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Abstract 

Large chemical reaction data sets often suffer from incompleteness, such as missing 
molecules or stoichiometric information. Incomplete chemical reaction equations 
currently hinder us to perform automated mass balances across large sets of chemical 
reactions. In this work, we integrate two approaches for computational completion of 
partial reaction equations. Specifically, we combine a rule-based method and a machine 
learning model, a tailored version of the pre-trained Molecular Transformer, to complete 
reactions. The rule-based method takes sets of helper species into a linear solver and 
therewith balances some incomplete reactions. The machine learning model is trained to 
take partial reactions as inputs and predicts missing molecules and stoichiometries. We 
apply our methodology to the USPTO STEREO chemical reaction data set. The rule-
based method completes about 50 % of the reactions. The language model shows a top 1 
accuracy of 88.3 % on our test set and high validity (> 99 % of outputs are valid SMILES). 

Keywords: Molecular transformer, Chemical reaction completion, rule-based methods, 
reaction SMILES, Language models 

1. Introduction

The digitalisation of patents and publications in chemical science has led to a substantial 
body of electronically accessible chemical reactions (Lowe, 2012). This body of reactions 
is a valuable data source in predictive chemistry, e.g. for reaction prediction, 
retrosynthesis, reaction yield prediction, or reaction condition prediction (Schwaller et 
al., 2019; Liu et al., 2017; Schwaller et al., 2021; Gao et al., 2018). Recently, there has 
also been a growing interest in using this data for automated reaction pathways selection 
and early-stage sustainability analysis (Ulonska et al., 2016; Weber et al., 2022). Yet, 
most chemical reaction databases are incomplete. For instance, one can find recorded 
reactions without temperature and pressure, without yield, or without information about 
solvents or catalysts (Jacob et al., 2017a). Also, fundamental information such as reaction 
equations are incomplete. They often lack co-reactants, by-products, and the 
stoichiometric coefficients. The lack of this knowledge currently limits automated mass 
balances across the large body of reaction alternatives. This is particularly relevant for 
mass-based assessment strategies, e.g. sustainability focused assessment, of chemical 
reactions (Jacob et al., 2017b; Weber et al., 2021).  
To address this problem, recent works aim to curate incomplete chemical reaction 
equations. Vaucher et al. (2020) proposed to complete chemical reactions through a 
transformer-based language model (LM). Note that their definition of completeness does 
not correspond to mass balance complete reactions; it corresponds to predicting the 
original atom-wise incomplete database entry. Arun et al. (2023) developed an algorithm 
that balances chemical reactions by adding small “helper” molecules. This procedure is 
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one of eight data processing steps for impurity prediction where the balancing step is used 
for filtering purposes. Zhang et al. (2023) used a similar algorithm, but also included a 
transformer-based encoder-only LM, based on RoBERTa (Yinhan et al., 2019), that 
predicts missing molecules. Their hybrid approach is a prominent step towards solving 
the reaction completion problem and works in an iterative fashion between the rule-based 
and the language model-based part. We also propose a hybrid approach. Our approach 
works sequentially, first through a rule-based approach like the work of Zhang et al. 
(2023), and then through an autoregressive transformer-based encoder-decoder LM, 
based on the original transformer architecture (Vaswani et al., 2017). 

2. Methods

Two methods are combined for completing incomplete chemical reactions in this work. 
We define an incomplete reaction equation as an equation in which the number of atoms 
and charges on the left-hand side (LHS) and right-hand-side (RHS) of an equation are not 
balanced with one another.  
2.1. Dataset  

The dataset used for this work is the publicly available patent-mined dataset known as the 
USPTO STEREO (https://ibm.ent.box.com/v/ReactionSeq2SeqDataset) of which 3.5 % 
are balanced reactions and 96.5 % are imbalanced. 
2.2. Rule-based reaction completion 

The rule-based method uses a set of hard-coded mathematical and chemical rules to 
identify missing molecules, i.e. small helper species, necessary for a balanced reaction. 
Additionally, stoichiometric ratios are determined. The rule-based reaction completion is 
solved through a linear solver.  
2.2.1 Helper species selection 

Different sets of helper species considered in this work are depicted in Figure 1. Set A is 
the strict uncharged set, set B and C make up the strict charged helper species, and set D 
is taken from literature (Arun et al., 2023) illustrating a more lenient selection of helper 
species. Here, we test the usage of single helper species first and only if the algorithm is 
unsuccessful, combinations of two helper species (sets A+A, A+B, A+C, A+D).  

Figure 1. Helper species sets. Set A is the strict uncharged set, set B and C make up the strict 
charged based helper species, and set D (lenient set) is based on Arun et al. (2023).  

2.2.2 Rule-based algorithm with linear solver 

The rule-based algorithm can be subdivided into four parts. Firstly, atom and charge-level 
balances are calculated for a reaction equation, identifying the surplus or lack of 
atoms/charges from the left-hand-side (LHS) to the right-hand-side (RHS). Secondly, 
helper species are selected when their atom types coincide with the in step one identified 
imbalanced atom types. In the first iteration, only one helper species (single-type) is 
selected to complete the equation and in the second iteration of this step, a combination 
of two helper species (pairwise-type) is selected. Thirdly, the linear solver identifies the 
stoichiometry of the added helper species. For single-typed solutions, the linear solver 
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checks if the number of missing atoms can be divided by the number of atoms of the 
helper molecule. For pairwise solutions, the less ambiguous helper species is selected 
first: in the case of a charge imbalance, a charged helper species; without a charge 
imbalance, a helper species with unique atom type. The stoichiometric value of the 
selected molecule is then set to balance the charge or unique atom type. The atom/charge 
balance is updated, and the secondary helper species is selected as in the single-type 
solution. Lastly, if a reaction cannot be completed through the previous steps, we check 
if the atom imbalance exactly coincides with one of the reactants or products. If this is 
the case, we assume that that molecule was incorrectly added to the reactant or product 
side, while it should have been recorded as a reagent and thus remove it. 
2.3. Language-model based reaction completion 

The second method is a transformer-based encoder-decoder LM that is trained on pairs 
of partial and complete reactions and predicts missing molecules and stoichiometries. 
Molecules are presented as string-formatted words with their atoms as tokens using 
SMILES (simplified molecular input line entry system) notation. Reactions are a 
sequence of words: a sentence, see Figure 2 (a). We fine-tune the Molecular Transformer 
(Schwaller et al., 2019) on a reaction completion task. The averaged 20 checkpoint 
Molecular Transformer (https://ibm.ent.box.com/v/MolecularTransformerModels) from 
the USPTO STEREO dataset with separated solvents is used for initialisation. To 
generate fine-tuning data, we partialised the data set of complete reactions obtained from 
the rule-based model. We then subsequently train the model to predict the complete 
reaction equation from a partialised equation, see Figure 2 (b). Each reaction was first 
assigned to the train, test, or validate data set with a data split of 90/5/5 and then 
partialised. Reactions from the test set were partialised only once, while reactions 
belonging to training and validation set are partialised up to ten times depending on the 
number of possible combinations, keeping at least 50 % of the atoms from the complete 
reaction equation. In some cases, two different reactions produce the same partialised 
reaction. Then, both correct answers are recorded for each partial reaction. During testing, 
the prediction of either one is considered correct. 

(a) 

(b) 
Figure 2. Illustration of a reaction SMILES as input for the LM (a) and the partialisation strategy 
(b). In (a), tokens before “>>” correspond to reactant molecules and tokens afterwards to product 
molecules. In (b), partial reactions are used for model training.  

2.3 Model evaluation 

We propose three evaluation scenarios. Solutions from the rule-based model are 
considered complete if they fulfil the atom and charge balance as also proposed by Zhang 
et al., (2023). Note that this is an approximation with false positives, and that for example 
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chemical template matching and expert judgments would be beneficial. With the previous 
assumption, we can consider the data completed through the rule-based approach as 
ground truth for the LM and can thus record the prediction accuracy. Lastly, we test the 
LM on the reactions that could not be completed by the rule-based approach. There, we 
evaluate if the model predicts atom- and charge-balanced reactions and perform an 
additional consistency check through the round-trip accuracy, inspired by retrosynthesis 
prediction tasks (Schwaller et al., 2019). We define a round-trip accurate prediction as 
one whose output, if newly partialised (50 - 80 % of atoms remain) and fed into the LM, 
leads to the same complete chemical reaction. 

3. Results and discussion

3.1. Rule-based completion 

Using the rule-based reaction completion algorithm increases the fraction of complete 
reactions from 3.5 to 49.37 % (strict helper species set) and 55.57 % (lenient helper 
species set). We outline the completion rate per algorithm stage for the strict species set 
in Table 1. Notably, the helper species-based completion algorithm contributes to most 
of the completed data while the erroneous reactant step only identifies very few 
mislabelled reaction records. Our cumulative results are in line with our reimplementation 
of the rule-based method ChemBalancer (Zhang et al., 2023) that resulted in a curation 
rate of 54 % on a sample set of incomplete reactions.  
Table 1. Data completion rate at each step in the rule-based algorithm using the strict set of helper 
species and the cumulative value also for the strict species set. 

initial data strict err. reactants cumulative 
Completion rate [%] 3.5 45.53 0.37 49.37 

3.2. Language-based completion with ground truth assumption 

The fine-tuned Molecular Transformer shows a top five accuracy of 95.6 % on the test 
set of the by the rule-based method completed dataset. 99.78 % of top 1 predictions are 
valid SMILES outputs, which is in line with our expectations as the model was initialised 
on the previously trained Molecular Transformer. Yet, the validity slightly decreases in 
respective next 𝑛 predictions. Table 2 illustrates the performance and validity.  
Table 2. Performance of model on test set. BS stands for beam search and top 𝑛 considers the 
accuracy of the first n predictions. For SMILES validity top n corresponds to the 𝑛th prediction. 

top 1 
BS 1 

top 1 
BS 5 

top 2 
BS 5 

top 3 
BS 5 

top 4 
BS 1 

top 5 
BS 1 

Top-n accuracy [%] 88.3 88.8 93.6 94.8 95.3 95.6 
Valid SMILES output [%] 99.78 99.88 88.07 94.23 93.27 91.94 

3.2.1. Degree of partialisation 

When limiting the scope of the reaction incompleteness problem to partial reactions with 
exactly one molecule missing, our LM achieved a top 1 accuracy of 96.3 %. In Figure 3 
(a), we outline the model’s performance for remaining combinations of reaction 
partialisation scenarios. Note that for zero missing molecules, the model always predicts 
that no additional molecule is needed, thus that the reaction is already complete. 
Furthermore, we observe a gradient from left to right highlighting the increasing 
complexity with more missing molecules.  
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(a) (b) 
Figure 3. Model accuracy with degree of partialisation. In (a), we show the model accuracy 
across degrees of partialisation and in (b) we illustrate the corresponding amount of data across 
the degrees of partialisation.  

3.2.2. Length of missing molecules 

We also analyse the impact of the length of the missing molecules on the prediction 
accuracy and compare our results to reported results of the previously suggested encoder-
only architecture, ChemMLM, (Zhang et al., 2023). Both models show a drop in accuracy 
when the length of the model output increases, see Table 3, yet the accuracy of the 
encoder-decoder architecture of this work decreases less. The autoregressive prediction 
of the encoder-decoder model takes previously predicted tokens into account, which helps 
the prediction of longer outputs, while the encoder-only RoBERTa architecture only 
considers non-masked information (incomplete reaction) for each mask prediction. 
Table 3. Model accuracy rates per output length. Due to different tokenisation strategies, we 
translate our output length to their categories through the following: "short" corresponds to two 
atom tokens, "medium" to up to 20 atom tokens, and "long" to more than 21 atom tokens. 
ChemMLM results are not reimplemented, but taken from their work (Zhang et al., 2023). 

Model type “short” accuracy “medium” accuracy “long” accuracy 
ChemMLM 99.9 % 78.3 % 16.4 % 
Encoder-decoder 99.9 % 91.8 % 82.8 % 

3.2.3. Language-based assumption without ground truth assumption 

Considering the top five predictions, our LM predicts a reaction that is atom and charged 
balanced for 5.36 % of the reactions from the dataset without ground truth assumption. 
This is a drop from the high accuracy of the previous test set predictions based on the data 
with ground truth assumption and indicates larger differences between the data sets. 
Additionally, we tested the consistency of the model predictions as a basic sanity check 
through the round-trip accuracy. Here, at a partialisation where 70 % of the atoms are 
given, the model is relatively consistent in predicting the original reaction again (in 80 % 
of the cases considering top five). 

4. Conclusions

In this work, we present a sequential hybrid approach for the completion of incomplete 
chemical reaction equations. We used a rule-based method to curate the bulk of 
incomplete reactions by applying mathematical rules based on atom and charge balances. 
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We fine-tuned the Molecular Transformer on the data set of complete reactions that we 
obtained from the rule-based completion algorithm. Our rule-based approach raised the 
completion rate from 3,5 % to 49.37 or 55.57 % depending on the set of helper species. 
The LM predicted reactions where atoms and charges are balanced with high accuracy 
for reactions in the test set, yet only for 5.36 % of the reactions in the remaining dataset. 
Future investigations are needed to better understand the dataset impact. Our results 
overall indicate the suitability of combined rule-based and machine learning based 
curation approaches and provides a further step towards complete chemical reaction data. 

References 

A. Arun, Z. Guo, S. Sung, A.A. Lapkin, 2023, Reaction impurity prediction using a data mining 
approach, Chemistry‐Methods, e202200062 

H. Gao, T.J. Struble, C.W. Coley, Y. Wang, W.H. Green, K.F. Jensen, 2018, Using machine 
learning to predict suitable conditions for organic reactions, ACS central science, 4(11), 1465-
1476 

B. Liu, B. Ramsundar, P. Kawthekar, J. Shi, J. Gomes, Q. Luu Nguyen, S. Ho, J. Sloane, P.Wender, 
V. Pande, Retrosynthetic reaction prediction using neural sequence-to-sequence models, ACS 
central science, 3(10), 1103-1113 

P.M. Jacob, T. Lan, J. M. Goodman, A. A. Lapkin, 2017a, A possible extension to the RInChI as a 
means of providing machine readable process data, Journal of Cheminformatics, 9, 1-12 

P.M. Jacob, P. Yamin, C. Perez-Storey, M. Hopgood, A. A. Lapkin, 2017b, Towards automation 
of chemical process route selection based on data mining, Green Chemistry, 19(1), 140-152 

D.M. Lowe, 2012, Extraction of chemical structures and reactions from the literature. Diss. 
University of Cambridge 

P. Schwaller, T. Laino, T. Gaudin, P. Bolgar, C.A. Hunter, C. Bekas, A.A. Lee, 2019, Molecular 
transformer: a model for uncertainty-calibrated chemical reaction prediction, ACS central 
science, 5(9), 1572-1583 

P. Schwaller, A.C. Vaucher, T. Laino, J.L. Reymond, 2021, Prediction of chemical reaction yields 
using deep learning, Machine learning: science and technology, 2(1), 015016 

K. Ulonska, M. Skiborowski, A. Mitsos, J. Viell, 2016, Early‐stage evaluation of biorefinery 
processing pathways using process network flux analysis, AIChE Journal, 62(9), 3096-3108 

A.Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin, 
2017, Attention is all you need, Advances in neural information processing systems 30 

A.C. Vaucher, P. Schwaller, T. Laino, 2020, Completion of partial reaction equations, Chemrxiv 

J.M. Weber, Z. Guo, C. Zhang, A.M. Schweidtmann, A.A. Lapkin, 2021. Chemical data 
intelligence for sustainable chemistry, Chemical Society Reviews, 50(21), 12013-12036 

J.M. Weber, Z. Guo, A.A. Lapkin, 2022, Discovering Circular Process Solutions through 
Automated Reaction Network Optimization, ACS Engineering Au, 2(4), 333-349 

L. Yinhan, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. 
Stoyanov, 2019, Roberta: A robustly optimized bert pretraining approach, arXiv preprint 
arXiv:1907.11692 

C. Zhang, A. Arun, A.A. Lapkin, 2023, Completing and balancing database excerpted chemical 
reactions with a hybrid mechanistic-machine learning approach. Chemrxiv 




