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Temporal Graph Reproduction With RWIG
Sergey Shvydun , Anton-David Almasan , and Piet Van Mieghem , Fellow, IEEE

Abstract—We examine the Random Walkers Induced temporal
Graph (RWIG) model, which generates temporal graphs based on
the co-location principle of M independent walkers that traverse
the underlying Markov graph with different transition probabil-
ities. Given the assumption that each random walker is in the
steady state, we determine the steady-state vector s̃ and the Markov
transition matrix Pi of each walker wi that can reproduce the
observed temporal network G0, . . ., GK–1 with the lowest mean
squared error. We also examine the performance of RWIG for
periodic temporal graph sequences.

Index Terms—Generative models, Markov process, network
dynamics, random walks, RWIG, temporal networks.

I. INTRODUCTION

T EMPORAL networks have attracted a lot of attention in the
last decades [1], [2], [3]. Many complex systems, including

infrastructural, biological, social, and financial networks, evolve
over time which, in turn, affects the topology and the processes
that propagate over these networks. Modeling these systems
enhances our understanding of their dynamics and the processes
that propagate through them, such as diffusion and contagion,
while also providing valuable predictions [4], [5].

Modeling temporal networks is more difficult and challenging
than modeling static graphs. While the static network generation
is aimed to reproduce some emergent network structure (e.g.
power-law degree distribution [6], community structure [7],
[8], motifs [9] or small-world [10] properties), the temporal
network generation should take into account a highly non-trivial
interplay between the topology and the evolutionary process of
the network, which exhibits temporal patterns, memory effects
and dependencies, including burstiness of links, their quasi-
periodicity (e.g. day-night or weekly rhythms) and temporal
correlation. There exist temporal network models that mimic
real-world networks in terms of certain topological features such
as the number of links, clustering coefficient, degree distribution,
connected components or motifs [11], [12], [13]. A system theo-
retical approach towards emulating temporal graphs is presented
in [14]. Various approaches to human mobility are discussed
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Fig. 1. Inverse problem for RWIG: non-identifiability of the initial process.

in [15], [16], [17], [18], [19]. However, most existing models do
not provide precise knowledge about the underlying process that
generates temporal graphs. If the underlying evolutionary pro-
cess is stochastic, then an observed graph sequenceG0,…, GK-1

represents just one possible realization. Therefore, replicating
such sequences without capturing the underlying process may
result in overfitting and inaccurate predictions of future network
dynamics and propagating processes.

This paper aims a deeper understanding of network evolution-
ary processes. Specifically, we examine the Random Walkers
Induced temporal Graph (RWIG) model [19] that generates
temporal graphs based on the underlying Markov process. The
essential components of RWIG are

a) M random walkers on a fixed underlying graph,
b) the fixed underlying graph is a Markov graph on N states

(nodes). The random walk on a Markov graph specifies
a stochastic process that steers the walker, which we
interpret as the walker policy. In principle, each inde-
pendent walker wi possesses its own Markov graph on
N states) specified by an N×N probability transition
matrix Pi.

c) the co-location principle creates the links in the contact
graph Gk between walkers that are in the same state in the
underlying graph at time k.

Fig. 1 exemplifies M = 3 random walkers, who traverse
the same Markov graph (left) with N = 8 states (shaded) in
discrete-time steps according to the transition probabilities pij .
Fig. 1 (right) shows T possible contact sequences between M
walkers. Initially, all walkers form a clique in the contact graph
G0, because they are in the same state at discrete time k = 0.
At each discrete time k, RWIG generates the contact graph
Gk by creating links between all walkers found in the same
state in the Markov graph. Therefore, any sequence of graphs
G0, . . ., GK-1 consists of the union of disconnected cliques,
which is in complete accord with the topology of the empirical
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co-location contact graphs in [20]. However, RWIG cannot
reproduce real-world networks with a non-clique structure.

A physical interpretation of RWIG is a collection of indi-
viduals moving through space (e.g. city map). Each node of
the underlying graph is a physical location (workplaces, homes,
hospitals, schools, public transport stations, etc.) while links
are physical paths between locations. RWIG assumes that the
Markov process generates human motion over a set of places
(states). Almasan et al. [19] derived closed-form solutions for
the probability distribution of contact graphs at discrete time k.
Here, we focus on the inverse problem and discuss how well
RWIG can reproduce a temporal graph sequence. Our goal is to
infer the initial state and the Markov graph of each walker that
can generate a given K-length graph sequence G0, . . ., GK–1.

Solving the inverse problem for RWIG is challenging. If the
evolutionary process of the temporal network is not determin-
istic, the observed sequence G0, . . ., GK–1 is only one possible
realization of the stochastic process and does not replicate the
entire process. Fig. 1 illustrates an example where only realiza-
tion 4 is observed. Hence, identifying the RWIG’s parameters
from a single realization may not be feasible.

Our major contributions can be summarized:
� We determine the steady-state vectors of the walkers in

RWIG that generate a temporal graph sequence with the
same average graph density and clique distribution as in
the observed graph sequence G0, . . ., GK–1.

� If G0, . . ., GK–1 is produced by RWIG in the steady state,
then we identify the underlying common policy matrix (the
Markov graph) of the walkers that generates the observed
graph sequence G0, . . ., GK–1.

� We demonstrate that RWIG with different policies of the
walkers is able to reproduce any periodic graph sequence.
We propose the algorithm that defines the Markov graph
and initial state of each walker.

The paper is organized as follows. Section II describes RWIG
and discusses the performance metrics for the inverse problem.
Sections III and IV discuss RWIG in the steady state. Section III
provides the solution for the steady-state vectors of the walk-
ers. Section IV determines the Markov graph of the walkers.
Section V discusses periodic graph sequences. We summarize
the notation in the Appendix A.

II. RANDOM WALKERS INDUCED TEMPORAL GRAPH (RWIG)

A. Temporal Networks

We consider a temporal graph G = {Gk(M,Lk)}K–1
k=0, con-

sisting of a setM of |M| = M walkers connected by a setLk of
Lk links at discrete time k ∈ {0, 1, . . .,K–1}. The graph Gk is
described by an M×M adjacency matrix A[k] whose elements
aij [k] are either one or zero depending on whether there is a
link between walkers wi and wj or not at discrete time k. For
simplicity, we assume that the set of nodes is fixed and the graph
is undirected without self-loops. Then all adjacency matrices
A[k] = (A[k])T are real symmetric matrices. Since our focus is
on the inverse problem of RWIG, we also assume that the graph
Gk is composed of a set of disconnected cliques.

B. Description of RWIG

The random variable Xi[k] denotes the state in the Markov
graph of walker wi at discrete time k and Pr[Xi[k] = l] is the
probability that walker wi is in state l in the Markov graph at
discrete time k. The probability transition matrix Pi encodes the
time-independent policy of walker wi

(Pi)lj = Pr[Xi[k + 1] = j|Xi[k] = l]

at any discrete time k. Given the initial 1×N state vector
si[0] of walker wi (its initial position), the corresponding
1×N state vector si[k] at discrete time k is defined in [21] as

si[k] = si[0]P
k
i ,

where the l-th element of the probability state vector si[k] for
walker wi at discrete time k is (si[k])l = Pr[Xi[k] = l].

RWIG generates a sequence of contact graphs G0, . . .,GK–1

where the contact graphGk consists of the union of disconnected
cliques. Hence, RWIG is not able reproduce sequences of non-
clique graph structures.

Almasan et al. [19] derived the probability of an m-clique
contact graph gk = {A1[k], . . .,Am[k]} at discrete time k

Pr[Gk = gk] =

N∑
i1=1

. . .

N∑
im=1

im �∈{il}m–1
l=1

m∏
j=1

∏
wu∈Aj [k]

(su[k])ij ,

or, equivalently,

Pr[Gk = gk] =
∑
π∈Pg

(∏
C∈π

(−1)|C|−1(|C|−1)!
) ∏
A∈g(π)

σA[k],

whereAi[k] for all i ∈ {1, . . .,m} represent the cliques formed
at discrete time k, Pg is the set of all partitions on g, |C| denotes
the number of cliquesA in cell C of partition π on g, g(π) is the
contact graph in which the cliques are formed by the cells C and
σA[k] is the probability that walkers of a subset A ⊆M are in
the same state at discrete time k

σA[k] =

⎛⎝⊙
wj∈A

sj [0]P
k
j

⎞⎠uT , (1)

where
⊙

denotes the Hadamard product [22] and u is the 1×N
all-one vector.

Since the Markov process generates the temporal graph se-
quence, the probability of the observed contact graph sequence
g0, . . ., gK–1 is given by

Pr [G0 = g0, . . . , GK–1 = gK–1]

= Pr [G0 = g0]

K–1∏
k=1

Pr [Gk = gk|Gk–1 = gk–1], (2)

where Pr[Gk = gk|Gk–1 = gk–1] is the conditional probability
of an m-clique contact graph gk at discrete time k given that an
p-clique contact graph gk–1 occurs at time k–1 with

Pr [Gk = gk|Gk–1 = gk–1]

=

N∑
c1,...,cp=1
c1 �=...�=cp

N∑
i1,...,im=1
i1 �=... �=im

p∏
r=1

m∏
j=1

∏
wl∈Aj [k]∩Ar[k–1]

(Pl)crij . (3)

Intuitively, (3) considers possible positions of M walkers in
the Markov graph at time k–1 and k and then evaluates the
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probability of walker transitions between these states. Identifi-
cation of the transition probability matrix Pi and the initial state
si[0] of each walker wi may not be analytically tractable for (2)
because the conditional probability Pr[Gk = gk|Gk−1 = gk−1]
has N(N–1)M variables and each term in (3) is the product of
M variables1. Hence, we examine another performance metric
for RWIG.

Theorem 1 defines the joint probability of a clique in a contact
sequence, which is generated by RWIG.

Theorem 1: Consider RWIG with M walkers w1, . . .,wM

where each walker wi has the N ×N transition probability
matrixPi and the initial state si[0]with si[k] = si[0]P

k
i . Denote

by IC [k] the indicator variable whose values are either one or
zero depending on whether a clique C among walkers exists in
graph Gk. Then

1) The joint probability of a link (i, j) at discrete time k + κ
and k between walkers wi and wj is

Pr
[
aij [k+κ]=1, aij [k]=1

]
=si[k]diag

(
Pκ
i

(
Pκ
j

)T)
sTj [k].

2) The joint probability that a clique C ⊆M occurs at dis-
crete time k + κ and k is

Pr[IC [k+κ]=IC [k] = 1]=

⎛⎝⊙
wi∈C

si[k]

⎞⎠⎛⎝⊙
wi∈C

Pκ
i

⎞⎠uT .

3) The joint probability that a clique C ⊆M occurs from
discrete time k to discrete time k + κ is

Pr[IC [l]=1 k≤l≤k+κ]=

⎛⎝⊙
wi∈C

si[k]

⎞⎠⎛⎝⊙
wi∈C

Pi

⎞⎠κ

uT .

The proof of Theorem 1 is provided in Appendix B.

C. Performance Evaluation of RWIG

Suppose that RWIG generates the sequence Â = (Â[0], . . .,

Â[K–1]) of adjacency matrices over K time slots. RWIG’s
performance can be assessed by measuring the mean squared
error (MSE) between links in A and Â

MSElink

(
A, Â

)
=

1

K(M2 )

K–1∑
k=0

M∑
i=1

M∑
j=i+1

(aij [k]–âij [k])
2, (4)

where aij [k] and âij [k] are real and estimated entries corre-
sponding to the link between wi and wj in graph Gk.

Since all random walkers move independently of each other
in the Markov graph, the probability of a contact âij [k] between
two walkers wi and wj at discrete time k depends on the
corresponding probability state vectors si[k] and sj [k]

âij [k] =

N∑
l=1

Pr [Xi[k] = l,Xj [k] = l]

=

N∑
l=1

∏
u∈{i,j}

Pr [Xu[k] = l] = si[k] · sTj [k]. (5)

1Each walker wi has the N×N transition probability matrix Pi

with N(N–1) variables. The total number of walkers is M . The term∏m

j=1

∏p

r=1

∏
wl∈Aij

∩Bcr (Pl)ijcr in (3) has polynomial degree M , be-

cause it contains one element from each matrix P1, . . .,PM .

Eq. (5) imposes constraints on vectors s1[k], . . . , sM [k] of the
walkers at discrete time k to reproduce graph Gk.

Lemma 1: RWIG reproduces the sequence Â = (Â[0], . . .,

Â[K–1]) of adjacency matrices with MSElink(A, Â) = 0 if
and only if for any discrete time k

1) si[k] = sj [k] = el for aij [k] = 1 where el is the l-th stan-
dard basis vector, l ∈ {1, . . ., N};

2) si[k] ⊥ sj [k] for aij [k] = 0.
Substituting (5) into (4) yields

MSElink

(
A, Â

)
=

1

K(M2 )

K–1∑
k=0

∑
i<j

(
aij [k]–si[k]s

T
j [k]

)2
. (6)

Given the sequence A = (A[0], . . ., A[K–1]), we need to
identify the initial state vectors sM[0] = (s1[0], . . ., sM [0]) of
M walkers and their Markov matrices PM = (P1, . . ., PM )
that minimize (6). However, identifying sM[0] and PM is not
analytically tractable because si[k] and sj [k] in (6) involve
powers of unknown stochastic matrices P1, . . .,PM as well
as unknown initial state vectors s1[0], . . .,sM [0]. For instance,
the term si[k]s

T
j [k] = si[0]P

k
i (P

k
j )

T sTj [0] is a polynomial of
degree 2(k + 1) with 2(N2–1) variables2.

Eq. (4) compares only the links in A and Â. Alternatively, we
can extend MSElink(A, Â) and compare higher-order struc-
tures, such as cliques of size r. Denote by Mr a set of(
M
r

)
possible combinations of r walkers from a set M. The

MSEclique measure compares all cliques of size r (2 ≤ r ≤M )
in sequences A and Â

MSEclique

(
A, Â

)
=

M∑
r=2

∑K–1
k=0

∑
C∈Mr

(IC [k]−σC [k])
2

K
(
M
r

) ,

(7)
where σC [k] is defined in (1) as the probability of clique C at
discrete time k,

(
M
r

)
is the number of cliques of size r in a

complete graph and IC [k] defines the existence of clique C in
graph Gk. We analyze MSElink and MSEclique of RWIG in the
steady state in Section III.

III. GENERATING GRAPHS IN THE STEADY STATE

A. RWIG With a Single Stochastic Matrix P in the Steady State

Suppose that all walkers have the same N×N Markov tran-
sition matrix P (i.e., Pi = P for all wi ∈M), which admits a
1×N steady-state vector s̃ = s̃P with s̃u = 1. Then the steady-
state probability vector of each walker wi ∈M is

lim
k→∞

si[k] = s̃.

Assume that all M walkers start in the same steady state s̃.
Then s1[k] = . . . = sM [k] = s̃ and the probability of contact
âij [k] between walkers wi and wj at discrete time k is

âij [k] = si[k] · sTj [k] = s̃ · s̃T =
N∑
l=1

s̃2l = p. (8)

2Walker wi has N–1 variables for the initial state vector si[0] and N2–N
variables for the N×N transition probability matrix Pi. The total number of
variables for each walker is N2–1. Each entry of P k

i has polynomial degree k

and si[0]P
k
i has degree k + 1.
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Applying the Cauchy-Schwarz inequality [22] to the N×1
vector s̃ and the N×1 all-one vector u gives(

N∑
l=1

s̃l

)2

≤
N∑
l=1

s̃2l

N∑
l=1

u2
l ,

or, equivalently,

1

N
≤

N∑
l=1

s̃2l = p, (9)

because
∑N

l=1 s̃l = 1 and 0≤s̃l≤1. Since
∑N

l=1 s̃
2
l≤

∑N
l=1 s̃l,

we conclude that p∈[ 1N , 1]. Hence, there is always a non-zero
probability that walkers wi and wj form a contact between each
other in the steady-state.

Relation (8) shows some limitations of RWIG in the steady-
state (RWIGss) for temporal network generation. First, the prob-
ability p of a contact between walkers wi and wj is invariant
of the discrete time k, because RWIG is in the steady-state.
Thus, an m-clique contact graph G is equally likely to emerge
acrossK time slots. Second, the probability of a contact between
any two walkers has a fixed probability p = s̃s̃T , which is not
realistic for many real networks. Third, relation (9) shows that
the lower bound of a contact probability p is rather high for small
N (e.g. p ≥ 1

4 for N = 4). Hence, it is unlikely for RWIGss

to accurately reproduce any specific labeled contact sequence.
Nevertheless, although all links have the same probability p to
appear, RWIGss is different from any existing random graph
model for static networks. Indeed, RWIG always produces a
set of cliques. Consequently, RWIGss can also be viewed as a
new random graph model for fixed graphs. Lemma 2 defines the
properties of RWIGss.

Lemma 2: Consider RWIG where all M walkers have the
same Markov matrix P with N states, which admits a steady-
state vector s̃ = s̃P , and si[0] = s̃ for any wi ∈M. Then,

1) the expected number of links Lk in graph Gk at any
discrete time k ∈ {0, . . .,K-1} is, with p = s̃s̃T ∈ [ 1N , 1],

Lk =
M(M–1)

2
p ∈

[
M(M–1)

2N
,
M(M–1)

2

]
;

2) the joint probability of a link (i, j) at discrete time k + κ
and k in the steady state is

Pr [aij [k+κ]=aij [k]=1]

= s̃diag
(
Pκ (Pκ)T

)
s̃T∈

[
1

N2
, 1

]
.

The proof of Lemma 2 is provided in Appendix C.1.

B. Performance of RWIGss With Respect to MSElink

We analyze MSElink of RWIG, where all M walkers start in
the steady state s̃. Substitution of (8) into (6) gives

MSElink

(
A, Â

)
=
(
s̃s̃T –a

)2
+ b, (10)

where b is a non-negative constant and a is the average density

of a temporal graph with a =
2
∑K–1

k=0

∑M
i=1

∑M
j=i+1 aij [k]

KM(M−1) . Ap-
pendix C provides additional information on the simplification
of MSElink. The global minimum of (10) occurs at s̃s̃T = a.
Indeed, (10) demonstrates the variational principle of variance

V ar[X] [21] stating that the best least-square approximation of
the random variable X is its mean E[X].

Since the average density a∈[0, 1] for any arbitrary graph
sequence and s̃ is the steady-state vector with s̃s̃T ∈ [ 1N , 1],
s̃s̃T = a does not necessarily have a solution for a fixed N . The-
orem 2 defines the accuracy of RWIG with respect to MSElink

as well as the conditions on steady-state vector s̃.
Theorem 2: Consider RWIG where all M walkers have the

same Markov matrix P with N states, which admits a steady-
state vector s̃ = s̃P , and si[0] = s̃ for any wi ∈M. Any se-
quence A = (A[0], . . ., A[K–1]) of M×M adjacency matrices
with an average density a can be reproduced by RWIG with

1) MSElink(A, Â) =
∑K–1

k=0

∑M
i=1

∑M
j=i+1 (aij [k]– 1

N )2

K(M2 )
>0 if

a< 1
N . The steady-state vector is s̃ = u

N .

2) MSElink(A, Â) = V ar[A]

K(M2 )
≥ 0 if a ≥ 1

N . The steady-

state vector s̃ satisfies s̃s̃T = a and has finite solutions
if and only if a ∈ { 1

N , 1}.
The minimal number of Markov states N to achieve the lowest
MSElink is N = �1/a�.

The proof of Theorem 2 is provided in Appendix C.3. The-
orem 2 demonstrates that RWIGss, where si[0] = s̃ for any i ∈
M, is able to reproduce the sequence of graphs G0, . . .,GK–1

accurately (MSElink(A, Â) = 0) if and only if V ar[A] = 0
and, consequently, G0, . . ., GK–1 is a sequence of complete
graphs or a sequence of null graphs (there are no links between
walkers). Moreover, Theorem 2 shows that for a /∈ { 1

N , 1}, it
is impossible to identify the initial steady-state vector using
MSElink because equation s̃s̃T = a has infinitely many solu-
tions. Hence, we defined a class of the steady-state vectors s̃
that generate a temporal graph sequence with the same average
graph density a as in G0, . . ., GK–1.

C. Performance of RWIGss With Respect to MSEclique

Section III-B demonstrates that, in most cases, the initial
steady-state vector s̃ cannot be recovered based on the MSElink

criterion. In this section, we show that the vector s̃ can be
uniquely defined using the MSEclique criterion defined in (7).

We analyze MSEclique of RWIG, where M walkers start in
the steady-state s̃ and follow the same policy P . Assume that all
components of the steady-state vector s̃ are not zero. From (1),
the probability that r walkers of set A = {wi1 , . . .,wir} form a
clique at discrete time k becomes

σA[k]=

⎛⎝⊙
wj∈A

sj [0]P
k
j

⎞⎠uT =

⎛⎝⊙
wj∈A

s̃

⎞⎠uT =
N∑
i=1

s̃ri , (11)

Eq. (11) is invariant to the discrete time k and provides the same
value for any set of r walkers, because they all have the same
steady-state vector s̃. Hence, for simplicity, we denote σA[k] by
σr. Substitution of (10) into (7) gives

MSEclique

(
A, Â

)
=

M∑
r=2

(σr–qr)
2 +

M∑
r=2

br

K
(
M
r

) , (12)

where br ≥ 0 is a constant, qr =
∑K–1

k=0

∑
C∈Mr

IC [k]

K(Mr )
denotes the

probability of cliques of size r in the observed graph sequence

Authorized licensed use limited to: TU Delft Library. Downloaded on July 21,2025 at 13:05:45 UTC from IEEE Xplore.  Restrictions apply. 



SHVYDUN et al.: TEMPORAL GRAPH REPRODUCTION WITH RWIG 3019

G0, . . .,GK–1. Appendix C provides additional information on
the simplification of MSEclique.

The global minimum of (12) occurs when σr = qr for any
2 ≤ r ≤M . Explicitly, by (11)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑N
i=1 (s̃)i = 1,∑N
i=1 (s̃)

2
i = q2,

· · ·∑N
i=1 (s̃)

M
i = qM .

(13)

The set of equations in (13) can be solved using the Newton
identities for polynomials [21], [23]. Consider a polynomial
pN (z) of degree N in the complex variable z

pN (z) =

N∑
r=0

arz
r = aN

N∏
r=1

(z − (s̃)r) , (14)

where a0, . . ., aN are the coefficients of a polynomial pN (z)
with aN = 1 and (s̃)1, . . ., (s̃)N are the roots of pN (z). For
each integer r ≥ 1, the rth power sum σr is

σr =

N∑
i=1

s̃ri .

The relation between the coefficients a0, . . ., aN and the power
sums σ1, . . ., σN is derived in [21] as

ar = − 1

N − r

N∑
l=r+1

alσl. (15)

Lemma 3 shows that RWIGss, where walkers start from s̃, is
able to generate a temporal graph with the same probability of
cliques as in G0, . . ., GK–1.

Lemma 3: Let qr be the empirical probability of cliques of
size r with 1 ≤ r ≤M . The minimum of MSEclique(A, Â)
satisfies (12) and occurs when the components of the 1×N
vector s̃ are the non-zero roots of a polynomial of order M

pM (z) =

M∑
r=0

arz
r, (16)

where ar = − 1
M−r

∑M
l=r+1 alql with aM = 1. The minimum

number of states in the Markov graph is

N = M −min{r|ar �=0 and al = 0 for all l < r}.
System (13) can be transformed into (16). Given the assump-

tion that the observed contact sequence G0, . . ., GK–1 between
M walkers is produced by RWIGss with N≤M states, the
rth power sum σr can be estimated from G0, . . .,GK–1 for
any 1≤r≤M as σr = qr. Given the power sums σ1, . . .,σM ,
we can evaluate the coefficients a0, . . ., aM using (15). The
number of statesN in the Markov graph can be defined based on
a0, . . ., aM , because the number of zero coefficients equals the
number of zero roots of the polynomial pM (z). The non-zero
roots of the polynomial in (16) provides3 the values of the
steady-state vector components (s̃)1, . . .,(s̃)N . Any permutation
of (s̃)1, . . .,(s̃)N forms a steady-state vector s̃. However, if

3For polynomials of degree N = 5 or higher, we can obtain the roots using
the companion matrix in [22].

G0, . . ., GK–1 is generated by RWIG withN>M states, we can-
not identify the steady-state vector s̃, because the probabilities
qM+1, . . .,qN are not observed and, consequently, coefficients
aM+1, . . .,aN of the N -order polynomial pN (z) cannot be
defined.

Lemma 3 requires that the empirical contact probabilities
q1,…, qM are equal to the steady-state contact probabilities
σ1,…, σM . The recoverability of the initial steady-state vector
s̃ from a single realization of RWIG is discussed in Appendix D.

D. MSElink of RWIGss With Stochastic Matrices P1, . . . , PM

Suppose that each random walkerwi has anN ×N stochastic
matrix Pi, which admits a steady-state distribution s̃i = s̃iPi

and the initial state si[0] of walker wi is equal to the steady-state
probability vector s̃i, i.e. si[0] = s̃i. The probability of contact
âij [k] between walkers wi and wj at discrete time k is

âij [k] = si[k] · sTj [k] = s̃is̃
T
j = pij ∈ [0, 1]. (17)

Relation (17) demonstrates that the probability of a contact
between any two walkers at discrete time k is invariant to
time in the steady state. Hence, any given m-clique contact
graph G is equally likely to emerge across K time slots. This
version of the simplified RWIG model is more flexible than the
simplified RWIG model (Pi = P ) from Section III-A, because it
incorporates varying probabilities of contacts between walkers.
RWIGss can be also viewed as another random graph model for
static graphs that generates a set of cliques from steady-state
vectors s̃1, . . ., s̃M .

Substitution of (17) into (6) gives

MSElink

(
A, Â

)
=

1(
M
2

) M∑
i=1

M∑
j=i+1

(
s̃is̃

T
j − aij

)2
+b, (18)

where b is a non-negative constant and aij is the average
number of links between wi and wj in G0, . . ., GK–1 with

aij =
∑K–1

k=0 aij [k]
K . Appendix C provides additional information

on the simplification of MSElink.
Relation (18) shows that the global minimum of MSElink

occurs when s̃is̃
T
j = aij for ∀i �= j. Therefore, we need to

examine whether the system of equations⎧⎪⎪⎨⎪⎪⎩
s̃is̃

T
j = aij , ∀i, j ∈M,

s̃iu = 1, ∀i ∈M,

(s̃i)l ≥ 0, ∀i ∈M, ∀l ∈ {1, . . ., N}
(19)

has a solution. The solution set of (19) depends on the average
number of links aij . For instance, if aij = 0 for any two walkers
wi and wj (the graph sequence has no links), then all walkers
traverse different states of the Markov graph at any discrete time
k. One possible solution for the walker wi is the M × 1 steady-
state vector s̃i = δil where δ is the Kronecker delta (δil = 1 if
l = i, and 0 otherwise). Another example, if aij = 1 for any
two walkers wi and wj (walkers form a complete graph at any
discrete time k), the solution of (19) is the 1×1 steady-state
vector s̃i = 1 for any wi ∈Mwhile the Markov graph has only
N = 1 state. However, if a12 = 1, a13 = 1 and a23 = 0, the
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solution of (19) does not exist4. Lemma 4 provides an example
of static graph sequences for which system (19) always has a
solution. The proof of Lemma 4 is provided in Appendix E.1.

Lemma 4: Consider RWIG where M walkers have N×N
Markov transition matricesP1, . . ., PM with an arbitrary number
N of states, which admit 1×N steady-state vectors s̃1, . . ., s̃M
and si[0] = s̃i for any wi ∈M. Then any sequence of graphs
G0, . . ., GK–1 that do not change over time, whereG0 consists of
the union ofm disconnected cliques, can be accurately modelled
by RWIG in the steady state where N ≥ m.

The system (19) can be represented by an M ×M Gram
matrix G of all inner products of steady-state vectors s̃1, . . ., s̃M

G =

⎡⎢⎢⎢⎢⎣
g11 a12 · · · a1M

a12 g22 · · · a2M
...

...
. . .

...

a1M a2M · · · gMM

⎤⎥⎥⎥⎥⎦ = SST ,

where S = [s̃1 s̃2 . . . s̃M ]T is an M×N matrix of the steady-
state vectors and gii = s̃is̃

T
i . Geometrically, S represents the

constellation of possible latent positions of M vectors on an
(N -1)-dimensional simplex. Unfortunately, given G, it is im-
possible to recover S. If R is an N×N orthogonal matrix
(RTR = RRT = I), then an M×N matrix S̃ = SR has the
same Gram matrix5 [22]. Hence, the solution of (19) is identifi-
able only up to an orthogonal transformation.

The diagonal element gii = s̃is̃
T
i of G can be interpreted as

the probability that walker wi remains at the same state of the
Markov graph in the next time slot. Unfortunately, g11, . . ., gMM

are not known as we only observe contacts between walkers and
we do not have access to the underlying Markov graph. However,
the diagonal elements of G should satisfy certain conditions in
order for system (19) to have at least one solution.

Theorem 3: Let G be an M×M symmetric matrix with
gij∈[0, 1] for any i �=j andG = UΛUT be the eigenvalue decom-
position of G whereU = [u1 u2. . . uM ] is anM×M orthogonal
matrix formed by the scaled, real eigenvalues uk belonging to
eigenvalue λk(G), Λ = diag(λk(G)) is an M×M diagonal ma-
trix of eigenvalues and λ1(G)≥. . .≥λM (G). Then G is the Gram
matrix of 1×N steady-state vectors s̃1, . . ., s̃M if and only if

1) G is positive semidefinite;
2) gii ∈ [ 1N , 1];
3) N>rank(X̃), where X̃ is an (M–1)×M matrix with X̃

= [x2–x1… xM–x1]
T and X = UΛ1/2 = [x1. . . xM ]T ;

4) there exists an N × 1 non-zero vector n such that⎧⎨⎩
∑rank(G)

j=1 nj(X̃)ij = 0, ∀i ∈ {1, . . .,M–1},
|∑rank(G)

j=1 nj(X)1j |
||n|| = 1√

N
.

5) there exists an N×N orthogonal matrix R such that
XR = [s̃1 s̃2 . . . s̃M ] and 1√

N ||n||Rn = u
N .

The proof of Theorem 3 is provided in Appendix E. Theorem 3
defines the conditions on the diagonal of G and defines a class

4By Lemma 1, a12 = 1 and a13 = 1 implies s̃1 = s̃2 = s̃3 = (1, 0, 0, . . .),
which in turn contradicts with a23 = 0.

5S̃S̃T = (SR)(SR)T = S(RRT )ST = SST = G.

of the steady-state vectors s̃1, . . .,s̃M that generate a temporal
graph sequence with the same probability of a contact between
any pair of walkers as in G0, . . ., GK–1. We provide the solution
of (19) for M = 2 and M = 3 (for N = 2) in Appendix E.3.

IV. RECOVERING THE MARKOV GRAPH OF RWIG

A. Recovering the Matrix Pi From the Steady-State Vector s̃i

Section III discusses how to find the 1×N steady-state vec-
tor s̃i of each walker wi given the temporal graph sequence
G0, . . .,GK–1 and the initial condition si[0] = s̃i. To recover an
N ×N stochastic matrix Pi from a given steady-state vector s̃i,
we need to utilize properties of stochastic matrices [21]. First,
Pi is an N ×N square matrix of nonnegative real numbers with
each row summing to 1. Second, the steady-state vector s̃i is
the left eigenvector of Pi that corresponds to the eigenvalue 1.
Hence, the stochastic matrix Pi can be obtained from the set of
linear equations⎧⎪⎪⎨⎪⎪⎩

Piu
T = uT ,

s̃iPi = s̃i,

(Pi)jk ≥ 0 ∀j, k ∈ {1, . . ., N}.
(20)

The solution of (20) is always not unique. For instance, Pi = I
and Pi = [s̃i s̃i . . . s̃i]

T are solutions of (20) for any s̃i. Thus,
the set of linear equations in (20) defines the class of stochastic
matrices Pi having the same steady-state vector s̃i.

Example 1: Let walker w1 be in the steady state s̃1 = [ 14
3
4 ].

Then the 2× 2 stochastic matrix P1 of walker w1 is

P1 =

[
−2 + 3p22 3− 3p22

1− p22 p22

]
,

where 2
3 ≤ p22 ≤ 1.

As a remark, a set of linear equations in (20) are sufficient to
define the stochastic matrixPi if and only if si[0] = s̃i, because it
is possible that limk→∞ si[k] = limk→∞ si[0]P

k
i �= s̃i for some

si[0] and Pi from system (20). However, if the Markov chain
is irreducible, aperiodic, and positive recurrent [21], then any
initial vector si[0] converges to the unique steady-state vector s̃i.

Example 2: Let walker w1 be in the steady state s̃1 = [ 12
1
2 ]

T .
Then the 2× 2 stochastic matrix P1 of walker w1 is

P1 =

[
p22 1− p22

1− p22 p22

]
,

where 0 ≤ p22 ≤ 1. Suppose p22 = 0 and P1 =

[
0 1

1 0

]
. If

s1[0] = [ 12
1
2 ]

T then s̃1 = limk→∞ si[0]P
k
i = [ 12

1
2 ]

T . However,
if s1[0] = [1 0]T , the steady-state vector s̃1 does not exist.

B. Recovering the Matrix P From the Contact Sequence

Assume that the contact sequence G0, . . .,GK–1 is generated
by RWIGss where all walkers have the same Markov policy
P and steady-state vector s̃. We demonstrate that, under this
assumption, we can recover the Markov graph using the time
correlation between cliques. Since si[k] = s̃ for any walker wi

in the steady state, we rewrite the joint probability that a clique
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C ⊆M occurs at discrete time k and k + 1 from Theorem 1 as

Pr [IC [k] = 1, IC [k + 1] = 1] =

(⊙
wi∈C

s̃

)(⊙
wi∈C

P

)
uT

=

N∑
c0=1

N∑
c1=1

(s̃c0Pc0c1)
|C|. (21)

Eq. (21) is independent of the walker set C and the discrete time
k and is determined solely by the size of C. For simplicity, we
denote the joint probability in (21) by σr,1 where r = |C|.

Denote by W the N ×N matrix obtained from matrix P and
steady-state vector s̃

W =

⎡⎢⎢⎢⎣
s̃1P11 s̃1P12 · · · s̃1P1N

s̃2P21 s̃2P22 · · · s̃2P2N

· · · · · · · · · · · ·
s̃NP11 s̃NP12 · · · s̃NP1N

⎤⎥⎥⎥⎦ = P � s̃T .

The sum of elements in i-th row of W is
∑N

j=1 s̃iPij = s̃i. The

sum of elements in j-th column of matrixW is
∑N

i=1 s̃iPij = s̃j ,
because s̃ is the steady-state vector of P . Thus, WuT = s̃T and
uW = s̃. The sum of all elements of W is

∑N
i=1

∑N
i=j wij =

uWuT = 1. Furthermore, for each integer r > 1 the rth power
sum of elements of W defines the joint probability that graphs
Gk and Gk+1 contain the same clique of size r

N∑
i=1

N∑
i=j

wr
ij = σr,1.

Theorem 4 shows that the elements of W can be identified
using the Newton identities for polynomials [21], [23]. The proof
of Theorem 4 is provided in Appendix F.

Theorem 4: Consider the N ×N matrix W = P � s̃T .
Given the steady-state vector s̃ and the steady-state joint proba-
bility σr,1 for each integer 2 ≤ r ≤ N2, the elements of matrix
W are the roots of a polynomial of order N2

pN2(z) =

N2∑
r=0

arz
r, (22)

where ar = − 1
N2−r

∑N2

l=r+1 alσl,1 with aN2 = 1. The position
of the rth root zr of (22) in the matrix W is defined by the
solution of the placement problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N2

r=1 yirzr = s̃i, for all i∈{1, . . ., N},∑N2

r=1 yrjzr = s̃j , for all j∈{1, . . ., N},∑N
j=1 yrj = 1, for all r∈{1, . . ., N2},∑N
i=1 yir = 1, for all r∈{1, . . ., N2},∑N2

r=1 yir = N, for all i∈{1, . . ., N},∑N2

r=1 yrj = N, for all j∈{1, . . ., N}

(23)

where yir, yrj ∈ {0, 1} for all i, j ∈ {1, . . .,N} are the binary
variables that define if the rth root zr, r ∈ {1, . . .,N2} has
position wij in matrix W .

Given the assumption that G0, . . ., GK–1 is produced by
RWIGss, we identify the steady-state vector s̃ using Lemma 3
and evaluate the joint probability σr,1 for any 1 < r ≤M2.
We define the coefficients a0, . . . , aN2 and identify the roots

Fig. 2. 3-periodic sequence for a temporal graph with 4 walkers.

{zr}N2

r=1 of (22). The solution of (23) is not unique because W
and WT satisfy WuT = s̃T and uW = s̃. The set of stochastic
matrices P is derived from s̃ and W .

Example 3: Consider the Markov graph with N = 3 states
and M = 9 walkers that traverse the Markov graph according
to the 3×3 Markov transition probability matrix

P =

⎡⎢⎣0.567 0.157 0.276

0.373 0.276 0.351

0.327 0.502 0.171

⎤⎥⎦ .

Given the steady-state probability qr of the clique of size
r for r ≤ 9, Lemma 3 defines the steady-state vector
s̃ = [0.447, 0.284, 0.269]. Given the steady-state joint
probability σr,1 that the same clique of size r occurs in
two adjacent time slots for r ≤ 9, the roots of (22) are z
= [0.254, 0.135, 0.123, 0.106, 0.1, 0.088, 0.078, 0.07, 0.046].
From (23), there are only two possible arrangements or roots
{zr}9r=1 in the W matrix

W1 =

⎡⎢⎣0.254 0.07 0.123

0.106 0.078 0.1

0.088 0.135 0.046

⎤⎥⎦ , W2 = WT
1 .

Dividing each row i ofW1 andW2 by the corresponding compo-
nent s̃i of the steady-state vector produces transition probability
matrices P1 (the initial matrix) and P2

P1=

⎡⎢⎣0.567 0.157 0.276

0.373 0.276 0.351

0.327 0.502 0.171

⎤⎥⎦, P2=

⎡⎢⎣0.567 0.236 0.197

0.248 0.276 0.476

0.459 0.37 0.171

⎤⎥⎦.
Example 3 illustrates how the initial Markov graph can be

inferred from Theorem 4. We show in Appendix D how The-
orem 4 is applied to identify the underlying topology of the
real transportation system (PATH rail system) from contacts of
random walkers.

V. RWIG FOR PERIODIC SEQUENCES

Section III demonstrates that RWIGss can accurately repro-
duce only static graph sequences G0, . . .,GK–1. We call such
graph sequences 1-periodic because ∀k ∈ {0, ..,K–2} Gk =
Gk+p for p = 1. In this section, we examine whether RWIG
can accurately reproduce p-periodic graph sequences where
p > 1. Our motivation for studying periodic sequences is that
many real-world systems possess a quasi-periodic dynamic that
repeats during a certain period of time [14], [24].

Definition 1: The graph sequence G0, . . ., GK–1 is called p-
periodic if p is the smallest positive integer p < K–1 such that
Gk = Gk+p for any k ∈ {0, ..,K–p–1}.

An example of 3-periodic sequence for a temporal graph with
M = 4 walkers is shown in Fig. 2.
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Fig. 3. RWIG with N = 7 states for 3-periodic graph sequence from Fig. 2.

Lemma 5: The RWIG model where the walkers have the same
N ×N Markov transition matrix P can accurately reproduce
only 1-periodic graph sequences G0, . . ., GK–1.

The proof of Lemma 5 is provided in Appendix G.1.
Consider RWIG where M walkers have N ×N transition

matrices P1, . . .,PM . Since aij [k] = aij [k+p] for any walkers
wi andwj at any discrete time k ∈ {0, ..,K–p–1}, RWIG repro-
duces p-periodic graph sequenceG0, . . .,GK–1 accurately if and
only if aij [k] = âij [k] = âij [k+p] for any k∈{0, ..,K–p–1}
and any wi, wj∈M where âij [k] is defined in (5). We assume
that each walker wi traverses the Markov graph with period p
(i.e. si[k] = si[k+p] for any k ∈ {0, ..,K–p–1}) and prove that
any p-periodic graph sequenceG0, . . ., GK–1 can be reproduced
by RWIG if any graph Gk contains a set of cliques.

First, we demonstrate in Fig. 3 the solution for the 3-periodic
graph sequence from Fig. 2. We introduce N = 7 states in the
Markov graph because there are 2 cliques in G0, 2 cliques in G1

and 3 cliques inG2. Each state of the Markov graph corresponds
to one of the cliques in the temporal graph at discrete time k ∈
{0, 1, 2}. Initially, the walkers w1, w2 and w3, w4 are placed in
the same state as they have a contact in G0 (see Fig. 3, bottom
right). At each discrete time k, walkers move to the same state
if they have a contact between each other. Otherwise, a walker
wi moves to its own state in discrete time k (see Fig. 3, top
right). The transitions of the walkers are shown in Fig. 3 (red for
walker w1, blue for walker w2, green for walker w3 and black
for walker w4). The total number of walker transitions in the
Markov graph, or, equivalently, the total number of non-zero
elements in the transition matrices P1, . . .,P4 is sum of walkers
periods, i.e.,

∑4
j=1 pi = 12.

Lemma 6: Any p-periodic graph sequences G0, . . ., GK–1

can be accurately reproduced by RWIG where M walkers
have different N ×N Markov transition matrices P1, . . .,PM

and N =
∑p−1

k=0 nc[k], nc[k] is the number of cliques in
G0, . . ., Gp–1.

The proof of Lemma 6 is provided in Appendix G.2.
Lemma 6 shows that any periodic graph sequence can be

represented by RWIG where each walker wi follows p-periodic
walk. We formulate two research questions:

1) What is the minimal period of each walker to reproduce
p-periodic graph sequence?

Fig. 4. RWIG with N = 5 states for 3-periodic graph sequence from Fig. 2.
The transitions of the walkers are shown in red for w1, blue for w2, green for
w3 and black for w4.

Fig. 5. RWIG with N=4 states for 3-periodic graph sequence from Fig. 2.
The transitions of the walkers are shown in red for w1, blue for w2, green for
w3 and black for w4.

2) What is the minimal number of states N in the Markov
graph to reproduce p-periodic graph sequence?

Intuitively, the shorter the period pi of each walker wi, the
fewer states are needed to describe the walk of wi and, conse-
quently, the fewer number of states N should be in the Markov
graph. However, we demonstrate that the minimal period of the
walkers does not imply the minimal number of states.

Lemma 7: Any non-zero p-periodic contact sequence be-
tween walkers wi and wj can be reproduced by RWIG where wi

and wj traverse the Markov graph with periods pi and pj such
that
� LCD(p1, p2) mod p = 0, where LCD(p1, p2) is the least

common denominator of p1 and p2.
� min(p1, p2) ≥ LCD(p1,p2)

p

∑p−1
k=0 aij [k]

� �k1, k2 < LCD(p1, p2) with aij [k1] = aij [k2] = 1 and[
k1 mod p1 = k2 mod p1,

k1 mod p2 = k2 mod p2.

Lemma 7 defines the set of periods (pi, pj) for walk-
ers wi and wj to reproduce the observed contacts be-
tween them. For instance, the contact sequence [1 0 0] be-
tween w3 and w4 can be reproduced by RWIG if (p3, p4) ∈
{(1, 3), (2, 3), (3, 3), (3, 1), (3, 2)}. The proof of Lemma 7 is
provided in Appendix G.3.

The minimal period pi of walker wi in p-periodic contact
sequence is the period, which is present in all sets between
walker wi and other walkers. For instance, the 3-periodic graph
sequence from Fig. 2 can be modelled by RWIG where walkers
w1, w2, w3, w4 have periods p1 = p2 = p3 = 3 and p4 = 1 (see
Fig. 4). Hence, the minimal number of states in the Markov
graph is N = 5 because walkers w1 and w2 require 4 states w1
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Algorithm 1: Markov Graph Generator.
Input: periods p1, . . ., pM of M walkers, contact graph
sequence G0, . . ., GK–1.
Output: periodic states sequence X1, . . ., XM of
walkers, the size N of the Markov graph.

1: N ← 0
2: for i← 1 to M do
3: Xi← 0pi×1
4: for p← 1 to pi do
5: for k ← p to K step pi do
6: j ← GETFIRSTCONTACT(Gk), i
7: ifj �= 0 then Xi[p]← Xj [k mod pj ] break
8: end if
9: end for

10: if Xi[p] = 0 then
11: s← GETFREESTATE(N, [X1, . . .,Xi])
12: if s = 0 then
13: Xi[p]← N + 1, N ← N + 1
14: else
15: Xi[p]← s
16: end if
17: end if
18: end for
19: end for
20: return [X1. . . XM ], N

and w2 traverse three states, sharing two of them and walker
w4 requires one additional state w4 remains in the same state.
The total number of transitions in the Markov graph withN = 5
states is 10.

However, N = 5 states states are not minimal. Suppose that
all walkers traverse the Markov graph with period p = 3. We
propose Algorithm 1, which is a heuristic method that constructs
the Markov graph with a small number of states for p-periodic
graph sequence G0, . . .,GK–1. First, Algorithm 1 selects walker
w1 and generates N = p1 states in the Markov graph where
the states of w1 are X1[k] = k for k ∈ {1, . . .,p1}. Then Algo-
rithm 1 chooses the next walker w2 that traverses p2 states. If
walker w2 has a contact with walker w1 at discrete time k ≤ K
(function “GetFirstContact”), then walker w2 shares one of the
existing states with w1, i.e., X2[k mod p2] = X1[k mod p1].
However, ifw2 has no contact withw1 at timek,w2 visits the first
available state l in the Markov graph (function “GetFreeState”)6.
If such states are not available, we add an additional state to the
Markov graph for walker w2. Thus, Algorithm 1 iteratively pro-
cesses each walkerwi until allM walkers have been considered.

Fig. 5, obtained by Algorithm 1, shows that the 3-periodic
graph sequence from Fig. 2 can be modelled by RWIG with
N = 4 states. The total number of transitions in the Markov
graph withN = 4 states is 12, which is more compared to Fig. 4.
Hence, Algorithm 1 demonstrates that the minimal periods of
the walkers do not imply the minimal number of states.

6State l ∈ {1, . . .,N} is available for walker w2 if X1[k] �= l for any (k
mod p1) = l (w2 never meets w1 at state l) and X2[t] �= l for t < k (w2 have
not visited state l).

VI. DISCUSSION

We examined the inverse problem for RWIG in the steady state
(RWIGss). If all walkers have the same transition probability
matrix P and start from the steady-state vector s̃, RWIGss is
able to accurately reproduce only a sequence of complete or
null graphs. Any other temporal graph G0, . . ., GK–1 with M
walkers can be approximately modelled by the graph sequence
that has the same probability of a clique of size r and the joint
probability σr,1 for each r ≤M . Furthermore, we demonstrate
that inferring the initial ergodic Markov process is possible:
given G0, . . ., GK–1, we derive an exact analytical solution
that defines the transition probability matrix P of the walkers.
Our findings are based on fundamental results of Newton in
polynomial theory and functional analysis. The scalability and
computational complexity of our methodology are driven by the
O(n2) complexity of existing root-finding methods for n-order
polynomials.

If walkers have different transition probability matrices
P1, . . ., PM that have steady-state vectors s̃1, .., s̃M , RWIGss

can accurately reproduce only a sequence of m-clique graphs
that do not change over time. The lowest possible MSE occurs
when s̃is̃

T
j = aij for all pairs of walkers wi and wj , where aij is

the average number of links betweenwi andwj inG0, . . ., GK–1.
We imposed several constraints on s̃1, . . .,s̃M to achieve this
MSE value. However, the general solution for s̃1, .., s̃M for
arbitrary N and M remains unknown.

For periodic sequences, we have proven that, if the walk-
ers follow the same policy P in the Markov graph, RWIG
can accurately reproduce only 1-periodic sequences. How-
ever, any p-periodic sequence can be reproduced by RWIG
where M walkers traverse the Markov graph with dif-
ferent transition probability matrices P1, . . ., PM . We pro-
vide the lemma that defines the minimal period pi of each
walker wi.

There are several future directions for this research. First, we
have identified the constraints on the temporal graph sequence,
which can be reproduced by RWIG with the lowest MSE. How-
ever, if a given temporal graph sequence G0, . . .,GK–1 does not
satisfy these constraints, what are the parameters of RWIGss to
approximateG0, . . .,GK–1? Second, how to infer the parameters
of RWIG when the contact sequence is neither periodic nor
generated in the steady state? Finally, our findings are valid
only for graph sequences that can be generated by RWIG.
Therefore, we emphasize the importance of solving the inverse
problem for other generative models that produce non-clique
structures.
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