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SUMMARY
The stability of the differential equation

2
g_tzi I B(x)c:i—}: + C(x) =Q, Q =0, t<0,
with B(x) and C(x) as anti-symmetric power series, is shown to be determined by the nature
of the singularity at the steady-state value given by C(x) = Q, with certain additional restric-
tions on the initial and final value of x. Further, the character of the transient settling down
motion is directly related to the nature of this singularity and, together with the stability, is
accurately predicted by criteria derived.

It is shown that the previous stability criteria can be applied to the problem of an
airframe subject to a step-function elevator deflection, provided that the aerodynamic deriv-
ative zy is negligible. When z; is not small, special treatment of the stability problem is
required and it is shown that the critical value of the elevator step-function which will cause
inatability can fairly readily be obtained from quantities taken from the elevator trim curves.
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1.0 Introduction

The differential equation

—3—:—;{-+ B'(x)%% + C(x) =Q, Q=0, t<0 (1)
describes the motion of a class of second-order systems with displacement dependent stiffness
and damping and subject to a step function disturbance of magnitude Q. It is characteristic of
many physical problems, for example in the stability theory of synchronous electrical motors
(Refs. 1 and 2) and in the aerodynamic response of airframes having non-linear normal force
and pitching moment curves (Ref. 4). The step function is, of course, a standard function for
testing the transient response of systems and gives rise to many other examples whose gover -
ning equation is (1.1).

The equation

d?x dx
a_t-z—+b—dT+ CX—Q (1-2)

is a degenerate linear form of (1.1), where b and c are constants, and it is of interest to com-
pare the linear with the non-linear problem. In the case of (1.2) the solution is made up of the
sum of the complementary function, which is the solution of the homogeneous equation given by

Q =0, and any particular integral, the latter necessarily involving Q. Provided that Q is of finite
magnitude it follows directly from the principle of linear superposition that if the homogeneous
equation, Q=0, can be shown to have stable solutions then (1.2) has a completely stable solution.
In the linear problem, therefore, stability analysis can be restricted to the homogeneous equation.

Except in those cases where it is possible to separate the variables or the equation
is exact, no explicit general solutions to non-linear differential equations are known. It is of
course certain that the principle of linear superposition is invalid for such equations and as a
result the stability criteria for the homogeneous, Q= 0, and non-homogeneous, Q #0, cases are
different. This means that the stability and response problems cannot be considered separately,
as they are in a linear system, but involve an analysis of the stability of the response and there-
fore will depend on the nature and magnitude of the forcing term Q.

When the damping term is absent from (1.1) it is usually possible to obiain a first
integral in the form

ivd + f(Q,x) = E, (1.3)
where v = % and E is a constant. This equation is then expressive of the energy balance in the

system, which is conservative when the damping is absent. The term 3v? corresponds to the
kinetic energy, f(Q,x) the potential energy and E the total energy which is of course constant.
A second integral is then possible by quadratures. Depending on the form of C(x) the second
integral may be analytic in terms of known functions (very often elliptic integrals) or it may be
necessary to resort to numerical or graphical methods to evaluate the integral.

When damping is present the system is dissipative or non-conservative and a first
integral corresponding to the energy balance equation (1.3) is no longer obtainable or approp-
riate. If the damping is not too large the solution may be obtained by an analytic iteration pro-
cedure the starting point of which is the solution to the degenerate problem of zero damping.
The success of this method will depend on the rate at which the process converges, rapid con-

vergence being consistent with small values of the damping term B’ (x) (;—)i-



The stability of the response, i.e. whether or not the system settles down to a steady
value, or at least an oscillation of finite amplitude, is of importarce in many applications and
particularly so when dealing with systems whose damping or stiffness change sign. In the case
of second or lower order systems with a step function input, it is not necessary to have an ex-
plicit expression for the response in order to determine the stability of the motion since this
can be treated much more conveniently and elegantly by Poincaré's theory of singular points in
the phase plane. (See Refs. 2, 3, and 4). The advantage of this method can only be fully ap-
preciated when it is recalled that the alternative is to consider the stability within the frame-
work of the interation procedure the conditions for convergence of which are generally not fully
known.* There is in fact a second alternative method known as Lyapunov's second or direct
method (see Ref.5) but this will not be considered here.

The object of the paper is to obtain stability criteria for a specific equation of form
(1.1) and compare these with numerical solutions from a digital computer. Having established
the usefulness of the criteria they are then to be applied to the problem of the stability of the
short-period motion of an airframe having non-linear aerodynamic characteristics in pitch and
subject to a step-function deflection of the elevator.

* This arises because it is usually impossible to state the form of the general term in the

resulting series solution and therefore tests for convergence are either impossible or incomplete.




NOTATION

a, b, c,d
a!' aZ' a‘J
Loy Ak o
Gy (S

N
n

8
=

8
=

o5}
i

P(x,v) }
Q(x, v)

constants in Poincaré's theory of singular points )
constants in the expression for critical initial velocity WAC’ equation (6.9)

constants in the anti-symmetric function. B(x)
constants in the anti-symmetric function C(x)
airframe mass

angular velocity about axis of pitch
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dx/dt

perturbation in velocity along axis of yaw
any dependent variable; often displacement. See equation (1.1).
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constants in the force and moment relations
of equation (5.1)

(Uo+zq)mW "M Zy

q%s

moment of inertia about the axis of pitch
(Uo+zq)mw+mq+zW

(Ugtzg)m,-m

the operator d/dt
the discriminant [B‘(x)] 2- 4C'(x)
the elevator forcing function [(Uo+zq)mn -7 mq]H

moment about axis of pitch

functions in Poincaré's theory of singular points.
See equation (2.4)

magnitude of forcing step-function, equation (1.1)
velocity tangential to flight path

velocity along the longitudinal body axis




NOTATION (contirued)

T N=

m,,w o3

Suffixes

CERZE

velocity along axis of yaw
force along axis of yaw

airframe geometric incidence = W/UO , when « small.
total elevator angle of I + 7

perturbation in elevator angle

angle of pitch

perturbation in angle of pitch

root of characteristic equation (2.7), (3.6) or (5.14).

ordinate in x or w referred to singularity away from the origin.

refers to trimmed condition

refers to steady-state condition

refers to maxima or minima on pitching moment curve.
refers to unstable singularity at point P on trim curve.

A dot over a variable indicates differentiation with respect to time, whilst a prime
indicates differentiation with respect to x or w.
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2.0 Poincaré's Theory of Singular Points in the Phase-Plane

The stability of the solution to (1.1) can be analyzed by the phase-plane method which
is given in detail in Refs. 2, 3 and 4.

e dx ®x _ _dv
Writing v = St then 5oi & V= and (1.1) becomes
vg—z + B'(x)v + Cx) = Q . . (2.1)

The graphs of the solutions of this equation in the xv-plane, known as the phase plane, are refer-
red to as "integral curves' and through each ordinary point in the plane there passes only one
such curve. Alternatively equation (2.1) may be written as an equivalent pair of equations.

L. Q-cx-B (0. v )
t )
dx _ . et
dt )

3 ; ; d d A . :
which define a field vector having components Ti% and —(%; this vector is always tangential to

the integral curve and indicates the direction in which t is increasing.

The stationary positions of equilibrium of (2.1) or (2. 3) correspond with the singularities
of the equivalent equation
dv Q - C(x) - B' (%).v

dx v ! 2]

which defines the slope of the field vector, and analysis of the character of these singularities
gives considerable insight into the nature of the motion near these points. More generally,
consider the singularities of the equation

dv _ P(x,v)
dx  Qlx,v) ' (2.4)

which are defined by P(x,v) = Q(x,v) = 0. Since the origin can always be changed to correspond
with the singular point, then analysis can be restricted to singularities at the origin.

When (2.4) has a singularity at the origin then it is assumed (Poincaré) that it may be
written in the series form

dv _ ax + bv + p(x,v) (2.5)
dx  cx + dv + q(x,V) ’ '

where p(x,v) and gq(x,v) are the remaining terms of series whose lowest terms are of second
degree at least. Further, if the constants obey the inequality

ab
N _chl- ad - bc # 0,

then the integral curves behave, in the neighbourhood of the singularity, as if p(x,v) and q(x, v)
were absent.

The singularities of the reduced equation

dv _ ax + bv (2.6)

dx cx + dv

are of four distinct types known as nodes, centres, spiral points and saddles respectively and
each has a characteristic geometry, sometimes referred to as its "topological configuration''.
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i o OX Ex _ dv
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dx

The graphs of the solutions of this equation in the xv-plane, known as the phase plane, are refer-
red to as "integral curves' and through each ordinary point in the plane there passes only one
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)
) ‘
g% ) e |
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d d |
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consider the singularities of the equation

dv _ P(x,v)
dx  Qx,v) (2.4)

which are defined by P(x,v) = Q(x,v) = 0. Since the origin can always be changed to correspond
with the singular point, then analysis can be restricted to singularities at the origin.

When (2.4) has a singularity at the origin then it is assumed (Poincaré) that it may be
written in the series form

dv _ ax+bv+ p(x, v) (2.5)
dx cx + dv + q(x,v) ’ '

where p(x,v) and q(x, v) are the remaining terms of series whose lowest terms are of second
degree at least. Further, if the constants obey the inequality

o =[22l= ad -bc # 0,

then the integral curves behave, in the neighbourhood of the singularity, as if p(x,v) and q(x, v)
were absent.

The singularities of the reduced equation
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YO SRR 2.6
dx ex + dy ( )

are of four distinct types known as nodes, centres, spiral points and saddles respectively and
each has a characteristic geometry, sometimes referred to as its "topological configuration'.
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Criteria for distinguishing the type of singularity are obtained from the characteristic equation
A -A(b+c)-(ad -bc) =0 (2.7)
which has the root
y S %f(b +c) t[(b+c)’ + 4(ad - bc)] %}

Three important cases are distinguished, as follows.

12

Roots real and unequal. These arise when the discriminant (b + ¢)? + 4(ad - bc) is
positive.  The sub-cases are: if 4>0 then Mz I;‘1 is negative and corresponds to a saddle point, and
if A< 0 then 7‘2/)‘,1 is positive and corresponds to a node. In the latter case, if A, and A, are both
negative the node is stable, whereas if A, and A, are both positive the node is unstable.

Roots complex conjugate. Complex roots occur when the discriminant is negative. If
the real part of the root is negative the integral curves are stable spirals, whereas if the real
part is positive the curves are unstable spirals. When the roots are purely imaginary the sin-
gularity is a centre; however, under these conditions the singularity of (2.6) is not necessarily
that of (2.5) and the higher order terms in p(x,v) and q(x, v) have to be considered.

Roots real and equal. The singularity is a node and its stability is governed the same
way as if the roots were unequal.

3.0 Stability Criteria for a Particular Second-Order Equation.

The singularities of (2.3) are defined by Q - C(x) = 0, v = 0 and therefore the number
of singular points will depend on the form of C(x). It was shown in Ref. 4 that the anti-symmetric
form for c(x) is particularly valuable, i.e.

C(x) N =NcxiElcy X3RETE CoXE T R e X

and can be used to represent a wide class of practical non linearities. For the remainder of

this paper attention will be restricted to equations in which B(x) and C(x) are capable of represent-
ation by power series in odd powers of x. The number of singular points of (2. 3) is then equal

to the number of unequal roots of the equation

CX + GX3 + CX5 + ..iieniians = Q, (3:1)

and therefore dependent on the number of terms, n, used to represent C(x). For simplicity
only the first two terms are used in the remainder of the analysis, although this can readily be
extended to any other reasonable number of terms.

For a given value of Q the singular points of (3.1) are in fact the equilibrium or steady-
state positions of the system and can readily be evaluated. Several cases exist depending of the
signs of ¢, and c,. Those of engineering interest are:

(a) c¢,>0, c;>0, corresponding to a ""hard" system in which the stiffness is initially positive,
(b) c¢,>0, <0, corresponding to a "soft" system in which the stiffness is initially positive

and

(c) ¢c,<0, c,>0, corresponding to a "hard" system in which the stiffness is initially negative.

In addition if B is taken in the form

B(x) = b,x + b,x3
then

dB
B'(x) = 5= = b, + 3bx, (3.2)




in which the cases of practical interest are by>0, b3>0; by>0, b3<0; and bi1<0, b;>0.

Typical curves of the steady state values of x versus Q for the cases considered are shown
in Fig. 1. It can be seen that for a given positive value of Q there exists one singular point for
case (a) and three each for cases (b) and (c) when Q is relatively small, reducing to one each when
Q is greater than the maximum or less than the minimum in the curve. Restricting attention to
positive values of Q only, the singular point in (a) has a value, xg g >0; in(b) two of the values
are positive and one negative, whilst in (c) one value is positive and two are negative. Only in the
degenerate case Q=0 is the singular point at the origin. In addition, oa Fig. 1, curves of B/(x)
are shown.

Since the singular points of (2.3) are in general away from the origin then it may be written
dv = Q-Bix, . +Ew-~Clx, , +£)

3 h e ; (3.3)

where xg g , 0 are the co-ordinates of the singular point and § is the displacement co-ordinate
referred to the singular point. Substituting for B’(x) and C(x) then gives

dv Q- Cyxg.g. + &) - Cyxg. g, +E)>-[b+ 3bs(xg.5. +EF] v

d& v

Expanding, remembering that for the present case
Q= Clxg,g,) = yxg, g, + X% 5, -, (3.4)
the equation for the slope of the field vector becomes

dv _ -c,& -cy3xfg, g, E+3x o 82+ &%) -[b, +3by(x, o + £ v (3. 5a)
d§ v ;

which in the first approximation reduces to

dv = -(c,+3cyxk. 5, )E - (b, +3byx2g 5 )v (3. 5b)
d& v :

Comparing with the standard form, equation (2.6),
as -(c, + 3c;x35,5.), bm (b, + 3b,x’g g ), c=0andd=1.
The roots of the characteristic equation are ‘
Mg = %{ -(b, + 3byx2g g ) *[(by+ 3byx2g g, )% - 4lc, + 3°;X's.s.)]% }
= %[ B‘(x)zD% ] , | (3.6)
where) =[B'(x)]? - 4C’(x), is the discriminant.

The stability of the motion near the steady-state value of the system, as expressed by
(3.6) and discussed in Section 2, can conveniently be summarized on a diagram of the type shown

in Fig. 2. Starting with Q = 0, the variation of xg g and thereby of B/{x) and C’(x) may be ob-

tained and the appropriate curves superimposed on Fig. 2. This then permits a ready assesement
of the nature of the singularity at xg,g,, 0. Typical curves for the various cases are shown in

Figs. 3 and 4. Consider each of these in turn:

b,>0, ¢1>0, c3>0

In Fig. 3(a), A corresponds to the origin at which Q = 0, B/(x) = b, and C'(x) = c.
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The value of b, has been taken relatively small and the singularity is a stable spiral; alternatively

with higher damping the singularity at the origin could be a stable node, point E. With by>0,

increase or decrease of Q now gives rise to an increase of B(x) and C'(x) along curve AB , until at B the
character of the singularity changes from a stable spiral to a stable node; the value of xg, g,at

which this change takes place corresponds to the disappearance of the discriminant and is given by

D = (b, + 3b,x?g.5.)% - 4(c, + 3¢,x%.5.) = 0
or
9b,3(x2g, g,)2 + (6bybs - 12¢,)x2g, g, + (b1 -4c,) =0
which has the solution
Xg.s. =[ 5::2 [2c, - b,by +2(c,2+ ¢,bs? - bybscs) %] }% (3.7
in which only real values are appropriate. In the degenerate case when b; = 0, the value of xg, g,

corresponding to (3.7) becomes
1

1 -
Xs. 8. =( 12c, (b,® - 401)}2 (3.8)

which can only have real values when b;2>4cy, i.e. the initial point A on Fig. 3(a) must be above
the curveD = 0. Such a point is marked E, and increase or decrease of Q takes place along the
curve EF,F corresponding to the value x4 g given by (3.8) at which the singularity changes from
a stable node to a stable spiral.

When bs<0 the damping decreases as Q increases or decreases until at C, Fig. 3(a), the
curve meets the damping boundary B/(x) = 0. At this point the singularity at xg,g., 0 becomes
an unstable spiral, thereby demonstrating that transients having values of Q which cause B (x)
to become negative are unstable since the motion in the neighbourhood of the steady-state value,
predicted by stiffness considerations alone, Fig. 1, is unstable. The critical value of xg, g,
for which the system goes unstable is given by

BYx) =by +3by% 5 =0

or

N

b
xs.s. *(- g (3.9)

b,50, ¢,>0, c5<0

Again A corresponds to the origin Q = 6. With increase or decrease of Q the stiffness
C’(x) decreases and provided b, is not too large and negative, the nature of the change in the
singularities at xg, g, 0 are typified by curve ABC or AEF. The first change in the character of
the singularities occurs at B or E where the change to nodal point takes place. The steady-
state value for])= 0 are again given by (3.7) or (3.8).

With further increase or decrease of Q a point is reached, C or F, where the stiffness
changes sign i.e.

C'(X) - C1 + 3C3xzs‘5. = 0

or

1
c a
T C IR (3.10)

corresponding to the maxima or minima on the Q, xg g curves of Fig 1(b). It follows that




transients having values of Q which would make xg, g,,on the basis of the curves of Fig. 1(b), lie
outside the region between the maxima and minima, are unstable.

With bs<<0 it is possible for the system to reach the damping boundary, G, before the
stiffness boundary. The value of xg g for which this occurs is given by (3.9)

b >0, ¢<0, ¢5>0

The singularity at the origin is a saddle point and with by not too large and negative the
singularities change along typical curves ACEF or AGHJ. At the stiffness boundary, C'(x) = 0,
corresponding to the minima and maxima on the @, xg, g, curves of Fig. 1(c), the singularities
become stable nodes. In a practical system this means that the system will never settle down
to steady-state values such as C or H, Fig. 1(c), but will depart to one or other of the alternative
stable singularities A or B, or E or F. The direction in which the system moves will depend on
the initial acceleration.

x=Q,t=0
i.e. the stable singularity at which the system zettles will have a displacement of the same sign
as Q. In Fig, 1(c), B and E will be the appropriate settling points, rather than A or F, when

subject to transients of magnitudes nuinerically less than those corresponding to the maxima or
minima. This means that at Q = 0 the system will rest at values given by

Q=c¢XxXg,g.+CGXg,5, =0, xg,8.F 0,

or
c 3
Xg.8, = - 2 (311)
Cs
the values of stiffness corresponding to (3.11) are
Ix) = T SR
Gl{x) c,+3c,[ c;] 2c, (3.12)

Taking E, Fig.3, as a typical point given by (3.11), then application of step-function disturbances
@ of the same sign as the displacement will cause the singularity at xg, g,, 0 to move along EF;
alternatively if the sign of the disturbance, Q, is of opposite sign to the displacement then the
singularity moves along EC becoming unstable at the stiffness boundary. In this latter case the
instability at the stiffness boundary is not indicative of unbounded displacement, since further
increase in the numerical value of Q will cause the system to jump to the other stable singularity,
this being of opposite sign in displacement.

b, <0, by>0, ¢,30, c;>0

All the cases where b,<0, b;>0 are characterized by the possible existence of 'limit
cycles!, see Ref. 6. In Fig. 4(a), A is an unstable spiral point about which oscillations of increasing
amplitude will develop. With increasing displacement from the origin the damping, B'(x), increases
until it reaches zero. At this condition there is established a stable oscillation known as a limit
cycle whose amplitude corresponds to the displacement OL in Fig. 1(f) i.e. the limit cycle amp-
litude is given by B’/(x) = 0, or

b 1
ajc = (‘%EJL . (3.13)

With vanishingly small values of Q the amplitude of the limit cycle is that of (3.13).
Increasing values of Q, corresponding to moving along curve A to B in Fig. 4(a), causes a shift
in the point about which the limit cycle oscillation occurs and a reduction in the amplitude.
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The new origin of the limit cycle motion will be at the value of xg o given by stiffness considerations
i.e. at solutions of

Q = ¢4Xg, g, + C3¥g, g,
and the amplitude will be

1
2

C_=‘('§%“) (3.14)

Xg. 8.

When Q is of sufficient magnitude to cause B’ (xg. g.) to be zero, corresponding to B, then the
amplitude of the limit cycle becomes zero and the transient response becomes very similar to
that obtained if the singular point at xg o ,0 were a stable node.

For larger values of Q the singular point at xg g , 0 is a stable spiral, or eventually

a node. These are similar to the cases of Fig. 3(a), but the nature of the transient motion will
differ as a result of the negative damping experienced in the earlier portion of the motion.

b,<0, b,>0, ¢,>0, c,<0

In this case two possibilities exist, Fig. 4(b), With a relatively small amount of neg-
ative damping initially, increase or decrease of Q is associated with a limit cycle whose amp-
litude decreases in a similar way tb the previous case. The nature of the singularity from B
through C to E is then similar to the second case, Fig. 3(b), b,;>0. Alternatively the variation
may follow the curve FG in which the singularities are always unstable.

b,<0, by>0, ¢,<0, c5>0.

The initial point F, Fig. 4(c), is a saddle point. Small values of Q cause the system
to diverge, however, with increase of displacement the stiffness changes sign and the motion
changes, during the transient, to a limit cycle whose origin is the value of xg g, at the stiffness
boundary and amplitude corresponds to the difference of xg,g,, as given by stiffness considerations
alone, at the points G and H. i.e. the origin of the limit cycle is given by

C'(x) = CXg g T K g o =8

or
1
xe.s. (%) (3.19
3
and its amplitude is
a = =& E" (3.16)
LC. 3 b,

With increase of Q the amplitude of the limit cycle decreases in a similar way to that
discussed in the fourth case, Fig. 4(a).

Alternatively, following the curve ABCE, the damping boundary may be reached prior
to the stiffness boundary. In this case no limit cycle develops and the singular point variation
is similar to that of the third case, Fig. 3(c), by>0.

These then are the six cases of engineering interest and describe the nature of the
singular points at the steady-state values given by C(x) = 0. They are not in themselves suf-
ficient to determine the stability of the transient motion.
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Returning to equation (3.5a), it can be seen that the slope of the field vector in the phase
plane depends on xg, g, , § and v. This means that if the system is initially at rest at a singularity
X , v = 0 in the phase plane, then the stability can be decided by an instantaneous change in the
orientation of the singular points, corresponding to the changed values of Q. On this basis the
initial position of rest becomes an ordinary point in the phase plane and the system will either
move to a stable singularity, not necessarily the nearest one, diverge indefinitely or limit cycle.
The transient motion of the system is described by the integral curve through this ordinary initial
point and the stability or otherwise. This movement can only be completely determined by ref-
erence to the form of the integral curves.

It is convenient to use the curves of Fig. 10, where for the present purpose x and v are
identified with W and W respectively, xp is the starting point, xp the position of the nearest stable

singularity and Xp the nearest saddle point. Taking the cases in turn

by 20, )20, c.>0

There is only one singular point for a given value of Q, fig. 10(a), and since this is a
stable spiral or node all integral curves move into it.

b,>0, ¢,>0, c,<0

A stable singularity can only exist if Q lies between the points of maxima and minima
on the Q, x curve. For Q between these limits there are three singularities consisting of a stable
spiral or node lying between two saddle points, Fig. 10(b). In order that the system will settle
at the stable singularity the initial point x5 must lie between the saddle points, i.e. the initial
and final positions must not be separated by an integral curve which passes through a saddle.

by>0, e <0, cy>0

When Q lies between the minima and maxima of the Q, x curve three singularities exist,
these consisting of a saddle point lying between two stable spirals or nodes, Fig. 10(c). If A
lies between a stable singularity and a saddle it will always settle at that stable singularity. When
xp is numerically greater than the x co-ordinate of the stable singularity the system will con-
tinue to settle at this singularity until an initial displacement is reached at which A is separated
from E by an integral curve passing through the saddle. The integral curve through A now moves,
not into E, but to the stable singularitv on the other side of the saddle.

The complete criteria for stability of the response of a step function are therefore
(1) The singular point at the steady state value given by C(x) = Q must be stable.
(2) On the phase plane diagram associated with the final steady state values, the final and

initial positions of the system must not be separated by an integral curve passing through a
saddle point.

4.0 A Numerical Example.

As a check on the validity and accuracy of the stability criteria obtained in Section 3.0,
a limited number of solutions of the equation

x+bx+cx+cex*=Q,Q=0,1t<0
have been obtained on the Ferranti '""Pegasus'' digital computer at The College of Aeronautics.

In these examples the damping was taken constant and positive, thereby excluding limit cycling
from the solutions. The values of the coefficients used were as follows:
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(a) (i) b =0.8, c;=1.0, c3=1.0, Q =0to2.1

(ii) b

0.6, c = 0.05, ¢,=0.04, Q=0t00.6

(b) b 1.0, ¢c5=-1.0, Q=010 0.5

0.8, c,

(c) b

0216, c =150 Ve =120 ,2Q =0to 1:0.

The transient responses obtained are shown plotted in Figs. 5,6,7 and 8 in which the displacement
co-ordinate has been normalized by division by the appropriate steady state value. Taking the
cases in turn:

(a) (i)

Here the initial stiffness is positive and D <0 for all values of Q. As expected the
settling down motion is oscillatory for all values of Q. The response curves tend to the linear
result as Q»0, increase of Q produces an increase of frequency of the oscillation about the
steady-state. It is also evident that the amount of "overshoot" and '""undershoot" is dependent
on Q. This feature of the curves is outside the scope of the present stability investigation and
to analyse it, in terms of b, ¢,, cyand Q, would require an analytic solution to the equation.

(a) (ii)

Again the initial stiffness is positive, but])>0. At large values of Q the discriminant
D becomes negative, corresponding to the transient settling down motion becoming oscillatory.
With increase of Q the motion becomes more damped until at7)-0 boundary the transient becomes
non-oscillatory in character. This occurs when x4 4 has the value given by (3.8),i.e.

1
2

Xg g, = (3)% = 0.580

and
Q=0.05x0.580+ 0.04 x 0,580° = 0.037.
(b)

With Q small,:D< 0, and the singularity at Xg. g, is a stable spiral. Increase of Q

corresponds to increase of ), until{) = 0 when

-1 3
sl et (0,82 -4x1){"=0,5851
Xs. . {12“ (0.62 - 4 x )} 55

and
Q = 0.551 - 0.551%=0,384.

Further increase of Q causes a reduction in stiffness, the zero stiffness boundary being reached
when

(S0

11
xg.g. = (-3 - 3 ) =0.580

and

Q =0.580 - 0.580%=0.385




-13 -

From this it can be seen that in terms of Q the@ =0 and C'(x) = 0 boundaries are very close
together. The computer results, Fig. 7, indicate that instability occurs at the lower value

Q =0.36 - 0.37. This difference is probably due to instability in the Runge-Kutta iteration pro-
cedure used to perform the machine integration.

(c)

In this case the singularity at the origin is a saddle and any positive initial acceleration

will cause the system to move to the stable spiral point at a positive value of x5 5 The mag-

nitude of Q determines xg g and has a marked influence on the 'rise time' and frequency of

the settling down motion, Fig.8. The results of Fig.8 do not have very much engineering sig-
nificance since if such a system were employed any transient would normally commence from a
stable condition of equilibrium. If for instance the initial condition corresponded to a stable spiral
point at a positive value of x, then positive step-functions of Q would produce response curves
similar to Fig.5. Small negative step-functions of Q would produce curve similar to Fig. 7.

Large negative step-functions of Q would cause the system to jump to negative values of x5, g and

would presumably have a transients similar to that sketched in Fig. 9.

Summarizing, the computer solutions show that the character of the transient settling
down motion is directly related to the nature of the singularity at the steady-state conditior and
is accurately predicted by the criteria of Section 3.0,

5.0 Stability of the Short-Period Motion of an Airframe Subject to a Step-Function Elevator
Disturbance. ~

In Ref. 4 the author has shown how to introduce non-linear normal force and pitching
moment characteristics into the equations of motion of an airframe whose dominant mode of
oscillation is the ""short-period' motion. For this purpose the characteristics are taken to be
of anti-symmetric form and are expressed analytically as

Zr(r‘:v) =zyW + Z,W’ FHMBT £ ichaesdesean ;

and ; oy
M(w) , . )
5 = myWHmWem W+ )

Upon substituting these expressions into the equations of motion and eliminating § between them,
the equation of motion in the vertical velocity, W, becomes

W - [(Uy + zZg)my, + mg + Zy + 3z2,W* ...] W - [(Ug + zg)my, - mgZy ] W

- [:(U0 + zq)m, - qu:,]W’ = [z4D + i, + zq)mn - znmq] H, (5.2)

where
W=wp+w, (5.3)
H = Mg+ 0 (5.4)

and suffix 4, refers to initial trimmed conditions. In the present problem the increment in ver--

tical velocity, w, arises from the application of a step-function disturbance of the elevator, n
Restricting (5.1) to two terms, then (5.2) becomes
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w - [B, + By(wes + W) W [ Aj(wo + W) + Aglw, + w)?]

= [ 2D + (Uy + zgdmyp - zgmg ] (np +1), (5.5)
where

Ay = (Ug + 2g)my, - mgzy

Ay = (U, + zq)m, - mgz,

(5.8)
B,

(U0 + zq)mw + mq + 1z,

B, = 3z,

It is now convenient to refer the w co-ordinate to the final steady-state value wg_- Write

w=wg g +& , (5.7)
Wg g, = Wp +Wg o (5.8)

and (5.5) becomes
W - [B1 +By(Wg g, + 5)2] w - [A"Ws.a. + &) +A’(Ws.s. N 5)3]
=[an+(Uo+zo)mn-znmq] (g +n) (5.9)
The steady-state condition is defined by
3
AW, o AW o =[(U+ zgdmy - g ] (g + 1), (5.10)

which upon substitution into (5.9) gives

W - [B, + By(Wg o+ £)°W -{Aﬁs’ v A [3W (B aW, o £0+ 2] |

= 2y n (5.11)
Following Poincaré, an expression is sought for the slope of the field vector in the £,
plane in the region of the singularityws i ,0. For 50, 7 , which is a Dirac delta function, is

zero, therefore in the first approximation (5.11) becomes
e 2 = 2
§-(B,+BW g g )5 LA, +BAW, _ =0 (5.12)

) The problem described by (5.11) differs from that of Section 3 because of the term
znM, which gives rise to an initial velocity

lwt=0|=lznl, (5.13)
and can have an important influence on the system stability. (See Ref.7 for a discussion on the

determination of initial conditions). For many airframes with small elevators situated well away
from the centre of gravity the value of Zy is small and the effect of initial velocity may in many
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circumstances be neglected. For moving wing configurations the effect is dominant and requires
special treatment. In the present discussion attention will be focussed on the former, whilst
certain aspects of the effect of initial velocity on the stability will be discussed in Section 6.0

Neglecting then the initial velocity, the stability of the response to a step-function ele-
vator deflection may be treated in a similar way to the problem of Section 3. Theroots of the
characteristic equation become

1
My o,= %{(B, +BW o) t[(B, + ByW?; o )2+ 4(A, + 3A,W; )] 2 } (5.14)
Write the equation of trim, (5.10), in the form

F=[(U,+ Zq)my - ZpyMg T (p+m)=-AWg o - AWy o

identify F, W, —A1 , -A;, -B, and -B; with Q, x, ¢, c3, b, and 3b, respectively in Section 3 and
the discussion of airframe stability can then proceed on the basis of Figs. 1 and 3.

For a normal airframe (aeroplane or missile) B, is negative, thereby excluding the
possibility of a change from negative to positive damping and the associated limit cycling. The
cases to be considered are therefore similar to the first three discussed in 3.0. Taking these
in turn:

B,<0, A, <0, A,<0

The dominant term in A  is Uymy. Since my, is proportional to the centre of gravity
margin then A, <0 implies that the airframe is statically stable at low incidence. The term Ugm;

is dominant in A; and with A;<0 the airframe increases its static stability with increase of incid-
ence. Alternatively this may be described by saying that the aerodynamic stiffness increases
with incidence, thereby constituting a "hard" system.

B, can be of either sign. Many airframes having wings of low aspect-ratio of axi-
symmetric body configurations exhibit W, C, characteristics whose slope increases
over the whole of the useful incidence range, corresponding to z3 and Bs being negative. Others ‘
have wings of higher aspect-ratio which stall at relatively small incidences, an effect which can
be represented approximately by taking z,50. The approximation involved is satisfactory provided
the transient motion does not cause the incidence to increase very much above the stall. When
oscillating through the stall it is fairly certain that aerodynamic hysteresis will occur, (i.e. the
W, C, curve followed during the nose-up swing of the airframe will not be re-traced during the
subsequent nose-down swing) and the form used in (5.1) to represent the forces and moments
will be inadequate.

The point A, in Fig. 3(a), now corresponds to the origin of the F, W curve and the
problem resolves itself into deciding the stability of transients when moving from any typical
singular point, corresponding to the final trimmed condition, along curves such as AB or AC.
With B; <0 the character of the settling down motion can change from oscillatory to heavily damped
and the boundary between these conditions is given by

(B, +B,W'g o) +4(A, + 3A,W* ;) =0

or

o

1
1 2 1 2 E.
Wg g, {]—3-,' [-BA, - BB, *6 [A; + 3A,B,B; - 5 AB_ ] J} (5.15)

3
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With B;>0 the curve AC will meet the damping boundary when
-B, - B:Wz's.s. =0,

or

nop

B, \3 [(Uo+z)mw+m +z]
= (el = <q q
We. g, < B}) e W (5.16)

Now from (5.1)

%w)_ = zy,W + z,W:

which upon differentiation with respect to W gives

1 dz(w) B

2
= aw Zy + 3z;W° .

The stall, which occurs at symmetrical values about zero incidence, is defined by

dZ(w) _
dw =0,
or
2w \3
W = (-Zw 5.17)
stall <323> (

The values of zy, mq and my will normally be negative and for this case z; will have to be
positive. It follows that the steady-state incidence for which the damping becomes zero is numer-
ically greater than the stalling incidence by an amount

1
RERTD: W zw |} }
i {l( 5 | -Gl g
where the incidence has been taken to be W/Um . This result must, of course, be treated with
some reservation since it is unlikely that the '"damping in pitch' term

s zq)mv;, +mg

will be constant for an oscillation which includes the stall. However, it is equally unlikely that
this term will change sign and therefore it may be concluded that the previous statement regard-
ing the damping boundary is qualitatively true, but leaves uncertainty as to the amount the damping
boundary exceeds the stalling incidence.

B,<0, A <0, A,>0

Again the airframe is statically stable at low incidence, but now the static stability decreases
with incidence, thereby constituting a '"'soft' system. A notable example o such an airframe is
the canard misgsile configuration which experiences considerable non-linear body lift and, as a
result of the centre of pressure of the non-linear body lift being ahead of the centre of gravity,
develops a nose-up pitching moment. This configuration would normally have A;>0 associated
with B,<0.
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This case will have boundaries similar to those expressed by (5.15) and (5.16), but in
addition will have a zero stiffness boundary given by

2
A, -3A,W°; 5 =0, Ws s, t o0,

or
1 1 1
W, o - <-3-A,_>f _| 3 (Ut zg)my - mquJ 2 (5.18)
HAIT As (Up + zg)m; -mgz,
From (5.1)

MW) . g W+ m W’

and the symmetrically disposed points of maxima and minima on the pitching moment versus
incidence curve will occur at

1
Thm 2
(s s
Wnm < = ) (5.19)
Now z, and mg will normally be negative and it follows that if z,<0 then the steady-state incidence
W
for which the stiffness becomes zero is numerically greater than —EM . When z,>0, the zero

stiffness boundary may be at small or greater values of incidence than El\_/[ depending on the
relative magnitude of zy, and z,. u

B,<0, A,>0, A,<0

Here the airframe is statically unstable at low incidence. With F = 0 the airframe will
trim out at values of Wg o , given by

3
F=-AWg g -AWg g =0, Wg g f0,
or
AL
W o =< AN (5.20)
and the corresponding value of the stiffness will be
_é‘L = A [
-A - 3A5( 7Y ) = -2A,. (5.21)

The line (*(x) = -2c,, in Fig. 3(c), is now interpreted as a line of constant stiffness -2A,.
Increasing values of F now cause the singularity to move along EF or HJ. If F is negative then
the movement is along EC or HG, becoming unstable at the stiffness boundary as given by (5.18).
Since my, >0 and m3<0, the value of W corresponding to the stiffness boundary can be either greater
or smaller than Wy and in particular when zy <0, z,<0 then W at zero stiffness will be >Wy,.

The instability at the stiffness boundary consists of a jump to the remaining stable singularity,
corresponding to a change in sign and increase of magnitude of the trimmed incidence. Obviously
this sort of behaviour is out of the question for an aeroplane, but possible on a missile having no
automatic control system. As indicated in Ref. 8, when dealing with a rear-controlled missile a
useful increase in aerodynamic gain,(W/n)s_ g., can be obtained by making the airframe statically
unstable at small incidence. This will be offset by having a region around W = 0 for which a stable
trim condition cannot be obtained, at least not without the use of a closed-loop control system.
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It was shown in Section 3.0 that in addition to having a stable singularity at xg o , the
conditions for complete stability imposed limitations on the initial and final values of trim,
i.e. limited the magnitude of the step function imposed. This condition has not been included
in the present section since it will be seen to constitute a special case of the criteria developed
in Section 6.0.

6.0 Stability of Short-Period Motion When zp is Not Small.

As indicated in Section 5.0, when zj is not small, the initial velocity |W, . o | = | z |
can under certain circumstances have an important influence on the stability. Again the stability
is treated by assuming an instantaneous change in the orientation of the singular points, corres-
ponding to a step-function change in F. When z, is not small there will be an appreciable value
of Wy _ o and thereby the initial position of rest is transformed to an ordinary point in the phase-
plane with a known displacement from the new singularities and an initial velocity W; _ ;. Consider
each case in turn:

B,<0, A, <0, A,<0

For each value of F there exists only one singularity, which will be stable if the damping
is positive. In this case the system will always settle to the singularity regardless of the sign
of Wt = 0 , although the settling time will be less for negative values of W, shown as W, in
Fig. 10(a).

B, <0, A, <0,A,>0

For small positive values of F three singular points exist, Fig. 10(b), one stable spiral
at positive W, one saddle at larger positive W and another saddle at negative W. Now when z,
and hence W or W are zero then a sufficient condition for stability is that the dashed line, rep-
resenting the initial value of W, shall lie between the saddle points, bearing in mind that the
orientation changes with F. Obviously when W, and W, are small the same criterion is approx-
imately true. With increasing values of W - o a point is reached at which the integral curves
no longer spiral in to the stable singularity. When V'V1 is numerically greater than a critical
value, (Wi)c, which lies on the integral curve passing through the saddle point at negative W,
then the motion diverges indefinitely in the negative sense. A similar divergence occurs if

W, >(W, ).

The interesting problem here is to determine the critical values of Wt = g or the corres-
ponding value of zy for a given step change of F or n. Alternatively if z, is fixed the problem is
to determine the magnitude of the step change in F or n for which Wt - o reaches a critical value.
As will be seen from Ref. 2, pp.61-80, this problem is very similar to that of determining the
critical disturbance of a damped pendulum or the ''pull-out torque' of a synchronous motor.

Assuming that the airframe is trimmed at a small positive incidence and z, is negative
(this is always true for the convention adopted), then for a rear controlled missile an increase

of incidence is obtained by making nmore negative and the associated value of Wt =0 = 2
will be poeitive. For a canard or moving wmg arrangement an increase of incidence is achieved
by making n more positive and therefore Wt =0 = -Zp will be negative.

Consider the case of a canard airframe, for which the conditions A <0, A,>0 are charac-
teristic (a feature arising from the centre of gravity being behind the centre of pressure of the
non-linear body lift) and assume that it is trimmed at a positive incidence corresponding to the
point A on Fig. 10(b) and below the maximum on the W, F curve. A negative step-function of n
is applied to the elevator and the new trim value will be at the centre, E, of the stable spiral
shown. However, in this case Wt =0 = -2p is positive and will oppose the motion toward the
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stable condition. If Wt =0 <WAC the critical value, the response will finally settle at the
stable singularity, whereas if Wy - ¢ >V.VAC the airframe will become unstable.
The problem then is to develop an expression describing the integral curves through the

unstable singularity P with the intention of using the expression to determine WAC . If § is the
W co-ordinate relative to P,then

W=Wp + &

and the integral curves in the region of Wp are described by

£ -[B,+ 13.,(wp +8)"']E - {A,g + A, [3w’p.§ +3WLE + g’]J= 0 (6.1)

dé

Nowéz"g"dg

and (6.1) may be re-written in the form

. d&
E[E - [B,+Bw, + 8)°] }: (A, + 3A,w’p) £+ 3AW g%+ £ (6.2)

At £ =0, W = E = 0 and ‘g" may be developed as a power series in the form

3

E-=af+af+ af’+ ......... , (6.3)
which upon differentiation with respect to §, gives

% = a, + 23, + 2a,§ + 3a,EZ+ ......... X (6.4)
Substitution from (6.3) and (6.4) into (6. 2) then gives

2 3 2 ¢
(8,6 +28,6 +a8 +....... ) [(a, - B, - B,W o) + 208, - BW )E
3
+(3a, - B)E + ....... 1 =(a + 3A,sz)§ + 3AWpE”" + AsE (6.5)

Since (6.5) is to be true for all values of &, then the coefficients of like powers of £ may be
equated giving the indicial equations:

1) a. - (B, + B,sz)a, ~ (A 3A,W2p) 20
or
1 2\ 4 2 2 2 %
a, =3 {8 +BW )t [(B + BW )"+ (A, + 38W7)] (6.6)
2) a(2a, - 2B,W ) +a,(a, - B, - B,W ) =3AW
3 P P
or
(3a,+ 2a,B,)W
PR R (6.7)
3a, - B, - BW
1 1 3 p
3) a,(3a, - B,) + a (28, - 2B,W ) +aj(a, - B, - Bswzp) = A,
or
_ A; -2a,a,-B.Wy,) +a,B, (6.8)
e 4a, - B, - B,W‘p
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The value of WAC will then be

. ) ) i ) . 5
WA = a,(wTA Wp) & ae(wTA W )% + a,(wTA Wp) (6.9)

C P

From (6.6), a, has two values. Since P is a saddle point then (A, + 3A,W2p)> 0

and the values of a, must be real, positive and negative respectively. These two values corres-
pond to the initial slopes of the two integral curves passing through the singularity. In the present
problem the negative value of a, is appropriate.

With known aerodynamic characteristics, A; , A3, ... etc., it is now possible to
determine the critical value of Wy - o or zy for a range of various initial and final trimmed

incidences.

B,<0, A,>0, A,<0

When flying trimmed in the lower range of positive incidence three singular points
exists, Fig. 10(c). This case would be typical of the rear controlled airframe if it were stat-
ically unstable at low incidence.

A positive step-function of 1 is applied in order to reduce the trimmed incidence to
a point corresponding to E. When zn = 0, it is a sufficient condition for the motion to settle
at E, that the starting point A shall not lie outside the integral curve passing through the saddle
point complementary to the stable spiral at E. This means that if the magnitude of the step-
function is too great the motion will not settle at E, but will pass over to the other stable spiral
at negative incidence. The limiting value can only be obtained by constructing the integral curve
through the unstable singularity at P.

When zp # 0, the value of Wt -0 = Zn. which ie negative, and if this value is

numerically greater than WAC the airframe will not trim at E but will depart to the other stable
singularity.

From these three cases it can be seen that the term z; does not alter the stability
criteria of Section 3.0, provided these are interpreted in a slightly more general manner. As
before the final steady state condition must be a stable singularity, anc the initial and final
points on the phase plane must not be separated by an integral curve passing through a saddle
point which is complementary to the stable singularity at the steady state value. Whereas
previously the initial value was at a point x5, v = 0, when zp # 0 the initial value will be
Xp, V # 0. The cases described in Section 3.0 and 5.0 are special cases for which v = 0.

A Numerical Example

In order to demonstrate the calculation of WA and show its influence on the effective
stability boundaries, an example has been chosen of a rear controlled missile conforming to the
conditions B,<0, Bs<0, A1 >0, A,<0. The missile is a cruciform, air-to-air type having a use-
ful speed range of 1,500 to 3,500 f.p.s. Its operation and aerodynamic characteristics are given
in detail in Ref. 8.

Taking a flight altitude of 60, 000 feet at a speed of 2,000 f.p.s. and a centre of gravity
position X, g = 0.5 feet, the aerodynamic derivatives become

zy = -0.227 sec. ~', z; = -1.33 x 107ft. 2 gec.,

my,= 0.00566 ft. 'sec. ', m = -0.354 x 10" ft.  sec.,

zp = -86.7 ft. sec. - mp = -37.91 sec. =L
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= -0.259 ft. sec. ', m_=-0.1134 sec. ',

q q
m; = -0.0340 x 107" ft. ',
giving
-2 -4 -2
A, =11.30 sec. , A;=-0.708x10 ft. ,
B, = -0.408 sec. , By = -3.399 x 10 ft.  sec.

The equation of trim is

3 3
~2000 A, - 2,000°A . = [(2,000 + z) mp - z,,mq],nT .
or
3 -
-22.60x103u=T+ 5.664 x 10° = = -75,8200, (6.10)
: . - W : . s :
where < and nT are in radians and o = T/y - The trim curve is shown in Fig. 11.

When the airframe is statically stable at low incidence (corresponding, in this
airframe, to x, <0. 3 feet) the values of N will all be negative. In the present case, with
static mstabihty %t low incidence, a region exists between M and N, Fig.11, where a stable
trimmed positive incidence is achieved with 7. positive. The minimum positive value of
for which a stable trimmed condition can exist will be given by

2.60x 10 \3 :
(“T)M =<§;2‘-5—mx—ﬁa§ ?® = 0.1154 radian,

where only the positive value is relevant in the present problem. The corresponding value of
N is +0.0229 radian. When < is greater than that corresponding to the point S, Fig.11, only
one stable trimmed condition can exist, the limit being given by the maximum positive root of

- 22.60 x 10"mT + 5.664 x 10’«T’ = -75,829 x (-0.0229)

or

(ocT)S = 0.232 radian.

Let E be the point corresponding to the final trim condition; then if it lies between
M and S there will always be a complementary saddle singularity at the point P. This implies
that a critical value of Wy - g or &y - o =(Wy - o) /Uwill exist only if E lies between M and S.

A range of values of («p)p , between f=7)M and {(*p)g » can now be selected and the associated

values of (TIT)E P’ (c:T)P = WP/U , a,, a, and a5 calculated. If now a range of values of the

initial trimmed incidence, (= )A , is associated with each value of ( T)E’ then the critical

integral curves, i.e. the integral curves through (oc ) , may be evaluated and are shown
plotted in Fig.12 in the form WAC versuse .

Taking first cases in which (mT)A < (“T)E , for which the minimum positive value

ig 0.1154 radian and WAC = -zp = 86.7 ft.sec.”® . It can be seen from Fig.12 that the critical
integral curve can never separate the initial and final positions, implying that the airframe is

stable when subjected to negative step functions of 7 of any magnitude within the limits of the
elevator mechanical stops.
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When (‘:T)A < (¢’=T)E . WAC =2z, =86.7ft. sec. and values of (“T)A may be reached
in which the system will not trim finally at («T)E. The critical values of (« T) A correspond to
the points of intersection of the line V.VAC = zp and the critical integral curves, only the higher

of the two values given being relevant. These values have been plotted in Fig.13. For a given
value of initial trimmed incidence the airframe can only be re-trimmed, by means of a single
step function elevator deflection, to final values of incidence greater than that of the boundary
shown. If the elevator step deflection is greater than the value of the 4, boundary, with the
intention of re-trimming ataT less than the incidence boundary, the airframe will shoot past

the degired trim position and trim out at negative incidence.

The minimum value of («T)E for which any re-trimming, by means of elevator step

deflections, is possible at all corresponds to the condition when the minimum on a critical integral
curve just touches the line WAC = 2. This value is (ocT)E = 0.13 radian and corresponds to a

limiting value of (o:T)A = 0.14 radian. The difference between these values arises from the

init?al value of W produced by zp; when z, = 0 the minimum values of (‘:T)E = (“T)A =0.1154
radian.
7.0 Conclusions
The conclusions which may be drawn from this study are as follows:
(1) That the stability of the equation (1.1) with B(x) and C(x) as anti-symmetric functions is

determined by the nature of the singularity at the steady-state value given by C(x) = Q, with the
additional condition that on the phase plane diagram associated with the final steady state values,
the initial and final points must not be separated by an integral curve passing through a saddle
point. Further, the character of transient settling down motion is directly related to the nature

of the singularity at the steady state (e.g. the settling down is oscillatory if the singularity is a
stable spiral) and, together with the stability, is accurately predicted by the criteria of Section 3.0.

(2) The short-period motion of an airframe subject to a step-function elevator, deflection is
governed by an equation similar to (1.1), but differing as a result of the term z;.n on the right
hand side. When 2z, is small, which it usually is for rear controlledand canard arrangements,
it is found that the stability criteria for (1.1) are applicable to the airframe problem. When

Zy is not small special treatment is required in order to determine the critical value of the elev-
ator step-function which will cause instability. It is found that the critical value may fairly
readily be obtained from quantities taken from the elevator trim curves.
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