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Preface

111

This thesis project was a collaboration with Cue2Walk, a company based in the
Hague. I have enjoyed (and sometimes struggled with) combining the research as-
pect required for the TU with the development aspect called for by Cue2Walk.
On the one side, every decision I made needed to be justified in a good research
article, while on the other side I mostly wanted to deliver a useful “end prod-
uct”. I'd like to think that my project ended up combining both of these aspects.

My graduation has for the most part been quite a smooth ride. Sometimes so much so
thatI wondered when something would go wrong. Then came along Covid-19. The time
I put into figuring out my sensors, planning experiments, writing protocols, discussing
with the Basalt Revalidatie about the location, applying a research ethics proposal- was
suddenly fruitless. In the end, (as expected,) everything did not go according to my
plan. I'was fortunate in the way I could adjust my project proposal and get back on track.

In this report, I will introduce you to the background of this thesis project and the
company Cue2Walk. The essential part of this report is the research article, which
mainly concerns the results of the project. The report introduction provides more
insight into the process of getting there. Of course, you are free to skip directly to the
research article, where you will have the opportunity to read a condensed account of
the most important components of my project, which is already pretty interesting on
the whole! Enjoy.
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Introduction

BACKGROUND

Medical records show that approximately 50.000 patients were diagnosed with
Parkinson’s Disease (PD) in the Netherlands in 2016. Of these patients, most patients
were among the elderly population [1]. PD is a neurodegenerative disorder, a disorder
of the central nervous system tampering with muscle control [2]. One of the main
causes of PD is the loss of dopaminergic neurons in the brain. Dopamine acts as
a messenger molecule and is essential for movement control and coordination [2].
Existing medication for PD patients is focussed on reducing the dopamine deficit in
the brain [3].

One of the motor symptoms of PD is Freezing of Gait (FoG). Approximately half of
the PD patients diagnosed over five years experience FoG, a short episodic inability
to keep moving forward despite the intent to do so [4,5]. There is no existing cure
for FoG, but symptom reduction is offered with a technique called cueing. Cueing
stimulates the continuation of gait by giving rhythmic feedback in the form of
auditory cues or visual stimuli [6].

The mechanism that underlies the success of cueing is not completely known. A
possible explanation for its benefits is that cues shift the attention of patients towards
the movement of their legs, leading them take steps consciously, thereby reducing the
chance of experiencing FoG [7]. Another suggestion is that cues bypass a defective
part of the PD brain, the basal ganglia, and thereby acts as a surrogate for the defective
internal timing of gait [8].
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Figure I: Cueing in the form of visual or auditory stimuli can improve gait in PD
patients - figure redrawn from [6]

Cueing is the most effective if cues are received as soon as a FoG episode starts
instead of continuously [9]. For this reason, algorithms have been developed that
identify when a FoG episode commences, to be used in a wearable device that gives
cues to PD patients on demand [6]. These FoG detection algorithms use kinematic
data (predominantly acceleration data) obtained at the lower limb of a PD patient
to decide whether the patient is walking normally (cues are not required) or is
approaching or experiencing a FoG episode (cues are required) [6]. FoG is often
paired with complex rhythmic oscillations in frequency domain [10]. The gold
standard for FoG detection is the “Freeze Index” (FI), developed by Moore et al.,
that compares vertical acceleration data in frequency domain [11]. The FI compares
energy of an acceleration window in the “locomotor band” (0.5-3 Hz) to energy in
the “freeze band” (3-8 Hz). If this ratio exceeds a personal threshold, the window is
labelled as a FoG event [11].

The FI method has since been used by other researchers. Bachlin et al. improved
the method by adding a threshold on the total energy in a window, to avoid false
positive FoG detection [12]. Jovanov et al. build upon the method of Moore et al. by
computing correlation of the FI to the total energy per window [13].

Coste et al. developed a method unrelated to the FI [14]. Their focus was on detecting
festination, an increased cadence coupled with decreased stride length, that often
occurs before a FoG episode. Cadence was calculated from forward acceleration
data, stride length was estimated by integration, after which they were compared to
predefined thresholds [14]. These examples illustrate the diversity in methods used
for FoG detection and the desire to improve the existing FoG detection methods.

Implementing FoG detection methods on a wearable cueing device could be very
beneficial to PD patients: when a patient experiences FoG, the device could initiate
cues, and the patient can resume walking [6]. However, in practice, this is not as simple
as it sounds. A lot of FoG detection research was done in a laboratory environment,
and involved only walking in a straight line. As I will clarify in the research article,
current research is not satisfactory for FoG detection in the home environment. This
is an issue that Cue2Walk (a company developing a cueing wearable for PD patients)
experiences at the moment. Together with Cue2Walk, I set out to find a solution to
this predicament.



CompPANY: CUE2WALK

Medical records show that over 52.000 patients were
diagnosed with Parkinsons Disease (PD) in the
Netherlands in 2018. Of these patients, most patients
were among the elderly population [1]. PD is a
neurodegenerative disorder, a disorder of the central
nervous system tampering with muscle control [2]. One
of the main causes of PD is the loss of dopaminergic
neurons in the brain. Dopamine acts as a messenger
molecule and is essential for movement control and
coordination [2]. Existing medication for PD patients
is focussed on reducing the dopamine deficit in the
brain and can be used for a limited period only [3].
It is therefore essential to find long-term solutions to
symptoms caused by PD.

One of the motor symptoms of PD is Freezing of Gait
(FoG). Approximately half of the PD patients diagnosed
over five years experience FoG, a short episodic inability
to keep moving forward despite the intent to do so [4]
[5]. There is no existing cure for FoG, but symptom
reduction is offered with a technique called cueing.
Cueing stimulates the continuation of gait by giving
rhythmic feedback in the form of auditory cues, haptic
feedback or visual stimuli [6].

The mechanism that underlies the success of cueing
is not completely known. A possible explanation for
its benefits is that cues shift the attention of patients
towards the movement of their legs, leading them to
take steps consciously, thereby reducing the chance
of experiencing FoG [7]. Another suggestion is that
cues bypass a defective part of the PD brain, the basal
ganglia, and thereby acts as a surrogate for the defective
internal timing of gait [8].

VII

ReLATED PRODUCTS

PD is a progressive disease without a cure. The PD
patient population is growing, and the market of
wearable assistive devices expanded over the last years.
Several wearable products related to PD were developed
recently.

o The Parkinson Buddy is a device that resonates a
continuous walking rhythm using a metronome
[15]. The limitation of this device is that it is not
“smart”. The device gives a continuous signal, that
causes habituation after some time (as one gets used
to a ticking clock). Cue2Walk focuses on cueing on
demand, only when FoG is detected.

o The Parkinson Smartwatch with a build-in
movement sensor can monitor tremor in the home-
environment [16]. This device can also keep track
of mobility and sleep patterns. Statistics are stored
in a smartphone app. The smartwatch is aimed
at registration and interpretation of PD patient
mobility and symptoms, but does not detect FoG
due to the position at the wrist.

o Great Lakes NeuroTechnologies (GLNT) developed
a device that measures the movement intensity of
PD patients, and measures tremor, dyskinesia and
activity intensity [17]. This device does not include
FoG detection or monitoring.

o Medigait is a virtual reality device that projects
a walking pattern on a virtual screen of glasses
[18]. This (virtual and visual) method of cueing is
only applicable in a limited number of situations
indoors. Furthermore, this device does not include
a FoG detection algorithm.

This list of related research and products is not
exhaustive. However, it indicates the relevance of the
field and the need for the device that Cue2Walk is
developing



VIII

OBJECTIVES

Thesis Project

The goal of the thesis collaboration with Cue2Walk is to reduce the initiation of cues
when they are not required by developing a method to improve FoG detection by
reducing false positive detection. For the Cue2Walk cueing wearable, it is important
to know when a patient is in ambulatory motion (FoG may occur) or when a patient
is in a non-ambulatory motion or static position (FoG does not occur). Furthermore,
Cue2Walk is planning to incorporate an activity logging feature to the Cue2Walk
app. With this activity log, patients can keep track of their daily mobility and of the
tasks that they have completed during the day. This information can be shared with
doctors and physiotherapists, to evaluate disease progress, to make treatment plans
and to set goals for a more active lifestyle. Keeping active is especially important for
Parkinson’s Disease patients to slow down the progression of the disease [19, 20].

Figure II: Initial sketch of the thesis outline. The plan was to do measurements on PD
patients. However, Medical Ethical Review Committee (METC) application is a long
process that was not achievable during the time span of the thesis
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EXPERIMENTAL PLANS

IX

The initial plans for this thesis project included experiments with healthy subjects.
Unfortunately, the experiments had to be canceled. Nevertheless, I will shortly
describe the original protocol. Approximately ten healthy subjects were required
to take part in these experiments. These experiments would take place at Basalt
Revalidatie, The Hague.

CE certified MetaMotionR sensors from Mbientlab were ordered to record three-

axial acceleration data [21]. Three sensors would be worn in bands and clips at the

right leg:

o Hip: Against upper part of the pelvis, attached to the rightmost part of a belt or
edge of trousers.

o Thigh: Above the knee in a band around the thigh at the rightmost part.

o Lower leg: Below the knee in a band around the lower leg at the rightmost part.

The following tasks would each be completed twice in randomized order. Except for
tasks 3, 4 and 5, all tasks would be carried out for one minute at the time.

1. Straight lined walking: The participant is asked to walk in a straight line, turning
around (naturally) when the end of a hall is approaching.

2. Walking in a zigzag: The participant is asked to walk around indicated objects in
the room, while not trying to speed up this process (it is not an obstacle course
race)

3. Walking the stairs: The participant is asked to walk up and down the stairs 6
times, stopping for at least 1 second before the first and after the last step.

4. Turning in place. The participant is asked to turn in place at his or her own pace.
The participant can turn 4 times 15 seconds, to prevent dizziness.

5. Standing still. The participant is asked to stand on the spot, not forcibly trying to
keep still.

6. Sitting on a kitchen chair.

7. Lying in bed. The participant is asked to lie down on his or her back.

Due to the Covid-19 crisis, the experiments had to ALTERATIONS
be canceled. Fortunately, I could access a publicly
available dataset containing activity data of healthy
subjects. Most of the tasks that I was planning to
include in my experiments, were included in this
dataset. Furthermore, cycling and vacuuming were
added to thelists of tasks to be classified. I considered
this an improvement to my research project.
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Development of a Bayesian Decision Tree

Model for Task Classification

and 1its

Validation on Parkinson’s Disease Patients

Melina Dekker - Delft University of Technology - Faculty of Mechanical, Maritime and Materials Engineering

Abstract—Freezing of Gait (FoG) is a debilitating
walking problem affecting over 50% of Parkinson’s Dis-
ease (PD) patients. Rhythmic cues during FoG can help
patients to resume walking. FoG can be detected from
lower limb acceleration data, but current detection algo-
rithms lack context, resulting in false positive detection
and initiation of cues when these are not required. Cues
are only required during ambulatory motion. Adding
a task classification model to an FoG detection device
can help to increase specificity. Furthermore, using this
model, an activity log of PD patients can be kept
in the home environment, thereby facilitating disease
evaluation.

A decision tree model using Bayesian classifiers was
developed for task classification. Predictors were ex-
tracted from raw data of an ankle-worn triaxial ac-
celerometer and the best predictors were determined
at each decision node using feature selection methods.
The proposed decision tree model (trained using healthy
subject data) was tested on PD patient data to evaluate
transferability. Furthermore, to compare performance
and computational speed, our Bayesian decision node
classifiers were compared to Naive Bayes classifiers.

The proposed model was over 30 times faster, com-
pared to the computational speed of using Naive Bayes
classifiers at the decision nodes. Ambulatory windows
were identified with a sensitivity over 91% for both
healthy subjects and PD patients, showing that the
Bayesian decision tree model developed in this study can
provide context for an FoG detection wearable, to enable
effective cueing. This will help patients to walk more
confidently and to keep active.

Accelerometry, Task Classification, Freezing of Gait,
Parkinson’s Disease, Decision Tree Model, Bayesian

I. INTRODUCTION
A. Background

Keeping patients active is of great importance to
slow down the progression of Parkinson’s Disease
(PD) and to maintain quality of life [1], [2], [3]. PD is
a disorder of the central nervous system that interferes
with the control of muscles and causes symptoms such
as tremor, bradykinesia (slow movements) and walking
problems [4], [5], [6]. Freezing of Gait (FoG) is a
debilitating walking problem that affects over 50% of
PD patients [7], [8]. It is an episodic inability to move

forward despite the intent to do so, often described
as the feeling of the feet being glued to the ground
[7]. Approximately half of the FoG episodes last over
10 seconds [9]. FoG poses difficulties in performing
everyday tasks and can contribute to dangerous situa-
tions such as falls [10], [11]. Walking difficulties and
fear of falling caused by FoG can conduce an inactive
lifestyle, which in turn does not help to slow down the
progression of Parkinson’s Disease [2].

A popular topic of research on FoG reduction is
cueing [12], [13], [14]. This technique stimulates the
initiation or continuation of movement by exposing
patients to rhythmic auditory feedback, thus reducing
FoG and improving gait [12], [15]. Cueing is the most
effective if cues are received on-demand instead of
continuously, as continuous cues can cause hindrance
in daily life and can lead to habituation and lower
response to cues [16], [17]. Automatic cueing on a
wearable device could alleviate FoG symptoms in
daily life [17]. FoG episodes need to be identified
for cues to start automatically [18]. FoG detection
algorithms were recently developed for this purpose
[17]. These detection algorithms use accelerometer
and gyroscope data obtained at the lower limb to
identify FoG episodes during walking tasks, obtaining
sensitivities of up to 92% [18], [19], [20], [21].

B. PD patient monitoring in the home environment

A major shortcoming in studies on FoG detection is
that the clinical setting used in these studies does not
reflect real-life situations [22]. Algorithms were built
to identify FoG during walking but not during activities
of daily living. False positives are likely to occur
when using an FoG detection wearable in a home
environment due to increased variability in movement
signals [22]. To avoid habituation and hindrance during
the long-term use of an automatic cueing device,
false positives should be minimized. FoG episodes
occur during ambulatory motion, most likely while
walking through narrow spaces, turning and walking
while dual-tasking [23]. Cues are not required during



many other activities in daily life, such as sitting or
lying down. We propose that task classification can
provide a context-aware framework for FoG detection,
reducing false-positive FoG identification. This will
contribute to the user-friendliness of an automatic
cueing wearable.

Analogous to this claim, Takac et al. stated that
the specificity of FoG detection is dependent on the
context of a user, such as the current location or per-
formed task [24]. Knowing the context might reduce
FoG misclassification. Takac et al. provided context
for FoG detection by indoor position tracking using
a camera system [24]. In our study, we will focus
on providing context for FOG detection by classifying
common tasks of daily living.

Another limitation of PD patient monitoring in the
home environment, unrelated to FoG detection, is that
current means of evaluating PD patient mobility are
limited, while the evaluation is of importance to ana-
lyze disease progression [25]. A common method to
evaluate mobility is patient journaling, where patients
are asked to periodically indicate their activities [26].
This method is both inconvenient to patients and sub-
jective. A wearable device, continuously classifying
common tasks, can be used to create an activity log
for the user. Continuous tracking of patient mobility
and creating an activity log can contribute to disease
management. Dynamic adjustment of treatment could
potentially be facilitated [22], [25].

C. Task classification models

Task classification research commonly starts with
sensor placement [27]. FoG detection takes place
mainly at the lower limb, the most convenient place to
record rapid knee-trembling present during FoG [28],
[71, [9]. In task classification studies, the waist or the
lower leg are popular places to classify simple tasks
[29], [27]. After sensor placement, task classification
studies persist with data acquisition, pre-processing,
predictor extraction, predictor selection, model learn-
ing and performance evaluation [27]. Predictors are
measurable properties of an observed circumstance,
class or category. Predictors used for task classifi-
cation include the mean value, the minimum value,
the frequency peak location and the total energy of
acceleration data windows [27].

The focus of this study will be on decision tree
models for task classification. Decision tree models
have a hierarchical structure with multiple decision
nodes, each containing a classifier: an algorithm label-
ing an input (data window) as belonging to a certain
category or class [30], [31]. Skotte et al. developed a
decision tree model for task classification in healthy

subjects, obtaining sensitivities of 95%-100% [32].
As decision node classifiers, thresholds on SD (SD)
and accelerometer angle were used. In another task
classification study, Khan et al. point out that the
identification of multiple activities results in complex
decision boundaries in the predictor space, which are
difficult for a single classifier to solve [33]. This pro-
motes using a decision tree model, enabling decision-
making in several steps using multiple classifiers.

In our study, a Bayesian classifier was developed
for the decision nodes, as opposed to thresholds, with
the following reasoning: when using thresholds for
classification, a clear decision boundary is required.
However, PD patients show deteriorated gait regularity,
bradykinesia and a limited range of motion [34], [35].
Furthermore, the power spectrum obtained from PD
patients is wider and less distinct than that of healthy
subjects [36]. We hypothesize that predictors obtained
from PD patients are affected by changes observed in
their movements and that threshold-based classifiers
may therefore not provide enough information for
classification.

D. Requirements

For developing the classification model, the follow-

ing set of requirements was extracted:

o Obtrusiveness. If a telecare system is obtrusive,
for example in the number of sensors used, it in-
terferes with patients’ daily routines and will not
be used [4]. A single sensor model will therefore
be developed. Single sensor task classification
models for healthy subjects were developed in
recent studies, as presented in a review by Cheung
et al. [37].

o Energy use. A wearable device for long-term
use needs to operate energy efficiently. An ac-
celerometer will thus be used. Accelerometers are
common in task classification research and have
the advantage of low power consumption [38].

o Latency. Tasks need to be classified fast to
provide context to FoG detection and cueing.
Cues should start with a low delay time (below
2 seconds after FoG starts) to induce prompt
resumption of gait [39], [40]. Window size affects
the overall lag of classification systems, so a small
window size is required [4], [41]. Furthermore, a
low sampling rate (but at least 20 Hz [42]) should
be used to cut back on the computational speed
of the model.

o Subject independence. The model needs to be
subject-independent to classify data of a subject
on which it was not trained. Hence, leave-one-
out cross-validation will be used throughout this
study [43], [44].



E. Objectives

From a developmental perspective, the objective of
this study was twofold. Firstly, the misclassification
of FoG on a home cueing wearable can be reduced
by providing context in the form of task classification.
FoG occurs during ambulatory tasks, therefore FoG
detection is required in ambulatory windows (AWs)
and not in non-ambulatory windows (nAWs). The first
objective was thus to classify AWs and nAWs. Sec-
ondly, an activity log can provide insight into mobility
and can provide a base for a patient’s treatment plan.
We aimed to enable continuous and automatic task
classification on a wearable device, thereby facilitating
disease evaluation.

A decision tree model was developed for task classi-
fication and Bayesian classifiers were constructed for
classification at the decision nodes. Predictors were
extracted from raw data of an ankle-worn tri-axial
accelerometer and data obtained from healthy subjects
was used to build the decision tree model. PD patient
data were then used to assess the transferability of the
model. Furthermore, the proposed Bayesian decision
node classifiers were replaced with common Naive
Bayes classifiers (as developed by The Mathworks
Inc [45]) to compare performance and computational
speed. The proposed decision tree model was over 30
times faster than when using Naive Bayes classifiers
at the decision nodes. AWs were identified with sen-
sitivity over 91% sensitivity for both healthy subjects
and PD patients. However, transferability to PD pa-
tients was inadequate for task-specific classification.
Therefore, training data from PD patients is required
in future studies.

II. METHOD
A. Data

The process overview of building, improving, com-

paring and validating the proposed decision tree model
is shown in Figure 1. Two publicly available datasets
containing tri-axial acceleration data were used during
this study. Dataset 1 was used to build the model.
Dataset 2 was used to evaluate the transferability of
the model to PD patients.
Dataset 1 - Healthy subjects - building the model
The PAMAP?2 physical activity monitoring dataset was
created by Reiss et al. in 2012 [46]. Acceleration
data were obtained from an inertial measurement unit
(IMU) worn at the ankle. A Colibri wireless inertial
measurement unit was used, sampling at 100Hz. The
participants executed several tasks for approximately
200 seconds per task. The following tasks were in-
cluded in the protocol; walking, vacuuming, ascending
stairs, descending stairs, standing, sitting and lying.

Dataset 2 - PD Patients - validating the model The
Daphnet Freezing of Gait Dataset was collected by
Bichlin et al. [40]. Acceleration data were obtained
from an ankle-worn IMU, sampling at 64 Hz. The
dataset contains straight-lined walking and standing.

We will refer to the x-axis as directed horizontally
forward, the y-axis as directed vertically upward and
the z-axis as directed horizontally outward, using a
right-handed coordinate system. Neither dataset specif-
ically contained task transitions.

B. Processing and splitting data

Data were resampled to 50 Hz (The Mathworks, Inc
resample). This sampling frequency was suggested in
studies on task classification and in studies on FoG
detection [47], [48], [49]. As low sampling frequencies
can fail to pick up activity details and a high sampling
frequencies result in higher computational load, 50 Hz
was a suitable compromise [27].

After resampling, data were labeled (as containing
a certain task) and split with a windowing technique
called sliding window approach, an approach well
suited for real-time applications [27]. Per class, data
was split into consecutive windows that overlap by
50%, as applied in earlier research on task classi-
fication [32], [50], [51], [52]. The optimal size of
acceleration data windows is 0.8-1.4 seconds for task
classification research on healthy subjects [42]. PD
patients generally exhibit bradykinesia [53], [54]. This
study used a window size of 1.4 seconds to ensure that
complete movement cycles were included, enabling
derivation of roughly stationary averages of parameters
in the interval. The total number of windows for each
task after splitting is listed in Table I.

Table I: Number of windows for each task after splitting
dataset 1 and dataset 2. A window size of 1.4 seconds was
used and windows overlapped by 50%.

Task Dataset 1: Dataset 2:

Healthy subjects  PD patients
[windows] [windows]

1 Walking 3244 2012

2 Upright active 2318 0

3 Stairs (up and down) 2592 0

4 Cycling 2114 0

5  Standing 2608 2828

6  Sitting 2176 0

7  Lying 2416 0

There is no gold standard for filtering and denoising
raw data before use [55]. Both filtered data and raw
data were used in task classification studies [27], [29],
[32]. Millecamps et al. suggested that denoising data
before use does not improve predictor quality [55].
Furthermore, the computation of filtering raw data
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Figure 1: Process overview of building, improving, com-
paring and validating the proposed decision tree model.
Raw acceleration data were labeled, split in windows (of
1.4 seconds) and predictors were extracted. Afterward, a
subset of predictors was selected for each decision node
classifier based on feature selection scores. All possible
combinations of the predictor subset were used to train and
test the decision node classifiers independently. Predictor
vectors resulting in the highest sensitivity for decision node
classifiers were used in the complete decision tree model.
To compare classification results and computational speed,
the same predictor vectors were used to test and train an
alternative decision tree model with more the common Naive
Bayes classifiers [45]. Lastly, to evaluate transferability,
the proposed decision tree model was trained on dataset 1
(healthy subjects) and tested on dataset 2 (PD patients).

adds latency to a real-time system. Therefore, we
extracted predictors from the raw data.

1) Extracting predictors: Forty-four predictors
were extracted for every data window, as listed in
Table II. These include five tri-axial (3D) predictors
and 13 single-axial predictors. Single-axial predictors

were included once for every (x,y, z-)axis. Seven
of the 1D predictors were time-domain descriptive
statistics of an acceleration window: the minimum
value [56], the maximum value [56], the range [57],
the interquartile range [57] , the arithmetic mean [57],
the entropy [56] and the SD [50]. A new single-axial
predictor (the number of samples below mean value)
was determined as the number of samples within
a data window with values below zero for the x-
and z-axis and below 9.81 for the y-axis. Data were
transferred to the frequency domain using the fast
Fourier transform (FFT), subsequently removing the
first (DC) value. Five predictors were determined per
acceleration windows in the frequency domain: the
maximum value [56], the SD [56], the entropy [50],
the spectral centroid [56] and the total energy within
the data window [56]. The tri-axial predictors were
defined as follows: the (3D) interquartile range was
determined as the sum of the interquartile ranges over
all three axes. The tilt angle was calculated as defined
by Lugade et al. [58]. Covariance was defined as the
largest eigenvalue of the covariance matrix between
the x- and y-axis, as suggested by Capela et al. [57].
Mean Amplitude Deviation (MAD) was determined as
suggested by Ypya et al. [52]. Derivative was defined
as the sum of the approximate derivatives for all axes
[50].

Table II: Fourty-four predictors were extracted for every
data window. These include five tri-axial predictors and
13 single-axial predictors. The single-axial predictors were
included once for every (x,y,z-)axis.

1D Predictor name 3D Predictor name

Minimum IQR 3D
Maximum Tilt angle

Covariance
Range L

matrix eig.

Mean amplitude
IQR deviation (MAD)
Mean Derivative
Entropy

Standard deviation
Number of samples
below mean
FFT-maximum
FFT-SD
FFT-entropy
FFT-spectral centroid
FFT-total energy

C. Decision tree model

Seven tasks were classified in this study: walking,
upright active (vacuuming), taking the stairs, cycling,
standing, sitting and lying. Our model classifies the
tasks at 4 decision nodes (N1-N4), as seen in Figure
2. A decision tree model served the purpose of this



study because the hierarchy of the decision tree could
be organized to classify AWs and nAWs at the first
two nodes (N1 and N2). This can provide context to
a wearable FoG detection and cueing device for PD
patients, as cueing is only required during ambulatory
tasks. Task-specific classification took place at subse-
quent nodes.

Acceleration
data window

—®

‘ static tasks ‘

‘ dynamic tasks ‘

ambulatory tasks

nAWs AWs

cycling

upright
N4 active

walking stairs

standing  sitting lying

Figure 2: Decision tree model with a single acceleration
data window as input and specific task labels as output. N1-
N4 represent decision nodes, where classifiers are used to
categorize incoming data. N1 and N2 distinguish between
AWs and nAWs. Context for FoG detection and cueing is
provided at these nodes. At N3 and N4, ambulatory tasks

and static tasks are categorized respectively.

D. Bayesian decision node classifiers

We developed classifiers for the decision nodes (N1-
N4), based on Bayes’ rule from probability theory.
Likelihoods p(x;|c) were computed from labeled train-
ing data, where x; is a certain predictor and c is the
class of a data window. The posterior probability of
an instance belonging to a class was then calculated
as follows:

p(a)p(zic)

p(clz;) = @) (1

The a priori probability of the classes p(a) was as-
sumed to be uniform. The probability density func-
tion p(z;|c) was computed as normalized 50 bin
histograms. The a-priori probability p(z;) could be
neglected because of the normalization. For each data
window, posterior probabilities were then calculated

per class as a product of posterior probabilities of all
Np predictors x; in predictor vector Xny1 — N4, as:

Np
ple|Xn1 = N4) =[] plaile) 2)
i=1

Windows were labeled as the class with the maximum
posterior probability.

Validation and performance evaluation: The valida-
tion method used to obtain subject independent results
were leave-one-out cross-validation [43], [44]. Data of
one subject was retained as test data while the model
was trained using data from all other subjects. This
was repeated 8 times, once for every subject.

Sensitivity was determined to evaluate classification
performance. Sensitivity for a certain task is indepen-
dent of the number of windows for other tasks, mak-
ing it a useful measure for imbalanced datasets. The
number of windows for each task in both datasets was
unbalanced, as indicated in Table I. Furthermore, false
positives and true negatives could not be calculated for
all tasks in dataset 2 because the dataset contained only
two tasks (walking and standing). Sensitivity could be
determined for both dataset 1 and dataset 2 (using true
positives and false negatives) and was thus a suitable
measure for comparison.

E. Selecting predictors

The process of evaluating all predictors and select-
ing final predictor vectors is depicted in Figure 3.
Feature Selection (FS) methods were used to select
a subset of 14 predictors, which were most predictive
for the corresponding class. Dimensionality of the pre-
dictor space was thereby reduced: optimizing decision
node classifiers using all predictors would not be re-
alizable in terms of computation time. The number 14
was chosen as a trade-off between a high computation
time and including as much relevant information as
possible. The following three FS methods were used
in previous task classification studies to rank predictors
based on predictive power [50], [57], [59], [60]:

1) Minimum Redundancy Maximum Relevance
(MRMR) algorithm. This method aims to find
maximum dependency between a predictor and its
assigned class and to exclude redundant predic-
tors [59]. Mutual information between predictors
and classes is defined using probability density
functions and joint probabilities.

We used the MRMR algorithm because it is a
probability-based FS method that could provide
relevant information for the probability-based
decision node classifiers developed in this study.



2) Relief F is a popular FS method to rank features
by relevance [50], [57]. This algorithm finds the
nearest hits (data point belong to the same class)
and the nearest misses (data point belong to
different classes) for every predictor data point.
We evaluated 30 nearest data points. The weight
of every predictor starts at zero and updates
according to Formula 3.

M

wi = Z(w{—nearmiss(mj)i)Q—(xZ —nearhit(z’);)
j=1

(3

Where w; represents the weight of the i*" pre-

dictor, x; is the value of the ith predictor for
data point j, M 1is the total number of data
points, nearhit and nearmiss represent the nearest
data point from the same and different class
respectively [50]. The Relief F method is used in
this study because it was suggested for datasets
with strong interdependencies between predictors
[57].

Variance ratio (VarRat), as suggested by Moore
et al.,, is a simple method that compares within-

class variance W,(x;) to between-class variance
Be(x;) [60].

3)
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A higher VarRat V(z;) for a predictor means
that it is predictive for the corresponding class.
A higher VarRat also decreases the probability
that data points of different predictors are close
to one another, making the variance ratio a useful
tool to identify relevant predictors for Bayesian
classification.

Viz:) = @

Scores from all three FS methods were normal-
ized and added for each predictor. FS methods were
repeated for N1-N4. Four lists containing predictor
subsets (Xs n1-—n4) sorted on descending FS scores
were obtained, indicating predictive power for each
decision node.

FE. Predictor vectors for decision node classifiers

The relation between classification sensitivity and
the number of predictors used in the predictor vector
for each decision node classifier (IV,) was evaluated.
Optimal N, for every node was assessed as fol-
lows: for every node, predictor vectors were created
of all possible combinations of the predictor subset
Xs_N1-N4, using an NV, of one up until eight. The
predictor vectors were used to train and test all de-
cision node classifiers independently. The sensitivity
for N1-N4 was determined for every predictor vector.
Feasibility of minimizing N, per classifier (for a
simpler and faster model) or maximizing N, (for
higher sensitivity) was evaluated and the optimum was

2

established for N1-N4. Predictor vectors (X xi1_n4)
resulting in the highest classification sensitivity for
each node were subsequently used to train and test
the complete decision tree model.

All extracted predictors: [ Xa1, Xa2, . . ..., Xad4]
for N1
FS methods: ’ MRMR ‘ ’ Relief-F VarRat ‘

| T add seores |
T

FS score for all predictors:

select 14 predictors with highest FS-score ‘

Predictor subset: ~ Xs_N1= | X1, X2,

. e £

(sorted on descending ve
sensitivity) explore all combinations 8.4 2
w M 8

o

L L
[ X1, X2, X3 | 22

Predictor vectors: [ X1, X2, X4] %%

: 35

: O a

[ X12, X13, X14 |

evaluate classifiers independantly for
each node using predictor vectors

Sensitivities of predictor vectors: l

select number of predictors
(Np) included in vector XN1

o

select vector obtaining 50 vectors obtaining
highest sensitivity highest sensitivity

v

Final predictor vector: Xni = [ Xi

Sensitivities of predictor
vectors of length Np :

’ repeat for each decision node N2-N4 ‘

l

use final predictor vectors in decision tree model

Figure 3: Schematic representation of the predictor se-
lection and comparison process. The process was repeated
four times, for decision nodes N1-N4, starting with all 44
extracted predictors and acquiring the final predictor vectors.
Predictor subsets (selected as the 14 predictors obtaining
the highest FS scores) were compared to their prevalence
in the 50 predictor vectors obtaining the highest sensitivity
for the corresponding decision node. By this analysis, we
gain insight into the suitability of predictor types for each
decision node, and we evaluate the correlation of FS scores to
prevalence in the top 50 predictor vector. This would indicate
the reliability of the FS methods. The number 50 was chosen
to obtain an extensive overview of predictor prevalence.



G. Naive Bayes classifier

To compare classification results and speed of the
proposed decision tree model, we used an alternative
classifier at the decision nodes. The Naive Bayes clas-
sifier was used in previous studies on task classification
[37], [57], [61] [62], and was reported to outperform
other classification methods [27]. Analogous to our
Bayesian decision node classifiers, Naive Bayes es-
timates densities of predictors within each class and
models posterior probabilities according to Bayes’ rule
[63], [64]. The alternative decision tree model was
trained and tested using Xs n1- 4.

Comparing computational speed: The decision tree
model was tested using both the proposed Bayesian
decision node classifiers and the Naive Bayes classi-
fier, processing identical data, to compare the respec-
tive computational speed. Time was recorded between
receiving the input window with the corresponding
predictor vector and assigning a specific task to the
window, for every window in dataset 1.

H. Transferability to PD data

Processing data, splitting data and extracting predic-
tors was executed as previously described for dataset 1.
The proposed model was trained on dataset 1 (healthy
subjects) and tested on dataset 2 (PD patients). PD
patients show bradykinesia and move and in a less
symmetrical way compared to healthy subjects [34],
[53]. Therefore, it was uncertain whether the predic-
tors of tasks performed by healthy subjects would
be descriptive for tasks performed by PD patients.
We thus decided to evaluate the five best predictor
vectors previously acquired for healthy subjects (listed
in Appendix B) to test each decision node classifier
independently. This includes (Xy1-n4) and the fol-
lowing four vectors obtaining the highest sensitivities
for each node. Performance per node was evaluated
and the preferred predictor vectors were determined.
These vectors were then used to test the complete
decision tree model, to evaluate the transferability of
the model from healthy subjects to PD patients.

III. RESULTS

A Bayesian decision tree model for task classifi-
cation was developed in this study. Predictors were
extracted from raw data and the most suitable predic-
tors (Xs n1—n4) were determined for N1-N4 using
FS methods. The subsets of 14 best predictors were
combined in predictor vectors of length IV, to train
and test each decision node classifier separately. The
vectors resulting in the highest sensitivity per node
(Xn1-n4) were used in the complete decision tree
model. The model (trained on healthy subject data)

was subsequently tested on PD patient data to evaluate
transferability. Furthermore, the proposed Bayesian de-
cision node classifiers were compared to Naive Bayes
classifiers to compare performance and speed.

A. Selecting Predictors

Using FS methods, predictor subsets Xg n1—n4
were found for N1-N4, which were considered the
most predictive for the classes included at the corre-
sponding nodes (Table III). We evaluated the charac-
teristics (x-,y- or z-axis, time-domain versus frequency
domain) of the predictor subsets. Z-axis predictors
were encountered least among the highest FS scores,
although they did obtain high FS scores at N1 (sepa-
rating static and dynamic tasks) and N2 (classification
of static tasks. Y-axis predictors obtained high FS
scores at N3 (classification of ambulatory tasks) and
N4 (classification of static tasks). Frequency domain
predictors were among the highest-scoring predictors
especially at N1 but were not often selected at N4. In
general, there was no single predictor characteristic
that most frequently obtained high FS scores. All
acceleration axes provided useful information for task
classification, as did both time domain and frequency
domain predictors. However, not all predictors were
equally suited for N1-N4 of the task classification
process, as demonstrated by the variation of predictors
in subset Xs n1—n4.

B. Predictor vectors for decision node classifiers

To find the optimal N,, for each Bayesian decision
node classifier, the sensitivity of the classifiers was
determined for an N, of one up until eight. The
sensitivity of each decision node classifier was de-
termined for all combinations of Xg n1_pn4. It was
hypothesized that using Bayesian classifiers would be
advantageous as opposed to using thresholds on single
predictors. Results are shown in Figure 4. Using a
higher N, resulted in higher sensitivity than using a
single predictor (threshold) for each node. The optimal
number of predictors was N, = 3 at N1 and N, = 4
at N3 and N4. At N2, sensitivity increased with an
increasing N,. The optimal N, at N2 was selected
as four, as using more predictors adds latency to the
model, and as the increase in sensitivity was minimal
when adding more predictors. In general, increasing
N, for a Bayesian classifier should result in higher
sensitivity because more information is available to the
classifier. Contrary to expectations, this was only the
case for N2.

The predictors in subset Xs ny1_n4 (as listed in
Table III) were combined in vectors to train and test
the four Bayesian decision node classifiers at N1-N4



Table III: Subset of predictors (Xs n1-n4) with the highest FS scores (sorted on descending FS score) for N1-N4 and
their prevalence in 50 predictor vectors that resulted in the highest sensitivities of corresponding decision node classifiers. In
general, all acceleration axes as well as time domain and frequency domain predictors were suitable for task classification.

However, distinct predictor types were suited for distinct steps of the task classification process, as demonstrated by the

variation of predictors selected for each decision node. Next to each selected predictor, its prevalence (Pr) in the top 50

predictor vectors is shown in percentage. High FS scores were not directly related to high sensitivity when the predictors

were used in the Bayesian decision node classifiers. This decreases reliability of the FS methods.

Predictor subset N1 Pr [%]  Predictor subset 2 Pr [%]  Predictor subset 3 Pr [%]  Predictor subset 4 Pr [%]
IQR 3D 0 FFT Entropy x 0 Min y 70 Angle 3D 48
FFT totalEnergy z 14 MAD 3D 25 IQR y 34 Mean y 38
FFT SD x 2 Max z 28 Range y 42 Min y 58
Range z 0 Range z 22 FFT totalEnergy y 38 BelowMean y 38
FFT Max x 2 FFT totalEnergy x 26 SDy 0 Max y 26
IQR x 4 Entropy x 50 FFT SD y 0 Entropy z 28
SD z 22 Range x 0 FFT Entropy x 20 Entropy y 24
FFT SD z 18 FFT totalEnergy z 0 Mean y 46 Entropy x 26
FFT SpectralCentroid x 36 Entropy z 60 FFT Max y 0 Mean x 24
BelowMean x 36 SD x 24 Max y 26 Max x 10
FFT Entropy x 44 SD z 22 FFT totalEnergy x 36 FFT SpectralCentroid x 70
BelowMean y 46 Max x 0 MAD 3D 0 FFT SpectralCentroid y 10
IQR z 24 Entropy y 86 BelowMean y 58 CovarianceEig 3D 0
FFT Entropy y 52 FFT Entropy z 30 Range x 30 Min x 0

and sensitivity was determined. The vectors contained
three predictors at N1 and four predictors at N2-
N4. Vectors obtaining the highest sensitivity per node
were examined to see if predictors with the highest
FS scores contributed to the highest decision node
classifier sensitivity. This would demonstrate the re-
liability of the FS methods. The prevalence (Pr) of the
predictors in Xg ny1_n4 in the top 50 combinations
per node is found in Table III next to the respective
predictor. At N3 and N4, as expected, high FS scores
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Figure 4: Relation between number of predictors N, used
per node and the maximum obtained sensitivity. A general
trend was observed where sensitivity increases with an
increasing /N, (up until four) was used. The optimal N,
was selected as N, = 3 at N1 and N, = 4 at N2-N4.

often coincided with high prevalence. For example,
minimum acceleration of the y-axis scored highest
using FS methods for N3 and was present in 70% of
the top 50 predictor vectors for N3. However, at N1
and N2, the correlation between FS scores and high
prevalence in the top 50 vectors was not present. The
predictors with the highest FS scores were not found in
the top 50 predictor vectors for these nodes. High FS
scores of a predictor were thus not directly related to
a high sensitivity when used in the Bayesian decision
node classifiers, decreasing the reliability of the FS
methods.

C. Complete decision tree model

Predictor vectors X n1_pn4, listed in Table IV, ob-
tained the highest sensitivity and were subsequently
used at their respective nodes to train and test the
proposed decision tree model (see Figure 2). The
confusion matrix of the classification results is shown
in Figure 5. Walking, cycling and lying were classi-
fied correctly in most instances. The most common
misclassifications were upright active classified as cy-
cling, taking the stairs classified as walking and sitting
classified as standing. The top right corner and the
bottom left corner of the confusion matrix show low
occupancy, meaning that dynamic tasks were not often
classified as static tasks and vice versa.
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Figure 5: Confusion matrix of classifying dataset 1 using
the proposed decision tree model. The rows show the true
class of each window that was classified and columns show
the class assigned to each instance. Walking, cycling and
lying were classified correctly in most cases. Standing was
often misclassified as sitting.

Table IV: Predictor Vectors X n1_na4 that resulted in the
highest classification sensitivity per node. The predictor
combinations were used at their respective nodes to train
and test the complete decision tree model.

Predictor vector X n1 Predictor vector X no

FFT SpectralCentroid x =~ MAD 3D

IQR z Entropy y

FFT Entropy y FFT Entropy z
Entropy z

Predictor vector X 3 Predictor vector X n4

Range y Min y
FFT totalEnergy x BelowMean y
BelowMean y Max y

IQR y FFT SpectralCentroid x

1) Alternative validation method: Monte Carlo
cross-validation: Xn1_n4 were used again for the
proposed decision tree model, this time training and
testing the model using Monte-Carlo (MC) cross-
validation. The confusion matrix is included in Ap-
pendix C. We investigated whether leave-one-out
cross-validation, the default validation method for
developing a subject independent model, could per-
form as well as a model trained with data from all
subjects. Task-specific sensitivities are presented in
Table V for both validation methods. The average
sensitivity for leave-one-out cross-validation and MC
cross-validation was comparable (81.9% compared to
82.9%). Test data was thus classified with high sensi-
tivity, even when test data consisted of tasks performed
by an unfamiliar subject.

2) Alternative decision node classifier: Naive
Bayes: As an alternative to the Bayesian decision node
classifiers, the decision tree model was trained and

tested (with X x1_4) using the Naive Bayes classifier
at the decision nodes. Functionality was compared to
the proposed Bayesian decision node classifier. The
confusion matrix is shown in Appendix C. The most
common misclassifications were sitting classified as
standing (and vice versa), taking the stairs classified
as walking, upright active classified as cycling and
standing classified as upright active.

Task-specific sensitivity is shown in Table V. Aver-
age sensitivity obtained with the Naive Bayes classifier
is lower than for the proposed Bayesian decision node
classifier (77.7% compared to 81.9%) and SD for
the Naive Bayes classifier was higher than for the
proposed Bayesian decision node classifier (11.9%
compared to 10.4%). These results demonstrate the
preference of the proposed Bayesian decision node
classifiers as opposed to the Naive Bayes classifiers
frequently used in task classification studies.

D. Computational speed

The time between receiving the input window with
its corresponding predictors and assigning a specific
task was recorded for every window in dataset 1. The
proposed decision tree model took on average 1.9 us
(SD = 0.44 ps). The alternative decision tree model
with Naive Bayes classifiers took on average 57 us
(SD = 25 ps). The proposed decision tree model was
over 30 times faster.

E. Transferability to PD data

1) Predictor values: Predictors with high predictive
power for healthy subjects, as found in Table III, were
compared to the same predictors for PD patient data.
It was hypothesized that predictor values may diverge,
as the movement of PD patients is often slower and
less symmetrical compared to healthy subjects [36].
The predictor distributions for certain tasks are shifted
or wider compared to those obtained from healthy
subjects, as seen in Figure 6. This confirms the pre-
sumption that predictor distributions differ between
healthy subjects and PD patients. Consequently, certain
predictors that were highly predictive for certain tasks
in healthy subjects were not useful when transferring
the model to PD data and we had to reconsider the
predictor vectors used to classify dataset 2.

2) Testing classifiers with top 5 predictor
combinations: Because not every predictor could be
used to transfer the model to PD data, we evaluated
the Bayesian decision node classifiers using the top
5 predictor vectors for healthy subjects (listed in
Appendix B) to find the combinations that were
most transferable to PD patients. Correctly classified
instances per node are shown in Figure 7. The



Table V: Performance of the proposed decision tree model using leave-one-out cross-validation, using Monte-Carlo cross-
validation and using PD patient data to validate the transferability of the model. Performance is additionally shown for
the alternative decision tree model that used Naive Bayes classifiers. Sensitivity was high for the proposed decision tree
model, indicating its ability to classify tasks subject-independently. Sensitivity in PD patients was low, meaning that model
transferability from healthy subjects to PD patients was inadequate.

Task walking  upright active  stairs cycling standing  sitting lying  Average
Proposed decision tree model:

Leave-one-out cross-validation sensitivity [%] 93.8 72.3 80.2 93.6 47.0 86.3 100.0 81.9
Standard Deviation [%] 8.2 74 6.5 3.8 26.0 20.7 0.1 10.4
Monte-Carlo cross-validation sensitivity [%] 96.7 73.3 80.3 93.0 47.3 90.3 99.4 82.9
Standard Deviation [%] 1.3 1.7 1.7 1.9 1.3 1.2 0.6 1.4
PD patients sensitivity [%] 55.3 51.5 53.4
Standard Deviation [%] 33.3 233 28.3
Alternative model with Naive Bayes classifier:

Leave-one-out cross-validation sensitivity [%] 87.4 754 80.8 91.0 31.2 78.1 100.0  77.7
Standard Deviation [%] 15.3 8.9 4.7 35 24.8 25.7 0.0 11.9

sensitivity obtained by the top 5 predictor vectors
varies considerably. Once more, these results indicate
that not all predictors were suited for transferring
the model to PD patients. The predictor vectors that
resulted in the highest sensitivity for PD data were
subsequently used in the proposed decision tree model
to classify dataset 2, and are listed in Appendix B.

The proposed decision tree model was trained using
healthy subject data and tested on PD patient data.
The confusion matrix is included in Appendix C.
Walking instances were often classified as taking the

Spectral Centroid x-axis
Healthy Subjects

Entropy y-axis
Healthy Subjects

stairs and numerous standing instances were classified
as sitting. Task-specific sensitivity is shown in Table
V. Sensitivity for walking instances was 55.1% and
sensitivity for standing instances was 51.5% (SD =
5.8%). The low sensitivities and high SD values signify
a low transferability of the model from healthy subjects
to PD patients.

F. Classifying ambulatory tasks

Task windows were either ambulatory windows
(AWs) for walking, upright active or taking the stairs,
or non-ambulatory windows (nAWs) for all other tasks.
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Figure 6: Probability distributions of relevant predictors for healthy subjects (Table III) compared to the same predictors for
PD patient data. For the spectral centroid of the x-axis and the minimum acceleration of the y-axis, the predictor distribution
in PD patients was shifted compared to that of healthy subjects. For the entropy of y-axis acceleration, the distribution in

PD patients was wider compared to that of healthy subjects.

These results illustrate that some predictors suitable to classify

certain tasks in healthy subjects might not be suitable to transfer the model to PD patients.
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Figure 7: Classification per node using the top 5 predictor
vectors for healthy subjects. Especially at N2 and at N4,
sensitivity obtained by the top 5 predictor vectors varies
considerably (over 10% at N2 and over 30% at N4). Thus,
not every predictor vector was suited for transferring the

model from healthy subjects to PD patients.

AWs were separated from nAWs at N1 and N2. When
correctly identified, context can be provided for FoG
detection and cueing. Classification sensitivity of N1
and N2 can be seen in Table VI for both healthy
subjects and PD patients.

Table VI: Sensitivity of the Bayesian decision node classi-
fiers at N1 and N2 for both healthy subjects and PD patients.
The results support the feasibility of using the proposed
decision tree model for the first objective of this study:
to improve the misclassification of FoG on a home cueing
wearable for PD patients by providing context in the form
of AW and nAW classification.

Ambulatory/non-Ambulatory Windows ~ AWs  nAWs
Healthy subjects sensitivity [%] 91.3 95.8
Standard Deviation [%] 2.8 2.7
PD patients sensitivity [%] 949  91.6
Standard Deviation [%] 6.2 9.2

AWs were classified with a sensitivity of 91.3% and
94.9% in healthy subjects and PD patients respectively,
and nAWs with a sensitivity of 95.8% and 91.6% in
healthy subjects and PD patients respectively. These
results support the feasibility of using the proposed
decision tree model for the first objective of this study:
to improve the misclassification of FoG on a home
cueing wearable for PD patients by providing context
in the form of AWs and nAWs.

IV. DISCUSSION

The proposed decision tree model using Bayesian
decision node classifiers has a computational speed
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over 30 times higher than when common Naive Bayes
classifiers were used at the decision nodes [45]. Trans-
ferability from healthy subjects to PD patients was
inadequate for task-specific classification, as predictors
obtained from healthy subject data were dissimilar to
those obtained from PD data, due to differences in
gait characteristics. However, classifying ambulatory
tasks was attainable by transferring the model to PD
patients: AWs and nAWs were identified with over
91% sensitivity for both healthy subjects and PD
patients.

A. Limitations on the datasets

The sensor placement at the ankle posed certain
restrictions to this study. In other task classification
studies, locations around the lower limb and the waist
were explored [27], [32], [42], [57]. Skotte et al.
obtained promising results for classification at the
thigh by using the inclination angle and tilt angle of
the sensor [32]. Karantonis et al. placed a sensor at
the hip and obtained high accuracy using the tilt angle
of the sensor [42]. The angle of the ankle-worn sensor
provided little relevant information during our study.
With data obtained at the ankle, it was challenging
separating standing and sitting windows from one
another. It should be kept in mind that using other
sensor locations can allow the use of other predictors
which could facilitate the classification of certain tasks.

Another limitation was the available data of PD
patients. Dataset 2, used to validate the transferability
of the proposed decision tree model, contained only
walking and standing data. More comprehension of
applying the proposed model to PD patients could be
obtained by analyzing data of the five remaining tasks.
Furthermore, the decision tree model could only be
trained with healthy subject data, that turned out to
be dissimilar to PD patient data. In future research,
training the model with PD patient data may contribute
to more accurate task classification.

Feature selection methods are a valuable tool for
selecting a subset of predictors, helping to reduce
dimensionality in predictor space. However, high FS
scores did not guarantee that predictors would perform
well in classification. Predictors with high FS scores
were not always common in the most successful pre-
dictor vectors at the corresponding node. It could even
be the case that we failed to include certain predictors
with high predictive power in the predictor subsets
Xs n1—na: at N1 and N2, there was no apparent
correlation between the FS score and prevalence in
the best predictor vectors. Possible solutions would be
(1) to increase the number of predictors NV, used in the
vectors to train and test each decision node classifier,



(2) to examine possibilities of using other FS methods
or (3) to select predictors that score highest for the
most FS methods, instead of adding the normalized
scores from each method. The last solution (robustness
criteria) was used by Moore et al. to select features
for FoG detection [60]. Furthermore, we suggest that
FS should only be used for dimensionality reduction
and not for selecting final predictor vectors used in a
classification model.

To find the optimal number of predictors (V) in the
predictor vector for N1-N4, sensitivity was determined
for each decision node classifier, using an NV,, of one
to eight. In general, increasing N, for a Bayesian
classifier should result in higher sensitivity because
more information is available to the classifier. This was
only true for N2. A reason for the unexpected behavior
at the other nodes could be the fact that Bayes’ rule is
based on the assumption that predictors are indepen-
dent of one another. In the case of task classification,
however, predictors are often highly correlated [57].
For example, if the range of a data window is large, the
interquartile range is likely to be large and so are the
minimum and maximum value within the data window.
Therefore, using a high N, might not necessarily add
new relevant information. Especially considering the
possibility that we did not include all predictors with
the highest predictive power in the subset Xs n1—n4
for each node. However, in this study, using a low
N, is advantageous, as numerous predictors in each
predictor vector would increase the computational load
of the model [65], making it unsuited for real-time use.
The decrease in sensitivity when using a high NV,, was
thus not an issue in this study.

B. Limitations of classification

The proposed decision tree model classifies mul-
tiple tasks in healthy subjects with a high average
sensitivity of 81.9%. In the introduction of our study,
we mentioned that Skotte et al. obtained task-specific
sensitivities of 95-100% using a decision tree model
[32]. There are a few possible reasons why these
results surpass the results of our study. Firstly, Skotte et
al. filtered the data before extracting predictors (using
a low-pass filter with a 5 Hz, 4th order Butterworth
filter) and divided data in windows of 2 seconds. This
processing method possibly contributes to the deriva-
tion of more consistent predictor values. Secondly,
the sensor was placed at the thigh instead of at the
ankle. Tilt angles were used to create a clear decision
boundary between sitting and standing and between
cycling and ambulatory tasks. Thirdly, only two static
tasks were included in the research of Skotte et al.
(sitting and standing) and running was included instead
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of upright active (in our study). The difference in task
intensity results in more apparent decision boundaries.
The type and number of classified tasks included in a
study can greatly affect average sensitivity, while not
necessarily establishing the superiority of the applied
methods.

AWs and nAWs were classified with high sensitivity
(over 91%) for both healthy subjects and PD patients.
Classification of ambulatory tasks resulted in higher
sensitivity in the data of PD patients than in healthy
subjects (94.9% as opposed to 91.3%). A possible
explanation is that the ambulatory task that was most
often classified as non-ambulatory (upright active, see
Figure 5) was not included in the PD data. Sensitivity
would likely drop if upright active would be included.
The non-ambulatory task that was most often classified
as ambulatory was standing (Figure 5). Since this task
was present in the PD data, we consider the sensitivity
of nAWs in PD patients as reliable.

Task-specific classification on PD patients was inad-
equate in our study: walking data were recognized with
a sensitivity of 55.3% for PD patients, as opposed to
83.8% for healthy subjects. PD walking instances were
frequently classified as taking the stairs, a misclassi-
fication that was not entirely unexpected: PD patients
show reduced walking speed and decreased symmetry
in gait, which could be interpreted as characteristics of
taking the stairs [34], [36], [66]. Classification for this
task is likely to improve when training the model with
data obtained from PD patients, as predictors would
then include these characteristics.

We desired high transferability of our model be-
cause obtaining data from healthy subjects is simpler
than obtaining PD patient data, and datasets of healthy
subjects are (publicly) available [46]. Training a model
with this data and transferring it directly to PD pa-
tients would a straightforward method of development.
Transferability was compared to the transferability
of other studies transferring a classification model
from healthy subjects to PD patients. Nguyen et al.
reported a sensitivity of 97.6% when transferring a
classification model developed for elderly subjects to
PD patients [35], demonstrating the transferability of
their model that classified standing, turning, walking
and sitting. A plausible explanation is that movement
patterns of elderly subjects is more similar to that of
PD patients. A further explanation is that 17 sensors
were worn by the subjects, a number that would not
be achievable in the home environment. In another
study evaluating transferability, Albert et al. used a
single mobile phone acceleration sensor to classify
walking, standing and sitting in both healthy subjects
and PD patients, obtaining average accuracy of 86.0%
for healthy subjects [25]. However, when applying the



classification parameters derived from healthy subjects
to PD patients, accuracy dropped to 60.3% [25]. Anal-
ogous to the conclusion of our study, transferring a
model directly from an able-bodied to a PD population
was not feasible. In future research, we will thus have
to obtain PD patient data to finalize the proposed
model for application in a cueing wearable.

C. Contributions

For comparison, the proposed decision tree model
was trained and tested using MC cross-validation with
the hypothesizes that this method would result in
higher sensitivity than leave-one-out cross-validation.
With MC cross-validation, training data are more sim-
ilar to test data, with the assumption that predictors
for a certain task are more similar within-subject
than between subjects. However, the difference in ob-
tained average sensitivity was small (81.9% for leave-
one-out cross-validation and 82.9% for MC cross-
validation). We can compare this to the study of Albert
et al., where leave-one-out cross-validation resulted
in 10% more misclassifications compared to using
MC cross-validation. This comparison emphasizes the
subject-independent aspect of the proposed decision
tree model.

In this study, we demonstrated that specific pre-
dictors types are suited for specific nodes in the
decision tree. Frequency domain predictors are suited
to separate static tasks from dynamic tasks. This was
in accordance with the fact that frequency analysis
provides information about the periodicity of a signal:
static tasks do not involve periodic movements. At
N3 and N4, classifiers should detect subtle differences
between similar tasks (such as walking and taking the
stairs, standing and sitting). At these nodes, y-axis
predictors obtained high FS scores (Table III), sug-
gesting that y-axis acceleration data was most suitable
to detect subtle differences between specific tasks. We
can draw a parallel with FoG detection algorithms,
where y-axis predictors are often used to detect the
subtle differences between regular walking and steps
at a higher cadence (festination) that precedes FoG
[9], [67], [68]. The fact that predictors from certain
axes and predictors from time or frequency domain
are suitable for different steps of the classification
process, underlines the advantage of using a decision
tree model for task classification: in a decision tree,
specific predictors types can be used for a suitable
decision node classifier.

Using thresholds on single predictors at the deci-
sion nodes resulted in lower sensitivities compared
to the proposed Bayesian classifiers, according to our
expectations. Furthermore, we replaced the proposed
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Bayesian classifiers at decision nodes by the more
common Naive Bayes classifiers for comparison. Naive
Bayes classifiers are based on the same principles as
the Bayesian classifiers and were therefore expected
to yield similar classification results. The sensitivity
obtained using the proposed Bayesian classifiers was
on average lower than for the Naive Bayes classifiers
(81.9% compared to 77.7%). Moreover, the computa-
tional speed of the decision tree model when using
the proposed Bayesian classifiers was over 30 times
faster than for the common Naive Bayes classifiers.
Gao et al. investigated the computational speed of
several classifiers commonly used for task classifica-
tion: Support Vector Machine, Artificial Neural Net-
works, K-Nearest-Neighbour and Naive Bayes [69].
Compared to the Naive Bayes classifier, the other
classifiers were up to three times faster, apart from K-
Nearest-Neighbour, which was slower. We conclude
that our Bayesian classifiers show sufficient compu-
tational speed, over 30 times higher than that of
Naive Bayes. This promotes the benefits of using the
proposed decision tree model, which is both fast and
effective.

D. Application

The proposed Bayesian decision tree model is com-
putationally fast and therefore promising for real-
time use. A recommendation for real-time use is to
increase the overlap between consecutive windows. An
overlap of 50% was chosen to build the model as
a bigger overlap could result in many data windows
containing very similar information. For real-time use,
however, a larger overlap results in a shorter update
time, decreasing the latency between changing tasks
and classification of a new task.

The proposed model type, a decision tree, was
selected to best support the objectives of this study:
the hierarchy of the decision tree specifically classifies
AWs at the first two nodes, allowing for effective
integration of an FoG detection scheme. As soon as
AWSs are detected, FoG detection should be started.
Parallel to N3, an extra node can be added, containing
an FoG detection algorithm.

Future research: Correct classification of AWs
specifically can be of importance for FoG detection
and to initiate cueing at the right time. We expect
that an AW is less likely to be classified as a nAW
when the user is approaching an FoG episode. FoG
is often preceded by festination and is often paired
with trembling of the legs, resulting in higher energy
per window [7], [9]. Data approaching or containing
an FoG episode would be more similar to walking
or taking the stairs, as these tasks contain the most



energy per window. These data may thus be correctly
classified as AWSs. This expectation will be approved
or disproved during future research with PD patients.

During this study, a criterion was used that maxi-
mizes the average sensitivity per class. However, for
FoG detection, it may be more important to maximize
sensitivity for AWs. Other predictor vectors might, in
this case, be preferred at N1 and N2.

Further research is needed to optimize our model for
PD patients. Task data from PD patients is required
to train the decision tree model. Furthermore, FS
methods used in this study need to be reevaluated
to ensure that suitable predictors are identified. FoG
detection in combination with the proposed decision
tree model, using the context provided by N1 and N2,
is promising for implementation on a wearable cueing
device, thereby decreasing FoG misclassification.

V. CONCLUSION

A fast and simple Bayesian decision tree model for
task classification has been developed in this study.
The proposed model, classifying seven tasks using a
single tri-axial accelerometer, has a high computational
speed: over 30 times faster than when Naive Bayes
classifiers were used at the decision nodes. One objec-
tive of this study was to develop a model for keeping
an activity log by continuous task classification on
a wearable device, thereby facilitating the mobility
evaluation of PD patients. Promising task classifica-
tion results were obtained using healthy subject data
(81.9% sensitivity on average), but the model was not
directly transferable from healthy subjects to PD pa-
tients. To use the model on a wearable device, it should
be trained with PD patient data in the future. The
second objective of this study was to provide context
for a wearable cueing device. AWs and nAWs were
identified with sensitivities over 91% for both healthy
subjects and PD patients. Incorporating the proposed
decision tree model in an FoG detection and cueing
wearable reduces the problem of unrequired cues when
FoG is falsely identified during non-ambulatory ac-
tivities. User-friendliness and effectiveness of such a
device can hence be improved. Effective cueing helps
PD patients to walk more confidently and to ultimately
enjoy a more active lifestyle, which could in turn be an
effective way to delay the progression of Parkinson’s
Disease [2].
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AppPENDIX A
PrEDICTOR CHARACTERISTICS AND PREVALENCE IN COMBINATIONS
OBTAINING THE BEST CLASSIFICATION RESULTS

Table A.1: Characteristics of the fourteen predictors with highest feature selection scores for all nodes. Y-axis
predictors are numerous at node 3 (classification of ambulatory tasks) and at node 4 (classification of static
tasks). Z-axis predictors were among the highest scoring predictors at node 1 (separating static and dynamic
tasks) and node 2 (seperating cycling and ambulatory tasks). Frequency domain predictors resulted in high

feature selection scores, especially at node 1.

Predictor type Node 1 | Node 2 | Node 3 | Node 4 | Total
3D 1 1 1 2 5
X-axis 6 6 3 5 20
y-axis 2 1 10 6 19
z-axis 5 6 0 1 12
Time domain 7 10 9 12 38
Frequency domain | 7 4 5 2 18
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Figure A.1: Prevalence of predictors in the 50 predictor combinations which obtained the highest sensitivity per node.
At node 3 (classification of specific ambulatory tasks), Y-axis predictors were the most prevalent. Z-axis predictors were
prevalent at node 1 (classification of static and dynamic tasks) and node 2 (classification of cycling versus ambulatory
tasks). Furthermore, this figure illustrates that certain predictors show high prevalence at a certain node, while not being
prevalent at other nodes. This is where a decision tree model is advantageous: specific predictors can be used for specific

classification steps.



AprpPeENDIX B
PrEDICTOR COMBINATIONS USED IN THE DECISION TREE MODEL FOR
BoTH HEALTHY SUBJECTS AND PD PATIENTS

Table B.1: Predictor vectors resulting in the highest classification sensitivity per node. These predictor combi-
nations were used at their respective nodes to train and test the complete decision tree model.

Node 1 Node 2

FFT SpectralCentroid x ~ MAD 3D

IQR z Entropy y

FFT Entropy y FFT Entropy z
Entropy z

Node 3 Node 4

Range y Min y

FFT totalEnergy x BelowMean y

BelowMean y Max y

IQR y FFT SpectralCentroid x

Table B.2: Five predictor vectors resulting in the highest classification sensitivity per node in healthy subjects.
The combinations were subsequently used to validate the model on PD patients.

Node 1 Node 2 Node 3 Node 4
FFT SpectralCentroid x ~ MAD 3D Range y Min y
IQR z Entropy y FFT totalEnergy x = BelowMean y
FFT Entropy y FFT Entropy z BelowMean y Max y
Entropy z IQR y FFT SpectralCentroid x
SD z MAD 3D Min y Mean y
FFT SpectralCentroid x  Entropy y FFT totalEnergy x = BelowMean y
FFT Entropy y Entropy x BelowMean y Max y
Range z IQR y FFT SpectralCentroid x
BelowMean y MAD 3D Min y Min y
IQR z Entropy y Mean y BelowMean y
FFT Entropy y FFT Entropy z FFT totalEnergy x  Entropy z
Entropy x IQR y FFT SpectralCentroid x
SD z MAD 3D Min y Min y
BelowMean y Entropy y Mean y BelowMean y
FFT Entropy y Entropy z FFT totalEnergy x  Entropy x
Range z FFT totalEnergy y = FFT SpectralCentroid x
FFT SpectralCentroid x ~ MAD 3D Min y Mean y
FFT Entropy x Entropy y FFT totalEnergy x  Min y
IQR z Entropy z FFT totalEnergy y  BelowMean y

FFT totalEnergy x

BelowMean y

FFT SpectralCentroid x

Table B.3: Predictor vectors resulting in the highest classification sensitivity per node when the proposed
decision tree model was transferred from healthy subjects to PD patients. As can be seen when comparing to
Table B.1, most predictors are equal to the ones used for healthy subjects.

Node 1 Node 2

FFT SpectralCentroid x =~ MAD 3D

FFT Entropy x Entropy y

IQR z Entropy z
Range z

Node 3 Node 4

Min y Mean y

FFT totalEnergy x BelowMean y

FFT totalEnergy y Max y

BelowMean y

FFT SpectralCentroid x




ApprenDIX C
CONFUSION MATRICES OF
COMPLETE CLASSIFICATION
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Figure B.1: Confusion matrices showing classification results. The rows show the true class of each instance
(window) that was classified. (a) Results of the proposed decision tree method using Bayesian decision node
classifiers and leave-one-out cross-validation. (b) Results of the proposed decision tree method using Bayesian
decision node classifiers and Monte-Carlo cross-validation. (c) Results of using the Naive Bayes classifier at
the decision nodes. (d) Classification results of the proposed decision tree model using dataset 1 as training

data and dataset 2 as test data.



AppreENDIX D
CLASSIFICATION RESULTS
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Figure D.1: A visual representation of the classification resuls. (a) Results of the proposed decision tree method
using Bayesian decision node classifiers and leave-one-out cross-validation. (b) Results of using the Naive Bayes
classifier at the decision nodes. (c) Classification results of the proposed decision tree model using dataset 1 as
training data and dataset 2 as test data.



Closing Remarks

The result of this thesis is a solid foundation for a task classification model for PD
patients. Since this model has not been trained on PD patients, classification results
were not satisfactory: the transferability of the model from healthy individuals to
PD patients was low. However, upon training this model with data obtained from
PD patients, I believe that the model will perform adequately. To increase sensitivity,
the model can even be trained on the patients for whom it will be used. I am certain
this will provide Cue2Walk with an effective solution to the misclassifications in FoG
detection. Knowing that in the near future, I contribute to helping PD patients to
walk more confidently, and to live a more active life, I truly feel like the Biomedical
Engineer that I (almost) am.
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