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A B S T R A C T   

A detailed characterization of residential water consumption is essential for ensuring urban water systems’ 
capability to cope with changing water resources availability and water demands induced by growing popula
tion, urbanization, and climate change. Several studies have been conducted in the last decades to investigate the 
characteristics of residential water consumption with data at a sufficiently fine temporal resolution for grasping 
individual end uses of water. In this paper, we systematically review 114 studies to provide a comprehensive 
overview of the state-of-the-art research about water consumption at the end-use level. Specifically, we 
contribute with: (1) an in-depth discussion of the most relevant findings of each study, highlighting which water 
end-use characteristics were so far prioritized for investigation in different case studies and water demand 
modelling and management studies from around the world; and (2) a multi-level analysis to qualitatively and 
quantitatively compare the most common results available in the literature, i.e. daily per capita end-use water 
consumption, end-use parameter average values and statistical distributions, end-use daily profiles, end-use 
determinants, and considerations about efficiency and diffusion of water-saving end uses. Our findings can 
support water utilities, consumers, and researchers (1) in understanding which key aspects of water end uses 
were primarily investigated in the last decades; and (2) in exploring their main features considering different 
geographical, cultural, and socio-economic regions of the world.   
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1. Introduction 

The availability of water resources is of concern for many regions 
worldwide (McDonald et al., 2010; Suero et al., 2012). Growing popu
lation and urbanization have led to large areas under water stress, with 
population growth often coupled with variations in the per capita water 
consumption rates (Cosgrove and Loucks 2015). Population growth can 
stress local water resources even in areas with decreasing per capita 
water demands (Dieter et al., 2018). Moreover, water shortages – which 
currently affect more than 500 million people worldwide – are expected 
to be compounded as a consequence of climate change (Sønderlund 
et al., 2016) and feed back to changes in water demands across poten
tially conflicting sectors, such as drastic increases in the amount of water 
needed for irrigation and urban activities due to increasingly frequent 
and intense drought events (Evans and Sadler 2008). Effective planning 
and management of water systems are thus of great importance to cope 
with the grand challenges posed by population, climate, and water re
sources availability (Avni et al., 2015). However, the effectiveness of 
water supply operations and water demand management strategies to 
meet future demand under different scenarios depends on our knowl
edge on where, when, and how water is being used (Cardell-Oliver et al., 
2016). This has motivated an increasing interest over time towards 
characterizing water consumption distribution across space and time in 
the water research literature (Sanchez et al., 2018). 

In the last decades, many studies have been conducted to investigate 
water consumption characteristics at different spatio-temporal scales. In 
some cases (Danielson 1979; Tanverakul and Lee 2013), water con
sumption is explored by relying on monthly to yearly water data, typi
cally read manually by water utility technicians for billing. However, as 
reported by Cominola et al. (2015), billed water data generally allow 
extracting information only to evaluate aggregate volumes of water 
consumption at a coarse spatiotemporal detail, i.e. entire-city or dis
tricts, and on a coarse temporal scale, i.e. monthly or seasonal. To 
overcome this limitation, more attention has recently been devoted to 
the investigation of water consumption at finer spatiotemporal resolu
tions, i.e. at the household or end use scale and with hourly to 
sub-minute temporal resolution. This finer-resolution monitoring was 
made possible by technological development and the diffusion of smart 
metering solutions (Gurung et al., 2015; Darby 2010), spanning from 
add-on data loggers – allowing water consumption data to be gathered 
in more detail than conventional meters – to digital meters capable of 
automatically processing and transmitting those data to the utility for 
monitoring and billing purposes. Smart meters and paired software 
(Bastidas Pacheco et al. 2020, 2021b) enable detailed analysis on het
erogeneous water consumption behaviors and sub-daily patterns 
(Cubillo-González et al., 2008; Beal and Stewart, 2011; Horsburgh et al., 
2017; Cominola et al., 2018b) and can be used to develop customized 
feedback and water conservation programs (Mayer et al., 2000; Willis 
et al., 2010b; Cominola et al., 2021a). When real-time information is 
available, smart metre data can also be exploited to provide real-time 
alerts for domestic leakages or anomalous water consumption patterns 
(Britton et al., 2013; Luciani et al., 2019; Mayer 2022), thus enabling 
prompt actions, with consequent water conservation or even life-saving 
(Salomons and Housh 2022). Furthermore, smart meters allow new, 
detailed information about water consumption to be obtained up to the 
level of individual end uses (i.e. domestic micro-components such as 
shower, taps, washing machine, etc.). This information includes daily 
volumes of water consumed, along with the daily water consumption 
profiles and routines at the end-use level and other parameters (e.g. 
duration, volume, flow rate, and frequency of use) of individual water 
uses. 

With increasing frequency, greater focus has been given in the 
literature to the characterization of water consumption at the level of 
individual end use in the residential sector, mainly because residential 
consumers typically represent the highest number of water users in cities 
(Aksela and Aksela 2011). Residential end uses of water consumption 

had been scarcely explored before the introduction of smart metering 
technologies (not only digital meters but also – in a broader sense – the 
previously developed data-logging solutions and paired software for 
data processing) due to the effort required to obtain this information 
with previously available tools. Only few water consumption in
vestigations at the end-use level were performed prior to the early 
1990s. They were based on data-gathering campaigns developed using 
surveys, audits, and questionnaires to characterize the features of do
mestic appliances and people’s habits, thus estimating water use (e.g. 
Butler 1991). Customer self-reported end-use water consumption studies 
have proved to be highly inaccurate as consumers typically have a poor 
understanding of their water use habits compared to norms and best 
practices (Beal et al., 2013). 

Nowadays, residential water consumption data at the end-use level 
can be used for a variety of purposes, such as training and testing water 
demand models (e.g. Blokker et al., 2010) or the calibration and vali
dation of water end-use disaggregation methods (Mayer et al., 1999; 
Nguyen et al., 2013a; Nguyen et al., 2018; Mazzoni et al., 2021). In 
addition, the availability of this information may support the develop
ment of technologies for water reuse and recycling (Dixon et al., 1999) 
or strategies aimed at increasing consciousness and awareness of water 
use (Beal et al., 2011b; Liu et al., 2016). Water utilities can rely on 
detailed water end-use information to review and improve their incen
tive and water pricing arrangement (Gleick et al., 2003), whereas users 
can receive helpful feedback and then change their water consumption 
behavior (Willis et al., 2010b; Stewart et al., 2018). Feedback targeted to 
specific consumer’s water end-use consumption behaviors has great 
potential to conserve water during water scarcity periods (Fielding et al., 
2013). 

Yet, despite the advantages of end-use water consumption data, 
collecting and efficiently processing them is still challenging. On the one 
hand, the intrusive monitoring of each domestic appliance may be 
impractical, and householders are unlikely to provide permission to 
install this intrusive instrumentation (Cominola et al., 2015). On the 
other hand, when non-intrusive approaches are considered, automated 
techniques for the end-use disaggregation of the water consumption 
time series generally require information about end-use parameters that 
may be unavailable to the analysts (Mazzoni et al., 2021). In contrast, 
manual approaches typically involve considerable human effort and 
time due to the large amounts of data to analyse, along with potential 
bias and scarce reproducibility deriving from expert-based judgement 
(DeOreo et al., 1996). 

While we acknowledge the above limitations related to the direct – or 
indirect – collection of end-use water consumption data, we believe that 
general analyses, water consumption models, and technological devel
opment may still be conducted by exploiting the ensemble of data and 
information already available, yet fragmented, in the literature. Indeed, 
the literature published in the past two decades includes numerous peer- 
reviewed journal publications or water utility reports exploring water 
consumption characteristics at the end-use level. Moreover, these 
studies consider different case studies, methodological approaches 
adopted to obtain end-use information, and end-use database features. 
Finally, there are considerable differences in the numerical end-use re
sults shown. Thus, systematic reviews, comparisons, and elaborations of 
these fragmented data may promisingly lead to new applications in the 
field of water resources management. 

In this context, some recent studies present the main characteristics 
of the major residential end-use studies available in the literature, such 
as location, sample size, and approach adopted to obtain end-use data 
(Nguyen et al., 2013a; Cominola et al., 2015). More specifically, in a 
review by Di Mauro et al. (2021), over one hundred studies on water 
consumption are clustered based on their spatiotemporal scale (i.e. 
ranging from urban to end-use level, and from daily to sub-minute res
olution) and the level of accessibility of their related datasets. In addi
tion, a recent study conducted by Abu-Bakar et al. (2021) provides a 
comprehensive overview of the current state of end-use disaggregation 
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and classification techniques, along with a discussion of the results 
proposed by several studies about the determinants of water consump
tion, limited to the household level. At the end-use level, a summary 
comparison of the daily per capita water consumption values indicated 
in different studies is available in Mayer et al. (1999), Beal and Stewart 
(2011), Gurung et al. (2014), and Jordán-Cuebas et al. (2018). However, 
to the authors’ knowledge, an extensive review about residential end 
uses of water – not only highlighting similarities and differences 
amongst the studies available in the literature but also systematically 
comparing all the numerical results about end-use water consumption 
globally – is still missing. 

The current work aims to fill the abovementioned gap by providing a 
comprehensive review of the existing end-use studies conducted glob
ally in the field of residential water consumption – along with an in- 
depth discussion of their scope, features, and results – to fully explore 
and quantify end-use characteristics in different contexts worldwide. 
Unlike other reviews available in the literature, this research is struc
tured as a multi-level analysis, including: (1) a quantitative comparison 
of all the most common metrics about residential end-use water con
sumption (i.e. per capita daily end-use water consumption, end-use 
parameter average values, end-use parameter distributions, end-use 
daily profiles); and (2) a qualitative discussion about additional as
pects of interest in the field of end-use water consumption (i.e. consid
erations about end-use determinants and water-saving efficiency). We 
believe that the findings of the current work may be applied to several 
contexts for which end-use water consumption data are needed (e.g. 
demand characterization, training and testing of demand models, 
development of technologies for water reuse and conservation, adoption 
of strategies to increase people’s awareness, revision of water utility rate 
and billing system, water infrastructure planning and management). 
Ultimately, the results of this study may support water utilities and re
searchers in understanding which aspects were primarily explored in 
recent research and identifying the end-use databases and studies car
ried out in different geographical, cultural, and socio-economic regions 
of the world. 

This review is organized as follows: Section 2 includes the method
ological details of the literature review conducted to explore the state of 
the art of research about residential end-use water consumption, along 
with a preliminary overview of the main characteristics of the reviewed 
studies and datasets, and a presentation of the multi-level methodology 
adopted for end-use data analysis; Section 3 illustrates the quantitative 
and qualitative outcomes emerging from multi-level analysis conducted 
to compare the information included in the reviewed studies and data
sets. Finally, the study’s most relevant findings and implications are 
highlighted in Section 4, along with some considerations for future 
research directions. 

2. Materials and methods 

2.1. Literature review methods and search outcome 

We carried out a systematic search of peer-reviewed journal papers, 
water utility reports, and other grey literature material (i.e. theses, 
research projects, presentations, etc.) to explore the current state of 
research on residential water consumption at the end-use level. The 
search was conducted between October 2020 and November 2022. 
Specifically, we searched for publications related to residential water 
consumption at the end-use level in the Elsevier’s Scopus database 
(Elsevier 2021) as well as in some of the most accessed water journal 
editor databases, such as those of the International Water Association 
and the American Society of Civil Engineers. We initially searched for 
combinations of three keywords, i.e. “residential,” “water,” and “end 
uses”, and limited the subject area to “engineering”. This search led to an 
initial paper set of 271 publications, mostly (but not only) in English. We 
then manually checked the title and abstract of each publication and 
retained only those fitting the scope of our study. In greater detail, 40 

publications were retained at this stage. Finally, we expanded the 
resulting set of papers by including other studies cited in the bibliog
raphy of the retained publications. The final paper set considered for the 
following analysis includes a total of 114 studies presenting – or making 
use of – residential water consumption data at the end-use level. 

We reviewed these 114 studies, reported in Table 1 and hereinafter 
called residential end-use studies (REUS), to explore their contribution 
and implications to residential water consumption at the end-use level. 
A first analysis evaluated the objectives of each study, the primary of 
which was considered for classification (Fig. 1). 

Fig. 1 reveals that, in most cases (42 studies, i.e. 37%), research was 
conducted to explore the characteristics of end-use water consumption 
in some specific geographical areas. However, end-use data were widely 
exploited also for other purposes, namely, to evaluate the potential for 
water conservation and recycling (17 studies, i.e. 15%), explore the 
determinants of water consumption (12 studies, i.e. 11%), develop or 
validate algorithms for water end-use disaggregation and classification 
(11 studies, i.e. 10%), and for water demand modelling (9 studies, i.e. 
8%) or the retrieval of end-use information and evaluations about end- 
use data gathering and processing (9 studies, i.e. 8%). Other applica
tions, albeit less common, include: investigation of strategies for 
wastewater management and/or the design of sewer systems; data 
exploitation to assess end-use peak demand or evaluate end-use proba
bility of use; or end-use data analysis to quantify variations in users’ 
perception and awareness. In addition, we investigated the following 
characteristics: (1) location; (2) period; (3) household sample size; (4) 
average duration of the monitoring period per household (if conducted); 
(5) temporal resolution of monitoring (if conducted); (6) approach 
adopted for end-use data gathering (i.e. end-use monitoring, interaction 
with householders, or end-use disaggregation method); and (7) dataset 
availability. All the above REUS characteristics are summarized in 
Table 1. 

Our review reveals that the 114 REUS refer to 66 different databases, 
hereinafter called end-use databases (EUD). Specifically, some EUD are 
exploited in more than one REUS (see, e.g., the British EUD used by 
Butler (1991, 1993), or the Southeast Queensland EUD exploited by Beal 
et al. (2011a, 2011b, 2013) and other authors). In contrast, other EUD 
are used in only one REUS. It is also worth noting that some REUS have 
been conducted by exploiting only part of their related EUD (Willis et al., 
2009c; Gato-Trinidad et al., 2011; Rathnayaka et al., 2015), whereas 
some other have exploited it entirely (Bennett and Linstedt, 1975; 
Mayer et al., 2000; Fontdecaba et al., 2013; Alharsha et al., 2022). 

2.2. EUD clustering 

We first clustered EUD based on the fields of investigation mentioned 
above (see Table 1). Overall, the fields of investigation selected for 
clustering are in line with those considered by Di Mauro et al. (2021). 
However, it is worth highlighting that the scope of our study extends the 
study by Di Mauro et al. (2021). Here, EUD clustering is conducted only 
to make an initial and qualitative discrimination amongst the EUD 
concerned, thus providing an organized dataset to achieve the key aim 
of the work, i.e. conducting a multi-level comparison (both qualitative 
and quantitative) of their end-use parameters and characteristics. 

EUD were clustered manually and exclusively based on the infor
mation reported in their related REUS. This was done with the aim of 
standardizing the analysis in light of the fact that the majority of EUD 
are not publicly available (as detailed below). From an operational 
standpoint, we adopted the following criteria for clustering: (1) con
cerning the study period, we clustered EUD based on the first year of data 
collection; (2) concerning the sample size, the average duration of moni
toring per household (if reported), and the temporal data sampling reso
lution (if reported), we clustered EUD based on the highest values 
inferred in the respective REUS. By way of example, in the case of EUD 
including water consumption data collected during two subsequent 
periods, the former conducted on a smaller sample and the latter 
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Table 1 
Overview of the 114 reviewed Residential End-use Studies (REUS) and their related 66 End-use Databases (EUD). Columns L1 – L6 refer to the levels of analysis which can be carried out based on each EUD, as detailed in 
Section 2.3.  

EUD Location REUS Objective(s) Study 
period 

Household 
sample size 

Household 
monitoring 
period 
(average) 

Temporal 
data sampling 
resolution 

End-use data 
gathering approach 

EUD availability L1 L2 L3 L4 L5 L6 

1 Boulder, 
Colorado (USA) 

Bennett and Linstedt, 
1975 

Wastewater study/ 
sewer system design 

Unreported 5 40 days Unreported Direct monitoring, 
interaction with 
users 

Unavailable ✓ ✓ ✓ ✓ - - 

2 Unreported, 
Wisconsin (USA) 

Siegrist et al., 1976 Wastewater study/ 
sewer system design 

Unreported 11 40 days Unreported Direct monitoring, 
interaction with 
users 

Unavailable ✓ ✓ - ✓ - - 

3 Various (USA) Brown and Caldwell 
Consulting 
Engineers, 1984 

Water conservation/ 
recycling study 

Unreported 210 2 weeks Unreported Direct monitoring, 
interaction with 
users 

Unavailable ✓ ✓ - - - - 

4 Unreported (UK) Butler 1991 Wastewater study/ 
sewer system design 

1987 28 1 week - a Interaction with 
users 

Unavailable - ✓ - ✓ - -   

Butler 1993 Wastewater study/ 
sewer system design 

1987 28 1 week - Interaction with 
users        

5 Tampa, Florida 
(USA) 

Anderson et al., 1993 End-use water 
consumption study, 
water conservation/ 
recycling study 

1992 25 2 months Unreported Direct monitoring Unavailable ✓ ✓ ✓ - - ✓ 

6 Unreported (UK) Edwards and Martin 
1995 

End-use water 
consumption study, 
demand determinants 
study 

1992–1993 100 1 year (pilot) 15 min Direct monitoring Unavailable ✓ - - - - - 

7 Boulder, 
Colorado (USA) 

DeOreo et al., 1996 End-use water 
consumption study 

1994 16 3 weeks 10 s Manual 
disaggregation 

Unavailable ✓ ✓ ✓ - - - 

8 Various (USA, 
Canada) 

Mayer et al., 1999 End-use water 
consumption study 

1996–1998 1188 4 weeks 10 s Automated 
disaggregation 
(TraceWizard) 

Restricted ✓ ✓ ✓ ✓ - ✓   

Suero et al., 2012 Water conservation/ 
recycling study 

1996–1998 Unreported 4 weeks 10 s Automated 
disaggregation 
(TraceWizard)        

9 Bangkok 
(Thailand) 

Darmody et al., 1999 End-use water 
consumption study, 
water conservation/ 
recycling study 

Unreported 814 - b - Individual event 
observation, 
interaction with 
users 

Unavailable ✓ - - - - ✓ 

10 East Bay, 
California (USA) 

Darmody et al., 1999 End-use water 
consumption study, 
water conservation/ 
recycling study 

1994 657 - - Individual event 
observation, 
interaction with 
users 

Unavailable ✓ - - - - ✓ 

11 Seattle, 
Washington 
(USA) 

Mayer et al., 2000 Water conservation/ 
recycling study 

Unreported 37 8 weeks 10 s Automated 
disaggregation 
(TraceWizard) 

Unavailable ✓ ✓ ✓ - - ✓   

Suero et al., 2012 Water conservation/ 
recycling study 

Unreported Unreported 8 weeks 10 s Automated 
disaggregation 
(TraceWizard)        

12 Various 
(Netherlands) 

Foekema and 
Engelsma 2001 

End-use water 
consumption study, 
demand determinants 
study 

2001 3200 1 week - Interaction with 
users 

Unavailable ✓ ✓ ✓ - ✓ ✓   

Blokker 2006 Demand modelling and 
forecasting 

2001 3200 1 week - Interaction with 
users          

Blokker 2010 2001 3200 1 week -        

(continued on next page) 
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Table 1 (continued ) 

EUD Location REUS Objective(s) Study 
period 

Household 
sample size 

Household 
monitoring 
period 
(average) 

Temporal 
data sampling 
resolution 

End-use data 
gathering approach 

EUD availability L1 L2 L3 L4 L5 L6 

Demand modelling and 
forecasting 

Interaction with 
users   

Blokker et al., 2010 Demand modelling and 
forecasting 

Unreported 3200 1 week - Interaction with 
users          

Agudelo-Vera et al., 
2014 

End-use water 
consumption study 

1992–2010 Unreported 1 week - Interaction with 
users        

13 San Francisco 
East Bay, 
California (USA) 

Mayer et al., 2003 Water conservation/ 
recycling study 

2001–2002 33 6 weeks 10 s Automated 
disaggregation 
(TraceWizard) 

Unavailable ✓ ✓ ✓ - - ✓   

Suero et al., 2012 Water conservation/ 
recycling study 

2001–2002 Unreported 6 weeks 10 s Automated 
disaggregation 
(TraceWizard)        

14 Perth (Australia) Loh and Coghlan 
2003 

End-use water 
consumption study, 
demand modelling and 
forecasting 

1998–2001 244 14÷19 months Unreported Automated 
disaggregation 
(TraceWizard) 

Unavailable ✓ ✓ - - - ✓ 

15 Unreported (UK) Kowalski and 
Marshallsay 2003 

End-use disaggregation 
method development/ 
validation 

2001 250 Unreported Unreported Automated 
disaggregation 
(Identiflow) 

Unavailable ✓ - ✓ ✓ - -   

Kowalski and 
Marshallsay 2005 

End-use water 
consumption study, 
water conservation/ 
recycling study 

2001 500 Unreported Unreported Automated 
disaggregation 
(Identiflow)        

16 Unreported (UK) Lauchlan and Dixon 
2003 

Wastewater study/ 
sewer system design 

Unreported Unreported Unreported Unreported Unreported Unavailable - ✓ ✓ - - - 

17 c Tampa, FL 
(USA) 

Mayer et al., 2004 Water conservation/ 
recycling study 

2002–2003 26 6 weeks 10 s Automated 
disaggregation 
(TraceWizard) 

Restricted ✓ - - - - - 

18 Sydney 
(Australia) 

White et al., 2004 End-use water 
consumption study, 
demand modelling and 
forecasting 

1999 Unreported - - Interaction with 
users 

Unavailable ✓ - - - - ✓ 

19 Yarra Valley 
(Australia) 

Roberts 2005 End-use water 
consumption study, 
demand modelling and 
forecasting 

2004 100 4 weeks 5 s Automated 
disaggregation 
(TraceWizard) 

Unavailable ✓ ✓ ✓ ✓ ✓ ✓   

Gato-Trinidad et al., 
2011 

End-use water 
consumption study 

2004 80÷93 6 weeks 5 s Automated 
disaggregation 
(TraceWizard)        

20 Various 
(Netherlands) 

Kanne 2005 End-use water 
consumption study, 
demand determinants 
study 

2004 1684 1 week - Interaction with 
users 

Unavailable ✓ ✓ - - ✓ ✓   

Agudelo-Vera et al., 
2014 

End-use water 
consumption study 

1992–2010 Unreported Unreported - Interaction with 
users        

21 Palhoca (Brazil) Ghisi and Oliveira, 
2007 

Water conservation/ 
recycling study 

2004 2 4 weeks - Interaction with 
users 

Unavailable ✓ ✓ - - - - 

22 Various (South 
Africa) 

Jacobs 2007 Demand modelling and 
forecasting 

Unreported 123 2 years 1 month Interaction with 
users 

Unavailable - - - - - - 

23 Kapiti Coast 
(New Zealand) 

Heinrich 2007 End-use water 
consumption study, 

2006–2007 12 8 months 10 s Automated 
disaggregation 
(TraceWizard) 

Unavailable ✓ ✓ ✓ - ✓ ✓ 

(continued on next page) 
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Table 1 (continued ) 

EUD Location REUS Objective(s) Study 
period 

Household 
sample size 

Household 
monitoring 
period 
(average) 

Temporal 
data sampling 
resolution 

End-use data 
gathering approach 

EUD availability L1 L2 L3 L4 L5 L6 

data gathering and 
elaboration study 

24 Various (Korea) Kim et al., 2007 End-use water 
consumption study, 
demand determinants 
study 

2002–2006 145 3 years 1 h ÷ 1 day Direct monitoring  - - - - - - 

25 Chiang Mai 
(Thailand) 

Otaki et al., 2008 End-use water 
consumption study 

Unreported 55÷63 2 months Unreported Direct monitoring Unavailable ✓ - - - - - 

26 Toowoomba, 
(Australia) 

Mead 2008 End-use water 
consumption study 

2008 10 138 days 10 s Automated 
disaggregation 
(TraceWizard) 

Unavailable ✓ ✓ ✓ ✓ ✓ ✓   

Mead and 
Aravinthan 2009 

End-use water 
consumption study 

2008 10 138 days 10 s Automated 
disaggregation 
(TraceWizard)        

27 Various 
(Netherlands) 

Foekema et al., 2008 End-use water 
consumption study, 
demand determinants 
study 

2007 2454 1 week - Interaction with 
users 

Unavailable ✓ ✓ - - ✓ ✓   

Agudelo-Vera et al., 
2014 

End-use water 
consumption study 

1992–2010 Unreported Unreported - Interaction with 
users        

28 Madrid (Spain) Cubillo-González 
et al., 2008 

End-use water 
consumption study 

2002–2003 292 299 days 1 s Manual 
disaggregation 

Unavailable ✓ ✓ ✓ ✓ ✓ ✓   

Ibáñez-Carranza 
et al., 2017 

End-use disaggregation 
method development/ 
validation 

2008- 
Uknown 

300 2÷3 months Unreported Unreported        

29 Various, Gold 
Coast (Australia) 

Willis et al., 2009a Data gathering and 
elaboration study 

2008 50 2 weeks 10 s Unreported Unavailable ✓ ✓ ✓ ✓ ✓ ✓   

Willis et al., 2009b End-use water 
consumption study 

2008 151 2 weeks 10 s Automated 
disaggregation 
(TraceWizard)          

Willis et al., 2009c End-use water 
consumption study, 
demand determinants 
study 

2008 50 2 weeks 10 s Unreported          

Willis et al., 2010a Water conservation/ 
recycling study 

2208 151 Unreported 10 s Automated 
disaggregation 
(TraceWizard)          

Willis et al., 2010b Water conservation/ 
recycling study 

2008–2009 44÷151 4 weeks 10 s Automated 
disaggregation 
(TraceWizard)          

Willis et al., 2011a Water conservation/ 
recycling study 

2008 132 2 weeks 10 s Automated 
disaggregation 
(TraceWizard)          

Willis et al., 2011b Water conservation/ 
recycling study 

2008–2010 127÷134 Unreported 10 s Automated 
disaggregation 
(TraceWizard)          

Willis et al., 2013 End-use water 
consumption study, 
demand determinants 
study 

2008 151 Unreported 10 s Automated 
disaggregation 
(TraceWizard)        

30 Auckland (New 
Zealand) 

Heinrich, 2010 End-use water 
consumption study 

2008 51 9 weeks 10 s Unavailable ✓ ✓ ✓ - - - 

(continued on next page) 
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Table 1 (continued ) 

EUD Location REUS Objective(s) Study 
period 

Household 
sample size 

Household 
monitoring 
period 
(average) 

Temporal 
data sampling 
resolution 

End-use data 
gathering approach 

EUD availability L1 L2 L3 L4 L5 L6 

Automated 
disaggregation 
(TraceWizard) 

31 Trincomalee (Sri 
Lanka) 

Sivakumaran and 
Aramaki, 2010 

End-use water 
consumption study 

Unreported 106 - - Interaction with 
users 

Unavailable ✓ - - - - - 

32 Perth (Australia) Water Corporation, 
2010 

End-use water 
consumption study 

Unreported Unreported 2 weeks Unreported Unreported Unavailable ✓ ✓ - - - - 

33 Khon Kaen 
(Thailand) 

Otaki et al., 2011 End-use water 
consumption study 

Unreported 59 1 month Unreported Direct monitoring Unavailable ✓ - - - - - 

34 Various (USA) DeOreo et al., 2011 End-use water 
consumption study, 
water conservation/ 
recycling study 

2006–2009 734 2 weeks 10 s Automated 
disaggregation 
(TraceWizard) 

Unavailable ✓ ✓ ✓ ✓ - - 

35 Various (USA) Aquacraft 2011 End-use water 
consumption study, 
water conservation/ 
recycling study 

2006–2009 327 2 weeks 10 s Automated 
disaggregation 
(TraceWizard) 

Unavailable ✓ ✓ ✓ - - ✓   

Cominola et al., 
2018a 

Demand modelling and 
forecasting 

2007–2009 313 2 weeks 10 s Automated 
disaggregation 
(TraceWizard)        

36 Various, SEQ 
(Australia) 

Beal et al., 2011a End-use water 
consumption study 

2010 252 2 weeks 5 s Automated 
disaggregation 
(TraceWizard) 

Open access (SMIP 
2011) 

✓ ✓ ✓ ✓ ✓ ✓   

Beal et al., 2011b Study of users’ 
perception and 
awareness 

2010 222 2 weeks 5 s Automated 
disaggregation 
(TraceWizard)          

Beal and Stewart 
2011 

End-use water 
consumption study 

2010–2012 83÷252 14 weeks 5 s Automated 
disaggregation 
(TraceWizard)          

Beal et al. 2012 Demand determinants 
study 

2010–2011 252–110 6 weeks 5 s Automated 
disaggregation 
(TraceWizard)          

Beal et al., 2013 Study of users’ 
perception and 
awareness 

2010 222 2 weeks 5 s Automated 
disaggregation 
(TraceWizard)          

Makki et al., 2013 End-use water 
consumption study 
(shower) 

2010 200 2 weeks 5 s Automated 
disaggregation 
(TraceWizard)          

Nguyen et al., 2013a End-use disaggregation 
method development/ 
validation 

2010–2011 110÷252 10 weeks 5 s Automated 
disaggregation 
(TraceWizard)          

Nguyen et al., 2013b End-use disaggregation 
method development/ 
validation 

2010–2011 110÷252 10 weeks 5 s Automated 
disaggregation 
(TraceWizard)          

Beal and Stewart 
2014a 

Peak demand study 2010–2011 110÷252 10 weeks 5 s Automated 
disaggregation 
(TraceWizard)          

Beal and Stewart 
2014b 

End-use water 
consumption study 

2010–2012 53÷252 24 weeks 5 s Automated 
disaggregation 
(TraceWizard, 
Autoflow)          

Beal et al., 2014 2010–2013 69÷252 20 weeks 5 s        

(continued on next page) 
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Table 1 (continued ) 

EUD Location REUS Objective(s) Study 
period 

Household 
sample size 

Household 
monitoring 
period 
(average) 

Temporal 
data sampling 
resolution 

End-use data 
gathering approach 

EUD availability L1 L2 L3 L4 L5 L6 

Study of users’ 
perception and 
awareness 

Automated 
disaggregation 
(TraceWizard)   

Gurung et al., 2014 Peak demand study 2010–2012 44÷134 14 weeks 5 s Automated 
disaggregation 
(TraceWizard)          

Gurung et al., 2015 Peak demand study 2010–2012 44÷134 14 weeks 5 s Automated 
disaggregation 
(TraceWizard)          

Nguyen et al., 2015 End-use disaggregation 
method development/ 
validation 

Unreported Unreported Unreported 5 s Automated 
disaggregation 
(TraceWizard)          

Yang et al., 2018 End-use disaggregation 
method development/ 
validation 

Unreported 252 Unreported 5 s Unreported          

Nguyen et al., 2018 End-use disaggregation 
method development/ 
validation 

2010–2012 Unreported 16 weeks 5 s Automated 
disaggregation 
(TraceWizard)          

Cominola et al., 2019 Data gathering and 
elaboration study 

2010 252 Unreported 5 s Automated 
disaggregation 
(Autoflow)          

Meyer et al., 2021 End-use disaggregation 
method development/ 
validation (indoor- 
outdoor) 

2010–2012 252 Unreported 5 s Automated 
disaggregation 
(TraceWizard)        

37 Various 
(Netherlands) 

Foekema and Van 
Thiel 2011 

End-use water 
consumption study, 
demand determinants 
study 

2010 1237 1 week - Interaction with 
users 

Unavailable ✓ ✓ - - ✓ ✓   

Agudelo-Vera et al., 
2014 

End-use water 
consumption study 

1992–2010 Unreported Unreported - Interaction with 
users        

38 Various (Korea) Lee et al., 2012 End-use water 
consumption study 

2002–2006 146 4 years 10 min Direct monitoring Unavailable ✓ - - - ✓ - 

39 Hervey Bay 
(Australia) 

Cole and Stewart 
2013 

Peak demand study 2008–2009 2884 1 year 1 h Rough method 
(indoor + outdoor) 

Unavailable - - - - - -   

Gurung et al., 2014 Peak demand study 2008–2009 2494 1 year 1 h Rough method 
(indoor + outdoor)          

Gurung et al., 2015 Peak demand study 2008–2009 2494 1 year 1h Rough method 
(indoor + outdoor)        

40 Melbourne and 
Yarra Valley 
(Australia) 

Redhead et al., 2013 End-use water 
consumption study 

2010–2012 300 4 weeks 5÷10 s Manual and 
automated 
disaggregation 
(TraceWizard) 

Unavailable ✓ ✓ ✓ ✓ ✓ -   

Gan and Redhead 
2013 

End-use water 
consumption study 

2010–2012 300 4 weeks Unreported Manual and 
automated 
disaggregation 
(TraceWizard)          

Rathnayaka et al., 
2015 

End-use water 
consumption study 

Unreported 117 Unreported 5 s Automated 
disaggregation 
(TraceWizard)          

Nguyen et al., 2015 Unreported Unreported Unreported 5 s        

(continued on next page) 
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Table 1 (continued ) 

EUD Location REUS Objective(s) Study 
period 

Household 
sample size 

Household 
monitoring 
period 
(average) 

Temporal 
data sampling 
resolution 

End-use data 
gathering approach 

EUD availability L1 L2 L3 L4 L5 L6 

End-use disaggregation 
method development/ 
validation 

Automated 
disaggregation 
(TraceWizard)   

Siriwardene 2018 End-use water 
consumption study 

2011–2012 100* 1 year Unreported Unreported        

41 Hanoi (Vietnam) Otaki et al., 2013 End-use water 
consumption study 

2011 56 2 months Unreported Direct monitoring Unavailable ✓ ✓ ✓ - ✓ -   

Otaki et al., 2017 End-use water 
consumption study 

2011 56 5 months Unreported Direct monitoring, 
interaction with 
users        

42 Various (USA, 
Canada) 

DeOreo and Mayer 
2013 

End-use water 
consumption study 

2012–2013 762 2 weeks 10 s Automated 
disaggregation 
(TraceWizard) 

Restricted ✓ ✓ ✓ ✓ - ✓   

DeOreo et al., 2016 End-use water 
consumption study 

2012–2013 737 2 weeks 10 s Automated 
disaggregation 
(TraceWizard)          

Buchberger et al., 
2017 

End-use probability 
study, peak demand 
study 

1996–2011 1038 2 weeks 10 s Automated 
disaggregation 
(TraceWizard)          

Omaghomi et al., 
2020 

End-use probability 
study, peak demand 
study 

1996–2011 1038 2 weeks 10 s Automated 
disaggregation 
(TraceWizard)          

Vitter and Webber 
2018 

End-use disaggregation 
method development/ 
validation 

Unreported 94 Unreported Unreported Unreported        

43 Barcelona, 
Murcia (Spain) 

Fontdecaba et al., 
2013 

End-use disaggregation 
method development/ 
validation 

2009–2010 8 3 months 1÷5 s Automated 
disaggregation (ad 
hoc method) 

Unavailable - ✓ ✓ - - - 

44 Davis, CA (USA) Borg et al., 2013 End-use water 
consumption study, 
water conservation/ 
recycling study 

Unreported 3 1 week Unreported Direct monitoring, 
interaction with 
users 

Unavailable ✓ - - - - - 

45 Various 
(Netherlands) 

Van Thiel 2014 End-use water 
consumption study 

2013 1349 1 week - Interaction with 
users 

Unavailable ✓ ✓ - ✓ ✓ ✓   

Blokker and 
Agudelo-Vera 2015 

Demand modelling and 
forecasting 

2013 1349 1 week - Interaction with 
users        

46 Various 
(Austria) 

Neunteufel et al., 
2014 

End-use water 
consumption study 

2012–2013 105 Unreported 10 s ÷ 1 day Unreported Unavailable ✓ ✓ - - - - 

47 Adelaide 
(Australia) 

Arbon et al., 2014 End-use water 
consumption study, 
demand determinants 
study 

2013 140 2 weeks 10 s Unreported Restricted ✓ ✓ - ✓ ✓ ✓ 

48 Unreported 
(Greece, Poland) 

Shan et al., 2015 End-use water 
consumption study 

Unreported 148 - - Interaction with 
users 

Unavailable - ✓ - - ✓ - 

49 Jaipur (India) Sadr et al., 2015 End-use water 
consumption study 

Unreported 90 - - Interaction with 
users 

Unavailable ✓ - - - ✓ -   

Sadr et al., 2016 End-use water 
consumption study 

Unreported 90 - - Interaction with 
users        

50 Duhok (Iraq) Hussien et al., 2016 End-use water 
consumption study 

Unreported 407 - - Interaction with 
users 

Unavailable ✓ ✓ - - ✓ - 

51 Unreported Kozlovskiy et al., 
2016 

End-use water 
consumption study 

2016 1 3 weeks 2 s Unreported Unavailable - - - - - - 

(continued on next page) 
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Table 1 (continued ) 

EUD Location REUS Objective(s) Study 
period 

Household 
sample size 

Household 
monitoring 
period 
(average) 

Temporal 
data sampling 
resolution 

End-use data 
gathering approach 

EUD availability L1 L2 L3 L4 L5 L6 

52 Various 
(Netherlands) 

Van Thiel 2017 End-use water 
consumption study, 
demand determinants 
study 

2016 1617 1 week - Interaction with 
users 

Unavailable ✓ ✓ - - ✓ ✓ 

53 Sirte (Lybia) Alharsha et al., 2018 End-use water 
consumption study 

2017 230 - - Interaction with 
users 

Unavailable ✓ ✓ ✓ ✓ - -   

Alharsha et al., 2022 End-use water 
consumption study 

2017–2018 380 - - Interaction with 
users        

54 Unreported 
(USA) 

Jordán-Cuebas et al., 
2018 

Demand determinants 
study, demand 
modelling and 
forecasting 

2011–2013 2(30) 1 year Unreported Direct monitoring Open access ( 
Jordan-Cuébas et al., 
2017) 

✓ - - - - - 

55 Melbourne 
(Australia) 

Siriwardene 2018 End-use water 
consumption study 

2017–2018 120 1 year 10 s Automated 
disaggregation 
(Autoflow) 

Unavailable ✓ ✓ ✓ ✓ ✓ - 

56 Western Cape 
Province (South 
Africa) 

Du Plessis et al. 2018 End-use water 
consumption study 
(indoor-outdoor) 

2013–2015 371 Unreported 1 month Water balance 
(urban scale) 

Unavailable ✓d - - - - - 

57 Various (Greece 
and Poland) 

Kofinas et al., 2018 Data gathering and 
elaboration study 

2015–2016 16 13 months 30 s Direct monitoring Unavailable - - - - - - 

58 Cape Town 
(South Africa) 

Meyer and Jacobs 
2019 

End-use water 
consumption study 
(indoor-outdoor) 

Unreported 10 11 days 2 min Indirect monitoring 
(temperature 
sensors) 

Restricted - ✓d ✓d - - -   

Meyer et al., 2021 End-use disaggregation 
method development/ 
validation (indoor- 
outdoor) 

2016–2018 14 5 days Unreported Indirect monitoring 
(temperature 
sensors)        

59 Naples (Italy) Di Mauro et al. 2020 Data gathering and 
elaboration study 

2019 1 8 months 1 s Direct monitoring Open access ( 
Venticinque et al. 
2021) 

- ✓ - ✓ - -   

Di Mauro et al. 2022 Data gathering and 
elaboration study 

2019–2020 1 20 months 1 s Direct monitoring        

60 Illinois (USA) Bethke 2020 End-use water 
consumption study 

2018–2019 4 1 year 1 s Automated 
disaggregation (ad 
hoc method) 

Open access (Stillwell 
Research Group, 2021) 

✓ ✓ - - - ✓   

Bethke et al., 2021 End-use water 
consumption study 

2018–2019 4 1 year 1 s Automated 
disaggregation (ad 
hoc method)        

61 Madrid (Spain) Díaz et al. 2021 End-use water 
consumption study 

2021 3298 - - Interaction with 
users 

Unavailable - ✓ ✓ - - - 

62 Galle and 
Colombo (Sri 
Lanka) 

Otaki et al., 2022 End-use water 
consumption study, 
water conservation/ 
recycling study 

2017 127 3 weeks 1 week Direct monitoring Open access (Otaki 
et al., 2022) 

✓ - - - - - 

63 Various 
(Netherlands) 

Mazzoni et al., 2022 End-use disaggregation 
method development/ 
validation 

2019–2020 9 7 weeks 1 s Manual and 
automated 
disaggregation, 
interaction with 
users 

Restricted ✓ ✓ ✓ ✓ - -   

Mazzoni et al., 2023 End-use water 
consumption study 

2019–2020 9 7 weeks 1 s Manual and 
automated 
disaggregation,        

(continued on next page) 
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extended to a larger sample, the number of households making up the 
latter sample is considered for clustering. Similarly, when a measure
ment campaign is conducted in two (or more) stages, the first with a 
coarser and the second with a finer data sampling temporal resolution, 
the finest resolution is considered as a reference value for clustering. 
Finally, (3) concerning dataset availability – and similarly to Di Mauro 
et al. (2021) – we clustered EUD in three main categories of data 
accessibility: open access (if available in the literature and freely 
downloadable from the web), restricted (if not directly available, but 
details on how to obtain them are explicitly reported in the related 
REUS), and unavailable (if no information on how to access or purchase 
them is reported in the related REUS). 

The results of the EUD clustering are shown in Fig. 2. The following 
findings emerge for each considered criterion:  

⋅ Geographical area (Fig. 2a). EUD include data collected across all the 
continents, but mainly in North America (18 databases), Europe (18 
databases), and Oceania (13). A lower number of EUD include data 
collected in Asia (10), Africa (4), and South America (1). In general, a 
linkage between the level of digitalization of water utilities and the 
respective number of EUD is observed because their realization 
typically requires technologies and tools that may not be available in 
the most underdeveloped areas of the world. Moreover, a higher 
number of analyses – hence EUD – is observed for areas that have 
been strongly hit by water scarcity and drought conditions, such as 
the western coast of the United States or Australia (see, e.g., Mayer Ta
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Fig. 1. Primary objective of the 114 REUS reviewed.  
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et al., 1999, Mayer et al., 2003, Beal and Stewart, 2011, and Beal 
et al., 2014).  

⋅ Study period (Fig. 2b). Although REUS have been conducted since the 
1970s (Bennett and Lindstedt 1975, Siegrist et al., 1976), most EUD 
have been developed only after 2000. This finding is mainly due to 
the technological development in the late 1990s and, specifically, the 
advent of smart metering technologies, making available water 
consumption data at a fine spatial and/or temporal resolution, i.e. 
household or end-use level (Cominola et al., 2015; Gurung et al., 
2015). This aspect also explains why these first REUS were generally 
conducted in developed countries. In contrast, developing countries 
such as Sri Lanka, Thailand, and Vietnam have undergone REUS only 
since the last decade (Sivakumaran and Aramaki, 2010, Otaki et al., 
2011, Otaki et al., 2013). However, information on the first year of 
data collection is not available for a non-negligible group of 16 EUD 
(i.e. 24% of the total).  

⋅ Household sample size (Fig. 2c). The majority of the EUD include data 
collected for samples of households in a range between ten and a 
hundred (17 EUD, i.e. 26% of the total) or between hundred and a 
thousand (24 EUD, i.e. 36%). Only a limited number of EUD include 
data observed for samples smaller than ten households (11, i.e. 17%), 
or larger than a thousand (9, i.e. 14%). In general, household sample 
size (typically dependant on the scope of the research) is rather 
limited in the earliest studies, for which manual or laborious pro
cesses have been generally carried out to obtain water end-use data. 
For instance, in the EUD developed by DeOreo et al. (1996) – the first 
to be developed by relying on water consumption data at sub-minute 
resolution – 16 households were monitored. Their observed water 
consumption was manually disaggregated and classified into indi
vidual end uses based on the parameters of the water use events 
recorded at the household level. Considerable increases in the sam
ple size were made possible by introducing automated methods for 
data processing and classification (Mayer et al., 1999; Kowalski and 
Marshallsay 2003; Beal et al., 2011a). As far as the relationship 

between household sample size and water consumption results is 
regarded, it is expected that increasing the household sample can 
lead to EUD that are more representative of end-use water con
sumption in a specific location. However, it is worth observing that, 
to date, no REUS primarily aiming to explore the effects of sample 
size on water consumption results – thus defining guidelines that can 
aid water utilities and researchers to identify an optimal sample size 
– have been conducted, making this research question still unsolved.  

⋅ Household monitoring period (average) (Fig. 2d). Regarding the EUD 
for which water consumption data have been obtained employing 
direct measurements, different monitoring durations per household 
are observed, ranging from a minimum of a few days (i.e. less than 
one week) to a maximum of more than one year. Although a marked 
correlation is not evident between the length of the monitoring 
period and the other clustering variables, an inverse relationship 
between the length of the monitoring period and temporal data 
sampling resolution is sometimes observed (regarding EUD with 
similar household sample size). This emerges, for example, when the 
EUD presented by Mayer et al. (1999) and DeOreo et al. (2011) is 
compared against the EUD reported by Cole and Stewart (2013). 
Indeed, in the former cases, about one thousand households were 
monitored for around two weeks at the 10-s sampling resolution. In 
contrast, the latter analysis exploits hourly-resolution data from 
approximately 3000 households. Lastly, for 14% of the EUD, data 
were not obtained by the monitoring but with different methods (e.g. 
interaction with users). As reported by Bastidas Pacheco et al. 
(2023), collecting water consumption data for short periods can lead 
to results that may not be representative of varying water con
sumption patterns, given that this also depends on seasonal factors. 
Although some EUD include data collected over different periods of 
the year in order to explore seasonal water consumption behaviors 
(e.g. those exploited by Mayer et al. (1999), Roberts (2005), Hein
rich (2007), Beal and Stewart (2011), and Redhead et al. (2013)), it 
is worth noting that also the evaluation of the effects of data 

Fig. 2. EUD clustering results.  
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monitoring periods on water consumption temporal variability is still 
an open issue.  

⋅ Temporal data sampling resolution (Fig. 2e). Several authors highlight 
that the introduction of smart metering technologies allows water 
consumption data to be collected not only at a fine spatial resolution 
but also at a fine temporal resolution, i.e. from several minutes up to 
a few seconds (Cominola et al., 2015, Clifford et al. 2018). In the case 
of the reviewed REUS, different monitoring temporal resolutions are 
observed, ranging from a minimum of 1 s to a maximum of less than 
one reading per month (which is in line with the traditional resolu
tion of water metre readings for billing purposes). Moreover, the 
REUS review reveals that, in the case of coarse temporal resolution of 
monitoring, it is typically harder to identify all individual end uses of 
water, as also demonstrated by Cominola et al. (2018a), Bastidas 
Pacheco et al. (2022), and Heydari et al. (2022). By way of example, 
concerning the Hervey Bay (Australia) EUD, including aggregate 
water consumption data collected at hourly temporal resolution 
(Cole and Stewart 2013), only limited discriminations are made 
between indoor and outdoor water use. In contrast, Du Plessis et al. 
(2018) reveal that the same discrimination might be done also at the 
urban level by calculating a water balance, i.e. by relying on 
household water consumption data at a very coarse resolution (i.e. 
monthly) coupled with information obtained by monitoring waste
water flowing in sewer systems. However, it is worth noting that 
detailed information about individual end uses of water is typically 
obtainable only when data are available at sufficiently fine temporal 
resolution, i.e. more than one reading per minute. In fact, as reported 
by Cominola et al. (2018a) and Heydari et al. (2022) both on syn
thetic and real-world data, such a resolution generally allows 
end-use disaggregation and classification with acceptable accuracy, 
at least for the main end uses. This finding explains why most of the 
EUD reviewed include data with a temporal sampling resolution of at 
least one reading per minute (i.e. 26 of the 51 EUD for which this 
information is available).  

⋅ End-use data gathering approach (Fig. 2f). Although some EUD were 
obtained by directly monitoring each domestic end use (Anderson 
et al., 1993; Edwards and Martin 1995; Kim et al., 2007; Otaki et al., 
2008), the economic, practical, and technological limitations related 
to this kind of approach have motivated the introduction of 
non-intrusive techniques, based on manual or automated processing 
of the data collected at the household level (i.e. at the domestic inlet 
point, in proximity to the water metre), to obtain end-use informa
tion (i.e. at the level of individual appliance/fixture). From an 
operational standpoint, this end-use level determination can be 
either achieved utilizing audits, reports, or questionnaires submitted 
to users (Butler 1991; Ghisi and Oliveira 2007; Shan et al., 2015; 
Alharsha et al., 2018, Díaz et al. 2021) or by applying manual, 
semi-automated, or automated methods for water end-use disag
gregation and classification, such as those proposed by Mayer et al. 
(1999), Kowalski and Marshallsay (2003), Nguyen et al. (2013a), 
and Mazzoni et al. (2021). Some studies adopt hybrid approaches 
coupling different techniques, such as direct monitoring of only a 
limited subset of end uses coupled with interaction with the users to 
infer information on other water end uses (Bennett and Linstedt 
1975, Siegrist et al., 1976, Brown and Caldwell Consulting Engi
neers, 1984, Otaki et al., 2017). In general, the earliest studies were 
typically carried out by exploiting analogue tools to record water 
consumption data (i.e. chart recorders driven by the water metre) 
and by manually processing the data collected. Conversely, in the 
case of larger or more recent EUD, end-use information is mainly 
achieved by automatically processing aggregate water consumption 
data collected at a very fine temporal resolution (Mayer et al., 1999; 
Cubillo-González et al., 2008; DeOreo and Mayer 2013). Overall, the 
application of methods for end-use disaggregation and classification 
of household-level data is the most commonly used technique to 
obtain information about the end uses of water (i.e. adopted in 23 of 

the EUD discovered, or 35%). However, it is worth observing that 
EUD obtained from data disaggregation and classification may be 
characterized by different levels of uncertainty based on the accu
racy of the method considered – along with the inability of some of 
them to detect overlapping water-use events, or the a priori exclusion 
of overlapping events during data cleaning – two aspects which are 
hardly ever discussed in the related REUS (except those aimed at 
presenting new methods). Thus, due to the lack of sufficient infor
mation, EUD uncertainty in relation to disaggregation and classifi
cation performance will not be considered in the current study.  

⋅ Dataset availability (Fig. 2g). The vast majority of EUD is unavailable 
in the literature (52, i.e. 79%), whereas only a small group have open 
or restricted access (8 and 6, i.e. 12% and 9%, respectively). More 
specifically, most open-access EUD have been published in recent 
years (e.g. EUD exploited by Jordán-Cuebas et al. (2018), Di Mauro 
et al. (2020, 2022), Bethke et al. (2021), Otaki et al. (2022), Heydari 
et al. (2022), Arsene et al. (2022), and Bastidas Pacheco et al. 
(2023)). On the one hand, this is likely due to technological factors 
making digital data more available and shareable, as also highlighted 
by Di Mauro et al. (2021). On the other hand, this increasing trend in 
EUD accessibility may be fostered by the new policies typically 
adopted by scientific journals, encouraging authors to publicly share 
data for transparency and reproducibility purposes. In fact, the 
acknowledgement and awareness of the reproducibility challenge 
facing computational environmental modelling fields are currently 
growing (Choi et al., 2021). Conversely, only a few instances of 
open-access (or even simply restricted) EUD published in less recent 
years exist (i.e. EUD exploited by Mayer et al. (1999, 2004), Beal and 
Stewart (2011), and DeOreo and Mayer (2013)). Overall, it emerges 
that – despite the recent increase in open-access EUD – end-use data 
availability still represents a significant challenge in the spirit of 
open science and reproducible research. This motivates the current 
study of individual EUD characteristics and outcomes by relying only 
on the information reported in the REUS available in the literature 
(also due to the aim of standardizing the methodology for database 
analysis). 

2.3. EUD processing 

We systematically compared the EUD (based on results reported in 
the literature) by applying a six-level analysis (Fig. 3). This multi-level 
analysis aims to explore the characteristics of end-use water consump
tion from several points of view, revealing similarities and differences 
amongst the EUD concerning: (Level 1) daily per capita end-use water 
consumption; (Level 2) end-use parameter average values; (Level 3) end- 
use statistical parameter distributions; (Level 4) end-use daily profiles; 
(Level 5) end-use water consumption determinants; and (Level 6) effi
ciency and diffusion of water-saving end uses. 

2.3.1. Level 1: daily per capita end-use water consumption 
For each EUD including information about daily per capita water 

consumption at the end-use level, we considered the following cate
gories of indoor water consumption: dishwasher (D), washing machine 
(WM), shower (S), bathtub (B), toilet flusher (F), taps (T), leakages (L), and 
other uses (O), this latter including all the indoor water uses which 
cannot be included in other categories (e.g. evaporative cooler, garbage 
disposal) or ambiguous water uses (e.g. laundry or dishwashing, if no 
information is available about the type of use, i.e. manual or auto
mated). Specifically, for each EUD and end-use category, we processed 
data as follows:  

⋅ For REUS presenting daily per capita average values, we directly 
considered the reported values (once converted to L/person/day).  

⋅ For REUS presenting the end-use percent values of the daily per 
capita indoor water consumption, we turned these into daily per 
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capita values by exploiting the information about the average total 
daily per capita indoor water consumption reported.  

⋅ For REUS presenting values of end-use water consumption per family 
group per day, we turned these into daily per capita values by 
exploiting the information about the average occupancy rate of the 
households included in the study.  

⋅ For REUS presenting values specifically observed in different seasons 
(summer and winter), we averaged these to obtain values that could 
be representative of the overall EUD concerned (i.e. not affected by 
seasonal patterns) and, therefore, to be in line with those REUS 
describing the characteristics of water consumption only in relation 
to a single – sometimes already averaged – seasonal period (which 
are the majority).  

⋅ For REUS presenting multiple end-use water consumption values 
related to different subsets (regions, household types, etc.), we 
calculated a weighted average based on the size of each subset (i.e. 
the number of households monitored in each subset), to be in line 
with those REUS describing the characteristics of water consumption 
only in relation to the overall household sample (which are the 
majority).  

⋅ For REUS comparing baseline values against those observed after 
device retrofitting campaigns (e.g. low-flow toilet tank or tap aerator 
installations), we considered only pre-retrofitting data in order to 
explore the status quo of water consumption at the beginning of the 
study period, i.e. the conditions motivating the choice of installing 
new, more efficient fixtures. 

2.3.2. Level 2: end-use parameters (average values) 
To further explore the characteristics of water consumption at the 

end-use level, we computed four parameters describing the main fea
tures of different end uses: (1) volume per use (measured in l/use), defined 
as the volume of water consumed during an individual event of water 
use; (2) duration per use (measured in min/use), defined as the duration 
of an individual event of water use; (3) flow rate per use (measured in l/ 
min), defined as the average flow rate characterizing an individual event 
of water use; and (4) frequency of use (measured in uses/person/day), 
defined as the number of times (per person per day) a water end-use 
occurs. Level 2 of analysis was conducted for all end-use categories 
introduced in Level 1, except for the other category, which was ignored 
due to the heterogeneity of water uses present. Moreover, the average 
values of the above four metrics were obtained for each study based on 
the assumptions made in Level 1 (see the related sub-section). 

2.3.3. Level 3: end-use statistical parameter distributions 
Level 3 of the analysis further explores the characteristics of end-use 

parameters defined in Level 2 by comparing their probability distribu
tions. The motivation behind this analysis is that, in general, predictive 
or descriptive water demand models are calibrated based on predefined 
parameter distributions (i.e. the probability distribution of volume per 
use, duration per use, flow rate per use, and frequency of use for 
different end uses). However, to the authors’ knowledge, the literature 
lacks a comprehensive database including and comparing this kind of 
information. 

In most of the REUS including information about end-use parameter 
distributions, this information is shown in diagrams where the inde
pendent variable indicates the end-use parameter value (e.g. volume per 
shower use). Conversely, the dependant variable sometimes relates to 
the number of uses observed or to the relative frequency of occurrence. 
Therefore, given the tendency to include information in graphical form 
only – and in light of the high variability of the information available – 
we conducted Level 3 of analysis as follows:  

1 We digitized the information originally in graphical form by means 
of the Web Plot Digitizer v4.3 software (Rohatgi 2021). Specifically, 
we processed the end-use parameter distributions shown in the 
studies for the five most common end-use categories (i.e. dishwasher, 
washing machine, shower, toilet, and taps) and the four parameters 
defined in Level 2 (i.e. volume per use, duration per use, flow rate per 
use, and frequency of use).  

2 We processed the digitized information based on assumptions 
partially introduced in Level 1 and Level 2. Specifically: (i) we 
adapted the units of measurements to those selected for each end-use 
parameter in Level 2 (except tap duration that, given its limited 
average values, was assumed in s/use); (ii) in the case of REUS pre
senting end-use parameter distributions observed in specific seasons 
(summer and winter), we averaged these to obtain distributions not 
affected by seasonal patterns; (iii) in the case of REUS presenting 
multiple parameter distributions related to the type of end-use (e.g. 
front versus top-load washing machine) we calculated a weighted 
average based on the size of each subset; (iv) in the case of REUS 
comparing baseline distributions against those observed after device 
retrofitting, we considered pre-retrofitting distributions only.  

3 We converted the distributions into empirical probability density 
function curves (i.e. empirical PDF).  

4 We fitted the empirical PDF curves with MATLAB’s R2019a® fitdist 
function. Specifically, five PDFs were assumed to fit each empirical 

Fig. 3. Multi-level analysis layout.  
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PDF: normal, lognormal, exponential, Weibull, and Gamma. We 
applied a one-sample Kolmogorov-Smirnov test to each fitted dis
tribution type to evaluate its goodness-of-fit. Only the distribution 
types for which the Kolmogorov-Smirnov test was successful (i.e. 
provided the rejection of the null hypothesis at the 5% significance 
level) were then submitted to the Akaike’s Information Criterion 
(AIC) test and compared (Akaike 1974). Finally, we selected the 
distribution type passing the Kolmogorov-Smirnov test and charac
terized by the minimum AIC parameter value as the best fitting PDF, 
with its related parameter values. 

Overall, it is worth noting that uncertainties and potential errors may 
have arisen due to the reverse-engineering process adopted to obtain 
end-use statistical parameter distributions (e.g. digitization inaccuracy 
induced by low-resolution REUS histograms and, in turn, affecting curve 
fitting accuracy), the performance of which should be verified with 
actual end-use data distributions. However, given the scarce availability 
of most EUD (as demonstrated in Section 2.2) – motivating the charac
terization of end-use water consumption and parameters by relying only 
on the information reported in the REUS available in the literature – the 
above-mentioned approach resulted the most suitable method to uni
formly process a large and heterogeneous amount of (graphical) end-use 
data. 

2.3.4. Level 4: daily end-use profiles 
Level 4 of the analysis focuses on the comparative analysis of the 

daily end-use profiles shown in the REUS. Overall, the most common 
end-use categories for which daily profiles are available are dishwasher, 
washing machine, bathtub and shower, toilet, taps, and leakages. As in the 
case of end-use parameter distributions, this information is typically 
provided exclusively in graphical form (i.e. by means of charts including 
the pattern of the average end-use water consumption over the 24 h of 
the day) and with different units of measurement. Therefore, as for Level 
3 of the analysis, we first digitized the information on end-use daily 
profiles by means of the Web Plot Digitizer v4.3 software (Rohatgi 
2021). 

We then normalized (standardized) the digitized profiles for com
parison and processed them based on the following assumptions: (1) in 
the case of REUS presenting the end-use daily profiles observed in spe
cific seasons (summer and winter), we averaged these to obtain profiles 
not affected by seasonal patterns; (2) in the case of REUS presenting 
daily profiles related to multiple end uses of the same category (e.g. 
shower and bathtub, or kitchen sink and washbasin) we calculated a 
weighted-average profile based on the values of the daily per capita 
water consumption of each end use; and (3) in the REUS of studies 
comparing baseline profiles against those observed after device retro
fitting, we considered only pre-retrofitting profiles. 

2.3.5. Level 5: determinants of end-use consumption and parameters 
Given the high heterogeneity in the determinants of the end uses of 

water presented in the REUS, Level 5 includes analyses aimed at quan
tifying the most reported categories. Following an approach similar to 
Cominola et al. (2021b), we adopted a representation index R* (defined as 
the frequency of appearance of a determinant in the set of framework 
analysis studies) to quantify how popular a determinant is in the 
reviewed literature. 

The frequency of appearance of a given determinant is evaluated 
with respect to (1) daily per capita end-use water consumption and (2) 
end-use parameters (i.e. volume per use, duration per use, flow rate per 
use, frequency of use). Moreover, we focused on observable and external 
end-use determinants (Cominola et al., 2021b), whereas we did not 
consider latent determinants (i.e. psychological drivers such as people’s 
habits, perception, and awareness), which are typically less investigated 
at the end-use level. Specifically, we explored three categories:  

• Socio-demographic determinants, i.e. occupancy rate, family type, 
householders’ age, income, occupational status, educational level, 
and socio-economic region.  

• Property characteristics, i.e. household type and lot size.  
• External determinants, i.e. daily temperature and season. 

2.3.6. Level 6: efficiency and diffusion of water-saving end uses 
Level 6 of the analysis aims to explore the efficiency and the diffusion 

of water-saving end uses, along with their impact on water consumption. 
Specifically, due to the variety in the materials, methods, and implica
tions of the REUS including considerations about end-use water-saving 
efficiency and diffusion, the analysis consists of a review of the main 
outcomes of the REUS focusing on these aspects, and their major im
plications. Although limited to a qualitative discussion, Level 6 of the 
analysis aims to be a reference point for those who intend to investigate 
the topic of efficiency and diffusion of water-saving end uses by 
providing a qualitative overview of the most relevant outcomes indi
cated in the literature. 

3. Results and discussion 

Given the differences in the content of the EUD and the heterogeneity 
of data presented in the REUS, we first assessed whether the information 
required to carry out the multi-level analysis for each EUD was included 
within the body of the corresponding REUS. Results are detailed in 
Table 1 and summarized in Fig. 4. 

Daily per capita end-use water consumption data and the average 
values of end-use parameters are reported for at least one end-use 
category in the case of 52 and 44 of the 66 EUD (i.e. 79% and 67%, 
respectively). This means that these two aspects are the most explored in 
the literature. In contrast, considerations of end-use parameter distri
butions, daily end-use profiles, end-use determinants, or efficiency and 
diffusion of water-saving end uses can be outlined only in the case of 28, 
21, 21, and 25 of the 66 EUD (i.e. 42%, 32%, 32%, and 38%, respec
tively). Thus, the results of the analysis show that attention is generally 
paid to the evaluation of daily per capita water consumption of different 
end uses or the average values of the end-use parameters (i.e. Level 1 
and Level 2), while investigation of other aspects of the end-use water 
consumption such as parameter distributions (Level 3), daily profiles 
(Level 4), determinants (Level 5) or efficiency and diffusion (Level 6) is 
still rather limited. These outcomes are coherent with the findings of the 
literature reviews proposed in the framework of some REUS (Mayer 
et al., 1999; Beal and Stewart, 2011; Jordán-Cuebas et al., 2018), which 
include only the most relevant results accessible in the literature in 
terms of daily per capita end-use water consumption. Lastly, we observe 
a limited number of EUD with reported information that does not cover 
any level of the analysis (Jacobs 2007; Kim et al., 2007; Cole and Stewart 
2013; Kozlovskiy et al., 2016; Kofinas et al., 2018). This is mainly 
because the related REUS exploit end-use data for a variety of applica
tions (e.g. end-use demand model training/testing, end-use disaggre
gation and classification model calibration/validation, or considerations 
on data gathering at different sampling resolutions) without directly 
presenting the characteristics of the EUD concerned. Due to the lack of 
sufficient data, these EUD are cited in our study but not considered for 
further analyses. 

3.1. Level 1: daily per capita end-use water consumption 

Daily per capita water consumption data are available for at least one 
end-use category in the majority of EUD (52 out of 66, i.e. 79%). The 
average values of each study are shown in Table 2, which also features 
information on the average number of household occupants and the 
total indoor water consumption. 

We observe that showers and toilets are typically the end-uses with 
the highest per capita daily water consumption (average of 44.1 and 
38.0 L/person/day, respectively), followed by taps (32.9 L/person/day), 
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washing machines (28.8 L/person/day), bathtubs (9.9 L/person/day), 
and dishwashers (3.0 L/person/day). The EUD reviewed also reveal non- 
negligible average values in the case of domestic leakages (16.6 L/per
son/day), including both permanent (e.g. pipe breaks) or temporary 
leakages (e.g. blockage of toilet float valve). First, the results obtained 
confirm that the majority of residential water consumption is primarily 
tied to the use of water for personal hygiene and flushing. Second, it 
emerges that some end uses have been drastically reduced due to 
behavioral change and the introduction of efficient devices, as sub
stantiated in the following section. This reduction is mainly evident in 
the case of bathtubs, which have been almost entirely replaced by 
showers, but also applies to the case of tap use for dishwashing or 
laundry. However, although substantial water savings have generally 
been observed because of the diffusion of efficient devices like dish
washers (Agudelo-Vera et al., 2014), the tap component of water use is 
still non-negligible due to the high heterogeneity of uses associated with 
this end-use category (ranging from personal hygiene to cooking, 
drinking, or house cleaning). 

The box-whisker plots of the distributions of the average daily per 
capita end-use consumption values are shown in Fig. 5. The figure re
veals no substantial variations between the median of each distribution 
(white squares) and the aforementioned average values (red asterisks), 
with the exception of bathtub and leakages, whose median (about 4.5 
and 10.3 L/person/day, respectively) is considerably below the average 
and reveals an asymmetry of the bathtub and leakage distribution also 
distinguishable from the position of quartiles. Considering value 
dispersion, the most scattered distributions of the average daily per 
capita water consumption are those related to toilets and washing ma
chines (i.e. the end uses generally accounting for the largest portion of 
the total indoor water consumption along with showers). In contrast, 
less scattered values are observed for the other end uses (e.g. dish
washer, whose daily per capita consumption values are considerably in 
line). The high dispersion of toilet and washing machine values is more 
likely to be due to technological development rather than behavioral 
factors (i.e. changes in people’s attitude towards water use), as 
demonstrated by the strongly decreasing volume-per-use trends (shown 
in Table 3 and discussed in the subsequent section) along with the 
absence of substantial variations in the daily frequency of use over years. 
However, it is worth noting that other factors may also contribute to this 
spread, e.g. inaccuracies in disaggregation and classification methods 
causing event misclassification. 

Fig. 6 shows the trend of the daily per capita end-use water con
sumption over the last three decades, where dots represent the average 
values related to each EUD (colour and dimension are related to location 
and sample size, respectively). Specifically, the results are limited to 
those retrieved for the (developed) continents for which a sufficient 
number of EUD is available (i.e. Europe, North America, and Oceania). 

Overall, Fig. 6 reveals considerable differences amongst EUD even in 

the case of studies conducted in similar locations and periods (see, e.g., 
the large spread of in the use of dishwasher in North America over the 
decade 1990–2000 shown in Fig. 6a, or the use of washing machine in 
Oceania over the 2000–2010 decade shown in Fig. 6b). However, as far 
as the trend of the daily per capita water consumption is regarded, a 
decrease between the 1990–2000 and the 2010–2020 decades emerges 
in most of the end uses shown in the figure. More specifically, some of 
the largest drops in water consumption are observed over time in the 
case of automated or fixed-volume end uses, such as washing machines 
(from 52.9 to 18.0 L/person/day, Fig. 6b) and toilets (from 62.3 to 35.7 
L/person/day, Fig. 6e), confirming the large spread of values met in 
Level 1 of the analysis for these end uses. This drop is likely to be pri
marily due to technological development, which allowed an increase in 
the water-saving efficiency of these end uses. This is demonstrated by 
the decreasing trend of washing machine and toilet volume per use in 
Europe, North America, and Oceania from the 1990–2000 to the 
2010–2020 decade, in spite of a constant or even slightly increasing 
frequency of use (observable in Table 3 of Section 3.2). Conversely, 
human-controlled end uses do not always show a decrease in their daily 
per capita average consumption. This emerges, for example, in the case 
of showers (Fig. 6c) – for which the 10-year average consumption 
slightly increases from the 1990–2000 decade (42.0 L/person/day) to 
the 2010–2020 decade (45.5 L/person/day) – whereas tap use drasti
cally decreases over the same period (from 38.9 to 18.8 L/person/day, 
Fig. 6f). On the one hand, the increase in shower water consumption 
may be due to behavioral factors, such as the increase in the average 
frequency of use over decades (confirmed by the data reported in 
Table 3). On the other hand, the drastic decrease in tap water con
sumption may be related to the progressive replacement of manual 
water-consuming activities (i.e. laundry, dishwashing) with automated 
operations made by appliances, despite the lack of clear evidence in the 
trends of end-use parameters (such as volume per use and frequency of 
use). Lastly, we observe a decrease in the daily per capita consumption 
of dishwashers and bathtubs as well between the 1990–2000 and the 
2010–2020 decades (Fig. 6a and 6d), reasonably due to the increase in 
dishwasher water-saving efficiency along with the reduction of bathtub 
use in favour of showers. Again, the above considerations are supported 
by the results included in Table 3, showing a negative trend of the 
dishwasher volume per load (in spite of a slightly increasing dishwasher 
frequency of use) over the last three decades, and a strong decrease in 
bathtub frequency. However, exceptionally high bathtub consumption 
emerges in the case of the British EUD reported by Kowalski and Mar
shallsay (2003) – along with a considerably low shower consumption of 
about 30 L/person/day – and the North American EUD by Jordán-
Cuebas et al. (2018), characterized by a rather limited sample size. 

Fig. 4. Number of reviewed EUD addressing each aspect defined in Level 1 to 6 of the multi-level analysis.  
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3.2. Level 2: end-use parameters (average values) 

Average values of end-use parameters such as volume per use, 
duration per use, flow rate per use, or frequency of use are reported in 
the literature for at least one end-use category in the case of 44 EUD (i.e. 
67% of the total). Average end-use parameter values related to each EUD 
are shown in Table 3, along with the references to the respective REUS. 

Overall, volume per use and daily frequency of use are the most 
frequently reported end-use parameters. In fact, these are available for 
at least one end-use category in the case of 41 and 39 EUD, respectively. 
For individual end uses, volume per use and the daily frequency of use 
have mainly been explored in the case of toilets (35 and 37 EUD, 
respectively), washing machines (29 and 32 EUD) and showers (27 and 
32 EUD), whereas less relevance is given to dishwashers (20 and 25 

Table 2 
Summary of daily per capita end-use water consumption data.  

EUD REUS Occupants per 
household (persons) 

Daily Per Capita End-Use Water Consumption (l/person/day)a 

Total 
indoor 

D WM S B F T L Other 

1 Bennett and Linstedt, 1975 3.7 168.4 4.2 43.9 32.9 b 55.6 28.8 - 3.0 
2 Siegrist et al., 1976 4.5 161.0 - - 37.9 b 34.8 - - 88.3 
3 Brown and Caldwell Consulting Engineers, 1984 2.7 250.6 5.3 47.7 45.0 26.5 75.7 34.1 16.3 - 
5 Anderson et al., 1993 (pre-retrofitting) 2.9 191.9 - - 39.7 - 50.3 - - 101.9  

Anderson et al., 1993 (post-retrofitting) 2.9 162.0 - - 26.1 - 27.3 - - 108.6 
6 Edwards and Martin 1995 - 140.8 1.5 30.4 5.8 18.9 47.9 36.3 - - 
7 DeOreo et al., 1996 2.9 220.6 7.1 53.9 37.9 3.8 56.7 34.1 27.2 - 
8 Mayer et al., 1999 2.8 268.5 3.7 56.9 44.1 4.5 70.0 41.2 35.9 12.2 
9 Darmody et al., 1999 4.0 190.0 4.0 - 66.0 2.0 27.0 - 21.0 70.0 
10 Darmody et al., 1999 2.5 244.0 10.0 - 44.0 15.0 63.0 - 10.0 102.0 
11 Mayer et al., 2000 (pre-retrofitting) 2.5 240.8 5.3 56.0 34.1 14.0 71.2 34.8 24.6 0.8  

Mayer et al., 2000 (post-retrofitting) 2.5 151.3 4.5 34.8 32.9 10.2 29.9 30.3 8.3 0.4 
12 Foekema and Engelsma, 2001 - 126.2 2.4 22.8 42.0 3.7 34.8 20.4 - - 
13 Mayer et al., 2003 (pre-retrofitting) 2.6 325.9 3.8 52.6 45.4 11.4 75.3 39.7 97.3 0.4  

Mayer et al., 2003 (post-retrofitting) 2.5 199.8 3.4 33.3 40.5 10.6 37.1 39.7 33.7 1.5 
14 Loh and Coghlan 2003 (average) 2.8 168.0 - 42.5 53.0 b 30.5 29.5 7.5 5.0 
15 Kowalski and Marshallsay 2003 - 352.4 5.5 50.0 29.0 59.5 109.8 84.8 5.8 8.0 
17c Mayer et al., 2004 (post-retrofitting) 2.9 144.9 1.9 30.0 34.0 9.0 30.0 23.0 14.0 3.0 
18 White et al., 2004 - 184.0 2.0 - 57.0 9.0 45.0 - 3.0 68.0 
19 Roberts 2005 3.2 169.0 3.0 40.0 49.0 3.0 31.0 27.0 16.0 -  

Gato-Trinidad et al., 2011 3.2 165.0 - 39.8 47.4 - 29.1 - 12.0 36.7 
20 Kanne 2005 2.49 123.6 3.0 18.0 43.7 2.8 35.8 20.3 - - 
21 Ghisi and Oliveira, 2007 2.5 153.7 - 11.0 59.2 - 41.4 - - 42.1 
23 Heinrich 2007 (average) 2.7 156.6 2.4 40.8 45.1 4.3 33.0 23.3 6.9 0.8 
25 Otaki et al., 2008 4.4 77.0 - - - 25.0 15.0 - - 37.0 
26 Mead 2008; Mead and Aravinthan 2009 3.1 111.5 2.4 25.3 48.6 3.1 14.3 17.4 0.4 - 
27 Foekema et al., 2008 2.5 127.5 3.0 15.5 49.8 2.5 37.1 19.6 - - 
28 Cubillo-González et al., 2008 3.8 95.5 0.6 9.6 25.7 - 19.2 37.1 3.3 - 
29 Willis et al., 2009a; Willis et al., 2009b; Willis et al., 2009c; 

Willis et al., 2010b; Willis et al., 2013 
- 138.6 2.2 30.0 49.7 6.5 21.1 27.0 2.1 0.0 

30 Heinrich, 2010 (average) 2.7 160.7 2.3 42.4 48.9 2.5 32.7 25.0 6.0 0.9 
31 Sivakumaran and Aramaki, 2010 4.7 110.0 - - 37.0 b 19 - - 54.0 
32 Water Corporation, 2010 2.4 171.2 2.9 20.3 72.6 b 26.1 26.1 11.6 11.6 
33 Otaki et al., 2011 4.7 63.3 - - - 23.7 9.8 - - 29.8 
34 DeOreo et al., 2011 3.0 222.9 1.9 39.2 43.9 4.7 47.7 41.7 39.3 4.6 
35 Aquacraft 2011 (average) 2.9 180.6 2.6 36.4 39.8 4.5 35.2 32.6 25.8 3.7 
36 Beal and Stewart 2011 (average, winter 2010) 2.7 126.5 2.0 28.9 40.3 1.5 24.3 23.9 5.6 -  

Beal and Stewart 2014b (average) 2.5 126.5 1.8 27.0 41.7 2.3 28.2 19.2 6.3 - 
37 Foekema and Van Thiel 2011 3.1 120.1 3.0 14.3 48.6 2.8 33.7 17.7 - - 
38 Lee et al., 2012 - 151.3 - - - 24.7 38.5 - - 88.1 
40 Redhead et al., 2013 (average) 3.1 114.3 1.3 20.7 35.9 2.7 19.5 21.2 6.4 6.7 
41 Otaki et al., 2013 - 60.9 - - 10.4 b 18.6 - - 31.9  

Otaki et al., 2017 - 60.9 - - 14.1 b 21.7 - - 25.1 
42 DeOreo and Mayer 2013, DeOreo et al., 2016 2.6 195.3 2.2 32.3 39.9 5.1 46.9 37.3 24.2 7.4 
44 Borg et al., 2013 5.0 130.3 - 16.0 70.3 - 24.4 19.5 - - 
45 Van Thiel 2014 2.9 118.9 2.0 14.3 51.4 1.8 33.8 15.6 - - 
46 Neunteufel et al., 2014 - 114.0 3.0 14.0 25.0 4.0 34.0 34.0 - - 
47 Arbon et al., 2014 2.5 144.9 1.7 24.8 48.3 3.0 27.8 28.8 10.5 - 
49 Sadr et al., 2015 5.7 184.1 - - 62.6 b 44.7 - - 76.8 
50 Hussien et al., 2016 7.0 251.2 - - 36.8 0.5 26.2 - - 187.7 
52 Van Thiel 2017 2.7 107.0 2.5 14.1 44.2 1.6 34.6 10.0 - - 
53 Alharsha et al., 2018; Alharsha et al., 2022 6.6 255.0 0.7 13.4 41.0 13.0 50.7 133.1 - 3.1 
54 Jordán-Cuebas et al., 2018 2.5 223.1 - - 58.0 33.2 58.0 64.8 - 9.1 
55 Siriwardene 2018 3.0 129.9 3.0 15.1 42.3 10.6 31.7 - 4.5 22.7 
60 Bethke 2020; Bethke et al., 2021 4.0 126.7 1.9 4.0 59.4 - 11.1 40.5 - 9.8 
62 Otaki et al., 2022 - 97.1 - - - - 16.9 - - 80.2 
63 Mazzoni et al., 2023 3.9 121.6 3.6 17.0 46.2 b 32.8 14.6 - 7.3 
66 Bastidas Pacheco et al. 2023 3.8 173.9 - 24.1 54.3 7.7 44.6 - - 43.2  

Average 3.4 163.4 3.0 28.8 44.1 9.9 38.0 32.9 16.6 34.9 

Note:. 
a D = Dishwasher; WM = Washing machine; S = Shower; B = Bathtub; F = Flusher (toilet); T = Taps; L = Leakages. 
b Together with shower. 
c Study not available. Results were derived from Jordán-Cuebas et al., 2018. 
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EUD), bathtubs (19 and 21 EUD), and taps (11 and 20 EUD). These 
outcomes are most likely due to the major relevance that is typically 
given to toilets, washing machines, and showers because of their high 
daily per capita average water consumption values (see the results of 
Level 1 of the analysis), but it is also worth noting that the above- 
mentioned end-use events are typically amongst the most easily iden
tifiable by automated disaggregation and classification methods, either 
because of their recognizable patterns, or high event volume and 
duration. 

Conversely, duration per use and flow rate per use are less investi
gated. In fact, the average values of these parameters are available for at 
least one end-use category in the case of 34 and 32 EUD, respectively. It 
is worth noting that event duration is typically expressed in min/use in 
most of the cases, whereas, concerning taps, some studies (Mayer et al., 
1999, 2000, 2003) evaluate it in terms of total duration of tap use per 
day. In addition, as far as the daily frequency of use is concerned 
(typically expressed in uses/person/day), some authors (e.g. Fontdecaba 
et al., 2013) reported this parameter in terms of uses/household/day 
without providing information about the average occupancy rate. 

Therefore, the above cases are not included in Table 3. For individual 
end uses, showers are the most explored (with 33 and 31 EUD showing 
average values of duration and flow rate per use, respectively), followed 
by taps (8 and 11 EUD, respectively). The other end-use categories are 
almost entirely excluded from the REUS: specifically, their average 
values of duration and flow rate per use are shown in at most three-four 
cases only. 

The box-whisker plots of the end-use parameter average values 
provided in Table 3 are shown in Fig. 7, where we indicated only the sets 
of end-use parameter values appearing in at least five EUD. In greater 
detail, the following features emerge for different parameters:  

• Volume per use (Fig. 7a). Bathtubs are the most consuming end use, 
with an average volume per use of about 105.5 L/use, followed by 
washing machines (92.2 L/load) and showers (63.1 L/use), whereas 
considerably lower volumes per use are related to dishwashers (17.6 
L/load), toilets (9.0 L/flush) and taps (of about 2.3 L/use only). 
When the dispersion of the distributions is considered, it is worth 
noting that bathtubs and washing machines are also characterized by 

Fig. 5. Box-whisker plot of end-use water consumption (daily per capita average values) across all reviewed EUD. Median and average values are marked with white 
squares and red asterisks, respectively, whereas outliers are marked with grey dots. 
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Table 3 
Summary of EUD parameters (average values).  

EUD REUS Volume per use (l/use)a Duration per use (min/use)a Flow rate per use (l/min)a Frequency of use (uses/person/day)a 

D WM S B F T D WM S B F T D WM S B F T D WM S B F T 

1 Bennett and Linstedt, 1975 24.8 146.2 - - 15.5 6.6 - - - - - - - - - - - - 0.6 1.0 - - 13.1 16.6 
2 Siegrist et al., 1976 - - - - 15.1  - - - - - - - - - - - - - - - - 2.3 - 
3 Brown and Caldwell 

Consulting Engineers, 1984 
- - - - 19.7  - - - - - - - - 10.4 - - - 0.2 0.3 0.7 0.4 4.0 - 

4 Butler, 1991, 1993 - - 36.0 74.0 8.8  - - - - - - - - - - - - - 0.2 0.3 0.2 3.7 5.3 
5 Anderson et al., 1993 

(pre-retrofitting) 
- - 55.6 - 13.6  - - 6.3 - - - - - 9.5 - - - - - - - 3.8 -  

Anderson et al., 1993 
(post-retrofitting) 

- - 33.7 - 6.1  - - 6.0 - - - - - 5.7 - - - - - - - 4.5 - 

7 DeOreo et al., 1996 - - 59.1 - 15.6  - - - - - - - - - - - - 0.2 0.3 0.7 - 3.8 - 
8 Mayer et al., 1999 - - 65.1 - 13.2  - - 8.2 - - - - - 8.4 - - - 0.1 0.4 0.8 - 5.1 - 
11 Mayer et al., 2000 

(pre-retrofitting) 
- 154.8 68.5 90.8 13.7  - - 7.9 - - - - - 8.5 - - 4.5 0.2 0.4 0.5 0.1 5.2 -  

Mayer et al., 2000 
(post-retrofitting) 

- 92.0 56.5 92.0 5.2  - - 7.8 - - - - - 7.1 - - 3.8 - 0.4 0.6 0.1 5.5 - 

12 Foekema and Engelsma, 
2001 

20.0 80.3 - 113.5 8..1 - - - 7.6 - - - - - 7.7 - - - 0.2 0.3 0.7 0.1 6.0 14.7  

Blokker 2006; Blokker 
2010; Blokker et al., 2010 

14.0 50.0 - 120.0 6.0- 
9.0 

- 1.4b 5.0b 8.5 10.0 2.4- 
3.6 

0.25- 
0.80 

10.0 10.0 8.5 12.0 2.5 2.5- 
7.5 

0.3 0.3 0.7 0.0 6.0 16.7 

13 Mayer et al., 2003 
(pre-retrofitting) 

33.7 154.1 69.7 - 14.7  - - 8.9 - - - - - 7.6 - - 4.5 0.1 0.4 0.7 0.1 5.1 -  

Mayer et al., 2003 
(post-retrofitting) 

- 103.0 57.9 - 6.2  - - 8.2 - - - - - 6.8 - - 3.5 - 0.3 0.7 0.1 5.6 - 

14 Loh and Coghlan, 2003 
(average) 

- 33.0 59.5 - 7.8  - - 7.0 - - - - - 8.6 - - - - - 0.8 - 3.6 - 

16 Lauchlan and Dixon 2003 
(average) 

25.0 80.0 150.0 123.0 8.0 - - - - - - - - - - - - - - - - - - - 

19 Roberts 2005,  
Gato-Trinidad et al., 2011 

23.9 143.0 - 123.0 7.6 1.3 - - 7.1 - - - - - 9.5 - - 3.3 0.2 0.3 0.9 - 4.2 20.0 

20 Kanne, 2005 18.0 63.9 - 113.5 8.0 - - - 7.7 - - - - - 7.8 - - - 0.3 0.3 0.7 0.1 6.0 - 
21 Ghisi and Oliveira, 2007 - 90.0 - - - - - - 8.6 - - - - - 6.0 - - - - 0.1 1.3 - 4.3 - 
23 Heinrich, 2007 (average) - 127.5 79.2 - 6.2 1.6 - - 7.6 - - 0.5 - - 11.3 - - 3.8 - 0.3 0.7 - 5.0 11.9 
26 Mead, 2008; Mead and 

Aravinthan, 2009 
17.7 106.9 61.2 75.5 5.4 1.0 - - 7.2 - - 0.4 - - 8.8 - - 2.1 0.1 0.2 0.9 0.1 2.6 16.4 

27 Foekema et al., 2008 16.5 56.9 - 114.2 7.9 - - - 7.9 - - - - - 7.7 - - - 0.3 0.3 0.8 0.1 6.3 - 
28 Cubillo-González et al., 

2008 
16.9 61.1 69.2 - 7.1 - 5.1b 9.3b 8.1 - 1.7 - 3.8 7.6 9.0 - - - 0.1 0.2 0.5 - 3.3  

29 Willis et al., 2010b 
(pre-retrofitting) 

- - 57.4 - - - - - 7.2 - - - - - 10.0 - - - - - - - - -  

Willis et al., 2010b 
(post-retrofitting) 

- - 42.0 - - - - - 5.9 - - - - - 9.0 - - - - - - - - - 

30 Heinrich, 2010 (average) - 122.5 - - - - - - - - - - - - - - - - - 0.4 - - - - 
32 Water Corporation, 2010 - 98.7 67.0 - 5.5 - - - 6.7 - - - - - 10.0 - - - - - - - 5.0 - 
34 DeOreo et al., 2011 - 136.3 68.8 - 10.4 2.3 - - 8.7 - - 0.62 - - 8.1 - - 4.2 - 0.3 0.7 - 4.8 19.4 
35 Aquacraft, 2011 (average) - 121.5 60.2 - 7.9 - - - - - - - - - 7.5 - - 4.2 - 0.3 0.7 - 4.4 - 
36 Beal and Stewart, 2011 - 105.7 48.2 - 5.8 5.5 - - 6.0 - - - - - 8.1 - - - 0.2 0.2 0.7 0.0 3.7 18.6 
37 Foekema and Van Thiel, 

2011 
15.8 55.6 - 114.3 7.9 - - - 8.1 - - - - - 7.7 - - - 0.2 0.3 0.8 0.1 5.9 19.6 

40 Redhead et al., 2013 
(average) 

15.1 90.5 47.2 130.1 5.9 1.4 - - 6.6 - - 0.38 - - 7.2 - - 2.8 0.2 0.2 0.8 0.1 3.9 19.7 

41 Otaki et al., 2013 - - - - - - - - - - - - - - 2.5 - - - - - - - 4.2 - 
42 DeOreo and Mayer, 2013,  

DeOreo et al., 2016 
- - 70.0 - 9.8 1.9 - - 7.8 - - 0.50 - - - - - - 0.1 0.3 0.7 0.1 5.0 19.6 

(continued on next page) 
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the highest difference between the first and the last quantile, 
meaning that the average values available in the literature are 
generally more spread than those shown in the case of showers, 
dishwashers, and taps. We observe the smallest differences in the 
case of taps, with average values of the volume per use considerably 
in line with each other and in a range of only a few liters per use (or 
less). Overall, it is worth noting that a variety of values emerge when 
EUD from different geographical areas are compared. In particular, 
the average volumes per use observed in the North American EUD 
are typically higher than those reported in European and Oceanian 
EUD for all the end-use categories. In fact, the average appliance 
volume per load in the case of the American EUD is about 29.3 L/ 
load (dishwashers) and 138.8 L/load (washing machines) as opposed 
to the European (16.0 and 58.3 L/load, respectively) and Oceanian 
(17.2 and 109.0 L/load) values. This is also evident in the case of 
human-controlled end uses such as showers and taps, being the 
American EUD average values (68.5 and 3.6 L/use, respectively) 
higher than the corresponding European (58.1 and 1.5 L/use) and 
Oceanian (57.6 and 2.0 L/use) values. However, it is worth observing 
that the average starting year of the American EUD is 2005, whereas 
those of the European and Oceanian EUD are 2009 and 2008, 
respectively. Therefore, differences in end-use parameter values 
might also be due to temporal offsets amongst the EUD of different 
areas.  

• Duration and flow rate per use (Figs. 7b and 7c). Although a sufficient 
number of values is available only for showers and taps, our results 
reveal that shower use is typically characterized by much longer 
durations (on the order of several minutes and with an average of 
about 8.1 min/use) and higher flow rates (with an average of about 
8.1 L/min) as opposed to taps. Moreover, tap uses typically last less 
than one minute (with an average of about 25 s/use and little 
dispersion of values) and have a limited flow rate (on average 3.5 L/ 
min). The lack of sufficient information about the other end-use 
categories is mainly related to the fact that some other end uses 
are typically characterized by constant durations and flow rates per 
use (e.g. toilets), whereas some others are appliances and thus var
iations in the duration or flow rate per use are generally due to 
different programs selected. It also emerges that appliance load 
duration – which can be of several minutes up to some hours – is 
generally much longer than the total duration of water inflow, which 
is of a few minutes per load only (e.g. from 1.4 to 5.1 min in the case 
of dishwasher and from 5.0 to 9.3 min in the case of washing ma
chine, based on the values reported by Cubillo-González et al. 
(2008), Blokker et al. (2010), and Mazzoni et al. (2023)). Further
more – and similarly to the considerations set forth in the case of 
volume per use – different values emerge when the duration of the 
most reported end uses (i.e. showers and taps) is explored for 
different geographical areas. Overall, the analysis reveals that 
shower uses in the North American and European case studies are 
typically longer lasting (by about two minutes) than those related to 
Oceanian EUD (being the average duration of about 8.2–8.7 min/use 
in the former case and 6.8 min/use in the latter), although we do not 
observe large variations in the average flow rate per use. The 
American EUD reveal that, on average, also tap uses are longer 
lasting – and more intense – than Oceanian uses (i.e. 34 s/use and 
4.4 L/min, versus 25 s/use and 2.8 L/min, respectively). However, as 
previously mentioned, these results might be affected by different 
study periods, being the year 2005 the average starting year of the 
American EUD and the years 2008–2009 those of Oceanian and 
European EUD, respectively. Lastly, we highlight that the compari
son of end-use durations can also be affected by differences in data 
sampling resolutions adopted across EUD. Specifically, the sampling 
resolution in all the cases of EUD for which end-use parameter values 
are reported is equal to – or finer than – 10 s. As a consequence of 
different data sampling resolutions, uncertainties also arise in rela
tion to end-use flow rate (i.e. the other time-dependant end-use Ta
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parameter). However, unlike duration, the effects of different reso
lutions on flow-rate values cannot be directly assessed based on the 
information reported in the REUS concerned.  

• Frequency of use (Fig. 7d). Different behaviors emerge when the daily 
frequencies of use of the end-use categories considered are 
compared. On the one hand, a frequent daily use of toilets and taps 
emerges, being the former used on average 4.95 times/person/day 
and the latter used on average 16.98 times/person/day. In partic
ular, the toilet flusher is activated an average of 4.30 times/person/ 
day in the case of the Oceanian EUD and 5.13–5.30 times/person/ 
day in the case of North American and European EUD, whereas taps 
are opened between 16.05 (European EUD) and 18.52–18.78 times/ 
person/day (Oceanian and North American EUD). These end uses are 
also characterized by the highest difference between the first and the 
last quantiles. On the other hand, less frequent use of shower, ap
pliances, and bathtub is observed, with all these devices typically 
used less than once per person per day (i.e. 0.74 uses/person/day in 
the case of showers, 0.29 in the case of washing machines, 0.20 in the 
case of dishwashers, and 0.11 in the case of bathtubs). Specifically, 
shower frequency of use is slightly higher in the case of Oceanian 
EUD (0.84 times/person/day, as opposed to 0.69–0.70 times/per
son/day in the case of North American and European EUD), whereas 
washing machine frequency use is highest in North American EUD 
(0.38 loads/person/day versus 0.26 loads/person/day in the case of 
European and Oceanian EUD). Finally, as far as dishwasher use is 
considered, we observe no relevant differences in frequency of use 
amongst EUD from different continents. Overall, the main takeaways 
on end-use frequency of use are the following: (1) taps are generally 
the most frequently used devices – despite the limited duration of tap 
uses – due to their various utilization ranging from personal hygiene 
to cleaning, cooking, and washing; (2) toilets are typically flushed 
several times per person per day, although less frequently than taps; 

(3) showers are on average, used once per person per day or slightly 
less; (4) appliances are activated with daily (or higher) frequency 
only in case of households made up by three (or more) residents; (5) 
bathtubs are nowadays used only occasionally. 

3.3. Level 3: end-use statistical parameter distribution 

End-use parameter distributions are available – with regard to at 
least one end-use category and parameter – in the case of 28 EUD (i.e. 
42% of the total), meaning that, in the literature, this kind of informa
tion is less explored than the respective average parameter values. In 
Fig. 8 we show a detailed overview of the most common end-use 
parameter distributions, where the heat map relates the distribution of 
each end use and parameter to its availability (bathtub is not included 
due to the insufficient amount of information in the literature about 
bathtub parameter distributions). Fig. 8 reveals that, on average, volume 
per use and frequency of use are the parameters for which distributions 
are mostly available in the literature, followed by duration per use and 
flow rate per use (typically investigated only in the case of showers and 
taps). In the case of individual end uses, most of the distributions are 
related to shower and toilet, whereas less relevance is given to taps and 
appliances. Overall, the results shown in Fig. 8 in relation to end-use 
statistical parameter distributions are consistent with the outcomes 
achieved by investigating the availability of information about the 
average values of end-use parameters (Level 2 of the analysis), which are 
indicated in Table 3. 

The empirical distributions (i.e. empirical PDF curves) of end-use 
parameters, obtained by digitizing the information available in the 
REUS, are shown in Fig. S1 (see the Supplemental Data), whereas the 
respective probability distributions (i.e. statistical PDF curves) fitted by 
MATLAB’s R2019a® fitdist function are shown in Fig. 9. The main 
characteristics of each best-fitting PDF curve (distribution type, 

Fig. 6. End-use water consumption trends over the period 1990–2020. Filled dots are related to individual EUD, whereas their colour and dimension are related to 
study location and sample size, respectively. 
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parameters) are also detailed in Table S1 (see Supplemental Data), along 
with the results of the preliminary Kolmogorov-Smirnov goodness-of-fit 
test. 

The best-fitting PDF curves obtained from each distribution of end- 
use parameters allow the stochastic behavior of water consumption at 
the end-use level to be investigated more specifically. In particular, these 
findings show that:  

• Volume-per-use distributions are fitted by different PDFs based on 
the end-use considered and the characteristics of the respective EUD. 
The obtained PDF curves are mostly consistent in the case of shower 
events (Fig. 9c), often assuming a slightly right-skewed shape char
acterized by an upper tail and described by lognormal or Gamma 
distributions. A similar behavior is observed for taps (Fig. 9e), 
although covering a range of much smaller volumes and with sta
tistical curves also fitted by Weibull distribution (as in the case of the 

EUD used in Beal and Stewart (2011)). Conversely, differences 
amongst the distributions are clearly distinguishable for end uses not 
directly human-controlled, i.e. appliances (Figs. 9a and 9b) and toilet 
(Fig. 9d). These differences are mainly evident in the case of washing 
machine distributions (Fig. 9b), which include two clusters associ
ated with peaks of about 50–80 and 130–150 L/load, respectively. In 
greater detail, the former cluster is tied to European or Oceanian 
REUS carried out after year 2008 (Cubillo-González et al., 2008; Beal 
and Stewart, 2011; Redhead et al., 2013; Siriwardene 2018), 
whereas the latter cluster is related to (mainly North American) 
REUS conducted before year 2011 (Bennett and Lindstedt 1975, 
Mayer et al., 1999, Roberts 2005, Heinrich, 2010, Aquacraft 2011, 
DeOreo et al., 2011). This difference is most likely due to a variety of 
temporal and geographical contexts (i.e. study period and location) 
amongst the EUD concerned, related to different levels of 

Fig. 7. Box-whisker plot of the end-use parameters (average values) of each EUD. White squares and red asterisks are Median and average values are marked with 
white squares and red asterisks, respectively, whereas outliers are marked with grey dots. 
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technological development and thus differences in appliance makes 
and models.  

• Duration-per-use distributions are fitted by Gamma or lognormal 
probability distributions in most of the cases, sometimes with right- 
skewed PDF curves. In the case of individual end uses, shower dis
tributions result mainly in line with each other, showing peak du
rations of 5 to 9 min (Fig. 9h), whereas differences are observed 
between tap distributions (Fig. 9j) when the 20 s (or less) peak value 
indicated in Australian or New Zealand studies (Roberts 2005; 
Heinrich et al. 2007; Mead 2008; Redhead et al., 2013; Siriwardene 
2018) is compared against the 30–40 s North American peak values 
reported by DeOreo et al. (2011) and DeOreo and Mayer (2013). 

• Flow-rate-per-use distributions are generally fitted by nearly sym
metrical shapes in the case of showers (Fig. 9m), whereas more 
skewed distributions emerge in the case of taps (Fig. 9o). Regarding 
taps – and similarly to the outcomes achieved in the case of tap 
duration distributions (Fig. 9j) – differences are observed when the 2 
L/min peak value indicated in Australian or New Zealand studies 
(Roberts 2005; Heinrich et al. 2007; Mead 2008; Redhead et al., 
2013; Siriwardene 2018) are compared against the North American 
and European peak values of about 4 L/min, reported by Cubillo-
González et al. (2008), DeOreo and Mayer (2013), and Mazzoni et al. 
(2023).  

• Small variations in shape and peak values are observed when the 
frequency-per-use distributions of different end uses are considered, 
with PDFs generally peaking at about 0.1–0.2 loads/person/day 
(dishwasher and washing machine), 0.7–1.0 uses/person/day 
(shower), and 3–5 flushes/person/day (toilet). As limited skewness 
characterizes the majority of these distributions, the above peak 
values are consistent with the average end-use parameter values 
shown with Level 2 of the analysis. Lastly, it is worth observing that 
the lack of a sufficient number of tap distributions does not allow 
observations about the frequency of use to be made regarding this 
end-use. 

3.4. Level 4: daily end-use profiles 

Information about daily end-use profiles is available in the case of 21 
EUD (i.e. 32% of the total). Although the majority of REUS only show 
the average end-use daily profile, some others include several profiles 
per end use based on season (Roberts 2005; Kowalski and Marshallsay 
2005; Redhead et al., 2013), day type (Siriwardene 2018), or layout of 

Fig. 8. Number of EUD including information about end-use parameter 
distributions. 

Fig. 9. PDF distributions of different end uses and parameters. Each line is related to an individual EUD.  
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water infrastructure supplying the monitored households (Willis et al., 
2011b). In all the aforementioned cases, we calculated an average daily 
profile for each reported end use as also described in Sections 3.1 and 3.2 
(Levels 1 and 2 of the analysis). 

The results after data digitization and normalization are indicated in 
Fig. 10, where box-whisker plots of the average end-use daily profiles 
investigated in the reviewed REUS are shown. We observe peculiar 
shapes of the daily profiles based on the end use considered because of 
different water use behaviors, although the majority of profiles display 
minimum values at night and higher values during the day. Specifically, 
some end uses (i.e. toilet and taps) show a smooth profile over the 24 h 
(Figs. 10d and 10e), because people typically make use of these devices 
almost constantly during the day, whereas some others are character
ized by marked fluctuations related to periods of increased use. This is 
particularly evident in the case of showers and bathtubs (Fig. 10c), 
which appear to be used mostly in the early morning (before leaving 
home for daily activities) and evening (when returning home), but also 
applies to the case of dishwasher – which is mostly activated after 
mealtimes (Fig. 10a) – and washing machine (Fig. 10b), whose profile is 
typically characterized by a single peak in the morning along with a 
decrease in water consumption during the afternoon. 

In addition, the hourly (normalized) water consumption values 
available in the literature for each of the 24 h are characterized by quite 
similar values in the case of toilets and taps, meaning that the profiles 
are mostly close to each other independently of the case-study area. 
However, higher offsets – thus larger differences amongst the EUD – 
emerge for dishwasher, washing machine, shower, and bathtub profiles, 
as also observable from the differences between the quartiles of the 
distribution. The largest differences in the values reported in the liter
ature are generally observable in early morning and evening values, i.e. 
when the largest volumes of water are typically consumed. This finding 
is most likely due to the variety in habits and lifestyles of populations 

across the globe. For instance, different peak times of end-use water 
consumption – but also different daily distributions – emerge from the 
comparison between North and South European EUD (the results of 
which are included in Fig. S2 (see Supplemental Data)). Different peak 
times and distributions are likely due to different traditions and climatic 
conditions (and, thus, different waking times, mealtimes, and working 
times). With specific reference to the United Kingdom and Spain – where 
the end-use profiles of water consumption have been evaluated by 
Kowalski and Marshallsay (2005) and Cubillo-González et al. (2008), 
respectively – the diversity in home return times affects the peak time of 
shower and bathtub use in the evening (between 18:00 and 19:00 in the 
case of the United Kingdom and at around 21:00 in the case of Spain). 
Similarly, a temporal offset of 2–3 h is observed when washing machine 
daily profiles are compared. Although the most relevant discrepancies 
between the two aforementioned case-study areas are mainly evident in 
the case of showers/bathtubs and washing machines, different peak 
times and distributions due to different habits also emerge in the case of 
toilets and taps. In fact, the analysis reveals that different waking times 
have effects on the morning peak time of these end uses (ranging from 
8:00 in the case of the United Kingdom, to 10:00 – or even later – in the 
case of Spain). 

Finally, the box-whisker plot of the leakage daily profiles reported in 
the literature is also shown (Fig. 10f). As expected, leakage profiles 
appear nearly constant throughout the day, because domestic leakages 
are typically permanent (e.g. those due to pipe breaks or leaking valves). 
However, a slight increase in leakage rate is observed in diurnal hours. 
This may be due to the fact that most of the REUS investigating leakage 
profiles (Roberts 2005; DeOreo et al., 2011; Willis et al., 2011b; Arbon 
et al., 2014; DeOreo et al., 2016; Siriwardene 2018) also consider 
temporary leakages (e.g. due to momentary valve blocks), which are 
more likely to occur when end uses are activated with higher frequency. 

Fig. 10. Box-whisker plots of the normalized hourly end-use water consumption (i.e. daily profile) of each EUD. Median values are marked with white squares, 
whereas outliers are marked with grey dots. 
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3.5. Level 5: determinants of end-use consumption and parameters 

Information about the determinants of end-use water consumption 
and parameters are available in the literature for only 21 EUD (i.e. 32% 
of the total). We computed the R* index for each possible combination of 
end uses, determinants, and parameters investigated in the REUS. The 
results are shown in Fig. 11. 

The heat maps shown in Fig. 11 reveal that the majority of REUS 
available in the literature focus on the determinants of daily per capita 
end-use water consumption and frequency of use, whereas less relevance 
is given to the investigation of the determinants of end-use volume, 
duration, and flow rate per use. This is also consistent with the findings 
achieved in similar studies conducted with regard to the household level 
of detail (e.g. Cominola et al., 2021b). 

Concerning daily per capita end-use water consumption, the most 
explored determinants are socio-demographic, specifically as regards 
occupancy rate and family income. In the case of occupancy rate, some 
studies simply report the daily per capita end-use water consumption 
average values related to different household family sizes, whereas 
others (e.g. Mead 2008) make use of optimization methods to obtain the 
parameter values of the function best approximating the data observed. 
In general, the studies agree that daily per capita water consumption is 
inversely correlated with the occupancy rate in the case of toilets 
(Cubillo-González et al., 2008; Beal and Stewart, 2011; Lee et al., 2012; 
Willis et al., 2013; Arbon et al., 2014) and reveal different behaviors – 
although characterized by a decrease in the per capita water consump
tion along with an increase in the occupancy rate – in the case of showers 
and taps (Roberts 2005; Cubillo-González et al., 2008, Beal et al., 2012, 
Makki et al., 2013, Willis et al., 2013, Redhead et al., 2013, Arbon et al., 
2014, Siriwardene 2018). Moreover, discordant findings emerge when 
the impacts of family size on washing machine per capita water 

consumption are compared – in some cases characterized by a positive 
correlation with high occupancy rates (Willis et al., 2013), in some 
others by a negative correlation (Roberts 2005; Mead 2008; Arbon et al., 
2014) or not correlated (Beal et al., 2012). Furthermore, no marked 
correlations are found in the case of dishwashers and bathtubs, with the 
daily per capita water consumption on the latter end use more affected 
by family type, e.g. number of children, as in Redhead et al. (2013) and 
Arbon et al. (2014). Arbon et al. (2014) show that also family type has an 
impact on water consumption, highlighting a higher daily per capita 
consumption of showers in households without children and even higher 
in families with teenagers. Concerning income, the studies available in 
the literature reveal, on the one hand, a positive correlation with daily 
per capita water consumption, specifically as regards showers (Makki 
et al., 2013; Arbon et al., 2014), but also bathtubs and taps (Hussien 
et al., 2016). These findings are also confirmed by a study by Bastidas 
Pacheco et al. (2023) relating the daily per capita water consumption of 
these end uses to the daily total per capita water consumption, which 
may be reasonably considered a rather good substitute indicator of de
terminants such as family type and income. On the other hand, a 
negative correlation sometimes emerges in the case of toilets (Arbon 
et al., 2014; Hussien et al., 2016; Siriwardene 2018). This finding is most 
likely because higher-income families can have newer and more efficient 
toilet cisterns, allowing water savings upon the activation of flushers. 
However, this negative correlation is not observed in the case of 
human-controlled end uses (i.e. showers, bathtubs, taps), whose dura
tion of use – thus consumption – is at the discretion of householders and 
may be less moderate in the case of high-income residents. Moreover, as 
in the case of occupancy rate, different behaviors emerge from the 
analysis of the correlation between income and the per capita water 
consumption for washing machine: these parameters show a positive 
correlation in some cases (Beal and Stewart, 2011) and a negative 

Fig. 11. Representation index (R*) of the EUD about end-use determinants available in the literature.  
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correlation in some others (Arbon et al., 2014; Siriwardene 2018). 
As far as the determinants of end-use parameters are concerned, the 

literature lacks sufficient information about the drivers of end-use vol
ume, duration, and flow rate per use, except shower duration, whose 
relationship with householders’ age is explored in several studies 
reporting that teenagers and young adults typically have longer showers 
than older people (Foekema and Engelsma 2001; Kanne 2005; Foekema 
et al., 2008; Foekema and Van Thiel 2011; Arbon et al., 2014; Van Thiel 
2014; Van Thiel 2017). Moreover, more attention is paid to the de
terminants of the daily per capita frequency of use. On the one hand, an 
inverse correlation between daily per capita frequency of shower use 
and the number of children is reported by some authors (Roberts 2005; 
Mead 2008), along with a negative correlation between daily per capita 
frequency of washing machine use and occupancy rate (Roberts 2005; 
Redhead et al., 2013; Arbon et al., 2014; Siriwardene 2018). On the 
other hand, the correlation between end-use frequency of use and oc
cupancy rate, householders’ age, family type, income, or socio-economic 
region is deeply explored in the series of Dutch studies conducted be
tween 2001 and 2017 (Foekema and Engelsma 2001; Kanne 2005; 
Foekema et al., 2008, Foekema and Van Thiel 2014, Van Thiel 2014, 
Van Thiel 2017). Specifically, the studies show a positive correlation 
between householders’ age and frequency of toilet use and also 
demonstrate that bathtubs are more frequently used in households with 
young children. 

3.6. Level 6: efficiency and diffusion of water-saving end uses 

Considerations about efficiency and diffusion of water-saving end 
uses are available in the literature with respect to 25 EUD (i.e. 38% of 
the total), mainly focused on American or Oceanian case-study areas, 
where the analyses about water conservation and end-use efficiency are 
motivated by the presence of areas generally affected by relevant water 
scarcity issues and drought conditions (Carrão et al., 2016). Specifically, 
different approaches are adopted to explore the topic, and therefore 
results are presented in different ways, making normalization and 
comparison impractical. Only the most relevant key points are discussed 
in the following, whereas the detailed findings of each study are shown 
in Table S2 (Supplemental Data). 

First, it is worth noting that many studies presenting results about 
water-saving end-use efficiency and diffusion aim to promote water 
conservation. Different levels of water savings are achieved by adopting 
different strategies, ranging from the installation of alarm displays in 
proximity to some end uses for providing real-time feedback about water 
use (Willis et al., 2010b) to the retrofitting of some end uses with newer 
and more efficient ones, such as low-flow showerheads and toilets 
(Anderson et al., 1993) but also tap aerators and water-saving washing 
machines (Darmody et al., 1999; Mayer et al., 2000; Mayer et al., 2003; 
Roberts 2005; DeOreo and Mayer 2013). Willis et al. (2010b) observe 
that the average volume and duration per shower use decreases by 10% 
and 18%, respectively, after the installation of alarm displays in showers 
(see the related values in Table 3). Anderson et al. (1993), Mayer et al. 
(2000), Mayer et al. (2003), Roberts (2005), and DeOreo and Mayer 
(2013) observe a drop in the daily per capita water consumption of the 
end-use categories involved in retrofitting, along with a decrease in their 
volume per use (as shown in Table 2 and Table 3). Some studies also 
show a general increase in the daily frequency of some end uses after 
retrofitting, e.g. toilets (Anderson et al., 1993; Mayer et al., 2000; Mayer 
et al., 2003), along with an increase in the average duration of some 
others, e.g. showers (DeOreo and Mayer 2013). However, the effects of 
these increases in the duration and/or frequency of water use are 
balanced by the higher efficiency of water-saving devices, overall 
resulting in lower daily per capita water consumption values. Again in 
this context, Bastidas Pacheco et al. (2023) compare shower, toilet, and 
tap parameters obtained by monitoring against those defined by na
tional standards to evaluate the efficiency level for the aforementioned 
end uses, demonstrating that there are conservation opportunities 

especially with reference to toilet and showerhead retrofitting. Finally, 
it is also worth noting that studies exploring the potential water con
servation achievable by retrofitting highlight that this strategy can have 
considerable implications on peak consumption (Beal and Stewart, 
2014b), with the most consistent savings obtainable by installing more 
efficient toilets and washing machines (Heinrich et al. 2007). 

Other studies about efficiency of water-saving end uses (Mayer et al., 
1999; Loh and Coghlan 2003; Roberts 2005; Mead 2008; Blokker 2010; 
Blokker et al., 2010, Aquacraft 2011, Beal and Stewart, 2011) compare 
the characteristics of different end-use makes, models and year of 
installation, along with the technologies already available in the moni
tored households – such as top- and front-load washing machines, 
standard and low-flow toilets, and normal and efficient showerheads – 
and their related effects on water consumption. The studies show 
different consumption patterns and lower per capita water consumption 
values in the case of low-flow end uses and front-load washing ma
chines. However, as in the case of retrofitting studies, they reveal an 
increase in some characteristics of water use for efficient end uses, such 
as longer shower durations (Mead 2008; Arbon et al., 2014). 

The third group of studies investigate the evolution of end-use water 
consumption over the last decades, along with the diffusion of water- 
saving fixtures on the market in replacement of the traditional ones 
(Foekema and Engelsma 2001; Loh and Coghlan 2003; White et al., 
2004; Cubillo-González et al., 2008; Blokker 2010; Blokker et al., 2010, 
Aquacraft 2011, Agudelo-Vera et al., 2014). The studies show a general 
reduction of the per capita water consumption of different end uses, 
although with some exceptions. In fact, Loh and Coghlan (2003) observe 
an increase in the daily per capita water consumption of washing ma
chines between the early 1980s and the late 1990s, whereas the Aqua
craft 2011 study reports an increase in the shower water consumption – 
due to a higher shower duration and frequency of use – when the values 
observed in households built after the year 2000 are compared against 
those presented by Mayer et al. (1999). Similar observations are also 
made in the study conducted by DeOreo et al. (2016), showing an in
crease in toilet, tap, and dishwasher frequency of use. Moreover, Agu
delo-Vera et al. (2014) observe a decrease in the water consumption and 
daily frequency of use of some end uses over time due to technological 
improvements and changes in people’s habits (e.g. the reduction of 
baths in favour of showers). The study also indicates that the highest 
efficiency of water-saving end uses has been achieved in the case of 
washing machines, dishwashers, and toilets (with reductions in the 
average water consumption per use between 1992 and 2010 of about 
40%, 30%, and 20%, respectively), whereas different diffusion rates 
have emerged based on the end use considered (ranging from almost 
100% in the case of washing machines to 60% in the case of dish
washers, and 50–70% in the case of efficient toilets and showers). 
Similar results for toilet dual-flush systems are reported in the White 
et al. (2004) study, where a sample of over 2500,000 Australian users is 
considered, for which a progressive increase in the diffusion of 
dual-flush toilets is observed, ranging from 0% in 1980 to 74% in 2010. 
Moreover, the Foekema et al. (2001), Blokker (2010), and Blokker et al. 
(2010) studies report an increase in the diffusion of dishwashers in the 
Netherlands from 45% to 54% (years 2001–2007) along with a decrease 
in the diffusion of bathtubs. The above studies also report that the 
diffusion of dishwashers positively relates to household occupancy rate, 
whereas the diffusion of bathtub is nowadays mainly dependant on 
wealth class (income), coherently with some of the considerations made 
by Cubillo-González et al. (2008). 

3.7. Summary of study findings 

In light of the variety of outcomes presented and discussed in the 
study in relation to the characteristics of end-use water consumption 
from several points of view, the major findings that emerged at each 
level of the analysis can be summarized as follows: 
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• Daily per capita end-use water consumption (Level 1). The highest 
daily per capita water consumption is typically tied to showers, 
toilets, and washing machines, whereas lower values are generally 
related to taps, dishwashers, and bathtubs (with these end uses 
almost entirely replaced by showers nowadays). Moreover, the 
analysis points out that the largest decrease in the end-use water 
consumption of developed countries over the last three decades is 
related to washing machine, toilet, and tap uses, whereas a slight 
increase has emerged in the case of showers.  

• End-use parameter average values (Level 2). Volume per use and 
frequency of use are generally the most explored end-use parameters, 
whereas duration and flow rate per use are typically investigated 
only in the case of specific end uses such as showers and taps. In 
general, the highest volumes per use are observed for bathtubs, fol
lowed by washing machines and showers. In addition, as far as the 
end-use frequency is concerned, the analysis reveals considerable 
differences amongst the end uses, ranging from a maximum of more 
than 10 times per person per day (taps) to a minimum of about 0.1 
(bathtub).  

• End-use statistical parameter distributions (Level 3). While less 
common than the end-use parameter average values, a large variety 
of end-use parameter distributions are observed. As in the case of 
Level 2 of analysis, volume per use and frequency of use are mostly 
investigated, whereas duration and flow rate distributions are 
generally reported only for showers and taps. Focusing on volume 
per use, distributions are mostly in line in the case of human- 
controlled end uses (showers, taps), leading to greater differences 
in the case of appliances and toilets.  

• Daily end-use profiles (Level 4). The studies reviewed reveal 
different daily patterns based on the end uses. In general, smaller 
fluctuations throughout the day are observed for toilets and taps – 
which also relate to end uses with the smallest differences in the daily 
profiles available in the literature – whereas more heterogeneous 
patterns are observed in the case of appliances, bathtubs, and 
showers, because of different habits and lifestyles from around the 
world.  

• Determinants of end-use water consumption and parameters (Level 
5). Only the determinants of daily per capita end-use water con
sumption (i.e. the socio-demographic ones such as family size and 
income), and end-use frequency of use are explored and discussed in 
a sufficient number of EUD. Concerning family size, most of the 
related REUS report an inverse correlation between the occupancy 
rate and the daily per capita water consumption of toilets, showers, 
and taps, with a variety of behaviors in the case of appliances. 
Moreover, regarding the effects of income on water use, it emerges 
that, although higher income households typically have more effi
cient devices, their end-use water consumption is generally higher.  

• Efficiency and diffusion of water-saving end uses (Level 6). Most of 
the REUS including considerations about water-saving efficiency and 
diffusion of the related EUD show that the strategies with the aim of 
water conservation, such as retrofitting programs, are generally 
helpful in reducing water consumption, although the installation of 
low-flow devices may result in longer durations per use or higher 
frequency of use. The general decrease in the end-use water con
sumption – sometimes related to an increase in the duration of use or 
frequency per use – is likewise reported by the studies making ob
servations about the evolution of water consumption in the last de
cades, which also reveal an increasing diffusion of efficient water- 
saving end uses (dishwashers, low-flow showerheads, and toilet 
flushers, water-saving washing machines) along with the replace
ment of the most consuming ones. 

4. Conclusions 

In this review study, we provided a comprehensive overview of the 
state-of-the-art about research in the field of residential water 

consumption at the end-use level. Specifically, we reviewed 114 Resi
dential End-Use Studies (REUS) available in the literature, and quali
tatively and quantitatively investigated the information about the 
characteristics of 66 related End-Use Databases (EUD) by carrying out a 
multi-level analysis to evaluate the main perspectives from around the 
world in terms of water consumption. Based on the results available in 
the literature, our research revealed that most of the REUS mainly focus 
on the evaluation of the daily per capita end-use water consumption and 
the average values of end-use parameters (i.e. Levels 1–2 of the anal
ysis), whereas, generally, less relevance is given to the investigation of 
end-use parameter distributions, daily profiles, determinants, and effi
ciency (i.e. Levels 3–6). 

The findings of this study will likely be of interest to different actors 
involved in water resources management and water demand manage
ment. First, the findings of this work may be a reference for water 
utilities seeking information about the main characteristics of water 
consumption at the end-use level at both larger (i.e. worldwide) and 
smaller (i.e. regional) spatial scales. The availability of this information 
may allow water utilities to introduce or rethink strategies for more 
efficient management of water resources and infrastructure, e.g. revision 
of water tariffs and incentives, development of campaigns aimed to raise 
consumers’ awareness, but also planning of additional measurement 
campaigns or end-use studies with the objective of obtaining more 
detailed end-use water consumption data. Second, the end-use data 
presented in the current work can support research involved in the field 
of water systems in developing and validating demand models, methods 
for water end-use disaggregation and classification, or technologies for 
water reuse, recycling, and conservation. In addition, the findings of the 
study may help understand which aspects have been mostly explored in 
recent research and, if needed, identify the REUS of interest based on 
their geographical and methodological details. Third, the study can help 
citizens gain knowledge about the main characteristics of residential 
end-use water consumption from different contexts across the globe and 
in their living areas. The data reported here would be a valid benchmark 
against which to compare consumer habits and behaviors, thus 
encouraging more conscious and sustainable use of water. 

Beside the specific findings of this research, we highlight some 
general outcomes and outline recommendations for future research. 
Overall, data availability has been demonstrated to still be a substantial 
challenge, considerably limiting open science and reproducible research 
(Choi et al., 2021). Indeed, in light of the unavailability of the vast 
majority of EUD in the literature, the analyses conducted in this study 
were carried out by relying only on the information reported in the 
related REUS. This may have affected the results presented, since the 
amount of information obtainable from written publications is smaller 
than the information potentially obtainable by having access to the 
actual end-use data (i.e. the entire EUD). Uncertainties in the reported 
outcomes may have arisen due to the variety of methods (ranging from 
data averaging to digitization) adopted to standardize the variety of 
results reported in the literature. These results are also based on 
different data collection techniques, data resolutions, monitoring pe
riods, and end-use data gathering approaches, which all limit the pos
sibility to observe generalized behaviors and differences across studies. 
More specifically, the comparison of time-dependant end-use parameter 
values could be affected by the exploitation of data collected at different 
sampling resolutions. In fact, although all the data exploited in the 
analysis of end-use parameters are characterized by rather fine resolu
tions (e.g. 1–10 s), which have been demonstrated to be typically suf
ficient to grasp all different end uses of water (Heydari et al., 2022), the 
comparison of data collected at different resolutions may still affect the 
accuracy in quantifying residential end-use parameter values, especially 
in relation to short-duration events. This suggests new data sampling to 
be conducted at the highest possible resolution to allow end-use char
acterization – and additional comparisons – to be performed with 
reduced level of uncertainty, as also suggested by Cominola et al. 
(2018a) and Bastidas Pacheco et al. (2022). Again, we note that the 
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majority of EUD were obtained through disaggregation and classifica
tion approaches, the performance of which can considerably vary across 
the methods. Therefore, errors in EUD may also be due to different 
method accuracies in disaggregating and classifying end-use events, 
along with the potential inability of some methods to successfully detect 
overlapping water uses, when these are not excluded from analysis a 
priori. However, this aspect could not be considered in our study due to 
the lack of sufficient information in the REUS concerned. Lastly, it is 
worth pointing out that, despite the relevant number of REUS and EUD 
reported and reviewed in the current research, some others could have 
been missed by the authors – and thus may be missing in this study – due 
to limited diffusion in the literature or because of publication in lan
guages different from those known by the authors. 

In conclusion, our results can be considered as a first step to present 
and classify a large amount of fragmented data, and to outline what is 
currently available in the literature. It is also a sound starting point from 
which future studies on residential end uses of water can be developed. 
There is still wide room for investigation on many relevant open issues 
that should be addressed in future research. On the one hand, although 
not yet possible based on the very limited number of currently available 
datasets, the realization of a fully open-access end-use database – 
including a comprehensive number of water events observed and 
collected in a variety of spatiotemporal contexts – would represent an 
important step forward allowing for detailed and wide analyses to be 
carried out, going beyond the limits currently affecting the literature on 
residential end uses of water. On the other hand, in-depth evaluations 
should be carried out in relation to aspects such as the identification of 
the required household sample size and monitoring period duration to 
properly determine statistically significant water consumption features. 
This would enable water utilities and researchers to successfully 
compensate for the differences in water consumption behaviors 
observable over too limited periods or household samples, while 
reducing monitoring efforts and the invested resources. 
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