]
TUDelft

ID-based self-encryption via Hyperledger Fabric based smart contract

Ilya Grishkov
Supervisor(s): Kaitai Liang, Roland Kromes
EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering

Abstract

This paper offers a prototype of a smart-contract-
based encryption scheme meant to improve the se-
curity of user data being uploaded to the ledger. A
new extension to the self-encryption scheme was
introduced by integrating identity into the encryp-
tion process. Such integration allows to perma-
nently preserve ownership of the original file and
link it to the person who originally encrypted it.
Moreover, self-encryption provides strong security
guarantees under the condition that the encrypted
file and the key are safely stored.

1 Introduction

The modern world is increasingly adopting blockchain tech-
nology. The first significant market adoption of blockchain
happened in 2009 when Bitcoin was introduced [1]. Inter-
est in blockchain solutions grew over the years and led to
the invention of Ethereum - Bitcoin peer but with support for
smart contracts [2]. The introduction of smart contracts leads
to further development in the field of blockchain and cre-
ates demand for more industry-friendly solutions that allow
identifying users of the system (Know- Your-Customer, Anti-
Money-Laundering). Hyperledger Fabric was introduced as
a highly modular permissioned blockchain that allows great
customization to suit particular industrial needs [3]. Given its
customizability and modularity, Hyperledger Fabric (HLF) is
a perfect platform for extending it with various trust and pri-
vacy preservation solutions.

According to Huang et al. [4] the main component of a
blockchain being attacked the most is a smart contract. A
high frequency of attacks on a component designed to handle
private user data suggests a need for an alternative approach
to handling sensitive information other than just sending it
raw to the ledger. Local data encryption prior to sending data
to the smart contract could be a solution.

Self-encryption was introduced as a means of encrypting
files that “requires no user intervention or passwords” [5].
This algorithm can be used for local encryption of files, en-
crypted chunks of which will be later uploaded to the dis-
tributed file system. Pointers to the encrypted chunks are
then sent to the ledger. While this solution allows keeping
file content private, the file itself is not linked to its owner.
A variant of identity-based encryption can tackle this prob-
lem. If a file is self-encrypted with the owner’s identity used
during the encryption process, this file remains linked to the
person who initially uploaded it to the blockchain. This way,
original ownership can be preserved.

This paper aims to explore trust and privacy-preserving so-
lutions in the Hyperledger Fabric blockchain. More specif-
ically, the goal is to further investigate the utility of a com-
bination of identity-based encryption and self-encryption to
improve data security in the HLF; extend the previously done
research by Park [6] and implement ID-based self-encryption
via Hyperledger Fabric smart contract. Hence the main re-
search question is: “How can the security of Hyperledger
Fabric smart contracts be improved using ID-based self-
encryption?”

Within this paper, an approach to integrating ID-based self-
encryption is presented. Moreover, a detailed description of
the prototype implementation is given.

This work is structured as follows. Section 2 describes the
methodology used to achieve the goal. Section 3 discusses
the inner workings of ID-based self-encryption as a means
of increasing the security of Hyperledger fabric. Section 4
discusses security implications and presents the analysis of
the implemented algorithm. Section 5 concludes the work.

2 State of the Art

The topic of security and privacy of the Hyperledger Fabric
has been thoroughly studied [7], [8], [9]. Moreover, research
has been conducted this year by a student of the Delft Uni-
versity of Technology [6] addressing the similar issue of im-
proving HLF security using self-encryption.

The concept of self-encryption was introduced by Yu Chen
[10]. The approach of the original paper involves converting
a file into a bit stream, extracting the key by randomly select-
ing bits from the stream, and then doing the encryption using
that key. After the encryption, the key and the encrypted file
should be stored separately, e.g., the key can be stored locally,
while the encrypted file can be sent to a server.

The original encryption scheme was also extended by
Moch Rezky Debby Rahardjo [11]. According to the paper,
”The modification is located in dividing the plaintext and ci-
phertext into 1024-bit chunks at XOR process and using the
date when encryption process starts as a seed. The modifica-
tion also adds the database for the key management function”.
Storing the key and the encrypted chunks in separate places
makes it computationally not feasible to get the original data.

The later industrial adaptation of the self-encryption
scheme happened when a team led by David Irvine made
self-encryption the core of his company’s (MaidSafe) prod-
uct - SAFE Network [5]. Irvine’s implementation of the self-
encryption scheme will be the basis of this work. Hence a
more detailed explanation of the implementation of the algo-
rithm will be given.

Figure 1 shows the encryption process. First, the original
file is split into a minimum of 3 file chunks. After the file is
split into chunks, the algorithm creates a data map, where the
key needed for decryption will be stored. Each chunk is then
hashed, and those hashes are written to the data map. Parts
of those hashes are used as a key and initialization vector for
AES 128 algorithm that encrypts each file chunk. When en-
cryption is done, each encrypted chunk is obfuscated with the
previously computed hash values by applying the XoR func-
tion. At the end of the process, the encryption scheme returns
encrypted file chunks and a data map that contains keys for
decryption.

3 Methodology

The original implementation of the self-encryption schema
by David Irvine [12] was modified and used for this research.
The use of the rayon library (which adds parallelization to
the code) was removed from the algorithm since the com-
pilation target (WebAssembly) only supports single-threaded
code. Additionally, the code base was modified to include an

Chunk Chunk Chunk Chunk Chunk
n-3 n2 n-1 n

i Optional
i Compress |

{ Optional | { Optional | { optional | { Optional |
 Compress |

i Compress i Compress | | Compress |

Encrypted Encrypted Encrypted Encrypted
Chunk n-2 Chunk n-1 Chunk n Chunk n+1

Figure 1: Self-encryption process [12]

interface for communication with the external code. Changes
were also done to the Cargo.toml to make the code compat-
ible with the target. The modified self-encryption algorithm
was compiled to WebAssembly and run in a virtual machine
(VM), and invoked from the code of the developed local ap-
plication (which allows the interaction with the Hyperledger
Fabric Smart Contract). A more detailed description of the
process will be given in subsection 4.3. The benchmarks of
this implementation will be provided in section 5.
Hyperledger Fabric test network v2.4.3 was used. Test net-
work was deployed to Docker with the following command':

$./network.sh up createChannel -ca

This command creates a new test-network with a single chan-
nel and also uses Certificate Authorities. A smart contract
was then deployed (detailed in subsection 4.3).

Encrypted file storage is handled by the InterPlanetary File
System (IPFS)2, which is a distributed Torrent database that
uses hashes of files to address its content. IPFS node was also
deployed to Docker. For IPFS deployment, two directories
(staging and data) were mounted on the host file system to
persist the stored data when the container is stopped. Hyper-
ledger Fabric provides an official software development kit
(SDK) for three languages: Go, Java, and Javascript. Go was
chosen for the implementation due to the ease of integration
with Hyperledger Fabric and the IPFS. The encryption library
is written in Rust and is compiled to WebAssembly; hence
a way to call WebAssembly was needed. Go also provides
support for the Wasmer library that calls the WebAssembly
function directly from Go code.

4 ID-based self-encryption
4.1 Integrating identity into the encryption

This paper offers an extension to the algorithm proposed by
Irvine [5]. The encryption step in the original algorithm is

!Usage of the command requires navigating to the root directory
of the test-network, provided by the Hyperledger Fabric [13]
*https://ipfs.io/

modified to include the identity of a person running the al-
gorithm in the encryption process. Instead of using part of
the chunk hash as a key for AES 128, the result of the XoR
of the hashed identity and the chunk hash is used as a key.
The identity can be any string of any length. If the length of
this string is shorter than the length of the key, the cycle func-
tion is applied to the string, which repeats the iterator of the
string. The hashing function SipHash 1-3 is used to hash the
identity of a user before passing it to the XoR function. Fig-
ure 2 demonstrates the process of encrypting a file using the
modified version of self-encryption with identity integrated
into the encryption process.

Chunk Chunk Chunk Chunk Chunk
n-3 n2 n-1 n nsl

#GCn-3 #Cn-2 #Cn-1 #Cn

¢ Optional :
i Compress |

i optional | ! optional | { Optional | optonal |
| Compress | + Compress | + Compress |

SipHash 1-3
[— hashofa
public key

x.509 identity
Public Key

Encrypted
Chunk n-2

“The key is generated by performing XOR of a chunk hash and SipHash 1-3 of user's public key

Encrypted
Chunk n-1

Encrypted
Ghunk n

Encrypted
Chunk n+1

Figure 2: ID-based self-encryption process

The decryption of the file encrypted using ID-based self-
encryption is similar to that of a regular self-encryption, with
the key for AES 128 being the only different part. The de-
cryption calculates the key the same way the encryption does
it by applying the XoR function to the hash of identity and
the chunk hash from the data map.

The implementation of the encryption scheme can be found
on GitHub *

4.2 Connecting the encryption algorithm and the
local application

The implementation of the identity-based self-encryption is
written purely in Rust, while the rest of the project is written
in Go. This approach demands a way to integrate the Rust
library into Go code. Among the solutions to tackle the prob-
lem are:

1. Use Go tools to assemble the Go code and compile Rust
code into a static library. Then link compiled code using
additional assembly “glue-code” [14].

2. Compile Rust to a static library and call it from the Go
code using Go build-in pseudo-library C for interacting
with native interfaces.

3https://github.com/ilyagrishkov/ib-self-encryption-rust

3. Compile Rust to WebAssembly (WASM) code and call
it from Go using Wasmer library '.

All of the methods have been successfully tried. The first
two methods do not allow cross-compilation because both re-
quire compiling Rust to a static library, which is platform-
specific. Additionally, the first method requires the use of
assembly language, which is different on different proces-
sor architectures and operating systems. The second method
also uses the C pseudo-library, which does not allow cross-
compilation of the Go code. Overall, both methods are very
platform-specific, making them a less preferable choice.

The third method was chosen for connecting the Rust li-
brary to Go code. Compiling Rust to WASM to use as a stan-
dalone application or a library can be done using the follow-
ing command:

$ cargo build --target=[chosen_target]

where chosen_target is a WebAssembly target that can be
either wasm32-unknown-unknown or wasm32-wasi. The lat-
ter was used because it compiles using WASI API 2, which is
a system API that provides access to multiple operating sys-
tem functionalities, such as access to the file system.

The resulting WASM file is then placed in a hidden folder
in the user’s home directory, so the Go code can later load it.
As the WASM code is used within a virtual machine (VM),
it is independent of the operating system it will run on, so it
requires compiling only for one target.

Calling WASM from Go using Wasmer

In order to call the WASM code, a VM needs to be used.
Wasmer library provides such VM that can also be initialized
from within Go code. The process of calling WASM code
requires main steps.

1. Load WASM code into a Wasmer VM

(a) A directory on the host operating system that will
be accessible in the VM needs to be specified

(b) Optionally, the standard output of the WASM Ii-
brary can be inherited.

2. Invoking a function by its name and passing arguments
to it

The communication between the Go code and WASM li-
brary and passing arguments for function invocation is hap-
pening using C types, which means that types like strings
are not supported directly and need to be converted to cor-
responding C types. If a string is passed as an argument, it
needs to be written to memory and end with a zero byte. The
pointer to the first byte of this string is then passed to the in-
voked function as an argument.

As the host operating system memory is inaccessible to the
VM, allocation and deallocation of memory must happen in-
side the VM itself. In order to facilitate the allocation and
deallocation, two dedicated Rust functions were developed
as a part of the id-based encryption library interface: allocate
and deallocate.

Uhttps://wasmer.io/
“https://wasi.dev/

If the called function requires a string as an argument, the
allocation must be performed before passing the pointer to
that string. The allocate function has to be called to allocate
memory inside the VM. The memory is then accessed from
the Go code, and each byte of the string argument is written to
the newly allocated memory. The pointer to the memory and
the length must be preserved to deallocate the memory before
the program terminates. The pointer to the first memory cell
containing the string argument is then passed as an argument
to the function being called.

Wrapper code for Wasmer calls

A wrapper code has been written to simplify the invocation
of WASM functions. The significant simplification this code
provides is the ability to pass Go native-type argument to the
wrapper, performing all the necessary processing and alloca-
tion if needed. The pointers to string or array types and their
lengths are stored, so when the program terminates, the mem-
ory is getting deallocated.

Moreover, the developed wrapper code allows to pass sim-
ple numerical Go types (integers, floats, bytes, etc.) as point-
ers to the WASM library, so the changes happening to them
when WASM functions run are also reflected in Go code,
without the need to return anything.

Additionally, the wrapper requires a return type parameter
argument (represented as an enumerator) when calling the in-
vocation function through the wrapper. It uses the return type
to case the return of the WASM function to the correspond-
ing Go type. In cases when a pointer to a string is returned,
the wrapper reads bytes from the VM memory until the zero
byte and creates a Go string from it. The return type of the
wrapper’s invocation function is a generic interface{}, which
requires additional type casting. For example, if the called
function returned a pointer to a string, a Go string will be
built from the pointer, but a user will still have to dynami-
cally convert the returned value as it will be interface{}.

4.3 Smart contract

The smart contract in Hyperledger Fabric allows for defining
assets on the ledger. This paper defines an asset containing
three fields: ID, Owner, and CID. The code below shows the
definition of an asset written in Go.

type Asset struct {
ID string ‘json:"ID"®
Owner string ‘json:"Owner"®
CID []string ‘json:"CID"®

The ID is a universally unique identifier (UUID) gener-
ated when the new asset is created. The Owner is a string
of hexadecimal numbers representing a public key of a user
who created the asset. The CID is an array of unique im-
mutable identifiers referencing encrypted file chunks saved
in the IPFS. The references are used for retrieving the stored
data and can also be used for verifying if it was manipulated
(the hash of data is a unique value).

Additionally, the smart contract defines a list of functions
for creating, deleting, and updating assets. The implementa-

tion can be found on GitHub!.

4.4 Design implementation

The encryption and decryption process and interactions with
the IPFS and the Hyperledger Fabric are orchestrated by a
local application, a command-line interface (CLI) tool written
in Go. The prototype of the tool is accessible from GitHub?

Executing any command starts with creating a new in-
stance of a WASM wrapper and loading the encryption li-
brary. When the command requires interaction with the Hy-
perledger Fabric, the presence of the wallet containing iden-
tity (which is necessary to enable interaction with the smart
contract) is being checked. If the wallet is missing, it is popu-
lated based on a user’s certificates and keys. When this prepa-
ration is done, the execution of the command starts.

At the end of the program execution, the wrapper iterates
over all allocated memory pointers and individually deallo-
cates them.

Decryptign W
Decrypted cj

6. Get CIDs and PK from the block
based on block id

8. Decrypt with
(hash(PK) XOR chunk hash)

7. Get data chunks from

Data map
IPFS based on CID

File chunks

Data map

Local environemnt \
5. Decrypt (block id, data map)

, | 9Reun
8 3 Retun datamap — decrypted file
to the user

Local app

N\ 1. Encrypt (data)

4.2 Create an asset
with CIDs of chunks,
the identity (PK) and UUID

2. Get public key
ofausertouseas |

an identity
liDala

4.1 Upload individually
=9 T Zipped data
chunks

Original file 3. Encrypt each chunk using AES Data map
with (hash(PK) XOR chunk hash) File chunks
as akey and IV derived from
chunk hash

Encryption

Figure 3: Workflow

There are two major parts of the system - encryption and
decryption. Figure 3 demonstrates the workflow of both of
them.

Encryption

The first part, encryption, that deals with encrypting a file
and uploading data to the Hyperledger Fabric starts when the
following command is called:

read by the WASM code. The encryption function is then
called, and the output is written to a new directory inside the
mapped one. The output consists of multiple encrypted file
chunks and a data map. The data map is moved to the loca-
tion specified by the user and can later be shared via a secure
channel. Each encrypted file chunk is being put into a zip
archive to preserve their names when uploading to the IPFS
and sent to the IPFS. The unique identifier corresponding to
each chunk (Content Identifiers or CIDs which are the hash
values of the files) is returned. A smart contract function is
then called that creates a new asset with all CIDs.

Decryption

The second part of the system, decryption, is invoked using
the following command:

$ ibse get [block] [key] [destination]

$ ibse add [file] [key_output_path]

where ibse is the name of the local app, file is the ab-
solute path to the file that needs to be encrypted, and
key_output_path is the absolute path to the location where the
key will be stored.

The original file is uploaded to the directory that was
mapped during the VM initialization. From there, it can be

"https://github.com/ilyagrishkov/ib-self-encryption-smart-
contract
*https://github.com/ilyagrishkov/ib-self-encryption

where block is the UUID of an asset in HLF blockchain
that contains CIDs of encrypted chunks, key is the absolute
path to the data map, and destination is the absolute path to
the location where the decrypted file should be written.

The UUID allows identifying an asset containing CIDs of
encrypted file chunks. Each chunk is downloaded from the
IPFS, unarchived, and written to the directory accessible from
the VM. The data map is then copied to the same directory.
After collecting all the necessary files for decryption, the de-
cryption function is called, and the restored file is written to
a user-specified destination.

5 Results

5.1 Performance analysis

Benchmarking the system was done on the iMac 2019, 3,6
GHz 8-Core Intel Core 19 with 32 GB of memory running on
MacOS 12.3.1.

Benchmarking of the implemented id-based self-
encryption scheme was done. As the encryption itself
is not implemented in the same language as the rest of the
project (the encryption is implemented in Rust, and the rest
of the project is in Go), the execution time can differ when
Rust functions are called from Go compared to pure Rust
execution time.

Files of sizes 100-, 250-, 500-, 750 kilobytes, 1 megabyte,
10-, 25-, 50-, 75-, and 100 megabytes were created to bench-
mark the pure Rust implementation as well as the WASM +
Go implementations. Moreover, for this benchmark, the Rust
code and the WASM library were optimized using the maxi-
mum level of optimization provided by the Rust compiler.

The initial benchmark was performed on the encryption
function only and was measuring the execution time of the
pure Rust implementation. Figure 4 shows the results of the
benchmarking.

The chart shows near-linear dependence between the size
of the file and the time it takes to encrypt it. This dependence
can be explained by the fact that the most demanding compu-
tational is the AES 128 encryption process and hashing, and
with the increase of the file size, the number of chunks it is
split to increases. Each chunk of the original file needs to be

0.7

0.6

05

04

Time {Sec)

03

0z

oa

0 0000 40000 60000 80000 100000

Size (Byte)

Figure 4: Dependence of the execution time of id-based self-
encryption algorithm in pure Rust from the file size

individually encrypted. Hence the computation time grows
linearly with the size of the file.

As the encryption function execution time grows linearly
due to the computational demand of the AES 128 and the
hashing algorithms, the decryption process will be identical
because it uses the same algorithms for decryption.

In order to achieve more objective benchmark results, a
file of each size has been encrypted 100 times, and the aver-
age calculated. In order to visualize execution time, a chart
in Python using MatPlotLib! was created. The chart con-
tains a 25-bin histogram, each representing density of a par-
ticular measurement. Following the central limit theorem,
the distribution of the execution time measurements was as-
sumed to be normal, so the mean and the standard deviation
were calculated, and the distribution was plotted over the his-
togram. Figure 5 shows an example of combined charts for
pure Rust and WASM + Go execution times when encrypting
50 megabytes file. The blue histogram on the left-hand side
shows the results of the 100 measurements of the execution
time of the Rust implementation; on the right-hand side - of
the WASM + Go implementation.

The results of execution time measurements for various file
sizes are summarized in Table 1. The execution time shown
in the table is the average number of seconds it takes a corre-
sponding implementation to encrypt a file of a corresponding
size. In addition to the average execution time, the overhead
of the WASM + Go implementation is calculated for every
pair of measurements.

It is visible from the table that the overhead has a clear
downwards trend (except for the spike when encrypting a
250KB file). When the execution time of a WASM + Go en-
cryption implementation is less than 0.01 seconds, the over-
head falls in the range between 70% and 85%. When the
execution time is longer than 0.1 seconds, the overhead goes
down to 50% - 55% and stays in that range when the file size
increases. Figure 6 demonstrates the overhead of WASM +
Go encryption of files of different sizes.

Such a decrease in the overhead when the execution time

"https://matplotlib.org/

Rust: 0.3686 WASM: 0.5644 | Overhead: 53.15%

120

100

Density
b

20

0.35 040 0.45 0.50 0.55 0.60
Time {Sec)

Figure 5: Run time distribution for SOMB file encryption using pure
Rust and WebAssembly + Go implementations

File size | Average execution time (Sec) | Overhead
(Byte) Rust WASM + Go (%)
100KB 0.0024 0.0042 75.89
250KB 0.0038 0.007 84.51
500KB 0.005 0.0088 75.48
750KB 0.0069 0.0117 71.4
IMB 0.0081 0.0139 71.29
10MB 0.0747 0.117 56.55
25MB 0.1885 0.2851 51.22
50MB 0.3686 0.5644 53.15
75MB 0.5492 0.8447 53.81
100MB | 0.7317 1.1201 53.08

Table 1: Average execution time and overhead when encrypting files
of different sizes using id-based self-encryption

becomes longer is explained by the presence of the Wasmer
library invocation overhead, which occurs every time a call is
made to the Wasmer VM. When execution time is less than
0.01 seconds, the invocation overhead is significant compared
to the execution time. At the same time, when the execution
time becomes longer, the overhead from invocation becomes
insignificant, and measurements start to approximate the ac-
tual WASM VM overhead, which is around 50% - 55%.

5.2 Security analysis

The designed app has multiple surfaces of attack. The IPFS
nodes where the encrypted file chunks are stored can be at-
tacked. Also, an adversary can gain unauthorized access to
the ledger with references to files on the IPFS. Both of those
possibilities are analyzed below.

Firstly, the security of IPFS nodes (assuming the encrypted
file chunks were stored individually on multiple nodes) can be
compromised, in which case encrypted files will be leaked to
the malicious user. As encrypted file chunks have been stored
on different nodes, the probability that all of them are com-
promised is negligible and should not be considered. Addi-
tionally, individual files do not link to each other, so matching
multiple encrypted chunks needed for successful decryption
is not computationally feasible.

85
80
75
2
- 70
m
i
=
o 65
L
=]
B0
55
50 T T T T T T
o 20000 40000 BO000 BOOOO 1o0oao
Size (Byte)

Figure 6: WebAssembly + Go implementation overhead measure-
ments over for files of different sizes compared to pure Rust imple-
mentation

Secondly, the security of smart contracts can be compro-
mised. If a malicious third party gains access to the ledger,
then all assets’ data (ID, Owner, CID) becomes available to
the attacker. A list of CID-s will allow the attacker to down-
load encrypted file chunks from the IPFS. Data integrity, in
this case, relies on the security of the self-encryption scheme.
In this case, the missing part for the decryption is the data
map, which was stored locally by the user who encrypted the
file. Without the original keys, such an attack on the self-
encryption scheme is computationally not feasible [5].

6 Responsible Research

Multiple research papers, journals, and online resources were
thoroughly analyzed. Every use of other authors’ materials
and resources is referenced and cited accordingly. All data
used for benchmarking the implementation was created by
the author of the paper. Benchmarking itself was also im-
plemented by the author. The source code used throughout
the research is open-source and cited accordingly. The im-
plementations of the smart contract, encryption library, and
the local application have been cited accordingly and can be
found in GitHub repositories.

7 Discussion

The results show high-security guarantees of the id-based
self-encryption scheme when used for encrypting data stored
on the Hyperledger Fabric blockchain, which allows using the
implemented prototype as a secure medium for saving and re-
trieving information from the ledger.

Additionally, the study demonstrates a relatively low over-
head and high performance of WebAssembly library integra-
tion with the Go code base compared to the pure Rust imple-
mentation. The relatively small overhead of WASM run time
creates possibilities for developers to use WASM integration
with Go and other languages that support Wasmer library as a
cross-platform solution that achieves high degrees of perfor-
mance while also being deterministic.

In future works, full Go implementation of self-encryption
should be compared with the design proposed in this paper.

It was also beyond the scope of this study to create a stan-
dardized benchmarking for WASM and Rust libraries. It can
be done using multiple sample programs that test specific
properties of the programming language (e.g., the efficacy of
memory allocation and deallocation) or very computationally
intensive programs [15]. The objective could be running a
containerized version of both libraries against a set of such
programs and analyzing the run time.

Moreover, the study can be expanded by analyzing and
comparing the CPU and memory load of WASM and Rust
libraries. Such benchmark could also be done using sample
programs mentioned in the previous paragraph.

8 Conclusion

In this study, a new approach to the storage of files on the
Hyperledger Fabric blockchain was presented. The demon-
strated approach allows for secure data storage in a decentral-
ized way, with the ability to preserve the original file owner-
ship and information about the person who encrypted it. The
ownership preservation allows to uniquely identify a user who
has encrypted data even outside of the blockchain context.
At the same time, self-encryption guarantees that file content
will not be known to malicious third parties. This approach
can be used for storing information on the Hyperledger Fab-
ric ledger in applications, where data security and integrity
are critical. Moreover, integrating a user’s identity into the
encrypted data makes it possible for this approach to be used
in systems where parties can not be fully trusted.

The prototype uses Rust implementation of id-based self-
encryption that is compiled to WebAssembly and invoked
from Go code with 55% overhead.

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” Dec 2008, accessed: 2015-07-01. [Online].
Available: https://bitcoin.org/bitcoin.pdf

[2] V. Buterin, “Ethereum: A next-generation smart
contract and decentralized application platform,” 2014,
accessed: 2016-08-22. [Online]. Available: https:
//github.com/ethereum/wiki/wiki/White-Paper

[3] C. Cachin, “Architecture of the hyperledger blockchain
fabric,” 2016, accessed: 2016-08-10. [Online].
Available: https://www.zurich.ibm.com/dccl/papers/
cachin_dccl.pdf

[4] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, “Smart
contract security: A software lifecycle perspective,’
IEEE Access, vol. 7, pp. 150 184-150202, 2019.

[5] D.Irvine, “Self encrypting data,” 2010.

[6] C. Park, “Using self-encryption to safeguard data secu-
rity in fabric’s smart contract,” 2022.

[71 K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun,
“Potential risks of hyperledger fabric smart contracts,”
in 2019 IEEE International Workshop on Blockchain

https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf

Oriented Software Engineering (IWBOSE). IEEE,
2019, pp. 1-10.

[8] A. Dabholkar and V. Saraswat, “Ripping the fabric: At-
tacks and mitigations on hyperledger fabric,” in Inter-
national Conference on Applications and Techniques in
Information Security. Springer, 2019, pp. 300-311.

[9] C. Stamatellis, P. Papadopoulos, N. Pitropakis, S. Kat-
sikas, and W. J. Buchanan, “A privacy-preserving
healthcare framework using hyperledger fabric,” Sen-
sors, vol. 20, no. 22, p. 6587, 2020.

[10] Y. Chen and W.-S. Ku, “Self-encryption scheme for data
security in mobile devices,” in 2009 6th IEEE Consumer
Communications and Networking Conference. 1EEE,
2009, pp. 1-5.

[11] M. R. D. Rahardjo and G. F. Shidik, “Design and im-
plementation of self encryption method on file security,”
in 2017 International Seminar on Application for Tech-

nology of Information and Communication (iSemantic).
IEEE, 2017, pp. 181-186.

[12] Maidsafe, “self_encryption,” https://github.com/
maidsafe/self_encryption, 2022.

[13] Hyperledger, “Using the fabric test network,”’
2020, accessed: 2022-03-19. [Online]. Avail-
able: https://hyperledger-fabric.readthedocs.io/en/
release-2.2/test_network.html

[14] F. Valsorda, “Rustgo: Calling rust from go with
near-zero overhead,” Feb 2019. [Online]. Available:
https://words.filippo.io/rustgo/

[15] I. Gouy, “Toy benchmark programs.” [On-
line]. Available: https://benchmarksgame-team.
pages.debian.net/benchmarksgame/
why-measure-toy-benchmark-programs.html

https://github.com/maidsafe/self_encryption
https://github.com/maidsafe/self_encryption
https://hyperledger-fabric.readthedocs.io/en/release-2.2/test_network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/test_network.html
https://words.filippo.io/rustgo/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/why-measure-toy-benchmark-programs.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/why-measure-toy-benchmark-programs.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/why-measure-toy-benchmark-programs.html

	Introduction
	State of the Art
	Methodology
	ID-based self-encryption
	Integrating identity into the encryption
	Connecting the encryption algorithm and the local application
	Calling WASM from Go using Wasmer
	Wrapper code for Wasmer calls

	Smart contract
	Design implementation
	Encryption
	Decryption

	Results
	Performance analysis
	Security analysis

	Responsible Research
	Discussion
	Conclusion

