. s ec . "^, mn = -37.91 sec . '' , 
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z = -0.259 ft. s ec . "* , m = -0.1134 sec . 

m ^ = -0.0340 X 1 0 ' ' f t . ' ' , 

giving 
- 2 - 4 - 2 

A, = 11,30 sec . , A3 = -0.708 x 10 ft. 

B, = -0.408 sec . ~\ B, = -3.399 x lo '^f t . '^ s ec . 

The equation of t r im is 
-2J0OO A,oc,j, - 2 ,000 'A^« ' = [ (2 ,000 4-z ) m^, - z„m ],n, ^ ^ , _ , - - - _^, -..,„ _ , , . „ ^ j , . , , j , 

or 

-22.60 X 10'« 4- 5.864 x 1 0 ' « ' = -75,829»» (6.10) 

where « and rj a r e in radians and <*• - ^ T y ^ . The t r im curve is shown in Fig . 11 . 

When the a i r f rame is statically stable at low incidence (corresponding, in this 
a i r f r ame , to x^ <0.3 feet) the values of n-p will all be negative. In the present case , with 
stat ic instability at low incidence, a region exists between M and N, F ig . 11 , where a stable 
t r immed positive incidence is achieved with T?rp positive. The minimum positive value of "-T, 
for which a stable t r immed condition can exist will be given by 

, . / 22.60 x 10? \ i „ , , , .^ 
< V M = ( , 3 — 5 . 6 8 4 x 1 0 0 " 0-1154 radian, 

where only the positive value is relevant in the present problem. The corresponding value of 
n>p Is 4-0. 0229 radian. When «-p is g rea te r than that corresponding to the point S, F ig . 11 , only 
one stable t r immed condition can exist , the limit being given by the maximum positive root of 

- 22.60 X 10-« + 5.664 x l o ' a ^ = -75,829 x (-0.0229) 

or 

(« )_ = 0.232 radian. 
1 S 

Let E be the point corresponding to the final t r im condition; then if it l ies between 
M and S there will always be a complementary saddle singularity at the point P . This implies 
that a cr i t ical value of W^ = Q °^ " t = 0 =(Wt = 0^ /Uwil l exist only if E lies between M and S. 

A range of values of («ip)^ , between ^ « T ^ M and ( " T ^ S • ^^"^ '^'^^ ^^ selected and the associated 

values of (t\J) , {<x ) = W p / , a,, a^ and a , calculated. If now a range of values of the 

Initial t r immed incidence, (*'p)j:\ . is associated with each value of («»>_)„, then the cr i t ical 

integral curves , i . e . the integral curves through (« ) , may be evaluated and a r e shown 
plotted in F ig . 12 in the form W^ versusoc ^ 

Taking first cases in which ("rp)A *• ("rp),^. . for which the minimum positive value 

is 0.1154 radian and W^ = -ZTJ = 86. 7 ft. sec."* . It can be seen from Fig. 12 that the cr i t ical 

integral curve can never separate the initial and final positions, implying that the a i r f rame is 
stable when subjected to negative step functions of V of any magnitude within the l imits of the 
elevator mechanical s tops. 



- 22 -

When (•*„)- < ('*™)T7, . WA,-, = Z„ = 86. 7 ft. s ec . and values of (« ^A "^ay be reached T A T E C ' I A 
in which the system will not t r i m finally at ("rp'g- The cr i t ical values of («.-p). correspond to 

the points of intersect ion of the line W^ = ẑ j and the cr i t ical integral curves , only the higher 

of the two values given being re levant . These values have been plotted in F ig . 13. For a given 
value of initial t r immed incidence the a i r f rame can only be r e - t r i m m e d , by means of a single 
step function elevator deflection, to final values of incidence grea te r than that of the boundary 
shown. If the elevator step deflection is grea ter than the value of the A^ boundary, with the 
intention of r e - t r i m m i n g a t » l ess than the incidence boundary, the a i r f rame will shoot past 

the des i red t r im position and t r im out at negative incidence. 

The minimum value of ("^.^.^U ^°^ which any r e - t r imming , by means of elevator step 
r E 

deflections, i s possible at all corresponds to the condition when the minimum on a cr i t ical integral 
curve just touches the line WA = z„ • This value is (̂ rrî iT. - 0.13 radian and corresponds to a 

C ' I E 
limiting value of («rp)/. ~ ^-1^ radian. The difference between these values a r i s e s from the 
initial value of W produced by Zj,; when z„ = 0 the minimum values of (",T̂ )xr. = ("m^A ~ 0. 1154 
radian . 

7. 0 Conclusions 

The conclusions which may be drawn from this study a re as follows: 

(1) That the stability of the equation (1.1) with B(x) and C(x) as an t i - symmet r ic functions is 
determined by the nature of the singularity at the s teady-sta te value given byC(x) = Q, with the 
additional condition that on the phase plane diagram associated with the final steady state values , 
the initial and final points must not be separated by an integral curve passing through a saddle 
point. Fu r the r , the charac ter of t ransient sett l ing down motion is directly related to the nature 
of the singularity at the steady state (e. g. the settling down is osci l latory if the singularity is a 
stable spiral) and, together with the stability, is accurately predicted by the c r i te r ia of Section 3 .0 . 

(2) The shor t -per iod motion of an a i r f rame subject to a step-function elevator deflection is 
governed by an equation s imi lar to (1 .1) , but differing as a resul t of the t e r m Zj^.v on the right 
hand s ide. W^hen ẑ j is smal l , which it usually is for r e a r controlledand canard a r rangement s , 
it is found that the stability c r i t e r i a for (1.1) a r e applicable to the a i r f rame problem. When 
z_ is not small special t reatment is required in order to determine the cr i t ical value of the e lev­
ator step-function which will cause instability. It is found that the cr i t ical value may fairly 
readi ly be obtained from quantities taken from the elevator t r im curves . 

Acknowledgement 

The author wishes to thank Dr . S. Kirkby of the Department of Mathematics , College 
of Aeronaut ics , for advice on the programming of the numerical problems of Section 4 . 0 . 



- 23 -

References 

1. McLachlan, N.W. Ordinary non-linear differential equations in engineering and 
physical sc iences . Chapter 8, pp 160 - 171. Oxford-Clarendon P r e s s , 1950. 

2. Stoker, J . J . Nonlinear vibrations in mechanical and e lect r ica l sys tems . Chapter III. 
Interscience Pub l i she rs , New York, 1950. 

3. Ibid. Chapter II. 

4 . Chr is topher , P . A, T. The stability of the short-period motion of an a i r f rame having 
non-linear normal force and pitching moment curves . The Aeronautical Quarter ly , 
Vol. XI, August, 1960. 

5. Chetayev, N.G. The stability of motion. Pergamon P r e s s , 1961. 

6. Stoker, J . J . Nonlinear vibrations in mechanical and e lect r ica l sys t ems . Chapter 5. 
Interscience Pub l i she rs , New York, 1950. 

7. P o r t e r , A. An introduction to se rvomechanisms . Chapter III, pp. 50-53. Methuen 
Monograph, 1950. 

8. Chris topher , P . A . T . The stability of the shor t -per iod motion of an a i r f rame having 
non- l inear aerodynamic charac te r i s t i c s and subject to a sinusoidal elevator oacillation. 
College of Aeronautics Report Aero . 175. 



« - C , X M . - > - C > X U 

(o) c, > o . c , >o (b) Q O . c,<o 

o 

* . ' — - f 
/^ ^ 

/ E 

/ 
/ 

^ X _ 

V—-< 

(c) c < o. c,>c (4) b, >o, b, > o 

E x 

(«) b. > o , b, <o (f) b, <o ,b , >o 

FIG. 1 VARIATION OF Q WITH X. „ and B'(x) with x 

Bï*) = b, -.. 3 b^X^ j 

3!)>0 
Stable Node 

Stable Spiral 

^7^///////////////////////, '/. d ( x ) » C . 3 C X ^ , . 

Unstable Spiral 

"yyy/kimMAMXy 
Unstable 
Node 

F K . 2 STABLE AND UNSTABLE SDCtTLABITIES DEFINED BY 
EQUATION (3.6) 



Ct±) 

^ ) c.>o,c,>o 

S i -C 

Cf») 

(b) c, >o, c,<o 

BW 

c'W 

(C) c , < o . c . > o 

FIG. 3 SINGULAR POINTS DESCRIBED BY EQUATION (Ï7^ b^ > o 

(a ) c,>o.t^>o 

C ( « 

Cb) c. >o.c.< 

(C) c, <o, c, >o 

FIG. 4 SINGULAR POINTS DESCRIBED BY EQUATION (TT^, 

b, < o b , > o 



I-2 

O 

/ 

-/-/-/ 

/ 
/ / / / ' 

f 
/ 

.̂.̂ ^ 

A 
0 = 2 l \ 

' ^ 

\ \ 
\ Q-O 

Q»l.cX 

\y 

\ 

ï 
Q - O l \ 

v/ 
/ > 

y 

/ . 

X 

Co se (a)(1) 

b-O-6 
e,= |.0 
c ». I.O 

> 

Q 

C l 

0-5 

lO 

2-1 

' - " 

-^.^^^ 

x„ 
0 0 9 7 

0-424 

0.683 

I02S 

> 

^ " " " ^ 

40 60 
Time — Seconds 

FIG. 5 

FIG. 6 



Time —Seconds 

FIG. 7 

4 0 60 
Time —Seconds 

FIG. 8 
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