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ABSTRACT

Classical continuum models, i.e. continuum models that do not incorporate an internal length scale, suffer
from excessive mesh dependence when strain-softening models are used in numerical analyses and cannot
reproduce the size effect commonly observed in quasi-brittle failure. In this contribution three different
approaches will be scrutinized which may be used to remedy these two intimately related deficiencies of
the classical theory, namely (i) the addition of higher-order deformation gradients, (ii) the use of micropolar
continuum models, and (iii ) the addition of rate dependence. By means of a number of numerical simulations
it will be investigated under which conditions these enriched continuum theories permit localization of
deformation without losing ellipticity for static problems and hyperbolicity for dynamic problems. For the
latter class of problems the crucial role of dispersion in wave propagation in strain-softening media will
also be highlighted.

KEY WORDS Deformation localization Finite element analyses Continuum models

INTRODUCTION

Localization of deformation refers to the emergence of narrow regions in a structure where all
further deformation tends to concentrate (localize), in spite of the fact that the external actions
continue to follow a monotonic loading programme. The remaining parts of the structure usually
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unload and behave in an almost rigid manner. The phenomenon has a detrimental effect on the
integrity of the structure and often acts as a direct precursor to structural failure. It is observed
for a wide range of materials, including rocks, concrete, soils, metals, alloys and polymers,
although the scale of localization phenomena in the various materials may differ by some orders
of magnitude: the band width is typically less than a millimetre in metals and several metres
for crestal faults in rocks.

In this contribution we address the fundamental issue of developing continuum models that
admit localization of deformation while preserving well-posedness of the rate boundary value
problem. We shall not discuss matters of element performance such as modifying the element
formulation to prevent locking in fully developed plastic flow owing to internal constraints®?
or adding shape functions that facilitate capturing sharp strain gradients*®3°. These
improvements are also vital for properly capturing localization, but even for the ‘best element’
the resulting numerical model lacks physical significance if the mathematical structure of the
continuum model is such that the rate boundary value problem is not well-posed.

We begin with an outline of uniqueness and stability conditions for non-linear boundary value
problems of standard (Boltzmann) continua. Particular emphasis is directed towards critical
conditions which entail a change of type of the differential problem. Later, we concern ourselves
with simple, physically motivated generalizations of the standard continuum theory. Our aim
is to obtain a formulation that does not exhibit the difficulties associated with a change of type
of the differential equations as occurs in the standard continuum upon the introduction of strain
softening. The potential of the new models is demonstrated in numerical analyses of static and
dynamic boundary value problems.

MATERIAL INSTABILITY AND LOCALIZATION
Material instabilities

From a mechanical point of view the driving forces behind localization phenomena are material
instabilities, that is, the constitutive relationship violates the stability criterion'®:2¢ that the inner
product of the stress rate ¢ and the strain rate & is positive*

&6 >0 (1)

Obviously, this inner product becomes negative when, in a uniaxial tension or compression test,
the slope of the homogenized axial stress—axial strain curve is negative. We call this phenomenon
strain softening. By using the terminology ‘homogenized’ we refer to the fact that initial flaws
and boundary conditions necessarily induce a non-homogeneous stress state in a specimen during
testing. In particular during progressive failure of the specimen these flaws and local stress
concentrations will cause strongly inhomogeneous deformations of the specimen. The procedure
that is normaily utilized to derive stress—strain relations, namely dividing the force by the virgin
load-carrying area and dividing the displacement of the end of the specimen by the original
length so as to obtain stress and strain respectively then no longer reflects what happens at a
micro-level and loses physical significance. Nonetheless, we can still use this procedure in a
continuum description provided that we account for these micro-structural changes by including
additional terms in the model.

*The notion of stability is not well-defined in the mechanics literature, Indeed, as pointed out by Koiter?!, stability in
the sense of Lyapunov, that is loosely stated a finite disturbance of the data of the boundary value problem results in
a finite change of its solution, can be proven to be identical with the above definition of stability for elastic materials
only. For inelastic materials there exist other definitions of stability in the literature. Considering purely mechanical
processes, i.e. not taking into account heat flow, the authors favour the above definition to the one by Drucker*®.
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There is also a class of material instabilities that can cause the inner product of stress rate

and strain rate to become negative even without the occurrence of strain softening as defined
above. These instabilities can arise when the predominant load-carrying mechanism of the
material is due to frictional effects such as in sands, rock joints and in pre-cracked concrete. At
a phenomenological level such material behaviour usually results in constitutive models which,
in a multiaxial context, have a non-symmetric relation between the stress-rate tensor and the
strain-rate tensor. This lack of symmetry is in itself sufficient to cause loss of material stability,
even if the slope of the axial stress—strain curve is still rising*°.
" The above discussion suggests that material instabilities can be classified into two major
categories. In category one the prevailing failure mechanism is decohesion and in the second
category failure is governed by (frictional) slip. The first class would then include fracture in
masonry, concrete and rocks under low confining pressure levels. Such failures may be denoted
as mode-I fracture. The second category encompasses slip processes in metals, soils, and in
concrete and rocks under high confining pressure levels (mode-II failure). In the remainder ‘of
this article we shall show that this distinction has deep implications for the effectiveness of the
various approaches that are used to restore well-posedness of the rate boundary value problem
(often referred to as regularization methods).

Mathematical implications

Limiting the discussion to incrementally-linear stress—strain relations, that is the relation
between stress rate ¢ and strain rate & can be written as:

& =Di (2)
with D the material tangential stiffness matrix, inequality (1) can be formulated as:
™Di >0 (3)

The limiting case that the inequality of (3) is replaced by an equality, marks the onset of material
instability, Mathematically, this is associated with loss of positive-definiteness of the material
tangential stiffness matrix D:

det(D +D")=0 | (4)

Material instability can lead to structural instability. For a structure that occupies a volume
V Hill’s definition'® guarantees stability if :

J fedV >0 (5)
vV

for all kinematically admissible &. A discrete mechanical system then attains the limiting case of
a neutrally stable equilibrium (loss of positive-definiteness of K) if%17:

det(K+K") =0 (6)
where K is the structural stiffness matrix,

K =J B'DB dV (7)
14

In (7) B is the matrix that relates the strain rate & to the nodal velocity vector a:
i =Ba (8)
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If the material tangential operator D locally loses positive-definiteness, the structural tangential
stiffness matrix K may cease to be positive-definite as well. Accordingly, the mere existence of
material instabilities (e.g. strain softening ) may lead to structural instability, even in the absence
of geometric destabilizing terms. In itself loss of positive-definiteness of K does not explain the
frequently reported bizarre results of finite element computations for constitutive models where
positive-definiteness of D fails at some stage of the loading process. For example, finite element
computations of instability phenomena in thin shells, where the destabilization is purely caused
by geometrical non-linearity, result in perfectly meaningful results in spite of the fact that (6)
is satisfied at some stage of the loading process.

The crucial consequence of the loss of positive-definiteness of the material tangent operator
D is therefore not that it may cause loss of structural stability, but that it may result in loss of
ellipticity of the equilibrium rate equations. Ellipticity is a necessary condition for well-posedness
of the rate boundary value problem, in the sense that a finite number of linearly independent
solutions are admitted, continuously depending on the data and not involving discontinuities®.
Mathematically, loss of ellipticity occurs if ;

det(njDUk,nl) == 0 (9)

where the summation convention with respect to repeated indices has been adopted. Physically,
condition (9) indicates the existence of a discontinuity (with the normal vector n) in the velocity
gradient and is coincident with Hill’s condition for the propagation of plane acceleration waves
in solids**®

Assummg- small displacement gradients loss of material stability as expressed by (4) is a
necessary condition for loss of ellipticity. To show this we first substitute the strain rate field
that derives from a piecewise homogeneous deformation®29:52

8.”=%'(nimj+ njmi) (10)

with m an arbitrary vector, in the condition for loss of material stability,ni.e. &'Dé = 0, so that
mgn;Dymn, = 0. This identity holds for arbitrary m if and only if :

det (3n,(Dyq + Dygij)my) = 0 (11)

Because the real-valued eigenspectrum of n;D;;,n; is bounded by the minimum and maximum
eigenvalues of $n;(D,u; + Diy)ny, det(3n;(Dyzy + Duyi)ny) always vanishes prior to satisfaction
of (9). Since (11) can only be satisfied if material stability is lost ((4)), it follows that loss of
ellipticity can only occur if we have loss of material stability.

It is emphasized that ellipticity is a local condition and is but one of the three conditions that
are necessary for well-posedness of the rate boundary value problem®*. The other two conditions
for well-posedness are satisfaction of the boundary complementing condition, which excludes
the emergence of stationary surface waves (Rayleigh waves), and the satisfaction of the interfacial
complementing condition, which excludes the emergence of stationary interfacial waves (Stonely
waves)?3.

Before proceeding to a discussion of the various enhancements of the standard,
rate-independent continuum we shall briefly recall a third notion that has relevance in analyses
of structural failure. When carrying out post-failure computations it is of utmose importance to
know whether the post-peak equilibrium path is the most critical in the sense that at the same
load level there do not exist alternative equilibrium states at a lower energy level, Put differently,
there must be uniqueness of the solution of the incremental boundary value problem. Suppose
now that uniqueness of the solution is violated. Then, there must be two different stress rates
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¢, and & which both satisfy incremental equilibrium ;
J 0eT ¢dV = da™f (12)
v

where the §-symbol denotes the variation of a quantity and f assembles the external actions.
Subtraction of both equilibrium equations results in:

f 3eTA¢ dV =0 (13)
v

where the A-symbol denotes the difference between two quantities, Introducing the B-matrix
(cf. (8)), substituting the rate stress—strain relation (2) for both admissible stress rate
distributions, and requiring that the result holds for any virtual displacement field da, we observe
that multiple solutions will exist if and only if :

KAda =0 (14)
with K as defined in (7). Condition (14) is satisfied non-trivially if and only if”:
det(K)=0 (15)

Apparently the notions of loss of stability and loss of uniqueness coincide for a symmetric
material tangential operator D. For non- symmetric operators this is not true. Then loss of
stability (det(K + KT) < 0) may precede loss of uniqueness (det (K) < 0) as has first been pointed
out by Maier and Hueckei?®, 4

The above discussion of uniqueness depends heavily on the assumption that for both
equilibrium paths the stress rates are related to the strain rates by the same material tangential
stiffness matrix. For elasto-plastic solids this is not necessary, since the most critical case may
occur if in some parts of the structure that is already in a plastic state, the elastic (unloading)
modulus is substituted in the relation between stress rate and strain rate. However, Hill*® has
proved that the case that the elasto-plastic (loading) modulus is substituted for the relation
between stress rate and strain rate in the entire plastified area is always the most critical for
assessing uniqueness if D is symmetric. This proof can be extended to discrete mechanical
systems®

LOCALIZATION UNDER QUASI-STATIC LOADING CONDITIONS

Loss of well-posedness of the rate boundary value problem results in many undesirable properties
of finite element solutions. One of the most striking observations is the complete dependence
on the discretization, not only with respect to mesh refinement, but also with respect to mesh
alignment. Loss of ellipticity causes the failure zone (crack band, shear zone, crestal fault) to
exhibit an extreme tendency to propagate along the mesh lines®***°*7. Not all enhancements
of the classical, rate-independent continuum are as effective in eliminating this undesirable
behaviour. Below we shall examine, by means of numerical experiments, the strong points and
weaknesses of the various approaches. Specifically we shall address the issues of a proper
formulation of the additional boundary conditions that are required in non-standard continuum
theories, the effectiveness of the enhancements when the mesh is refined and/or when the direction
of the grid lines is changed (mesh alignment), the difficulties in implementing the model and
the conditions under which the model can be used (static vs. transient loadings, mode-I vs.
mode-II failure).
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The non-local concept

Restricting attention to flow theories of plasticity and small deformation gradients, and
neglecting body forces the elasto-plastic rate problem is completely defined by the equilibrium
condition :

L%=0 (16)
the kinematic relation:
i=Li | (17)
and a set of constitutive equations:
=8+ (18)
i =[D*] 6 . (19)
& = im (20)
subject to the constraints :
<0, 1z0, fi=0 (21)

In (16)-(21) & is a vector that contains the stress components, €.g. 6 = (0, 0}y, 0,,, 0,,) for
a two-dimensional configuration and L is a differential operator matrix, which, for the
two-dimensional case, is conveniently defined as:

0 4 o 2
P) 8
r=| " , 6y (22)
0 — 0 —
dy 0x

The strain components, assembled in the vector &= (g, ¢,,, £.., &,) are related to the
displacement vector u = (u,, u,) by the matrix L as indicated in (17). The total strain rate & is
additively decomposed into an elastic part £° and a plastic part é”. Between the elastic strain
rate and the stress rate we assume the bijective relationship (19), with D® the elastic stiffness
matrix. The direction of the plastic flow &7 is determined by the vector m and its magnitude by
the multiplier 4, which follows from the requirement that during continued plastic yielding the
stress point must remain on the yield surface f = 0. Otherwise, that is if f <0, i =0.

In standard plasticity theories, the yield function f depends on the stress tensor ¢, and on a
finite number of internal variables, conveniently collected in a vector q: f = f (e, q). For the
case of isotropic hardening/softening, to which we shall limit the treatment for sake of simplicity,
we have only one internal variable, namely y”, thus

f=fla,y") (23)

with y? = [ 97 dt, 7 being an invariant measure of the plastic strain tensor, e.g.,

7= 3(E) e (24)
The deficiency of standard rate-independent plasticity theories is that material instability can

cause loss of ellipticity. The ensuing loss of well-posedness of the rate boundary value problem
then renders numerical results meaningless. Bazant and Lin® have suggested to average 77, such
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that:

. 1

¥ = f g(s)*(x +s)dv (25)
V,(X) v

with V,(x) = j' g(s — x)dV and g(s) a weighting function, for which the error function is usually

substituted, and to make f dependent on %" in lieu of on y” itself :

f=1(e,7) (26)

Alternatively, one may first average the plastic strain rate tensor &* and then form 7” as in (24).
Numerical experience indicates that the differences between both approaches are marginal. Either
approach can lead to a set of rate equations that remains elliptic after the onset of localization.
This holds true for mode-I type failure mechanisms (decohesion) and mode-II type failures
(slip). The non-local approach is therefore generally eflective in numerical simulations for both
types of mechanisms.

An important issue in all higher-order continuum models is the proper formulation of the
additional boundary conditions. In contrast to the gradient continuum®!31431.42 and the
Cosserat continuum?28-2%4! which will be discussed hereafter, this issue has not yet been addressed
properly for the non-local regularization®38,

Another disadvantage that adheres to non-local plasticity is the fact that the consistency
condition, i.e. / = 0, results in an integro-differential equation instead of in an algebraic equation
that can be solved locally:

nT&+MI g(s)jP(x +s)dV =0 27
Vi(x) Jy
with
_d
n= (28)

the gradient to the yield function f. Using (18), (20) and (24) we can restate (27) as:
_ "D + aof | oy?
" n™Dm  Vn'D’m

J g(s)A(x +s)a(x +s)dV (29)
|4

where it is implied that 4 = (x), & = &(x) etc., unless specified otherwise and:

a=./4m™m (30)
Now, we consider a one-dimensional continuum for simplicity and we approximate the integral
of (29) by a finite sum:

o or /oy .
A= (hoeat)s + Vi—fﬁjgo wig (5;)A(x; + sp)ax; + 55) (31)
with:
(o) = 222 (32)
local Ji ™ nTD“m

and w; the weight factors. The issue of the missing boundary comes in clearly when evaluating
this sum: / is undefined for x; + s ;> L, L being the length of the bar. The numerical difficulty
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is also obvious: A(x; + s;) is yet unknown for s; 2 0. To obtain a proper solution we must carry

out an iterative procedure within each global equilibrium iteration:

of/oyr & .
’u‘ = (j‘loca])i + ?,.{l‘—'](ﬁt_mjgo ng(Sj)/lk l(xi + Sj)a(xi -+ Sj) (33)

where the superscript k is the iteration counter.
A simple alternative to the iterative procedure defined by (33) would be to carry out no

iterations so that the non-local value i, is approximated according to:

V,n"D*m ;<o

Such an averaging procedure has been utilized by Bazant and Lin®in their algorithm for non-loc?ll
plasticity. Unfortunately, omission of an iteration loop in which 4; is computed properly in
accordance with (3) results in loss of satisfaction of the consistency condition, which makes the
algorithm defect, especially for large loading steps, cf. Simo**.

The numerical difficulty discussed above does not occur if total stress—strain relations are
employed, that is when the strain is not decomposed into elastic and plastic components. An
example is the elasticity-based non-local damage model of Pijaudier-Cabot and Bazant?38,
where the averaging process can be carried out directly with respect to the strains. On the
contrary, it seems that for such total relations the non-local approach is computationally more
efficient than the gradient models to be discussed next'!

A = (Dioear)s + of /o i ng(sj)j'local(xi + s;)a(x; + 55) (34)

Grade-n continua

Gradient-type regularization methods can be derived from fully non-local models by first
expanding the weight function g (s) introduced in (25) in a Taylor series about s = 0 and then
carrying out the integration®!. The result is:

P9+ eV + VP 4 (35)

where the coefficients c¢,, ¢, depend on the form of the weighting function and the dimension
considered. Note that the odd derivates cancel because of the implicit assumption of isotropy.
Restricting the treatment to second-order derivatives, the functional dependence on the yield
function now becomes:

f=f(as ¥, Vz'}’p) (36)

The inclusion of gradients in the constitutive model can also be motivated directly on
micro-mechanical grounds, without making contact with non-local models. The gradient terms
are then thought to reflect the fact that below a certain size scale the interaction between the
microstructural carriers of the deformation is non-local, see for example the review paper by
Kubin and Lépinoux?3. A particularly convincing example of non-local hardening models, based
on the interaction of a Frank Read source with dipolar dislocation arrangements, has been given
by Kratochvil®2. Other arguments have been given by Aifantis and his co-workers!3!, while
numerical and analytical solutions involving gradient models have been presented by Coleman
and Hodgdon'#, Lasry and Belytschko?* and Schreyer and Chen*2. For cementitious materials
experimental results which show evolving micro-structures during failure have been given by
Van Mier?’,

The numerical problem delineated above that prevents an efficient use of elastoplastic non-local
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models in principle also applies to gradient plasticity models. However, gradient plasticity has
the distinct advantage that the consistency condition now yields a partial differential equation
instead of an integro-differential equation, namely for the yield function of (36):

n'6 — hi + eV =0 37
where h and ¢ are defined as:
1o . - af
h e R 14 T er————s 8
A dyr ' ¢ OV2y? (38)

If the partial differential equation (37) is, just as the equilibrium condition (16), satisfied in a
weak sense only, a set of equations results that is suitable as a starting point for large-scale
finite element computations in two and three dimensions:

J 8i(n"¢ — hi 4+ eV34P)dV =0 (39a)
v

J SWT[LTs7dV =0 (39b)
| 4

In the two-dimensional examples we shall adopt a Drucker—Prager yield function:

I =30 +ap—&(y", V*y) (40)
with J, the second invariant of the deviatoric stress tensor, p the hydrostatic pressure, « a friction

coefficient and & reflecting the cohesion of the material, Substituting the yield function (40) into
the flow rule (20) and this result subsequently -into the strain-hardening hypothesis (24) gives

97 = L /1 + 2¢2/9. With ¢ = £./1 + 242/9 we now obtain in lieu of (39):

j oA (n"6 — hi+ cV2i)dV =0 (41a)
14

'f Sa"[LT6]dV =0 (41b)
14

Together with the kinematic relation (17) and the elastic stress—strain relation (19), both of
which are satisfied in a pointwise manner, (41) completely define the elastoplastic rate boundary
value problem. The fact that the consistency condition is no longer satisfied in a pointwise
manner marks a major departure from return-mapping algorithms that are used in conventional
plasticity. Now, the plastic multiplier 4 is considered as a fundamental unknown and has a role
similar to that of the displacements. It is solved for at global level simultaneously with the
displacement degrees-of-freedom.

The dlsplacement field u and the field of plastic multlphers A can be discretized to nodal
variables a and A in the usual way, leading to the following set of equations:

Kaa Ka}. 4 - fe]
[KL KMJM‘[O )

K, = J B"D*B dV (43)
|4

where
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K, =— f B™Denh™ d¥ (44)
' vV

K, = f [(h+ n™D¢n)bh" — chp"] d¥ (45)
| 4

and f, the external force vector. In (42)~(45) h™ = [hy, ..., h,] is the vector that contains the
interpolation polynomials for the plastic multiplier and p” = [V2hy, ..., V?h,]. The detailed
derivation of these equations and the finite elements that have been constructed on the basis of
them are described in References 13 and 37.

An unpleasant property of (42) is the unsymmetry that enters through K, as defined in (45).
For the pure rate problem K, can be symmetrized. Introducing q* = [Vh,, ..., Vh,] and using
Green'’s theorem we obtain:

K, =f [(h + n™Dn)hh" + cqq™] dV (46)
v

and the non-standard boundary conditions at the elastoplastic boundary S,: 64 =0 or
(V4)™n, = 0. n, is the outward normal at S,. These results can also be derived directly from a
variational principle'?:**. Unfortunately, it seems that, when finitely sized loading steps are used,
the symmetric form of K,, does not give a proper convergence behaviour in an
incremental-iterative procedure and that one then has to resort to the unsymmetric form of K,
as in (45). ,

We shall now illustrate the good performance of the theory in localization problems by two
examples. First, a one-dimensional tension bar is studied. Figure 1 shows the loading
configuration and lists the relevant material data. As in all subsequent examples a linear softening
branch is adopted. This assumption permits constructing an exact analytical solution for the
width w of the localization zone and the slope of the stress—displacement curve when the
localization zone has developed fully??:

w=2nl, I=./—c/h (47)
/6 = L/E + 2nl/h (48)

For the purpose of fixing the localization zone the elements between x = 45 mm and x = 55 mm
were assigned a reduction of 10% in the initial tensile strength ¢,. Dividing the bar into 20, 40,
80 and 160 elements, respectively, results in a good convergence to the analytical solution, both
with respect to the band width (Figure 2) and with respect to the stress—displacement curve (left
part of Figure 3). The right part of Figure 3 shows the effect of varying the ratio of the internal
length scale ! over the structural size L. We observe a clear size effect, that is a smaller value
of I/L (a smaller internal length scale or a larger structure ) results in a more brittle behaviour.

y Y | E=20000MPa
“ L— x l-—-—. 0’:=2MPa
h=—2000MPa |
o L =100 mm , I=5mm
T 1

Figure 1 Tension bar with a length L subjected to an axial
‘ stress o
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Figure 2 Plastic (left) and total (right) strain distribution along the axis of an imperfect tension bar for different
discretizations (I/L = 0.05 and u = 0.02)

o [MPa]
202 [MPa]
/L =0.1
20 elements
1.5 1.5
\ lIL=0.05
1.04 160 elem. 1.0+
E .
05 0.5 I/L =0.025
1
0.0 0.0
0.01 0.02 0.b3 0.01 0.02 0.
u [mm] u [mm]

Figure-.? Axial stress vs. axial displacement of right end of a tension bar. Left: results for I/L = 0.05 and different
discretizations (20, 40, 80 and 160 elements). Right: results for different ratios of //L (160 elements)

The specimen that has been considered for the biaxial test has a width of 60 mm and height
of 180 mm. Smooth boundary conditions (u, =0) were assumed at the upper and lower
boundaries. The additional boundary condition (V4i)™n, =0 was used at all boundaries. A
Drucker-Prager gradient plasticity model was used with an associated flow rule and the following
material data: Young’s modulus E = 11920 MPa, Poisson’s ratio v =049, o=2/3,
& = 106(1 — 4y*) and ¢ = 2500 MPa.

An imperfect element (10% reduction in the cohesion of the element at the left boundary near
the horizontal centreline) was used to set the starting point of the shear band development.
Figure 4 shows that initially two shear bands arise, but that later only one shear band persists.
The above observation shows that the addition of higher-order gradients does not remove the
existence of alternative equilibrium branches (bifurcations points). Indeed, some form of
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Figure 4 Incremental displacements at peak load (above) Viop/H

and beyond peak load (below). Left: mesh with 432  Figure 5 Load-displacement curves for a plane-strain

four-noded elements. Right: mesh with 1728 four-noded  biaxial test. Results for a Drucker—Prager gradient plasticity
elements model and nine-noded elements

geometric non-symmetry—in this case the fact that the imperfect element is not located
symmetrically with respect to the upper and lower boundaries—is necessary to trigger the
symmetry-breaking solution,

The results shown in Figure 4 were obtained using a four-noded element with a bilinear
interpolation for the displacements and a Hermitian (bicubic) interpolation for the plastic
multiplier3”. Despite the apparent convergence in the failure patterns of Figure 4, convergence
was not obtained for the load—displacement curves. It seems that this is due to the ill-matched
orders of interpolation of the displacements and the plastic multiplier, since a perfect convergence
was obtained when the bilinear interpolation for the displacements was replaced by a biquadratic
Lagrangean interpolation (Figure 5).

In sum, we conclude that gradient plasticity theories are highly versatile for describing
localization of deformation in a continuum setting. They can be made effective for mode-I and
mode-II failures, in particular if an ‘isotropic’ dependence on the higher-order deformation
gradients is assumed as has been done here via the Laplacian of the internal state variable y*.
Furthermore, the formulation outlined above can be connected to a variational principle!®31,
which ensures that the issue of the additional, non-standard boundary conditions is addressed
properly. A disadvantage of the proposed algorithmic formulation is the introduction of an
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additional variable at global level in addition to the conventional displacement
degrees-of-freedom.

Cosserat continua

Unlike the non-local and grade-n continuum models the structure of the plasticity formalism
is retained in the Cosserat continuum (E. and F. Cosserat!3) in the sense that the yield function
S depends only on the stress tensor and on a local internal variable, say y? as in (23). The
regularizing effect now comes from the introduction of additional static and kinematic quantities,
namely the couple-stresses m,, and m,, (Figure 6) and the micro-curvatures x,, = dw,/dx and
K, = Ow,/dy (for a two-dimensional continuum). w, is a micro-rotation about the z-axis which
in the planar Cosserat theory appears as a third independent kinematic quantity in addition to
the two displacement components u, and u,. Since these static and kinematic components are
related through a ‘bending’ modulus, and since the quotient of a bending modulus and the
conventional Young’s modulus has the dimension of length, an internal length scale, say [, is
introduced already in the elastic regime. Note that this is not so for the non-local and grade-n
continuum models discussed in the preceding sections, where the enrichment is introduced only
in the inelastic regime.

In spite of the introduction of new static and kinematic quantities, the whole framework for
elastoplasticity as laid down in (16)—(21) can still be used. We merely have to redefine u, & and
o as:

u="[u,u,o,]" (49)
e = [sxx’ Eyyy E2z5 Exys Eyys szl, Kyzl]T (50)
G = [Uxx: Oyys Ozz5 Oxys Opxs mxz/l’ myz/l:]T (51)

where the internal length scale I has been introduced in (50) and (51) to make all components
in & and ¢ having the same dimension. The operator matrix L and the elastic stiffness matrix

Oyy F/B[MPa]
8
Mgy . homogeneous
/___\ 7
Oxy
Mzx 4
y Oy localised
X Oxx 2+
0
0 i 2 3 3
Vop[mm]

Figure 6 Stress and couple-stress in a two-dimensional Figure 7 Load-displacement curves for a plane-strain
Cosserat continuum biaxial test (Drucker—Prager Cosserat plasticity)
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D¢ and the elastic stiffness matrix D¢ have to be redefined as®1%12;

_gi 0 0 9 0 0 0
ax ady
I'={ 0 0 0 O i— 0 0 (52)
0x
a- J- 0
i 0 5; 0 +1 —~11 i l b—;d
and
" 2uc, 2uc, 2uc, O 0 0 07
2uc, 2ucy  24c, 0 0 0 0
2uc, 2uc, 2ucy 0 0 0 0
Df = 0 0 0 p+p p—p 0 0 (53)
0 0 0 pu—p u+p 0 0
0 0 0 0 0 2 0
.. 0 0 0 0 0 0 2u_|

with ¢; = {1 —v)/{(1 — 2v) and ¢, =v/(1 —2v). The constants p and v have the classical
meaning of a shear modulus and Poisson’s ratio, respectively. 4, is a rotational shear modulus
and completes the total of four constants that are needed to describe the elastic behaviour of
an isotropic Cosserat continuum under planar deformations. The coefficient 2 has been
introduced in the terms D% and D%, to arrive at a convenient form of the elasto-plastic constitutive
equations®2, The total bending stiffness that sets the relation between the micro-curvatures
and the couple-stresses is determined by the value of the internal length scale I.

For the extension of the theory to account for plastic flow we merely have to redefine the
invariants on which the yield function depends. For example, the invariant J, of the deviatoric
stress tensor and the hardening parameter y¥ on which the Drucker—Prager yield function:

S =30y +ap—5() (54)
depends, are generalized as®®:
Jy = 4,88, + Ap8;85; + Gamymy/ 12 (55)
and .
PP = [b8ReF, + behel + bykfkhi* ]2 (56)

s;; is the deviatoric stress tensor and &f; is the plastic deviatoric strain-rate tensor. a,, a,, a; and
b,, b,, b; are material parameters. Based on micromechanical considerations Miihlhaus and
Vardoulakis?® have proposed the values a; = 3/4, a, = —1/4 and a, = 1/8. In the example
calculations presented here the values a, = 1/4,a, = 1/4 and a, = 1/2 have been adopted, since
these values give rise to a particularly simple algorithm®. In order that $? is energetically conjugate
to J3, by, b, and by must then be assigned the following values: by = 1/3,b, = 1/3 and by = 2/3.
To bring out the essential features of the Cosserat model the present choice is permissible. When
itis attempted to fit the material behaviour as closely as possible this is unlikely to be the case.

To demonstrate the effectiveness of the Cosserat continuum for failure problems where the
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prevailing mechanism is frictional sliding the same biaxial test has been considered as in the
previous section. Natural boundary conditions for the rotations were assumed at all sides (o,
free). A Drucker—Prager yield function was employed with a non-associated (plastically
incompressible) flow rule and the following material data: Young’s modulus E = 2400 MPa,
Poisson’s ratio v=0.2, p,=500MPa, I=6mm, =12, 6= 1.2\/5(1 — 25y?). The
load—deflection curves for all three discretizations (108, 432 and 1728 six-noded triangular
elements respectively) are shown in Figure 7 together with the solution that is obtained under
the assumption of homogeneous deformations (no localization). As with the gradient model an
imperfect element at the left boundary near the horizontal centreline was used to set the starting
point of the shear band development. Again, two shear bands arise initially, but finally only
one shear band persists (Figure 8).

Miihlhaus and Vardoulakis?” were the first to recognize that the Cosserat approach introduces
a length scale in the continuum description and that the rate boundary value problem remains
elliptic after the onset of shear banding. Finite element analyses showing convergence to a
physically realistic solution have been presented by de Borst®!2 and Miihlhaus et al.?°. The
approach has several advantages, especially from a numerical point of view. If the incremental
stress—strain relation is symmetric, the structural tangent stiffness matrix also remains symmetric,
which is not the case for the non-local and not necessarily so for grade-n continua. Further, no
special algorithms are necessary as the return-mapping algorithms used in standard plasticity
can be carried over to Cosserat elastoplasticity in a straightforward fashion and the standard
procedure for deriving consistent tangent operators can still be applied®!2. A distinct
disadvantage of the Cosserat continuum is that it is only effective as a regularization method if
grain boundary sliding is the dominant carrier of the inelastic deformation (mode-II failures).
Indeed, already in cases that we do not have pure shear, as for the biaxial test considered above,
the regularization mechanism is often weak. Then, it may happen that the deficiencies of the
classical continuum are remedied only partly. For instance, Sluys*” has shown that for such a
specimen there is convergence to a unique, physically realistic solution upon mesh refinement,
but that the solution heavily depends on the direction of the mesh lines (mesh alignment). A
further disadvantage is that the rotations emerge as additional degrees-of-freedom at global
level, which increases the computational effort.

LOCALIZATION UNDER DYNAMIC LOADING CONDITIONS

All higher-order continua as well as rate-dependent continuum models share the property that,
unlike the standard, rate-independent continuum, wave propagation becomes dispersive, that
is, waves with different wave numbers propagate with different velocities and, consequently, the
shape of a pulse is altered during propagation. This is of crucial importance when modelling
localization under dynamic loading conditions.

Cosserat continua

Since the enhancement of Cosserat continuum over the classical continuum is present during
elastic and inelastic deformations wave propagation already becomes dispersive in the elastic
region. This is clearly shown in Figure 10 for a shear stress wave which propagates in the shear
layer of Figure 9. Assuming purely elastic material behaviour we observe that an initially linear
wave front gradually transforms when the wave propagates through the layer.

This behaviour will now be investigated by carrying out a dispersion analysis in the elastic
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Figure 8 Incremental displacements for a plane-strain Figure 10 Wave propagation in a s'hear layer of an elastic
biaxial test (Drucker—Prager Cosserat plasticity) Cosserat material

domain. For the shear layer of Figure 9 the governing equations are given by'°

*u dw,  &u
(#+ﬂc)€xfy—2ﬂc o =P—af (57)
Pw, ou o,
2[112 *5;2— + 2[,tc —6—; - 4{1‘_.0)2 =0 FYe (58)

where p is the density and © is the inertia of micro-rotation per unit volume. We consider waves
which propagate in the x-direction with wave number k and angular frequency w. A general
solution for u, and w, of the form:

uy(x,t) = A, exp(i(kx — wt)) (59)
w,(x,t) = A, exp(i(kx — wt)) (60)

is now assumed. Substitution of this solution in (57)-(58) yields the dispersion relations for
the phase velocity c, and the group velocity c,, c,~k and c,~k. In Figure 11 relations are plotted
for the shear wave and for the micro-rotation wave, which is not present in the classical
continuum. Using the conditions u, = 0 and w,-= 0 at both boundaries the exact analytical
values of the wave numbers k and the angular frequencies @ can be calculated*”. It is noted
that when an axial stress is applied instead of a shear stress, so that a longitudinal wave propagates
in the bar, we do not observe dispersion. This confirms the assertion that the Cosserat continuum
is effective as a regularization method only for mode-II failures.

Now, the effect of mesh refinement of the shear layer is investigated for a softening Cosserat
plasticity model with a Von Mises yield function (a =0 in (54)). The data listed in Figure 9
were supplemented by a virgin yield strength &(0)= 100 MPa and a softening modulus
h = —0.4762 p. Figure 12 shows that we obtain convergence to a physically realistic solution,
both in terms of the strain profile and in terms of the energy dissipation. For two-dimensional
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Figure 11 Dispersion relations ¢~k (left) and ¢,—k (right) for a shear layer of an elastic Cosserat material
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Figure 12 Strain distributions and energy dissipation for impact loading on a shear layer of an elastoplastic Cosserat
material

examples with impact loading of strain-softening Cosserat media the reader is referred to de
Borst and Sluys!® and to Sluys*”.

Grade-n continua

For the gradient model discussed here the enrichment only applies in the inelastic regime. As
a consequence dispersion is only present after the onset of plasticity. But in contrast to the
Cosserat continuum dispersive waves now also arise for tensile loadings. For the one-dimensional
tension bar of Figure 1 the following differential equation for the axial displacement u describes

the wave propagation*®+7;

: o*u  p 0*u
(2P
< E 6x28t2) +

p(E +h) %

az
-0

ox*

Assuming a general solution of the form:

u(x,t) = Aexp(ik(x —ct))

E o2 ox2

(61)

(62)
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Figure 13 Dispersion relation (¢,~k curve) for gradient-
dependent plasticity
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Figure 14 Strain localization (left) and energy consumption (right) in tension bar of gradient material

we arrive at the following dispersion relation between the phase velocity ¢, and the wave number k:
¢; = ¢, ((h — h*k?)/(E + h — hi*k?))1/2 : (63)

with ¢, the elastic wave speed (Figure 13). A numerical solution of the tension bar problem is
presented in Figure 14. The impact loading at the right end of the bar is immediately present
with a magnitude of ¢ = 0.75 o,. The material data are as given in Figure I with in addition
p =2 x 1078 N s> mm~2. However, no imperfection is inserted in the model, but the localization
starts at the left boundary when the reflection of the tensile wave on this fixed boundary causes
a doubling of the stress intensity. Finally, Figure 15 presents results for a dynamic calculation
of a biaxial test with a Drucker—Prager gradient plasticity model with a non-associated
(plastically incompressible) flow rule*’
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of a biaxial test specimen. A Drucker—Prager gradient model
has been used for two discretizations

Rate-dependent continua

Rate-dependence was introduced to describe failure processes in metals by Needleman34,
Shawki and Clifton** and Wu and Freund*. Later, it was applied to soils by Loret and Prévost?®
and to concrete and rock fracture by Sluys and de Borst*5*474?, From a physical point of view
the addition of rate dependence is the most appealing solution. It works equally well for both
failure mechanisms. For instance, there is no influence of the direction of the mesh lines on the
solution*”*8, but its applicability is obviously limited to transient loading conditions and the
regularizing effect rapidly decreases for slow loading rates or when we approach the
rate-independent limit.

In what follows below the simple linear rate-dependent crack model of Sluys and de
Borst*34749 is considered :

) .
a=a,+her+m%‘it. (64)

with m a rate-sensitivity parameter (here taken as m = 0.2 Ns/mm?). For the one-dimensional
bar of Figure 1 the governing differential equation reads:

Fiks o° E+ h)od* 0*

R (65)
E ot ox*ot E or? ox

A proper dispersion analysis can now only be carried out if the harmonic waves are attenuated

exponentially when propagating through the solid*74°:

u(x,t) = Aexp((—o +ik)x — iwt) (66)

The dispersion relations ¢,—w and ¢,—o for the phase velocity ¢, and the group velocity ¢,
respectively that result from this analysis are shown in Figure 16. In the right part of Figure 16
the damping coefficient o is plotted as a function of the angular frequency . The limit of o
with respect to @ is lim a(w)=1"! where I = 2mc,/E is the internal length scale of the

[/ 3d+2]

rate-dependent model.
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Figure 17 Strain localization (left) and energy consumption (right) for rate-dependent tension bar

A numerical solution of the tension bar problem is given in Figure 17. The material data are
as for the analysis with the gradient model in the previous section except that now
h = — 5000 MPa. Finally, Figure 18 shows the development of a shear band in a plane-strain
biaxial test with a rate-dependent material. Duvaut—Lions viscoplasticity was used with a
Drucker—Prager yield surface and a non-associated (plastically incompressible) flow rule. A
symmetric half of the specimen was considered, so that the condition at the left boundary reads:

u, = 0. We clearly observe that the shear band runs steeper than the mesh lines, which are under
4 50 47,48 ,

CONCLUDING REMARKS AND OUTSTANDING PROBLEMS

In this contribution an attempt has been made to give an overview of current developments in
finite element analysis of localization phenomena. It has been argued that various promising
approaches exist, but that there is no such thing like a panacea which cures the shortcomings
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Figure 18 Total displacements caused by impact loading of a biaxial test specimen. A Drucker—Prager viscoplastic
model has been used for two discretizations

of standard, rate-independent continua upon the introduction of strain softening and/or
non-symmetry in the constitutive rate equations.

No completeness is claimed. This holds true with respect to computational and constitutive
aspects that have been touched in this contribution, but above all with respect to outstanding
problems which hamper the effective and accurate numerical prediction of the failure and
post-failure behaviour of structures. In the authors’ opinion the most pressing issues that prohibit
the successful use of numerical models in failure computations are:

e The proper determination of the additional model parameters that emerge in the higher-order
and rate-dependent continuum models when compared to the classical approach. Especially
in higher-order continua this problem is not solved easily, since the additional parameters
are not directly derivable from elementary tests such as uniaxial or triaxial tension or
compression tests. Even if one would be able to carry out a test on a perfect specimen, so
that homogeneous deformations would occur throughout the entire loading programme, these
parameters could not be measured because for homogeneous deformations there is no effect
of the higher-order continuum models. Therefore, one must proceed in a semi-inverse manner,
whereby the experimental results of different types of tests are fitted in the post-peak regime..

o The steep (but finite!) strain gradients that occur in higher-order and rate-dependent continua
during failure require that very fine meshes are used to capture the failure mode properly. If
such analyses are to be carried out on nowadays’ or even tomorrow’s computers, then the
use of adaptive mesh refinement techniques is a conditio sine qua non. A problem is the
development of proper criteria for mesh refinement in inelastic, non-standard continua.
Although necessary this will probably not prove an easy task.

@ There are still open questions with respect to the important issues of stability and uniqueness.
‘This holds a fortiori for frictional solids, where we usually have a non-symmetric tangential
relationship between the stress and strain tensors®. Here a robust algorithm for the numerical
determination of bifurcation points and the continuation on the steepest, most critical
post-bifurcation branch is not yet available.
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