
INTERPRETING INFORMATION OF DEEP NEURAL
NETWORKS FOR PROFILED SIDE CHANNEL

ANALYSIS

INTERPRETING INFORMATION OF DEEP NEURAL
NETWORKS FOR PROFILED SIDE CHANNEL

ANALYSIS

Thesis

To obtain the degree of Master of Science in Computer Science
at Delft Technical University,

under the supervision of Dr. S. Picek,
to defend publicly on Monday, 30 September, 2019 at 10 a.m.

by

Marius POP

Delft Technical Univeristy, Delft, The Netherlands,

Supervisor: Dr. S. Picek TU Delft
Thesis Committee: Dr. Z. Erkin TU Delft

Dr. E. Isufi TU Delft

Copyright © 2019 by Marius Pop

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

CONTENTS

Preface 4

1 Introduction 5
1.1 Motivation . 6
1.2 Objective . 6
1.3 Scientific Contribution . 6
1.4 Outline . 7

2 Background 8
2.1 Side Channel Analysis - Power Consumption 8
2.2 Machine Learning - Deep Learning . 8

2.2.1 Artificial Neural Networks . 9
2.2.2 Multi-Layer Perceptron . 11
2.2.3 Convolutional Neural Network. 11

2.3 Cryptography - AES . 12
2.3.1 Protected Implementations . 14

2.4 Side Channel Analysis utilizing Deep Learning 14
2.5 Information Theory - Mutual Information 16

3 Mutual Information Framework 19
3.1 Side Channel Analysis. 19

3.1.1 Model Selection . 19
3.1.2 Explainability . 20

3.2 Information Theory and Deep Learning 21
3.2.1 Mutual Information . 21
3.2.2 The Information Plane . 22

4 Methodology 24
4.1 Experimental Setup . 24

4.1.1 Datasets . 24
4.1.2 Dataset Acquisition Simulated AES 25
4.1.3 Dataset Acquisition Smart Card 26
4.1.4 ASCAD AES . 28

4.2 Experimental Process . 30

5 Experimental Validation 33
5.1 Simulated AES Results . 33

5.1.1 Deep Neural Network Architecture. 33
5.1.2 Information Plane . 36
5.1.3 Sensitivity to Model Architecture. 39

1

CONTENTS
0

2

5.1.4 Sensitivity to Training Set Size . 39
5.1.5 Sensitivity to Noise. 41
5.1.6 Generalization vs. Overfitting . 44

5.2 SmartCard AES Results . 45
5.2.1 Deep Neural Network Architecture. 46
5.2.2 Information Plane . 46
5.2.3 Implicit Feature Selection . 47
5.2.4 Sensitivity to Model Architecture. 49
5.2.5 Sensitivity to Training Set Size . 51
5.2.6 Sensitivity to Noise. 52
5.2.7 Generalization vs. Overfitting . 55

5.3 ASCAD Results . 56
5.3.1 Deep Neural Network Architecture. 56
5.3.2 Information Plane . 57
5.3.3 Sensitivity to Model Architecture. 61
5.3.4 Omitted Experiments . 67
5.3.5 Generalization vs. Overfitting . 67

5.4 Validation Summary . 68

6 Conclusion 71
6.0.1 Contributions . 73

Appendix A 74
References . 75

ABSTRACT

Security has become ever more important in today’s quickly growing digital world as the
number of digital assets has quickly grown. Our thesis focuses on devices that compute
a secure cryptographic operation such that information can be communicated or au-
thenticated. The attack vector utilized is known as Profiled Side-Channel Analysis (SCA)
which aims at extracting a cryptographic key from a device through unintended behavior
expressed through power monitoring or electromagnetic radiation. Profiled SCA attacks
assume the most powerful adversary and therefore allows us to make a sound security
assessment of a device in this setting. Our utilized profiling technique includes deep
neural networks such as the multi-layer perceptron and the convolutional neural net-
work. As this adds a layer of complexity to our assessment, we must understand how the
properties of the network consolidate our security assessment. Previous research has
shown that classical neural network metrics such as accuracy does not correlate to how
successful or efficient a side-channel analysis is, therefore, we have proposed a mutual
information metric. We measure mutual information across each layer in the neural net-
work such that the behavior of each layer in interpreting how each layer is benefiting our
classification. We investigate if the mutual information measure can be used to make a
beneficial architectural distinction of the neural network for our side-channel analysis
problem. Finally, we show there is a relationship between the mutual information and
the guessing entropy for our side-channel attack and that it can be used to confirm that
the chosen model is fully optimized for the side-channel problem.

3

PREFACE

This project took place, for the most part, at the premise of Riscure BV. in Delft, The
Netherlands. I would like to take the opportunity to convey my gratitude to everyone
who I have ever worked with. Firstly, I would like to thank my daily supervisor from
Riscure, Dr. I. Buhan for the continued support, research expertise, beneficial insights,
guidance and inspirations throughout the research thesis. I would like to thank Guil-
herme Perin for his instrumental guidance and technical direction during this project.
Your expertise was essential to my learning experience at Riscure. Thank you to the com-
pany’s lunch ladies for providing a great Dutch "second breakfast".

I would like to thank my parents for their continued support and upbringing. They
are the ones who taught me to never leave home without your sword - your intellect. I
would like to now show them my new sharper and wiser sword. Thank you to all the
support from my friends I have made while abroad. Thanks to Jeff, Daan, Valentina and
Rico for proofreading my work.

Lastly, the biggest thanks to supervisor Stjepan, for the guidance, inspiration and
setting the highest expectations for this work. Thank you for pushing me higher than I
could ever think of during this work and believing in me throughout.

Marius Pop
Delft, September 2019

4

1
INTRODUCTION

The use of deep neural networks in the field of side channel analysis has recently gained
traction among researchers for many applications. Although these methods have proved
successful in their research, the choice of the architecture for the attack has yet to be ex-
plained. We propose to utilize a measure of mutual information to gauge how much each
layer is aiding to the classification and train-ability of the deep network. The measure
can give us an insight to how the information contributes to the classification accuracy
propagating through the network, as well as how the network only regards samples that
contribute to classification in a side channel analysis setting.

Secure processing has become more and more apparent in the devices we use in our
day to day lives. These include devices such as bank smartcards, networking servers,
point-of-sale devices and even some personal computers (PCs). Since devices such as
these contain highly confidential or secret information, we want to ensure the secu-
rity of their computations and communications such as payment, access control, iden-
tification and many more. These devices, usually make up many Internet of Things
(IoT) hardware involving secure processes utilizing cryptographic algorithms such as the
widely adopted, advanced encryption standard (AES) used in our thesis. Due to the na-
ture of these devices, the mechanism of these devices are required to be both secure and
efficiently implemented to save on cost or increase speed (depending on function).

Attacks on the AES, recovering the cryptographic key, have yet to be computationally
feasible on a text-book [36] implementation. However, side channel analysis enables
us to utilize an unintended side effect of circuit design, such as power consumption or
electromagnetic radiation, and the communication sequence, such as the plaintext or
ciphertext, to disclose some information about the secret cryptographic key. This the-
sis outline how these type of devices are assessed against side channel attacks and how
these assessments can be improved and understood in a profiled setting utilizing deep
neural networks. We outline how we determine if the chosen deep neural network is
being utilized to its full potential during the side channel assessment.

Side channel analysis against cryptographic algorithms fall under two possible cat-
egories, non-profiled and profiled attacks, the difference being the capabilities of the

5

1.1. MOTIVATION

1

6

attacker. In a profiled setting the attacker is given the privilege to have labeled data to
be able to train a model. In this thesis, we focus on the profiled attacks such that a deep
neural network can be trained from the labeled data. Create a probabilistic model which
can further be applied to a target device for an attack on the same cryptographic algo-
rithm’s secret key.

1.1. MOTIVATION
Deep Neural Networks are known to produce some of the best results among machine
learning frameworks. However this method is notorious for being regarded as a black
box, as the inner workings of artificial neural networks are abstract and hard to under-
stand. Security assessment utilizing deep neural networks therefore becomes inexplica-
ble and hard to comprehend how the predictions are made. Without the ability to ex-
plain such assessments the methods to improve such devices also become bewildering.
As the final goal of such protections is clear, to stop protected information from leaking,
the method does not disclose how such information is gained. With better security as-
sessments of these devices, it will enable future devices and algorithms to be improved,
such that they become more resilient to side channel attacks.

1.2. OBJECTIVE
The goal of this study is to understand how the layers of the neural network contribute
to the attack vector during the side channel analysis. We want to produce a metric that
helps the security researcher fully employ the strengths of neural networks to the security
assessment of the device under attack. We look into the field on information theory
to provide an insight into the neural network’s inner workings to make better decisions
when choosing network parameters. We propose the following research questions:

1. Can a mutual information measure tell us how much information is needed to
correctly guess the correct byte of the cryptographic secret key?

2. Can a mutual information metric tell us how well generalized a neural network
model is for the profiled side channel analysis problem?

3. Can a mutual information metric tell us how to choose an effective neural net-
work architecture for the profiled side channel analysis problem? Or why do some
architectures work better than others?

4. Can a mutual information metric prevent us from undesired effects of machine
learning such as overfitting?

1.3. SCIENTIFIC CONTRIBUTION
Through this thesis, we explore the evolution of neural networks through the learning
phase when applied to a side channel analysis scenario. We aim to make such attacks
more effective and efficient by understanding how each layer of the network contributes
to the final prediction. We apply measures such as mutual information from informa-
tion theory to explain how the relevant data is processed in the network and when the

1.4. OUTLINE

1

7

network has reached its maximum potential when applying its classification predictions
for the security evaluation. At the moment of writing this thesis, the mutual information
measure of the neural network has never been applied to side channel analysis setting
to the best of our knowledge. Utilizing this new perspective of the deep neural network
we plan to:

1. Assess how well a model’s metrics translate to the side channel analysis attack suc-
cess;

2. Assess the information metrics to improve the deep neural network’s architecture
choices;

3. Determine if the amount of information available in the training traces is adequate
for building an adept model;

4. Determine how different models define the input data that is necessary to create
an accurate classification.

1.4. OUTLINE
We first introduce some background information about cryptography and machine learn-
ing. We further introduce how mutual information is measured in our network across the
layers.

Furthermore, we apply our methodology to a synthetic dataset based on the AES
intermediate values. We present our initial results for this dataset. We apply the same
methodology to a realistic measured dataset and how that our finding still holds for this
dataset. We then again apply our methodology to a standardized side channel analysis
dataset which contains a masking countermeasures and show that our findings still hold
for a more difficult implementation.

2
BACKGROUND

This section will outline the necessary tools and information needed in undertaking the
carried out research. This section will explain current techniques used in profiled side
channel analysis such as neural networks, cryptographic algorithms such as AES, and
the information theory measure of mutual information.

2.1. SIDE CHANNEL ANALYSIS - POWER CONSUMPTION
Power consumption of cryptographic devices such as microcontrollers, smart cards, and
FPGAs can be subject to side-channel attacks. Power consumption of these devices can
be classified in two ways: static and dynamic consumption. Static power consumption
refers to the power needed to keep the device operational and therefore is influenced
by circuit design and power required by transistors to preserve their states. Moreover,
dynamic power consumption refers to the increase in consumption when circuit logic
toggles from 0 to 1 or inversely. In the side channel analysis problems that we look at
in this research, we only consider the dynamic power consumption of the circuit, as it
depends on the operations and data flowing through the circuits. The static power con-
sumption is regarded as noise.

To successfully mount such attacks the adversary exploits the behavior described
above in the circuit design but therefore requires physical access to the target device.
Such attacks were initially outlined by Kocher[13]. The attack that will be outlined in this
paper will be mainly the profiled attack which makes some initial assumptions about
the adversary. Merely that the adversary can profile the characteristics of the current
consumption using an identical device, and the control of communication data channel.

2.2. MACHINE LEARNING - DEEP LEARNING
Although deep learning is not a new discovery in the field of machine learning, it has only
recently been utilized more by researchers in many different types of fields with promis-
ing results and potential. As announced in mainstream media, deep learning has been
utilized in the research of autonomous driving cars and image recognition. Through-

8

2.2. MACHINE LEARNING - DEEP LEARNING

2

9

out our thesis, we utilized similar techniques to evaluate security through profiled side
channel analysis. We start by describing specific deep learning methodologies used in
our study. Mainly, we focused our work on two different neural network families the
Multi-Layer Perceptron (MLP) and Convolutional Neural Network (CNN) for our classi-
fication tasks. We begin by giving a full description of these types of deep networks and
describe the perceived benefit of each.

2.2.1. ARTIFICIAL NEURAL NETWORKS
The deep neural network is based on a chain of artificial neurons. The name suggests
a brain-inspired system which abstracts a natural neuron to a computational model.
Neurons in artificial networks receive signals from formerly connected neurons which
are then multiplied by the weight depending on their importance. These neurons are
only activated when a strong enough signal is received and therefore an output signal is
sent when the threshold is surpassed by another function. A single neuron is depicted in
2.1

Figure 2.1: Artificial Neuron

Multiple artificial neurons are then organized in layers and feed their signals for-
ward to adjacent layers of artificial neurons, into what we call a artificial neural network
(ANNs) that feeds forward their signals without loops or cycles. For simplicity we refer
to a neuron ηi ∈ η by just the output it generates through an activation function α over
the input xi ∈ X multiplied by the connection weight ωi ∈ω and added to a bias b such
that each neuron in layer λi ∈λ such that:

ηλi =α(ηλi (x1 ·ω1)+ηλi (x2 ·ω2)+ . . .+ηλi (xn−1 ·ωn−1)+ηλi (xn ·ωn)+b)

Furthermore a layer can be defined as a collection of neurons such that they are con-
nected only to adjacent layers. ANNs only became widespread when a learning method
such as the backpropagation algorithm gave the ability of correcting errors over itera-
tions called epochs in a supervised setting.

A supervised setting defines examples of inputs and outputs we expect the network
to compute, over which the difference in results is called the network error. Backprop-
agation, therefore, reduces this error and learns the given training data by adjusting the
connection weights to all neurons in the network.

The first layer in the neural network is defined as the input layer. It only propagates
each feature individually from the input data and is represented by a neuron for each

2.2. MACHINE LEARNING - DEEP LEARNING

2

10

feature. Moreover, the final layer is referred to as the output layer where each layer rep-
resents a classification class and therefore performs the classification task. Any layer
between the input and output layers is referred to as hidden layers, which can take many
forms and will be discussed in the next subsections.

Such networks can become large with a high number of tune-able parameters that
can be used to induce the behavior that can contribute to increased accuracy. These ad-
justable parameters are referred to as hyper-parameters which include properties such
as network structure, training parameters such as learning rate, batch size, activation
functions. The hyper-parameters are chosen before the network begins to optimize the
bias and weight variables during the optimization phase.

The activation functions used in this thesis are Rectified Linear Unit (ReLu), Hyper-
bolic Tan (TanH) and Softmax. In general we utilized ReLu activation function across the
convolutional layers, TanH across the fully connected Layers and Softmax at the last out-
put layer in our DNN architecture. These activation functions are chosen based on early
experimentation which showed the highest accuracy metrics. These activation functions
α are non-linear functions defined by the following formulas:

α(x) = max(0, x) (2.1)

ReLu is defined in formula 2.1 which outputs 0 or the input if positive.

α(x) = (ex −e−x)

(ex +e−x)
(2.2)

TanH is defined in formula 2.2 which outputs on the continuous scale between [−1,1]
similar to the Sigmoid function.

α(xi) = exi∑k
j=1 ex j

for i = 1, . . . ,k (2.3)

Softmax defined in formula 2.3 which normalizes the outputs between (0,1) such that all
neuron outputs in the layer sum to 1.

These hyper-parameters are chosen before training and influence the learning and
structure of the neural network. Moreover, the network parameters such as the weights
and bias are randomly initialized for each neuron in the network and further updated
throughout the training phase. During this thesis, we control the hyper-parameters, but
allow the optimization algorithm to fully automate the parameter values.

TRAINING AND OPTIMIZATION

Some of the tune-able parameters of a neural network can be updated literately during
the training of the neural network through the use of the backpropagation algorithm.
Connection weights, bias and convolution filters can be adjusted at the end of each
epoch to optimize a chosen metric. This is usually done by minimizing a loss function
through the stochastic gradient descent.

Stochastic gradient descent (SGD) performs the optimization task by minimizing the
value of the gradients observed from the network based on our loss function. The loss
function utilized in our thesis is categorical cross-entropy (CE) which is often used in

2.2. MACHINE LEARNING - DEEP LEARNING

2

11

multi-class classification [19]. The labels are created such that only one element in the
labels is not 0 and therefore the loss is given by formula 2.4, where sp defines the score
of the correct class. Loss, therefore, optimizes the accuracy of the model.

C E =− log(
e sp∑C
j e s j

) (2.4)

Stochastic gradient descent can then be computed by computing the gradient at the
output neurons, backpropagating through the network by computing the derivative with
respect to sp and updating the weights according to the learning rate (LR). Choosing an
appropriate learning rate is required such that the optimization does not get stuck in
local minima or take to long to learn due to the LR being too small or does not converge
to a minimum due to the LR being too large [39].

A variant of SGD called Adam [12], which promises to be more efficient since it only
utilizes first-order derivatives of the gradients and adaptive learning rates, has been uti-
lized in this thesis. Adam is well suited for a side channel analysis problem due to its
robustness, ability to deal with high-dimensional parameter spaces, and the ability to
perform non-convex optimizations[12].

2.2.2. MULTI-LAYER PERCEPTRON
The feed-forward neural network is utilized in this thesis which entails all neurons only
pass their outputs to deeper neurons without loops or backward connections. The multi-
layer perceptron (MLP) entails a neural network that is comprised of fully-connected
dense layers that feeds-forward all outputs. Each neuron in every layer is connected to all
preceding and succeeding layers’ neurons. An MLP typically has at least 1 hidden layer
in addition to the input and output layers. This network utilizes the backpropagation
algorithm to train for the classification problem in a supervised setting.

Figure 2.2: Multi-layer perceptron neural network

2.2.3. CONVOLUTIONAL NEURAL NETWORK
Besides, the dense fully connected layers outlined above the use of convolutional layers
was also explored. A neural network that makes use of a convolution layer is referred
to as a convolutional neural network (CNN). Such a layer consists of filters which are
applied to a section of input data much like a sliding window. The input data is operated

2.3. CRYPTOGRAPHY - AES

2

12

on by chunks, equal to the filter size. The filter is moved across the entire input by a
specified step size until all data has undergone the transformation through the filter.

The inputs under the filter go through dot multiplication by the filter values and
added together to create one value. The filter is then moved and the calculation repeated
for the entire input. A bias is then added to the value and the activation function is ap-
plied to the resulting value. Convolution typically increases the dimensionality of the
input data. The filter values are updated through the training algorithm so that the con-
volution encompasses the suitable features for the classification task depending on the
optimization task.

Figure 2.3: Convolution Layer, filter being applied to subsection of input data

Additional to the convolution layer the pooling layer is utilized to both reduce the
dimensionality of our data and generalize the input data further. The pooling layer has
no trainable parameters but just applies a function to a section of the input data utilizing
a sliding window. The function we utilized in this thesis is the max pooling and average
pooling such that the largest value in the window is outputted and the average value
in the window is outputted respectively. The size and stride of the windows are chosen
before training begins. With a pooling size of 2 and stride of 2, the dimensionality of our
input data is reduced by half.

It is typical in a CNN that preceding some or a convolution layer(s) that a pooling
layer is applied. Since the convolution will increase or preserve the dimensionality, it
is reduced again utilizing the pooling layer. This is a way to encompass multiple fea-
tures or samples in a smaller dimension but preserve the information. These types of
layers have been made popular by image classification networks such as AlexNet[14] or
GoogLeNet[30].

2.3. CRYPTOGRAPHY - AES
Advanced Encryption Standard, better known as AES is a symmetric-key block cipher al-
gorithm that was approved by NIST in 2001 and has since become an industry-standard
[29]. AES operates on data block of 128 bits using cipher keys of 128, 192, and 256 bits.
Although it has become an industry standard, its implementations still possesses weak-

2.3. CRYPTOGRAPHY - AES

2

13

Figure 2.4: Pooling Layer, Outputs of average and max pooling respectively. Dimensionality was reduced from
4x4 to 2x2 utilizing a 2x2 pooling with stride 2

nesses such as the side channel attack studied in this paper.
In this thesis, we have focused on AES-128 which consists of 10 rounds of opera-

tion on one input block of 128bits. Each rounds consists of 2 linear permutations, Mix-
Columns(except last round), and ShiftRows and two non-linear substitution step called
SubBytes, and AddRoundKey. As a result of the non-linearity and dependencies on the
input data and the key, we focus on these non-linear operation which often leaks infor-
mation in the power measurements that could be utilized for a side channel analysis.

Figure 2.5: AES-128 algorithm

The substitution box output (Sbox Out) is often referred to as an intermediate value
in the AES algorithm. Additionally, in a side channel analysis, it is also frequently used
as the leakage value of the performed encryption process. The choice of leakage func-
tion is however dependent on the target device and implementation of the encryption
algorithm.

2.4. SIDE CHANNEL ANALYSIS UTILIZING DEEP LEARNING

2

14

Side channel analysis methods such as DPA[13] and CPA[2] have been used to ex-
amine AES implementations across diverse devices. DPA entails a visual inspection of
the measured trace, attempting to suggest specific operations or data dependencies that
can be seen graphically utilizing intermediate values expected in the AES algorithm. A
more powerful attack according to Briber et al.[2] the CPA utilizes a statistical relation-
ship between the measured traces and hypothetical intermediate values. It makes use of
the Pearson correlation 2.5 creating peaks in the correlation coefficient when a correct
intermediate is correlated to the measured trace. Utilizing this technique over multi-
ple traces results in an average higher correlation for the correct key guesses. Therefore,
this in itself can perform the side channel analysis but also depict wherein the measured
traces the points of interest lie.

Pear son(x, y) =
∑N

i=1((xi − x̄)(yi − ȳ))√∑N
i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

(2.5)

We made use the Pearson correlation to measure the known key correlation (KKC)
by utilizing the trace set and the correct AES intermediate value of the s-box output. By
using only the correct intermediate, the correlation coefficient will be highest (or lowest)
at the parts of the trace that express the first-order leakage. These points can be referred
to as the points of interest (POI) during the AES execution.

2.3.1. PROTECTED IMPLEMENTATIONS
The operations that occur throughout the AES encryption and decryption algorithm are
mostly linear operations with the exception of the S-Box. Therefore this operation be-
comes a perfect candidate for side channel analysis as wrong key guesses will result in
correlation coefficients which be distinguishable from the correct key guess. Therefore,
the S-Box can be protected by masking the operation so that the all key guesses again
become uncorrelated from the real key, including the correct key guess. This protec-
tion is better known as a countermeasure and is often used as a hardening technique
against side channel attacks. There are many proposed implementations of masking
countermeasures such as [1, 6], however, they are all designed to ultimately mask the
S-box operation.

Masked implementations are considered to be more secure against side channel anal-
ysis however they are still vulnerable to higher-order attacks which correlate multiple
power signals samples with the selected computation utilizing the sub-key byte or inter-
mediate value. These types of attacks are often referred to as high order attacks and deep
networks are known to be capable of engaging in such attacks [7].

2.4. SIDE CHANNEL ANALYSIS UTILIZING DEEP LEARNING
As the number of embedded devices has quickly grown, the necessity to protect the data
on these devices has gained attention, resulting in the necessity of equipping them with
cryptographic modules. Side channel analysis (SCA) has emerged as un unexpected be-
haviour of these devices attackers can exploit. Deep learning as only recently emerged as
a powerful machine learning tool attackers can utilize to carry out profiled deep learning

2.4. SIDE CHANNEL ANALYSIS UTILIZING DEEP LEARNING

2

15

SCA. In addition to other machine learning techniques such as Random Forest and Sup-
port Vector Machines [9] the neural networks ability to model complex functions and
perform classification tasks it has become widely used in the SCA community [11, 16,
22, 24, 27].

The novelty that came along with the use of neural network came from the reduc-
tion in the pre-processing steps required before the attack is carried out. Due to the
robustness of the neural networks the need to align the power traces due to clock jit-
ter, random delay countermeasures or desynchronization [3] is eliminated as the neural
network can handle these differences in the power traces internally. Usually, networks
make use of convolutions to overcome these differences in the input data. Additionally,
DNNs are also known to be able to circumvent other countermeasures such as masking
[15], due to the DNNs ability to aggregate multiple features.

DNNs typically consists of three parts in a side channel setting. Firstly a convolution
part which helps the network identify the most relevant features, a fully connected part
which aggregates these features and builds a probability density function (PDF) so that
the last part can perform a classification of the data [39]. The first part, however, may
be committed for attacks utilizing an MLP which may impact the networks ability to
perform the implicit feature selection. A common profile attacks against cryptographic
devices are the Template attack. They rely on the probability density function of the
data is a multivariate Gaussian distribution. However, the DNN is known to be at least as
powerful as other classical profiled attacks [39]. According to Picek et al [11] the VGG net-
work architecture introduced in [33] performs well in the classification task of side chan-
nel analysis. The VGG architecture is characterized by many small filter convolutional-
pooling layers followed by a small amount of large fully connected (FC) layers. We will
continue to use these types of networks in our thesis.

In order to attack an implementation of AES utilizing a DNN, some assumptions are
made about the device. A leakage function needs to be chosen for the device. In this
thesis, we will be looking at the power leakage of the device being assessed. Due to the
physical nature of the device, the leakage function problem is often reduced to a ham-
ming weight (HW) or hamming distance (HD) as it encompasses the number of bit flips
which correlates to the power consumption and allows us to translate the problem to a
machine learning classification problem. We can, therefore, utilize the DNN utilizing the
leakage function as the labels for our network, to perform the profiling task on one AES
key byte at a time.

We can utilize the HW of an AES intermediate state as our data labels (9 classes) and
perform the profiled SCA utilizing the DNN. This, however, creates imbalanced classes
which can affect our classification process [23] but this behavior encompasses the true
distribution of the physical behavior. The DNN attempts to maximize the accuracy of
the classification. However, this only tells us in which HW class the data belongs to and
is, therefore, not the exact data we need to uncover the AES key. This requires another
metric called guessing entropy (GE), which aggregates the HW class probabilities by enu-
merating through all possible AES keys and ranking each key’s ki ∈ K probability over a
large set of inputs xi ∈ X . This will finally uncover the best key guess we can make based
on the classification model. GE has become a standard metric [11] in SCA since it better
explains the success of our attack than accuracy. It encompass what is the best key guess

2.5. INFORMATION THEORY - MUTUAL INFORMATION

2

16

on average across the entire traceset based on our trained model.

Accur ac y = Number of True Preddictions

Total Number of Classifications

GE = for ki ∈ K
X∑
xi

p̂(xi)

Furthermore since a profiled setting utilizing neural networks does not require much
pre-processing, it also does not require selecting points of interest (PoIs), since the neu-
ral network can do that itself. According to Masure et al. [17] "[PoI] localization can be
deduced by simply looking at the gradient of the loss function with respect to the input
traces for a trained model". Therefore we can simply look at the input gradients of our
network model and identify which points form our input data has the highest impact on
our classification choices. In a side channel analysis setting, this essentially identifies
the points that the network found to express the most relevant leakage.

2.5. INFORMATION THEORY - MUTUAL INFORMATION
Information theory has been used in the field of security before, more specifically to
asses if a cryptosystem can be considered unbreakable due to an adversary not having
enough information. Information-theoretic security has been used to show if a cryp-
tosystem achieves perfect secrecy, which is determined by the amount of information a
ciphertext conveys about the content of the plaintext. In the case of perfect secrecy, it has
been proven by Shannon [31] that the key material needs to be as long as the plaintext
to achieve this property. Furthermore, this implies that the probability distribution of
any plaintext is completely independent of the ciphertext. The only cipher that is known
to achieve this is the one time pad [18]. As AES is not perfectly secret, it is still highly
difficult to base an attack of this sort without unlimited computing power.

Entropy was introduced by Shannon [31] as a measure of information. It measures
the rate at which information is produced when conducting a process such as encryption
or a communication channel. Using this measurement we can determine the amount of
uncertainty and choice in the cryptographic system. The formula for entropy is given by
2.6 2.7:

H(X) =−
n∑

i=1
p(xi)l og2p(xi) (2.6)

H(X |Y) =−
n∑

i=1
p(Xi)

[n∑
j=1

p(Y j |Xi) log2 p(Y j |Xi)

]
(2.7)

Given these formulas we have two special properties expressed by the information mea-
sure.

1. H = 0 when x is a constant. This is when we are completely certain of the outcome,
entropy is also void.

2. H is maximized when the probability associated with variable x is uniformly dis-
tributed and thus the information observed is equal to l og2(n). This is also the
context where we are most uncertain about the output.

2.5. INFORMATION THEORY - MUTUAL INFORMATION

2

17

In the setting of cryptography, we are more interested in the second property since
we expect the plaintext and key to be uniformly distributed; we expect entropy to be
maximized in the plaintext and key choices. This, therefore, elucidates that we have the
highest average uncertainty when guessing the key or plaintext as they are unknowns.
Entropy allows us to make a quantitative interpretation of the uncertainty.

With side channel analysis we can gain information from the power consumption
measurements about the key and therefore reduce this uncertainty. This relationship
can be interpreted as the mutual information between the key and the power consump-
tion measurements.

Mutual Information is a measurement of the shared information between two ran-
dom variables. This is a excellent measurement for side channel analysis since we are
trying to correlate the power consumption measurements to the cryptographic key. To
utilize this measure we need to further explore the join and conditional entropies of the
two random distributions. The conditional entropy H(X |Y) depicts the average uncer-
tainty about X after observing the second random variable Y. In our context, the mea-
sured traces and the intermediate HW values are our X and Y variables in this case, such
that we expect that the mutual information to be greater than 0. Figure 2.6 shows exactly
how the formula for Mutual Information I (X ;Y) can be derived 2.8 and 2.9.

Figure 2.6: Mutual Information relationship to Entropy

I (X ;Y) = H(X)+H(Y)−H(X ,Y) (2.8)

Or alternatively

I (X ;Y) = H(X)−H(X |Y)

I (X ;Y) =−
n∑

i=1
p(xi)log2p(xi)+

n∑
i=1

p(yi)

[n∑
j=1

p(x j |yi)log2p(x j |yi)

]
(2.9)

Given the formula mutual information also follows two special properties that will fur-
ther be utilized in the experimental section.

1. Mutual Information is symmetric.

I (X ;Y) = I (Y ; X)

2. Mutual Information is additive for independent variables and therefore follows the
Data Processing Inequality (DPI)[4], which states for any 3 variables that form a
Markov Chain X → Y → Z

I (X ;Y) ≥ I (X ; Z)

2.5. INFORMATION THEORY - MUTUAL INFORMATION

2

18

We want to compute this measure for DNN’s therefore we utilize the technique from
Tishby et al.[32], where we depict each layer Ti of the neural network as a single multi-
variate variable defined by the encoder, P (Ti |X) and decoder, P (Ŷ |Ti) and calculate the
mutual information between Ti and the output label Y, and the input data X and Ti .

3
MUTUAL INFORMATION

FRAMEWORK

This section outlines how the mutual information measure is applied to deep neural
networks and side channel analysis in our research.

3.1. SIDE CHANNEL ANALYSIS
In this thesis, we focused entirely on profiled side channel attacks since they estimate the
worst-case security risk. Such a setup considers the most powerful attacker and therefore
estimates a worst-case scenario attack of the proposed cryptographic implementation.

We are not only interested in predicting the labels but also the guessing entropy of
the AES key byte. Although accuracy is being optimized in our deep neural network, it is
not exactly what we are interested in, since it only reveals the HW class and does not nec-
essarily give us the information about the secret key we are attacking. Therefore a more
representative metric of a side channel attack is guessing entropy or success rate. By uti-
lizing the HW model this is a trade-off we make to reduce the complexity of our model.
However, this reduction of the byte representation comes at a cost, subsequent to model
training, of key enumeration. The idea that optimization metrics such as accuracy from
machine learning techniques do not represent a side channel analysis when using the
HW model has been explored by Picek et al. [24]. They argue that guessing entropy is
more representative. We, therefore, explore another metric for machine learning tech-
niques, mutual information, to see if it also representative or help explain the guessing
entropy metric.

3.1.1. MODEL SELECTION
A combination of the fields of cryptography and machine learning is utilized to perform
the SCA in this thesis. We have chosen to utilize a supervised machine learning tech-
nique using deep learning neural networks. Since side channel analysis can be described
as a general classification problem in the profiled setting, therefore deep neural networks

19

3.1. SIDE CHANNEL ANALYSIS

3

20

are a feasible tool to enable accurate approximation.
Experiments were carried out utilizing both MLP and CNN deep neural networks

since they have shown to perform well in previous studies [27]. Since we have used
different datasets, each one needed distinct DNN architecture and hyperparameters to
achieve the best classification accuracy. The DNN utilized in this study can be seen in ta-
ble 4.2. However, in the field of machine learning and optimization algorithms, the "No
free lunch theorem" [38] states that "without special consideration of the algorithm at
hand, simply observing how well that algorithm has done so far tells us nothing a priori
about how well it would do if we continue to use it on the same cost function" [38]. As
deep learning has done well so far in this field, the choice of the DNN architecture and
hyperparameters has rarely been motivated, rather chosen without explanation, based
on prior experience or based on testing accuracy in a black-box setting.

In a side channel analysis setting, we have some assumptions, outlined in section
2, where the model being used to represent the leakage function is the optimal model.
However, there has not been any way to determine the validity of this assumption in a
profile setting utilizing deep neural networks. The best metric we could currently use
in practice has been to compare it to other types of analysis such as template attack or
other machine learning techniques utilizing guessing entropy or success rate [25, 35]. As
we can’t make any correlation between how well a chosen model has performed and will
perform, we are forced to train and optimize the model thoroughly to find the model
with the best guessing entropy or success rate.

For this study, we propose a method introduced in the field of machine learning by
Tishby et al.[32] and apply it to the field of side channel analysis. The study showed that
DNNs with enough information follow a specific learning procedure consisting of two
phases, stochastic compression, and diffusion. To observe if this behavior is present in
the SCA setting, we experimented with different DNN architectures and hyperparame-
ters across different in domain datasets.

All DNN were trained utilizing hardware acceleration on an Nvidia GeForce GTX
1050, additionally, the mutual information calculation is an overhead calculation com-
puted at the end of any chosen epoch which was computed as a multi-threaded process
on 8 threads.

3.1.2. EXPLAINABILITY
Utilizing the technique from Tishby et al. [32] will allow us to have insight into the layers
of the DNN and allow us to better understand the propagation of information across the
network and final decision layer. We will be able to tell which layers preserve information
and which layers aid in the learning of the network in a side channel setting. We want to
determine how the number of neurons per layer and the number of layers benefits the
ability to precisely model a leakage function for datasets with varying levels of noise and
difficulties deriving from countermeasure techniques.

With a better understanding of which layers are beneficial to the leakage modeling
process, or the profiling phase, we can make better DNNs architectures for the given
side channel analysis task. The question about how important the tuning of the neural
network in side channel analysis has yet to be answered. Therefore this could potentially
help us create models which take advantage of the full potential of DNNs ability to model

3.2. INFORMATION THEORY AND DEEP LEARNING

3

21

complex functions, more efficiently employ computational resources and deliver more
thorough security evaluations of cryptographic devices.

3.2. INFORMATION THEORY AND DEEP LEARNING
Deep neural networks generate representations given an input pattern which enable
them to make good predictions about the output. They enable the precise estimation of
the unknown joint distributions of input and output data. Deep neural networks gener-
ate a Markov Chain between the hidden layers of the network, resulting from the hidden
layers creating a chain of transitions from one state to another. Since each layer can be
regarded as a state in the Markov Chain we expect that the information from one layer
is propagated to the next layer. To achieve this characterization using deep neural net-
works we represent each layer T in the network as a single variable characterized by its
encoder P(T|X) and decoder P(Y|T) distributions as in [32]. The encoder is part of the
network which takes an input sequence and maps it to a different representation, while
the decoder is another part of the network which takes an arbitrary sequence and maps
it to the output labels.

To do this estimation of the mutual information at each layer, we bin each layer’s out-
put activation function, in our case relu or tanh, into 30 equal intervals between -1 and 1.
This allows us to estimate the join distribution over the each equally likely input trace x ∈
X, P (Ti |X), since each measured trace is unique, and P (Y |Ti) = ∑

x P (x|Y)P (Ti |x) using
the Markov chain for each hidden layer[32].

3.2.1. MUTUAL INFORMATION
To understand how networks evolve from random initialization to optimized represen-
tations of leakage functions we measured the mutual information between each layer
and the input and with the labels at logarithmic scale epoch intervals. This measure
how much each layers contributes to the final classification or shows the incremental
transformation in information, affects adjacent layers in the network. More specifically
mutual information w.r.t the input I (X ;Ti) and output I (Ti ;Y) is utilized to investigate
each layer of the DNN as outlined in section 3.4.

I (Y ;Ti) = H(Y)−H(Y |Ti)

I (Y ;Ti) =−
n∑

j=1
p(Y j) log2 p(Y j)+

bi ns∑
k=1

p(Tik)

[n∑
l=1

p(Yl |Tik) log2 p(Yl |Tik)

]
(3.1)

I (Ti ; X) = H(Ti)−H(Ti |X)

I (Ti ; X) =−
bi ns∑
k=1

p(Tik) log2 p(Tik)+
n∑

j=1
p(X j)

[bi ns∑
l=1

p(Til |X j) log2 p(Til |X j)

]
(3.2)

As we can see in the two formulas the encoder and decoder distributions are necessary to
calculate the mutual information at each layer. Since we are binning the layer activation
outputs, this is an estimation of a continuous distribution as we do not know the true
distribution.

According to the DPI property, information can not increase as it propagates through
the layers of the network. All information is available in the first layer. Due to random

3.2. INFORMATION THEORY AND DEEP LEARNING

3

22

initialization of the neural networks, the layers are expected to quickly lose information
the deeper they are in the architecture as the network does not yet have the ability to
process this information. However, the back-propagation algorithm which is essential
in training the neural networks through stochastic gradient descent (SGD) optimization,
allows the network to more effectively propagate the information that is required by the
classification process. The measure of mutual information will be used to see how ef-
fectively the DNN’s back-propagation algorithm can identify the relevant information at
each layer of the NN and how this information aids in making the classification deci-
sions.

In a side channel analysis setting little information regarding the leakage exist in each
trace initially. Therefore, even when maximizing mutual information, may not result in a
high accuracy across the network, but shows that the network is maximizing all available
information. The probabilities utilized in the mutual information measure, mainly the
decoder, depicts which samples in each measured trace are correlated to leakages, and
are therefore useful in calculating the leakage function; and the encoder, depicts the
smallest number of binary questions which can be used to classify the inputs.

Considering DNNs are initialized randomly, it is highly probable that multiple opti-
mized generalizations can exist for the same problem. This, however, does not affect our
mutual information measures since we are representing a layer by only the encode and
decoder distributions which are not affected by an individual neuron but rather the ag-
gregation of an entire layer [32]. Additionally, we measure the mutual information across
5 recurrences of training for each experimental architecture and hyper-parameter choice
to create a generalization of the measure. An aggregation was utilized for the sole pur-
pose of making a good compromise between run-time and precise representation of the
mutual information metric.

3.2.2. THE INFORMATION PLANE
The mutual information was calculated at each layer according to the DPI property as
follows:

IY
∼= I (X ;Y) ≥ I (T1;Y) ≥ I (T2;Y) ≥ . . . ≥ I (Tk ;Y) ≥ I (Ŷ ;Y) (3.3)

and
IX

∼= H(X) ≥ I (X ;T1) ≥ I (X ;T2) ≥ . . . ≥ I (X ;Tk) ≥ I (X ; Ŷ) (3.4)

Each term in the inequality above is plotted in what is called the DNN’s information
plane [32], such that the terms of inequality 3.3 is plotted on the Y-axis and the terms of
inequality 3.4 are plotted on the X-axis. Additionally, we depict the function at logarith-
mic scale epoch intervals and represent it as different colors. This, therefore, represents
where each layer of the chosen DNN architecture sits in the information plane.

In a side channel analysis setting, where information in the traces about the key byte
we attempt to attack is not initially high in most cases, as this is the main motivator
to why many traces are needed for such an analysis; The chosen model must optimize
any of the available information for both a successful attack and an effective security
evaluation. We will be able to evaluate architectures and hyper-parameters that make
this optimization possible due to the ability to inspect how individual layers favor the
analysis. The information plain effectively shows how each layer in the DNN aids to the

3.2. INFORMATION THEORY AND DEEP LEARNING

3

23

classification of the data and optimization of the leakage function. According to Tishby
et al. [32] an optimized network maximizes IY and minimizes IX such that, IY grows
due to stochastic optimization and the empirical error decreasing and IX decreases due
to layers losing irrelevant information and the compression of data until convergence.

Furthermore, we want to investigate how the amount of information from the traces
affects the DNN’s ability to effectively model a leakage function. We look to answer how
noise affects the choice of architecture and hyper-parameters of the neural network, or
whether noise can only be overcome by measuring more traces to make them available
for training the DNN. Under added noise or masking we can observe what benefits of
adding hidden layers or increasing layer widths, contribute in a side channel analysis
setting. If layers still propagate information such that IY is increasing there are still ben-
efits to adding additional layers in a noisy environment.

The information plane allows us to see how early in the training phase a network
becomes optimized or under/over-trained by seeing which layers reach their maximum
information bottleneck and which don’t. As DNNs are known to utilize hardware ex-
tensively, this method allows us to visualize if there are any benefits to be gained from
consuming these resources for longer to optimize the chosen DNNs.

To investigate how the mutual information measures translate to a side channel anal-
ysis measure we use guessing entropy in parallel to IY and correlation of input gradient
to known key correlation in parallel to IX to observe if these measures are consistent. We
expect as the output layer’s mutual information about the labels to increase as the guess-
ing entropy and empirical error reduces. Additionally, as the mutual information about
the input decreases in the output layer, the correlation between the input gradients and
the known key correlation is expected to increase. Both of these metrics relate the mu-
tual information measure to quantities more representative of a side channel analysis
problem.

4
METHODOLOGY

This section outlines how datasets were acquired to carry out the side channel study, as
well as what experiments were carried out to test our hypothesis.

4.1. EXPERIMENTAL SETUP

4.1.1. DATASETS
The experiments in this study utilized power consumption measurements referred to
as traces, measured by an oscilloscope, of the cryptographic engines or general-purpose
processor depending on the device architecture and cryptographic implementation. The
exact measurement setup for each implementation will be discussed below indepen-
dently. Generally, the setup included an oscilloscope connected to the VCC or VDD ter-
minals of the computational core across a resistor. The power consumption is measured
in different versions of AES-128. The traces were exported to a computer where they were
pre-processed utilizing ©Riscure’s proprietary software called Inspector. The number of
traces collected varied per implementation, generally, the more protected implementa-
tions required more traces to mount the proposed attack. Acquisition of the traces is
started by utilizing a trigger, which sets a general-purpose pin high at the exact moment
the encryption operation begins in the target device 4.1.

TRAINING AND VALIDATION SETS

One of the most important stages in a side channel analysis is the acquisition phase.
Having traces that accurately represent the device’s security computation is essential
for an effective security assessment. Additionally, machine learning algorithms such as
DNN can be highly affected by the type and amount of data they receive as input. Some
problems have been outlined by researchers such as overfitting [8] and class imbalance
[24] that are also apparent in a side channel analysis problem. Since class imbalance
is naturally occurring in the device we should not remove this attribute of the dataset.
However, overfitting has been addressed by many methods in DNNs, such as dropout
and regularizes [34]. Overfitting in a side channel analysis setting causes the illusion of

24

4.1. EXPERIMENTAL SETUP

4

25

Figure 4.1: Acquisition Setup

a good model but does not offer any practical quality estimation of the security of the
system or the attack’s success. To address this issue at a higher level and reduce the pos-
sibility of overfitting, we built the training set such that each trace was collected using a
random key and random plaintext (RKRP) and only used a unique static key (SKRP) in
the validation set.

This setup allows us to more closely imitate a multiple device model where the issue
of portability is addressed in a side channel setting. Using random keys in training en-
sures we don’t allow our model to overfit the correct key. This dataset model does not,
however, explore the different behavior observed in power measurements across multi-
ple devices and remains to be explored in further studies.

4.1.2. DATASET ACQUISITION SIMULATED AES
To firstly explore a simple dataset where HW values of AES-128 are feature samples part
of the traces. The simulated traces contain the hamming weight of the S-box output
state of each byte in the first round, preceded and succeed by 100 discrete uniform ran-
dom samples between 0 and 8 4.1. The samples of interest lie at indexes 100-115 and are
identical to the labels which will be used later in training. There are 100,000 traces avail-
able in both training and validation sets which have been generated through Riscure’s
Inspector.

r ∈W9{0 . . .8}

b ∈ AES state after S-box Round 1

t = r0 . . .r99 HW (b0) . . . HW (b15) r100 . . .r199

(4.1)

The proof of concept aimed at investigating if the information plain findings outlined
by Tishby et al. [32] held valid in a side channel analysis attack and if the finding were

4.1. EXPERIMENTAL SETUP

4

26

reproducible with our dataset. This would allow us to investigate if DNN can learn leak-
age functions in the same way they DNNs are used in image recognition or other general
applications of DNNs.

Figure 4.2: AES Simulated Trace - All S-Box Outs

MODEL OUTLINE

The analysis performed on this dataset was conducted in a profiled setting utilizing both
MLP and CNN deep neural network architectures. This is the simplest dataset in our
study, as the label resides in one of the columns of the input data, therefore the smallest
network base architecture was chosen to carry out our analysis. Additionally, the hyper-
parameter search was minimal for the same reasons. Moreover, we also correlated the
known intermediates with each trace to create a known key correlation figure 4.3, which
reinforced our assumption of the leakage function. The results of this plot proved that
only one sample was highly correlated to our labels.

Figure 4.3: AES Simulated Trace - Known Key Correlation S-Box Out Byte 3

A base training model was chosen for each DNN type. As stated earlier, this dataset
did not require any complex functions to be modeled as the labels exist as a feature in
the input. Therefore, the base MLP included an input layer (216), 2 fully connected dense
layers with 32 and 16 neurons wide respectively, and 1 fully connected softmax layer with
9 neurons (representing each hamming weight class). The CNN model was similar with
the addition of a convolutional layer with 16 filters and size 3 and a max-pooling layer
with size 2 and stride 2 between the input and dense layers. Summary of the networks
used in the experiments can be seen in table 4.2.

4.1.3. DATASET ACQUISITION SMART CARD
The smart card dataset was acquired from a Riscure training academy smart-card based
on a ATMega 163 IC in a smartcard form factor implementing an unmasked software
AES-128 FIPS 197 standard; 8-bit implementation. The measurements were taken us-
ing a PicoScope 5000 at 500 mega samples per second (MS/s) and 100mV of range, with
each trace containing 31,000 samples. The smart card included no data countermea-
sures and only incorporated a software random delay also known as a jitter that was cor-
rected through a post-acquisition alignment. Since the algorithm is software-based we
were able to analyze the traces collected and determine the operations by visual inspec-

4.1. EXPERIMENTAL SETUP

4

27

(a) Simulated AES MLP Base Network

(b) Simulated AES CNN Base Network

Figure 4.4: Simulated Networks

Activations: R:ReLu T:TanH S:Softmax

tion and calculating intermediate value correlation. Therefore the final traceset used for
the attack included only the first round until the first s-box output.

As this was a measured power consumption from a physical device, this dataset con-
tained a more natural sample pattern which added a higher difficulty of analysis. The
measurements contain the power consumption of the AES operations, along with mea-
surement error from the tooling and static consumption of the smart card itself. There
are 100,000 and 50,000 traces available for training and testing sets respectively. Pre-
processing included a window re-sample to reduce the number of features and align-
ment to eliminate the jitter miss-alignment issues. Utilizing a known key correlation
measure 4.7 we can see that multiple samples correlate to the AES intermediate we are
attacking. Therefore, a much more complex leakage function needed to be modeled us-

(a) Single SmartCard Trace

(b) 3 SmartCard Traces Overlapped

Figure 4.5: Raw AES SmartCard Traces

4.1. EXPERIMENTAL SETUP

4

28

(a) Single SmartCard Trace Re-sampled

(b) 3 SmartCard Traces After Re-sample and Alignment

Figure 4.6: Pre-Processed AES SmartCard Traces

ing an appropriate neural network. The points of interest highly depend on the target
byte being attacked. For byte 3 the points of interest lie between samples 530 - 830 seen
in 4.3.

Figure 4.7: SmartCard AES Trace - Known Key Correlation S-Box Out Byte 3

MODEL OUTLINE

The base DNN model for this dataset included more layers as this was a measured dataset
and a statistical model needed to be built to identify the leaking samples. As shown in fig-
ure 4.7, this implementation has a considerably large amount of leakage in the S-Box out
HW model, therefore, we started experimenting with a shallow and narrow network ini-
tially. The architecture’s chosen complexity addressed a trade-off between runtime and
size of the network. The base MLP architecture included 1654 node input layer, 3 fully
connected dense layers of 128, 64, and 32 neurons respectively, and a fully connected
softmax layer with 9 neurons (representing each hamming weight class). The CNN base
model added 2 convolutional layers of size 3 with 32 and 16 filters respectively followed
by 1 pooling layer with stride 2 and size 2, between the input layer and the dense layers.
Summary of the networks used in the experiments can be seen in table 4.2.

4.1.4. ASCAD AES
This dataset is acquired by ANSII and CEA under the REASSURE project and has be-
come a standardized dataset in the side channel analysis community. This is a masked
implementation of AES-128 with varying levels of desynchronization. However, it should
be noted at the time of carrying out our experiments, the secret key is used for the en-
cryption process was identical in the profiling and attacking data tracesets. This dataset
does not add to our portability and generalization characteristics for our tests but con-
tributes to the explainability of the deep network utilized for the experiment. We utilize
this dataset to compare to the originally reported results and use the proposed metric

4.1. EXPERIMENTAL SETUP

4

29

(a) SmartCardAES MLP Base Network

(b) SmartCardAES CNN Base Network

Figure 4.8: SmartCardAES Networks

Activations R:ReLu T:TanH S:Softmax

(a) Single ASCAD Trace

(b) Overlapped ASCAD Traces

Figure 4.9: ASCAD 0 De-synchronization Traces

to understand the inner workings of the utilized deep network architecture, including a
proposed improvement of the architecture.

This dataset did not undergo any pre-processing steps so that the experiments per-
formed could be closely compared to existing side channel analysis results. Therefore
the raw traces were used as input to our neural network. This dataset included the least
amount of traces which contributed as a large challenge with only 60,000 traces in to-
tal. Granted it did not incorporate the RKRP characteristic for the training set, due to
the traceset being a standardized dataset from ANSII. Therefore the entire dataset uti-
lized a uniform secret key, however, masked, for both the trainset and validation set. For
our experiments, we only utilized the 0 de-synchronization dataset. However, it prevails
as more difficult than the previous datasets used due to the masking of the key and the
small amount of traces available.

4.2. EXPERIMENTAL PROCESS

4

30

Figure 4.10: ASCAD Trace - High Order Known Key Correlation Masked S-Box Out Byte 3 and Mask

MODEL OUTLINE

The utilized base neural network architectures were taken from the original research [27]
to first investigate how well we can reproduce their reported results. We made a small
modification to the dataset. The labels were converted to use the HW leakage model
instead of the byte ID. Therefore the output softmax layers of the ml pbest and cnnbest

architecture were modified so that it only contains 9 neurons to represent the nine pos-
sible HW values. This modification was done so that our results are consistent in using
the same leakage model across all datasets. The MLP model included 6 dense fully con-
nected layers of 200 neurons. The CNN included 5 convolutional layers with 64, 128,
256, 512, and 512 filters respectively, each followed by their own max-pooling of size 2,
followed by two fully connected dense layers of 4096 neurons. Summary of the networks
used in the experiments can be seen in table 4.2.

(a) ASCAD MLP Best Network

(b) ASCAD CNN Best Network

Figure 4.11: ASCAD Best Networks

Activations: R:ReLu T:TanH S:Softmax

4.2. EXPERIMENTAL PROCESS
Experiments were carried out by first training the base model, performing the mutual in-
formation calculation and guessing entropy metric at logarithmic scale epoch intervals.
All calculations reported in this thesis were performed using only the attack set, while

4.2. EXPERIMENTAL PROCESS

4

31

the training set was used solely for training the neural network.
We performed 5 different types of tests utilizing each dataset:

1. Increasing or reducing the number of layers in the neural network

2. Increasing or reducing the width of the layers in the neural network

3. Reducing the size of the training set size (number of traces)

4. Adjusting Hyper-parameters such as batch size, convolution kernel size, or pool-
ing window size, etc.

5. Adding random Gaussian noise to the training data synthetically

After each test, we investigate the information plane to consider what influence, if
any, it had on the neural network’s ability to produce favorable side channel analysis
results. We also considered the benefits against the runtime of the training procedure.
Increasing the width and number of layers in the DNN will allow the network more flexi-
bility to the type of complex functions, such as the leakage function, it can model [28, 37].
Reducing the size of the training set and adding random Gaussian noise investigates how
flexible the neural network is to perturbations [11]. Previous research [11], outlined that
noise allows the network to generalize beter as it acts as a natural regularizer, we want
to reproduce the results and investigate how the layers behave in regards to the infor-
mation plane. Adjusting the hyper-parameters allows us to investigate how important
tuning is in a side channel analysis setting. The resulting differences can be observed
in the information plane as to which layers are propagating in the plain in the favorable
direction outline by Tishby et al.[32] and reinforced with metrics such as accuracy and
guessing entropy.

To investigate how the information plane metrics relate to side channel analysis met-
rics we utilized the metrics of guessing entropy and input gradient to KKC correlation. As
the final decision in the neural network is taken in the final layer, the guessing entropy
should be highly related to the amount of information about the output of IY . Addition-
ally, the information about the input IX is expected to reduce as the points of interest
are identified and compressed, which results in increasing the input gradient to the KKC
correlation. If these metrics do not show the expected behavior it becomes evident that
the neural network did not perform a successful side channel attack, but may also hold
information as to how we could modify the neural network so that more favorable re-
sults could be obtained. Modifying the neural network in one of the 5 ways listed above
may be enough to produce a large enough difference in the model’s ability to preserve
the correct information and transform the data to the appropriate classification.

4
.2

.E
X

P
E

R
IM

E
N

T
A

L
P

R
O

C
E

S
S

4

32

Dataset Summary

Dataset Cipher
Measurement

Countermeasure Pre - Processing
Trace Properties

Oscilloscope Sample Rate (MS/s) Range (mV) Number of Features Number of Profiling Traces Number of Attack Traces
Simulated AES - 128 N/A None N/A 216 100,000 100,000
SmartCard AES AES - 128 PicoScope 5000 500 100 None Resample + Allignment 1654 100,000 50,000
ASCAD AES AES - 128 EM Measurement 2000 N/A First Order Masking N/A 700 50,000 10,000

Table 4.1: Dataset Characteristics

Base Model Summary
Convolution Pooling Fully-Connected Training

Datasets Size Padding Channels Type Size Units Activation Batch Size Learning Rate

Simulated 32, 16 TanH 521 0.0004
3 Same 16 Average 2 32, 16 TanH 521 0.0004

SmartCard AES 128, 63, 32 TanH 521 0.0004
3 Same 16, 32 Average 2 128, 63, 32 TanH 521 0.0004

ASCAD 200,200,200,200,200,200 TanH 521 0.0004
3 Same 64, 128, 256, 512 Average 2 4096, 4096 TanH 521 0.0004

Table 4.2: Base Models

5
EXPERIMENTAL VALIDATION

Results will be presented iterative through each dataset. We outline our findings and
present how mutual information contributes to improving profiled deep learning side
channel security analysis.

5.1. SIMULATED AES RESULTS

5.1.1. DEEP NEURAL NETWORK ARCHITECTURE

MLP
The chosen base models already show positive results in terms of both classical machine
learning metrics and side channel metrics. The small and shallow architecture performs
well in this side channel scenario as both training and validation accuracy increase to-
gether with minimal overfitting. Additionally, the mutual information measure starts
quite high in both measures, IX and IY across all layers of the DNN. From the two hid-
den layers of width 32 and 16, only the latter can be seen moving along the information
plane and aiding the output layer in the later phase of training.

We can see from the accuracy and loss metric 5.1 that this DNN is highly successful
at making precise and consistent classification eventually reaching close to 100% accu-
racy and 0 loss on both training and validation data sets. In side channel analysis such
high accuracy is not necessarily required to have a successful attack but will significantly
reduce the number of attack traces needed. We therefore achieve a successful attack on
this dataset with as little as 1 trace 5.2.

We reported guessing entropy by utilizing the validation traces as the attack set and
computing the guessing entropy throughout the training. This shows us exactly how
the model evolves with respect to a side channel metric rather than a classical machine
learning metric. This metric can also show how early in training we have successful at-
tacks and at what point the most efficient attack lies. We classify a successful attack when
the guessing entropy of the correct key is 0, meaning that the best key guess we can make
is the correct key.

33

5.1. SIMULATED AES RESULTS

5

34

(a) Simulated Dataset Base MLP Model Accuracy (b) Simulated Dataset Base MLP Model Loss

(c) Simulated Dataset Base MLP Model Mutual Information Measure

Figure 5.1: Simulated AES dataset Base Model Results

We can see that in this dataset we performed a successful attack after just 2 epochs
utilizing about 150 traces out of our 1000 attack trace set 5.2. However, the most success-
ful attacks, which utilized the least amount of traces, occurred after epoch 10. To give us
the best chance at a successful attack with the current architecture and hyperparameters
we should, therefore, stop training after 10 epochs.

CNN
The base CNN network also shows high performance in terms of the metrics however it
did not perform as well as the MLP in terms of classification accuracy or GE. The model,
however, is still good enough to perform a side channel attack on key byte 3 with a low
amount of attack traces. Utilizing the base architecture we reach a validation accuracy
of about 50% however the training accuracy is above 80% 5.3. This metric tells us that
the model is overfitting the training data, this behavior is considered to be undesired in

5.1. SIMULATED AES RESULTS

5

35

Figure 5.2: Simulated Dataset Base MLP Model - Number of traces needed to reach a guessing entropy of 0
computed throughout training utilizing the validation set

machine learning models. Typically this can be avoided by utilizing regularization deep
learning techniques such as batch normalization [10], dropout or regularization (L1/L2)
[20, 34], or early stopping[26]. Since we wanted to explore the effect of overfitting in the
side channel analysis setting we did not employ these techniques and are recommended
for further works.

We believe the CNN model has lower accuracy than the MLP since the convolution
combines multiple samples however the points of interest in this dataset reside in only
one feature. Due to the setup of our dataset, an MLP is expected to perform better. This
can be seen in the Input gradient correlation to the known key correlation plot 5.4. We
can see that the MLP model achieves perfect correlation between the input gradients and
the KCC while the CNN get very close but varies throughout training as the convolution
filters and neuron weights are adjusted.

The side channel attack on byte 3 was also successful utilizing the base CNN architec-
ture with GE reaching 0 after about 20 epochs however the most effective attacks where
the least amount of attack traces are needed is reached after epoch 50. We then label
epochs 0 to 20 as the learning phase of the network, epochs 20 to the end of training the
generalization phase. We do not consider this network to be overfitting in terms of side
channel analysis since the number of traces needed to reach a guessing entropy of 0 does
not degrade as seen in figure 5.5. We can, therefore, stop training around epoch 50 as the
model no longer develops after this point.

5.1. SIMULATED AES RESULTS

5

36

(a) Simulated Dataset Base CNN Model Accuracy (b) Simulated Dataset Base CNN Model Loss

(c) Simulated Dataset Base CNN Model Mutual Information Measure

Figure 5.3: Simulated AES dataset Base CNN Model Results

5.1.2. INFORMATION PLANE
Calculating mutual information across the layers of a DNN has not been done in a side
channel analysis setting to the best of our knowledge. We, therefore, wanted to com-
pare initial results in this thesis to the findings of Tishbi et al.[32]. We, however, do not
witness the deeper layers losing relevant information until the last layer 5.1c. The out-
put layer then starts by gaining information about the output very quickly, furthermore,
the layer loses information in the later phases of training about the input as outlined in
the original study. We can, therefore, say that the two-phases witnessed in the original
study, mainly stochastic drift and relaxation are also apparent in a side channel analysis
setting.

In the case of the base MLP architecture mutual information regarding the output
labels IY remains high at the beginning of training, quickly rises to nearly the maximum

5.1. SIMULATED AES RESULTS

5

37

(a) Simulated Dataset Base MLP Model Pearson Correlation
between the KCC and the Input Gradients

(b) Simulated Dataset Base CNN Model Pearson Correlation
between the KCC and the Input Gradients

Figure 5.4: Simulated AES dataset Base

Figure 5.5: Simulated Dataset Base CNN Model - Number of traces needed to reach a guessing entropy of 0
computed throughout training utilizing the validation set

in the first 20 epochs after which the network is optimized such that input information
is understood by the network and therefore the network starts decreasing mutual in-
formation about the input IX so that only the necessary information is utilized. The last
hidden layer also starts decreasing the mutual information regarding the input IX begin-
ning epoch 30 which accelerates the information gain in the output layer. It is possible
that the shallow layers only generalize or prepare the data while the deeper layers are
specialized and participate in the classification process. This hypothesis can be tested

5.1. SIMULATED AES RESULTS

5

38

by changing the architecture of our network, which is discussed in a later section.
Furthermore, the base CNN architecture followed the same pattern. Only the output

layer of the network lost information at the random initialization of the network parame-
ters. The CNN network quickly gained information in both IX and IY in the early epochs,
where IY peaks around epoch 45. The networks diffusion appears to occur at this point
while IX decreases which also causes a slight decrease in IY as a side effect.

(a) Simulated Dataset Base MLP Model - IY mutual informa-
tion in the output layer

(b) Simulated Dataset Base CNN Model - IY mutual informa-
tion in the output layer

Figure 5.6

We investigate how the information plane translates to side channel analysis by plot-
ting the rank of the correct key, assessed after utilizing 1000 attack traces, to the amount
of mutual information IY in the output layer 5.7. This tells us how much information is
needed to have an optimal result, or how much information is needed for a successful
attack. We can see in the case of MLP any IY above 2.2 will result in rank 0 for the correct
key, while in the CNN any IY above 1.0 will also result in rank 0 for the correct key. It is
important to see that the rank consistently stays at 0 through the rest of training.

(a) Simulated AES MLP base model (b) Simulated AES CNN base model

Figure 5.7: Relationship between IY and Rank for the SmartCard Dataset

5.1. SIMULATED AES RESULTS

5

39

5.1.3. SENSITIVITY TO MODEL ARCHITECTURE
We investigated how important it was to choose a model that can be optimized for the
side channel analysis problem. We carried out experiments by changing the number of
layers, by either removing or adding a layer to the base model. Additionally, we experi-
mented with increasing or decreasing the width of layers. We have made these changes
without changing other parameters so that we can be sure that the changes in the be-
havior of the model are a result of the architectural changes.

Adding a larger 64 neuron wide layer at the beginning the network does not seem to
make any differences in the results of our experiments using this dataset. We still witness
only the last two layers of our network traversing through the information plane. This,
however, adds tune-able parameters to our network, we can, therefore, expect that the
network may need more epochs or a higher learning rate to achieve the same measures.
The slight differences we see in both accuracy and the information plane do not make
much of a difference when considering the side channel analysis metrics.

For the MLP slight overfitting can be seen in the accuracy metric 5.8a, however, the
accuracy is already high enough for a successful side channel attack such that the rank
of the correct key is unaffected5.8c. Mutual information in IY is unaffected by the extra
layer of the DNN utilizing this dataset.

Changing the number of dense layers in a CNN had a large impact on the accuracy of
the model. By removing a dense layer from our model we were able to increase accuracy
and reduce overfitting according to accuracy 5.9a. However, the amount of information
available at the output layer stayed the same, while the number of validation traces to
reach a GE of 0 was relatively unaffected at the end of the training. It did, however, take
less training epochs to reach this point 5.9c.

Since we only witness two of the layers moving through the information plane in the
base models, meaning only two of the layers are specialized in transforming the input
data to the classification decision, we expect that a network with only one dense hidden
layer and output layer should be able to perform with similar performance as our base
model. Our results show that even a one hidden layer network is able to extract the cor-
rect key byte with very similar results to the base dataset for both MLP and CNN models
with only one dense hidden layer with width 16 seen in 5.8 and 5.9 respectively.

A sufficiently wide neural network with just a single hidden layer can approximate
any (reasonable) function has been proposed in previous research [5]. Therefore, smaller
networks should be able to model the same leakage function with a similar performance
given our large training set. This hypothesis is further addressed in later datasets. We
wish to utilize the data plane to determine how many layers are beneficial to the net-
work’s ability to gain information in IY quicker and more accurately or if a side channel
leakage function is better model utilizing a wide hidden layer.

5.1.4. SENSITIVITY TO TRAINING SET SIZE
Using less training data has a large effect on our networks ability to learn and model
the leakage function. In this situation, we halved the training dataset such that only
5000 traces were using in the training phase. Limiting the training data intensifies the
necessity of an optimal network to model the leakage function. Utilizing less training
information causes our mutual information to suffer as a sound generalization can not

5.1. SIMULATED AES RESULTS

5

40

(a) Model accuracy (b) Information plane

(c) Attack efficiency

Figure 5.8: MLP Deep Neural Network Utilizing a Single Hidden Dense Layer - 16

be made with little data about the target. This can be seen when mutual information is
decreasing instead of increasing in the generalization phase5.10b. Additionally, mutual
information IY never reaches as high values in the output layers as seen in the previous
cases in both MLP and CNN architectures 5.10b 5.1c 5.11b 5.3c. We can see that com-
parable side channel attack metrics are reached latter in the training phase of the DNN.
In the case of our base MLP architecture, the most successful attack is only reached after
about 20 epochs compared to 10 utilizing the full 10000 training traces5.10c. Moreover,
the base CNN architecture saw little differences in the side channel analysis metrics or
even improved with the first successful attack after just 5 epochs. Although validation
accuracy was not as high as in the initial experiments the side channel metrics did not

5.1. SIMULATED AES RESULTS

5

41

(a) Model accuracy (b) Information plane

(c) Attack efficiency

Figure 5.9: CNN Deep Neural Network Utilizing a Single Hidden Dense Layer - 16

suffer. In the CNN model, the information plane was mostly unchanged and therefore
the side channel metrics was also consistent.

5.1.5. SENSITIVITY TO NOISE
Adding noise to the training data had a large impact on our DNNs ability to general-
ize effectively 5.12a. Results with the same base architecture showed similar results to
limited training data experiments where IY decreases in the later epochs due to overfit-
ting. Since mutual information is calculated utilizing the validation set, the measure can
show us where overfitting could be occurring. We can link this decrease in IY with over-
fitting when investigating the GE. Our results show when utilizing noise data, our models

5.1. SIMULATED AES RESULTS

5

42

(a) Model Accuracy (b) Model Information Plane

(c) Attack Efficiency (d) Attack Success Progression

(e) Output mutual information across layers

Figure 5.10: Simulated Dataset Base MLP - trained with half the training data 5000 traces

overfit much sooner in the training phase and accuracy suffers immensely. In classical
machine learning, we utilize the difference between training error/accuracy and valida-
tion error/accuracy to be a good indicator of overfitting. Some DNN model training tools
have been developed to stop training when overfitting is detected such as early stopping
[26]. However, in a side channel analysis setting the moment overfitting is occurring

5.1. SIMULATED AES RESULTS

5

43

(a) Model Accuracy (b) Model Information Plane

(c) Attack Efficiency (d) Attack Success Progression

(e) Output mutual information across layers

Figure 5.11: Simulated Dataset Base CNN - trained with half the training data 5000 traces

in the accuracy plot is too early to stop learning. We propose a better indicator is the
information plane where we can decide to stop training when IY has been maximized.
According to the guessing entropy (GE), the least amount of traces are needed to achieve
a GE of 0 is just before IY peaks.

Presented results for the MLP and CNN with 3 hidden dense layers of 64, 32, 16 neu-

5.1. SIMULATED AES RESULTS

5

44

ron show how overfitting can occur in the later epochs of training. According to the
accuracy plot 5.12a 5.13a, training, and validation accuracy begin to divert from each
other around epoch 5 which implies that we are overfitting the training data from here
on out, however mutual information in the final layer IY peaks around epoch 20 and 25
for the MLP and CNN respectively. GE, therefore, depicts the best attacks utilizing the
least amount of traces happens just before this point.

(a) Noisy Model Accuracy (b) Output mutual information across network layers

(c) Noisy data attack efficiency

Figure 5.12: MLP Deep Neural Network Synthetic Noise added to training data - resulting in overfitting

5.1.6. GENERALIZATION VS. OVERFITTING
The models all generalized well with this dataset, overfitting was only seen when noise
was added. More will be discussed in later sections with regards to models that do overfit
in regards to side channel metrics. Since the leakage function in this dataset is not diffi-
cult, as the labels exist in the training data as a feature, this dataset is easily classified by a

5.2. SMARTCARD AES RESULTS

5

45

(a) Noisy Model Accuracy (b) Output mutual information across network layers

(c) Noisy data attack efficiency

Figure 5.13: CNN Deep Neural Network Synthetic Noise added to training data - resulting in overfitting

small neural network with high performance. This can be seen from our results and will
be further explored with a more intricate dataset that can offer a higher difficulty to the
neural network and resemble real measurements from physical devices. Furthermore,
we can conclude that the deeper layers in the neural network are the layers that special-
ize in the side channel classification task whereas the shallow layers are more abstract.
We do not yet understand if the shallow layers are necessary or beneficial in this dataset.

5.2. SMARTCARD AES RESULTS
We carry out further experiments utilizing a physical device to show that our findings
hold in a measure trace set.

5.2. SMARTCARD AES RESULTS

5

46

5.2.1. DEEP NEURAL NETWORK ARCHITECTURE
Utilizing this dataset we show that DNNs are able to effectively perform side channel at-
tacks on secret keys from a physically measured device and that the mutual information
framework is able to give some insights on the performance of the DNN’s. We show that
there is a connection between the output DNN layer’s IY and the guessing entropy of the
key byte under attack, and IX and the leaking samples of our dataset.

MLP
This is a measured power trace set, the amount of leakage seems to be quite high with the
MLP having high accuracy very quickly with many small DNN architectures. This dataset
behaved similarly to the simulated dataset producing very similar results in terms of our
side channel analysis metrics. The chosen base architecture of the MLP performed well
from the onset given a large amount of training data, due to the number of parameter
updates done per batch. Limiting the number of training traces required more epochs
for the network to become optimized, achieving a validation accuracy above 90%. For a
side channel analysis, this accuracy is more than enough to attack a secret key byte in a
handful of traces.

The 3 hidden layers were easily able to model a leakage function precisely. Although
our experiments show that even a shallow network is able to model the leakage function
given enough training data. The architecture utilized was insignificant when enough
data was provided to the network for training. However, the information plane usually
showed that the output layer is the most significant when making predictions for this
dataset.

CNN
Since the leakage function was not correlated to a single sample in our power traces a
CNN network functioned much better in the smartcard AES dataset. The use of a convo-
lutional layer combined samples allowing the network to more easily identify the leaking
samples. This can be seen from the input gradient correlation to the input gradients of
the network. In general, the correlation is much higher for CNN networks compared the
MLP networks using an identical dataset.

For this dataset out CNN quickly gained information and was able to successfully
achieve a GE of 0 very early in training. Although the architecture utilized is not large it
was very efficient at the side channel analysis task, even achieving classification accuracy
high enough in the first epoch to correctly identify the correct key given the size of our
validation set.

5.2.2. INFORMATION PLANE
The base MLP performed extremely well from the onset. Since the DNN parameters are
updated every batch, even after the first epoch the classification accuracy was so high
that the key was easily attacked utilizing less than 400 validation traces. The information
started very high, nearly equal to the input layer information and did not decrease much
throughout the training. We expect that the layers lose information due to random ini-
tialization however only the output layer is affected in our case. The DNN is so effective
in this dataset that almost all the relevant information is preserved by the output layer

5.2. SMARTCARD AES RESULTS

5

47

when training with 10,000 traces. A small amount of information is lost during the op-
timization of the network or diffusion phase, however, this does not affect our attack as
more information than is needed is still available for an effective attack.

(a) Mutual Information utilizing base architecture (b) Number of Validation Traces needed to Reach GE - 0

Figure 5.14: The MLP deep learning architecture utilized is [128,64,32] FC layers SmartCard AES MLPbase

The base CNN model performed if not better than the MLP however it did take more
epochs of training to reach the most efficient attack but was again successful from the
onset. Again, the classification accuracy was high enough in the fist epoch to successfully
attack the secret key byte after only the first epoch utilizing no more than 2500 traces.
Information IY at this point is much lower than in the MLP. We can see that the output
layer of the CNN is more heavily affected by the random initialization of the network
is requires more epoch to more precisely achieve similar classification accuracy as the
optimized MLP. The CNN architecture starts at a much lower level of IY than the MLP
however quickly increases and peaks around epoch 30. The most efficient attack, utiliz-
ing the least amount of validation traces also occurs around this point. Fewer validation
traces were utilized to carry out the attack on the secret key byte utilizing a CNN network
rather than the proposed MLP.

5.2.3. IMPLICIT FEATURE SELECTION
Since the traces are very highly reprocessed the network is able to easily model a precise
leakage function and identify the samples that express leakage. Since this implementa-
tion has no counter measures the first ordered leakage was utilized to compute the KKC
and correlated to the input gradients of the network throughout training to identify how
well the network is able to identify the same leaking samples. This in a way tells us how
well the network was able to identify which input features can be used to make a precise
prediction when modeling a first order leakage. We supply the DNN with traces that in-
corporate the entire first s-box operation for all secret key bytes but only a section of this
is needed when attacking only one of the bytes.

Both models ability to identify the first order leaking samples were highly dependent
on the amount of input data available for training. Generally, the more training data that
was available the better the KKC to Input Gradient correlation was observed 5.16. During

5.2. SMARTCARD AES RESULTS

5

48

(a) Mutual Information utilizing base architecture (b) Number of Validation Traces needed to Reach GE - 0

Figure 5.15: The CNN deep learning architecture utilized [16,32] Convolution layer filter size [128,64,32] FC
layers SmartCard AES C N Nbase

the diffusion phase, the networks generally decrease IX as the network implicitly selects
the points that are needed for the classification task and therefore reduces the amount
on the information we are receiving from the trace set. For the base MLP, we notice that
the KKC and input gradient correlation starts growing rapidly while IX decreases in the
output layer during the diffusion phase 5.17.

(a) Training Set Size 2000 (b) Training Set Size 10,000 (c) Training Set Size 50,000

Figure 5.16: Correlation Between Input Gradients and KKC utilizing the MLP base DNN

Similar to the MLP, the correlation for a CNN network was observed to be very in-
consistent in the beginning as the network is still learning, however, did not necessarily
increase during the diffusion phase. The correlation, however, was quite low for CNN
networks as the leakage function is likely using different points for the classification. Al-
though good results are achieved utilizing CNNs, the samples from the trace that are
being utilized are highly different from the KKC. Therefore the correlation does not seem
to be a good measure for identifying points of interest. The network may be modeling a
higher order leakage model. Figure 5.18 shows that the correlation at the end of training
is similar to the beginning of training after random initialization.

5.2. SMARTCARD AES RESULTS

5

49

(a) Layer-wise Input Mutual Information IX (b) Correlation between Input Gradients and First order KKC

Figure 5.17: Base MLP implicit feature selection and Mutual Information

Figure 5.18: Correlation between Input Gradients and KKC of CNN base architecture utilizing 50,000 training
traces

5.2.4. SENSITIVITY TO MODEL ARCHITECTURE
The base model has already been performing efficiently but the influence of the differ-
ent layers are investigated in this section. The experimented MLP models are modified
versions of the base models such that it contained less or more layers or modified layer
widths. However, this dataset is easily attacked utilizing many simple architectures. This
dataset was even successfully attacked using a shallow network. The information plane
only shows the output layer having any change in the quantity of information available
through training regardless of the number of fully connected layers 5.19,5.20,5.21. This,

5.2. SMARTCARD AES RESULTS

5

50

therefore, tells us that the network does not need to be deep to have an effective network
that is able to quickly gain IY information as even a single layer is able to fulfill this task.
Further experiments will be conducted utilizing the ASCAD dataset, as its countermea-
sures require deeper NNs for a successful evaluation.

(a) Model Accuracy - Overfitting oc-
curring after the initial epochs

(b) Number of Validation traces
needed to reach a GE = 0 (c) Mutual Information IY by Layer

Figure 5.19: SmartCard Shallow Network [128] MLP model - 2,000 Training Traces

(a) Model Accuracy - Overfitting oc-
curring after the initial epochs

(b) Number of Validation traces
needed to reach a GE = 0 (c) Mutual Information IY by Layer

Figure 5.20: SmartCard 2 layer [64,32] MLP model - 2,000 Training Traces

(a) Model Accuracy - Overfitting oc-
curring after the initial epochs

(b) Number of Validation traces
needed to reach a GE = 0 (c) Mutual Information IY by Layer

Figure 5.21: SmartCard base [128,64,32] MLP model - 2,000 Training Traces

Regarding the CNN networks, modifying the convolutional layers by either increas-
ing the convolutional blocks or changing the number of pooling layers. This again had
minimal effect on both the side channel metrics and the information plane; Accuracy
was however affected. This shows that although accuracy is affected the side channel
attack was independent to the accuracy of the classification model. Since IY remained

5.2. SMARTCARD AES RESULTS

5

51

high, the GE also quickly reduced. A clear link still exists between the mutual informa-
tion IY observed in the output layer and the optimization of the guessing entropy. The
number of traces needed to achieve a GE of 0 is minimized just before the point in which
IY is maximized.

(a) Model Accuracy - Overfitting oc-
curring after epoch 10

(b) Number of Validation traces
needed to reach a GE = 0 (c) Mutual Information IY by Layer

Figure 5.22: SmartCard base CNN model - 2,000 Training Traces

(a) Model Accuracy - Overfitting oc-
curring after epoch 10

(b) Number of Validation traces
needed to reach a GE = 0 (c) Mutual Information IY by Layer

Figure 5.23: SmartCard base CNN model utilizing 1 pooling Layer - 2,000 Training Traces

We experimented with convolutional networks that contained three convolutional
layers, organized in different blocks depending on the pooling location in the architec-
ture. We found that two convolutional blocks produced the best results when the first
block contained two small (number of filters) convolutional layers and the second block
containing one single large convolutional layer. The number of filters in each convo-
lution in the block did make a difference when comparing the side channel attack as
guessing entropy, reaching 0 with fewer validation traces when the first convolutional
layers had only a few number of filters and the second layer had a large number of fil-
ters. The behavior of the network concerning information at the output layer or accuracy
was not changed by the different number of filters. We think this is due to the input data
was only transformed by the convolutional layers and different functions are modeled by
the different networks that both produce the same amount of information at the output
layer.

5.2.5. SENSITIVITY TO TRAINING SET SIZE
The amount of training data had the biggest influence on the success of our side channel
attack on the secret key byte. The amount of label information the network was able to

5.2. SMARTCARD AES RESULTS

5

52

(a) Model Mutual Information with the output
(b) Number of Validation traces needed to reach a GE = 0, Best
- 75

Figure 5.24: SmartCard base CNN model utilizing small final convolutional layer [16,32][64]- 2,000 Training
Traces

(a) Model Mutual Information with the output
(b) Number of Validation traces needed to reach a GE = 0, Best
- 29

Figure 5.25: SmartCard base CNN model utilizing medium final convolutional layer [16,32][128]- 2,000 Train-
ing Traces

preserve was higher with additional training traces. The network was also able to identify
the relevant data from the traces when providing more training data as stated in previ-
ously 5.16. This also allowed our network to more efficiently achieve 0 GE. The hidden
layers also aided in speeding up the classification layer when a larger training dataset
was utilized. The amount of mutual information the network as able to achieve in the
output layer was higher in IY and lower in IX 5.27 for both MLP and CNN base networks.
This is a desirable behavior which allowed us to also achieve better side channel attacks
5.28.

5.2.6. SENSITIVITY TO NOISE
The noise had a large impact on both of our base models. Surprisingly our MLP model
suffered from noise such that it decreased information IY as training undergone. Since

5.2. SMARTCARD AES RESULTS

5

53

(a) Model Mutual Information with the output
(b) Number of Validation traces needed to reach a GE = 0, Best
- 18

Figure 5.26: SmartCard base CNN model utilizing large final convolutional layer [16,32][256]- 2,000 Training
Traces

(a) 2,000 Training Traces (b) 10,000 Training Traces (c) 50,000 Training Traces

Figure 5.27: SmartCard base MLP model information plane utilizing varying amounts of training traces

(a) 2,000 Training Traces (b) 10,000 Training Traces (c) 50,000 Training Traces

Figure 5.28: SmartCard base MLP model GE utilizing varying amounts of training traces

noise was only added to our training set our network learns from inaccurate data, there-
fore when measuring the information utilizing the clean validation dataset our model
does not produce desirable outputs. The model spent the entire training decreasing
IX which resulted in the model seeking the leaking samples from our traces and there-
fore drastically increased our chances at a successful attack. We see that IX decreased
throughout training causing an increase in the Pearson correlation between the input
gradients and the KKC 5.29. Our MLP network was able to still have consistent success-
ful attacks on the key byte up to a maximum of 6 standard deviations of artificial noise.

5.2. SMARTCARD AES RESULTS

5

54

(a) Mutual Information when dataset is affected by noise
(b) relationship between IY and rank is affected when noise is
apparent

(c) Leakage sample detection

Figure 5.29: SmartCard base MLP model trained utilizing noisy 5,000 training traces - 8 STD

The information plane was a good indicator of an effective model however the MLP
was still able to have successful results although the IY started decreasing. This seems
to be contrary to previous findings, however, we contribute this to a different learning
pattern which focused on feature selection rather than classification optimization.

CNN networks were able to more effectively deal with the noise, while still being able
to gain IY in the output layer. The convolutional layers were able to deal with the noise
more effectively 5.30 which enabled our network to have desirable behavior when utiliz-
ing our validation data. The CNN network was resilient in overcoming up to a maximum
of 10 standard deviations of artificial noise.

5.2. SMARTCARD AES RESULTS

5

55

(a) Mutual Information when dataset is affected by noise
(b) relationship between IY and rank is affected when noise is
apparent

(c) Leakage sample detection

Figure 5.30: SmartCard base CNN model trained utilizing noisy 5,000 training traces - 8 STD

5.2.7. GENERALIZATION VS. OVERFITTING
This dataset was able to achieve very good generalization and the mutual information
IY in the final layer proved to be a good identifier as to when the best generalization
was achieved by our trained model. The models achieved GE of 0 with the least amount
of traces as IY was maximized. Generally the models then slightly over fit as IY started
decreasing and the number of traces to reach GE of 0 also slightly increased. Overfitting
was most apparent when noise is added causing the model to diverge from GE=0 after a
maximized IY .

We show that this technique is beneficial to explain a connection between mutual
information and GE. We now want to apply our technique to a publicly available dataset
where side channel results have been published by other researchers. We show that this
technique can be utilized with datasets that contain countermeasures and that our re-

5.3. ASCAD RESULTS

5

56

sults are consistent regardless of the dataset.

5.3. ASCAD RESULTS

5.3.1. DEEP NEURAL NETWORK ARCHITECTURE

MLP
Due to the changes we have made to the leakage model, by using the HW model instead
of the ID model, the base architecture behaved very differently than reported in the origi-
nal ASCAD reported results [27]. The base model reported as MLPbest in their results was
not able to achieve a high enough classification accuracy to extract the correct key byte
with GE never below 50 after utilizing the entire validation set. We, therefore, attempted
the side channel analysis with a much smaller DNN utilizing smaller and smaller net-
works until a better generalization was achieved with shallower and narrower architec-
tures. Results never showed success in extracting the key in as little validation traces as
reported in the ASCAD paper 5.31, but this may be closely derived as a result of changing
the leakage function.

Figure 5.31: Guessing Entropy Computed at the end of Training - 500 epochs - Utilizing MLPbest DNN archi-
tecture [6 * 200]

The masked implementation required still a larger network than our previous two
datasets to have a successful attack on the 3rd key byte. The best generalization was
achieved utilizing 3 FC dense hidden layers of 32 neurons each. The decisions to con-
tinuously remove FC dense layers were based on the information plane. Results can be
seen in figure 5.41. And further explained in the next section.

5.3. ASCAD RESULTS

5

57

CNN
The C N Nbest architecture model proposed in the original ASCAD results was also modi-
fied due to dimensionality issues caused by convolutional layer hyper parameters (which
are held constant across this thesis). Additionally, the used leakage model was also mod-
ified to use the HW model as the labels for our neural network, therefore the softmax
output layer only contained 9 neurons. A similar neural network with less convolutional
layers was utilized in our study, again with successful attacks on the key byte but utilizing
more attack traces then outlined in the original ASCAD study [27].

Figure 5.32: Guessing Entropy Computed at the end of Training - 500 epochs - Utilizing CNN DNN architecture

We utilized a VGG-like architecture [33] such that 1 or more convolutional layers fol-
lowed by a single pooling were repeated before the FC dense layers of the CNN network.
We modified the C N Nbest architecture by increasing/reducing the number of filters and
adding/removing a convolutional layer resulting in a feasible dimension for the neu-
ral network. Further experimentation showed very similar results between varying sizes
of architectures, but vary similar layer behavior according to mutual information mea-
sures.

Smaller architectures like our base model showed much more inline results with the
reported ASCAD results [27]. We further experimented with the effects of the convolu-
tional block on the information plane, by modifying the number of blocks as well as the
number of pooling layers.

5.3.2. INFORMATION PLANE
We firstly began experiments utilizing the MLPbest architecture however not all hidden
layers were observed traversing the information plan to aid the acceleration of the out-
put layer gaining useful information. Therefore we reduced the number of layers and

5.3. ASCAD RESULTS

5

58

additionally experimented with layer widths. We noticed that as we reduce the size of
the layers, and hereby reducing the number of tune-able parameters, the network was
more effective and quicker at increasing IY . Incrementally reducing the number of lay-
ers, observing if all the hidden layers in the chosen architecture aided the classification
process. Tishby et al.[32] state that additional layers help speed up the learning occurring
at the deeper layers however we witnessed some side effects to this finding. Generally,
in this side channel analysis cases, over fitting was frequent and quickly occurring in our
training for both MLP and CNN models. Large MLP models were very slow at increasing
relevant information IY in the output layer with smaller and shallower models having
favorable side channel results more quickly and consistently.

Figure 5.33: Information Plane - ASCAD MLP [32, 32, 32] - Mutual Information per Layer

We noticed that shallow layers regardless of the architecture did not lose any infor-
mation or show any changes in the amount of mutual information in either of IX or IY .
This makes us believe these layers are non-specialized layers that only do some transfor-
mations of the input data that are necessary for the deeper layers to compute the mod-
eled leakage function. Utilizing the mutual information measure we can not tell exactly
what operations the shallow layers are performing however we know that the informa-
tion available does not change.

For CNN architectures it is apparent that the number of convolutional layers has a
large influence on the success of the DNN however these layers do not appear in the
information plane. The dense layers have minimal influence and in almost all of our
experiments, only the output layer is seen in the information plane. This enforces the
claim that in CNN the important operations on the input data occur in the convolutional
layers and only a small dense FC layer is needed in the end. This behavior is seen in
figure 5.46 as the varying number of convolutional layers made only a scalar change in
the amount of information at the output layer with little impact on the rest of the layers.

The architecture incorporating 1,2 or 3 convolutional layers with a constant number

5.3. ASCAD RESULTS

5

59

Figure 5.34: Information Plane - ASCAD CNN [16,32,64],[32, 32, 32] - Mutual Information per Layer

of fully connected layers behaved similarly in terms of the information plane measures
however showed varying side channel performance metrics. IY was not by itself a good
enough indicator as to at what part in our training the best guessing entropy would be
achieved. We, therefore, incorporated a combination between IY and the correlation be-
tween the input layer gradients and the KKC. We interpret the KKC as the optimal leakage
from the traces the more correlated the input gradients the better the network is utilizing
the leaking points from our trace set. The KKC was computed with regards to the specific
masked implementation, by Pearson correlation between the masked sbox-out and the
round out mask. We, therefore, achieved the best attacked where IY is maximized and
the correlation is also maximized. As these were not simultaneously maximized a best
case must be chosen. Additionally, for this dataset, the KKC to Input Gradient correlation
was not very strong but it can still be utilized as an indicator when comparing to other
epochs in the same training sequence.

We can see from the KKC correlation 5.35b that the correlation is best in the first 20
to 40 epochs however the information regarding the output 5.35a is not high enough
in our network to have a good classification and therefore at this point GE is not at its
best. As the network increase IY in the output layer, the correlation IX is increased 5.34.
We interpret IX in the output layer as how much of the input information is propagated
through the entire network. The higher IX the more samples the network is utilizing
from the input data to make the classification. In side channel analysis we only need
the leaking samples from the input to make an accurate classification and therefore we
expect that the network implicitly chooses the sample it identifies as leaking. Once the
network identifies these samples we expect that IX is low. In the case of ASCAD, noise
and the deficient training set causes the network to not only remove non-leaking sam-
ples but also the necessary samples. This is the reason we see the network in the later
epochs reducing IX but consequently also results in a reduction of IY . We can see this

5.3. ASCAD RESULTS

5

60

(a) Neural Network’s Ability to identify Leaking Samples (b) Mutual Information between each layer and the labels - IY

(c) Guessing Entropy throughout Training

Figure 5.35: ASCAD CNN relationship between KKC and IY maximize GE

by looking at figure 5.36 which shows that even if IY stays high the GE starts to diverge
from 0. This pattern was seen across multiple architectures utilizing this dataset.

The final layer’s mutual information IY gave a very good indication of optimal guess-
ing entropy. Generally, IY peaked early in training however KKC correlation seems to
peak earlier in the training process. Guessing entropy reaches 0 utilizing the least amount
of traces between the epochs that the KK correlation is maximized and the IY is maxi-
mized in the output layer.

5.3. ASCAD RESULTS

5

61

Figure 5.36: GE Rank with relation to ITY of output layer

5.3.3. SENSITIVITY TO MODEL ARCHITECTURE
MLP architecture choice seemed to highly influence side channel metrics. We started by
training a large architecture that was able to increase IY only slightly in the 500 epochs.
The MLPbest architecture, however, was not very successful at the classification of the
HW values and therefore unable to correctly distinguish the correct key. Figure 5.37
shows only 4 of the hidden layers and the output layer in the architecture gaining any
information after the initial random initialization and the output remaining very low.
The other layers having little contribution as they just seem to forward the same amount
of information to the more specialized deeper layers. There however exists an upward
trend in figure 5.37b which can show that the neural network may have still been learn-
ing and required more epochs due to the large number of trainable parameters in such
a large network.

We then experimented with an architecture with less hidden layers. The architec-
ture utilizing 5 FC dense layers seen in figure 5.38 showed much the same pattern as
above however managed to increase IY in the output layer slightly more than the previ-
ous architecture. The number of layers becoming specialized for the classification task
decreased again but still show a general upward trend, with potentially better results in
a longer training period. Guessing entropy still showed unsuccessful side channel at-
tacks on the key bytes. The increase in IY of the output layer, within the same number
of epochs contradict finding by Tishby et al. [32]. We contribute this behavior to the in-
creased number of tune-able parameters in the additional hidden layers. We, therefore,
decided to keep reducing the number of layers hoping for a quicker increase in IY .

By reducing the number of hidden layers by one 5.39 we started to witness a lower
GE near the peak of IY in the output layer, however the attack on the key byte was still

5.3. ASCAD RESULTS

5

62

(a) Guessing Entropy Utilizing 10,000 validation traces as a
function of IY - Computed Throughout the Training Process (b) Mutual Information between each layer and the labels - IY

Figure 5.37: The MLP deep learning architecture utilized is [200,200,200,200,200,200] ASCAD MLPbest

(a) Guessing Entropy Utilizing 10,000 validation traces as a
function of IY - Computed Throughout the Training Process (b) Mutual Information between each layer and the labels - IY

Figure 5.38: The MLP deep learning architecture utilized is [200,200,200,200,100]

unsuccessful as GE never reached 0. We again see the same trend as the two previous
architectures and therefore decide to again reduce the number of layers.

At three hidden layers, we finally begin to succeed in the side channel attack on the
key byte 5.40a. The information IY in the output layer much greater than in the previous
architectures 5.40b. However, information seems to stabilize in the later epochs, show-
ing the network is not learning any additional information by further training. At this
point, the reduced number of hidden layers contributing to the output layer’s evolution
is somewhat vague 5.40b as we have an increase in performance.

In an attempt to explain the reason why we only see two of the hidden layers in 5.40b
contributing to the output layer’s evolution in increasing IY , we reduce the number of
tune-able parameters in the layers by reducing the width of the shallower layers. We can
see from 5.41b that all layers are contributing to the output layer in the initial epochs.
This network evolves much quicker due to the decreased number of parameters and

5.3. ASCAD RESULTS

5

63

(a) Guessing Entropy Utilizing 10,000 validation traces as a
function of IY - Computed Throughout the Training Process (b) Mutual Information between each layer and the labels - IY

Figure 5.39: The MLP deep learning architecture utilized is [200,200,200,100]

(a) Guessing Entropy Utilizing 10,000 validation traces as a
function of IY - Computed Throughout the Training Process (b) Mutual Information between each layer and the labels - IY

Figure 5.40: The MLP deep learning architecture utilized is [200,100,32]

therefore we suspect the previous architecture would have behaved very similarly with a
larger number of epochs. The output layer in 5.41 was able to gain the most information
and thus also showed the best results in terms of side channel analysis. With GE typically
reaching 0 at most epochs where the output layer’s IY was above 0.2.

Generally, for MLPs we noticed that a higher number of hidden layers did not speed
up the output layer’s ability to gain relevant information about the output but rater in-
creased the number of parameters which took much longer to update. Therefore, fa-
vorable side channel analysis results were achieved more quickly and successfully with
smaller and shallower networks. Additionally, the smaller DNN was able to achieve a
higher IY with fewer layers which contributed to a more efficient side channel attack.

For CNN we tested two different scenarios, changing the number of fully connected
layers, and changing the number of convolutional blocks. We start by showing our re-
sults for the model with a constant number of filters for the convolutional blocks and a

5.3. ASCAD RESULTS

5

64

(a) Guessing Entropy Utilizing 10,000 validation traces as a
function of IY - Computed Throughout the Training Process (b) Mutual Information between each layer and the labels - IY

Figure 5.41: The MLP deep learning architecture utilized is [32,32,32]

varying number of dense layers. We show that the number of dense layers did not make
a considerable difference to the attack success but decreased the number of epochs
needed to perform an efficient attack. The networks utilized from 1 to 3 fully connected
layers of 32 neurons. We see that the network with 1 or 2 layers performed consid-
erably similar, GE reaching 0 around the same epoch in both cases with the number
of validation traces that are needed to perform a successful attack slightly reduced in
the larger network. We can see with an additional fully connected layer, the number of
epochs needed to reach the most efficient attack is reduced and a further reduction in
the number of traces is also seen. These results, however, can not be determined from
the information plane as only the output plane is gaining information throughout the
training. We found that the addition of fully connected layers increases the number of
epochs where we have successful attacks, such that GE is 0 5.46. The network addition-
ally reaches a successful attack earlier in training with more additional fully connected
layers however it also start to overfit earlier in training 5.42 5.43 5.44 5.45.

Regarding the convolutional block, we experimented with two parameters, the num-
ber of blocks (convolution and pooling) and the number of pooling layers for 3 convolu-
tions. We utilized a CNN where the fully connected blocks were kept constant at 3 layers
of 32 neurons each at the end of the network, before the output layer. We found that the
network with less pooling layers propagates much faster through the information plane
but also over fits more in the later epochs.

Varying the number of pooling for 3 convolutions resulted in varying levels of attack
success concerning GE. The more pooling layers that were applied the slower the output
layer propagated through the information plane. As the convolutional or pooling layers
do not provide new information in the network they can not be seen in the information
plane. We, therefore, can not explain how these layers work from an information mea-
sure. However, they do affect the output of the network since they do transform the input
information. The most efficient side channel attack was achieved with 2 pooling layers;
we can also see that the attack was successful in the largest number of epochs compared
the other two scenarios. We see that the patters that IY in the output layer increases

5.3. ASCAD RESULTS

5

65

(a) Guessing Entropy Utilizing 10,000 validation traces as a
function of IY - Computed Throughout the Training Process (b) Mutual Information between each layer and the labels - IY

Figure 5.42: The CNN deep learning architecture utilized is single FC layer - 32

(a) Guessing Entropy Utilizing 10,000 validation traces as a
function of IY - Computed Throughout the Training Process (b) Mutual Information between each layer and the labels - IY

Figure 5.43: The CNN deep learning architecture utilized is two FC layers - 32

while the DNN is learning, reaching near 0 through learning, optimizing and diverging
later in the training process around the top of the information measure. The less pooling
layers we use the lower the amount of IY is needed to reach a GE close to 0. We can see in
figure 5.47 that a good GE is reached with 1 pooling layer around an IY of 0.25, 2 pooling
layers around an IY of 0.5 and 3 pooling layer around an IY of 1.0 as seen in figure 5.47.
In all cases we see overfitting is occurring after the highest IY is achieved and causing
the GE rank to increase and IY to start decreasing. We can see that pooling, although
it reduces dimensionality, causes us to lose information and therefore requiring higher
mutual information in the output layer to achieve a good guessing entropy.

Discuss that point where GE rank starts to grow again can be defined as the second
stage of learning. Diffusion

Altering the number of convolution blocks has an influence on the networks and
the amount of overfitting we can see regarding the side channel analysis measures. In

5.3. ASCAD RESULTS

5

66

(a) Guessing Entropy Utilizing 10,000 validation traces as a
function of IY - Computed Throughout the Training Process (b) Mutual Information between each layer and the labels - IY

Figure 5.44: The CNN deep learning architecture utilized is three FC layers - 32

(a) Guessing Entropy Utilizing 10,000 validation traces as a
function of IY - Computed Throughout the Training Process (b) Mutual Information between each layer and the labels - IY

Figure 5.45: The CNN deep learning architecture utilized is four FC layers - 32

general, having less convolutional layers speeds up how fast the output layer is able to
increase IY . This also puts our network in diffusion earlier which can cause overfitting to
occur earlier in training. We found that the most efficient attack lies before the peak of IY

in the output layer as stated in previous sections. However, we don’t know how early this
will occur in CNN networks for this dataset. Mutual information does not seem to give
us much additional information as to how well the GE is performing or when we should
expect the best GE when changing the number of convolutional blocks. We do however
see that the CNN with more convolutions are achieving a GE of 0 during training more
frequently and the best attack needs fewer validation traces. GE starts to rise when IY

of the output layer starts to decrease in the diffusion phase, therefore this point can still
be labeled as the start of overfitting however no considerable differences can be seen
between the different architectures in regards to mutual information.

5.3. ASCAD RESULTS

5

67

(a) ASCAD CNN Architecture utilizing 1 FC layers (b) ASCAD CNN Architecture utilizing 2 FC layers

(c) ASCAD CNN Architecture utilizing 3 FC layers (d) ASCAD CNN Architecture utilizing 4 FC layers

Figure 5.46: The CNN deep learning architecture mutual information against rank

5.3.4. OMITTED EXPERIMENTS
As ASCAD is a public dataset, and therefore the measurement parameters have been
external. The training set is already limited in size. Experiments utilizing fewer data
yielded little useful insight into the side channel analysis problem as attacks on the key
bytes are unsuccessful.

Moreover, the noise was not synthetically added to this dataset as there already exists
noise from original measurement errors. Additionally, the masked implementation acts
as noise since more than one location in the trace must be identified to create an ideal
leakage function given these input traces. Due to the apparent difficulties residing with
this dataset, the noise was not considered.

Dataset utilizing desynchronization was not experimented with but could be consid-
ered for future work.

5.3.5. GENERALIZATION VS. OVERFITTING
MLP achieved a good generalization in the optimized network architectures. According
to traditional machine learning metrics such as accuracy seen in figure 5.48, we generally
identify the difference between training and validation accuracy as overfitting. However,

5.4. VALIDATION SUMMARY

5

68

according to side channel metrics such as guessing entropy overfitting is very minimal.
Our results show that as long as mutual information IY in the final layer is increasing
or is maximized, the guessing entropy stays very low. The best attacks on the key bytes
utilizing the least amount of attack traces occurred just before IY in the output layer was
maximized.

CNN models were often overfitting the data in terms of both classical ML metrics
and side channel metrics. Information plane still shows to be a good indicator when the
overfitting starts to influence the side channel task, however, is not an indicator of how
well the architecture suits the classification task. A good stopping point for training is
just the peak of mutual information IY in the output layer as the best GE is achieved
before this point.

5.4. VALIDATION SUMMARY
Utilizing the mutual information metric we were able to closely identify the epoch in
which the neural network model began to over-fit out dataset in a side channel setting.
We showed that the classical accuracy metric does not identify the most efficient attack
since the model is not necessarily trained to its fullest potential. We showed a better
identifier of this maximally trained model to be just before the point in which IY is max-
imized in the output layer. We also showed that deeper layer are more specialized layers
since they affect the mutual information metric and therefore influence the decision,
whereas, shallower layers are more general and only transform the data. Convolutional
layers did not have an visible effect in the information plane however, it affected the
deeper fully connected layers which showed variant levels of attack success at different
mutual information metric levels. Architectural decisions can be made based on infor-
mation plane findings for MLP networks, however, they do not offer a guaranteed ben-
eficial result. In CNN networks the majority of the classification decision is made in the
convolutional blocks where the number of dense layers do not have a large effect on the
network’s efficiency for a side channel setting.

5.4. VALIDATION SUMMARY

5

69

(a) Guessing Entropy Utilizing 10,000 validation traces as a function of IY - Computed Throughout
the Training Process for 1 Pooling Layer

(b) Guessing Entropy Utilizing 10,000 validation traces as a function of IY - Computed Throughout
the Training Process for 2 Pooling Layer

(c) Guessing Entropy Utilizing 10,000 validation traces as a function of IY - Computed Throughout
the Training Process for 3 Pooling Layer

Figure 5.47: Comparing the amount of information needed to reach a good GE for different number of pooling
layers

5.4. VALIDATION SUMMARY

5

70

(a) Guessing Entropy Utilizing 10,000
validation traces as a function of IY
- Computed Throughout the Training
Process. Overfitting is not apparent
given side channel analysis measures

(b) Accuracy of ASCAD MLP model.
Showing large Overfitting in terms of
classical ML measures

(c) Guessing Entropy computed
throughout training using validation set

Figure 5.48: The MLP deep learning architecture utilized is [32,32,32]

(a) Guessing Entropy Utilizing 1,000 validation traces as a
function of IY - Computed Throughout the Training Process.
Overfitting is not apparent given side channel analysis mea-
sures

(b) Accuracy of ASCAD CNN model. Showing large Overfitting
in terms of classical ML measures starting epoch 10

(c) Guessing Entropy computed throughout training using
validation set showing most successful attack before epoch 50

(d) Mutual information measure of DNN layers through train-
ing showing a maximization of ITY at epoch 75

Figure 5.49: The CNN deep learning architecture utilized is filters:[32,64],[128] fully connected layers:[32,16]

6
CONCLUSION

In this chapter, we outline the proposed findings concerning our research question in
Section 1.2. We will propose further research based on our outcomes and summarize
our contributions.

We show a information measure, mutual information, across each layer in a neural
network as a way to represent each layer individually as proposed by Tishby [32] for a
profiled side channel analysis task. As proposed in previous literature, classical machine
learning metrics such as accuracy [24] have been proven to have a short coming when
assessing deep learning models for profiled side channel analysis. As accuracy does not
necessary correlate to the success of the attack on the secret key byte in a cryptographic
algorithm, we explored how well mutual information correlates to the proposed success
metric, guessing entropy (GE). Our finding show that mutual information between the
output labels and the final layer’s activations give a better distinguisher when a chosen
neural network architecture has reached its most generalized state for a given dataset
such that GE is minimized just before this point. The mutual information measure al-
lows us to utilize the neural network model to its highest potential such that the security
assessment for the device under attack is ameliorated for the chosen architecture.

We show that deep learning tools used to detect overfitting such as early stopping
should not be utilized when performing a profiled side channel analysis utilizing deep
neural networks, as they would generally stop the learning process earlier than desired.
It would prevent the neural network’s learning algorithm from developing the network
parameters to perform the most optimized side channel attack. We proposed that the
best time to halt training is when the mutual information IY in the output layer starts
decreasing. Our experiments show that the most efficient (least number of traces) side
channel results are always reached before this point.

For further research regarding overfitting in neural networks, the use of regulariza-
tion such as L1 or L2 on the cost function can be utilized to see what effects if would have
on the mutual information measured in our network. Additionally, batch normalization
layers can also be utilized in our network to reduce overfitting. The effects of these lay-
ers have on the mutual information metric would also show if these layers are beneficial

71

6

72

to the side channel task and how certain layers are affected. Normalizing should not
change the amount of information we have at a specific layer but it may change how a
layer behaves and what function it models such that mutual information can be further
maximized.

We explored if the mutual information plane can tell us how well suited our neural
network architecture is for the side channel analysis task. The mutual information plane
could tell us which layers were contributing to that output layer’s predictions. We found
that deeper layers are specialized for the classification task and shallow layers were more
generalized layers. Given this we could not tell how an architecture could be changed
to guarantee a benefit for the classification process. Furthermore, as we outline a clear
relationship between IY and GE, the quantities of this two metrics where not comparable
between two different architectures. We notices that different architectures reach a GE
of 0 at different quantities of mutual information in the output layer.

Further research could entail a theoretical explanation between the GE and the mu-
tual information between the output layer and the classification labels. A mathematical
relationship may exist such that our findings are further validated and an explanation
between that quantity of IY needed to reach GE of 0 is evident for a given architecture.

Since our finding generally look at the amount of mutual information in the output
layer, we still do not know what happens when changing the DNN architecture such
that the output layer in the network is a sigmoid layer instead of a softmax. Classifica-
tion therefore yield the byte value, however the aggregation of many classification is still
needed (GE). As we did not experiment with changing the output layer in our DNN ar-
chitectures, we do not know how the mutual information correlates to GE when utilizing
a different output layer type.

Our findings show that training on a large training trace set is essential for the deep
neural network to maximize IY and minimize IX . The larger the training set the higher
IY was achieved during training of our DNNs. Our DNN was also able to better implic-
itly identify the leaking samples from our traces when the training set was large enough.
Utilizing the correlation between the input gradients and the KKC we learned that neu-
ral networks become able to identify leaking samples as IX decreases. To further vali-
date our results experiments utilizing a random delay countermeasure could be utilized,
however the correlation measure would not be of any use.

Looking back at our research objectives:
Q1: Can a mutual information measure tell us how much information is needed to cor-
rectly guess the correct byte of a cryptographic secret key?
A1: The metric that requires optimization in a side channel analysis study is the Guess-
ing Entropy. Our thesis outlined that the mutual information between the output layer
and the HW value labels varied in quantity between different architectures and predic-
tion generalizations. The amount of mutual information in the output layer needed to
on average predict the correct key across the entire trace set (aka. GE) varied from archi-
tecture to architecture. Therefore, no quantitative value can be declared. Generally, CNN
networks required less mutual information to perform a successful attack than MLP net-
work architectures.
Q2: Can a mutual information metric tell us how well generalized a neural network
model is for the profiled side channel analysis problem?

6

73

A2: The most important finding in our thesis outlines that the most efficient attack oc-
curs just before the mutual information in the output layer regarding the output is max-
imized, regardless of machine learning metrics such as accuracy. The most efficient at-
tack is defined as the attack which utilizes the least amount of traces to reach a constant
GE rank of 0. Additionally, we can better determine the point in which our model is gen-
eralized to its fullest and overfitting starts to occur. If the mutual information metric start
to decrease during the training phase, we can determine that the network is overfitting.
Q3: Can a mutual information metric tell us how to choose an effective neural network
architecture for the profiled side channel analysis problem? Or why do some architec-
tures work better than others?
A3: We can not determine what architectures will perform better or worse by just ob-
serving the mutual information metrics of a trained network. We can, however, observe
which layers are specialized to the classification task and which layers perform a gen-
eralization task on the input data. We can make some predictions as to how to modify
some architectures, but no guarantees can be made about the success of the network’s
evaluation.
Q4: Can a mutual information metric prevent us from undesired effects of machine
learning such as overfitting?
A4: Yes, we can identify when a network starts to over-fit the training data by observing
the mutual information between the output layers and the dataset labels. We generally
identify overfitting by observing the difference between training and validation accu-
racy. Side channel attacks require the optimization of the guessing entropy instead of
the accuracy, and the two metrics are not consistently aligned. Therefore, for side chan-
nel analysis the point in which a model is overfitting begins can not be defined by the
difference in the training and validation accuracy. We proposed this point be defined
when a network’s output layer mutual information metric starts decreasing.

6.0.1. CONTRIBUTIONS
• Overfitting is better detected by the mutual information measure in the output

layer compared to classical measures such as the difference between training and
validation accuracy.

• We can use the mutual information measure to predict when our DNN model is
more likely to have the best attack according to GE for a given architecture. There
is a clear connection between the GE and the mutual information IY measure in
the output layer, which contribute to the most efficient attack.

• The mutual information plane can tell us which layers are specialized for the side
channel classification task. This can give us an idea if the chosen architecture
could be modified, but does not guarantee improved results.

• Training with a larger training set allows our model to have a larger increase in
mutual information in the output layer, resulting in better a side channel analysis
regardless of noise.

REFERENCES 74

REFERENCES
[1] Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably secure masking

of aes. In Helena Handschuh and M. Anwar Hasan, editors, Selected Areas in Cryp-
tography, pages 69–83, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[2] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with
a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, Cryptographic
Hardware and Embedded Systems - CHES 2004, pages 16–29, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[3] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural net-
works with data augmentation against jitter-based countermeasures. In Interna-
tional Conference on Cryptographic Hardware and Embedded Systems, pages 45–68.
Springer, 2017.

[4] Thomas M Cover and Joy A Thomas. Entropy, relative entropy and mutual informa-
tion. Elements of information theory, 2:1–55, 1991.

[5] George Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of control, signals and systems, 2(4):303–314, 1989.

[6] Laurie Genelle, Emmanuel Prouff, and Michaël Quisquater. Montgomery’s trick
and fast implementation of masked aes. In Abderrahmane Nitaj and David
Pointcheval, editors, Progress in Cryptology – AFRICACRYPT 2011, pages 153–169,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[7] Richard Gilmore, Neil Hanley, and Maire O’Neill. Neural network based attack on
a masked implementation of aes. In 2015 IEEE International Symposium on Hard-
ware Oriented Security and Trust (HOST),, pages 106–11. Institute of Electrical and
Electronics Engineers (IEEE), 5 2015.

[8] Douglas M Hawkins. The problem of overfitting. Journal of chemical information
and computer sciences, 44(1):1–12, 2004.

[9] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede, and
Joos Vandewalle. Machine learning in side-channel analysis: a first study. Journal
of Cryptographic Engineering, 1(4):293, Oct 2011.

[10] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167,
2015.

[11] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.
Make some noise. unleashing the power of convolutional neural networks for pro-
filed side-channel analysis. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, pages 148–179, 2019.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

REFERENCES 75

[13] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael
Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages 388–397, Berlin, Hei-
delberg, 1999. Springer Berlin Heidelberg.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc., 2012.

[15] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking crypto-
graphic implementations using deep learning techniques. In International Con-
ference on Security, Privacy, and Applied Cryptography Engineering, pages 3–26.
Springer, 2016.

[16] Zdenek Martinasek, Jan Hajny, and Lukas Malina. Optimization of power analysis
using neural network. In Aurélien Francillon and Pankaj Rohatgi, editors, Smart
Card Research and Advanced Applications, pages 94–107, Cham, 2014. Springer In-
ternational Publishing.

[17] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. Gradient visualization for
general characterization in profiling attacks. Cryptology ePrint Archive, Report
2018/1196, 2018. https://eprint.iacr.org/2018/1196.

[18] Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure randomized
cipher. Journal of Cryptology, 5(1):53–66, Jan 1992.

[19] J. W. Miller, R. Goodman, and P. Smyth. On loss functions which minimize to con-
ditional expected values and posterior probabilities. IEEE Transactions on Informa-
tion Theory, 39(4):1404–1408, July 1993.

[20] Mee Young Park and Trevor Hastie. L1-regularization path algorithm for generalized
linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 69(4):659–677, 2007.

[21] Christophe Pfeifer and Patrick Haddad. Spread: a new layer for profiled deep-
learning side-channel attacks. IACR Cryptology ePrint Archive, 2018:880, 2018.

[22] Stjepan Picek, Annelie Heuser, and Sylvain Guilley. Profiling side-channel analy-
sis in the restricted attacker framework. IACR Cryptology ePrint Archive, 2019:168,
2019.

[23] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regaz-
zoni. The curse of class imbalance and conflicting metrics with machine learning
for side-channel evaluations. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019(1):209–237, Nov. 2018.

[24] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regaz-
zoni. The Curse of Class Imbalance and Conflicting Metrics with Machine Learning
for Side-channel Evaluations. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019(1):1–29, November 2018.

https://eprint.iacr.org/2018/1196

REFERENCES 76

[25] Stjepan Picek, Ioannis Petros Samiotis, Jaehun Kim, Annelie Heuser, Shivam
Bhasin, and Axel Legay. On the performance of convolutional neural networks
for side-channel analysis. In Anupam Chattopadhyay, Chester Rebeiro, and Yu-
val Yarom, editors, Security, Privacy, and Applied Cryptography Engineering, pages
157–176, Cham, 2018. Springer International Publishing.

[26] Lutz Prechelt. Early Stopping - But When?, pages 55–69. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1998.

[27] Emmanuel Prouff, Remi Strullu, Ryad Benadjila, Eleonora Cagli, and Cecile Du-
mas. Study of deep learning techniques for side-channel analysis and introduc-
tion to ascad database. Cryptology ePrint Archive, Report 2018/053, 2018. https:
//eprint.iacr.org/2018/053.

[28] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl Dickstein.
On the expressive power of deep neural networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70, pages 2847–2854. JMLR. org,
2017.

[29] Vincent Rijmen and Joan Daemen. Advanced encryption standard. Proceedings of
Federal Information Processing Standards Publications, National Institute of Stan-
dards and Technology, pages 19–22, 2001.

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[31] Claude Elwood Shannon. A mathematical theory of communication. Bell system
technical journal, 27(3):379–423, 1948.

[32] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural net-
works via information. CoRR, abs/1703.00810, 2017.

[33] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[34] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[35] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Antoine Joux, editor, Ad-
vances in Cryptology - EUROCRYPT 2009, pages 443–461, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[36] NIST-FIPS Standard. Announcing the advanced encryption standard (aes). Federal
Information Processing Standards Publication, 197(1-51):3–3, 2001.

https://eprint.iacr.org/2018/053
https://eprint.iacr.org/2018/053

REFERENCES 77

[37] Matus Telgarsky. Benefits of depth in neural networks. arXiv preprint
arXiv:1602.04485, 2016.

[38] David H Wolpert, William G Macready, et al. No free lunch theorems for optimiza-
tion. IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

[39] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Methodology
for efficient cnn architectures in profiling attacks. Cryptology ePrint Archive, Report
2019/803, 2019. https://eprint.iacr.org/2019/803.

https://eprint.iacr.org/2019/803

	Preface
	Introduction
	Motivation
	Objective
	Scientific Contribution
	Outline

	Background
	Side Channel Analysis - Power Consumption
	Machine Learning - Deep Learning
	Artificial Neural Networks
	Multi-Layer Perceptron
	Convolutional Neural Network

	Cryptography - AES
	Protected Implementations

	Side Channel Analysis utilizing Deep Learning
	Information Theory - Mutual Information

	Mutual Information Framework
	Side Channel Analysis
	Model Selection
	Explainability

	Information Theory and Deep Learning
	Mutual Information
	The Information Plane

	Methodology
	Experimental Setup
	Datasets
	Dataset Acquisition Simulated AES
	Dataset Acquisition Smart Card
	ASCAD AES

	Experimental Process

	Experimental Validation
	Simulated AES Results
	Deep Neural Network Architecture
	Information Plane
	Sensitivity to Model Architecture
	Sensitivity to Training Set Size
	Sensitivity to Noise
	Generalization vs. Overfitting

	SmartCard AES Results
	Deep Neural Network Architecture
	Information Plane
	Implicit Feature Selection
	Sensitivity to Model Architecture
	Sensitivity to Training Set Size
	Sensitivity to Noise
	Generalization vs. Overfitting

	ASCAD Results
	Deep Neural Network Architecture
	Information Plane
	Sensitivity to Model Architecture
	Omitted Experiments
	Generalization vs. Overfitting

	Validation Summary

	Conclusion
	Contributions

	Appendix A
	titleReferences

