Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

Ground Truth for Evaluating 3D Reconstruction of Jet Engines

Devin Lieuw A Soe!, Jan van Gemert', Burak Yildiz'
ITU Delft

Abstract

With 3D reconstruction from borescope videos of
jet engines, inspections can be made more efficient.
Being able to reconstruct 3D models of the jet en-
gines potentially contributes to making the inspec-
tions autonomous. Methods that will be used for
this reconstruction require to be evaluated to en-
sure the accuracy of the 3D models that they cre-
ate. Therefore, this study investigates how a 3D
reconstruction method can be quantitatively evalu-
ated using ground truth. From the results can be
concluded that 3D models that represent ground
truth data can be generated using a combination of
manual and algorithmic feature matching between
the frames of borescope videos. Furthermore, the
Wasserstein distance is found to potentially be a
viable measure for quantifying the comparison be-
tween 3D models, which is needed for assessment.

1 Introduction

An efficient way to make measurements during an industrial
inspection is to create a 3D model of the object in question.
This model can be reconstructed using a video of the ob-
ject. Within the frames of this video, characteristic points re-
ferred to as features are located and subsequently a 3D model
is constructed by matching the features of different frames.
In the ideal case, the output 3D models of a 3D reconstruc-
tion method would be compared with a ground truth set when
evaluating the method. This allows for quantitative assess-
ment of the reconstruction. Such ground truth data would
consist of input-output pairs where the videos represent the
input and a set of corresponding 3D models the output. The
intention of this research is to investigate how this ground
truth data can be created and utilized for quantitative evalua-
tion of 3D reconstruction methods.

Aiir Innovations' is a startup company that creates soft-
ware that automates borescope inspections of jet engines.
They aim to make borescope inspections faster and easier to
perform without losing inspection quality, and their vision is
to make the inspections a fully autonomous process. 3D re-

! Aliir Innovations: https://aiir.nl/

construction of the jet engines makes it possible to efficiently
perform borescope inspections on them.

At the moment, only qualitative evaluations can be done by
for example manually looking at the output 3D models and
verifying them. However, assessing a reconstruction method
with a calculated score will be a more objective way of quali-
fication, since this allows for quantification of the accuracy of
the method. Therefore, the main research question is: How fo
quantitatively evaluate 3D reconstruction of jet engines with
ground truth? This problem can be divided into two sub-
problems.

To assess a 3D reconstruction method with a certain accu-
racy, a reference set that serves as ground truth data is needed.
Thus, the question ”"How should data that serves as ground
truth data be created?” needs to be answered. For this, dif-
ferent methods of matching features should be considered,
one of which being manually annotating the features.

When a sufficient ground truth set is generated, this data
will be used to evaluate 3D reconstruction methods. To be
able to perform such an evaluation, there should be an effi-
cient measurement method to quantify the errors of the 3D
models reconstructed by the system under test. Therefore,
answering the question "How should the difference between
two 3D models be measured?” is needed.

Quantitative assessment of a 3D reconstruction method can
be divided into a number of steps, as can be seen in Figure 1.
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Figure 1: The pipeline for quantitative assessment.

There are three main contributions:

1. Providing a better understanding of the efficiency of
manually annotating features.

2. Describing a method on how ground truth data can be
created for the evaluation of 3D reconstruction.



3. Describing a method of quantitatively comparing 3D
point clouds that represent 3D models.

The rest of this paper is distributed over 7 Sections. The
next section provides a practical problem description. Sec-
tion 3 discusses related work. After that, Section 4 will give
a theoretical explanation of the techniques that will be ex-
perimented with and motivates them. The actual experiments
are described in Section 5 which also demonstrates the re-
sults. The ethical aspects and the reproducibility regarding
the outcome of the results are highlighted in Section 6. Sec-
tion 7 discusses the results from the experiments and covers
the limitations of the experiments. The conclusion of this pa-
per is provided in Section 8.

2 Quantitative Evaluation Problem

The aim of this research is to be able to quantitatively evaluate
a 3D reconstruction method using a reference set consisting
of input-output pairs that serve as ground truth data. This
section provides an in-depth description of what needs to be
done to achieve this goal.

2.1 Ground truth

Ground truth data is data that is more accurate than the results
of the algorithms that will be tested [1]. In this case, the idea
is to create 3D models that are more similar to the real objects
in terms of dimensions than the results of the 3D reconstruc-
tion methods under evaluation. By quantifying the distance
between the output 3D models of the algorithm in question
and their corresponding ground truth, the accuracy of the 3D
reconstruction method can be calculated.

2.2 Feature detection problem

For feature-based 3D reconstruction, features need to be de-
tected within the frames of the input video. Features, also re-
ferred to as interest points or keypoints, are locations within
an image that stand out. These features can be corners for
instance, but also locations where there is a lot of variation
in texture [2]. An example of a feature detection algorithm
is Scale-Invariant Feature Transform (SIFT), which produces
scale-invariant descriptors of local features within an image.
It does so by performing keypoint localization and measur-
ing the local image gradients at the location of the keypoints
to represent them [3]. Oriented FAST and Rotated BRIEF
(ORB) is another example of an algorithm used to detect fea-
tures. ORB uses FAST for feature detection and BRIEF for
the feature descriptors, which makes the algorithm invariant
to rotation and relatively fast and insensitive to noise [4].
From the detected features, a 3D model of the object within
the video can be constructed by performing feature matching
between frames of the video. Structure from Motion (SfM)
is an example of such a 3D reconstruction algorithm. With a
set of 2D images of an object from different angles, SfM is
able to reconstruct a 3D model of the object by calculating the
relative 3D positions of the points within the scene. Within
this project, an elaborate study on how well SfM works on
borescope videos of jet engines is performed by Nonnemaker
[5]. Another example of a 3D reconstruction algorithm is
Simultaneous Localization and Mapping (SLAM). The idea

of SLAM is that it reconstructs a 3D model of the surround-
ings of the camera in real-time [6]. A variant of SLAM is
ORB SLAM where ORB is used to detect the features. While
SLAM creates 3D reconstructions from an ordered list of im-
ages, SfM does it with an unordered list [7].

Even though there are several 3D reconstruction methods
available already, many of them rely on enough texture and
features that are easy to find within input images. If videos
contain surfaces that are shiny and lack texture, it can be dif-
ficult for feature detection algorithms such as SIFT and ORB
to locate appropriate keypoints within the frames of the video.
In this project, the majority of the input videos that are used
are borescope videos of jet engines” provided by Aiir. These
videos often contain such textureless surfaces. The shiny sur-
faces reflect light which results in unwanted intensity gradi-
ents in the images.

StM will be utilized for 3D reconstruction in the experi-
ments of this study. To detect and match features when per-
forming SfM, SIFT is most commonly used. Since it is likely
that SIFT does not work sufficiently on the borescope videos
of the jet engines [8], a more efficient way of localizing and
matching features within the frames is needed. This is also
a necessity for ensuring that the ground truth 3D models are
more precise than the produced models of the reconstruction
methods under evaluation. Therefore, SIFT needs to be re-
placed with better localized and matched set of features.

3 Related Work

This section discusses and criticizes studies that have been
done in the area of feature localization and quantitative com-
parison between 3D point clouds. It also explains how these
approaches are related to and differ from this research.

Algorithmic feature detection

For the localization of features, several algorithmic ap-
proaches can be used. Examples of algorithms that detect
features on a 3D model are HKS [9], 3D Harris [10], Mesh
Saliency [11], Salient Points [12], Scale Dependent Corners
[13], CGF [14] and SHOT [15]. SuperGlue is a pretrained
graph neural network that detects features within images [16].
It also includes a trained optical matching layer that performs
feature matching between two images. SuperGlue can be run
on a pair of frames of a video to localize and match features
between both frames. The neural network has a high perfor-
mance on borescope videos as is shown by a study performed
by Huizer [8]. Feature detection algorithms can contribute to
generating the ground truth data, because of the fact that local
extrema within the frames can be detected more adequately
compared to manual feature annotation.

Manual feature annotation

Another option for localizing features is manual annotation
[17]. To obtain the features, humans mark them within the
images or on the 3D model in question. Humans have a se-
mantic understanding of the object that they are seeing, but it
is more difficult for them to localize local extrema on it. Also,

2An example of such a borescope video can be found at
https://www.rvi-ltd.com/borescope-inspections-aircraft-engines/



different people will most likely mark different features when
annotating a model.

To evaluate the performance of a 3D feature detection algo-
rithm, human-generated features can be used as ground truth
data. This idea is presented in [18], where a web page with
a user interface is used for collecting the human-generated
ground truth. Within the user interface, the user is able to see
the 3D models of the set that is used in the experiments, ro-
tate them and annotate the features on them. As a solution
to the problem of the variation in feature annotations among
users, the annotations of the different participants are merged
based on their similarities. Points that are close enough to
each other are grouped and outliers are discarded. The result-
ing features are considered ground truth data and are used to
evaluate feature detection algorithms.

However, ground truth data needs to be qualitatively bet-
ter than the data that is tested and it might be the case that
human-generated features are less precise than features that
are detected by algorithms. Since humans have more diffi-
culty detecting local extrema within 3D models, algorithms
are generally better at localizing features on surfaces or edges.
Because of this, evaluating feature detection algorithms with
only human-generated ground truth might not be sufficient.
In such cases, using a combination of manual and algorith-
mic feature detection can be more efficient. This idea will be
experimented with in this research.

Distance between 3D point clouds

Comparing two 3D point clouds with each other can be diffi-
cult. This is partly because of the fact that both point clouds
often consist of a different number of points and the order of
the points that are included in the clouds can also differ. There
are different methods of calculating the difference between
3D point clouds. Examples are the Wasserstein distance [19],
the Chamfer distance [20], the Earth Mover’s distance [21]
and the Hausdorff distance [22].

Being able to quantify the difference between two point
clouds that represent 3D models is essential for evaluating a
feature-based 3D reconstruction method with ground truth.
The Wasserstein distance is an interesting measure for this
purpose, because of the fact that differences in order and
amount of points in the point clouds have little effect on the
distance. For computing the Wasserstein distance, weights
are assigned to each of the points. Consequently, the cost is
computed of transporting the weight from all points of one
point cloud to the points of the other point cloud.

4 Creating Ground Truth Data

Features in the frames of an input video need to be local-
ized and matched to create a ground truth 3D model from
the object within the video. This section motivates and de-
scribes a number of techniques that are experimented with in
this research and that can potentially be used to perform this
task. Furthermore, the 3D reconstruction and evaluation of
the ground truth models is described.

4.1 Feature annotation

One way of localizing and matching the features within the
frames of an input video is by exhaustively annotating them

by hand for every frame. When manually annotating the
features, it can be ensured that there are no wrong feature
matches and that segments of the frames that will not be used
for the 3D reconstruction are not annotated. This implies that
there is good control over the quality of the final 3D model.
While manual annotation provides precise control over which
and how many features are localized and matched, there some
disadvantages. Firstly, annotating features in every frame of
a video often takes relatively long. Also, manual annotation
most likely results in a certain amount of noise in the fea-
ture localizations. Lastly, it might occur that few features
are annotated when doing it by hand. To account for these
problems, several algorithmic approaches have been evalu-
ated with experiments. This was done with the intention to
not only try to speed up the process, but also improve the
accuracy and the amount of the ground truth feature anno-
tations. The main ideas of these algorithmic approaches are
described in the following subsections.

4.2 Optical flow

Optical flow is used to make estimations of motion between
sequences of images. This sequence can for instance consist
of consecutive frames within a video. In this case, the appar-
ent motion in the image plane between for example the first
and second frame is determined [23], see Figure 2.

(b) second frame

(a) first frame

(c) optical flow

Figure 2: A Rubik’s cube on a rotating turntable. The motion is
represented by the arrows in Figure c.

The Lucas-Kanade approach is an example of an optical
flow algorithm [24] and is evaluated with an experiment in
this research. An assumption that is made by this algorithm
is that the movement of a certain pixel of an image is simi-
lar to the movement of the pixels in its neighborhood. The
borescope videos of the jet engines contain blades that do not
change in form, implying that the neighborhood pixels of a
specific pixel will most likely move in a similar direction as
the pixel itself. Therefore, the Lucas-Kanade algorithm may
be useful for a faster process of feature annotation within the
borescope videos.

If the features of a certain frame are annotated, the features
of the next frame can be derived by using the Lucas-Kanade
algorithm. Each newly annotated feature within the second
frame can subsequently be matched to its corresponding fea-
ture from the first frame. This would reduce the amount of
manual labour needed for feature annotation. The resulting
features of the experiment that is done with Lucas-Kanade
optical flow are qualitatively evaluated, since they should be
at least as accurate as manually annotated features of which



the error is negligible. Verifying the resulting features by
comparing them with manual annotation is therefore suffi-
cient.

4.3 Interpolation

Another method that could be used with the intention of sav-
ing time in the process of manual feature annotation is inter-
polating the feature coordinates over frames. If for example
frame 3 has a feature on pixel (1, 6), where its x-coordinate is
1 and its y-coordinate is 6, and frame 7 has the same feature
located on pixel (5, 4), frames 4, 5 and 6 can be assigned this
feature with coordinates (2, 5.5), (3, 5) and (4, 4.5) respec-
tively when interpolating linearly, see Figure 3.
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Figure 3: Interpolation between x-coordinates 1 and 5, and between
y-coordinates 6 and 4. The intermediate coordinates can be derived.

By applying this method, the feature locations of interme-
diate frames, frames that are not annotated, are derived by
interpolation of the existing feature coordinates of the anno-
tated frames. Therefore, not all frames need to be manually
annotated which is beneficial for the amount of time that is
needed to produce the annotations of all frames. It might also
improve the quality of the annotations in terms of accuracy,
since the motion within a borescope video is relatively consis-
tent and there is little change in the direction of the movement
of each keypoint over time. Consequently, if the features from
each single frame are manually localized, it is likely that the
annotations lack consistency and contain noise. Using in-
terpolation on the other hand, the smooth movement of the
blades within the videos can be approached better. Just like
the Lucas-Kanade experiment, the interpolation experiment
are also evaluated by looking at the resulting features.

4.4 Incremental SfM and MVS

There are different ways of performing SfM, one of them
being the incremental SfM technique. Incremental SfM ini-
tializes the reconstruction of a model with two images after
which it registers new images in an incremental fashion. This
is done until the full sparse reconstruction of the scene is
achieved [5]. The incremental SfM strategy is used for the
creation of the sparse point clouds of the ground truth data
within this project, since it processes all image pairs that have
matching features. Besides, the reconstruction does not need
to be done in real-time for the purpose of this study.
Multi-View Stereo (MVS) [25] is a technique that can be
used in combination with SfM to construct a dense 3D model

out of the obtained sparse point cloud and the image informa-
tion. MVS will also be used for the experiments of this re-
search, since creating a dense point cloud allows for more ef-
ficient qualitative evaluation compared to just using the sparse
point clouds obtained from incremental SfM.

4.5 Qualitative Evaluation

Qualitative evaluation is necessary to verify that the recon-
structed ground truth 3D models are sufficiently accurate and
do not contain too much noise. In practice, a single ground
truth 3D model will most likely be utilized within the evalu-
ations of multiple 3D reconstruction algorithms. This ground
truth model needs to have a higher quality than the 3D recon-
structions that result from all algorithms that are being evalu-
ated. Verification of the ground truth is therefore required.

S Experiments and Results

Within this project, a number of experiments have been per-
formed with manual feature annotation, optical flow, interpo-
lation, the SuperGlue neural network and the Wasserstein dis-
tance. This section describes the setup of these experiments
as well as their results.

5.1 Feature matching tool

During the evaluation of the different methods of feature
annotation, a clear environment was needed that visualizes
annotated features and enables for addition and deletion of
annotations. A feature matching tool was implemented in
Python for this purpose. The opencv-python and numpy li-
braries were used for the implementation. In Figure 4 is
shown what the user interface looks like when running the
tool on a borescope video from Aiir of a jet engine that is
labeled as Video 1.

The tool is an efficient way to not only manually annotate
the features and matches, but also to combine that with al-
gorithmic methods. When running the tool, the user gets the
opportunity to fill in the name of the video file, as well as
the name of the output csv-file. Following that, the user is
asked to indicate the interval of the frames that will be anno-
tated. If then for example the number 5 is filled in, the tool
will only process frames 1, 6, 11, etc. This makes interpo-
lation possible. Lastly, the user can fill in the last frame that
needs to be processed. Afterwards, the frames of the video
will be loaded and the program will jump to the first frame.
The number of frames is displayed in the console, as well as
an overview of all commands that can be used to run certain
tasks, see Figure 4a. To be able to annotate feature matches
within the frames, the current frame and previous frame are
displayed. The annotations can only be made in the window
of the current frame. Left-clicking creates an annotation at
the mouse position and right-clicking deletes the annotation.
Features are assigned an id and the user can iterate over them.
If two frames both contain a feature with the same id, there is
a feature match between the two frames. Already annotated
features are colored orange and the feature that is being pro-
cessed currently is colored green if it is already marked, as
can be seen in Figure 4b.



(a) The console after the input video has loaded. The number of
frames is visible as well as a list of all commands, the current frame
and the id of the current feature.

(b) The current frame (upper image) and the previous frame (lower
image) are visualized when running the tool. The current feature is
colored green and the already annotated features are colored orange.

Figure 4: The user interface of the feature matching tool run on the first 300 frames of Video 1.

SfM and MVS with COLMAP

For the 3D reconstruction, COLMAP? is used to run incre-
mental SfM and MVS. COLMAP makes it possible to match
features within a video by creating custom descriptor matri-
ces for them and formatting a text file in which all overlap-
ping frame pairs and their corresponding feature matches are
listed*. In the experiments done in this research, a frame pair
that contains at least 10 matches is considered an overlapping
frame pair. The feature matching tool offers functionality to
generate both the feature descriptor matrices and the text file
with the overlapping frame pairs. Using this data, the sparse
3D point cloud is constructed with incremental SfM and the
dense point cloud with the built-in MVS functionality. These
models can be saved as .ply files.

Experiment 1: The same features for all frames

To validate whether inputting custom feature matches in
COLMAP works sufficiently, a video of a laptop is used.
This video is labeled as the Laptop Video. On each of the
frames, the same 16 features are manually annotated and
given ids O to 15 using the feature matching tool, see Fig-
ure 5a. Following that, the descriptor matrices for each of
the features are generated and the text file with the overlap-

3https://github.com/colmap/colmap/releases/tag/3.6
*urlhttps://colmap.github.io/tutorial. htm]

ping frame pairs is created using the LSHIFT+W command
within the tool. The matrices and the text file are used as
input in COLMAP and then the 3D point cloud is incre-
mentally constructed with SfM. The init_min_num_inliers and
abs_pose_min_num_inliers parameters within COLMAP are
set to 16, since only 16 features are inputted per frame. The
default values are maintained for the rest of the parameters.
This experiment will demonstrate to what extent the resulting
3D model cohers to the custom feature annotations. In Figure
5b, the resulting 3D point cloud is visualized. The shape of
the laptop is accurately reconstructed.

5.2 Lucas-Kanade optical flow

The feature matching tool provides functionality to perform
a step of the Lucas-Kanade optical flow algorithm. This step
can be executed to derive the features in the current frame
from the annotated features in the previous frame. The im-
plementation for this experiment is inspired by the code from
OpenCVS, where features within the frames of a video are de-
tected and tracked throughout the whole video. This is done
using the Lucas-Kanade method, which essentially provides
the corresponding points in the next frame, and this step is re-
peated for all frames. For the purpose of the experiment with
optical flow in this project, however, the Lucas-Kanade step

Shttps://docs.opencv.org/3.4/d4/dee/tutorial optical _flow.html/



(a) Two different frames of the Laptop Video an-
notated with the same 16 frames. For Experiment
1, all frames are annotated with these features.

left side of the scene
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right side of the scene

(b) The resulting 3D model of inputting the 16 feature annotations for every frame in
COLMAP. The model is shot from two different viewpoints. The shape of the laptop
is clearly observable.

Figure 5: 3D reconstruction of the laptop from the Laptop Video with 16 different features. (Experiment 1)

is only performed once when executing it. By using the coor-
dinates of the annotated features in the previous frame as the
points that need to be tracked, the corresponding features in
the current frame are calculated with the Lucas-Kanade step.

Experiment 2: Lucas-Kanade for feature annotation

For evaluating the effectiveness of this method of using
Lucas-Kanade optical flow, an experiment is done with three
frames of Video 1. The first frame is manually annotated with
features on the clearly distinguishable points. Following that,
the Lucas-Kanade step is executed twice to derive the loca-
tions of the corresponding features within the frames that fol-
low the first frame. The results of this experiment are visible
in Figure 6. It can be observed that there is a noticeable inac-
curacy in the localizations of the features.

Frame 2 Frame 3

Frame 1

Figure 6: Lucas-Kanade on three consecutive frames of Video 1.
The features are not tracked properly. Better results can be obtained
with manual annotation. (Experiment 2)

5.3 Interpolation

Interpolation of feature annotations is also a functionality that
is implemented in the feature matching tool. When running
the tool, the user will be asked for an integer input when the
line ”Annotate once every ... frames: ~ appears. If for exam-
ple 10 is filled in, the tool will only iterate over frames 1, 11,

21, etc. The last frame that will be processed depends on the
end frame that is filled in by the user afterwards.

When the features within the frames that the tool will it-
erate over are marked, the user can execute the interpolation
by pressing I on the keyboard. This linearly interpolates the
features for the intermediate frames, so frames 2-10, 12-20,
etc. for the case described in the previous paragraph. The
user has the option to indicate the start and end frames of this
interpolation, as well as which features are interpolated.

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Frame 6

Figure 7: Interpolation of features in Video 1 with n = 5. There is
no noticeable error in the feature localizations. (Experiment 3)



Experiment 3: Interpolating feature annotations

Within this experiment, the quality of using interpolation will
be evaluated. Let n be the interpolation interval that is filled in
by the user when the line ”Annotate once every ... frames: ”
appeared in the console. In Figure 7, interpolation was done
on 10 different features with n = 5 to get a sequence of 6
frames that have 10 annotations. The feature annotations are
done manually on frames 1 and 6 and the localizations in the
intermediate frames are derived by linear interpolation. This
resulted in sufficiently accurate feature localizations within
the sequence of frames.

If n is too high, the derived feature coordinates in the inter-
mediate frames will not be as accurate as manually annotated
features. If for example n = 30, the calculated locations of
the features in frame 16 have a noticeable error, see Figure 8.

Frame 1

Frame 16

Frame 31

Figure 8: Interpolation of features in Video 1 with n = 30. The
features in frame 16 are not sufficiently accurate. Better results can
be obtained with manual annotation. (Experiment 3)

5.4 Constructing ground truth 3D models

For creating the 3D models that will be used as ground truth, a
relatively exhaustive approach is used. To produce the feature
localizations and matches, the SuperGlue neural network® is
used in combination with interpolation and algorithmic filter-
ing. As for the parameters, the default values are used and the
images are resized to 1280 x 720 pixels.

Experiment 4: Combining SuperGlue with interpolation

This experiment evaluates an approach of creating ground
truth 3D models where the features are localized and matched
by a combination of SuperGlue and interpolation. In the first
iteration SuperGlue is run on all consecutive frame pairs, so
on frames 1 and 2, frames 2 and 3, frames 3 and 4, etc.
This produces a number of features and matches among the
frames. In the next iteration, SuperGlue will process frames 1
and 3, frames 3 and 5, frames 5 and 7, etc. The coordinates of
the features of the intermediate frames 2, 4, 6, etc. are derived
using linear interpolation in a similar fashion to Experiment
3. Within the same iteration, SuperGlue is run on frames 2
and 4, frames 4 and 6, frames 6 and 8, etc. and the features
in the intermediate frames are again derived with interpola-
tion. The second iteration therefore consists of two steps, as
opposed to the first iteration which has only one step. The
third iteration will in turn consist of three steps where Super-
Glue is run on frames 1 and 4, frames 4 and 7, etc. in the
first step, frames 2 and 5, frames 5 and 8, etc. in the second

Surlhttps://github.com/magicleap/SuperGluePretrainedNetwork

step, and frames 3 and 6, frames 6 and 9, etc. in the third
step. Again, the intermediate frames are interpolated over.
For this experiment, this is repeated until the Sth iteration and
the detected and interpolated features from all steps of all it-
erations are combined into a large set of feature localizations
and matches.

To reduce the amount of noise within the point cloud, al-
gorithmic filtering is applied. The intention of this is to filter
out points that are not of interest, such as the features that
are detected in the background. For Video 1 for example,
algorithmic filtering is done such that the movement to the
left of all features is between 6 and 30 pixels and the abso-
lute value of the movement along the vertical axis is at most
7 pixels. The resulting set of feature matches is used as in-
put within COLMAP for 3D reconstruction. Apart from the
camera model being set to radial, the default parameters are
used in COLMAP. The outcome 3D model of this experiment
on Video 1 is visible in Figure 9. This experiment is also
done on several other borescope videos of jet engines pro-
vided by Aiir, which resulted in similar comparisons between
the ground truth and SuperGlue models.

5.5 Wasserstein distance

Calculating the Wasserstein distance is an example of a
method of quantifying the difference between two 3D point
clouds that represent 3D models. For Experiment 5, the
python library point-cloud-utils’ is utilized to perform the
comparison.

Experiment 5: Comparing small 3D point clouds

In this experiment, 16 features within the Laptop Video are
localized in three different ways. Following that, the three
corresponding sparse 3D point clouds are constructed with
incremental SfM in COLMAP and they are labeled as Point
cloud 1 to 3. These are relatively small point clouds, since
computing the Wasserstein distance is computationally ex-
pensive and with the available technology, 3D point clouds re-
constructed from algorithmic feature detection were too large.
The same parameters as those from Experiment 1 are utilized
in COLMAP.

¢ Point cloud 1: The point cloud from Experiment 1.

* Point cloud 2: Reversed order of the ids of the annotated
features from Experiment 1. This modification lists the
feature matches in reversed order in the text file with
overlapping frames, which results in a point cloud where
the order of points is reversed.

* Point cloud 3: A point cloud that contains 16 randomly
localized 3D points resulting from random annotations
within the frames.

Using the point-cloud-utils library, the Wasserstein distance is
computed between each of the point clouds, which are saved
as .ply files. The expectation is that Point clouds 1 and 2 have
a relatively low Wasserstein distance and that the order of
the points within the point cloud does not affect the distance.
Furthermore, the distances between Point clouds 1 and 3 as
well as between 2 and 3 are expected to be relatively high,

"url https://github.com/fwilliams/point-cloud-utils



(a) An example frame of Video 1.

(b) Ground truth SfM + MVS reconstruction.

(c) SfM + MVS reconstruction with SuperGlue.

Figure 9: Dense SfM + MVS 3D reconstruction on 150 frames of Video 1. The 3D model that results from the ground truth features
(b) contains more blades than the model constructed with SuperGlue (c). Also, the shape of the blades is better and there is less noise.

(Experiment 4)

because of the fact that there is a high difference in the feature
localizations. The results of this experiment are visible in
Table 1.

Point cloud Numper of Compare with ~ Wasserstein distance
points
Point cloud 1 0.0000
Point cloud 1 16 Point cloud 2 11.301
Point cloud 3 822.59
Point cloud 1 11.132
Point cloud 2 16 Point cloud 2 0.0000
Point cloud 3 862.52
Point cloud 1 912.88
Point cloud 3 16 Point cloud 2 950.20
Point cloud 3 0.0000

Table 1: Resulting Wasserstein distances of Experiment 5. As ex-
pected, the order of the points does not affect the distance, while a
difference in feature localizations does. The relatively small Wasser-
stein distance that is computed between Point cloud 1 and 2 results
from small variations in 3D reconstruction by incremental SfM.

6 Responsible Research

While this research provides an understanding in how ground
truth can be used to quantitatively evaluate 3D reconstruction
of jet engines, some responsibility is required when using the
introduced methods. The experiments performed within this
project show that certain techniques can be combined to pro-
duce ground truth 3D models. However, when it comes to
the techniques used to localize and match features within in-
put videos, certain algorithmic approaches work better on one
video than on another. This implies that the person who is
responsible for creating the ground truth data and therefore
executing these algorithms should verify feature matches re-
sulting from those algorithms and make manual adjustments
where needed. Having inadequate ground truth data causes
inaccurate assessments to be made every time it is utilized
for evaluation. Thus, the ground truth 3D models should
not be carelessly generated by assuming that the algorith-
mic approaches will always produce sufficient results. An-

other aspect concerns the quantification of 3D model com-
parison. While the experiment regarding the Wasserstein dis-
tance does show that this method can potentially be used for
this purpose, there were some limitations as will be discussed
in Section 7. More understanding on the performance of the
Wasserstein distance needs to be obtained to verify that the
measure is sufficient for the 3D model comparisons that are
necessary for assessment. Ensuring the adequacy of the eval-
uation of jet engines is of major importance for safety when
the engine is put into practice.

As for the reproducibility of the experiments done in this
research, there are several aspects that need to be taken into
account. The self-implemented feature matching tool includ-
ing the linear interpolation functionality is not publicly avail-
able, but can be implemented in Python using publicly avail-
able libraries. The algorithms that are used for computing
the Wasserstein distance and the Lucas-Kanade optical flow
are also available online. Furthermore, COLMAP is pub-
licly downloadable and the configurations of the parameters
that are used are explained for each experiment in Section
5. The code for the SuperGlue neural network is also pub-
licly available. The results of the experiments contain fea-
tures that follow from manual annotation, which cannot be
copied. However, they can be approached in a similar way
to obtain similar results. Lastly, videos that are used for the
experiments are not available, but examples can be found on-
line and similar videos can be created. Considering all these
aspects, the methods and results of this study are reproducible
by any skilled reader.

7 Discussion

The results and limitations of the experiments in Section 5
are elaborated on in this section, starting with Experiment 1.
In this experiment it was shown that the shape of the laptop
is observable when inputting 16 features with ids O to 15 for
every frame of the Laptop Video in COLMAP and running in-
cremental SfM. This implies that accurate 3D reconstructions
can be made with incremental SfM by inputting accurately
localized features in COLMAP.

From Experiment 2 it can be observed that Lucas-Kanade
optical flow does not work sufficiently for speeding up the



process of manual feature annotation. In Figure 6 it is vis-
ible that the features cannot be tracked properly through-
out the frames. This happens because these points are
manually chosen, whereas the OpenCV implementation de-
cides on the points that are tracked using a built-in function
cv.goodFeaturesToTrack(). Marking the features might lead
to bad tracking compared to using the built-in function to de-
cide on them.

Experiment 3 shows that linear interpolation of feature co-
ordinates within annotated frames is an effective way of de-
riving the locations of the same features within the intermedi-
ate frames. It can be observed that there is no noticeable error
in the derived features. This implies that the difference in ac-
curacy between manually annotated and interpolated features
is negligible. For this technique to provide sufficient results,
however, it is important that the interpolation interval (n) is
chosen accordingly. If the amount of variation in the speed
and direction of the motion within a specific video is rela-
tively high, then values for n that are relatively low produce
more accurate feature annotations when interpolating.

Knowing that interpolation can be used to localize features,
an evaluation has been done on an iterative approach of cre-
ating ground truth 3D models in Experiment 4. The ground
truth 3D reconstruction of Video 1, visible in Figure 9b, has
significantly more quality than the 3D reconstruction with
only SuperGlue for the feature matching, visible in Figure 9c.
However, there is still some noise visible in the ground truth
reconstruction. This can be prevented by manually deleting
incorrect feature detections within the frames. Another way
to improve the ground truth model is to manually add accu-
rate feature matches to the already existing matches, as can
be deduced from Experiment 1. Due to the fact that manual
labour takes relatively long, this is not done in Experiment 4.
The experiment does show that a combination of algorithmic
feature detection and linear interpolation can be used to create
ground truth 3D models, given that the interpolation interval
is not too high.

The results of Experiment 5 show that the Wasserstein dis-
tance can be used to quantify the difference between two 3D
models. The comparisons within this experiment are done
between point clouds with low numbers of points. This is
because of the fact that calculating the Wasserstein distance
has a high computational cost. To compare for example two
3D reconstructions of jet engines, more computational power
is needed than available in this project. Also, there are no
comparisons done between point clouds containing different
amounts of points. However, the effect of inequalities in
amount of points can be examined by performing these com-
parisons.

8 Conclusions

Jet engine inspections can be made more efficient by per-
forming 3D reconstruction from borescope videos of the jet
engines. To verify that a certain 3D reconstruction method
is valid for this purpose, there needs to be a way of quan-
titatively evaluating it. Within this study, the main research
question was: How to quantitatively evaluate 3D reconstruc-
tion of jet engines with ground truth?. Several approaches

have been evaluated that could potentially be used to gener-
ate the ground truth 3D models. By manually annotating fea-
tures within the frames of a borescope video, high-quality 3D
models can be constructed. However, the amount of manual
labour that is needed makes the approach inefficient. There
are techniques that can be used to speed up the process of
manual feature annotation. The experiments of this study
show that while Lucas-Kanade optical flow does not perform
sufficiently for this task, linear interpolation of feature coor-
dinates does have potential. By deriving feature localizations
from interpolation, fewer frames need to be annotated manu-
ally. From this research, it can be concluded that the features
for the ground truth 3D models can partially be localized with
a combination of algorithmic feature detection and interpola-
tion. Since feature detection algorithms often do not perform
sufficiently on the borescope videos, filtering out noisy fea-
ture matches and manually adding missing matches is also
necessary. The 3D reconstruction out of the resulting set of
feature localizations and matches can then be created. When
the ground truth model is constructed, qualitative evaluation
is essential for verifying that the model is similar enough to
the real jet engine. If the ground truth model is more accurate
than the results of the 3D reconstructions that will be evalu-
ated, it can be utilized for assessment.

As for the quantification of the distance between two point
clouds that represent 3D models, the experiment shows that
the Wasserstein distance can be used for the comparison.
What is still missing, however, is an understanding of the per-
formance of this method when comparing point clouds of dif-
ferent sizes. Also, because of the computational expensive-
ness of computing the Wasserstein distance, the experiment
only considers small point clouds. It might be interesting for
future work to investigate how the Wasserstein distance can
be used for the comparison of jet engine 3D reconstructions.

References

[11 J. R. Cardosa, L. M. Pereira, M. D. Iversen, and A. L.
Ramos, “What is gold standard and what is ground
truth?” Dental Press J. Orthod., vol. 19, no. 5, 2014.

[2] I Laptev, “How to quantitatively evaluate a 3d recon-
struction method?” International Journal of Computer
Vision, vol. 64, pp. 107-123, 2005.

[3] D. G. Lowe, “Distinctive image features from scale-
invariant keypoints,” International Journal of Computer
Vision, vol. 60, pp. 91-110, 2004.

[4] L. Yu, Z. Yu, and Y. Gong, “An improved orb algo-
rithm of extracting and matching features,” Interna-

tional Journal of Signal Processing, vol. 8, no. 5, pp.
117-126, 2015.

[5] A.M. Nonnemaker, “Evaluating structure-from-motion
on shiny and non-textured surfaces in borescope
videos,” 2021.

[6] Z.Shang and Z. Shen, Construction Research Congress
2018, 2017, pp. 305-315.
[7] J. L. Schonberger and J. Frahm, Proceedings of the

IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4104-4113.



[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

R. M. Huizer, “Performance analysis of interest point
detection/matching on shiny and non-textured surfaces,”
2021.

J. Sun, M. Ovsjanikov, and L. Guibas, “A concise
and provably informative multi-scale signature based on
heat diffusion,” Computer Graphics Forum, vol. 28, pp.
1383-1392, 2009.

L. Sipiran and B. Bustos, “Harris 3d: a robust extension
of the harris operator for interest point detection on 3d
meshes,” The Visual Computer, vol. 27, no. 11, 2011.

C. HalLee, A. Varshney, and D. W. Jacobs, “Mesh
saliency,” ACM transactions on graphics (TOG),
vol. 24, no. 3, pp. 659-666, 2005.

U. Castellani, M. Cristani, S. Fantoni, and V. Murino,
“Sparse points matching by combining 3d mesh

saliency with statistical descriptors,” Computer Graph-
ics Forum, vol. 27, pp. 643-652, 2008.

J. Novatnack and K. Nishino, “Scale-dependent 3d geo-
metric features,” 2007 IEEE 11th International Confer-
ence on Computer Vision, pp. 1-8, 2007.

M. Khoury, Q. Zhou, and V. Koltun, “Learning com-
pact geometric features,” Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 153-161,
2017.

F. Tombari, S. Salti, and L. Di Stefano, “Unique signa-
tures of histograms for local surface description,” Eu-
ropean conference on computer vision, pp. 356-369,
2010.

P. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabi-
novich, SuperGlue: Learning Feature Matching with
Graph Neural Networks, 2020, pp. 4938-4947.

Y. You, Y. Lou, C. Li, L. Li, L. Ma, C. Lu, and W. Wang,
“Keypointnet: A large-scale 3d keypoint dataset aggre-
gated from numerous human annotations,” Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 13 647-13 656, 2020.

H. Dutagaci, C. P. Cheung, and A. Godil, “Evaluation
of 3d interest point detection techniques via human-
generated ground truth,” The Visual Computer, vol. 28,
pp- 901-917, 2012.

K. Kawano, S. Koide, and T. Kutsuna, Learning Wasser-
stein Isometric Embedding for Point Clouds, 2020, pp.
473-482.

P. Achlioptas, O. Diamanti, [. Mitliagkas, and
L. Guibas, Learning Representations and Generative
Models for 3D Point Clouds, 2018, vol. 80, pp. 40-49.

H. Fan, H. Su, and L. J. Guibas, A Point Set Generation
Network for 3D Object Reconstruction From a Single
Image, 2017, pp. 605-613.

A. A. Taha and A. Hanbury, “An efficient algorithm for
calculating the exact hausdorff distance,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
vol. 37, no. 11, pp. 2153-2163, 2015.

(23]

[24]

[25]

W. S. P. Fernando, L. Udawatta, and P. Pathirana, “Iden-
tification of moving obstacles with pyramidal lucas
kanade optical flow and k means clustering,” 2007 Third
International Conference on Information and Automa-
tion for Sustainability, pp. 111-117, 2007.

N. Sharmin and R. Brad, “Optimal filter estimation for
lucas-kanade optical flow,” Sensors, vol. 12, no. 9, pp.
12694-12 709, 2012.

J. L. Schonberger, E. Zheng, M. Pollefeys, and J. Frahm,
“Pixelwise view selection for unstructured multi-view
stereo,” in European Conference on Computer Vision
(ECCV), 2016.



	Introduction
	Quantitative Evaluation Problem
	Ground truth
	Feature detection problem

	Related Work
	Algorithmic feature detection
	Manual feature annotation
	Distance between 3D point clouds


	Creating Ground Truth Data
	Feature annotation
	Optical flow
	Interpolation
	Incremental SfM and MVS
	Qualitative Evaluation

	Experiments and Results
	Feature matching tool
	SfM and MVS with COLMAP
	Experiment 1: The same features for all frames

	Lucas-Kanade optical flow
	Experiment 2: Lucas-Kanade for feature annotation

	Interpolation
	Experiment 3: Interpolating feature annotations

	Constructing ground truth 3D models
	Experiment 4: Combining SuperGlue with interpolation

	Wasserstein distance
	Experiment 5: Comparing small 3D point clouds


	Responsible Research
	Discussion
	Conclusions

