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Abstract
A vehicle that is travelling at high sideslip angles can still be controlled by drifting. Implemented into
a vehicle, this phenomenon could lead to increased vehicle safety and performance. Additionally, it
could lead to higher acceptance rates of autonomous driving.
In this work a three state vehicle model is used. Using this model, simulations are performed with
varying vehicle parameters and tyre models. First, the mathematical descriptions of all used models
are stated, after which phase plane representations for the identification of drift equilibria are elabo-
rated on. Next, different steering characteristics and their influence on the drift equilibrium points are
considered. These characteristics are achieved by varying the lateral rear tyre stiffness. The effect of
three different types of tyre models on the drift equilibria is discussed. The models that are considered
are the linear tyre model, Dugoff tyre model and Magic Formula model.
In addition to this, the effects of the location of the centre of gravity, the vehicle mass and the cornering
stiffness are investigated. Finally the outcome of the Dugoff tyre model and the Magic Formula model
for construction of drift equilibria is shown and discussed.
Contrary to the Dugoff and Magic Formula model, no drift equilibria were found using the linear tyre
model. Using the Dugoff model, drift equilibrium points were found for the understeering and neu-
tral steering vehicle, whereas the oversteering vehicle showed drift equilibrium ranges. Finally, drift
equilibria depend on vehicle parameters, showing change in behaviour when the latter are varied.
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1
Introduction

1.1. Background
To assist the driver of a vehicle in its driving task, advanced driver assistance systems (ADAS) are
developed. The complexity and capability of (combinations of) these systems are distinguishable by
their SAE levels, ranging from SAE level 1 to SAE level 5 [24]. Examples of SAE level 1 systems are
Lane Departure Warning (LDW) and Lane Keeping Assistance Systems (LKAS) as they can be easily
overridden by the inputs of the driver. The operating envelope of second level SAE systems is limited to
regular motorway driving conditions in which the longitudinal and lateral dynamics are not fully excited
simultaneously. However, as the long term goal for automotive development is to reach full autonomy
(SAE level 5), a vehicle should be able to drive on its own in all conditions, even the most severe ones.
Therefore research is now performed to open and expand the path towards full vehicle autonomy.

A vehicle that drives at large sideslip angles has not necessarily lost all control. Properly controlled, this
type of driving, called drifting, can even increase vehicle safety. During a drifting manoeuvre, shown in
Figure 1.1, a vehicle operates at its handling limits as the tyres are saturated [17].

Figure 1.1: Volkswagen Polo WRC in a drifting motion during the World Rally Championship [18].

On loose and low friction surfaces large sideslip angles result in an increase in lateral acceleration.
However, a drifting motion is highly unstable. Therefore, a drifting manoeuvre can only be handled
by high-skilled drivers. Rally drivers, who often drive on low friction surfaces, utilize this technique
to minimize cornering time. Thanks to current systems vehicles can already perform the driving task
safely on tarmac [3]. To increase vehicle safety on loose surfaces it would be beneficial to reproduce
the advanced skills performed by rally drivers on autonomous vehicles.

1



2 1. Introduction

Maximum lateral acceleration on tarmac is achieved at low sideslip angles [3]. However, on loose
surfaces the shape of the friction-slip diagram changes. Therefore, in contrast to cornering on tarmac,
maximum lateral acceleration is achieved at high sideslip angles. Comparing conventional cornering
(low sideslip angles) to drifting it becomes clear that that a higher lateral acceleration can be achieved
using the latter driving technique [17].

Current systems like Electronic Stability Control (ESC) focus on limiting sideslip angles to low values.
These systems are not designed for drifting. To increase vehicle safety, control opportunities that rely
on rear tyre saturation rather than avoiding it can also be considered [17]. Investigation of this type
of control opportunities within the context of autonomous car development can lead to a broader per-
spective on future systems for vehicle safety and performance enhancement.

Control algorithms for autonomous and semi-autonomous vehicles that utilize rear tyre saturation ma-
noeuvres for the purpose of collision mitigation and avoidance have already been investigated. Liter-
ature shows a control technique that mitigates the severity of a side collision, where vehicles travel in
perpendicular directions, by deliberately saturating the rear tyres and thereby rapidly re-orientating one
of the vehicles [8]. In another research an obstacle avoidance algorithm was developed that incorpo-
rated drifting as one of the allowable operating conditions for a vehicle to solve otherwise infeasible
obstacle avoidance problems [15]. In both of these researches, practical applications for rear tyre sat-
uration cornering are presented. The safety benefits that come with vehicle assistance systems that
perform on the same skill level as professional racing drivers, should not be underestimated.

1.2. Research Relevance and State of the Art
In current research, several reasons are brought up on why and how autonomous drifting can be ben-
eficial for improvement of vehicles.

1.2.1. Acceptance
The phenomenon of autonomous vehicles is still not widely accepted by the main public [19]. This is
despite the investments made on technology for autonomous vehicles [20]. With the increase of au-
tonomy, the safety perceived by the users is reduced [16]. Furthermore, the low acceptance rates are
caused by loss of driving enjoyment, which is typically offered by premium luxury brands, with increas-
ing autonomy of the vehicle. In order to increase the popularity of self-driving vehicles, it is therefore
expected that the development of advanced driving systems is of vital importance [2]. More precisely,
these should be driving systems that can exhibit driving features that can normally only be performed
by highly skilled drivers.

When searching particularly for the acceptance of autonomous drifting itself, no specific research has
been found. However, research has been performed on the acceptance on other driver assistance sys-
tems [13] and on the overall acceptance of autonomous vehicles by users [10]. The acceptance of the
autonomous vehicle as a whole has been researched as well [10]. Automated vehicles from SAE level
4 [24] and above are envisioned to, at least for a while, drive to the assigned destination autonomously.
As a result the driver can perform non-driving related activities [23]. Therefore autonomous vehicle in-
terior design and even seating plan will change accordingly, shown in Figure 1.2. Acceptance of such
interior designs in combination with advanced driving assistance systems is yet to be researched.

Figure 1.2: SAE level 4 concept car interior design [9]. Here drivers might not even face forward.
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1.2.2. Safety
Generally, a driver does not have much experience with unstable behaviour of a vehicle [33]. As a
result the driver is often unable to regain control of the vehicle during such event. To aid the driver and
to increase safety, an autonomous system that takes control of the drifting motion would be beneficial,
as it would be able to guide the vehicle into a safe trajectory. This is why autonomous drift control is
introduced as an addition to current ADAS, as it can increase traffic and vehicle safety.

Looking at empirical evidence, expert rally driving techniques, such as driver controlled drifting, could
suggest that they can be beneficial for exploiting the full chassis potential on extreme road surfaces.
On these surfaces, the tyre cornering stiffness is greatly reduced and sufficient lateral friction levels
can only be built up by large body sideslip angles [26]. This leads to the conclusion that vehicle safety
on loose surfaces can be increased by drifting based strategies during limit lane departure situations.
An example of this would be a vehicle that approaches a turn at excessive speed.

Figure 1.3: Trajectory of a rear-wheel drive vehicle during stabilization [32].

Keeping this in mind, new concepts like autonomous drift control [32] [27] and vehicle agile manoeu-
vring [29] are considered. The main goal of these researches is to gain a better understanding of the
principles of the vehicle dynamics involved in expert drivers driving patterns and especially those in
critical conditions. Extensive and broad research of this driving behaviour could result in the develop-
ment of more sophisticated, safer and even more ’intelligent’ chassis systems. In the long term, this
can elucidate the path to even more advanced autonomous vehicles which are capable of dealing with
any critical situation and drive safely regardless of the road surface, known as full level autonomy [24].

To gain a better understanding of the vehicle dynamics involved in the expert drivers driving patterns
of drifting, rear-wheel drive vehicle stabilization for cornering equilibria at aggressive sideslip angles
has been studied [32]. In this work a data collection experiment was performed. An expert driver
performed a steady state drift on a loose surface (dirt on tarmac) while aiming for a constant speed,
sideslip angle and constant radius. During the execution of the drift, sensors fitted to the vehicle col-
lected information on the states of the vehicle. The collected data is shown in Figure 1.4. Analysing
the data, it was concluded that drifting stabilization of a rear-wheel drive vehicle, shown in Figure 1.3,
requires both steering and throttle regulation. To resemble the experimental drifting motion a simulation
was performed in a high fidelity simulation environment. Therefore a vehicle model with non-linear tyre
characteristics was first introduced. Using this model the steady state cornering states and inputs were
calculated numerically. A realistic drive train model was incorporated as well, such that the input vari-
ables of the system were directly correlated to the throttle and steering commands of the driver (in the
form of steering angle and rear differential drive torque). A sliding mode controller was then posed for
vehicle stabilization at the drifting equilibria. The controller combined drive torque and steering angle
inputs, resembling the experimental observations.
In other research a safety system is posed that utilizes rear tyre saturation to mitigate the severity of a
T-bone collision (as shown in in Figure 1.5) [8]. This is a collision where vehicles travel in perpendicular
directions. The systems that is posed in this research consists of a controller that rapidly re-orientates
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Figure 1.4: Driver input data and vehicle states [32].

Figure 1.5: A T-bone collision [25].

one of the vehicles, such that they become parallel to each other. A decision making map for the sys-
tem is described as well, stating when either rear tyre saturation should be used or the brakes should
be applied. This decision making map is made for three specific cases for rear-wheel driven vehicles,
described in Table 1.1.
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Table 1.1: The three case descriptions [8].

Case Initial Speed 𝑉0 [km/h] Friction Coefficient 𝜇
1 40 0.80
2 55 0.80
3 72 0.80

Next, the option windows for each case were specified, shown in Table 1.2. Furthermore, Table 1.3
describes three zones with their respective recommended actions. These zones, which are also shown
in Figure 1.6, show which action should be taken depending on the longitudinal distance between the
vehicle and an obstacle. As can be seen from Figure 1.6, there is a zone (Z-1) where the vehicle is

Table 1.2: Option windows for the three cases [8].

Case Speed [km/h] Stopping Distance [m] Rotation Distance [m] Option Window [m]
1 40 26 15 11
2 55 41 24 17
3 72 60 35 25

Table 1.3: Recommended actions for the three considered cases [8].

Zone Braking to stop 90 deg. Rotation Recommended Action
Z-1 Impossible Impossible Rotate
Z-2 Impossible Possible Rotate
Z-3 Possible Possible Brake

Figure 1.6: Decision making options for different velocities and longitudinal distances between the vehicle and an obstacle. [8].

incapable of stopping by braking or rotating the vehicle towards a safer position. In the second zone
(Z-2) the severity of an oncoming crash can be mitigated by rotating the vehicle. In the final zone (Z-3),
the vehicle can come to a full stop before reaching the obstacle.

In [15] motion primitives are generated through a four wheel non-linear dynamic model, which form the
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basis for a high-level planner. Drifting manoeuvres and parameterized clothoids are utilized to improve
vehicle agility. The posed control method is then used to present simulative results. The research also
shows experimental results with a ground vehicle on an icy surface, traveling at high speed.
Figures 1.7 and 1.8 show the outcome of the experiments with a passenger vehicle on an icy surface.
The path was constructed using parametrized clothoids. The high-level motion primitive path planner
was used to test the control framework. Figure 1.7 shows the result of an experiment where the driver
was assumed to be distracted. A smoothly planned trajectory could therefore be tracked, as the path
tracker assumed control early enough. For the second experiment, shown in Figure 1.8, the controller
took over at a later stage. Here the driver was assumed to be attentive. Subsequently the controller
only took hold when the planned path became aggressive. To enlarge the feasible region in this situa-
tion, braking was invoked. As can be seen in both figures, the obstacle was successfully avoided for
both experiments.
Looking at the results of the experiments, it can be concluded that the actual path of the vehicle does
not completely correspond to the planned path. According to [15] this was caused by model mismatch,
which caused infeasibility of tracking.

Figure 1.7: The obstacle is successfully avoided by the vehicle using clothoid based manoeuvres. [15].

1.2.3. Performance
In rally sport, drivers use drifting to maximize their cornering speed and therefore minimize their cor-
nering time [26]. In this research minimum time cornering was investigated for various transmission
layouts. The layouts that were considered were front-wheel, rear-wheel and all-wheel drive. Non-
linear optimal control techniques were used to create an ’optimal driver’ that controlled the vehicle at
its handling limits. Simulations were then performed for various road surfaces; dry and wet tarmac,
dirt and gravel. It became clear that depending on the transmission layout and the road surface the
minimum cornering time was achieved by either typical cornering or drifting. Front-wheel drive vehi-
cles performed better using typical cornering, whereas rear-wheel drive and four-wheel drive vehicles
performed better by utilizing a drifting motion.
Next to minimizing cornering time, corner exit velocity can also be a benefit of autonomous drifting
[30]. By use of a bicycle vehicle model and numerical optimization a trajectory that maximizes corner
exit velocity at a 90∘ corner was determined. Under normal traction conditions the vehicle behaved as
shown in Figure 1.9a. This figure shows the vehicle steering itself to the edge of the lane, maximizing
the corner radius. Therefore acceleration can commence at an earlier stage, resulting in a corner exit



1.2. Research Relevance and State of the Art 7

Figure 1.8: Actual trajectory and velocity of the vehicle during the experiment [15].

velocity that was 13% higher than the case where minimum time cornering was considered. The time
to travel through the corner did however increase by 37%.

(a) Trajectory for maximum exit velocity. (b) Drifting trajectory for maximum exit velocity.

Figure 1.9: Vehicle trajectories for maximum exit velocity at different road surfaces [30].
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For a neutral-steering vehicle with reduced lateral tyre friction, the highest corner exit velocity was found
at large vehicle sideslip angles. This is shown in Figure 1.9b and implies that another performance
aspect of autonomous drifting is to maximize cornering exit velocity.
Entering and maintaining a drifting motion is not excluded to four-wheel drive and rear-wheel drive
vehicles [28]. For a front-wheel drive vehicle drifting shows two possible benefits. This is done by
performing a handbrake cornering technique, where the handbrake is applied to saturate the rear tyres.
A front-wheel drive bicycle model configuration with locked rear axle was used to examine the existence
of high-sideslip cornering equilibria. This revealed that, for higher values of sideslip angles, higher
cornering velocities were achieved while counter-steering on low friction surfaces. Furthermore, the
handbrake cornering technique could be used to achieve lower corner radii equilibria when the steering
angle was headed towards the direction of the corner. By using this technique, cornering radii could be
achieved that were significantly lower than the kinematic turning radius. Additionally, locking the rear
axle on a front-wheel drive vehicle can be used to eliminate understeer.

1.3. Problem definition
In order to further progress in the evolution of vehicle safety, more driver assistance systems are devel-
oped. Autonomous drifting could become one of those systems. However, as the variety of commercial
passenger vehicles and tyre choices is very wide, the effect of the vehicle parameters on the drift equi-
libria becomes an important aspect.

To progress in the development in safety systems that rely on drift equilibria, general differences be-
tween commercial vehicles like mass, geometry and steering characteristics and their effect on drift
equilibria points should be investigated. The same goes for the tyre parameters.
Additionally the method that is used to identify drift equilibria should be investigated as well, as due to
the unstable nature of drifting a reliable reference point becomes essential.

1.4. Contributions
The investigation on the effect of vehicle parameter variation and tyre model for determining drift equi-
libria points is the primary contribution of this work. To be able to measure the effects of these aspects,
a method is shown on how to determine drift equilibria. Furthermore, the full range of drift equilibria for
a curvature of constant radius is elaborated on, for various vehicle parameters and tyre models.

The novelty that is brought forward in this report consist of two parts. First the influence of basic vehicle
parameter variation on drift equilibria is investigated. Furthermore, the influence of tyre model selection
for the determination of drift equilibria is researched.

1.5. Thesis Layout
This report consists of five chapters. Chapter 1 provides an introduction on drifting. The background
of the phenomenon is stated, as is the research relevance and the state of the art.
Chapter 2 describes the full theoretical, including the mathematical, explanation of the three state bi-
cycle model and the considered tyre models. These are the Linear tyre model, Dugoff tyre model and
Magic Formula Tyre Model.
In Chapter 3 the method is shown on how to determine drift equilibria and visualize these using a phase
plane representation. Furthermore, drift equilibria for different steering characteristics and tyre models
are shown and discussed.
In Chapter 4 drift equilibria are set up and discussed for several varying vehicle parameters, includ-
ing the vehicle geometry, mass and tyre stiffness. Additionally this done for comparison between the
Dugoff tyre model and the Magic Formula Tyre Model.
Finally, the research is concluded in Chapter 5. Recommendations for further research are given in
this chapter as well.



2
Vehicle Modelling

2.1. Vehicle Model
2.1.1. Bicycle Model
The behavior of a vehicle can be generally described by its dynamic equations. Quantities that can
be used to describe the dynamics of the bicycle model are, amongst others, the vehicle mass and
dimensions [33]. When seen from above, there are a number of aspects that can be observed regarding
the bicycle model negotiating a certain path. Two key characteristics can instantly be identified when

Figure 2.1: A vehicle taking a right hand side corner [33]

analysing the vehicle in Figure 2.1, which is driving along the dashed path. The vehicle is driving at
a certain velocity (𝑉). Furthermore, the vehicle can negotiate a curved trajectory (𝜅𝑡) through a slight
rotation around its Center of Gravity (CoG). The characteristic behavior of this vehicle can generally be
described by two equations. The curvature which the vehicle is traveling and the overall velocity of the
vehicle are described by these equations.

𝜅𝑡 =
𝑟
𝑉 (2.1)

𝑉 = √𝑣2𝑥 + 𝑣2𝑥 (2.2)

Where the longitudinal velocity, the lateral velocity and the yaw rate are described by 𝑣𝑥, 𝑣𝑦 and 𝑟
respectively. Using differential equations to describe vehicle dynamics, these three quantities form
the first physical states. Dynamical modeling of vehicle behavior can happen through various ways,
accounting for or omitting specific characteristics and if possible by simplifying the system. Vehicle
dynamics can be captured by more extensive or simple models. In extensive models a full-car model
includes for example roll, pitch and yaw dynamics, modeling for sprung and unsprung masses to show
the behavior of the suspension system and external forces such as air resistance. Such complex
models can be simplified into a two track model, which exists of a rigid body and four wheels, and even

9
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further simplification is an option.

Figure 2.2: Bicycle model [33].

To simulate the vehicle dynamics, the three-state bicycle model is used. This model is described by a
diagram, which can be seen in Figure 2.2. When the two front wheels and two rear wheels are fused
together into one front wheel and rear wheel, the vehicle dynamics can be simplified. Steering the front
wheel results in a change of the direction in which the vehicle is heading (right in Figure 2.2). The
steering angle (𝛿) describes the angle of the front wheel.

The vehicle mass is modeled at a single point, at the centre of gravity of the vehicle, which separates
the front and rear of the vehicle. This simplification is based on an elimination of the pitch and roll
dynamics and the assumption that the vehicle consists of a rigid body. According to the Newton-Euler
balances, the accelerations and rotation of the vehicle are determined by forces acting on the tyres.
This behavior is described by the following differential equations:

�̇�𝑥 =
1
𝑚(𝐹𝑥,𝑟 + 𝐹𝑥,𝑓cos(𝛿) − 𝐹𝑦,𝑓sin(𝛿)) + 𝑣𝑦𝑟 (2.3)

�̇�𝑦 =
1
𝑚(𝐹𝑦,𝑟 + 𝐹𝑥,𝑓sin(𝛿) + 𝐹𝑦,𝑓cos(𝛿)) − 𝑣𝑥𝑟 (2.4)

�̇� = 1
𝐼𝑧
(𝐹𝑥,𝑓sin(𝛿)𝑙𝑓 + 𝐹𝑦,𝑓cos(𝛿)𝑙𝑓 − 𝐹𝑦,𝑟𝑙𝑟) (2.5)

Where𝑚, 𝐹 and 𝐼𝑧 describe the vehicle mass, the forces acting on the tyres and the vehicle yaw inertia
respectively. The distance from an axle to the centre of gravity is described by 𝑙. The superscripts 𝑥
and 𝑦 respectively describe the longitudinal and lateral direction, whereas 𝑓 and 𝑟 represent the front
and rear axle.

2.2. Tyre Model
The forces, generated at the tyres, influence the velocity and behaviour of the vehicle. At this point,
there is an interaction between the road and the tyres. Forces acting on the tyres occur due to friction,
generated by the relative velocities of these two materials. Various properties of both the tyres and
the road, along with the normal forces from the vehicle acting on the tyres, determine the magnitude
of the force. Furthermore the type of road surface needs to be taken into consideration, as there are
multiple types which leads to various interactions between the road and the tyre [33]. The road friction
coefficient (𝜇) is used in order to describe how much of the vehicles normal force acting on the tyres
can maximally be translated into friction, which in turn generates forces on the tyres. A road friction
coefficient of approximately 𝜇 = 1 is ,for example, typical for a dry asphalt road, whereas a road friction
coefficient of 𝜇 = 0.1 matches an icy surface.

Multiple models have been developed to show this interaction between the road and tyres and to de-
termine the forces which are acting on the tyres [11] [14]. Pros and cons apply to each model about
whether the formulation is based on physical characteristics or empirical design. This also applies on
the consideration if the complexity and accuracy fit the rate at which the forces are to be quantified.



2.2. Tyre Model 11

2.2.1. Linear Tyre Model
The linear tyre model is a relatively simple model with low computational costs. The forces acting on
the tyres are given by the following equations:

𝐹𝑥 = 𝐶𝑥𝜅 (2.6)
𝐹𝑦 = 𝐶𝑦𝛼 (2.7)

Here the forces 𝐹 acting on the tyres are calculated by multiplying the longitudinal and lateral slip
(/𝑘𝑎𝑝𝑝𝑎 and /𝑎𝑙𝑝ℎ𝑎) with their respective tyre stiffnesses 𝐶. A drawback of this method is that it as-
sumes that the tyre is always acting within its linear dynamic behaviour. As drifting behaviour happens
in the non-linear region of tyre behaviour, this method can not be used to determine drift equilibria.

2.2.2. Dugoff Tyre Model
As opposed to the linear tyre model, combined longitudinal/lateral slip tyre forces can be determined
using the Dugoff tyre model [11]. Here the longitudinal and lateral tyre friction forces are described
by relatively simple equations and an if-statement. As a result of the relatively simple equations, the
computation costs are low [6]. The most important advantage of the Dugoff tyre model is that it includes
the maximum road friction coefficient 𝜇0, adopting the estimation of road friction potentials and road
conditions. The utility of this tyre model is however limited, due to being incapable of determining the
tyre force dynamic characteristics with the change of wheel slip.

By utilizing the Dugoff non-linear tyre model, the forces on both the front and rear axles can be calcu-
lated using the following equations [11]:

𝐹𝑥 =
𝐶𝑥𝜅
1 − 𝜅𝑓(𝜆) (2.8)

𝐹𝑦 =
𝐶𝑦tan(𝛼)
1 − 𝜅 𝑓(𝜆) (2.9)

where 𝑓(𝜆) is a weighting function, defined as:

𝑓(𝜆) = {𝜆(2 − 𝜆), if 𝜆 < 1
1, if 𝜆 > 1 (2.10)

The weighting coefficient 𝜆 is given by the equation:

𝜆 = 𝜇𝐹𝑧(1 − 𝜅)

2√(𝐶𝑥𝜅)2 + (𝐶𝑦tan(𝛼))2
(2.11)

Where the friction coefficient 𝜇 and normal force 𝐹𝑧 are given by:

𝜇 = 𝜇0(1 − 𝑒𝑟𝑉𝑥√𝜅2 + tan2(𝛼)) (2.12)

𝐹𝑧 =
𝑚𝑔𝑙
𝐿 (2.13)

Where 𝐿 is the wheelbase, defined by 𝑙𝑓 + 𝑙𝑟. The friction reduction coefficient and the gravitational
acceleration are respectively described by 𝑒𝑟 and 𝑔.

2.2.3. Pacejka Tyre Model (Magic Formula)
The Magic Formula, given by Equation 2.14, can be used to quantify the longitudinal and lateral forces
acting on the front and rear tyres. Due to low computational costs in combination with accurate achieve-
ments when enough empirical data is used, it is possible to use this semi-empirical model for design pur-
poses [4]. Low computational costs are beneficial for high-frequency computation, while the sin(arctan)
formula is ideal for 𝐹𝑥 and 𝐹𝑦 curves. This is shown in Figure 2.3. For vehicle dynamics control these
properties are critical elements. The complete Magic Formula tyre model is composed of more than
twenty formulas, using over 100 parameters to calculate longitudinal and lateral forces and self-aligning
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Figure 2.3: 𝑋 − 𝑌 curve produced by the original Magic Formula [21].

moments acting on the tyres. However, this does not benefit high-rate computations. Therefore a sim-
plified model, proven successfully in the area of autonomous drift control, is used [1].

𝑦(𝑥) = 𝐷sin(𝐶tan−1(𝐵𝑥 − 𝐸(𝐵𝑥 − tan−1(𝐵𝑥)))) (2.14a)
with
𝑌(𝑋) = 𝑦(𝑥) + 𝑆𝑣 (2.14b)

𝑥 = 𝑋 + 𝑆ℎ (2.14c)

𝑋 and 𝑌 are the respective input and output variables in the Magic Formula. In the simplified formu-
lation, there are six variables, namely the stiffness factor (𝐵), the shape factor (𝐶), the peak value (𝐷),
the curvature factor (𝐸), the horizontal shift (𝑆ℎ) and the vertical shift (𝑆𝑣). In the Magic Formula, the
variables can be chosen directional dependent for lateral forces and longitudinal forces. Isotropic be-
havior is assumed. In this research the Magic Formula is formulated as described in [26] to calculate
the slip coefficient 𝜇, described by:

𝜇 = 𝜎𝑖
𝜎 𝐷sin(𝐶atan(𝜎𝐵 − 𝐸(𝜎𝐵 − atan(𝜎𝐵)))) (2.15)

𝐹 = 𝜇𝐹𝑧 (2.16)

Where the 𝑖 in 𝜎𝑖 indicates the lateral or longitudinal theoretical slip quantity. Here, the theoretical slip
quantities (Equations 2.21 - 2.23) are used to form a coupling between longitudinal forces and lateral
forces [21]. In this formulation, the horizontal and vertical shift of the friction curve is neglected.

2.2.4. Wheel dynamics
If a relative motion between two surfaces exist, slip occurs. Putting this in to perspective of tyre-road
interaction, this relative motion arises between the contact area of the tyre, which is traveling due to
the wheel angular velocity [33], and the velocity at which the overall vehicle is moving with respect to
the road surface. It is assumed here that the tyres are perfectly round and that the vehicle consists of
a rigid body. The wheel rotational velocity 𝜔 can be expressed in terms of the longitudinal velocity 𝑣𝑥
and the wheel radius 𝑟𝜔. Furthermore, torque 𝑇𝑛𝑒𝑡 can be applied to the wheels, which will influence
the angular wheel acceleration �̇�. The mathematical descriptions of these behaviours are given by:

𝜔 = 𝑣𝑥
𝑟𝜔

(2.17)

�̇� = 1
𝐼𝜔
(−𝐹𝑥𝑟𝜔 + 𝑇𝑛𝑒𝑡) (2.18)

Where 𝐼𝜔 describes the wheel inertia. The difference in relative motion of the tyre surfaces and the
vehicle can be commonly described by the longitudinal wheel slip coefficient 𝜅:

𝜅 = 𝑟𝜔𝜔 − 𝑣𝑥
max(𝑟𝜔𝜔, 𝑣𝑥)

(2.19)
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The front and rear lateral wheel slip angles 𝛼𝑓 and 𝛼𝑟 are determined as follows:

[𝛼𝑓𝛼𝑟] = [
−𝛽 + 𝛿 − 𝑙𝑓𝑟

𝑢
−𝛽 + 𝑙𝑟𝑟

𝑢
] (2.20)

With sideslip angle 𝛽, steering angle 𝛿, vehicle velocity 𝑢, yaw rate 𝑟 and respective front and rear axle
to CoG distances 𝑙𝑓 and 𝑙𝑟. The forces acting on the vehicle can then be determined by utilizing one
of the tyre models described above.

In order for the Magic Formula Tyre Model to be able to account for combined slip situations, theoretical
slip quantities are set up as shown in Equations 2.21 - 2.23. Once calculated, these theoretical slip
quantities can then be used in the deviation of the Magic Formula as described in [26].

𝜎𝑥 =
𝜅

𝛼 + 𝜅 (2.21)

𝜎𝑦 =
tan(𝛼)
1 + 𝜅 (2.22)

𝜎 = √𝜎2𝑥 + 𝜎2𝑦 (2.23)

In this work, net rear wheel torque 𝑇𝑛𝑒𝑡 and steering angle 𝛿 are applied in order to find drift equilibria.

2.3. Tyre forces
To better understand the three tyre models, which are mathematically explained in the previous sec-
tions, the tyre forces resulting from each respective tyre model can be considered [22].
In order to construct a proper comparison using the tyre forces, the tyre stiffnesses that are used have
to be equal for every tyre model. This initially poses a problem as the Magic Formula Model utilizes
four tyre parameters (𝐵, 𝐶, 𝐷 and 𝐸) in stead of the three tyre stiffnesses (𝐶𝜅, 𝐶𝛼𝑓 and 𝐶𝛼𝑟) used in
the Linear Tyre Model and Dugoff Tyre model. This problem can however be overcome as the Magic
Formula Model tyre parameters can be converted into tyre stiffnesses using:

[𝐶𝛼𝑓𝐶𝛼𝑟] = [
𝐵 ∗ 𝐶 ∗ 𝐷 ∗ 𝐹𝑧,𝑓
𝐵 ∗ 𝐶 ∗ 𝐷 ∗ 𝐹𝑧,𝑟] (2.24)

Where the tyre parameters 𝐵, 𝐶, 𝐷 and 𝐸 are stated in Table A.2. The longitudinal slip stiffness is
chosen to be 𝐶𝜅 = 1.2 ∗ 𝐶𝛼.
Now the tyre force graphs can be constructed. This is done by considering each axle individually and
only accounting for lateral slip 𝛼 and longitudinal slip 𝜅 for lateral forces 𝐹𝑦 and longitudinal forces
𝐹𝑥 respectively. In other words, pure longitudinal slip (𝛼 = 0 rad) is considered for calculation of the
longitudinal tyre forces, whereas pure lateral slip (𝜅 = 0) is considered for calculation of the lateral
tyre forces. Figure 2.4 shows the outcome of these calculations. As can be seen from Figure 2.4, all
three tyre models show different behaviour outside the linear range of the tyre. The linear tyre model
shows, as its name suggests, a linear behaviour over the full range of lateral and longitudinal slip.
The Dugoff tyre model shows a decrease in both lateral and longitudinal force gain with a respective
increase in lateral slip angle and longitudinal slip. The Magic Formula model shows similar behaviour
as the Dugoff tyre model with its decrease in both lateral and longitudinal force gain. The big difference
between the two latter tyre model is that the Magic Formula model shows a clear peak in lateral force
𝐹𝑦 and longitudinal force 𝐹𝑥 at 𝛼 ≈ 0.14 rad and 𝜅 ≈ 0.16 for both the front and rear axle. The peak
lateral and longitudinal force for the Dugoff tyre model is reached at larger respective lateral slip angles
𝛼 and longitudinal slip 𝜅. Using the Dugoff tyre model, the peak lateral force is achieved at lateral slip
angle 𝛼 ≈ 0.35 rad. The peak longitudinal force is reached at longitudinal slip 𝜅 ≈ 0.3.
Taking these tyre model characteristics into account, the determined drift equilibria using these models
is shown in the following section. Again the vehicle parameters stated in Table A.1 are used, resulting
in a vehicle with neutral steering characteristics 𝐾𝑢𝑠 = 0. Additionally, for the Magic Formula Model the
tyre parameters shown in Table A.2 are used.

Furthermore, the graphs shown in Figure 2.4 are used to tune the Dugoff tyre model. Tuning this tyre
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Figure 2.4: Tyre forces for the Linear Tyre Model, Dugoff Tyre Model and Magic Formula Model.

model can be done by adjusting the peak friction coefficient 𝜇0 and the friction reduction coefficient
𝑒𝑟. These values were adjusted such that the resulting tyre force diagram of the Dugoff tyre model
resembles the tyre force diagram of the Magic Formula model as close as possible. The purpose of
this tuning is to be able to compare these two tyre models more accurately.

2.4. Summary
Chapter two shows all the main mathematical parts and their descriptions that are necessary in order
to eventually discover drift equilibria. In this research the vehicle model is chosen to be the three state
bicycle model, which is mathematically described using differential equations.
Next, the tyre models are elaborated on. First the linear tyre model, which assumes the linear region of
tyre is infinite, is briefly introduced. Secondly the Dugoff tyremodel is both generally andmathematically
explained. This tyre model does in fact account for non-linearities in tyre behaviour. The final tyre model
that is shown has this feature as well, which is the Magic Formula Tyre Model. In order to do so, wheel
dynamics and theoretical slip quantities were introduced.
Finally, the tyre forces resulting from the stated tyre models are shown and discussed.



3
Stability analysis

3.1. Phase Plane
3.1.1. High sideslip manoeuvring
Vehicle motion can become of a less constraint form by adding rear tyre saturation cornering to typical
vehicle cornering. This is mainly caused by the fact that during cornering with rear tyre saturation the
heading of the vehicle and the direction of its centre of gravity (CoG) are decoupled, whereas these
two terms are coupled during typical cornering [17].

Comparing the vehicle motion during drifting and typical cornering in vehicle dynamics terms helps to
understand why this is true. Looking at the local coordinate system of a vehicle centered at its CoG,
the following terms in the (𝑥, 𝑦)-plane describe the motion of the vehicle; velocity vector 𝑉 at the CoG,
sideslip angle 𝛽 (between the velocity vector and the 𝑥-axis of local coordinate system), and angular
velocity 𝑟 (about the 𝑧-axis of the local coordinate system).

To understand the motion of the vehicle it is also important to know the velocity vectors at the locations
of the tyre contact patches with the road surface as these quantities greatly influence the way in which
the dynamics of the vehicle are modeled. The velocity vectors at the contact patches and the velocity
vector at the CoG are related via kinematic equations [17]. As a result the velocity vectors at the contact
patches can be used to determine the velocity vector at the CoG and the vehicle yaw rate, and vice
versa.

However, models based on force constraints, rather than on kinematic constraints, capture the dynamic
behaviour of a vehicle better [17]. These models are dictated by generated lateral tyre forces through
tread deflection in the contact patch. The lateral forces result from a non-zero wheel slip angle 𝛼 at
the tyres. Similar to the vehicle sideslip angle 𝛽, the wheel slip angle 𝛼 represents the angle between
the velocity vector at the contact patch and the direction that the tyre is pointing. Through steering the
slip angles, and therefore the lateral forces, can be adjusted at the front tyres. The slip angles at the
rear tyres evolve with vehicle motion. Force constraint based models treat the vehicle as a holonomic
system subject to friction limitations due to tyre properties [17]. As a result the system is subject to
force constraints. The amount of force acting on the tyre of a vehicle rises with rising wheel slip angle,
but this is not unlimited. At some threshold value for 𝛼, the available friction can no longer support
tread deflection in the contact patch. In case of this event the tyre saturates.

At slip angles of about 0.07 rad tyre force saturation typically occurs. This means that within a relatively
small slip angle the entire spectrum of typical cornering is encompassed, from everyday driving to racing
[17]. Following the small tyre slip angles during cornering, 𝛽 remains small as well. This is visualized
in the left half of Figure 3.1. As a result, when modeling typical cornering , the heading of the vehicle
and its velocity vector at the CoG are tightly coupled.

When observing a drifting motion, it is clear that tyre saturation is an inherent aspect. Therefore the
small slip angle restrictions for the rear tyres, which are normally present at typical cornering, must be
denied. During a drift, the tyre slip angles can reach tens of degrees [17]. Following the kinematic
relationships this results in a large vehicle sideslip angle 𝛽 that typically characterizes a drifting motion.

15
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Figure 3.1: Visualization of typical cornering (left) and drift (right) vehicle motion [17].

This is visualized in the right half of Figure 3.1. From this part of the figure it can be concluded that
the rear tyre slip angles are no longer constrained. Following the kinematic relationships the vehicle
sideslip angle is also no longer constrained. As a result the direction in which the CoG is moving is
effectively decoupled from the heading of the vehicle.

On surfaces with uncertain friction, like in rally racing, valuable flexibility to alter the trajectory of the
vehicle is gained thanks to this decoupling. Additionally, this phenomenonmight improve overall vehicle
safety as well [15] [8].

Drifting is defined as a steady state operation with rear tyre saturation. This implies that drifting can
be modeled as a vehicle state equilibrium with rear tyre saturation. Current literature confirms this
implication as it has been demonstrated repeatedly across a broad range of model fidelities that so
called drift equilibria exist [17]. Simple two-state models for the lateral dynamics of a vehicle are used
to show the existence of open-loop unstable drift equilibria [5] [7]. These researches employ the phase
portrait analysis technique to visualize vehicle trajectories in a sideslip versus yaw rate plane for a fixed
vehicle velocity and fixed steering angle. Figure 3.2 shows an example of such a phase portrait. In this
figure, three red dots are visible, each representing an equilibrium condition. The two outermost red
dots correspond to high-sideslip unstable drift equilibria. Themiddle equilibrium conditions corresponds
to typical cornering. A factor that has to be accounted for is that analysis using lateral dynamics models
alone only results in a partial drift equilibria characterization. Drive torques play a critical role in a drift as
drift equilibria are associated with large rear wheel torques [12] [29] [31]. Considering the tyre models
used in these researches, it becomes clear that a tyre saturates when the total force demand, consisting
of a combination of the lateral and longitudinal force, exceeds the available tyre friction force. From
this it can be concluded that it is essential to have large rear wheel torques available to reach rear tyre
saturation and by that reach drift equilibria. The large rear wheel torques result in large longitudinal
tyre forces. This results in rear tyre saturation as the combined lateral and longitudinal forces exceed
the friction limits of the tyres.
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Figure 3.2: Example of a phase plane representation. Three equilibria, depicted by red dots, are visible. The middle equilibrium
is stable and corresponds to conventional cornering. The other two are unstable high-sideslip equilibria.

In [12], [29] and [31] vehicle models are used that include longitudinal dynamics in order to incorporate
rear drive inputs into the analysis. More elaborate models with five states were used to be able to
include longitudinal vehicle dynamics. Additionally to this method, load transfer effects were included
as well as more complex tyre models that include longitudinal wheel slip. However, the consequence
of using more complex vehicle models was that relatively simple drift equilibria analysis techniques like
phase portraits could not be used. Nevertheless, in [12] a root locus analysis was performed to show
that drift equilibria are unstable. The root locus analysis of drift equilibrium stability was performed with
variations in longitudinal velocity.

Literature thus shows that drift equilibria are unstable, irregardless of the model used for analysis. This
conclusion implies that the drifting motion of a vehicle requires closed-loop stabilization of the drift
equilibria by a controller.

For this research, steady state equations were set up and solved, after which these were visualized
using phase plane representations. The method on how to set up and solve these equations, is shown
in the following section.

3.1.2. Steady state solution
To find drift equilibria, the steady state dynamic equations can be solved, as was done to create Figure
3.2. Therefore, first a set of initial conditions will have to be specified. These initial conditions are the
vehicle sideslip angle 𝛽 and yaw rate 𝑟. The values that are chosen for 𝛽 and 𝑟 are:

𝛽 = −0.6981 ∶ 0.6981 rad/s (−40 ∶ 40 ∘)
𝑟 = −5 ∶ 5 rad/s

These values for the vehicle sideslip angle and yaw rate were chosen based on the values used in [17].
These values where then expanded to create a build-in certainty for drift equilibrium points to became
visible if they should exist, resulting in the initial condition ranges shown above. The vehicle velocity
𝑉 = 𝑢 and steering angle 𝛿 are chosen as 22.22 m/s (80 km/h) and 0.0349 rad (2∘) respectively, based
on the values used in [22]. The initial conditions for 𝛽 and 𝑟 are set up in a grid, as shown in Figure
3.3.
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Figure 3.3: Grid of initial conditions for vehicle sideslip angle 𝛽 and yaw rate 𝑟.

From this grid the phase plane diagram can eventually be determined. In this section, the Dugoff tyre
model from Section 2.2.2 has been used.

By using the initial conditions and the lateral forces acting on the vehicle 𝐹𝑦, the lateral acceleration
𝑎𝑦 can be calculated. Furthermore, the yaw moment 𝑀𝑧 can be determined by using normal force 𝐹𝑧,
making it possible to calculate the yaw acceleration �̇� of the vehicle. The sideslip angle rate �̇� can then
be derived by using the lateral acceleration of the vehicle.

𝑎𝑦 =
𝐹𝑦
𝑚 − 𝑢𝑟 (3.1)

𝑀𝑧 = 𝐹𝑦,𝑓𝑙𝑓 − 𝐹𝑦,𝑟𝑙𝑟 (3.2)

�̇� = 𝑀𝑧
𝐼𝑧

(3.3)

�̇� =
𝑎𝑦
𝑢 (3.4)

By utilizing the quiver command in Matlab, a phase plane representation can be visualized, as will
be shown in the next section.

3.2. Different steering characteristics
A vehicle is subject to one of three certain steering characteristics; understeer, neutral steer or oversteer
[22]. The relationship described in Equation 3.6 clearly expresses the influence of certain vehicle
characteristics on vehicle cornering performance.
At low vehicle velocities, the steering angle that is needed to negotiate a curve is the equivalent of the
relative curvature 𝐿

𝑅 (Ackermann angle). When the vehicle velocity over the same curve (a circle with
radius 𝑅) increases , a necessary change is created in the required steering angle that is dependent
on the understeer gradient 𝐾𝑢𝑠, and thus on the characteristics of the tyre. The steering angle 𝛿 has to
increase for a positive understeer gradient𝐾𝑢𝑠. Vice versa, for a negative𝐾𝑢𝑠, the steering angle 𝛿must
be reduced. If the steering angle 𝛿 would not be reduced with negative 𝐾𝑢𝑠 and the driver does not take
action either, the result is a smaller curve radius, which would further increase the lateral acceleration.
This means that there is a self-reinforcing effect within the vehicle, with negative consequences for
understeer gradient 𝐾𝑢𝑠 < 0, eventually leading to vehicle instability.
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Figure 3.4 show the consequences of the three types of steering behaviour and the necessary steering
correction with increasing vehicle velocity in a corner with radius 𝑅 = 30 m.

𝛿 = 𝐿
𝑅 + 𝐾𝑢𝑠

𝑎𝑦
𝑔 (3.5)

𝐾𝑢𝑠 =
𝑚𝑔
𝐿 ( 𝑙𝑟𝐶𝛼,𝑓

−
𝑙𝑓
𝐶𝛼,𝑟

) (3.6)

Equations 3.5 and 3.6 lead to the following definitions [22]:

1. If the axle steering angle has to be increased for a vehicle while negotiate a curve, the vehicle
is understeered. Vice versa, when the steering angle has to be decreased for a vehicle while
negotiate a curve, the vehicle is oversteered. If no adjustment of the steering angle has to be
made, the vehicle is neutrally steered.

2. If the front axle slip angle exceeds the rear axle slip angle under steady-state conditions (𝛼𝑓 > 𝛼𝑟),
the vehicle is understeered. Vice versa, when 𝛼𝑓 < 𝛼𝑟 the vehicle is oversteered.

3. If the understeer gradient 𝐾𝑢𝑠 > 0, the vehicle is understeered. This is thus the case when
the front axle normalized axle cornering stiffness is exceeded by the rear axle normalized axle
cornering stiffness.

4. If the steering wheel gradient 𝜕𝛿
𝜕𝑎𝑦

(𝑎𝑦 = 0) is positive, the vehicle is understeered. If the steering
wheel gradient is negative, the vehicle is oversteered.

In conclusion, the four definitions are identical for linear tyre characteristics. For larger lateral acceler-
ations where nonlinear axle behavior is not to be neglected, definition 1 applies. definitions 2, 3 and
4 need to be taken into consideration for tyre behavior at small lateral accelerations. In the follow-

Figure 3.4: Visualization of oversteer, neutral steer and understeer vehicle steering characteristics with increasing vehicle velocity
on a curvature of 𝑅 = 30m.

ing section the influence of the three steering characteristics on finding the drift equilibria, using the
steady state solution, is discussed. The base tyre stiffnesses, resulting in neutral steering behaviour,
are shown in Table A.1. In every case the Dugoff tyre model was used.
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3.2.1. Understeer
As mentioned before and shown in Figure 3.4, a vehicle with understeer steering characteristics should
increase its steering angle 𝛿 with increasing velocity on a curvature in order to stay on the predeter-
mined path.
In this case the rear axle stiffness was increased by 30% in order to give the vehicle understeer charac-
teristics. The result of this steady state solution, performed like explained in Section 3.1.2, is visualized

Figure 3.5: Steady state solution for drift equilibria, using Dugoff tyre model and understeering characteristics, visualized in a
phase plane diagram.

in Figure 3.5. Following the explanation from Section 3.1.1, three equilibria can be distinguished, shown
for clarity reasons by red dots. The locations of the red markings in this figure and following figures
were achieved by visual inspection of each individual phase plane diagram. One equilibrium at the
centre of the phase plane visualization represents typical cornering. The presence of the other two,
unstable, equilibria prove the presence of drift equilibria. Therefore drifting equilibria do exist for an
understeering vehicle parameterized by Table A.1.
The arrows visualized in Figure 3.5 and following phase plane diagrams indicate if a vehicle can return
to a stable handling situation for initial 𝛽 and 𝑟. If an arrow eventually points towards the centre of the
graph, the vehicle can return to a stable handling situation. If an arrow does not eventually point toward
the center of the graph, the vehicle is unstable for that 𝛽 and 𝑟 combination and spins out of control.

3.2.2. Neutral Steer
A vehicle with neutral steering behaviour does not have to adjust the steering angle 𝛿 while negotiating
a corner with increasing vehicle velocity.
For the case with the neutral steer characterized vehicle no adjustments to the rear axle stiffness were
necessary, as the vehicle and tyre parameters stated in Table A.1 already result in neutral steering
behaviour.

Solving the steady state solution and visualizing the outcome in phase plane diagram form results in
Figure 3.6. Here three equilibria can be recognized that are very similar to the ones that were found
for the vehicle with understeer characteristics. The only recognizable difference is that the slip angle
𝛽 at the drift equilibria is greater for the vehicle with understeering behaviour than for the vehicle with
neutral steering behaviour.
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Figure 3.6: Steady state solution for drift equilibria, using Dugoff tyre model and a neutral steering behaviour, visualized in a
phase plane diagram.

3.2.3. Oversteer
Driving on a curved road with increasing vehicle velocity, a vehicle that is characterized by oversteer
behaviour should decrease the steering angle 𝛿 in order to stay on the curvature.
In this case the rear axle stiffness was decreased by 30% in order to give the vehicle oversteer char-
acteristics. Visualizing the outcome of the aforementioned steady state solution using a phase plane

Figure 3.7: Steady state solution for drift equilibria, using Dugoff tyre model and oversteering characteristics, visualized in a
phase plane diagram.

diagram results in Figure 3.7. The figure shows one equilibrium point, for typical cornering, in the mid-
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dle of the diagram. Furthermore, two ranges of drift equilibria can be distinguished in the phase plane
representation, as was found in [22]. The drift equilibria ranges are visualized by the red lines in the
figure. It seems that this behaviour exclusively occurs for a vehicle that is characterized by oversteer.

3.3. Different Tyre Models
3.3.1. Linear Tyre Model
As can be seen in the tyre force visualization of Figure 2.4, the Linear Tyre Model assumes the tyre is
always in its linear state. As a consequence the longitudinal and lateral forces on the axles of the vehicle
are theoretically unlimited with increasing slip angles. Solving the steady state solution as explained in
Section 3.1.2 while utilizing the Linear Tyre Model result in the phase portrait shown in Figure 3.8. As

Figure 3.8: Steady state solution for drift equilibria, using Linear tyre model and a neutral steering behaviour with initial conditions
as shown in Figure 3.3, visualized in a phase plane diagram.

can be seen in Figure 3.8, all arrows eventually point towards the center red dot. This shows that for
every combination of yaw rate 𝑟 and Slip angle 𝛽 the tyres of he vehicle are behaving within their linear
region. Due to the fact that drift equilibria occur in the non-linear tyre handling range, no drift equilibria
can be found using this tyre model. This statement is supported by Figure 3.8, where no drift equilibria
can be distinguished.

3.3.2. Dugoff Tyre Model
The tyre force diagrams of the Dugoff Tyre Model in Figure 2.4 show both the linear and non-linear
tyre behaviour. The peaks at high slip angles for lateral and longitudinal force (𝐹𝑦 and 𝐹𝑥 respectively)
indicate a different variant of cornering than conventional cornering. The result of solving the steady
state solution while using the Dugoff Tyre Model is shown in Figure 3.6.
As mentioned before, three equilibria can be distinguished from this figure. One in the centre of the
graph for conventional cornering, i.e. the tyres of the vehicle are within their linear region. The other
two equilibria are drift equilibria, where the tyres are behaving in their non-linear region.

Comparing this method of finding the drift equilibria to the one where the linear tyre model is used,
result in a quite obvious conclusion. With the use of the Dugoff tyre model all equilibria, conventional
and drifting, could be found, whereas only the equilibrium for conventional cornering could be found
with the use of the linear tyre model.
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3.3.3. Pacejka Tyre Model (Magic Formula)
The Magic Formula model has the highest values in Figure 2.4 for both the peak longitudinal force 𝐹𝑥
as the peak lateral force 𝐹𝑦 in the nonlinear region of the tyre. As is the case for the Dugoff tyre model,
these peaks indicate a different variant of cornering than conventional cornering. This statement is
endorsed by solving and visualizing the steady state solution, which results in the phase portrait shown
in Figure 3.9. In Figure 3.9 the equilibrium for conventional cornering is visualized by a red dot in the

Figure 3.9: Steady state solution for drift equilibria, using Magic Formula model and a neutral steering behaviour, visualized in a
phase plane diagram.

centre of the phase plane representation. The other two red dots represent the drift equilibria.

Although the yaw rate at which the drift equilibrium occurs is similar to the method where the Dugoff
tyre model was used, the slip angle is not. This can be due to the fact that the Magic Formula Model
reaches a higher peak in longitudinal and lateral axle forces than the Dugoff tyre model, as seen in
Figure 2.4. The comparison between the outcome of the Magic Formula Model and the Linear tyre
model is very similar to that of the comparison between the Dugoff tyre model and the Linear tyre
model. Using the Magic Formula model all three equilibria, two for drifting and one for conventional
cornering, were found, whereas only the equilibrium for conventional cornering could be found with the
use of the linear tyre model.

3.4. Summary
Chapter three shows the theory on how the stability analysis is performed to find drift equilibria in gen-
eral and for various types of steering behaviours and tyre models. First the general principles on the
discovery of drift equilibria are explained. The next section shows the specific approach on how to find
and visualize these equilibria. This is done by using a grid of initial conditions for values of the yaw rate
𝑟 and slip angle 𝛽. The steady state solution is then solved in combination with the mathematical de-
scriptions from Chapter 2. The results are then visualized using phase portraits, from which equilibria
can be distinguished. The three equilibria that are visualized are two unstable drift equilibria and one
stable conventional cornering equilibrium.

The second section of this chapter elaborates on the three different steering characteristics, under-
steer, neutral steer and oversteer, and makes a comparison. First the conditions of these steering
characteristics are explained. Next the drift equilibria, if any, are individually shown for a vehicle that is
characterized by understeer, neutral steer or oversteer. Here the Dugoff tyre model is used as the tyre
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model.
Drift equilibrium points were found for the vehicles that were characterized by understeering and neu-
tral steering behaviour. However, for the oversteering vehicle, a drift equilibrium range occurs.

In the final section the three tyre models that are described in Chapter 2 are used to find drift equilibria
and are compared to each other. For the linear tyre model only one equilibrium, for conventional cor-
nering, could be found. Using the Dugoff tyre model and the Magic Formula Model all three equilibria
could be found. The main difference between the outcome of the two latter tyres models is that the slip
angles 𝛽 at which the drift equilibria occur are greater for the steady state solution where the Dugoff
model was used than where the Magic Formula Model was used. Solving the steady state solutions in
this last section was done using a neutral steering vehicle.



4
Drift equilibria

In order to be able to control a vehicle towards drifting behaviour, a single drift equilibrium point or
plane, as described in Chapter 3, will be too limited. Eventually a lookup table containing a full range
of drift equilibria has to be determined offline, containing all possible drift equilibria for an applicable
vehicle, as was partly done in [33]. The reason for this is that the full spectrum of autonomous drifting
can then be utilized, of which the relevance is explained in the introduction of this report.

In this chapter the biggest novelty of the report is shown, as drift equilibria ranges are set up for the
vehicle which parameters are shown in Table A.1. First, certain vehicle parameters are varied in order to
investigate the influence this has on the drift equilibria. The parameters that are varied are the location
of the centre of gravity, the mass and the tyre cornering stiffness. Each of the variables is varied by
−30% to +30% in five steps. This way values are achieved that all lay in the range of commercial
passenger vehicles. Calculating and visualizing this range in five steps is done in order to be able to
calculate the drift equilibria over the full −30% to +30% range, while maintaining a clear distinction
between the calculation. As a result it becomes more straightforward to discuss the achieved results.
In the final section of this chapter two different tyre models are considered to achieve the drift equilibria.
The tyre models that are considered are the Dugoff tyre model and the Magic Formula model. The
Linear tyre model is not considered as no drift equilibria can be found using this tyre model, as shown
in Chapter 3.

For the aforementioned cases the Matlab function fsolve has been used, which is a dedicated tool to
solve a system of nonlinear equations. This function incorporates the Levenberg-Marquardt algorithm.
The algorithm can be tuned by adjusting the initial Levenberg-Marquardt parameter. Although fsolve,
which is a gradient based solver, is not always able to automatically find global minima, each equilibrium
set can be found by tuning an initial guess and by performing multiple searches. Tuning the initial guess
proved to be essential in some cases for finding drift equilibria. The fsolve function has been placed
in a loop where it is solved for vehicle velocity values of [1 ∶ 100] m/s, starting at 1 m/s and increasing
with every step in the loop. This range for the vehicle velocity was chosen as it covers the majority of
possible velocities of commercial passenger vehicles. The initial conditions 𝑥0 that were used by the
solver are given by:

𝑥0 = [𝑣𝑥 𝑣𝑦 𝜔 𝛿 𝑇𝑛𝑒𝑡] = [𝑉02 −𝑉02 25 −0.8 3000] (4.1)

where 𝑉0 and𝜔 describe the velocity of the current loop step and the angular wheel velocity respectively.
The longitudinal velocity is described by 𝑣𝑥 and the lateral velocity is described by 𝑣𝑦. Finally, 𝛿 and
𝑇𝑛𝑒𝑡 respectively describe the steering angle and the net torque applied to the rear axle. These values
were based on the initial conditions used in [33]. Furthermore they were tuned in order for the solver
to find global minima. Intuitively, the initial condition for the wheel rotational velocity 𝜔 could be set
using Equation 2.17. This equation however describes the wheel rotational velocity in the linear tyre
region. As the tyres are saturated during drifting, and are therefore behaving in their non-linear range,
this equation can not be used to obtain an initial condition for 𝜔. Also intuitively, the initial condition for
the lateral velocity 𝑣𝑦 should be considerably lower than the initial condition for the longitudinal velocity

25
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𝑣𝑥. Considering the drift equilibria found in Chapter 3 and utilizing the equation for the sideslip angle
(Equation 4.2), it would be expected that the initial condition for the lateral velocity should be at about
1
10 th of the initial condition for the longitudinal velocity.

𝛽 = arctan(
𝑣𝑦
𝑣𝑥
) ≈

𝑣𝑦
𝑣𝑥

(4.2)

However, by tuning, the most global minima were found for the initial condition of 𝑣𝑦 as shown in initial
conditions (4.1).

All simulations have been performed using the Dugoff tyre model, with tyre stiffnesses obtained as
shown in Equation 2.24. The cornering radius is set to a fixed value of 𝑅 = 30m. Finding drift equilibria
for various cornering radii, albeit exclusively with the Magic Formula model, has been performed in
[33].

4.1. Varying Vehicle Parameters
In this section three different vehicle parameters are varied. These are the location of the centre of
mass of the vehicle, the mass of the vehicle and the tyre stiffnesses. These particular parameters are
selected for three reasons. First, these parameters have a direct influence on the simulations as they
are directly mathematically implemented in the Dugoff tyre model. As a result a clear comparison can
be made between the outcomes of the varying vehicle parameters. Second, these parameters are
chosen as they make up the core vehicle properties. The mass and centre of gravity of commercial
passenger vehicles varies for almost every individual model. Additionally a wide variety of tyres are
available for commercial vehicles. Therefore these three vehicle parameters present themselves as
core vehicle properties. Third, the mass and centre of gravity of a vehicle change when the vehicle is
being loaded. Adding e.g. passengers and luggage to a vehicle increases the total mass and could
change the location of the centre of gravity. The latter could for example be caused by passengers in
the rear seats. As for the tyre stiffnesses, tyre selection could vary over the lifespan of a vehicle.

4.1.1. Vehicle Geometry
The vehicle geometry is varied by running simulations where the centre of gravity is moved more to
the front or more to the back of the vehicle. The distance from the front axle to the centre of gravity,
described by 𝑙𝑓, is made leading for these simulations. The lower the value for 𝑙𝑓, the closer the centre
of gravity of the vehicle is to the front axle. The distance from the rear axle to the centre of gravity,
described by 𝑙𝑟, is then given by:

𝑙𝑟 = 𝐿 − 𝑙𝑓 (4.3)

Where 𝐿 is determined beforehand by using the values for 𝑙𝑓 and 𝑙𝑟 from Table A.1 and the equation:

𝐿 = 𝑙𝑓 + 𝑙𝑟 (4.4)

As a result the values that are used to vary the vehicle geometry are given by:

[𝑙𝑓𝑙𝑟] = [
1.6681 2.0255 2.3830 2.7404 3.0979
3.1449 2.7875 2.4300 2.0726 1.7151] (4.5)

Running the simulation while using each column of these values as an input for the solver for every step
of the loop, results in Figure 4.1. What stands out is that not for every location of the centre of gravity
a solution is found. This is the case when the centre of gravity is shifted 30% towards the rear axle.
However, a solution is found for the case when the centre of gravity is shifted 23% towards the rear
axle. It therefore seems that a problem keeps the solver from finding solution for values greater than
23% above the baseline 𝑙𝑓. The fact that no solution is found for the +30% case could have several
reasons. First, it could be that for this particular vehicle geometry, or for cases larger than +23%, no
drift equilibria can be found. Second, it could be caused by the solver finding only local minima and
not global minima, where only the latter results in a complete solution. This in turn could be caused by
insufficient tuning of the solver, despite the performed tuning efforts.
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Figure 4.1: Drift equilibria results for the vehicle parameterized by Table A.1, with varying location of the centre of gravity.

In the top left graph of Figure 4.1 the steering angles 𝛿 that are necessary to maintain a drifting motion
are plotted against their respective velocities. As can be seen, a direct relationship exists between the
steering angle gain and the location of the centre of gravity. In other words, the necessary steering
angle decrease with increasing vehicle velocity decreases when the location of the centre of gravity is
shifted more to back of the vehicle. It increases when the location of the centre of gravity is shifted more
to front of the vehicle. This can be declared by the change in understeer gradient given by Equation
3.6 and the related steering angle given by Equation 3.5.
The top right graph of Figure 4.1 shows the net rear axle torque 𝑇𝑛𝑒𝑡 for the found drift equilibria,
plotted against the vehicle velocity 𝑉. From this graph it shows that the toque curves for all cases
only differ marginally. Only for the case where the centre of gravity is shifted 15% towards the rear
axle, the necessary torque for drifting is somewhat lower. As the torque curves in this part of the
figure are relatively close to each other, it is assumed that their marginal differences are caused by
solver settings. Modern commercial passenger vehicle engines can not generate the amount of torque
displayed in this graph. To reach these net rear axle torque values, the gear ratios of a vehicle gearbox
should be utilized.
The vehicle slip angle 𝛽 is plotted against the vehicle velocity 𝑉 in the bottom left of the figure. Here
is it visible that the slip angle gain with increasing vehicle velocity is different with each parameter of
the centre of gravity. A direct relationship exists between the slip angle gain and the relative shift of
the location of the centre of gravity, i.e. the slip angle gain increases when the location of the centre of
gravity is placed more towards the rear axle of the vehicle.
In the final graph of Figure 4.1, located at the bottom right, the wheel rotational velocity 𝜔 is plotted
against the vehicle velocity 𝑉. Here an inverse relationship exists between the wheel rotational velocity
and the location of the centre of gravity. In other words, for a given vehicle velocity, a higher wheel
velocity is necessary for each decreasing step of the location of the centre of gravity. However, with
increasing vehicle velocity, these differences become marginal.

4.1.2. Vehicle Mass
Simulations have been performed where the mass of the vehicle has been varied from −30% to +30%,
with regards to the baseline as well. The baseline is stated in Table A.1. As a result the input for this
simulations is as follows:

𝑚 = [1115.2 1354.2 1593.1 1832.1 2071.1] (4.6)
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Figure 4.2 is the result of the simulation where for each loop step one of the values of 4.6 has been
used. Here the solver did succeed in converging towards solutions for the five different mass inputs.

Figure 4.2: Drift equilibria results for the vehicle parameterized by Table A.1, with varying vehicle mass.

In the top left graph of Figure 4.2, an inverse relationship is shown between the steering angle 𝛿 and
the vehicle velocity 𝑉. In other words, with increasing vehicle mass, a decrease of steering angle is
necessary to maintain the vehicle in a drifting state.
The net torque applied to the rear axle 𝑇𝑛𝑒𝑡 is shown in the top right of the figure, plotted against the
vehicle velocity 𝑉. Here it can be seen that a shift in the torque curve occurs for varying mass. The
vehicle with the highest mass is able to perform a drifting motion at lower vehicle velocities than vehicles
that are lower in weight. Furthermore, less rear axle torque is necessary with decreasing vehicle mass.
This can be declared by the fact that a lighter vehicle has less normal force 𝐹𝑧 acting on the tyres.
As the normal force has a direct relationship with the forces acting on the tyres, a lower normal force
means that the tyre can be saturated with a lower amount of torque.
In the bottom left of the figure a shift in sideslip angle can be observed. Here the vehicle sideslip angle
𝛽 is plotted against the vehicle velocity 𝑉. For the same values for the vehicle velocity, the slip angles
are lower for the cases where the vehicle mass is higher, i.e. an inverse relationship exists.
The bottom right graph of the figure shows the wheel rotational velocity 𝜔 plotted against the vehicle
velocity 𝑉. Here it can be seen that with increasing weight, the wheel rotational velocity necessary
to keep the vehicle drifting state decreases. This difference does dampen out with increasing vehicle
velocity.

4.1.3. Cornering Stiffness
For this section simulations were performed where the rear cornering stiffness 𝐶𝛼𝑟 was the varying
parameter. In real life application this can be seen as replacing the rear tyres by ones with different
specifications. As in this report the longitudinal tyre stiffness is calculated by 𝐶𝜅 = 1.2 ∗ 𝐶𝛼, varying the
rear lateral tyre stiffness affects the rear longitudinal tyre stiffness as well. The tyre stiffnesses that are
used for the simulation are then given by:

⎡
⎢
⎢
⎣

𝐶𝛼𝑓
𝐶𝛼𝑟
𝐶𝜅𝑓
𝐶𝜅𝑟

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

157810 157810 157810 157810 157810
108331 131544 154758 177972 201185
189372 189372 189372 189372 189372
129997 157853 185709 213566 241422

⎤
⎥
⎥
⎦

(4.7)
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Where each column of this set is used for each step of the simulation loop. As a result of the varying
tyre stiffnesses, the understeer gradient varies as well, resulting in the following values for 𝐾𝑢𝑠:

𝐾𝑢𝑠 = [−0.0214 −0.0088 0 0.0065 0.0115] (4.8)

From these values of the understeer gradient, it can be seen that the vehicle ranges from oversteering
behaviour (𝐾𝑢𝑠 < 0), to neutral steering behaviour (𝐾𝑢𝑠 = 0), to understeering behaviour (𝐾𝑢𝑠 > 0).

Figure 4.3: Drift equilibria results for the vehicle parameterized by Table A.1, with varying cornering stiffnesses.

Figure 4.3 shows the result of the simulation where for every loop the cornering stiffnesses are set as
shown in (4.7).
The steering angle 𝛿 is plotted against the vehicle velocity 𝑉 in the top left of this figure. What immedi-
ately stands out, and this goes for all graphs in Figure 4.3, is that the results of the varying stiffnesses
is very similar. This can be declared by the fact that the vehicle behaves very similar when exposed to
the small changes in the understeer gradient 𝐾𝑢𝑠 at the velocities 𝑉 for which drift equilibria are found.
This statement is supported by Figure 3.4. This figure also explains the outcome differences of the
simulation at higher velocities, as these then become more distinguishable.
For each of the outcomes of the top left graph of the figure, an inverted relationship exist between the
vehicle velocity 𝑉 and the steering angle 𝛿. Furthermore, at higher velocities it becomes clear that for
lower rear tyre stiffnesses, a higher steering angle is necessary to obtain a drift equilibrium, and vice
versa.
The top right graph in Figure 4.3 shows the net torque applied to the rear axle 𝑇𝑛𝑒𝑡, plotted against
the vehicle velocity 𝑉. Here the differences between the varied tyre stiffnesses only become visible at
higher velocities as well. Here it can be seen that for higher tyre stiffnesses, a higher amount of net
rear axle torque is necessary to obtain drift equilibria. Therefore there is a direct relationship between
the tyre stiffness and the necessary net torque that is applied to the rear axle.
In the bottom left graph of the figure the vehicle sideslip angle 𝛽 is plotted against the vehicle velocity
𝑉. From this graph it can be seen that the sideslip angles increases as the vehicle velocity increases.
At higher velocities the differences between the varied rear tyre stiffnesses are more distinguishable.
With increasing rear tyre stiffness, the vehicle slip angle becomes smaller for the same respectable
velocities. In the final graph of Figure 4.3, located at the bottom right, the wheel rotational velocity 𝜔 is
plotted against the vehicle velocity 𝑉. Here the outcome of the simulation seems to be the same for all
five cases. However, zooming in on this graph, a small difference can be distinguished between the
cases at higher velocities. At higher rear tyre stiffnesses, the wheel rotational velocity is higher, and
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vice versa.
Although the differences for the cases considered in Figure 4.3 are marginal, the figure does show the
increasing difference in simulation outcome with increasing vehicle velocity.

4.2. Varying Tyre Model
In order to investigate the influence of the tyre model on the drift equilibria, the drift equilibria are set
up using two different tyre models in this section. This is also done using the Matlab fsolve function
and with the initial values as described in (4.1). Furthermore, the vehicle parameters as stated in Table
A.1 are used.

The tyre models that will be considered are the Dugoff tyre model and the Magic Formula model. The
linear tyremodel will not be considered in this section, as it was shown in Chapter 3 that no drift equilibria
could be found using this tyre model. The tyre parameters for the implementation of the Magic Formula
model are listed in Table A.2. The tyre stiffnesses for the Dugoff tyre model are calculated as described
in Equation 2.24.
In Chapter 3 it was already shown that differences in drift equilibria exist for these tyre models. In this
section the full range of drift equilibria will be considered. Running the simulation for both tyre models
and visualizing the outcome, results in Figure 4.4. In this figure, all graphs are plotted against the

Figure 4.4: Drift equilibria results for the vehicle parameterized by Table A.1, for Dugoff tyre model and Magic Formula model.

vehicle velocity 𝑉, which will be represented at the horizontal axle for each of the graphs.
In the top left graph of the figure, the steering angle 𝛿 is shown for the two cases. For both tyremodels an
inverse relation exists considering the steering angle and the vehicle velocity. With increasing velocity,
the steering angle decreases. Furthermore, the solution using the Dugoff tyre model indicates that the
steering angle should be smaller than for the case where the Magic Formula model was used, for the
same respective velocities. Finally it seems that the range of drift equilibria that were found using the
Dugoff tyre model is larger than for the other tyre model. This could however also been caused by the
solver settings, indicating a convergence issue.
In Figure 4.4, in the top right half, the net rear axle torque 𝑇𝑛𝑒𝑡 is visualized. Here it is shown that
the necessary torque for drift equilibria using the Magic Formula model is higher than when applying
the Dugoff tyre model. Also drift equilibria are found at higher vehicle velocities when using the Magic
Formula model. Furthermore, for the case where the Dugoff tyre model is used, the torque curve first
rises with increasing vehicle velocity and then decreases as the velocity goes above 𝑉 ≈ 12 m/s. On
the other hand the Magic Formula model only shows a decreasing value for 𝑇𝑛𝑒𝑡 with increasing 𝑉.



4.3. Summary 31

The bottom left graph of the figure shows the vehicle slip angle 𝛽. From this graph it becomes clear that
using the Dugoff tyre model, an almost linear decrease in slip angle is found with increasing vehicle
velocity. The slip angles that are found using the other tyre model seemmuch more stable, almost even
constant for velocities between 𝑉 ≈ 13m/s and 𝑉 ≈ 15m/s. Using the Dugoff tyre model, higher vehicle
sideslip angles are determined up to the point that the lines of the two methods cross. From there on,
with increasing vehicle velocity, the determined slip angle of the Magic Formula model becomes higher.
In the graph at the bottom of Figure 4.4, the wheel rotational velocity is displayed for both cases. Here
it is shown that the Dugoff tyre model indicates an exponential decrease in wheel rotational velocity
with increasing vehicle velocity, on the left side of this graph. This decrease damps out for velocities of
𝑉 > 14 m/s, from which the wheel rotational velocity seems to stay constant. For the Magic Formula
model, the wheel rotational velocity seems constant over the whole drift equilibria range.

4.3. Summary
In this chapter the influence of varying vehicle parameters on the drift equilibria is shown, together with
a comparison between two tyre models for determining the drift equilibria.
First the solver, the initial values and the boundary values were elaborated on. The Matlab function
fsolve has been used to solve the set of non-linear equations.

In the next section certain vehicle parameters were varied compared to set baseline values by −30%
to +30% in five steps. The parameters that were considered are the location of the centre of gravity
of the vehicle, the mass of the vehicle and the cornering stiffness of the rear tyres. For each of these
three cases, drift equilibria were determined. Next, for each individual varying parameter relationships
were found and discussed regarding the steering angle, net rear axle torque, vehicle sideslip angle and
wheel rotational velocity. All with regard to the vehicle velocity.

In the final section of this chapter the Dugoff tyre model and the Magic Formula model are considered
for determining drift equilibria. The same relationships as in the previous section are discussed.
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Conclusions & Recommendations

5.1. Conclusions
As an addition to current safety systems, research is performed in order to develop systems that rely
on autonomous drifting. Properly controller, drifting can increase vehicle safety, autonomous driving
acceptance and vehicle performance. During a drifting motion, a vehicle negotiates a corner while
maintaining relatively large sideslip angles. During this motion the rear tyres are saturated.

A review of the state of the art showed a method that enables the generation and visualization of drift
equilibrium points. To be able to use this method, an understanding of the fundamental mathematics
of vehicle and tyre behaviour is essential. A three state vehicle model suffices for generating the drift
equilibria. Furthermore, the linear tyre model, Dugoff tyre model and Magic Formula model are math-
ematically considered. To gain insight on the differences between these three tyre models, the forces
acting on the tyres for each tyre model type can be visualized. From this diagram the tyre behaviour
for different longitudinal slip and lateral slip angles for each of these tyre models can be compared.

Determining the drift equilibria is done by solving the steady state solution. The steady state solution is
set up using the fundamental mathematical equations and a grid of initial conditions. The result of this
solution can be visualized in a phase plane representation, giving insight for which values of yaw rate
and vehicle sideslip angle drift equilibria occur. This phase plane representation shows the yaw rate
and sideslip angle location for conventional cornering as well, resulting in a total of three equilibria.
Using this method, the influence of different steering characteristics on drift equilibria can be inves-
tigated. These steering characteristics are divided intro three types, understeer, neutral steer and
oversteer. Switching between these steering characteristics while maintaining the same values for the
rest of the vehicle and road parameters can be done by varying the rear lateral cornering stiffness.
Using the Dugoff tyre model, three equilibria are found for the understeering vehicle, of which two are
drift equilibria. The other equilibrium indicates conventional cornering. The same amount and types of
equilibria can be found for a vehicle that is characterized by neutral steer. For an oversteering vehicle
however, one equilibrium is found for conventional cornering and two equilibrium ranges are found for
drifting. Therefore an oversteering vehicle has a range of vehicle states yaw rate and sideslip angle
for which drifting is possible. For understeering and neutral steering vehicles, this is limited to drift
equilibrium points.
Various tyre models could be used in order to identify drift equilibria for a vehicle with neutral steering
behaviour. However, those can not be found using the linear tyre model, as for all inputs of yaw rate
and sideslip angle the vehicle will be directed towards stable conventional cornering. With the use of
the Dugoff tyre model all three equilibria, of which two are drift equilibria, can be identified. The same
goes for the Magic Formula model. The main difference in the results of using this tyre model compared
the Dugoff model is that the drift equilibria were found at higher sideslip angles for the Magic Formula
model. This is caused by the higher possible peak values for the longitudinal and lateral axle forces of
the latter model.

The values that parameterize a vehicle have a direct influence on the drift equilibria. Shifting the centre
of gravity towards the back of the vehicle increases the steering angle that is necessary to maintain
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a drifting motion. This shift also results in a steeper sideslip angle gain and lower wheel rotational
velocities. The opposite is true for the cases where the location of the centre of gravity of the vehicle
is shifted more to the front axle.
Decreasing the mass of the vehicle leads to higher steering angles, lower sideslip angles and equilib-
ria at higher velocities for drifting. The net rear axle torque decreases in this case as well, while the
necessary wheel rotational velocity increases. An increase in the mass of the vehicle leads to opposite
results.
The difference in cornering stiffnesses, and thereby the differences in steering behaviour, only comes
forward at relatively high velocities. Using a cornering radius of thirty meters and analysing its result-
ing drift equilibria, the differences between the cases are marginal as these kind of velocities are not
reached. Although marginal, at higher velocities a higher steering angle is necessary to obtain a drift
equilibrium with decreasing rear tyre stiffness. In this case the net rear axle torque decreases, the
sideslip angle becomes larger and the wheel rotational velocity decreases as well.
When the Dugoff tyre model and the Magic Formula model are compared regarding the generation of
drift equilibria, several differences emerge. Using the Dugoff tyre model, a larger range of drift equilibria
is found. The Magic Formula model does however find these equilibria at higher velocities. Further-
more, the results achieved utilizing the Dugoff model show a torque curve with increasing velocity,
whereas the other considered tyre model shows an almost linear net rear axle torque decrease. The
tyre models show similar behaviour for the steering angle with increasing vehicle velocity. Finally, the
determined sideslip angle and the wheel rotational velocity differ, as these values decrease for the
Dugoff tyre model. For the Magic Formula model these stay constant with increasing velocity, apart
from a slight decrease in sideslip angle at higher velocities.
In conclusion, a variety of vehicle and tyre parameters were investigated, together with several tyre
models. Each of these aspect influence the parametric location of the drift equilibria and its behaviour.
Therefore, in order to construct a reliable reference point for, for example, future implementation, these
influences have to be taken into account.

5.2. Recommendations
The drift equilibrium analyses that are performed in this thesis are limited by the chosen vehicle model,
varying parameters and used tyre models. Therefore recommendations should be made in order to
expand the research and knowledge on drifting.
First the missing drift equilibria for the case where the centre of gravity of the vehicle is shifted 30% to
the rear axle could be investigated. This can be done by investigating in two directions. First, vehicle
geometries at which drifting equilibria can not exist could be researched. The second research direction
can be focused on the solver. The solver used in this research could be extensively tuned to try and
find a solution for the missing case. Another possibility could be to utilize a more stable algorithm to
find the global minima. Lastly, in stead of the used solver a numerical approach could be utilized to find
the drift equilibria.

Additionally, the following further research could be performed:
1. Expand the used methods and parameters

Due to the fact that this research is limited by the chosen vehicle model, varying parameters and
used tyre models, research should be performed on the effect of other varying parameters and
models. In the first place the vehicle model could be expanded by using one that incorporates
roll, pitch and yaw motion. Suspension dynamics could also be included. Additionally, different
tyre models and additions like Delft Tyre could be considered, including tyre transient behaviour.
Using more complex vehicle and tyre models makes for even more vehicle and road parameters
that can be investigated regarding drifting behaviour.

2. Tyre force estimation
In this research tyre models are used in order to determine the forces acting on the tyres. These
forces are then used to determine the drift equilibria. However, different methods could be con-
sidered to determine the forces acting on the vehicle. One of these methods is the load sensing
bearing, which directly measures the acting forces without the use of a tyre model.

3. Controller and plant simulation
After a solid drifting analysis has been performed, the found equilibria could be set as reference
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values for plant simulation. The vehicle model that represents this plant could, for example, be
simulated using a model in Simulink or by using IPG Carmaker. A controller should be added in
order to run the plant simulations, guiding the vehicle towards and keeping it at the drift equilibria.
Literature described various types of controllers including linear quadratic regulator control and
model predictive control. For the latter control type, tools like ACADO or FORCESPRO could be
used.

4. Physical experiment
Finally a physical experiment in real world conditions could be performed. This way the theoret-
ical research can be evaluated with physical experimental data. Using this data the theoretical
research can be tuned, which could result in an even broader understanding of drifting.





A
Appendix A: Parameters

Table A.1: Vehicle and road parameters used to create the phase plane representation shown in Figure 3.6. The vehicle values
are of a Porsche 911, extracted from IPG Carmaker [33].

Symbol Value Unit Description
𝑙𝑓 2.383 m Distance from front axle to CoG
𝑙𝑟 2.43 m Distance from rear axle to CoG
𝑚 1593.12 kg Vehicle Mass
𝐼𝑧 2575.9 kg*m2 Vehicle moment of inertia about vertical axis
𝐶𝜅 94686 N/[-] Longitudinal slip stiffness per wheel
𝐶𝑦,𝑓 78905 N/rad Front cornering stiffness per wheel
𝐶𝑦,𝑟 77379 N/rad Rear cornering stiffness per wheel
𝜇0 1 [-] Peak road friction coefficient
𝑒𝑟 0.01 [-] Road adhesion reduction coefficient
𝐼𝑠 17 [-] Steering ratio
𝑔 9.81 m/s2 Gravitational acceleration
𝑟𝜔 0.508 m Wheel radius
𝐼𝜔 3.916 kg*m2 Wheel inertia

Table A.2: Pacejka tyre model parameters for a tyre with non-convex slip properties as used in [33].

Tyre Parameter Value
B 6.8488
C 1.4601
D 1
E -3.6121
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