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Summary
Aeroelastic codes are fundamental for the design of wind turbines and the prediction of insta-
bilities. Such codes rely on engineering models which limit their accuracy. With wind turbine
blades becoming more slender to lower the costs, it is important to reduce these uncertainties
to maintain a safe and stable turbine design. The dynamic stall model is one of these engineer-
ing models which simplifies the physics involved and so an improvement in accuracy might be
possible. Various dynamic stall models have been published over the last 50 years. However,
dynamic stall has proven to be a complex phenomenon to model accurately over a wide range
of conditions and is an ongoing topic of research.
Here four semi-empirical dynamic stall models, the Øye, Risø, Snel and ONERA models, are
compared first in 2D against wind tunnel data to understand their accuracy and limitations.
The experimental data for this comparison uses the NACA0015, NACA0030 and NACA4415
airfoils over a variety of cases relevant to wind turbines. Hereafter the models are compared
within an aeroelastic code as a part of complete horizontal axis wind turbine simulations for
an extreme load case (IEC design load case 1.4), standstill instabilities (IEC design load case
6.2) and the flutter speed to understand the effect of the different dynamic stall models. For
the standstill cases the aerodynamic damping provided by each model is compared by reducing
the structural damping of the blades to find the point where the blades become unstable. Next
the Øye and Risø models are tuned to the wind tunnel data.
The results from the 2D comparison are inconclusive with each model showing different strengths
and weaknesses. In general the attached flow physics in the Risø and ONERA models improves
the fit for the 15% thick airfoils. The ONERA model captures the lift peak the best, although
it usually has the largest least squares error to the data due to the drop in lift after this peak
being too early and too sharp. Once in the aeroelastic code the ONERA model started to show
unphysical behaviour by reducing the deflection in the extreme load case and adding negative
damping to the standstill cases. Snel’s model, on the other hand, adds so much damping
that the blades remains stable even when the blades have only a small amount of structural
damping, which is likely not physical. The Øye and Risø models show similar damping levels
and reduce the required structural damping to prevent the standstill instabilities by at least a
factor two with respect to no dynamic stall model being used. For the classical flutter analysis
the Risø model shows an increase in flutter speed as expected from the implementation of
Theodorsen’s theory, while the ONERA model decreases the flutter limit.
Overall the Risø model is seen as the best for in an aeroelastic code due to showing better
behaviour in the full turbine cases than the ONERA and Snel models. Furthermore, it is
superior to the Øye model due to correctly modeling the attached flow physics and improving
the drag and moment coefficients.
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CHAPTER 1
Introduction

1.1 Motivation for the research
Dynamic stall is a research topic that has been researched since the 1930’s (e.g. Kramer [1]).
Up to the 90’s the research was mostly focused on helicopter blades [2] with most notably the
Beddoes-Leishmann model [3] and the ONERA model [4] being developed in the 80’s. More
recently, the interest in wind turbines has grown and with it research into dynamic stall in
wind turbines. The result is several basic and computationally fast dynamic stall models such
as those by Snel [5] or Øye [6] and some tailored specifically for wind turbines, such as the
Risø model [7] and that of Larsen et al. [8].
All modern Horizontal Axis Wind Turbines (HAWT) aeroelastic codes use a dynamic stall
model to model at least the dynamic lift coefficient. This is necessary as the unsteady be-
haviour is often large enough that the steady airfoil polar no longer represents the aerodynamic
forces accurately, which is due to these forces now having a dependency on the time history.
Physically there are a variety of phenomena that can cause this such as the effect of circulation
in the wake, the acceleration of the flow, a leading edge vortex being created and shed, a time
delay in boundary layer growth or a time delay in the location of the separation point for
trailing edge stall. For a HAWT the local relative wind speed and angle of attack are highly
dynamic due to the presence of, for example, turbulence, wind shear, yaw angle, tower shadow
and the deflections, movements and accelerations of the blades themselves [2].

As modern HAWT’s are pitch regulated, they ideally do not enter the stalled regime. How-
ever, stall could still for example occur before the rated wind speed when the blades have not
started to pitch out and the rotational speed is at the maximum value. This causes the blades
to rotate at a tip speed ratio smaller than the optimum and then the airfoil will see an angle of
attack higher than the design value. Here the blade is more vulnerable to a gust or yaw error
pushing it into stall. This stalled flow, and in particular the onset of stall, is one of the most
important phenomena for the aeroelastic stability of a wind turbine blade [9].
This unsteady external loading will excite the modes of the blade. Over each cycle of the
oscillations the direction and magnitude of the forces will change due to the deflections and
changing angle of attack and inflow velocities. Normally these oscillations are positively aero-
dynamically damped. However, if over each cycle the net work done adds energy into the
structure, then the aerodynamic damping is negative and energy extracted from the flow. This
energy is added to the oscillation in the blade and if this is larger than what the structural
damping can dissipate, then the oscillation will grow in amplitude resulting in an instability.
The end result will either be failure or a limit cycle oscillation where an equilibrium is reached
due to the non-linear nature of the system [10]. Even though failure may not occur immedi-
ately in limit cycle oscillations, it will still reduce the fatigue life of the blades.

Therefore, dynamic stall is an important phenomenon to accurately model the aerodynamic
forces and estimate the extreme and fatigue loads. However, there is a surprisingly large
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uncertainty of about 30% on the dynamic loads between the predicted values and the field
measurements [11]1. This uncertainty could maybe be reduced by using a different, more
accurate, dynamic stall model. From other 2D comparisons between dynamic stall models,
such as in [8], [12], [13] or [14], the variability between different dynamic stall models is clear.
Unfortunately, there is not much research into how much these different polars for sinusoidal
motions translate into different outputs from the aeroelastic code as a whole using a turbulent
flow input and full turbine. Furthermore, these comparisons are only into the lift coefficient,
while the drag and moment coefficients are also important for some instabilities.

This Thesis will attempt to address these shortcomings by first conducting various 2D compar-
isons to experimental data for the lift, drag and moment coefficients followed by a comparison
for several full turbine response cases in an aeroelastic code. The models evaluated are the
Øye, Risø, Snel and ONERA models.
The 2D comparisons are conducted for sinusoidal pitching oscillations over a range of angles
of attack and reduced frequencies relevant to HAWT’s. The airfoils used are the NACA0015,
NACA0030 and NACA4415 airfoils. Furthermore, various deep stall, high reduced frequency
and ramp cases are investigated to test the boundaries of the models.
The full turbine cases are based on two International Electrotechnical Commission (IEC) De-
sign Load Cases (DLC), namely DLC 1.4 and DLC 6.2. The DLC 1.4 is an extreme load case
where a wind gust is combined with a large direction change. DLC 6.2 is an instability load
case which states that a turbine must be able to survive any yaw misalignment when parked
in a 50 year worst case storm. For these standstill cases the aerodynamic damping provided
by each model is compared by reducing the structural damping of the blades to find the point
where the blades become unstable. In addition to these IEC cases the effect of the dynamic
stall models on the flutter speed is investigated.

1.2 Research questions
In order to reach this aim, various research questions are set up of which the main research
question is:

• What is the effect of different dynamic stall models on aerodynamic instabilities in an
aeroelastic code that uses BEM?

Before the effect of dynamic stall on the instabilities can be investigated, dynamic stall and
the dynamic stall models themselves must first be understood. Therefore, the dynamic stall
models are first compared to each other and to analytical and experimental data to answer the
following:

• How well do the dynamic stall models perform for different angle of attack regimes?

– How well do the dynamic stall models perform over the length of attached flow
hysteresis loops?

∗ How well do the hysteresis loops match the theoretical results?
∗ How well do the hysteresis loops match the experimental data?

1It should be noted that this value is from 2007 and improvements have been made since.
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∗ What are the assumptions and reasons behind the differences?
– How well do the dynamic stall models perform over the length of dynamic stall

hysteresis loops?
∗ How well do the polars match the measurements?
∗ Is there any unphysical behaviour in the hysteresis loop?
∗ What are the assumptions and reasons behind the differences?
∗ What are the differences in torsional work done over each cycle (the area within

the moment coefficient hysteresis loop)?

With the dynamic stall models implemented their effect on the chosen instability cases can be
investigated by trying to answer the following for each dynamic stall model.

• What is the effect of the different dynamic stall models on the response of a full turbine?

– How do the responses vary in the extreme load case (IEC design load case 1.4)?
∗ What do the lift responses look like?
∗ What are the differences in tip deflection?

– How do the responses vary in the standstill cases (IEC design load case 6.2)?
∗ How do the models behave under turbulent inflow?
∗ What are the loads with the different models?
∗ What are the damping levels of each model?
∗ What are the blade modes excited when using each model?

– How do the models affect the flutter limit?

1.3 Outline
This Thesis is organized as follows:

• In Chapter 2 the phenomenon of dynamic stall will be explained followed by the de-
scriptions of the four dynamic stall models, the Øye, Risø, Snel and ONERA models.
Afterwards follows a discussion on the modifications made to the models and some gen-
eral limitations.

• In Chapter 3 the attached flow physics of the Risø and ONERA models is verified using
both theory and experiments. Furthermore, the experimental methods for the dynamic
stall measurement data are detailed.

• In Chapter 4 the model responses to the sinusoidal angle of attack inputs are compared
against each other and to the experimental data for various cases.

• In Chapter 5 first aeroelastic codes and BEM are briefly covered, including the modifi-
cations made to the models to get them into the code, before comparing the models in
an extreme load case, standstill instability cases and for the flutter limit. It additionally
contains a sensitivity analysis into the results of the standstill instability cases to changes
in the time constants in the Øye and Risø models.

• In Chapter 6 some basic tuning is done for the Øye and Risø models.
• In Chapter 7 the Thesis is then finalized with a conclusion.
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CHAPTER 2
Dynamic Stall

Dynamic stall is an unsteady aerodynamic phenomenon that occurs when the angle of attack of
an airfoil passes through the normal static stall angle [15]. Dynamic stall can cause hysteresis
loops with significant deviations from the static polar as shown in Figure 2.1.

Figure 2.1: Example of the stages of a dynamic stall hysteresis loop for a sinusoidally changing
angle of attack [15]

This figure also shows an example of the different steps of dynamic stall. After the airfoil
surpasses the static stall angle, flow reversal starts to take place on the upper surface of the
airfoil. If the airfoil is thin, so with a thickness to chord ratio smaller than 0.15, then in general
the flow reversal will start at the leading edge causing leading edge stall. On the other hand, if
t/c > 0.15, then trailing edge stall is usually predominant resulting in the flow reversal starting
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at the trailing edge [16]. In either case, if the angle of attack is large enough, a spilled vortex
is generated at the leading edge which convects over the airfoil surface at a speed of slightly
less than half the inflow velocity [17].
Up to stage 3 the lift is still increasing and so will peak at a significantly larger value than the
maximum static value. The movement of the leading edge vortex along the airfoil causes an
aft movement of the center of pressure which results in a sharp drop in the moment coefficient
and has an important effect on the stability of the motion. Once the vortex has convected
behind the airfoil, the airfoil is fully stalled as usual which results in a sharp drop in the lift
coefficient. Then once the angle of attack has decreased enough again, the flow will reattach
from fore to aft.
It should be noted that these stages do not necessarily all occur for every dynamic stall oc-
curence. Furthermore the dynamic curves do not necessarily contain the static curves due to
the presence of phenomena which do not occur in the steady case. This is in particular the
case for the drag coefficient as seen in Figure 2.1.

The size and shape of the dynamic stall hysteresis loop is affected by several parameters. The
mean value and amplitude of the angle of attack during the loop are some of the most important
parameters as they will determine the stall regimes that the airfoil will pass though in a cycle.
These regimes are referred to as attached flow, light stall and deep stall regimes.
Another important parameter is the speed that the cycle is passed through indicated by the
reduced frequency, k = cω

2U , which will cause the dynamic stall curve to vary more away from
the static curve as it increases. If the inflow velocity is simplified to the rotational velocity of
the blade, then k is only dependent on the blade slenderness as shown in Equation 2.1, which
is only valid for 1P changes in the angle of attack.

k = cω

2U
≈ cω

2ωr
≈ c

2r
(2.1)

For the NREL 5MW turbine [18] this gives k values of 0.12, 0.06, 0.03 and 0.02 for the radial
locations, r

R , 30%, 50%, 70% and 90% respectively. It should be noted that in particular for
the lower radii this method will overestimate the value of k as here the free stream wind speed
is relatively more important.
Other parameters that have an affect dynamic stall are the Mach number, the airfoil shape,
the Reynolds number and the type of motion [17]. The specific effect of some of these other
parameters is detailed in Section 2.6 after the models have been introduced.

Due to the complexity of dynamic stall all engineering dynamic stall models are semi-empirical
[15]. In particular the times of vortex creation and the reattachment are difficult to predict.
Next the four models chosen to be implemented in this thesis are explained in more detail.

2.1 Øye
This is a simple dynamic stall model was developed by Stig Øye in the 1990’s [6]. It uses a
simple first order Ordinary Differential Equation (ODE) to simulate the time lag delay of the
lift response to the changes in the angle of attack. This is achieved by using two separate lift
curves, the fully attached flow curve and a fully separated curve. It then interpolates between
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these two curves based on a variable called the interpolation factor f . This f indicates the
relative importance of these two lift curves and is given a time lag using the ODE.
Catt

L is the attached flow lift curve and is a linear function with a slope of dCst
L

dα

∣∣
α0

(roughly 2π)
and zero lift angle of attack, α0, defined by the static lift curve of the used airfoil.
Csep

L is the fully separated lift and will be estimated as in Larsen et al. [8]. This method sets
the fully separated flow curve to be equal to the static curve after a certain angle of attack.
This angle of attack is called αsep for which a value of 32◦ is suggested [8]. For angles of attack
smaller than αsep a polynomial is set up using Hermite Interpolation as explained in Appendix
A. The constraints for this polynomial are that it is equal to the steady value of the normal lift
curve at α0 and αsep and that the derivatives here are 1

2
dCst

L
dα

∣∣
α0

and 1
12

dCst
L

dα

∣∣
α0

respectively [8].
In Øye’s original paper [6] it is suggested to use a parabola with similar constraints although
without the derivative constraint at αsep. As this extra constraint increases the robustness to
different static polars, the Hermite Interpolation method is seen as superior.
The ODE is defined in Equation 2.2, where Tf is a time constant proportional to c/U , so
Tf = τ c

2U with τ a constant around 8 [9]. fst is based on the interpolation factor of the steady
lift curve between the attached and separated curves as shown in Equation 2.3. If the αsep is
exceeded, then Equation 2.3 is not needed as fst is simply 0. The dot indicates the real time
derivative: ˙= d/dt.

ḟdyn = fst − fdyn

Tf
(2.2)

fst = Cst
L (α) − Csep

L (α)
Catt

L (α) − Csep
L (α)

(2.3)

The ODE in Equation 2.2 causes fdyn to lag behind f st which will generate the hysterises
loops. This equation is then solved to obtain fdyn, which is then used to do the interpolation
between the attached and separated lift curves as in Equation 2.4.

CL = fdynCatt
L (α) + (1 − fdyn)Csep

L (α) (2.4)

The method is summarized in a flowchart in Appendix B.
Overall this is a simple model that only needs the angle of attack and inflow velocity from the
new time step together with the f from the previous time step as inputs. It does only output
the dynamic lift coefficient and leaves the static drag and moment coefficients unmodified.
Furthermore, it simply gives the steady lift value when the flow is attached or fully separated.

2.2 Risø
The Risø model [7] is significantly more complex than the Øye model using a total of four
ODE’s. It is a modified Beddoes-Leishman model so it uses the same building blocks as the
Beddoes-Leishman model [3], which are:

1. Unsteady attached flow module
2. Leading edge flow separation module
3. Non-linear trailing edge separation module
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4. Vortex shedding module

The Beddoes-Leishman model is a model that tries to follow the physics behind dynamic stall as
accurately as possible. This does lead to the model becoming complex and dependent on more
constants that require tuning. The Risø model adds some assumptions that are applicable to
wind turbines to simplify the model and reduce the number of inputs. These assumptions are
that the flow is assumed to be incompressible as the maximum tip speed is generally around
70-90 m/s (Mach 0.2-0.3) and, due to the relatively thick airfoils in turbine blades, the leading-
edge flow separation and vortex shedding modules are removed as trailing edge stall will be
predominant [16].
In the first module, the attached flow module, the geometrical angle of attack, α, is replaced
with the effective angle of attack, αE , which includes two time-lag terms and so accounts for
circulatory effects. The time lags terms are based on the downwash (w = αU) instead of
the angle of attack as used in the Risø paper [7] to remove the U̇ term which could make
the exponent positive after the discretization in Appendix C. The use of either the downwash
equations or U̇ in the angle of attack equations is necessary to correctly account for the changes
in relative velocity over time in the conservation of circulation.

αE = α3/4(1 − A1 − A2) +
(
wlag

1 + wlag
2

)
/U (2.5)

These time-lag terms follow from approximating the circulatory part of Duhamel’s integral
formulation using two time-lag terms. This will result in an indicial function as per Equation
2.6 where s is the non-dimensional time.

ϕ(s) = 1 − A1e−b1s − A2e−b2s (2.6)

This can be used as αE = αold + (αnew − αold)ϕ(s) for a step in α and so gives the build up
over time to the new angle of attack. Instead of using this indicial notation, ODE’s can be
used to calculate the time-lag in the angle of attack. Doing so yields Equations 2.7 and 2.8 for
the two lagged downwash velocity terms.

˙
wlag

1 + T −1
u b1wlag

1 = b1A1T −1
u α3/4U (2.7)

˙
wlag

2 + T −1
u b2wlag

2 = b2A2T −1
u α3/4U (2.8)

Here Tu = c
2U(t) , which is the time it takes for the flow to travel a half chord distance.

In the next module, the trailing edge stall module, several analytical functions are defined to
predict the steady stall characteristics. For both the lift and drag the flat plate steady solution
of the potential Kirchhoff flow is used. For the lift coefficient this flat plate solution is inverted
to obtain Equation 2.9 for the steady flow separation point.

fst =
(

2
√

Cst
L (α)

Catt
L (α)

− 1
)2

(2.9)

Where Catt
L is the same as in the Øye model fst is then used to linearly interpolate between

the fully attached and fully separated flow lift curves similar to Equation 2.4 in the Øye model,
albeit for steady flow conditions here. This interpolation function is rewritten to move Csep

L to
the left hand side resulting in Equation 2.10.
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Csep
L = Cst

L − fstCatt
L

1 − fst
(2.10)

Using these equations all static curves are shown for the NACA64618 airfoil in Figure 2.2
together with those from Øye’s model for comparison. For an airfoil with a more sudden stall,
f st will show a drop at stall for the Risø and Øye models.

0 10 20 30 40

 [deg]

0

0.5

1

1.5

2

C
L
 [-

]  
or

  f
st

 [-
]

C
L
st

C
L
att

C
L
sep (Risø)

fst    (Risø)

C
L
sep (Øye)

fst    (Øye)

Figure 2.2: Example static curves used in the Risø and Øye models

A relatively large discrepancy is seen between the fully separated lift curves for the Risø method
and the Hermite interpolation. Unfortunately, which of these two Csep

L curves is more physical
is hard to judge due to this static fully separated flow lift coefficient being mainly a theoretical
concept.

The steady stall equations are now given a time delay using two more ODE’s. Equation 2.11
accounts for the delay between the pressure around the airfoil and the lift generation, while
Equation 2.12 simulates the dynamic effect of the development of the boundary layer over
time.

Ċatt,lag
L + T −1

p Catt,lag
L = T −1

p

(
Catt

L (αE) + πTuα̇
)

(2.11)

ḟdyn + T −1
f fdyn = T −1

f f lag (2.12)

Where f lag is the equivalent quasi-steady separation point for Catt,lag
L , f lag = fst

(
Catt,lag

L
CLα

+ α0

)
,

and fdyn is the separation point with all delay effects taken into account. Catt,lag
L is never used

directly as a lift coefficient. It is only used in f lag where it can be seen an extra delay effect
on the effective angle of attack with regards to the separation point.

After solving the ODE’s the dynamic lift, drag and moment coefficients can be calculated with
Equations 2.13, 2.14 and 2.15 respectively.
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CL = fdynCatt
L (αE) + (1 − fdyn)Csep

L (αE) + πTuα̇ (2.13)

CD = Cst
D (αE) + (α − αE)CL +

(
Cst

D (αE) − Cst
D,0

)(√fst(αE) −
√

fdyn

2
− fst(αE) − fdyn

4

)
(2.14)

CM = Cst
M (αE) +

(
ast
(
fdyn

)
− ast

(
fst(αE)

))
CL − πTuα̇/2 (2.15)

The lift equation is similar to that of the Øye model, although fdyn and Csep
L are calculated

differently and the leading added-mass term from potential flow theory has been included.
The dynamic drag is assumed to be the steady drag adapted with two unsteady correction terms.
The first correction term is due to the unsteady lift coefficient changing the induced drag and
the second correction is to account for the viscous drag differences between the steady and
dynamic cases. The viscous drag is estimated using Kirchhof’s potential flow approximation
for a flat plate.
For the moment coefficient, again the steady curve is used as the base of the dynamic curve
and then corrected. The first correction seen in Equation 2.15 is for the difference in moment
arm (ast) due to the dynamic separation point differing from the static value. The second term
is an added-mass contribution from the motion. ast is the arm between the quarter chord and
the equivalent center of pressure. It is obtained empirically as a function of the separation
point f st where ast is calculated using Equation 2.16 and then interpolated based on f .

ast =
Cst

M − Cst
M,0

Cst
L

(2.16)

There are six coefficients required in the Risø model, four airfoil dependent time lag constants
and two flow dependent time constants. For the time constants, Tp = τpTu and Tf = τf Tu, the
HAWC2 defaults are used which are τp = 1.5 and τf = 6 [19]. For the time lag parameters
from Equation 2.6 either the flat plate solutions can be used, or values tailored to the airfoil.
The values for the flat plate and a 24% thick Risø airfoil can be found in Table 2.1. For the
Risø airfoil these results were obtained using an incompressible, inviscid panel code [7]. It is
seen that the values vary significantly between the flat plate and 24% thick airfoil. Empirical
approximations of these time lag constants exist for wind turbine airfoils such as [20]; however,
the effect of using such airfoil specific constants in full turbine simulations is less than 2.5% for
both ultimate and fatigue loads and additionally the effects on the flutter limit are minimal
[20]. Therefore, the flat plate values are used.

Table 2.1: Different values for the time lag constants in the Risø model

Constant Flat plate (Wagner) [21] Risø A1-24 [7]
A1 0.165 0.294
b1 0.0455 0.0664
A2 0.335 0.331
b2 0.3 0.3266

The flowchart of this model can be found in Appendix B.
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2.3 Snel
The Snel model [5] is unique compared to the other models here in that it uses different
equations for the outgoing and returning loop of the hysteresis loop. Furthermore it tries to
model the higher frequency component of the lift due to periodic vortex shedding and so can
give oscillations within each cycle even for a smooth sinusoidal input. This model does not
apply a correction to the angle of attack, but rather models the dynamic lift as the steady lift
with two correction factors applied, ∆CL,1 and ∆CL,2 as in Equation 2.17.

CL = Cst
L + ∆CL,1 + ∆CL,2 (2.17)

The first correction term is to account for the forcing frequency response and the second
correction term is added to estimate the higher frequency dynamics such as periodic vortex
shedding. Using the dynamic stall measurements on the NACA4415 and NREL S809 airfoils
from the Ohio State University, OSU, database [22], the coefficients and forcing terms have
been tuned by Snel [5] to match reasonably without requiring any airfoil specific inputs. It
should be noted that only hysteresis loops with an average angle of attack of 14◦ and an
amplitude of 10◦ are used over three reduced frequencies: low (k ≈ 0.02), medium (k ≈ 0.04)
and high (k ≈ 0.06) and a single Reynolds number of 1.2 million.
The ODE for the first lift correction term is found in Equation 2.18.

˙∆CL,1 + T −1
u c10∆CL,1 = ˙∆Cpot

L (2.18)

Tu here is the same as in the Risø model being equal to c
2U . On the right hand side of the equal

sign is the forcing term due to the occurrence of stall, where the ∆Cpot
L is defined in Equation

2.19 as the difference between the potential flow lift and the steady lift.

∆Cpot
L = dCst

L

dα

∣∣∣∣∣
α0

sin(α − α0) − Cst
L (2.19)

This ∆Cpot
L can be seen as a switch between the attached flow and stalled flow regime as it

will be close to zero before stall and then start affecting the system of equations after stall.
The coefficient c10 is shown in Equation 2.20 [12]. It can be seen as the spring stiffness for the
ODE and so the dynamic lift coefficient will pull stronger back towards the static curve when
∆Cpot

L is large, when |α̇| is small on an outgoing loop and when |α̇| is large on a returning loop.
The inverse of c10 can be seen as the time constant of the system, so Snel’s model has, in effect,
a variable time constant.

c10 =


1+0.5∆Cpot

L
8+640Tu|α̇| if α̇Cpot

L > 0
1+0.5∆Cpot

L
8−480Tu|α̇| if α̇Cpot

L ≤ 0
(2.20)

Next, Equation 2.21 shows the ODE for the second correction term from Equation 2.17. This
ODE must be at least second order to be able to model the higher frequency components of
the lift response.

T 2
u

¨∆CL,2 + c21 ˙∆CL,2 + c20∆CL,2 = 0.015
(
−0.15∆Cpot

L + 0.05 ˙∆Cpot
L

)
(2.21)
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The constants are again obtained by matching to the OSU experimental data and are calculated
as

c20 = k2
s(1 + 3∆C2

L,2)(1 + 3α̇2) (2.22)

c21 =
{

60Tuks

(
−0.01(∆Cpot

L − 0.5) + 2∆C2
L,2

)
if α̇Cpot

L > 0
2Tuks if α̇Cpot

L ≤ 0
(2.23)

The ks is the Strouhal vortex shedding frequency, equal to 0.2. It is noted that the state
variable ∆CL,2 is used to determine c20 and also c21 when α̇ > 0. This makes the ODE non-
linear and so makes solving exactly problematic as multiple mathematical solutions for the
new ∆CL,2 could exist. This is avoided by using the state variable ∆CL,2 from the previous
time step in Equations 2.22 and 2.23 and so making the ODE in Equation 2.21 linear again.
The set of equations in this model is summarized into a flowchart in Appendix B.

2.4 ONERA
The last model is the ONERA model which is at its heart based on the assumption that the
forces and moments acting on the airfoil can be determined by a system of equations with
as only variables the force and moment coefficients, the angle of attack, the pitch and the
inflow velocity together with their derivatives and time histories [4]. The choice of which
of these derivatives can be neglected is made through assumptions and identification using
experimental data. The most important assumptions are that pitching velocity is small either
by having a limited amplitude or frequency of oscillation and that the deviations from the
static force curves are small. This allows for many of the higher derivatives to be neglected
and for the equations to be linearised. Then the model is further simplified by using a small
angle approximation and empirically by identification through comparing to experimental data
at various wind speeds, angles of attack and reduced frequencies.
Here the extended version of the ONERA model is implemented [23]. This extended equation
implements some changes suggested by Peters [24] to differentiate between pitch and plunge,
prevent the model from becoming unstable in deep stall and also gives the model a more
theoretical base by making the model reduce to Greenberg’s equations [25] in the attached
flow region. Greenberg’s equations are derived off Theodorsen’s equations and account for a
sinusoidally varying inflow velocity.
The differentiation between pitch and plunge is done by using two downwash terms instead of
the angle of attack. W0 is the non-dimensional downwash at the quarter chord point and W1
is the difference in downwash between the three-quarter chord point and the quarter chord, so
is indicative of the rotational motion. This is why θ is used instead of α, as θ is the angle of
attack component due to the pitch angle with respect to the incoming airflow only. W0 and
W1 can be found in Equations 2.24 and 2.25 respectively. The apostrophe in Equation 2.25
indicates differentiation to the non-dimensional time, s.

W0 = sin(α) (2.24)
W1 = θ′ (2.25)

The main equation for the lift is in Equation 2.26.

CL = sLW ′
0 + kLW ′

1 + CL,1 + CL,2 (2.26)
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This equation is similar to Snel’s model with the difference that the steady lift is contained
inside the state variables as in steady flow W ′

0 and W ′
1 will go to zero, CL,1 will tend to Cpot

L

and CL,2 will end up as -∆Cpot
L . Their sum will then simply become the steady lift coefficient.

Equation 2.27 contains the ODE for the first lift component which, with the exception of the
dL term, models the attached flow behavior.

C ′
L,1 + λCL,1 = λ

(
Cpot

L + σLW1
)

+
(

mL
dCL

dα

∣∣∣∣
α0

+ dL

)
W ′

0 + σLmLW ′
1 (2.27)

The second ODE is in Equation 2.28 and models the post-stall behavior.

C ′′
L,2 + aLC ′

L,2 + rLCL,2 = −rL∆Cpot
L − eLW ′

0 (2.28)

The coefficients in the above equations are obtained from the Equations 2.29 to 2.34 using the
values displayed in Table 2.2.

Cpot
L = dCst

L

dα

∣∣∣∣∣
α0

sin (α − α0) (2.29)

∆Cpot
L = Cpot

L − Cst
L (2.30)

dL = d1
∣∣∣∆Cpot

L

∣∣∣ (2.31)

rL =
(

r0 + r2
(
∆Cpot

L

)2
)2

(2.32)

aL = a0 + a2
(
∆Cpot

L

)2
(2.33)

eL = e2
(
∆Cpot

L

)2
(2.34)

The ∆Cpot
L gives an indication on how deep into stall the airfoil is similarly to in Snel’s model.

Due to this property it is used to modify some of the airfoil coefficients based on the level of
stall such as in Equations 2.31 to 2.34.

A similar equation is used for the drag shown in Equation 2.35.

CD = Cst
D,0 + σDW ′

0 + CD,1 (2.35)

Where σD is calculated using σD = σ0W0 + σ1
∣∣∣∆Cpot

L

∣∣∣ and CD,1 using Equation 2.36.

C ′′
D,1 + aDC ′

D,1 + rDCD,1 = −rD∆CD − eDW ′
0 (2.36)

Where ∆CD = Cst
D − Cst

D,0.

For the moment again a similar method is used as in Equation 2.37.

CM = C lin
M + σ̄M W ′

0 + σM W1 + sM W ′
1 + CM,1 (2.37)
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Where C lin
M is first order Taylor expansion around α = 0 of the steady moment curve, C lin

M =
Cst

M

∣∣
α=0 + α

dCst
M

dα

∣∣∣
α=0

, and CM,1 is obtained using the ODE in Equation 2.38.

C ′′
M,1 + aM C ′

M,1 + rM CM,1 = −rM ∆CM − eM W ′
0 (2.38)

Here ∆CM = Cst
M − C lin

M ,
The values of the coefficients in Equations 2.31 to 2.34 can be found in Table 2.2 and the rest
of the coefficients are [23]: λ = 0.17, ∆τ = 8, mL = 0.53, sL = 2π, kL = π/2, σL = 2π,
σ0 = 9.8484, σ1 = −2.2918, σM = −π/2, σ̄M = −π/4, sM = −0.5879. λ is the inverse of the
non-dimensional time constant for the attached flow physics and ∆τ which gives the time delay
of stall in non-dimensional time. Despite ∆τ not being used in any of the equations, it will
affect the dynamic coefficients by forcing ∆Cpot

L to stay small until a certain non-dimensional
time has passed. Hereafter ∆Cpot

L instantly goes back to its normal value as calculated in
Equation 2.30. To achieve this a second Cst

L curve is used during ∆τ where the lift continues
to increase after stall instead of decreasing. A suitable post-stall delayed lift slope is found to
be one fifth the attached flow lift slope.

Table 2.2: Flat plane and mean airfoil values for the constants in the ONERA model using
M = 0 [23]

Constant Lift value Moment value Drag value
a0 0.3 0.25 0.25
a2 0.2 0.1 0
e2 -2.8648 0.5730 -0.8594
r0 0.2 0.2 0.2
r2 0.2 0.2 0.2

The ONERA model is the model that uses the most coefficients by far. A flowchart of the
ONERA method is shown in Appendix B.
One of the main limitations of the ONERA model is that small deviations between the dynamic
and static force and moment coefficients are assumed which reduces the accuracy when the
reduced frequency is large. The small angle approximation made by the original ONERA
model also limits the applicability. The result of both these assumptions is that there will be
significant error when the reduced frequency and amplitude are high as shown by water tunnel
measurements [26]. Although this has somewhat been improved in this implementation by
making the coefficients dL, rL, aL and eL indirectly amplitude dependent through ∆Cpot

L .
The assumption of incompressible flow is not made in the ONERA model and the Mach number
is used for some of the coefficients. As the Mach numbers as seen by a wind turbine are small
these Mach number effects on the coefficients are ignored to save computational time. Now,
similar to the other dynamic stall models, this model should only be used in the incompressible
regime.
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2.5 Modifications
To make the models robust and work over the full 360◦ several modifications are required.
These modifications are detailed in Sections 2.5.1 to 2.5.7 and the resulting hysteresis loops
over the range 0◦ to 180◦ shown in Appendix D.

2.5.1 Potential flow curve
The potential flow curve, or attached flow curve, is modified such as that the actual lift slope
is used instead of 2π. This true lift slope is found using curve fitting around the zero lift point.
The upside down lift slope is found in a simplified way where the lift slope is assumed to be
the steepest slope between the zero lift point and any of the points on the lift curve. This is a
robust way of finding the lift slope as the lift curve can never exceed the potential flow curve
meaning that the f in the Øye and Risø models can never go above 1.
For all models this curve is further modified to allow for the model to be used over the full
360◦. For the Øye, Risø and Snel models this is done by making Cpot

L discontinuous at the
angle of attacks close to 90◦ and -90◦ where Cst

L = 0. Here the Cpot
L jumps from the value

for the upright airfoil to that for the upside down airfoil. In the Risø and Snel models this
requires the Cpot

L value stored from the previous time step to be shifted to the new curve. For
the ONERA model this was found to not completely fix the behaviour when passing through
these jumps in Cpot

L . Furthermore the lift coefficient hysteresis loops were seen to be rotating
in the wrong direction (counter-clockwise) in deep stall when compared to what one would one
would expect from implementing a time lag. Therefore Cpot

L is transitioned smoothly in the
ONERA model between the two Cpot

L curves by limiting Cpot
L to be a maximum of 4 times Cst

L .
This factor of 4 is taken from the Risø model where fst = 0 when Cpot

L

Cst
L

≥ 4.

2.5.2 Phasing out at large α
Because dynamic stall is a phenomenon seen when passing in and out of stall the models
should not have much effect when oscillating when the flow is already fully separated. Here
bluff body aerodynamics with phenomenon such as periodic vortex shedding should become
more relevant. The Øye and Risø model already phase out when Cpot

L

Cst
L

≥ 4 is reached. For the
Snel and ONERA models modifications are required to phase out the model behaviour. This
is achieved by multiplying the time derivatives in the forcing terms by | cos(α)|. The specific
forcing terms where this is applied are ˙

Cpot
L for Snel’s model and for the ONERA model W1

and W ′
0.

Another issue far into stall is what to do with the attached flow terms from Theodorsen’s
theory in the Risø and ONERA models. The circulatory terms are left unchanged as these are
from the conservation of circulation which should not be broken. For the added-mass terms in
Theodorsen’s theory, on the other hand, it makes less sense to have these active a high angles
of attack, therefore a projection of the relative velocity on to the chord is made to prevent the
velocity component perpendicular to the chord from affecting these added-mass terms. This
results in these terms also being phased out with | cos(α)|. This is not a perfect fix as the
added-mass terms will still be slightly active when the flow is fully stalled while Theodorsen’s
theory assumes attached flow. Another option looked into is the use of fdyn to phase out these
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terms in the Risø model. This does, however, affect the shape of the dynamic stall hysteresis
loops which is undesirable.

2.5.3 Reverse flow
In the case that the airfoil is operating upside down, so in reverse flow, several simplifications
are made to simplify the code. First the stall delay for the lift in the ONERA model is ignored
and the right-side-up value for C lin

M is used. For the Risø model the moment is simplified as
the difference in moment arm, ast, between the steady and dynamic cases is ignored. These
assumptions do affect the shape of the moment hysteresis loop when upside down, although
the same general behaviour is maintained. There are arguably much more severe issues with
the use of these models in reverse flow as the airfoil shape will be unconventional and the sharp
leading edge with upside down camber could produce a large laminar reverse flow bubble at
the higher angles of attack in attached flow. In any case it will cause leading edge stall which
none of the models predict well.
When passing through the α = ±180◦ points care should be taken to shift the stored α
values from the previous time step by ±360◦ to prevent the models from seeing a large α time
derivative. This shift is also required for the lagged downwash terms in the Risø model.

2.5.4 Integration
The ODE’s will be solved using exact integration from −∆t to the current time step with the
assumption of constant coefficients. The equations can be found in Appendix C. To increase the
accuracy the midpoint rule is used to obtain the ODE coefficients. This is achieved for the Øye,
Risø and ONERA models by averaging all the time dependent variables individually between
the current and previous time step. For Snel’s model this is not possible due to different
equations being used depending if the angle of attack is outgoing or returning. Therefore
for Snel’s model the final coefficients for the ODE are averaged and not the inputs to these
coefficients.

2.5.5 Øye and Risø models
For the Øye and Risø models only minor further modifications are required. The first of which
is that limits are imposed on f st such that it can never become negative which prevents the
possibility of the separation point leaving the leading edge. This could occur if |Csep

L | > |Cst
L |

which is not physical as the fully separated curve should the worst case possible for the lift.
Therefore if this occurs then the fully separated curve is set to the static curve: Csep

L = Cst
L .

In attached flow it is possible for fst to go higher than 1 if the static lift is larger than the
potential lift which could happen if the linear part of the static curve is not completely linear,
due to for example measurement noise or the curve fitting giving a slightly too low lift slope.
Then the separation point could leave the trailing edge which is also unphysical. This separa-
tion point is only used as an interpolation factor, however, and so still functions outside of the
range 0 to 1. Furthermore, to apply an upper limit to fst either Cst

L or Cpot
L must be modified

and neither is desirable.
A compromise is made in that fst is limited to a maximum of 1.2, which allows for some
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flexibility before having to make Cpot
L locally deviate from being linear. Cst

L is left unchanged.

In rare cases when the angle of attack was seen to rapidly change from attached flow to 90◦ at
the inboard sections where the relative velocity is low and the chord is large, fdyn is seen to
decrease so slowly to 0 that it is still non-zero when passing through the Cst

L = 0 points close
to 90◦ and -90◦ where Cpot

L is discontinuous. If this occurs the models will give unphysical
results due to the potential flow curve being discontinuous and the potential flow reversing
direction over the airfoil in the models. Therefore, fdyn is set to zero when passing through
these Cst

L = 0 points close to 90◦ and -90◦.

The αsep for the Hermite interpolation in Øye’s model is calculated automatically as the loca-
tion where the ratio of Cpot

L and Cst
L is equal to 4 as in the Risø model. This additionally allows

for different αsep values to be used for both positive and negative stall when both right-side-up
and upside down.

Finally the moment arm, ast, in the Risø model is rather arbitrarily truncated at the edges
where fst = 0 and fst = 1 such that the slope ∆ast/∆fst < 1. This is necessary to prevent
sudden jumps in CM near the edges of fst; however, means that the ast vs f st curve may not
cover all fst’s. When interpolating, if fst or fdyn are outside the range of ast, then the edge
value of ast is used instead of extrapolating to turn the correction off.

2.5.6 ONERA model
Changes required for the ONERA model other than that in Cpot

L are that the sign of W0 must
be flipped when |α| > 90◦ due to the trailing and leading edges now having swapped positions.
When passing through |α| = 90◦ the sign of the W0 from the previous time step must also be
multiplied with -1 to prevent a large time derivative.
Furthermore the terms affected by α̈ in the ONERA model, the W ′

1 terms, are removed as
these terms have a minimal effect on the polars and are found to be susceptible to noise as any
noise in α will be amplified each time the derivative is taken. This was noted by Snel when
looking at the measument data [5] and is shown in Appendix E where the impact of this term
in the ONERA model is compared for an angle of attack input both with and without noise.
Finally, in the pure pitching case the added-mass terms from Theodorsen for the pitch and
plunge are both included for the moment coefficient. Therefore the added-mass term for the
plunging motion is subtracted from that of the pitching motion, so σM is changed from −π/2
to −π/4. Now good agreement is found between Theodorsen’s theory and the ONERA model
for CM in Section 3.1.

2.5.7 Snel’s model
The equations for Snel’s model as used in Section 2.3 are slightly different than those in Snel’s
original paper as it was found that the equations gave results that did not match the plots
shown in the paper. Therefore the equations for c10 as used by Holierhoek et al. [12] are used.
This increases the relative importance of the first order correction term with respect to the
second order term by a factor 8. Therefore this factor 8 is compensated for in the second order
correction term by dividing the forcing term by 8. This results in very similar hysteresis loops
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to those in Snel’s original paper. The small differences that are present may be due to slight
differences in the steady lift curve or the integration method.
In the end this is not important as the whole second order correction term will be neglected
based on three reasons: First it results in a steady state error due to the presence of ∆Cpot

L in
the forcing term which does not decay to zero when steady. Secondly there are two real time
derivatives that are not multiplied with the time constant and so are still dimensional which
results in different equations for the same k depending on the wind speed or chord length.
Finally it introduced rather severe high frequency oscillations in deep stall exclusively on the
outgoing part of the loop. A short comparison of the full Snel’s model with Snel’s model with
the second order correction term neglected can be found in Appendix F.
A smaller issue is corrected in the first order correction term as on the returning part of a
hysteresis loop (α̇Cpot

L ≤ 0) as with increasing |α̇| the denominator of c10 first goes to zero and
then negative. As c10 can be seen as the spring stiffness of the first order ODE, a negative
value will cause unstable results and a too high value of c10 will cause the hysteresis loop to
tightly hug the steady curve which is seen as unphysical. Large enough |α̇| values for this to
occur are found to only occur for k>0.1 in the pure sinusoidal oscillation case and so only
occur in the most extreme cases. To prevent these issues the denominator of Equation 2.20
is limited to a minimum value of 2. This value is relatively arbitrary and is only based on
the rough preservation of the shape of the hysteresis loop between the k values the model is
tuned to and the range k = 0.08 to 0.12. This limit has no effect on the hysteresis loops in
the range of k’s the model is designed for and only prevents unphysical behaviour for higher
k’s. The same limit is applied on |α̇| for the outgoing part of the loop to prevent the dynamic
lift coefficient straying too far from the static curve, although even with this cap Snel’s model
still shows rather high peak CL’s for large k’s as shown in Appendix D.2.

2.6 General limitations
There are some limitations that are shared by all of the aforementioned models. These are
detailed in this section starting with incompressibility.
The incompressibility assumption is reliant on the Mach number, M , being much lower than 1.
Generally the tip speed of a turbine is limited to the range of 70 - 90 m/s due to noise constraints.
Using the sea level speed of sound of 343 m/s this equates to a maximum M between 0.204 and
0.262. If a 2D slender airfoil is assumed then the Prandtl–Glauert transformation can be used
to transform the potential flow coefficients to compressible coefficients as long as no transonic
phenomena are present. This is done using Equation 2.39 for the lift coefficient and the same
correction applies to the drag and moment coefficients [2].

CL = 1√
1 − M2

CL|M=0 (2.39)

Using M = 0.204 and M = 0.262 gives an increase in coefficient of 2.1% and 3.6% respectively
which falls into the uncertainty margins of the dynamic stall models as shown in Chapter
4. These numbers are only rough estimates of the effect of compressibility as the flow for
wind turbines is highly three dimensional and has high Reynolds numbers. Both of which
violate the assumptions made in the Prandtl–Glauert transformation. It will give the correct
order of magnitude of the effect of compressibility, though. Of course it would be better to
account for compressibility in the dynamic stall model. This is done in the Beddoes-Leishman
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model [3] and the original implementation of the ONERA model [4]; however, will increase the
computational time. On top of this, the complexity is increased due to having Mach number
dependent input parameters. Therefore, this is not recommended for such a small accuracy
increase.
Additionally, experiments have shown that there is very little variation in the shape of dynamic
stall hysteresis loops for Mach numbers below 0.2 [27].
It should be noted that for compressibility not only the Mach number is important, but also
the reduced frequency of the oscillation. This gives another criteria for the incompressible flow
assumption to hold. Namely that the frequency of the unsteady effects sould be such that
kM ≪ 1 [15]. For most cases in a wind turbine k will be much smaller than 1 and in particular
near the outboard section where most of the power is generated, therefore this criteria will also
be met.

More errors will be introduced by the models that don’t use airfoil specific parameters or
when generalized airfoil inputs are used as the hysteresis loops are airfoil dependant [15]. In
a wind turbine this is of importance due to the large changes in airfoil shape and thickness
along the span. Airfoils with a sharp leading edge, so in general thin airfoils, will experience
leading edge stall which is much more abrupt than the more gradual trailing edge stall. Ad-
ditionally for trailing edge stall, the unsteady effects will help suppress separation. Therefore,
there will be less chance of negative damping based on how gradual the trailing edge stall is [27].

The pitch and plunge are combined into the angle of attack without distinguishing between
them for the dynamic stall behaviour which also adds modelling errors. Experiments have
shown that the dynamic stall behaviour between pitching and plunging is slightly different
even when the effective angle of attack is the same [28]. This is due to the leading edge pres-
sure gradient being decreased by the pitch rate which delays the onset of stall.

All models additionally assume a 2D situation while the flow over wind turbine blades is highly
three-dimensional. One important part of this 3 dimensionality are the tip and root vortices
which cause finite span effects. These are generally modelled using Prandtl’s tip correction
or another similar correction that simply multiplies the lift by a factor based on the location
along the span. When dynamic stall occurs inside the region affected by this tip vortex this is
a too simple approximation as the tip vortex will deform the shape of the dynamic stall curve
[15]. Another 3D effect is that the rotation of the blade will result in centrifugal and Coriolis
forces in the boundary layer flow. The Coriolis acceleration terms in particular can delay the
onset of stall by reducing the adverse pressure gradients over the chord length [15]. In general
the rotation will cause stall delay on the inboard sections for which corrections exist for the
static curves such as [29]. The dynamic stall behaviour along the span will additionally be
distorted as shown by Schreck and Robinson [30].
Furthermore there is the effect of the local sweep angle. This sweep angle can be present due
to the design of the blade shape or due to operating in yawed conditions and causes spanwise
flow. This spanwise flow can cause interactions between the different radial locations which
is a violation of the 2D assumption made by all dynamic stall models and so will result in
changes to the local hysteresis loops. Measurements have shown that positive sweep will delay
stall until a higher angle of attack and can also change the mean value of the hysteresis loop [31].

None of the models take the Reynolds number into account for the dynamic loop. The only
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place where the Reynolds number will affect the results is in the static polars which can be
seen as the backbone for the dynamic loops.
A final limitation is that none of the models have been verified for deep stall. Neither do
the measurement campaigns used here, which is possibly due to wind tunnel limitations and
blockage effects. Therefore the behaviour here is guess work at best. The Risø model is possibly
the most physical model in deep stall as it reduces to the steady forces together with the terms
for the conservation of circulation. However, the conservation of circulation equations are
based on potential flow theory and there are other effects present in deep stall which none of
the models capture.



CHAPTER 3
Verification

For verification both analytical equations and experimental data will be used for the attached
flow, while for the separated flow cases only experimental data will be used.

3.1 Theodorsen
For the models that show attached flow hysteresis loops the cycles will be verified using
Theodorsen’s theory [32]. This theory uses a linearised potential flow model using a 1D sheet
of vortices starting at the leading edge and continuing to infinity. Other assumptions are
potential flow, harmonic oscillations in pitch and heave, zero perturbation velocity in far-field,
flow tangency on airfoil surface, the Kutta condition (no pressure jump at the trailing edge
between the upper and lower airfoil surface), Kelvin’s Theorem (total circulation is constant)
and an uncambered airfoil.

This results in the lift and moment equations in Equations 3.1 and 3.2 which are dependent on
the pitching and plunging of the airfoil with respect to the incoming airflow. The equations are
built up out of two physically distinct parts: the circulatory and non-circulatory components.
The circulatory terms are from the generation of circulation in the wake due to the changing
lift combined with Kelvin’s theorem. The non-circulatory terms are from the acceleration of
the air due to the (relative) movement of the airfoil and are called added-mass terms. The
moment equation assumes that the aerodynamic center is at the quarter chord.
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Here a is positive towards the trailing edge and is both the axis to which CM is defined and
the location of the center of rotation of the airfoil with respect to the mid-chord. Therefore, as
the rotation (and CM ) is about the quarter chord, a = −0.5. Theodorsen’s function, C(k), is
approximated using the rational function in Equation 3.3 to avoid the use of Bessel functions.

C(k) = 1 − 0.165
1 − j0.0455/k

− 0.335
1 − j0.3/k

(3.3)

Here j is
√

−1. Then first a pure pitching motion is looked into where θ is set to be sinusoidal,
θ = θ̄ejωt. This is then inserted into Equations 3.1 and 3.2 together with a = −0.5 to obtain
Equations 3.4 and 3.5.

CL = 2πθ

(1
2

jk − 1
4

k2 + (1 + jk) C(k)
)

(3.4)
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CM = π

2
θk

(3
8

k − j

)
(3.5)

This gives a complex number for the coefficients as it not only contains information on the
magnitude, but also on the phase of the coefficients. To make the plots, the real part of the
coefficients are taken. If the airfoil is cambered, then CL,0 must be added to the lift component
to obtain the correct lift and for the moment the steady values are added to Theodorsen’s result.
The results for CL and CM can be seen in Figure 3.1. αm stands for the mean angle of attack
and αa for the amplitude. The experimental data is from the University of Glasgow [33] and
is detailed more in Section 3.3.
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Figure 3.1: Comparison between Theodorsen’s function, the Risø and ONERA dynamic stall
models and experimental data of the NACA0015 airfoil where k = 0.051, αm = 3◦, αa = 8◦

where the data is obtained at Re = 1.48 million and M = 0.119

For the lift coefficient a close match with Theodorsen’s theory is seen for the Risø model. The
ONERA model hysteresis loop is similar, although slightly underrotated from the static lift
curve. This rotation of the hysteresis loop is harder for the ONERA model to capture as it
uses the angle of attack without wake effects for these steady coefficients. The Risø model,
on the other hand, uses the time-delayed angle of attack based on two ODE’s for the steady
coefficients. The ONERA model then uses only one ODE to add the time delay, the phase
difference, to the steady CL. As it is the lift coefficient that is delayed the resulting phase
delay will be additionally dependent on the lift slope.
The experimental data shows good alignment with Theodorsen’s theory and the dynamic stall
models, with the exception of the highest angles of attack. Here the flow start to separate ever
so slightly which causes the data, and to a lesser extent the models, to deviate from the theory.
For the moment coefficient the models both perform equally well as the dominant term is the
first added-mass term which both models contain. The slight difference between the models is
largely due to the delay in effective angle of attack imposed by the Risø model.

Next a pure plunging motion is considered where the plunge is defined as positive downwards
and is non-dimensionalized using the half chord, h̃ = 2h

c . Again a sinusoidal motion is used
which gives h̃ = ¯̃hejωt resulting in Equation 3.6.
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CL = 2πh̃k

(
jC(k) − 1

2
k

)
(3.6)

CM = −π

2
ak2h̃ (3.7)

The only changes made to the models in order to account for this different motion type are
that α3/4 = α for the Risø model and W1 = 0 for the ONERA model. For the steady curve
this time a simple 2π slope is used for the lift and 0 is used for the moment.
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Figure 3.2: Comparison between Theodorsen’s function, the Risø and ONERA dynamic stall
models where k = 0.051 and ¯̃h = 0.684

The lift hysteresis loops are now slightly thicker due to the plunging motion generating a larger
phase shift than the pitching motion. Again it is the Risø model that matches Theodorsen the
best for the lift coefficient. The ONERA model still has roughly the right thickness, although
is underrrotated with respect to the steady curve. This similarity with the pure pitching
motion is partly due to the first added-mass term being equivalent between the two motions
as α = ḣ/U in pure plunging for the small angles of attack used here. For the moment now
only the ONERA model matches well, while the Risø model has too much hysteresis. This is
due to the Risø model still using the pitching motion added-mass term in the CM equation
(πTuα̇/2), while the first plunging added-mass term is half the size (πTuα̇/4). The ONERA
model correctly accounts for this difference by having added-mass contributions from both W ′

0
and W1 and this could be relatively simply applied to the Risø added-mass terms too. This is
not done here as the magnitudes of deviations seen for the moment are minimal.

3.2 Wagner
The second theoretical method used to verify the models is Wagner’s function [34]. It is in
effect the circulatory terms from Theodorsen’s theory in the time domain and so assumes
incompressible, attached flow. This function (approximated in Equation 3.8 [21]) gives the
indicial response for the downwash, so the lift build up to the new steady value after a step
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change in the angle of attack. The change is downwash is uniform over the chord, so can be
seen as a sudden heaving motion.

ϕ(s) = 1 − 0.165e−0.041s − 0.335e−0.32s (3.8)

Where s is the non-dimensional time and ϕ can be used as

Cdyn
L = Cst

L

∣∣∣
αold

+ ϕ(s)
(

Cst
L

∣∣∣
αnew

− Cst
L

∣∣∣
αold

)
(3.9)

The results for the two dynamic stall models with attached flow behaviour can be seen in
Figure 3.3 for a 1◦ step in α (due to heaving) using a time step of ds = 2U

c dt = 0.2 on a lift
curve with a slope of 2π.
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Figure 3.3: Comparison between the approximation of Wagner’s function and the dynamic
stall models with ds = 0.2

A large overshoot in the first time step is seen which is due to the presence of the added-mass
terms in the dynamic stall models, while Wagner’s function is circulatory terms only. At the
next time step α′ is back to zero again and then both models show almost identical behaviour
to Wagner’s function until s ≈ 7 where the ONERA model starts to deviate. It is not expected
that the ONERA model can completely match the theory as it only uses one ODE to simulate
the circulatory effects, while there are two exponentials in the approximation of Wagner’s the-
ory in Equation 3.8.

The value of the overshoot depends on the size of the time step, so a second case is set up to
analyse the dynamic stall models with a smooth angle of attack input. This input is chosen to
have the shape of a hyperbolic tangent as seen in Figure 3.4. Here Equation 3.8 is applied to
every increment of 2πα individually.

Now the sharp spike from the added-mass term is smooth and both models follow the ‘Wagner
+ πα′’ curve with the first added mass term from Theodorsen’s theory1. The deviation of the
ONERA model from the theory now occurs slightly later.

1It should be noted that Theodorsen’s theory is for a sinusoidally oscillating airfoil and not a step
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Figure 3.4: Comparison between the approximation of Wagner’s function and the dynamic
stall models using a hyperbolic tangent input

Next Figure 3.4 is repeated in Figure 3.5 with the difference that the models are subjected
to a pitching motion about the quarter chord instead of a heaving motion. This does mean
that the comparison to Wagner’s theory is no longer valid. It does, however, highlight various
differences between the models.
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Figure 3.5: Comparison between the approximation of Wagner’s function and the dynamic
stall models using a hyperbolic tangent input

Now the Risø added-mass term is roughly double the size of that of the ONERA model. The
Risø model has the πα′ term as a direct contribution to the lift coefficient, while the ONERA
models uses 2π sin(α)′ in a pitching motion. However, the Risø model uses the angle of attack
at three-quarter as the input for the effective angle of attack, while the ONERA model uses
the angle of attack at the quarter chord. This means that if the ODE’s gave the steady values,
then the Risø model would output 2πα + 3πα′ and the ONERA model 2πα + 2πα′. It should
be noted that the ONERA model has a πα′ term in the forcing term for CL,1 which helps
bridge the gap between the models.
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3.3 Experimental data
For the experimental data, wind tunnel measurement data from two different wind tunnels are
used. Data from the University of Glasgow is used for the NACA0015 [33] and NACA0030 [35]
airfoils, while data for the NACA4415 airfoil is used from NREL data measured at the Ohio
State University, OSU [36]. These airfoils are chosen based on their thickness and relevance to
wind turbines. It is important to note that measurements from this OSU database including
measurements on the NACA4415 airfoil airfoil were used to tune Snel’s model.

In terms of wind tunnel conditions the Reynolds number is chosen to be 1.5 million as this is
the highest Reynolds number that is available across the board. The Mach number is generally
between 0.1 and 0.12 for the Glasgow data and between 0.13 and 0.14 for the OSU data.
The Glasgow data is measured in the closed circuit Handley-Page wind tunnel at Glasgow
University [33]. This wind tunnel has a 1.61 by 2.13 m working section and uses a model with
a chord length of 0.55 m and span of 1.61 m. The forces and moment are measured using
30 pressure transducers on the airfoil surface and the angle of attack is measured using an
angular displacement transducer on the main pitch axis. This measured angle of attack is used
as feedback for the hydraulic pitching system. The wind speed was measured using a pitot
tube 1.2 m in front of the leading edge.
The OSU wind tunnel OSU/AARL 3 x 5 [36] is, unlike the Handley-Page tunnel, is an open
circuit tunnel and has a 1 x 1.41 m cross-section. The model chord length is 0.457 m with a
span of 1 m. Again pressure transducers along the airfoil cross-section are used to measure
the loading, although now with 60 sensors. To reduce the settling time before each pressure
measurement the measurement unit is placed inside the airfoil to keep the tube lengths short.
Similarly to the Glasgow measurements, the pressures along the surface are measured sequen-
tially. The speed of the measurements is chosen so that the total angle travelled by the airfoil
is less than 0.5◦ before a full sweep of the transducers is completed. The frequency of these
sweeps is chosen so that 30 to 40 complete measurements are taken per cycle. The sinusoidal
oscillations are obtained using a shaker system with an accuracy of 0.25◦.
For both wind tunnels the model is pitched about the quarter chord and, as the measurement
sets are obtained using pressure transducers, the drag coefficient contains the pressure drag
contribution only (so no friction drag). This results in negative drag coefficients at very small
angles of attack. Furthermore, it should be kept in mind when looking at the drag data that
the drag coefficient is easily affected by a small error in the measured angle of attack. As the
drag is much smaller than the lift, a small change in direction of the resultant force with affect
the drag relatively more.
Both measurement sets use averaging where for the Glasgow data the unsteady cycles are
averaged over 10 oscillations, while for the OSU data only 3 loops are used. Especially in
reattachement there can be significant variations between cycles, which is lost when averaged
[33]. The general trend is still captured.

The OSU wind tunnel has a larger airfoil chord to wind tunnel height ratio of 0.324 against
0.258 for the Handley-Page tunnel. This could result in more blockage effects especially at
larger angles of attack. Furthermore, the wind tunnel corrections applied are a function of this
airfoil chord to wind tunnel height ratio so the OSU wind tunnel will have larger correction
factors. Unfortunately, there is no overlap in the airfoils analysed in each wind tunnel, so the
wind tunnel results can not be compared directly.
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For the models a sin wave input will be used instead of the angle of attack as measured during
the measurement. This will give a discrepancy between the models and the data and, at the
same phase, the model could see a different angle of attack than the data. The sin wave for the
models is set up to fit that of the data as best a possible. The peak values are matched and
the phase is then chosen to minimize the least squares error between the two angle of attack
curves. Figure 3.6a shows the best match between the data and model inputs for the angle of
attack, while the worst match is in Figure 3.6b.
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Figure 3.6: Comparison between the angle of attack input from the data and that used for the
models for the best and worst fit

The discrepancy between the data α and the sinusoidal wave is significantly more than 0.25◦ in-
dicating that the claim that the shaker system in the OSU wind tunnel can achieve this accuracy
[36] may not always be realized.
The angle of attack from the data is not used for the models as it does not always match up
at the start and end phase of the data. This results in discrete jumps in the angle of attack
when running several rotations, which is required to remove the transients from the model
behaviours.
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CHAPTER 4
2D Comparison

For the comparison the cases are divided into different stall levels based on the amount of the
hysteresis loop in stall: attached flow, light stall, moderate stall and deep stall which are in
Sections 4.1, 4.2, 4.3 and 4.4 respectively. Here deep stall is used to indicate that the vast
majority of the hysteresis loop is in stall. The k’s are divided into three groups: low at around
k = 0.02, medium at k = 0.04 and high at roughly k = 0.06. Additionally two more extreme
cases with even larger k values are looked into in Section 4.5 and finally a ramp case is looked
into in Section 4.6. In all plots and tables Snel’s model is referred to as ‘Snel (1st)’ as the second
order correction term has been neglected as explained in Section 2.5. Before the comparisons
are made, the various parameters used to compare the models and data are listed:

• l2-norm: This is the Euclidean norm of the difference between the model and the data,
in a vector called v, over the whole loop normalized to the number of points in the
loop, N . In equation form this is l2-norm =

√
1
N

∑N
k=1 v2

k. The l2-norm is calculated for
all three coefficients using the outputs from the models. As the models are used at a
constant time step the edges of the CL vs α plot where α̇ is small will be weighed more
than the middle. When looking at a CL vs Phase plot the weighting will be even along
the x-axis.

• Lift hyst.: The lift hysteresis parameter gives an indication of the size of the hysteresis
loop and so the severity of the unsteady effects. It is the lift in the upper part of the
loop subtracted by that in the return part, CUpper

L − CLower
L , at the angle of attack of

the lift peak, α
∣∣∣CL,max

• ∆CL,max: This parameters indicates how well the extreme load in the loop is predicted
by the models compared to the data and is calculated using CModel

L,max − CData
L,max

• ∆α
∣∣∣CL,max : This parameter gives an indication on if the drop is stall is predicted early

or late as it is the difference between the angles of attack of the peaks of the lift hysteresis
loops of the models and the data. The equation is: αModel

∣∣∣∣CModel
L,max

− αData
∣∣∣CData

L,max

• ζP : The pitch damping parameter gives the work done over each cycle by the moment
coefficient and so is an important parameter for stall flutter. If is calculated as the area
within the hysteresis loop using Equation 4.1 [17].

ζp = − 1
4α2

a

∮
CM dα (4.1)

All models are solved using a time step such that there are 400 steps per rotation and two
total loops are completed to remove any transients. The input sin wave angle of attack,
α = αm + αa sin(ωt − π/2), for the models is adapted slightly from the mean, αm, and the
amplitude, αa, mentioned in the captions. This is done to match the extreme angles of attack
in the data.
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The Reynolds numbers may differ slightly between the steady and unsteady data, although
all measurements were conducted in the Reynolds number range of 1.48 to 1.53 million. Fur-
thermore, in general experimental data has a lower accuracy in stall than when the flow is
attached and this accuracy will be reduced further when the sinusoidal motions are included
which increases the complexity of the set up and so introduces more error terms. Therefore,
the experimental data used should not be seen as perfect. Finally it should be noted that only
pure pitching motions are used here which does not give the complete picture of the model
behaviour as would be seen on a full turbine.

4.1 Attached flow
For the attached flow the models that deviate from the steady coefficients have already been
looked into in the Verification in Section 3.1 for the lift and moment figures. The drag coefficient
is shown in Figure 4.2.
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Figure 4.1: CD vs α

Figure 4.2: Model responses for the NACA0015 airfoil where k = 0.051, αm = 3◦ and αa = 8◦

Here it is seen that the Risø model predicts the drag the best, although it does underpredict
the thickness of the hysteresis loop. The ONERA model on the other hand gives rotation in
the opposite direction which results in a decrease in accuracy with respect to the steady curve.
It should be noted that the dynamic drag in the ONERA model is not well verified as stated
in the original paper [23] and additionally is designed such that the equations have a similar
form to the lift and moment equations. This may be a good choice for ease of use and tuning
of the model; however, the dynamic lift and drag coefficients are significantly different from
each other. The unsteady drag coefficient generally leads the steady forces (in the Risø model
due to the (α − αE)CL term), whereas the lift lags behind its steady value in the attached flow
case due to the circulatory terms.
The l2-norm of the drag is equal to 0.0061 for the steady curve, 0.0095 for the ONERA model
and 0.0054 for the Risø model. So the ONERA model does indeed give a decrease in accuracy
for the drag in this particular case.
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4.2 Light stall
For light stall two identical cases are looked into using two different airfoils, the NACA0015
and the NACA0030, followed by a loop with a small αa which should be more representative
of what could be encountered in an operational turbine. A relatively high k value is used to
obtain a sufficient level of deviation from the static curve to be able to compare the models.
First the plots for the NACA0015 airfoil are shown in Figure 4.3.
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Figure 4.3: Model responses for the NACA0015 airfoil where k = 0.051, αm = 10◦ and αa = 6◦

When looking at the lift it can be seen that all models predict the drop in lift near the largest
angle of attack when α̇ is small. This is in general the location when the lift drops in the
other cases in this chapter. The case here is an exception in that the lift remains high even
as the angle of attack starts to drop again and then the reattachment occurs much later than
the models predict (seen best in the CL vs Phase plot). The result is that the models not
only quantitatively differ from the data, but also qualitatively. When looking at the statistics
for the lift in Table 4.1 the Risø model has the lowest l2-norm for the lift, Snel’s model
matches the peak lift value the best and both the ONERA and Risø models come the closest
for ∆α

∣∣∣CL,max
. The models with attached flow behaviour (Risø and ONERA) correctly show
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figure-8 behaviour, although do overestimate the size of the attached flow loop. The ONERA
model overpredicts the drop in lift at stall and so underpredicts the lift coefficient on the return
loop which contributes to this model having the largest Euclidean norm. Overall there is no
clear winner or loser when looking at the lift.
When looking at CD only the Risø model captures the figure-8 shape. However, the ONERA
model captures the CD shape best after the static stall peak. In the end the Risø model
has the lowest CD Euclidean norm and additionally has the lowest l2-norm for the moment
coefficient. For CM both models correctly capture the reverse loop in stall. The Risø model
captures the area within the loop best as seen when comparing ζP while the ONERA model
matches the extreme CM values the best. Both models overpredict the pitch damping which
is unconservative in the prediction of stall flutter. The roughness seen in the CM loop for the
Risø model is due to CM (αE) and the moment arm correction both reaching the drop in Cst

M

due to stall at slightly different angles of attack. It is further exaggerated by the discreteness
of the static moment and lift curves. Therefore, if more points had been used in these static
curves, then the roughness of the dynamic CM would be reduced.

Table 4.1: Results for the NACA0015 airfoil where k = 0.051, αm = 10◦ and αa = 6◦

Unit Øye Risø Snel (1st) ONERA Data
l2-norm CL [-] 0.125 0.117 0.133 0.155 -
l2-norm CD [-] - 0.0154 - 0.0183 -
l2-norm CM [-] - 0.0083 - 0.0135 -
∆CL,max [-] -0.068 -0.073 -0.057 -0.053 -
∆α

∣∣∣CL,max
[deg] -1.46◦ -0.84◦ -1.46◦ -0.73◦ -

ζP [1/rad] - 0.048 - 0.047 0.018

For the thicker airfoil, the NACA0030, significantly different characteristics are seen in Figure
4.4.

First, looking at CL no figure-8 shape is seen due to the large airfoil thickness, very slow
reattachment and gradual post stall drop-off in the static curve. This causes the Risø model
in particular to have a larger error norm in Table 4.2 and the models without attached flow
behaviour to have the lowest error norm. Although, Øye’s and Snel’s models are slightly
outperformed by the other models in terms of α location of the peak.
Similarly to the attached flow case in Section 4.1, the ONERA model predicts the drag loop
to be in the wrong direction. Overall the drag does not deviate much from the steady curve
which the Risø model predicts better than the ONERA model. For the moment, the data from
this thicker airfoil shows a significantly different shape with now no figure-8 present at all,
despite the ONERA model still predicting one. The Risø model has the correct general shape
which results in the best pitch damping parameter. However, when looking at the l2-norm the
improvement of the Risø model over the ONERA model is not much due to having an offset
for a large part of the loop.
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Figure 4.4: Model responses for the NACA0030 airfoil where k = 0.051, αm = 10◦ and αa = 6◦

Table 4.2: Results for the NACA0030 airfoil where k = 0.051, αm = 10◦ and αa = 6◦

Unit Øye Risø Snel (1st) ONERA Data
l2-norm CL [-] 0.045 0.056 0.045 0.048 -
l2-norm CD [-] - 0.0058 - 0.0115 -
l2-norm CM [-] - 0.0058 - 0.0078 -
∆CL,max [-] -0.055 -0.061 -0.049 -0.038 -
∆α

∣∣∣CL,max
[deg] -0.82◦ -0.44◦ -0.72◦ -0.44◦ -

ζP [1/rad] - 0.058 - 0.009 0.074

The next case is the most feasible α loop that could occur regularly in a turbine while in power
production as it remains within the angles of attack before the lift drop off in stall and it has a
relatively small αa. The dynamic stall behaviour is still important here as it goes off the linear
part of the lift curve indicating that the trailing edge stall has started. The responses for this
case are in Figure 4.5. In some of the data for the NACA4415 airfoil a vertical offset upwards
of the dynamic lift coefficient is seen to the static curve (e.g. in Figure 4.10). Therefore, it



34 4 2D Comparison

may be the case that the dynamic CL’s are shifted up here too.
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Figure 4.5: Model responses for the NACA4415 airfoil where k = 0.037, αm = 8◦ and αa = 5◦

The Risø model has the best Euclidean norm for the lift, although this is mainly due to the
attached flow behaviour as it also has the worst Lift Hyst., ∆CL,max and ∆α

∣∣∣CL,max
. Closest

to stall, so at the highest α’s, it is Snel’s model which performs the best followed by Øye’s
model.
For the drag it is again the Risø model which clearly outperforms the ONERA model with the
ONERA model showing a Figure-8 shape not seen in the data. For the moment, on the other
hand, the ONERA model slightly outperforms the Risø model.
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Table 4.3: Results for the NACA4415 airfoil where k = 0.037, αm = 8◦ and αa = 5◦

Unit Øye Risø Snel (1st) ONERA Data
l2-norm CL [-] 0.055 0.053 0.054 0.063 -
l2-norm CD [-] - 0.0030 - 0.0058 -
l2-norm CM [-] - 0.0062 - 0.0060 -
Lift hyst. [-] 0.095 0.064 0.119 0.104 0.134
∆CL,max [-] -0.053 -0.067 -0.038 -0.066 -
∆α

∣∣∣CL,max
[deg] 0.03◦ 0.19◦ -0.08◦ -0.08◦ -

ζP [1/rad] - 0.110 - 0.095 0.090

4.3 Moderate stall
Moving deeper into stall the size of the unsteady effects becomes larger. In this section the
models are compared in four different cases starting with a repetition of the two cases in the
previous section (Section 4.2), although now with an increased value of 10◦ for αa. These can
be found in Figures 4.6 and 4.7 for the NACA0015 and NACA0030 airfoils respectively. This is
followed by a roughly similar loop for the cambered NACA4415 airfoil in Figure 4.8 and then fi-
nally a loop with a low reduced frequency is looked into in Figure 4.9 for the NACA4415 airfoil.

When comparing the shape of the experimental data between Figures 4.3 and 4.6 for the
NACA0015 a large difference is seen in shape of the hysteresis loop. In the case with the larger
αa the drop in lift is significantly more sudden which is seen best in the CL vs Phase plots.
This indicates the occurrence of leading edge stall and the shedding of a leading edge vortex.
As the leading passes over the airfoil it results in a sharp spike away from the static curve for
both the drag and moment coefficients. The only model that shows such a large and sudden
drop in lift is the ONERA model; however, it predicts this drop too early. This could be fixed
in this model relatively easily by increasing the value of the stall delay ∆τ . The ONERA model
is additionally the most accurate on the reattachment part of the loop, matches the figure-8
shape the best and comes the closest to matching the peak value and location. Despite this,
it still has the largest CL l2-norm in Table 4.4 due to the sharp drop in lift after predicting
the stall too early. This results in a large lift discrepancy between the model and data until
stall also occurs in the data. Extra attention should be paid to the magnitude of the l2-norm,
the lift hysteresis and ∆α

∣∣∣CL,max
which all indicate that no models managed to match the

experimental results too well. They do all give a significant improvement over the steady
curve though.
For the drag both models perform similarly for the l2-norms, although the ONERA model does
again predict the hysteresis loop to have the wrong direction when the flow is attached. The
moment loop now has two crossovers and so three different enclosed areas. The ONERA model
successfully predicts the presence of these two crossings. Furthermore, it has the closest CM

value during the spike down due to the passing of the leading edge vortex over the airfoil in
the data. These good visual properties of the ONERA model translate into the best Euclidean
norm and it additionally matches ζP the best.
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Figure 4.6: Model responses for the NACA0015 airfoil where k = 0.051, αm = 10◦ and αa = 10◦

Table 4.4: Results for the NACA0015 airfoil where k = 0.051, αm = 10◦ and αa = 10◦

Unit Øye Risø Snel (1st) ONERA Data
l2-norm CL [-] 0.145 0.146 0.141 0.147 -
l2-norm CD [-] - 0.0408 - 0.0389 -
l2-norm CM [-] - 0.0376 - 0.0286 -
Lift hyst. [-] 0.542 0.545 0.571 0.676 0.846
∆CL,max [-] -0.183 -0.168 -0.167 -0.119 -
∆α

∣∣∣CL,max
[deg] -3.45◦ -2.22◦ -3.32◦ -1.66◦ -

ζP [1/rad] - 0.022 - 0.053 0.043

Next the same comparison is conducted for the NACA0030 airfoil between Figures 4.4 and 4.7
for αa = 6◦ and αa = 10◦ respectively.
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Figure 4.7: Model responses for the NACA0030 airfoil where k = 0.051, αm = 10◦ and αa = 10◦

For this thicker airfoil the shape of the dynamic curves for all the coefficients is roughly the
same as in Figure 4.4 indicating that the stall type has not changed from the light stall case
and is still trailing edge stall. The discrepancy of the peak value of the lift between the data
and models is seen to be quite significant in Table 4.5 at around 0.16 for the Snel and ONERA
models and even above 0.2 for the other two models. With the larger amplitude the loops
are thicker which is most notable in the ONERA model. The ONERA model also shows
improvement in the moment coefficient for the larger αa as now the reverse loop is smaller.
The hysteresis loop for the drag is still in the counter-clockwise direction, opposite to the data,
though.
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Table 4.5: Results for the NACA0030 airfoil where k = 0.051, αm = 10◦ and αa = 10◦

Unit Øye Risø Snel (1st) ONERA Data
l2-norm CL [-] 0.094 0.109 0.088 0.095 -
l2-norm CD [-] - 0.0145 - 0.0195 -
l2-norm CM [-] - 0.0144 - 0.0147 -
∆CL,max [-] -0.209 -0.213 -0.174 -0.158 -
∆α

∣∣∣CL,max
[deg] -1.29◦ -0.94◦ -0.61◦ -0.72◦ -

ζP [1/rad] - 0.056 - 0.023 0.087

The cambered airfoil is used in a similar case as the two previous cases in this section for which
the results can be found in Figure 4.8 and Table 4.6. As mentioned in Section 3.3 Snel’s model
was tuned using data from the same measurement series as the data for the NACA4415 airfoil,
so it should have an advantage.
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Figure 4.8: Model responses for the NACA4415 airfoil where k = 0.056, αm = 8◦ and αa = 10◦

When looking at the lift coefficient the general shape of the results is surprisingly similar to
that of the uncambered NACA0015 airfoil in Figure 4.6 with the differences that stall is slightly
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more gradual and that there are no sharp spikes in CD or CM . This indicates that the leading
edge vortex is less pronounced. The moment coefficient does still show a little tail at the higher
angles of attack indicating that there may still be a smaller leading edge vortex being shed.
In that case the stall mode is likely a combination of leading edge and trailing edge. When
looking at the statistics in Table 4.6 it is seen that the ONERA model captures the location
of the peak the best, but it is Snel’s model that has the best lift l2-norm, lift hysteresis and
peak lift value.
The drag and moment hysteresis loops do show significant differences from the symmetrical
airfoil. The CD loop is thicker which both models manage to capture. However, the ONERA
model’s CD is slightly offset and it additionally falsely predicts a figure-8 shape at low angles
of attack. This gives it an l2-norm that is double that of the Risø model. For the moment
coefficient it is the ONERA model that outperforms the Risø model and even manages to
slightly capture the tail at high angles of attack. It does slightly overpredict the pitch damping
parameter though.

Table 4.6: Results for the NACA4415 airfoil where k = 0.056, αm = 8◦ and αa = 10◦

Unit Øye Risø Snel (1st) ONERA Data
l2-norm CL [-] 0.087 0.113 0.082 0.104 -
l2-norm CD [-] - 0.0086 - 0.0187 -
l2-norm CM [-] - 0.0191 - 0.0154 -
Lift hyst. [-] 0.473 0.439 0.549 0.561 0.655
∆CL,max [-] -0.140 -0.152 -0.074 -0.118 -
∆α

∣∣∣CL,max
[deg] -2.33◦ -1.33◦ -1.69◦ -0.54◦ -

ζP [1/rad] - 0.127 - 0.147 0.135

Next a case with a low reduced frequency is looked into in Figure 4.9. This frequency is
representative of 1P oscillations in angle of attack, so due to for example yaw and shear, for
the outerboard parts of the blade where the majority of the power and thrust are produced.
Although, the large αa is less representative of normal turbine operation.

When comparing this case to the previous case in Figure 4.8 which uses the same airfoil, αa and
αm the same general trends are visible where the peak value of the lift and the lift hysteresis
parameter are underestimated and the drop in lift is predicted too early. Again different models
perform the best for each of the coefficients when looking at the Euclidean norms with Snel’s
model best for CL, Risø for CD and ONERA for CM . Here the offset in drag coefficient for
the ONERA model is smaller and for the moment the Risø model shows some improvement
relative to the ONERA model despite predicting an small figure-8 shape at the highest angles
of attack.
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Figure 4.9: Model responses for the NACA4415 airfoil where k = 0.019, αm = 8◦ and αa = 10◦

Table 4.7: Results for the NACA4415 airfoil where k = 0.019, αm = 8◦ and αa = 10◦

Unit Øye Risø Snel (1st) ONERA Data
l2-norm CL [-] 0.045 0.054 0.041 0.051 -
l2-norm CD [-] - 0.0092 - 0.0109 -
l2-norm CM [-] - 0.0107 - 0.0092 -
Lift hyst. [-] 0.242 0.252 0.260 0.266 0.318
∆CL,max [-] -0.077 -0.083 -0.055 -0.076 -
∆α

∣∣∣CL,max
[deg] -1.07◦ -0.53◦ -1.07◦ -0.14◦ -

4.4 Deep stall
Moving even further into stall first another low k is used to compare the models which is then
followed by two middle reduced frequency cases. The first of which has a large αa in Figure
4.11 and the second a small αa in Figure 4.12. Starting with the low k case in Figure 4.10.
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Figure 4.10: Model responses for the NACA4415 airfoil where k = 0.019, αm = 14◦ and
αa = 5◦

The data has an offset in particular for the lift and moment coefficients so the Euclidean norms
are ignored. The general shape and size of the loop can still be compared using the Lift Hyst
and ζP in Table 4.8. For the lift the ONERA model has the closest lift hysteresis parameter
to the data. However, after the drop in lift the remaining part of the tail is too thin which has
been found to be a consistent negative characteristic of the ONERA model over most of the
cases. It is in particular notable in this case as stall occurs early in the hysteresis loop leaving
a large portion of the phase where lift is too low.
When looking at the drag, it is the ONERA model that roughly has the correct thickness and
it additionally captures the shape of the moment hysteresis loop the best. The Risø model
erroneously predicts a figure-8 shape in CM and therefore greatly underestimates the pitch
damping.
This case is additionally interesting due to the presence of higher frequency oscillations within
the measured k = 0.019 loop despite the data being averaged over 10 cycles. This is likely
due to the static case containing a large amount of unsteadiness and vortex shedding due to
the large degree of stall. That these higher frequency oscillations are so visible despite the
averaging could suggest that there is a level of repetition is these vortices being shed. If this is
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the case then the dynamic stall cycle could be having a effect on when these vortices are shed.

Table 4.8: Results for the NACA4415 airfoil where k = 0.019, αm = 14◦ and αa = 5◦

Unit Øye Risø Snel (1st) ONERA Data
Lift hyst. [-] 0.140 0.159 0.143 0.174 0.218
ζP [1/rad] - 0.021 - 0.056 0.088

Next a higher reduced frequency case is used where there is a significantly larger amount of
hysteresis as seen in Figure 4.11.
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Figure 4.11: Model responses for the NACA4415 airfoil where k = 0.039, αm = 14◦ and
αa = 10◦

Again the level of lift hysteresis is underestimated and the ONERA model predicts stall too
early and then drops below the steady lift value with even a small reverse loop at the highest
angles of attack. This small reverse loop is seen as unphysical and poor model behaviour. As
mentioned before it is possible to fix this through tuning the stall delay in non-dimensional
time. Overall Snel’s model matches the data the best for the lift and has the lowest Euclidean
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norm in Table 4.9.
For the drag it is the Risø model this time that shows rotation in the wrong direction at high
angles of attack. For the dynamic CM , similarly to the k = 0.019 case, the Risø model predicts
a significant figure-8 shape, which does not occur in the measurement. So unsurprisingly the
ONERA model has the lowest l2-norm for both these coefficients.

Table 4.9: Results for the NACA4415 airfoil where k = 0.039, αm = 14◦ and αa = 10◦

Unit Øye Risø Snel (1st) ONERA Data
l2-norm CL [-] 0.073 0.076 0.064 0.099 -
l2-norm CD [-] - 0.0316 - 0.0285 -
l2-norm CM [-] - 0.0299 - 0.0170 -
Lift hyst. [-] 0.450 0.446 0.504 0.518 0.631
∆CL,max [-] -0.171 -0.177 -0.112 -0.119 -
∆α

∣∣∣CL,max
[deg] -2.77◦ -2.13◦ -1.81◦ -0.54◦ -

ζP [1/rad] - 0.041 - 0.123 0.142

The last deep stall case is a loop with a smaller αa and a high αm that remains well away from
the attached flow part of the lift curve. It can be found in Figure 4.12. This case is pushing
the boundaries of the design range of the models; however, is relevant for the model behaviour
in some of the standstill cases to be analysed in Chapter 5.

Looking at the lift coefficient shows that this data for the NACA4415 airfoil is shifted up again.
Ignoring this offset and simply looking at the loop thickness at the mean angle of attack, 19◦, it
is seen that the Risø and Øye models get the closest to the data, while Snel’s model overpredicts
the loop thickness and the ONERA model greatly underestimates the thickness. The ONERA
model even predicts a figure-8 shape at the highest α’s.
The Risø model does not fair well for the drag and moment coefficients with both rotating in
the wrong direction. This results in the Risø model having the highest l2-norm for the drag in
Table 4.10. Furthermore, this causes the pitch damping parameter to be negative for the Risø
model. That the Risø model predicts a clockwise CM loop is due to the moment arm correction
term indicating that this term may not be accurate in deep stall. Without this moment arm
term the Risø model would roughly follow the static curve which would be an improvement.
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Figure 4.12: Model responses for the NACA4415 airfoil where k = 0.037, αm = 20◦ and
αa = 5◦

Table 4.10: Results for the NACA4415 airfoil where k = 0.037, αm = 20◦ and αa = 5◦

Unit Øye Risø Snel (1st) ONERA Data
l2-norm CD [-] - 0.0218 - 0.0185 -
ζP [1/rad] - -0.051 - 0.099 0.103

4.5 High reduced frequencies
To push the boundaries of what the models are capable of two cases with higher reduced fre-
quencies are looked into. These k’s are too high to be from 1P excitations, although may be
possible in instability or resonance cases. It should be noted that as the amplitude of the pitch-
ing oscillation is 10◦ in either direction this represents an incredibly violent instability such
that a turbine will likely already have failed before it encounters this in normal operation. In
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an simulation environment, however, it could potentially be encountered in the design process.

The first case has k = 0.102 for the NACA0015 airfoil in Figure 4.13. The measurement data
shows a spike to a CL value of above 2 followed by a sharp drop at the maximum lift which
indicates the presence of leading edge stall followed by a leading edge vortex traveling over
the airfoil. The drag and moment coefficients additionally show a spike at the highest angle
of attack which corresponds to this leading edge vortex traveling over the airfoil and causing
a rapid change in the location of the center of pressure. For the lift coefficient the ONERA
model best captures the CL peak, the sharp drop and the late reattachment. Looking at Figure
4.13b it is seen that the ONERA does predict the drop-off significantly too early. Both the
Øye and Risø models predict the peak in lift coefficient over 5◦ to early (as seen in Table
4.11) and furthermore underestimate the magnitude of the CL peak by over 0.6. For the drag
neither model performs stellar, although they do both correctly predict a figure-8 shape. For
the moment the ONERA model does not manage to capture the figure-8 shape at all which
results in it incorrectly predicting an aerodynamically damped pitching motion.
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Figure 4.13: Model responses for the NACA0015 airfoil where k = 0.102, αm = 15◦ and
αa = 8◦
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Table 4.11: Results for the NACA0015 airfoil where k = 0.102, αm = 15◦ and αa = 8◦

Unit Øye Risø Snel (1st) ONERA Data
l2-norm CL [-] 0.305 0.331 0.321 0.372 -
l2-norm CD [-] - 0.1333 - 0.1010 -
l2-norm CM [-] - 0.0985 - 0.0728 -
∆CL,max [-] -0.651 -0.617 -0.562 -0.474 -
∆α

∣∣∣CL,max
[deg] -5.32◦ -5.43◦ -3.62◦ -2.84◦ -

ζP [1/rad] - -0.022 - 0.113 -0.029

For an even higher k of 0.153 in Figure 4.14 all models except the ONERA model show
significantly different behaviour from the measurements. As the ONERA model is the only
model designed for helicopters it is not surprising that this model is superior for the larger k’s.
For the drag and moment coefficients, however, it is the ONERA model that shows different
hysteresis loop shapes as in the data.
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Figure 4.14: Model responses for the NACA0030 airfoil where k = 0.153, αm = 10◦ and
αa = 10◦



4.6 Ramp function 47

4.6 Ramp function
In addition to sinusoidal oscillations the response to a ramp function for the two symmetri-
cal airfoils, NACA0015 and NACA0030, is investigated. This is to compare the models in
a non-periodic case. The chosen ramp goes from 0 to 30◦ at a reduced ramp rate of 0.0116
which dimensionally corresponds roughly 100◦/s in the wind tunnel where c = 0.55 m and
U ≈ 40 m/s. Therefore the 30◦ sweep is finished in around 0.33 seconds. The data shown is
averaged over 5 runs. Similarly to all other measurement data the Reynolds number is close
to 1.5 million and the Mach number is roughly 0.12.

In Figure 4.15 the angle of attack ramp shapes of the two measurement campaigns are seen to
have only minor differences for each airfoil.
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Figure 4.15: Angle of attack against time for the ramp functions

The lift response is found in Figure 4.16. Here it is the extreme loads, so the peak in the lift
coefficient, and the following transition back to the steady lift that are important.
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Figure 4.16: Lift coefficient against non-dimensional time for the ramp functions

Looking at the data, only the NACA0015 airfoil shows clear leading edge vortex formation
and shedding with a sharp drop off after the large CL peak. This is followed by rapid oscil-
lations in all three coefficients due to the shedding of more vortices at a high frequency. As
the data is the average of 5 measurements it is likely that these higher frequency oscillations
are triggered by the separation of the leading edge vortex and so reoccur similarly in each test.
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The NACA0030 will also have unsteadiness and vortices shedding after stall. That this is not
visible in the averaged data indicates that it is more random and has averaged out over the
5 runs. Another notable point in the NACA0030 data is that it does not tend towards the
steady curve towards the end. This could simply be due to not measuring long enough for the
transients to die out. It could also be due to the wind tunnel conditions differing between runs
or perhaps the large thickness resulting in more blockage effects which, as the wind tunnel is
closed, may add extra transients that act on a larger time scale.
Additionally, it can be seen that the linear part of the data extends past stall which indicates
that in this case for both airfoils there is a time delay where the flow is remains fully attached
and no separation occurs.

All dynamic stall models predict an overshoot in the lift coefficient over the static peak, al-
though none reach the peak CL in the data. Table 4.12 shows these overshoots for the lift
coefficient and angle of attack of the stall peak. For the analysis here two of the parameters
used to quantify the differences in the hysteresis loops are modified for use for the ramp case.
These are ∆CL,max and ∆α

∣∣∣CL,max
. They are changed such that they represent the difference

to the steady peak lift coefficient instead of the unsteady data peak and are therefore named
∆Cst

L,max and ∆α
∣∣∣st
CL,max

.

Table 4.12: Comparison of overshoots in CL and α for the peaks in the ramp cases with respect
to the steady curve

Airfoil Parameter Unit Øye Risø Snel (1st) ONERA Data

NACA0015
∆Cst

L,max [-] 0.204 0.247 0.279 0.360 1.016
∆Cst

L,max [%] 16.3% 19.8% 22.4% 28.8% 81.5%
∆α

∣∣∣st
CL,max

[deg] 2.6◦ 4.0◦ 5.5◦ 5.4◦ 10.0◦

NACA0030
∆Cst

L,max [-] 0.189 0.195 0.315 0.280 0.527
∆Cst

L,max [%] 20.5% 21.0% 34.0% 30.3% 56.8%
∆α

∣∣∣st
CL,max

[deg] 6.1◦ 6.7◦ 14.4◦ 6.7◦ 8.7◦

This shows that the in unsteady data of the NACA0015 the lift peak is delayed by 10◦ and
reaches a CL almost double that of the static stall peak. None of the dynamic stall models
come close to this with the ONERA model coming the closest in terms of lift and Snel’s model
in terms of α. Øye’s model underestimates the location of the peak the most by 7.4◦. Although,
as this is a clear leading edge vortex case, it is not expected that the Øye, Risø or Snel models
will be able to model this accurately due to only modeling trailing edge stall.
For the NACA0030 the match between the peak of the data and the models is slightly improved
with Snel’s model now predicting the highest peak CL. This peak occurs 5.7◦ after the peak
in the data, though, which is due to Snel’s model not showing a conventional peak in Figure
4.16b. Rather, it shows a plateau at the highest CL caused by the forcing ˙∆Cpot

L applied in stall
when α̇ is non-zero. As the data does not show similar behaviour this is possibly unphysical,
although it does improve the match to the data for both airfoils in Figure 4.16.
The ONERA model drops below static lift values after the stall delay, ∆τ , for the NACA0015
airfoil and after the ramp is finished for the NACA0030 airfoil. This is similar to the behaviour
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in for example Figure 4.11 which is seen as unphysical. In the leading edge stall case the ON-
ERA model does roughly predict the same magnitude of drop in lift after stall. Therefore, an
increased value of the stall delay parameter, ∆τ , will allow the ONERA model to match the
data significantly better for the NACA0015 airfoil. As the peak of the unsteady data is 15.4
and 13.4 non-dimensional time units after the static stall peak for the for the NACA0015 and
the NACA0030 respectively, this data would suggest a new value of roughly ∆τ = 14.

The moment and drag responses to the ramp function are shown in Figures 4.17 and 4.18
respectively.
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Figure 4.17: Moment coefficient against time for the ramp functions
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Figure 4.18: Drag coefficient against time for the ramp functions

For both coefficients and both airfoils the Risø model matches the data most accurately before
stall, so during the first 30-40 non-dimensional time units. Hereafter, it is the ONERA model
that captures the drop in moment coefficient and the reattachment the best. The ONERA
model even captures the oscillations due to the vortex shedding a little. The discrete jumps
in the Risø results are due to the jumps in α̇ at the start and end of the ramp and due to the
moment arm as a function of the separation point not being completely smooth.
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4.7 Discussion
Overall there is not one model that always outshines the other models in this 2D comparison
against measurement data. Each model has different strengths and weaknesses and each model
has at least one case with the lowest Euclidean norm.

The Risø model has the best attached flow behaviour for the lift, drag and, in a pure pitching
motion, the moment coefficient. The ONERA model, on the other hand, performs better for
the moment coefficient in the attached flow pure plunging case, although it does not fully cap-
ture the rotation of the lift hysteresis loop which is arguably the more important as CL is in
general the most important coefficient. For the drag coefficient in attached flow the ONERA
model often gives the hysteresis loop in the wrong direction and so gives a deterioration in
accuracy from the static curve.

Further into stall the ONERA model in general has a slight edge due to the hard stall delay
being present in ∆τ . However, in the cases that it was not the best model, it was often the
worst and occasionally showed unphysical figure-8 shapes in CL at high angles of attack in par-
ticular in deep stall. It additionally always predicts stall to early which results in it generally
having the largest Euclidean norms for the lift despite capturing the lift peak the best. This
early stall can be fixed relatively easily in the ONERA model by increasing ∆τ .
The Risø and Øye models in general have similar peak values in lift coefficient and underes-
timate the peak lift coefficient which is unconservative for extreme loads. Broadly speaking
Øye’s model performs better than the Risø model for the thickest airfoil, the NACA0030, while
for the 15% thick airfoil this is the other way around. These differences between the Øye and
Risø models are largely due to the attached flow behaviour rather than having different stall
properties. Snel’s model has a slightly higher peak CL in general than the Risø and Øye mod-
els; however, predicts reattachment too quickly. Despite this, Snel’s model is found to have
the best l2-norms for the lift for the moderate and deep stall cases.

For the high k cases the ONERA model outperforms the other models for the lift, but pro-
duces CD and CM shapes very different from that data for the k = 0.153 case. These drag
and moment coefficients seem more difficult to predict overall. This is possibly due to them
being sensitive to small changes in for example the location of the center of pressure or the
angle of the resultant force. It could also simply be due to there being less research and tuning
done into the drag and moment coefficients in dynamic stall. There are even some cases where
the correction introduced by the models make the match with the experimental data worse.
The moment coefficient hysteresis loops are in particular hit or miss when looking at the pitch
damping coefficient and if there is a figure-8 shape or not. In general for attached flow the
Risø model performs more reliably for CD and CM . However, in deep stall the ONERA model
often outperforms the Risø model for these coefficients which is highlighted in particular by
the deep stall and ramp cases.

The Øye model is found to be the most robust model and never shows any undesirable be-
haviour, although in general the other models are more accurate. The Risø model follows
closely on robustness for the lift; however, shows too much attached flow behaviour in the light
stall cases. This is interesting as the flat plate values from Theodorsen’s theory are used, while
the airfoils used here are at least 15% thick. If the circulatory parameters in the Risø model (A1,
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A2, b1 and b2) had been tailored to the thicker airfoils, then the attached flow behaviour would
have been larger and the fit with the data worse. Despite these attached flow loops being too
thick, they do still improve the fit to the data and reduce the l2-norms for the 15% thick airfoils.

All models do give a great improvement with respect to no dynamic stall model being used at
all. Furthermore, perfect matches with the data are not expected as the measurement data
contains its own uncertainties in particular further into stall. There are some cases where
the dynamic stall models even fail to capture the correct shape such as in Figure 4.3 for the
NACA0015 in light stall where the drop in lift due to stall only occurs on the return loop or
Figure 4.6 where leading edge stall is seen again for the NACA0015. These cases show that
there is still room for improvement in these dynamic stall models.
For the 15% thick airfoils both leading edge stall and trailing edge stall is seen to occur. In
general the leading edge stall characteristics are seen in the more extreme cases so with the
larger k’s and αa’s which will only rarely occur in wind turbines. More often either pure trailing
edge stall or a mix of the stall types will occur. This mix of stall types, as for example seen in
Figure 4.8 and to a lesser extent Figure 4.11, adds an extra level of complexity for the modeling
of dynamic stall for wind turbine applications. It is important though, as this thickness is often
used in the regions of the blades where the majority of the power is generated. The ONERA
model is most suited to capture this complex behaviour and could be improved even more
through the large tunability of the model. For the Risø model the presence of this leading edge
stall violates the assumption made when neglecting the leading edge vortex module from the
Beddoes-Leishman model.
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CHAPTER 5
Aeroelasticity

In this chapter various full turbine response cases are used to compare the performance of the
dynamic stall models. First, the fundamentals of an aeroelastic code are briefly detailed in
Section 5.1. This is then followed by an extreme load case in Section 5.2, various standstill
cases in Section 5.3 and the a flutter speed comparison in Section 5.4.
In this chapter the dynamic drag correction in the ONERA model is turned off due to it’s poor
performance in Chapter 4.
The turbine used is a Vestas turbine which is already in operation and has proven itself in the
field. In this chapter the boundaries of the blade stability of this turbine will be pushed to
compare the dynamic stall models. It should be mentioned that this is purely an theoretical
exercise that is not representative of any real life behaviour of the Vestas turbine. To ensure
the confidentiality of Vestas proprietary information the results have been normalized.

5.1 Aeroelastic code
An aeroelastic code based on Blade Element Momentum theory, BEM, is an efficient tool to
model the response of a turbine in the time domain for a certain wind field input. It combines
the aerodynamics, structure and control of the turbine. This results in a complex environment
due to the sheer size of the system and the interactions between the different components. Ad-
ditionally, each of these components have their own assumptions and accuracies. One benefit
of using such a code is that the different models and components can be turned on or off and
different settings applied as desired. This allows for differences in turbine response to a new
dynamic stall model to be investigated while using identical values for all other inputs.

The most basic version of BEM uses the following assumptions: [37] [38]

• Steady flow conditions (So no turbulence, vibrations or controls)
• No radial interdependence
• Spanwise flow is negligible (2D characteristics)
• Axially symmetric conditions
• No yaw angle
• No wind shear or tower shadow

These assumptions allow for the rotor plane to be divided up into a number of radial annuli
in which the 1D momentum equation is satisfied. This is done by making a balance between
the out-of-plane aerodynamic force generated by the blades and the thrust force acting on the
wind as in Equation 5.1. A similar equation can be set up between the in-plane aerodynamic
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force and the power coefficient for an annulus and is shown in Equation 5.2.
1
2

ρU2
∞CT 2πRdr = 1

2
ρU2

relCncBdr (5.1)
1
2

ρU3
∞CP 2πRdr = Ωr

1
2

ρU2
relCtcBdr (5.2)

Where ρ is the air density, U∞ the free stream velocity, CT the local thrust coefficient, R the
rotor radius, dr the radial length of the annuli, CT the local thrust coefficient, Urel the relative
velocity to the airfoil, Cn the normal coefficient (out-of-plane) from the airfoil forces, B the
number of blades, CP the local power coefficient, Ω the rotational speed of the rotor, r the
radial position of the annuli and Ct the tangential coefficient (in-plane) from the airfoil forces.
Due to the dependence of these equations on the axial and tangential induction factors they
need to be solved in an iterative manner.
In most operating conditions the assumptions for these 1D momentum equations are severely
violated and therefore several extensions to the classical BEM can be used: [37] [38]

• Dynamic stall
• Dynamic inflow
• Tip (and root) correction due to having a finite number of blades
• Yawed inflow
• Tower shadow modelling
• 3D Lift correction
• Turbulent wake state

These extensions allow the BEM code to be used in a much more general environment; however,
are all still approximations of the physics involved and so contain errors of their own. The
dynamic stall module will affect the Cn and Ct terms in Equations 5.1 and 5.2 and so change
the inductions and the thrust and power coefficients. Additionally, this changed loading will
affect the deformations and vice versa which is important for instabilities.

In the standstill cases BEM theory is simplified due to the lack of power generation, thrust and
blade rotation. Other issues do become more important such as crossflow along the blade [39]
and the fidelity of the aerodynamics at high angles of attack in terms of the static coefficient
curves, dynamic stall and periodic vortex shedding. Furthermore, the tip and root corrections
will be different due to the different load distribution over the blade.

During the implementation of the dynamic stall models in the aeroelastic code an extra as-
sumption is made to simplify and smooth α̇ which will affect the Risø and ONERA models.
This is that α̇ is approximated as the physical pitching velocity of the airfoil section only.
Therefore, the heaving component, ḧ, and the rotation of the wind field are neglected. The
reasoning and estimation of the effects of this assumption are detailed in Appendix G.

5.2 Extreme load
The IEC Design Load Case, DLC, 1.4 is for simulating a worst case scenario where a large gust
is encountered together with a change in wind direction [40]. The so called coherent gust with
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direction change. To make the case more extreme and push the angle of attack further into
stall, the velocity at the start of the gust is lowered to 5 m/s and the controller state frozen
at t = 10 s. Furthermore, all dynamic aerodynamic corrections such as inflow or wake are
turned off including tower shadow. This does mean that this run is not representative of the
normal behaviour of the turbine or aeroelastic code; however, allows for a better comparison
of the dynamic stall models in isolation. The added complexity of the blades deflecting during
the simulation is still present in addition to the effects of the varying wind velocity and rotor
speed.
As the IEC standard states [40] the wind ramp from 5 m/s will increase the wind speed by 15
m/s and change the wind direction by 144◦ over 10 seconds. This results in the time series of
angle of attack in Figure 5.1 at 80% along the analysed blade when no dynamic stall model1
is used. When a dynamic stall model is used, the angle of attack will be different due to the
difference forces causing slightly different blade deflections, rotor speed and induced velocities.
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Figure 5.1: Angle of attack response at 80% along the blade for the modified DLC 1.4 case
with no dynamic stall model

The results in the lift coefficients in Figure 5.2. CL has been normalized using the absolute
value of the negative stall peak lift coefficient from the static curve.

The model performance seen here is roughly similar to that found for the NACA0030 ramp
case in Section 4.6 due to the ramp like nature in α vs t plot between 16 and 18 seconds.
Furthermore, the drop-off in lift coefficient after the stall peak in the static curve is gradual,
similar to that of the NACA0030 airfoil. One difference to the ramp case is that Snel’s model
does not predict a much larger peak CL here than the Øye and Risø models. The overshoots
over the steady stall peak are 18.3%, 17.5% and 19.8% for the Øye, Risø and Snel models
respectively. For the ONERA model it is only 3.5%.
That the ONERA model does not show much hysteresis behaviour is due to several factors
such as different blade deflections and rotor speed. However, the most important reason is the
method of implementation of the W1 and W ′

0 terms. These time derivatives are fundamental
to the stall behaviour of the ONERA model as detailed in Appendix G.
In general the lift overshoots are lower here than for the NACA0030 ramp case in Section 4.6
indicating that this case is slightly less extreme. That they are not far off indicates that the
ramp case is not entirely unfeasible for in a turbine, although the case here only reaches -20◦,

1For ease of reading the case with no dynamic stall model is called the steady model.
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Figure 5.2: CL model responses for the modified DLC 1.4 case at 80% along the blade

while the ramp goes to 30◦.

The flapwise tip position is shown in Figure 5.3 where a positive tip deflection is towards the
tower and a negative tip deflection is away from the tower. It is normalized such that the
extreme values of the steady model response are set to 1 and -1. Therefore, the normalized tip
position of zero is no longer the true zero.
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Figure 5.3: t vs normalized tip position model responses for the modified DLC 1.4 case

For the attached flow region all models perform similarly with the only differences being that
the Risø and ONERA models have a slight time delay. For the initial drop in the tip position,
so between t = 16 s and t = 18 s, all dynamic stall models except ONERA predict a larger tip
deflection at the peak. One of the reasons that the ONERA model shows a smaller deflection
than the steady case is due to the minimal lift overshoot combined with a lower rotor speed.
This lower rotor speed is caused by the attached flow dynamics gradually slowing the rotor
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down relative to the Steady model. At t = 17 s the ONERA model has a 1.2% lower rotor
speed than the Steady model while the Risø model has an 0.1% decrease and the Øye and Snel
models an 0.7% increase. A lower relative velocity over the blade will reduce the dimensional
forces and therefore also the tip deflection. Furthermore, the more inboard sections will reach
stall earlier and then also reach the drop in lift back to the other side of the steady coefficient
(as in Figure 5.2b between 17.5 s and 18 s) earlier. This smaller magnitude of the lift coefficient
inboard will additionally contribute to the reduced the tip deflection.
After t = 18 seconds the tip continues to deflect away from the tower despite α decreasing due
to the relative velocity increasing for all models. This is in turn due to the large yaw angle
combined with the blade being at the azimuthal angles where it rotates into the wind.

5.3 Standstill
The IEC standard states in Design Load Case (DLC) 6.2 that a parked turbine without a
backup generator must withstand a 50 year extreme wind coming from any direction [40].
This means that the blades need to be designed such that they can withstand vibrating in
(deep) stall. The most critical directions are generally when a blade is in stall resulting in
stall-induced vibrations.
When in stall it is possible that a translatory motion in certain vibration directions can have
negative aerodynamic damping. If this negative aerodynamic damping is larger than the other
contributions to the damping of the system, such as structural damping, then an instability
will occur. For the flapwise direction the negative slope of the CL - α curve in stall adds
negative damping to the vibration [41]. Dynamic stall will counter this negative damping
making the dynamic stall model an important part of the blade standstill stability. These
flapwise oscillations are generally more damped than those in the edgewise direction [42]. This
is also what Bir and Jonkman [10] found using an aeroelastic code to simulate such instabilities
on the NREL baseline 5 MW wind turbine [18] when parked and free to idle. They found that
when the turbine was parked the first blade edgewise mode (out-of-plane due to the pitch angle
of 90◦) showed negative damping at yaw angles of ±20◦ and ±30◦. This negative damping at
a yaw angle of 30◦ is also found by Wang et al. [43] for all azimuthal angles. These edgewise
instabilities are damped by the dynamic stall models as the vibration of the blade will always
contain a flapwise component.

5.3.1 Cases and Methodology
For DLC 6.2, the yaw angles where the negative damping is found in literature are used (i.e.
±20◦ and ±30◦) for the wind speed 42.5 m/s. 42.5 m/s corresponds to the 50 year extreme
wind speed for the IEC wind class II. Furthermore, three extra cases are looked into to compare
the models in a wider range of situations. First, a lower wind speed case at a very large yaw
error and wind shear is used. This is then followed by two similar cases with different turbulence
seeds and slightly different conditions which will be used to estimate the sensitivity. These
conditions are summarized in Table 5.1 in order of increasing wind speed. Here TI stands for
turbulence intensity and αshear for the wind shear exponent.
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Table 5.1: Conditions for the standstill cases

Case Type Wind Speed [m/s] Yaw [deg] TI [-] αshear [-] ρ [kg/m3]
1 - 12.09 -67.16◦ 0.0644 0.459 1.161
2 - 17.25 -37.12◦ 0.1033 0.085 1.124
3 - 17.92 -36.73◦ 0.0974 0.11 1.122
4 DLC 6.2 42.5 20◦ 0.11 0.11 1.225
5 DLC 6.2 42.5 -20◦ 0.11 0.11 1.225
6 DLC 6.2 42.5 30◦ 0.11 0.11 1.225
7 DLC 6.2 42.5 -30◦ 0.11 0.11 1.225

From these conditions the angle of attack regions that each blade will be in can be determined.
These are shown in Table 5.2 where the angles of attack have been rounded to the nearest
5◦ for confidentiality.

Table 5.2: Mean angles of attack for each blade at 88% span rounded to the nearest 5◦

Case α1 [deg] α2 [deg] α3 [deg]
1 -65◦ 30◦ 65◦

2 20◦ -35◦ 25◦

3 20◦ -35◦ 25◦

4 20◦ -25◦ 0◦

5 -25◦ 0◦ 20◦

6 30◦ -30◦ 0◦

7 -30◦ 0◦ 30◦

Before any analysis is conducted it should be noted that the dynamic stall models are not well
verified for deep stall [44] and so the accuracy of the models will be less than that seen in the
comparison to the measurement data in Chapter 4. Additionally if even a small time lag is
added to the quasi-static deep stall behaviour, then the stability limits increase significantly [45].
This could result in small modelling differences causing large differences in the stability limits.
Furthermore, the case at a 65◦ yaw angle will, in particular, have a large amount of spanwise
flow for at least one blade. Such spanwise flow will affect the aerodynamics greatly. Despite
these issues it is still useful to compare the models in these situations to better understand
their behaviour and design limits.
Another potential issue for the accuracy is the large reduced frequencies seen in these standstill
cases which are often outside the design range of the models. These reduced frequencies for
the instabilities are estimated using the NREL 5MW reference turbine [18] in Table 5.3. Two
frequencies are used: the 1st flapwise and the 1st edgewise blade modes.
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Table 5.3: Example k’s for the 5MW NREL turbine [18] at 88% span

Wind speed [m/s] k for 1st flap k for 1st edge
12.1 0.41 0.66
17.5 0.28 0.46
42.5 0.11 0.19

These reduced frequencies are significantly higher than those used in the 2D comparison in
Chapter 4. These were based on 1P excitations, though, rather than standstill vibrations. The
reduced frequencies of the currently used Vestas turbine are a little lower than those of the
NREL turbine, although still the same order of magnitude. Furthermore, using a single k is
a simplification as, when the blade is oscillating in these modes, the relative velocity will be
varying during each cycle due to the blade motion. The turbulence will additionally cause the
relative velocity to vary within each cycle.

Negative aerodynamic damping does not necessarily result in a negatively damped system as
the structure will always provide some positive damping. This structural damping is used as a
metric to compare the models. The original structural damping of the blades, specifically the
logarithmic decrement in the flapwise and edgewise directions, is multiplied by a percentage
called the Damping factor, abbreviated DF. This DF is varied to test the stability across a
wide range of structural damping levels2. Then by finding the DF where the blades become
unstable for each model, the models can be compared for how much aerodynamic damping they
add to the system. Instabilities are detected using the highest magnitude of the peak-to-peak
root edgewise bending moment, Medge. It is calculates as the maximum value of the bending
moment subtracted by the minimum with the criterion that these extremes occur within of
5 seconds of each other. When Medge is seen to suddenly increase it is an indication of an
instability. At the end of Section 5.3.3 the dominant frequencies in the edgewise root bending
moment are calculated to check that it is in fact the edgewise mode that becomes unstable as
predicted in the literature.

5.3.2 Case 2 Results
Before the full results are given in Section 5.3.3, Case 2 is looked into in more detail starting
with Figure 5.4 which shows Medge plotted against DF. Here Medge is normalized to 1 at the
highest damping factor for the Steady model. The horizontal axis, so the Damping factor, is
set to 100 at the point when Medge = 2 for again the Steady model in case 2. So in Figure
5.4a Medge = 1 at the highest DF of 400 and Medge = 2 at a DF of 100. The normalization
of Medge is repeated separately for each case. This separate normalization per case prevents
a comparison of the loads between the different cases. The main goal here, however, is to
compare the different dynamic stall models to each other over a wide range of conditions. The
normalization of DF is kept constant between the different cases such that the locations of the
instabilities can still be compared.

2It is checked that the structural damping remains within the underdamped region for the damping ratio
to prevent overdamped behaviour
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(c) Risø dynamic stall model
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(e) ONERA dynamic stall model

Figure 5.4: Normalized peak-to-peak root edgewise bending moments for case 2

In these figures the Steady, Øye and Risø models all predict a sudden increase in Medge at a
certain DF indicating that the positive structual damping has become smaller than the negative
damping from the aerodynamics and an instability occurs. Snel’s model remains relatively
constant at an Medge well below 1, so below the steady value at max damping, indicating that
no unstable behaviour occurs even at the lowest Damping factors. The opposite is the case for
the ONERA model which is seen to have Medge values above 1 even for the highest damping
factors. Therefore, this model actually adds negative aerodynamic damping to the system.
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The Øye and Risø models become unstable at lower Damping factors than the Steady case so
these models add positive damping to the system. This is expected based on the research by
Buhl [46] who looked at the damping of a wind turbine blade in HAWC2 after exciting the
blade in edgewise direction, both with and without the Risø dynamic stall model enabled. He
found that the dynamic stall model added damping for all angles of attack after stall where
the dynamic stall model was active.

To get a better insight into how the models are behaving in these standstill cases, the lift
coefficient is plotted against the angle of attack for the full time series at the highest DF in
Figures 5.5 to 5.8. In Figure 5.4 blades 1 and 3 have higher Medge values than blade 2, so the
differences between the hysteresis loops on blades 1 and 3 will be more important. Unlike for
the 2D hysteresis loops in Chapter 4, the angle of attack variations here are partially due to
the turbulent inflow and partially due to the blade motion. Both the CL and α are normalized
to the values of positive and negative stall such that positive stall is at CL = 1 and α = 1
and negative stall at CL = −1 and α = −1. Here positive stall is defined as the peak with
maximum lift for positive α’s and negative stall as minimum lift point for negative α’s.
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Figure 5.5: CL time traces with Øye’s model in Case 2 at the highest Damping factor
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Figure 5.6: CL time traces with the Risø model in Case 2 at the highest Damping factor
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Figure 5.7: CL time traces with the ONERA model in Case 2 at the highest Damping factor

-3 -2 -1 0 1 2 3

 (Normalized)

-1

-0.5

0

0.5

1

C
L
 (

N
or

m
al

iz
ed

)

Blade 1
Blade 2
Blade 3

Figure 5.8: CL time traces with Snel’s model in Case 2 at the highest Damping factor

The Risø and Øye models are seen to perform similarly to each other with the Øye model show-
ing a slightly higher peak CL on both the sides of positive and negative stall. Snel’s model has
more hysteresis behaviour in general and in particular at the higher angles of attacks (roughly
|α| > 2.5) where large deviations from the static curve are seen.
The ONERA model, on the other hand, shows completely unphysical behaviour with huge
figure-8 loops for each of the blades. This, combined with the knowledge that there are large
flapwise oscillations, explains why the model adds negative damping to the system. The reason
for these figure-8 loops is two fold. First of which is that these loop pass through a region
between roughly 20◦ and 40◦ where the lift hysteresis loops go in the wrong direction, counter-
clockwise, as shown in Figure D.7 in Appendix D.1 or even slightly in Figure 4.11. Secondly,
it is due to the choices made in the implementation of the W1 and W ′

0 terms in the aeroelastic
code as already mentioned in Section 5.2 for the DLC 1.4 case and explained in more detail in
Appendix G.

As the metric used is based on the edgewise bending moment, the behaviour of the dynamic
drag coefficient is also important to look at. For the Risø model the normalized drag plots can
be found in Figure 5.9. Here CD is normalized to the range between 0 and 1 and for α the
same normalization is used as for CL. No dynamic drag plot is shown for the ONERA model
as this drag correction was turned off after the poor results from the 2D comparison against
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data.

This shows that the dynamic behaviour of the drag is minimal and the deviations from the
static curve are small. Interestingly for blade 1 the drag coefficient even goes slightly negative.
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Figure 5.9: CD time traces with the Risø model in Case 2 at the highest Damping factor

5.3.3 General Results
For all 7 cases, figures similar to Figure 5.4 are made. The values of Medge for the worst blade
at the minimum and maximum DF’s in each of the cases can be found in Table 5.4.

Table 5.4: Extreme values of Medge for the different dynamic stall models

Medge (Normalized)
Case Steady Øye Risø ONERA Snel

Case 1 at min DF 185.83 4.86 0.77 13.53 1.09
at max DF 1.00 0.79 0.68 9.35 1.01

Case 2 at min DF 17.14 3.92 8.97 4.05 0.19
at max DF 1.00 0.13 0.10 3.36 0.15

Case 3 at min DF 17.31 4.05 9.48 4.32 0.18
at max DF 1.00 0.13 0.11 3.63 0.16

Case 4 at min DF 4.51 0.57 0.63 5.41 0.54
at max DF 1.00 0.45 0.50 3.66 0.49

Case 5 at min DF 3.90 0.55 0.62 4.97 0.73
at max DF 1.00 0.48 0.48 2.70 0.58

Case 6 at min DF 3.74 0.89 0.98 3.79 0.26
at max DF 1.00 0.21 0.21 3.18 0.20

Case 7 at min DF 4.99 1.07 2.36 5.87 0.59
at max DF 1.00 0.40 0.39 3.71 0.55

The Steady model, so without any dynamic stall, always has a value of 1.00 at the highest
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DF which is due to the normalization to this point. At the lowest Medge the DF is always
significantly higher which is due to the occurrence of an instability. The size of this peak Medge

at min DF is seen to decrease for the larger wind speeds. These increased wind speeds will
increase the normal deflections before any instability occurs. Therefore, when an instability
does occur, the blades do not have to increase the size of the oscillations as much to reach
deflections large enough where the non-linearities in the system cause a limit cycle oscillation.
In general the dynamic stall models reduce the edgewise loading at the maximum Damping
factor which is due to the models adding damping. Of course the models can give a peak CL

larger than the static stall peak; however, overall the dynamic effects reduce the magnitude
of the blade vibrations by adding damping. This damping is due to the hysteresis behaviour
extracting energy over each cycle. The stark exception to this load reduction is the ONERA
model indicating that the unstable behaviour in Figure 5.7 occurs regularly.
For every case the Øye and Risø models perform comparably at max DF and reduce the
peak-to-peak root edgewise bending moment with respect to the steady case. This similarity
indicates that the dynamic CD correction in the Risø model has a smaller contribution than
the other dynamic effects which is backed up by the time traces of the drag coefficient in Figure
5.9 showing minor deviations from the static curve.
Snel’s model gives a similar Medge at both the minimum and maximum Damping factor for all
cases which indicates that it contributes a much larger amount of positive aerodynamic damp-
ing to the system than the other models. Even with the lowest level of structural damping,
the blades remain stable. This is unexpected as the hysteresis loops in the 2D comparison
chapter are similar. It is possibly due to Snel’s model having the largest hysteresis loops in
the deep stall cases especially for the larger k’s as seen in Figure 4.11 in the 2D comparison
chapter. This is investigated in more detail in Appendix D.2. This behaviour is furthermore
seen within the aeroelastic code implementation in Figure 5.8 where Snel’s model still shows
dynamic behaviour when well into the fully separated flow region. Therefore, the amount of
damping added by Snel’s model is likely too large and possibly unphysical. However, this can
not be determined conclusively without having measurement data3.
For the two DLC6.2 cases at yaw angles of ±20◦, so Cases 4 and 5, similar behaviour is seen
with the Øye and Risø models not showing any signs of an instability. However, when looking
at the cases with the yaw angles of ±30◦, these two models do start to show unstable behaviour
with the Medge at min DF being significantly larger than that at max DF. Therefore, either
the negative aerodynamic damping from the static curve is larger or the models provide less
damping at these higher angles.

Next the locations of the instabilities are estimated in Table 5.5 by finding DF’s of the inter-
sections with Medge = 1 and Medge = 2 in the Medge vs DF curves.

3Additionally this analysis is not fully comprehensive as it for example does not consider the direction of
vibration which is an essential part of these instabilities [41] and could be influenced by dynamic stall.
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Table 5.5: Damping factors for the crossings where Medge is either equal to 1 or 2

Damping factor (Normalized)
Case Steady Øye Risø ONERA Snel

Case 1 at Medge = 1 400 18 - - -
at Medge = 2 91 7 - - -

Case 2 at Medge = 1 400 38 40 - -
at Medge = 2 100 32 36 - -

Case 3 at Medge = 1 400 41 49 - -
at Medge = 2 111 34 40 - -

Case 4 at Medge = 1 400 - - - -
at Medge = 2 208 - - - -

Case 5 at Medge = 1 400 - - - -
at Medge = 2 183 - - - -

Case 6 at Medge = 1 400 - - - -
at Medge = 2 187 - - - -

Case 7 at Medge = 1 400 8 20 - -
at Medge = 2 209 - 10 - -

For all cases the intersection of the Steady model with Medge = 1 is at a normalized DF of 400
as this point is used to normalize Medge to 1. The Damping factor itself is normalized to the
intersection of case 2 with Medge = 2 for the Steady model which is why the Damping factor
here is exactly 100. For Case 1 the Steady model has the lowest intersection with Medge = 2
at a DF of 91. This is partly due to the lower wind speed which causes the relative magnitude
of the aerodynamic damping to decrease with respect to the structural damping. Therefore,
the system can be kept stable with a lower structural damping level. This is also partly why
the intersections with Medge = 2 for the Cases 4 to 7 occur at DF’s much higher than 100 for
the Steady model. It should be noted that for Case 1 the instability actually occurs at a DF
of around 20 as shown in Figure 5.10 which is significantly lower than than the 91 in Table 5.5
for the intersection with Medge = 2. This is the only case where the Medge = 2 criterion did
not represent the correct area where the instability occurs.

Furthermore, for Case 1, it is seen that Øye’s model shows intersections with Medge in Table 5.5,
while the Risø model does not. This indicates that the Risø model provides more damping here.
However, for all other cases where intersections for the Øye model are seen, this is the other
way around with Øye’s model giving a higher damping. Case 1 is possibly the exception due to
having blades at ±65◦ where Øye’s model simply gives the static curve while the Risø model
still accounts for the delay in angle of attack from the circulatory terms. In the sensitivity
analysis in Section 5.3.4 the effect of changes to the time constants for the Øye and Risø models
show a very small sensitivity to these time constants for this case. This indicates that it is
the two blades in the fully separated flow regime that are the main drivers of the instability
here. Interestingly, this is despite both models showing the blade at 30◦ (Blade 2) to have the
highest Medge as in Figure 5.10 for the Steady model.



66 5 Aeroelasticity

0 50 100 150 200 250 300 350 400
Damping factor (Normalized)

0

2

4

6

8

M
ed

ge
 (

N
or

m
al

iz
ed

)

Blade 1
Blade 2
Blade 3

Figure 5.10: Normalized peak-to-peak root edgewise bending moments for case 1 with the
Steady model

For the Øye or Risø models, in the cases where an instability is seen, this instability always
occurs at a 50% or more reduced DF meaning that the required structural damping level to
keep the system stable is reduced by at least factor 2. Therefore, large amounts of positive
damping are added to the blade by these dynamic stall models.
When comparing Cases 2 and 3 the differences are larger than would be expected from the small
differences in setup. There is an 11% increase in the DF for the intersection with Medge = 2
for the Steady model4 and even a 23% increase for the Risø model at Medge = 1 indicating a
large sensitivity of these results to changes in the wind time series.
When looking at the DLC 6.2 cases, it is seen that Case 4, so at a yaw angle of 20◦, almost
has the highest DF for the intersection with Medge = 2 for the Steady model. Therefore this
is likely the case with the largest magnitude of negative aerodynamic damping from the static
curve. Despite this, no instabilities are seen for the Øye or Risø models which indicates that
this is the case where the damping provided by the Øye and Risø models is the largest.
Case 5 is similarly always kept stable by the dynamic stall models.
Cases 6 and 7, on the other hand, do become unstable at the lower DF’s for the Øye and
Risø models. For Case 6 no intersections are seen in Table 5.5 as the instabilities start slightly
before the lowest DF and have not yet reached Medge = 1. An increase is already seen in the
Medge in Table 5.4 between the min and max DF’s.

To get a better understanding of the instabilities that occur, the Fourier transform of the root
edgewise bending moment is looked at to find the dominant peak for the blade with the worst
Medge. This is then matched to the closest blade mode5. The results are shown in Table 5.6.
The ONERA model was omitted from this analysis due to its poor behaviour.

4It should be noted that Medge = 2 corresponds to a slightly different dimensional value for each of the
cases due to the different normalization. It still is an accurate representation of the location of the instability
though.

5This is a simplification of reality as these blade modes can manifest themselves in different (a)symmetrical
full turbine modes.
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Table 5.6: Dominant blade mode for the highest and lowest Damping Factors in the blade with
the largest Medge

Case Steady Øye Risø Snel

Case 1 at min DF 2nd edge 2nd edge 1st edge 1st flap
at max DF 1st flap 1st flap 1st flap 1st flap

Case 2 at min DF 2nd edge 1st edge 1st edge 1st edge
at max DF 1st flap 1st flap 1st flap 1st flap

Case 3 at min DF 2nd edge 1st edge 1st edge 1st edge
at max DF 1st flap 1st flap 1st flap 1st flap

Case 4 at min DF 1st edge 1st flap 1st edge 1st flap
at max DF 1st flap 1st flap 1st flap 1st flap

Case 5 at min DF 1st edge 1st flap 1st flap 1st flap
at max DF 1st flap 1st flap 1st flap 1st flap

Case 6 at min DF 1st edge 1st edge 1st edge 1st flap
at max DF 1st flap 1st flap 1st flap 1st flap

Case 7 at min DF 1st edge 1st edge 2nd edge 1st flap
at max DF 1st flap 1st flap 1st flap 1st flap

For all cases and models, the 1st flapwise mode is dominant at the highest DF which is expected
for regular oscillations as this is the lowest blade mode. In the cases where an instability is
seen to occur, the dominant frequency increases to an edgewise mode. This confirms that it is
the edgewise modes becoming unstable.
The 2nd edge mode is dominant five times. Interestingly for the times it is seen in the Steady
model there is a phase between the areas of the 1st flap and the 2nd edge mode where the 1st

edge mode is dominant. An example of this is seen in Figure 5.4a where two distinct increases
in Medge occur. In Øye’s model for Case 1 there is a small region where the 1st edge mode is
dominant. For the Risø model in Case 7 the dominant mode jumps directly from the 1st flap
to the 2nd edge. In general the instabilities predicted by the Risø model, such as in Figure
5.4c, become violently unstable. This results in large Medge values at DF’s only slightly lower
than the DF where the instability started.

Interestingly, this transition from 1st flap to 1st edge sometimes occurs at higher DF’s than
the jump in Medge. This would indicate that, even though no instability was detected at the
lowest DF, the Risø model is close to being unstable in Cases 1 and 4, both the Øye and Risø
models for Case 6 and Snel’s model for Cases 2 and 3. To verify this, the relative peak sizes
are compared between the edgewise modes and the 1st flapwise mode using Equation 5.3. Here
S indicates the magnitude of the peak in the frequency domain.

S1stedge + S2ndedge
S1stflap

(5.3)

The DF is then found where this ratio is equal to 2 and shown in Table 5.7.
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Table 5.7: Damping factor where the sum of the peaks for the first two edgewise modes is
double that of the first flapwise mode.

Damping factor (Normalized)
Case Steady Øye Risø Snel
Case 1 25 34 - -
Case 2 94 80 78 -
Case 3 103 112 130 -
Case 4 217 - - -
Case 5 190 - - -
Case 6 186 38 80 -
Case 7 214 36 29 -

For the Steady model this criterion is seen to give similar results to the Medge = 2 intersections
in Table 5.5 so this may be a good method for detecting instabilities. However, for the dynamic
stall models large differences are seen. This new method gives much larger DF’s than as seen
in Table 5.5 which is due the dynamic stall models damping the flapwise motions significantly
more than the edgewise motions. Therefore, the relative size of the two motions are changed.
This is additionally an indication that the direction of vibration could be modified by the
dynamic stall models, which could explain some of the large differences between the models.
Despite the changed relative sizes, Table 5.7 still contains useful information. For the Risø
model in Cases 1 and 4 and for Snel’s model in Cases 2 and 3 the 1st edgewise mode was seen
to be dominant in Table 5.6. In Table 5.7, on the other hand, no data is seen due to the ratio of
peaks in Equation 5.3 remaining below 2. This indicates that an instability is not necessarily
imminent despite the edgewise modes becoming more important at the lowest DF. For Case
6 with the Øye and Risø models, on the other hand, the ratio of peaks are seen to be high
enough to reach the ratio of 2. Here the instabilities have already started at the lowest DF’s
with a sharp increase in Medge being present; however, have not yet reached Medge = 1 and so
are not in Table 5.5.
In general the dynamic stall models are seen to greatly affect the spectra in both peak mag-
nitudes and frequencies. Each dynamic stall model has a different distribution of damping
across the turbine modes and sometimes even causes different turbine modes to be excited.
For example the 1st flapwise blade mode can manifest itself in various different symmetrical
or asymmetrical turbine modes. The different dynamic stall models sometimes have differ-
ent turbine modes that are dominant. This results in a shift in the frequency of the peak
corresponding to the 1st flapwise blade mode.

5.3.4 Sensitivity Analysis
Next a sensitivity analysis is conducted into the results obtained in the standstill cases to
changes in the time constants for the Øye and Risø models. The Øye and Risø models are the
only models analysed here as these are the only dynamic stall models that showed an instability
start in the range of Damping factors used. Furthermore, only the time constants are varied
as the other parameters are related to the attached flow behaviour. These time constants are
effective in their inverse as seen in Appendix C so the inverse of the time constants will be
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varied by 10% for each of the models. This inverse of the time constant can roughly be seen
as the spring stiffness of the ODE’s.
The investigation for Øye’s model can be found in Section 5.3.4.1 and for the Risø model in
Section 5.3.4.2.

5.3.4.1 Øye’s model
For Øye’s model an increase and decrease of 1/τ by 10% gives the new τ values of 8.89 and
7.27 based on the default value of 8.0. Figure 5.11 shows the effect of these different time
constants on one of the hysteresis loops from the 2D comparison chapter (Chapter 4).

5 10 15 20 25

 [deg]

0.8

1

1.2

1.4

1.6

C
L
 [-

]

Figure 5.11: Comparison for Øye’s model with different τ ’s on the NACA4415 airfoil where
k = 0.039, αm = 14◦ and αa = 10◦

It is seen that, as expected, an increase in the time constant increases the time lag and so
causes the hysteresis loop to increase in size.

The sensitivity of the location of the instabilities (Table 5.5) to these changes in τ are shown
in Table 5.8.

Table 5.8: Change in Damping factor of the intersection with Medge = 1 for different time
constants in Øye’s model

τ = 7.27 τ = 8.89

Case 1 -0.5% 0.6%
Case 2 3.6% -5.6%
Case 3 10.0% -4.1%
Case 7 187.7% -

The changes in τ are seen to have little effect in Case 1, which is due this case having two
blades operating fully outside and the last oscillating near the edge of the α range where the
Øye model causes any dynamic behaviour. This low sensitivity implies that it is the two blades
in the fully separated flow region that are most important for the instability and not the blade
with an angle of attack around 30◦.
For the other cases the decreased value of τ makes the system less stable as larger structural
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damping levels are required to prevent the instabilities. This is as expected as the smaller
hysteresis loops should reduce the positive damping contribution from the dynamic stall model.
Again large differences are seen between Case 2 and 3 indicating that these sensitivities are
themselves sensitive to small variations in the wind. Therefore, it may be more rigorous to
repeat each case for several wind seeds and use the averages.
Case 7 shows a large sensitivity where the DF at Medge = 1 almost triples from 8 to 24 when
going from τ = 8 to τ = 7.27. For τ = 8.89 the instability disappears meaning the DF where
it occurs has dropped below of the range of the DF’s looked into. The opposite happens for
Case 6 where for τ = 7.27 the edgewise instability now initiates at DF=15 while for τ = 8 no
instability is seen.

5.3.4.2 Risø model
The Risø model has two time constants which are both varied in similar fashion to that of the
Øye model. This gives the values of 1.36 and 1.67 for τp and 5.45 and 6.67 for τf . The outcome
of varying these parameters is shown Figure 5.12.
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Figure 5.12: Comparison for the Risø model with different τ ’s on the NACA4415 airfoil where
k = 0.039, αm = 14◦ and αa = 10◦

As expected a higher time constant increases the unsteady behaviour and makes the loops
larger. The effect of the change in τf is seen to have a significantly larger effect on the thick-
ness of the loop than τp. As these deviations are small, a comparison with larger time constants
is made in Figure 5.13 to better see the different effects of each time constant.

This shows that, while τp and τf both increase the hysteresis effect and move the lift peak to
higher angles of attack, they affect the loop differently. When τp is changed, the hysteresis loop
maintains the same general shape and the lift values at the minimum and maximum α’s are
the same. τf does change the CL at the edges and, furthermore, makes the loop more circular.
The reason for this is that τp can be seen as a time delay while τf is more a time decay. More
specifically, the ODE with τp results in f st being shifted to the value of fst at a slightly earlier
time. Hereafter, the ODE for τf causes fdyn to decay to this lagged f st value. The effect of
τp can be visualized using Figure 2.2 where on the outgoing loop it shifts the f st curve to the
right while on the return loop it shifts it left.
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Figure 5.13: Comparison for the Risø model with large τ ’s on the NACA4415 airfoil where
k = 0.039, αm = 14◦ and αa = 10◦

The sensitivity of the location of the instability to the changes in the time constants is shown
in Table 5.9.

Table 5.9: Change in Damping factor of the intersection with Medge = 1 for different time
constant combinations in the Risø model

τp = 1.36
τf = 5.45

τp = 1.36
τf = 6.0

τp = 1.5
τf = 5.45

τp = 1.67
τf = 6.67

τp = 1.67
τf = 6.0

τp = 1.5
τf = 6.67

Case 2 15.3% 8.3% 10.6% -5.2% -2.1% -2.6%
Case 3 5.2% 2.5% 2.2% -5.0% -3.3% -2.2%
Case 7 6.1% 4.0% 2.0% -7.5% -4.1% -3.9%

Here, similarly to the results from the Øye model in Table 5.8, an increased time lag increases
the margin to the instability by decreasing the DF where the instability occurs.
In general, the effect of the change in τp is roughly similar to that of τf which is surprising
based on Figures 5.12 and 5.13 where it was seen that the change in τf affects the hysteresis
loop more.
Again a large variability is seen between Case 2 and 3. The Risø model is different from the
Øye model, though, as for the Risø model Case 2 is more sensitive to a decrease in the time
constants, while for Øye’s model it is Case 3 that is more sensitive.
For Case 6 no instability is seen with the standard time constants. However, when the τ ’s are
decreased, instabilities are seen at DF=6 when both τp = 1.36 and τf = 5.45. Furthermore,
when only τp is decreased, the intersection with Medge = 1 is at DF=4. When only τf is de-
creased, this is DF=5. This indicates that the Risø model is indeed on the verge of instability
at the minimum DF when using the default coefficients.

Overall this sensitivity analysis shows a large importance of the time constants for these stand-
still stability cases indicating that they should be estimated as accurately as possible. For the
default values it is unknown how well the tuning has been done and to what data, so it is
recommended to do a new tuning of these time constants which is done in Chapter 6.
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5.4 Flutter speed

Next the effect of the dynamic stall models on classical flutter is investigated. As classical
flutter is an attached flow phenomenon where the torsional and flapwise modes interact, it is
not expected that the Øye and Snel models will have a significant effect. However, both the
Risø and ONERA models include attached flow physics. Adding Theodorsen’s equations, and
in particular the circulatory effects, should increase the flutter speed based on the literature
[20] [44] [47].
The flutter limit is found by letting the turbine initialize normally to a uniform wind speed of 5
m/s. Then the controller and generator are switched off and a wind ramp is used to accelerate
the rotor until flutter occurs. All disturbances such as turbulence, wind shear, tilt and tower
shadow all are turned off to get a uniform inflow. Furthermore the gravity is set to 0 m/s2 and
the tower made to be stiff. Flutter is defined to be found when the peak-to-peak tip torsional
deflection exceeds 0.25◦ within two periods of the torsional eigenfrequency. The flutter speed
is then found by taking the average of the relative wind speed within this two period time
frame at 88% along the blade which exceeds this 0.25◦ criteria. The wind ramp is chosen such
that the angle of attack remains roughly constant. In order to increase the accuracy the results
from three slightly different wind ramps are averaged.

The results can be found in Table 5.10. Here the flutter speeds themselves are not shown, but
rather the differences with respect to the Steady model for confidentiality.

Table 5.10: Change in flutter speed for each model with respect to the case with no dynamic
stall model

Unit Øye Risø ONERA Snel
∆U [m/s] -0.6 10.9 -1.6 -0.4

It is seen that the Øye and Snel models do both slightly decrease the flutter speed despite not
having any attached flow behaviour. This is likely due to some of the lift curves not being
perfectly linear in the attached flow region so these models still cause a little hysteresis.
The Risø model increases the flutter limit by over 10 m/s which is expected. The ONERA
model, however, causes a decrease of 1.6 m/s. This is surprising as the difficulties of obtaining
α̇ are no issue here as the wind field does not rotate or contain turbulence. Therefore both
models should show the attached flow behaviour as in the Verification chapter (Chapter 3),
albeit with the heaving contributions to α̇ neglected. This is not expected to have a significant
effect based on Theodorsen’s theory as Lobitz [47] found a low sensitivity to the α̇, α̈ and
ḧ terms. However, the ONERA model is not completely rigorous in the implementation of
Theodorsen’s theory. Therefore, this effect of neglecting the contribution to α̇ from the heaving
motion (the ḧ term in the theory) is briefly looked into by comparing the original heaving plot
in Figure 3.2a (repeated in Figure 5.14a) to one where α̇ = 0 in Figure 5.14b.
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Figure 5.14: Comparison between Theodorsen’s function, the Risø and ONERA dynamic stall
models where k = 0.051 and ¯̃h = 0.684 with and without the contribution from α̇

For the Risø model the loop becomes slightly thicker than the curve from Theodorsen’s theory
due to the loss of the added-mass term. For the ONERA model, on the other hand, large
changes are seen and the loop is significantly thicker. This is due to the ONERA also using α̇ in
the forcing component of the circulatory term. Therefore, neglecting ḧ also affects Theodorsen’s
function, C(k). The flutter speed does have a large sensitivity to C(k) [47] due to shifting the
phase between the lift and moment forces.
Another difference between the models is that for the pitching motion CL hysteresis loop the
ONERA model is slightly underrotated with respect to Theodorsen and the Risø model which
again will result in a slightly modified C(k) and a different phase. These phase differences can
change the flutter limit in either direction, so could be the cause of this unexpected behaviour.
The drag coefficient is additionally different between the Risø and ONERA models. Although,
the edgewise vibrations are smaller than those in the flapwise direction before the flutter limit.
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CHAPTER 6
Tuning

In this chapter it is attempted to tune the Øye and Risø models to various cases in the
measurement set used in the 2D comparison in Chapter 4 by changing the time constants of
the dynamic stall behaviour and, for Øye’s model only, the fully separated lift polar Csep

L . First
the method and cases used to tune the models is detailed in Section 6.1. This is then followed
by the results in Section 6.2 and a discussion in Section 6.3.

6.1 Method
As mentioned the models are tuned the data in Chapter 4. The chosen cases and their weights
are listed in Table 6.1 in order of appearance in Chapter 4. There are two cases with a weight
of zero indicating that these cases do not contribute to the tuning. They will be used as an
independent check for the tuning results and are additionally used in the individual tuning.
The individual tuning is where the models are tuned to each case individually to determine
how much the optimum parameters vary over the cases.
The weights and used cases are selected with a focus on the light and moderate stall regions
where no clear leading edge stall behaviour is present. Furthermore one deep stall case and one
ramp case are included. As the ramp case does not decay back to the steady values at the end
and it is not certain if this is physical or a measurement error, only the first 70 non-dimensional
time units are considered for the tuning.
For two cases the drag and moment coefficients are included in the tuning for the Risø model.
These coefficients are given a weight of 0.1 with respect to the weight of the lift coefficient.

Table 6.1: Used cases for the tuning together with their weights

Case
Number

Figure
Number Airfoil k αm αa Weight Use CD

and CM

1 Fig. 4.3 NACA0015 0.051 10◦ 6◦ 0 no
2 Fig. 4.4 NACA0030 0.051 10◦ 6◦ 0.15 no
3 Fig. 4.5 NACA4415 0.037 8◦ 5◦ 1 no
4 Fig. 4.6 NACA0015 0.051 10◦ 10◦ 0 no
5 Fig. 4.7 NACA0030 0.051 10◦ 10◦ 0.1 no
6 Fig. 4.8 NACA4415 0.056 8◦ 10◦ 0.5 yes
7 Fig. 4.9 NACA4415 0.019 8◦ 10◦ 1 no
8 Fig. 4.11 NACA4415 0.039 14◦ 10◦ 1 yes
9 Fig. 4.16b NACA0030 Ramp 0.1 no

For each of the cases with a non-zero weight the optimization function runs the model to gen-
erate the hysteresis loops and then the l1-norm is taken of the difference between the model
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and the data. This norm is calculated as l1-norm = 1
N

∑N
k=1 |vk| where vk is the vector with

the differences between the model prediction and the data. N is the length of this vector. It is
chosen to use the l1-norm instead of the l2-norm (as used in Chapter 4) to try to improve the
full hysteresis loop rather than focusing on the areas where the error is the largest, because
often an improvement in one area will reduce the accuracy in another.
The optimizer used is the lsqnonlin function in Matlab for the overall tuning where again
the l1-norm is used rather than the l2-norm which is achieved by taking the square root of
the residual vector in the tuning function. For the individual tuning of each case it is not
possible to use lsqnonlin as the residual will then be a scalar. Therefore, the system will be
underdetermined if trying to solve for more than one variable, so the fmincon function is used
for the individual tuning.

The Øye model is tuned two separate times, first with only the time constant τ as a variable
and then with the fully separated lift curve, Csep

L , additionally tunable. Csep
L is made tunable

through changing the slopes of the Hermite Interpolation polynomial at α0 and αsep. By default
these slopes are 1

2
dCst

L
dα

∣∣∣
α0

at α0 and 1
12

dCst
L

dα

∣∣∣
α0

at αsep [8]. To make these slopes variable the
fraction in front of the linear lift slope is renamed to aα0 and aαsep for the derivative at α0 and
αsep respectively such that by default aα0 = 1

2 and aαsep = 1
12 .

The optimization is constrained to prevent unphysical solutions. All time constants are allowed
to range between 0.1 and 50 while for Csep

L the limits are 1
4 ≤ aα0 ≤ 3

4 and −1
4 ≤ aαsep ≤ 1

4 .
As an extra investigation the Risø model is also tuned a second time with the extra constraint
that τp ≤ 3 to maintain consistency with the default parameters where τf > τp as it is found
that without this tighter constraint τp will become relatively large.

6.2 Results

In general the tuning results in an increase in the time constants as shown in Table 6.2. This
is expected as the models generally showed less hysteresis than the data in Chapter 4.
Interestingly the tuned τ value of 10.03 in the Øye model is almost identical to the default τ
of 10 for the Øye model in HAWC2 [19]. HAWC2 does, however, use a different method of
estimating the Csep

L polar. The large difference between the tuned τ ’s between the cases where
Csep

L is and is not included in the tuning indicates that this Csep
L is important to consider in

the tuning and care should be taken if using these τ ’s with different Csep
L curves.

Interestingly, in the Risø model the tuning results in a much larger τp while τf actually de-
creases. The effect of each of these time constants is shown in Figure 5.13 in Section 5.3.4.2
and indicates that the tuned hysteresis loops will have a more triangular shape with a sharper
drop at stall. This is possibly due to the possible presence of mixed trailing and leading edge
stall in some of the cases which will result in a sharper drop after the peak lift coefficient
than if the stall were purely trailing edge stall. No cases with dominant leading edge vortex
behaviour are used in the tuning.
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Table 6.2: Overall tuning results

Øye (τ only) Øye (τ and Csep
L ) Risø Risø (τp ≤ 3)

τ τ aα0 aαsep τp τf τp τf

Default 8.00 8.00 0.500 0.083 1.50 6.00 1.50 6.00
Tuned 10.03 11.51 0.733 0.021 7.45 3.98 3.00 7.92

6.2.1 Øye
For the Øye model the residuals for each case at the start of the tuning (the default parameters)
are compared to the residuals at the end (the tuned parameters) in Figure 6.1. The overall
value to be minimized is the l1-norm of these residuals.
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Figure 6.1: Residual magnitude for each case together with the average after tuning the Øye
model for τ only and for both τ and Csep

L

Overall the improvements to the residuals are small with no large changes anywhere. There is
a general improvement when tuned using both τ and Csep

L over when only tuned with τ . This
is expected as the optimizer now has more freedom to find a better optimum.
The independent Cases 1 and 4 additionally show an improved l1-norm fit to the data when
the tuned values are used, despite not being used in the tuning. For Case 1 the improvement
is 0.009 and 0.014 when tuning to τ only and to both τ and Csep

L respectively. This decrease
in residual is 0.007 and 0.005 for Case 4.
When only tuned to τ , Case 8 actually shows an increased residual. To see what is occurring
here the hysteresis loops resulting from the tuning are shown in Figure 6.2 and 6.3 for the tuning
to only τ and to both τ and Csep

L respectively. Here the overall tuning results are shown in
addition to optimum hysteresis loop if the case was tuned individually. Extra attention should
be paid to the phase plots as these are what the optimizer uses. The optimum parameters
from the individual tuning are shown after the figures in Table 6.3.
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Figure 6.2: Comparison of the overall and individual tuning results for the Øye model for Case
8 when tuning only τ
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Figure 6.3: Comparison of the overall and individual tuning results for the Øye model for Case
8 when tuning both τ and Csep

L

In the case that only the time constant is increased, then the detachment part of the hysteresis
loop is raised; however, the reattachment part of the loop has a lower CL. When looking at
the phase plot in Figure 6.2b it is seen that the improvement from the overall tuning is only
for some parts of the detachment (roughly in the ranges 1.5 < Ωt < 2 and 3 < Ωt < 4) while
the full reattachment has a decreased accuracy.
When tuned for both τ and Csep

L the combination of the larger aα0 together with the lower aαsep

will raise Csep
L along it’s full length. This will also result in the whole hysteresis loop begin

shifted up which allows for a larger time constant to be used without sacrificing in accuracy
on the reattachment. This additionally explains why τ is larger when tuned for both τ and
Csep

L rather than only τ .
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To learn more about how each case differs and how each case affects the overall tuning, the
optimum parameters for each case are calculated individually and shown in Table 6.3.

Table 6.3: Results from the individually tuning of each case for the Øye model

Øye (τ only) Øye (τ and Csep
L )

τ τ aα0 aαsep

Default 8.00 8.00 0.500 0.083
Tuned 10.03 11.51 0.733 0.021
Case 1 31.61 32.32 0.746 0.240
Case 2 17.96 17.62 0.258 0.249
Case 3 13.33 14.37 0.750 -0.248
Case 4 12.24 11.82 0.254 0.242
Case 5 15.96 15.27 0.250 0.249
Case 6 11.02 10.56 0.260 0.234
Case 7 9.93 12.96 0.749 -0.248
Case 8 8.62 10.08 0.675 0.033
Case 9 14.05 13.14 0.254 0.245

All cases have optima with a τ larger than the default value, indicating that this value may be
conservative. Case 1 is an outlier when compared to the rest with an optimum τ of over 30.
Therefore this may be a faulty measurement.
When additionally tuning for Csep

L it is seen that the optimizer often pushes the slope ratios
close to the constraints. This does not necessarily have a large effect as shown for Case 7 in
Figure 6.4 when comparing the overall tuned loop to that of the individually tuned loop.
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Figure 6.4: Comparison of the overall and individual tuning results for the Øye model for Case
7 when tuning both τ and Csep

L

The negative aαsep in the Ind. Tuned curve only results in the hysteresis loop being slightly
moved up at the higher angles of attack.
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When comparing the overall tuned loop to that of Case 8 in Figure 6.3, it is seen that again
the thickness of the hysteresis loop is increased, the part of the loop going into stall has
an improved fit and the return part has a decreased accuracy. Overall the magnitude of the
residual is decreased as the improvement on the outgoing part is larger than the loss in accuracy
on the return part.

6.2.2 Risø

The residuals for the Risø case are shown in Figure 6.5 where the original tuning results are
shown together with the results with the added constraint of τp ≤ 3.
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Figure 6.5: Residuals distribution over each case together with the average after tuning the
Risø model

This shows that the tuning has almost no effect on the drag and moment coefficients. For the
lift coefficients the optimizer has more success in minimizing the residual when it is less con-
strained, although the difference is small with the exception of Case 6. This case additionally
has the largest improvement from the tuning. To understand why the CL vs α plots for this
case are shown in Figure 6.6.

Here the tuned loop shows a significantly higher peak lift coefficient and has an better reat-
tachment. These improved properties are also present when the extra constraint of τp ≤ 3 is
added; however, are less pronounced.
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Figure 6.6: Comparison of tuning results for the Risø model for Case 6

Cases 1 and 4 are again used as independent test cases. For the Risø model Case 1 shows a
decrease in residual of 0.028 and 0.022 for the normal tuning and for when τp ≤ 3 respectively.
For Case 4 this is 0.034 and 0.020 respectively.

As in the tuning for Øye’s model, the effect of the tuning on Case 8 is shown in Figure 6.7
for the Risø model with the normal constraints and in Figure 6.8 with the extra constraint on τp.

This shows the differences between the two tuning results. Without the τp ≤ 3 constraint the
peak lift and following drop in lift is captured better, although accuracy is sacrificed on the
reattachment. The individually tuned curves are identical in Figures 6.7 and 6.8, because the
optimum already has τp ≤ 3 in this case as shown in Table 6.4.
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Figure 6.7: Comparison of tuning results for the Risø model for Case 8
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Figure 6.8: Comparison of tuning results for the Risø model for Case 8 with τp ≤ 3

The results from the individual tuning of the Risø model are listed in Table 6.4.

Table 6.4: Results from the individually tuning of each case for the Risø model

Risø Risø (τp ≤ 3)
τp τf τp τf

Default 1.50 6.00 1.50 6.00
Tuned 7.45 3.98 3.00 7.92
Case 1 2.06 23.61 2.06 23.61
Case 2 4.85 10.90 3.00 14.77
Case 3 12.97 0.12 2.91 10.37
Case 4 8.72 4.01 3.00 9.95
Case 5 8.76 5.85 3.00 12.34
Case 6 6.99 4.56 3.00 8.95
Case 7 11.08 0.17 0.30 9.95
Case 8 2.52 6.53 2.52 6.53
Case 9 11.89 3.14 3.00 10.92

Again large differences in optimum time constants are seen between the cases. The large swings
sometimes seen between τf and τp don’t always result in significant changes in the loop. For
example Case 7 gives a τf that is almost 0 and a relatively large τp although the resulting
change in dynamic stall behaviour with respect to the overall tuned results is minimal, as
shown in Figure 6.9a.

The main differences are that the drop in lift just before α = 15◦ is sharper and there is a
bump in the reattachment near α = 10◦. This sharpness is due to τp being negligible while
this is the time constant that gives the smoothing. τf only delays the angle of attack that the
underlying fst is called at and therefore will result in the point of stall being shifted to larger
α’s and reattachment to lower α’s.
In Figure 6.9b the tuning results for Case 7 are shown with the constraint in τp. Now it is τp
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that is almost 0 and τf that is large for the individual tuning, which results in a very smooth
lift peak and stall behaviour.
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Figure 6.9: Comparison of tuning results for the Risø model for Case 7

6.3 Discussion
This tuning is by no means perfect and there are many areas which could be improved. First
off the data set used is relatively small. Both the OSU and Glasgow University measurement
series contain far more measurements than used here which could be used to improve the
tuning. Furthermore, the tuning is done at a single Reynolds number which could potentially
reduce the accuracy if these tuned time constants are used at different Reynolds numbers.
On top of this, the weights do heavily favour the NACA4415 airfoil with the NACA0015 not
contributing to the tuning at all. The use of more airfoils would make the results more valid
over a larger range of the blade length.

One important thing to note about the data is that the angle of attack input to the data differs
slightly from that to the models as shown in Figure 3.6 in Section 3.3. While the models see
a perfect sin wave, in the measurement the true angle of attack is slightly noisy and is slightly
flattened at the peak angle of attacks. This means that while at the same phase angle both
the model and the data may see different angles of attack. Furthermore there may be a slight
constant phase shift over the whole loop as the sin wave used for the models is fit to the data
angles of attack through least squares fitting to optimally match the phases. This is not the
case for the ramp function as here the angle of attack as measured in the experiment is used.
Another issue with the measurement data is that for Case 3 the data is potentially shifted
slightly upwards which will affect the l1-norm while Case 3 contributes heavily to the tuning
as it is one of the most relevant cases to normal turbine operation.

The large differences in the results of the individual tuning for each case could be due to there
being a large uncertainty in the measurement data. Another explanation is that the models
do not capture enough of the physics of dynamic stall to properly account for the differences
between the cases.
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Furthermore, it should be tested if different starting points to the optimization give the same
results. In particular for the tuning of the Risø model this is a potential issue as τf and τp

both affect the loop in roughly similar ways. Therefore, depending on the Jacobians in the
first iterations, the optimizer may end at a local minimum with for example τf < τp, while the
global minimum may be for τf > τp. That τf and τp are almost interchangable can cause large
shifts in magnitude between the time constants for marginal accuracy improvements.

Finally, the extra freedom given to the optimizer by allowing for Csep
L to be modified in Øye’s

model could potentially also improve the fit of the Risø model. This is because the Risø model
is similar to Øye’s model in that the hysteresis loop of the data is often shifted up with respect
to that predicted by the models. Therefore, a higher Csep

L curve could reduce the overall
residual further.



CHAPTER 7
Conclusion

In this chapter Section 7.1 summarizes the main results and answers to the research questions.
Section 7.2 then presents some recommendations for future work.

7.1 Conclusion
Dynamic stall is seen to be a complex phenomenon that is difficult to model accurately and
robustly over a wide range of conditions. None of the models showed a perfect match to the
data; however, all models greatly improved the fit with the data with respect to the steady lift
curve.
Of the four models implemented, the Øye, Risø, Snel and ONERA models, only the Risø and
ONERA models simulate the unsteady behaviour in attached flow and the dynamic drag and
moment coefficients. Both models showed good agreement with Theodorsen’s theory with the
Risø model performing better for the lift coefficient.
The 2D comparisons showed that the models all have different strengths and weaknesses. Øye’s
model is, in general, strongest for the thickest airfoil, the NACA0030. The Risø model has
similar behaviour to the Øye model, with the difference that the lift peak is slightly improved
due to the figure-8 behaviour from the attached flow physics. The ONERA model captures
the lift peak the best, although predicts a too large drop in lift after this peak. This results in
it usually having the largest least squares error with the data. When compared respect to the
other models, Snel’s model has a slightly larger lift hysteresis parameter, quicker reattachment
and a stronger scaling of the thickness of the loop into deep stall. In most cases the larger lift
hysteresis parameter improves the fit with the data; however, the reattachment is often too
quick and the scaling causes the model to show unphysical behaviour outside the design range
of the model.
For the drag and moment coefficients the Risø model performs best in the attached flow and
light stall conditions. The ONERA model shows hysteresis loops for the dynamic drag that
even decrease the accuracy over the steady coefficients. Further into stall though, the ONERA
model is often superior. Both models do struggle to reliably predict the shape of the moment
coefficient hysteresis loop in stall.

In the extreme load case of IEC DLC 1.4 (Coherent wind gust with direction change), the
Øye, Risø and Snel models are seen to perform similarly, with Snel’s model giving the largest
peak lift. The ONERA model, on the other hand, shows a small lift overshoot and unusual
hysteresis behaviour. This is due to the combination of the large model dependence on the
time derivative of the angle of attack and the method of approximating the turbulence free
value of this derivative in the aeroelastic code.
In the standstill instability cases, Snel’s model provides the largest amount of positive damping
to the system. No instabilities are seen in any of the cases even when the blades structural
damping is set to lowest level. This is a completely different behaviour than that seen in the
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Øye and Risø models, despite these models showing similar behaviour in the 2D comparison.
Therefore, this large damping from Snel’s model is possibly not physical. The Øye and Risø
models still provide a large amount of aerodynamic damping as the structural damping can
always be reduced by at least a factor of 2 with respect to the case without any dynamic
stall model before any unstable activity starts to occur. Of these two models, the Øye model
generally provides the largest amount of damping. Finally, the ONERA model actually adds
negative damping, which is seen as unphysical.
When evaluating classical flutter, the Øye and Snel models show a limited effect due to not
modeling attached flow. The Risø model shows the expected behaviour from the implementa-
tion of Theodorsen’s theory, namely an increase in the flutter speed, while the ONERA model
decreases the flutter limit.
Overall the Risø model is seen as the best for use in an aeroelastic code, despite not always
being the best in the 2D lift coefficient comparisons. It is seen to be robust, accurate in
attached flow and provides the dynamic drag and moment coefficients. The Øye model is also
seen to be robust and, in general, it shows similar dynamic stall behaviour to the Risø model,
although it lacks the attached flow physics. Snel’s model performed well in the 2D comparison,
but showed unexpected behaviour in the instability comparison which is likely to be unphysical.
The ONERA model broke down in the aeroelastic code due to relying too heavily on the time
derivative of the angle of attack.

7.2 Recommendations
The flaws seen in the Snel and ONERA models could potentially be solved with some modifi-
cations to the models. For Snel’s model it is predicted that this behaviour is due to the poor
scaling of the model into deep stall with large reduced frequencies. This is a flaw that could be
remedied with small updates to the model. For example, in this thesis a limit was introduced
for the α̇ in the spring stiffness and a similar limit could be applied to ˙∆Cpot

L to prevent the
forcing term becoming excessive.
The ONERA model broke down in the aeroelastic code mostly due to the simplifications made
in the implementation of the α̇ terms in the code. However, even if the implementation was
perfect, the ONERA model still would have showed the incorrect counter-clockwise reverse
CL loops in the range 20◦ to 40◦ as in Figure D.7 which are harder to solve. Phasing the
attached flow physics out (i.e. reducing the deviation of CL,1 from Cpot

L ) in stall helps; however,
this changes the shape of the normal hysteresis loops (Such as those in Chapter 4) which is
not desirable. Unfortunately, any fix to this behaviour of the ONERA model will affect these
hysteresis loops and will require a retuning of the model parameters.

Even without making any changes, improvements can likely be made to all models by choosing
parameters more suited to wind turbine airfoils. Here the ‘average’ or flat plate values are used
while wind turbine airfoils are relatively thick and specialized. In the Risø model, this gives
the strange situation where flat plate values are used for the attached flow physics, while for
dynamic stall the leading edge vortex has been neglected based on the assumption of a thick
airfoil.

For further analysis it is recommended to look into the Beddoes-Leishman model as here the
Risø model showed the most promise. Without the assumptions of incompressible flow and
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no leading edge stall the Beddoes-Leishman model may perform better than the Risø model.
Although it should be thoroughly checked to see if the robustness of the model is affected with
the increased complexity and three more empirical parameters than the Risø model.
In addition to the incompressibility and leading edge stall assumptions, more improvements
could potentially be made to the dynamic stall models. For example, the effects of the Reynolds
number and the Coriolis or centrifugal forces on the boundary layer development could be
considered. However, in particular in the standstill cases, the 2D assumption in the models
will likely be the largest contributor to the error with the following being important:

• The effect of spanwise flow due to for example sweep, yaw error or even coning and rotor
tilt could be analysed. Having a large spanwise flow across the blade will greatly affect
both static and dynamic stall.

• The 3D nature of stall itself could cause the assumption of radial independence to be
violated. If, for example, two annuli are close together and are in different phases in the
hysteresis loop due to seeing different angle of attack inputs. Then stall will occur at
different times and these neighbouring sections could influence each other on the timing
of separation or reattachment.

• The tip vortex can have an impact on the dynamic stall loops through changing the local
velocity and pressure distributions. Although this effect is only pronounced near the tip.

More broadly the analysis in the aeroelastic code could be built on by considering the following:

• The direction of vibration is an important part of the negative aerodynamic damping from
the static curve at certain angles of attack and is not looked into in this thesis. It could
possibly be affected by the dynamic stall models because they change the magnitude and
phase of the forces.

• A comparison with field tests for full turbines could be made for the standstill cases
to see if there are any specific conditions where the turbine shows an instability. Then
this could be compared to the results from the aeroelastic code and the damping factors
compared where the data is matched the best for each model.

• The aerodynamic damping could be estimated directly instead of indirectly through
varying the structural damping. For example, by setting the structural damping to zero,
exciting the blade and looking at the immediate logarithmic decrement after release.

• Wind tunnel tests (or computational fluid dynamics simulations) with stochastic α and
velocity inputs could be made to further test the models. Perhaps the airfoil could be
mounted with a 1D translatory freedom to determine the conditions when the aerody-
namic damping becomes negative. This will additionally help determine if the behaviour
of Snel’s model gives unphysical results as suspected from the standstill cases.

• As the approximation of the first time derivative of the angle of attack is causing issues
for the ONERA model and reducing the accuracy of the attached flow physics in the
Risø model in the aeroelastic code, perhaps a better method could be used to still ac-
count for changes in the wind direction in the pitching velocity without feeding the noise
from turbulence being fed to the dynamic stall models. One possibility is to filter the
turbulence out using temporal and/or spacial smoothing. Although this may introduce
a time delay into this pitching velocity which is undesirable.
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APPENDIX A
Hermite Interpolation

For the fully separated CL curve in the Øye model Hermite Interpolation is used to generate
a polynomial between starting and ending point where not only the values, but also the first
derivatives are known. The general formulation for this interpolation between [x0, y0] and
[x1, y1] where the derivatives are noted as dy

dx

∣∣∣
0

and dy
dx

∣∣∣
1

respectively is in Equation A.1 .
Furthermore for simplicity y0 has already been set to zero as it will be Cst

L

∣∣
α0

. For ease of
notation two new variables are introduced:

t0 = x − x0
x1 − x0

and t1 = x − x1
x1 − x0

(A.1)

y(x) = dy

dx
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0

(x1 − x0)(t0 + (t1 − 1)t2
0) + dy

dx

∣∣∣∣
1

(x1 − x0)t2
0t1 + y1t2

0(1 − 2t1) (A.2)

Now using x0 = α0, dy
dx

∣∣∣
0

= 1
2

dCst
L

dα

∣∣∣
α0

, x1 = αsep, y1 = Cst
L (αsep) and dy

dx

∣∣∣
1

= 1
12

dCst
L

dα
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α0

gives

t0 = α − α0
αsep − α0

and t1 = α − αsep

αsep − α0
(A.3)

Csep
L (α) = t0

[
(αsep − α0)1

2
dCst

L

dα

∣∣∣∣∣
α0

(
1 + t0

(7
6

t1 − 1
))

+ Cst
L (αsep)t0 (1 − 2t1)

]
(A.4)

This function will only be used between α0 and αsep as above this region the steady lift curve
is used for Csep

L .
An example of the resulting curve is shown in Figure 2.2 in Section 2.2.
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APPENDIX B
Flowcharts

B.1 Øye

The first flowchart is that of the Øye model in Figure B.1. In all the flowcharts the time
independent variables such as chord length, α0 or αsep have been left out as they only need to
be initialized once at the start of the time series.
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Figure B.1: Øye model flowchart

This shows this is indeed a simple model with few building blocks. This will result in fast
computational times. This may, however, come at a sacrifice in accuracy.

B.2 Risø

This model is the most complex as is immediately obvious from Figure B.2.
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Figure B.2: Flowchart for the Risø model

The model has a cascading flow from the top left to the bottom right where each ODE is
dependent on those before it resulting in a complex system with a chain of dependencies. The
effective angle of attack is marked in blue to highlight that it is a key parameter that lies at
the core of the model. The output of the last ODE, fdyn is marked in green to show that it is
used in all three force coefficients.

B.3 Snel

This dynamic stall model seems to be simple based on the flow chart in Figure B.3; however,
the intricacies of this model are not in the equations, but rather in the coefficients used.
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Figure B.3: Flowchart for Snel’s model

B.4 ONERA

Finally the flowchart for the ONERA method is shown in Figure B.4.

From the flowchart it can be seen that there are not many equations in total, although each
equation has many inputs. The ∆Cpot

L , indicated in blue, is used in almost very equation as
it is used to indicate how far the airfoil is into stall. The ODE’s for the different force and
moment coefficients are not interlinked which makes any possible tuning easier as it is possible
to tune each coefficient individually.
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APPENDIX C
Discretization

To solve the Ordinary Differential Equations, ODE’s, used by all the dynamic stall models it
is assumed that the non-state-variable terms are piecewise constant. This allows the ODE’s to
be integrated exactly from i − 1 to i and so solve for the state-variable at time step i.
For the first order ODE’s as in Equation C.1 the solution can be found in Equation C.2.

ẋ + Bx = C (C.1)

xi = C

B
+
(

xi−1 − C

B

)
e−B∆t (C.2)

This result is identical to the indicial method as described in the Risø paper [7] when the
midpoint rule for the coefficients is applied correctly to all individual inputs to the coefficients
B and C.
For the second order ODE (Equation C.3) the solution can be found using the system of
equations in Equations C.4 to C.6.

ẍ + Aẋ + Bx = C (C.3)

D1 = 2e−A∆t/2 cos
(

−∆t

2
√

4B − A2
)

(C.4)

D2 = e−A∆t (C.5)

xi = C

B
(1 − D1 + D2) + D1xi−1 − D2xi−2 (C.6)

Here the assumption is made that ∆t is the same from i − 2 to i − 1 and from i − 1 to i.
Another issue is what happens to the imaginary number in the cosine when 4B − A2 < 0. In
Matlab this is handled correctly, although other languages may give an error. Fortunately, this
is only a potential issue for Snel’s model when using the second order correction as with the
coefficients for the ONERA model as in Section 2.4 4B − A2 > 0 will always be satisfied.
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APPENDIX D
Extreme Hysteresis Loops

In this appendix the deep stall and high reduced frequency behaviour of the models are com-
pared using the NACA64618 airfoil. It is important to keep in mind that none of the models
have been validated to far into stall or when the airfoil is upside down (so reverse flow). Despite
this, the model behaviour is still relevant to know as the full range of angles of attack will be
thrown at the dynamic stall models in the aeroelastic code.
First the full range of angles of attack are run through in Section D.1, followed by a selection
of extreme cases in Section D.2.

D.1 Full range of angles of attack
The first model looked into over all angles of attack is Øye’s model in Figure D.1. Only the
positive angles of attack are looked into as the hysteresis loops for the negative angles of attack
are similar. In both attached flow and fully separated flow this model follows the steady curve
which is as expected.
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Figure D.1: CL deep stall behaviour for Øye’s model for k = 0.05

The Risø model does have attached flow and fully separated flow hysteresis behaviour as seen
in Figures D.2, D.3 and D.4 for the lift, drag and moment respectively. For fully separated
flow, the contribution from the separation point in the force and moment coefficients drops out
as it becomes a constant (f = 0); however, the effects from the delayed angle of attack, αE ,
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and the added-mass terms remain1. For the drag, the dynamic coefficient lags slightly behind
the static curve although it never strays far. For the dynamic moment coefficient the dominant
term is that from the added-mass and so the hysteresis loops remain very similar throughout
the angle of attack range.
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Figure D.2: CL deep stall behaviour for the Risø model for k = 0.05
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Figure D.3: CD deep stall behaviour for the Risø model for k = 0.05

1Although the added-mass terms are phased out using | cos(α)| as mentioned in Section 2.5
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Figure D.4: CM deep stall behaviour for the Risø model for k = 0.05

For Snel’s model in Figure D.5 the size of the hysteresis loops decreases as the angle of attack
gets closer to 90◦ which is due to the a combination of, first, a large ∆Cpot

L causing a large
spring stiffness in the ODE and, secondly, the use of sin(α) for Cpot

L causing Cpot
L to flatten out

and so the forcing term in the ODE ( ˙∆Cpot
L ) is decreased.
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Figure D.5: CL deep stall behaviour for Snel’s model for k = 0.05

Finally, the deep stall curves for the ONERA model are shown in Figures D.6 to D.9. For
the lift relatively large hysteresis loops are seen in deep stall (These loops are too large to be
generated through only a phase delay to the steady curve, so the model must be adding some



100 D Extreme Hysteresis Loops

forcing) and similarly to Snel’s model the unsteady effects are suppressed near 90◦ as here both
Cpot

L and ∆Cpot
L decrease to 0. This reduces the forcing terms for both lift components and,

on top of this, the added-mass terms based on W ′
0 goes to zero due to sin(α) flattening out.

At smaller angles of attack, between roughly 20 and 40◦, strange behaviour is seen with the
presence of significant figure-8 shapes. Figure D.7 shows this region zoomed in with smaller
amplitude α oscillations.
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Figure D.6: CL deep stall behaviour for the ONERA model for k = 0.05
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Figure D.7: Stall behaviour for the ONERA in the range 15◦ to 40◦ model for k = 0.05

In the region of roughly 23◦ to 30◦ the hysteresis loops rotate in the opposite direction. At
roughly 30◦ CL,pot reaches the value of 4CL and then CL,pot starts to decrease again due to
the modification to the model where CL,pot is limited to a maximum of 4CL. This changes
the forcing as CL,pot and dCL,pot go from increasing to decreasing which results in the loop
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swapping direction. Another change in forcing is seen at around 35◦ as here the CL flattens
out and as CL,pot = 4CL here so do CL,pot and dCL,pot which results in the ODE giving a sim-
ple decay to the steady state with the exception of the contribution from the added mass terms.

The deep stall characteristics of the drag in Figure D.8 are interesting as they show thicker and
thinner hysteresis loops along the angle of attack range. This is partly due to the modification
of the potential lift curve. Around α = 90◦ it is expected that the thickness of the hysteresis
loops decrease due to similar reasons as for the lift coefficient. Interestingly, when fully stalled,
the hysteresis loops for the Risø and ONERA models rotate in opposing directions. For the
range of roughly 30◦ to 80◦ the Risø model predicts counter-clockwise loops, while the ONERA
model predict clockwise rotation. For the range 100◦ to 150◦ the direction for both models is
flipped, so they both still rotate in opposing directions. This is surprising and likely means
that one of the models gives unphysical behaviour for the drag. As the ONERA model is more
empirical than the Risø model and the author, Petot, indicates that the drag model has not
been verified properly [23] in general, it is likely the Risø model that gives the better results.
It should be noted, however, that the Risø model has not been verified for use this far into
stall either.
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Figure D.8: CD deep stall behaviour for the ONERA model for k = 0.05

For the moment the hysteresis loops are similar to those from the Riso model with the same
direction although are slightly thicker.
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Figure D.9: CM deep stall behaviour for the ONERA model for k = 0.05

D.2 Specific extreme cases

In this section some examples of interesting model behaviour are shown, starting with how
both the Øye and Risø models handle the transition when Catt

L reaches Catt
L = 4Cst

L (normally
between 30◦ and 40◦). Here the static separation point reaches the leading edge and so for
higher angles of attack both models simply show an exponential decay of this fst to zero. This
is equivalent to an exponential decay of the dynamic lift coefficient to the static lift coefficien.
This can be seen very clearly for Øye’s model around 33◦ in Figure D.10. For the Risø model
this also occurs, however, is much less visible partly due to the presence of the circulatory
and added-mass terms. The different shapes of Csep

L additionally contribute to the differences.
The Risø model Csep

L has a more gradual decrease in fst to zero before Catt
L = 4Cst

L than the
Hermite interpolation used in Øye’s model.
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Figure D.10: Øye and Risø model behaviours at αm = 33◦, αa = 10◦ and k = 0.05

Next the scaling behaviour of Snel’s model in deep stall for k’s above the design range of the
models is shown in Figure D.11 in comparison to the Risø model.
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Figure D.11: Snel and Risø model behaviours at different k’s at αm = 25◦, αa = 15◦

Here it is seen that the hysteresis loops of Snel’s model can reach huge CL’s when used outside
of the bounds it was tuned in. Furthermore, it has a stronger relative scaling with k than the
Risø model. This due to the large dependence of the ODE in Snel’s model on time derivatives.
The magnitude of the forcing term ( ˙∆Cpot

L ) increases linearly with k and the spring stiffness
on the outgoing loop decreases with α̇. The decrease of the spring stiffness is capped so that
it can not become too low as mentioned in Section 2.5, however ˙∆Cpot

L is left unchecked. In
particular the loop at k = 0.2 is unusual for Snel’s model as it shows a sharp drop in lift at
the highest angle of attack which is similar to leading edge stall, however the lift peak is well
before this drop in lift which is not typical of leading edge stall.
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APPENDIX E
ONERA α̈ Comparison

In this appendix the effect of neglecting the acceleration term of the angle of attack in the
ONERA model is shown. This is done for a single test case at k = 0.04 using the NACA0015
airfoil and the angle of attack input in Figure E.1. Both a pure sine wave input and a sine
wave with added noise are used.
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Figure E.1: Noisy and smooth angle of attack inputs comparison

In Figure E.2 the results for three cases are shown: the results from the smooth angle of attack
input where α̈ is not used and then both cases with and without α̈ for the noisy input.

It is seen that the hysteresis loop with noise changes with respect to the smooth α input,
which is both expected and physical due to the angles of attack and time history being differ-
ent. Comparing the two cases with the added noise in the input shows that the contribution
from α̈ is minimal everywhere and is only really noticeable when zooming in on the edges of
the plot where α̈ is largest. This is done in Figure E.2b for the largest angles of attack.

Here it is seen that the α̈ term mainly increases the noise in the lift coefficient which is due to
the method of calculating α̈ using backward Euler on α̇. Each time backwards Euler is used
the noise in the input α is amplified resulting in increased noise in the output. For the moment
coefficient this effect even worse as the added-mass terms are dominant. There is no α̈ term
in the calculation of the drag coefficient.
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Figure E.2: Model responses for the given angle of attack input function where k = 0.04,
α0 = 10◦ and α1 = 10◦



APPENDIX F
Snel Comparison

In this appendix the full Snel’s model using both the first and second order correction terms
is compared to the first order correction only. This is done using two of the deep stall exper-
imental cases from the OSU measurements: One with a low reduced frequency (Figure F.1)
and one with a medium reduced frequency (Figure F.2). The medium frequency case is one of
the plots in Snel’s paper illustrating the model [5]. The ramp function from from Section 4.6
is additionally used in Figure F.3. The experimental set up and the methodology for the plots
is explained in Chapter 3. The dynamic data for the low k case in Figure F.1 does seem to be
a little shifted up with respect to the steady curve as already mentioned in Chapter 4.

From both hysteresis loops it is seen that Snel’s model with the first order term gives better
agreement in general, in particular on the return loop. The second order model does capture the
peak and so the maximum lift coefficient better. The higher frequency oscillations introduced
by the second order correction term are not seen in the data and so are seen to be non-
physical as also done by Holierhoek et al. [12]. Furthermore, the low reduced frequency case
in particular shows the full Snel model decreasing well below the steady curve at the highest
angles of attack. This is due to the second order term introducing a steady state error into
the model which increases with increasing α.
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Figure F.1: Snel model responses for the given angle of attack input function where k = 0.019,
α0 = 14◦ and α1 = 5◦
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Figure F.2: Snel model responses for the NACA4415 airfoil where k = 0.039, α0 = 14◦ and
α1 = 10◦

The ramp case does show clear periodic vortex shedding for the NACA0015 airfoil. Therefore,
the dynamic stall model could potentially be improved by attempting to model this periodic
vortex shedding after the leading edge vortex has separated. Unfortunately, the oscillations
introduced by the second order correction term of Snel’s model are at a different frequency
and magnitude. These ramp cases also clearly show the steady state error introduced by the
second order correction term when comparing the Steady curve to the full Snel model after
s = 60.
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Figure F.3: Lift coefficient against non-dimensional time for the ramp functions for the Snel
model variants



APPENDIX G
Importance of α̇

In this appendix the importance and implementation of the α̇ term is looked into for the mod-
els that use it, namely the Risø, Snel and ONERA models. Furthermore, the method used to
estimate it explained.
α̇ is used in the added-mass terms in the Risø and ONERA models as so has a direct contri-
bution to the lift and moment coefficients. When the turbulence level is high and α changes
rapidly, the use of the raw α̇ signal results in unphysically large force coefficients. Further-
more, these added-mass terms are taken from Theodorsen’s theory which based on sinusoidal
pitching and heaving motions, so these turbulent fluctuations should arguably not have any
affect on these added-mass terms. Therefore, this α̇ is estimated as only the physical pitching
velocity of the airfoil section. The downside of this is that all contributions from changes in
the wind direction and from the heaving motions are neglected.
The aeroelastic cases looked into in this report will be some of the cases where this assumption
will cause the largest deviations from the true α̇. In DLC 1.4 the wind field undergoes large
changes where the wind direction changes over 150◦. In the standstill cases the turbulence will
have a larger relative effect due to the (mostly) stable velocity component from the rotation
of the blades being missing. This results in large k’s with large α variations.
The effect on the models of having a wrong estimation of α̇ is estimated in Section G.1 for the
ONERA model, Section G.2 for the Risø model and finally for Snel’s model in Section G.3.

G.1 ONERA
In the ONERA model α̇ is used in two of the downwash terms: W1 and W ′

0. W1 is defined as
the difference in angle of attack between α1/4 and α3/4 which, for a constant wind field, will be
equal to the non-dimensional pitching velocity if using a small angle approximation. Therefore,
using the pitching velocity only results in the difference in wind direction between quarter and
three-quarters chord to be neglected. For W ′

0, on the other hand, the use of the pitching
velocity is a more significant assumption as this term is defined as W ′

0 = d sin(α)
ds = dα

ds | cos(α)|1
and so the full α should technically be used. Unfortunately this is not possible for the ONERA
model due to this model’s large dependence on W ′

0 for both the attached flow and dynamic
stall behaviour. If the α̇ is obtained from the raw α input, then this will cause the ONERA
model to show unphysical behaviour so bad that the aeroelastic code will terminate for the
standstill cases.
Figure G.1 shows an example lift hysteresis loop for a pure pitching motion without turbulence
compared to the loops when either W1 or W ′

0 are set to zero.

1Here the absolute value of cos(α) is taken to account for the leading and trailing edge swapping at 90◦.
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Figure G.1: Comparison of hysterisis loops for the ONERA model with different terms set to
zero for the NACA64618 airfoil with k = 0.05, αm = 15◦ and αm = 15◦

This shows that for the correct dynamic stall behaviour the ONERA model leans very heavily
on both W1 and W ′

0, with W ′
0 being the most important of the two. When W ′

0 is set to zero in
this example, then the entire hysteresis loop goes in the counter-clockwise direction which is
unphysical. This, together with W ′

0 being the term most affected by the current approximation
of α̇, explains why the ONERA model shows exceptionally poor behaviour throughout Chapter
5.

For the original curve, so that indicated as ‘Both non-zero’, a small counter-clockwise part is
seen at the highest α’s which is also unphysical. This is a general flaw in the ONERA model
and can be seen in more detail in Section D.1.

G.2 Risø

The Risø model is also affected by the α̇ term, however this is only important for the attached
flow and not for the stall properties. If α̇ = 0 then the attached flow hysteresis loops are
exaggerated as for example in Figure G.2. This is due to both the lack of added-mass terms
and the distinction between α1/4 and α3/4.
This distinction between α1/4 and α3/4 is important as where α3/4 is used as the base for the
time delayed αE . Therefore α̇ will also have an effect on the circulatory terms.
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Figure G.2: Comparison of hysterisis loops for the Risø model with α̇ set to zero for the
NACA64618 airfoil with k = 0.05, αm = 10◦ and αm = 15◦

To visualize the performance of the Risø model in the aeroelastic code Figure G.3 is made for
the standstill Case 5. This contains the assumption that the changes in wind direction do not
affect α̇.
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Figure G.3: CL time traces with the Risø model in Case 5 at the highest Damping factor

The attached flow behaviour is seen to be significant indicating that the behaviour is more like
that of the α̇ = 0 behaviour; however, as it is unknown what the effective k’s are, no conclusion
can be drawn.

G.3 Snel
Snel’s model does not contain any added mass terms or attached flow behaviour so α̇ does not
directly contribute to the lift coefficient, although it is an important contributor to the spring
stiffness of the ODE. Therefore, it still has a significant effect on the dynamic stall loops as
shown in Figure G.4.
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Figure G.4: Comparison of hysterisis loops for Snel’s model with α̇ set to zero for the
NACA64618 airfoil with k = 0.05, αm = 15◦ and αm = 15◦

The whole dynamic stall loop is shifted up which is due to Snel’s model in effect having a
variable time constant. α̇ increases the time lag when going into stall and decreases it on the
return part.
As α̇ is only in the spring stiffness Snel’s model is much more robust in handling quick variations
in α̇, therefore α̇ is obtained from the raw α signal. This is opposed to the ONERA and Risø
models, which use an approximation of the pitching velocity only. Snel’s model is tuned to
pitching motions only so there is a case for using the pitching velocity instead of α̇, although
that would still neglect the changes in the wind direction.
For Case 5 of the standstill cases, this gives the response in Figure G.5 where no extremely
abnormal behaviour is seen. There are still a couple of occurrences for Blade 3 where the
normalized CL is still above 1 at α > 3. This means that the dynamic CL exceeds the static
stall value at an α over 3 times the static stall peak angle of attack.
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Figure G.5: CL time traces with Snel’s model in Case 5 at the highest Damping factor



Nomenclature
List of Abbreviations
BEM Blade Element Momentum
DF Damping Factor
DLC Design Load Case
HAWT Horizontal Axis Wind Turbine
IEC International Electrical Commission
ODE Ordinary Differential Equation
ONERA Office National d’Etudes et de Recherches Aérospatiales
OSU Ohio State University
TI Turbulence intensity

List of Symbols
α Angle of attack [rad]
α0 Zero lift angle of attack [rad]
αa Amplitude of the sinusoidal α oscillations [rad]
αE Effective angle of attack [rad]
αm Mean value of the sinusoidal α oscillations [rad]
α3/4 Angle of attack at 3/4 chord [rad]
αsep

max Angle of attack of the peak in the separated lift curve [rad]
αsep Angle of attack where the flow becomes fully separated in the static case [rad]
αshear Wind shear exponent [-]
ᾱ Amplitude of sinusoidal pitching motion [rad]
¯̃h Amplitude of sinusoidal plunging motion [-]
∆τ Time delay for stall [-]
∆Cpot

L Difference between potential flow lift and the steady lift [-]
∆CL,i Lift coefficient correction for Snel’s model [-]
∆t Time step [s]
λ Constant in the ONERA model [-]
Ω Rotational speed of the turbine [rad/s]
ω rotational frequency [-]
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ρ Air density [kg/m3]
σi Constant in the ONERA model [-]
τ Non-dimensional time constant in the Øye model [−]
τf Non-dimensional time constant in the Risø model [−]
τp Non-dimensional time constant in the Risø model [−]
θ Angle of attack due to pitch only [-]
h̃ Plunge normalized by the half chord [-]
ζp Pitch-damping parameter [-]
a Center of rotation with respect to the mid-chord [-]
ast Arm between the quarter chord and the equivalent center of pressure [-]
Ai Coefficient of time lag for the circulatory terms [-]
ai Constant in the ONERA model [-]
aα0 Factor for the derivative of the fully separated lift curve at the zero lift point [−]
aαsep Factor for the derivative of the fully separated lift curve at the point of fully separated

flow [−]
B Number of blades [-]
bi Coefficient of time lag for the circulatory terms [-]
c Chord [m]
C(k) Theodorsen’s function [-]
Cst

D,0 Steady zero-lift drag coefficient [-]
CD,1 Drag coefficient component in the ONERA model [-]
CD 2D dynamic drag coefficient [-]
Cst

D Steady drag coefficient [-]
ci ODE coefficient in Snel’s model [-]
CL,i Lift coefficient component in the ONERA model [-]
CL 2D dynamic lift coefficient [-]
Catt,lag

L Attached flow lift coefficient after time lag [-]
Catt

L Steady fully attached flow lift coefficient [-]
Cpot

L Steady potential flow lift coefficient [-]
Csep

L Steady fully separated flow lift coefficient [-]
Cst

L Steady lift coefficient [-]
Cst

M,0 Steady zero-lift moment coefficient [-]
CM,1 Moment coefficient component in the ONERA model [-]
CM 2D dynamic moment coefficient about the quarter chord [-]
C lin

M Linear moment coefficient for the ONERA model [-]
Cst

M Steady moment coefficient about the quarter chord [-]
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Cn Normal (out-of-plane) force coefficient [-]
CP Power coefficient [-]
CT Thrust coefficient [-]
Ct Tangential (in-plane) force coefficient [-]
dr Radial length of an annuli [m]
ei Constant in the ONERA model [-]
fdyn Dynamic separation point [-]
f lag Equivalent quasi-steady separation point for Catt,lag

L [-]
f st Steady Separation point [-]
h Plunge [m]
j Imaginary number

√
−1 [-]

k Reduced frequency [-]
ks Strouhal vortex shedding frequency [-]
M Mach number [-]
Medge Normalized peak-to-peak root edgewise bending moment [-]
R Rotor radius [m]
r Radial position along blade [m]
ri Constant in the ONERA model [-]
s Non-dimensional time [-]
s0 Constant in the ONERA model [-]
t Time [s]
Tf Time constant in the Risø model [s]
Tf Time constant in the Øye model [s]
Tp Time constant in the Risø model [s]
Tu Time for the relative velocity to travel a half chord [s]
U Velocity [m/s]
U∞ Freestream wind velocity [m/s]
Urel Inflow velocity relative to airfoil [m/s]
W0 Non-dimensional downwash at the quarter chord [-]
W1 Non-dimensional difference in downwash between the three-quarter chord and quar-

ter chord [-]
wlag

i i’th time lagged downwash component [m/s]
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