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1  Introduction

1.1  Advancements in multiphysics modeling: a 
background

Multiphysics systems, characterized by the interaction of 
multiple physical phenomena, are crucial in science and 
engineering. These systems often involve coupled par-
tial differential equations (PDEs) that describe complex 
processes across various scales and domains. Traditional 
numerical methods for solving such systems, including 
finite element methods (FEM) and finite difference methods 
(FDM) can be computationally intensive and may struggle 
with highly nonlinear or long-term simulations [1].

To address these challenges, techniques such as opera-
tor splitting and sequential time-stepping have been widely 
employed. Operator splitting decomposes complex coupled 
PDEs into simpler subproblems, which are solved indepen-
dently or sequentially, a method particularly effective for 
multiphysics problems like fluid-structure interactions and 

	
 Mahmoud Khadijeh
m.khadijeh@tudelft.nl

Veronica Cerqueglini
s298323@studenti.polito.it

Cor Kasbergen
c.kasbergen@tudelft.nl

Sandra Erkens
s.m.j.g.erkens@tudelft.nl

Aikaterini Varveri
a.varveri@tudelft.nl

1	 Department of Engineering Structures, Delft University of 
Technology, Stevinweg 1, 2628 CN Delft, Netherlands

2	 Department of Environmental, Land and Infrastructure 
Engineering, Politecnico di Torino, 24 Corso Duca degli 
Abruzzi, 10129 Turin, Italy

Abstract
Physics Informed Neural Networks (PINNs) have been rarely applied to solve multiphysics systems due to the inherent 
challenges in optimizing their complex loss functions, which typically incorporate multiple physics-based terms. This 
study presents a multistage PINN approach designed to efficiently solve coupled multiphysics systems with strong interde-
pendencies. The multistage PINN progressively increases the complexity of the physical system being modeled, enabling 
more effective capture of coupling between different physics. The computational merits of this approach are demonstrated 
through two illustrative applications: prediction of asphalt aging and modeling of lid-driven cavity flow. Quantitative and 
qualitative comparisons with standard PINN and adaptive weight PINN approaches demonstrate the enhanced precision 
and computational efficiency of the proposed algorithm. The multistage PINN achieves a reduction in training time of 
more than 90% compared to standard PINNs while maintaining better alignment with the finite element method (FEM) 
solutions. The improvement in computational efficiency, coupled with enhanced accuracy, positions the multistage PINN 
as a powerful tool for addressing complex multiphysics problems across various engineering disciplines. The method’s 
ability to handle interactions between multiple physical processes, such as diffusion, chemical reactions, and fluid dynam-
ics, makes it suitable for simulating long-term material behavior and complex fluid systems.
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porous media flow [2–4]. Sequential approaches, on the 
other hand, manage coupling by iterating between physi-
cal processes over discrete time steps, as seen in heat trans-
fer and reactive transport simulations [5]. These strategies 
reduce computational complexity but may introduce errors 
at the interfaces of subproblems or require careful tuning of 
time steps, motivating the development of machine learn-
ing-based alternatives.

In recent years, physics informed neural networks 
(PINNs) have gained attention as a promising, mesh-free 
alternative for solving complex PDEs, including those that 
govern multiphysics systems. Introduced by Raissi et al. 
[6], PINNs use the universal approximation capabilities of 
neural networks while incorporating physical laws directly 
into the loss function. This approach allows for the simul-
taneous satisfaction of governing equations and boundary/
initial conditions, potentially leading to more accurate and 
efficient solutions for complex physical systems [7–9].

PINNs face several challenges when applied to complex 
systems. These include difficulties in balancing multiple 
loss terms, slow convergence for highly nonlinear prob-
lems, and potential instabilities in long-term predictions 
[10]. Additionally, their training time remains a limitation 
compared to traditional methods for simpler forward prob-
lems. To address these issues, researchers have proposed 
various innovative strategies.

One such approach involves adaptive weighting 
schemes, which dynamically adjust the weights of differ-
ent terms in the loss function during training [11]. Another 
strategy employs curriculum learning, gradually increas-
ing the complexity of the problem during training [12]. 
Physics-constrained neural networks represent another 
advancement that incorporates domain knowledge directly 
into the network architecture [13, 14]. This approach can 
improve the stability and accuracy of predictions, especially 
for long-term simulations. Researchers have also explored 
domain decomposition techniques, which divide the prob-
lem domain into subdomains and train separate networks 
for each [15]. A more detailed discussion of these strategies, 
including their mathematical formulations and comparative 
performances, is presented in section 2.4.

1.2  PINNs in complex systems: applications and 
current limitations

Recent studies have revealed several limitations in the PINN 
methodology when applied to complex, coupled systems. 
For example, in fluid dynamics, PINNs have shown promise 
in solving coupled advection-diffusion equations and non-
linear Burgers equations [16, 17]. However, these studies 
revealed challenges in handling high Péclet number flows 
and capturing shock phenomena accurately. On the other 

hand, research on turbulent flows using PINNs demon-
strated limitations in modeling high Reynolds number sce-
narios, where the complexity of the flow physics becomes 
particularly challenging [18, 19].

In materials science and solid mechanics, PINNs have 
been applied to phase-field fracture dynamics and poro-
elasticity problems [20]. These applications revealed chal-
lenges in handling discontinuities associated with fracture 
propagation and difficulties in modeling large deforma-
tions in porous media. The modeling of coupled thermo-
hydro-mechanical processes in porous media using PINNs 
showcased their potential in complex geosystems but also 
exposed limitations in dealing with multiscale phenomena 
[21]. The interaction of processes occurring at different 
spatial and temporal scales proved challenging for standard 
PINN formulations.

In the context of materials degradation, several studies 
have highlighted specific limitations of PINNs. Corrosion 
modeling using PINNs successfully captured coupled elec-
trochemistry and ion transport but struggled with moving 
boundary problems associated with corrosion front propa-
gation [22]. Fatigue crack growth predictions using PINNs 
showed good agreement with experimental data but faced 
difficulties in accurately representing discontinuities in the 
solution field [23].

Polymer degradation modeling using advanced machine 
learning techniques, including PINNs, revealed challenges 
in accurately predicting complex chemical kinetics involved 
in the degradation process [24]. Similarly, concrete aging 
models using PINNs and hybrid physics-ML approaches 
faced difficulties in bridging multiple scales and capturing 
long-term behavior accurately [25]. These limitations high-
light the need for advanced PINN methodologies that can 
address the challenges associated with complex, coupled 
multiphysics systems.

1.3  Objectives and contributions: PINNs for 
multiphysics modeling

The modeling of coupled multiphysics systems presents 
significant challenges for existing computational methods. 
PINNs have shown promise in this area, but still face limita-
tions in handling complex, nonlinear coupled systems effi-
ciently and accurately. These limitations include difficulty 
in balancing multiple physics-informed loss terms, slow 
convergence and instability in training for highly coupled 
systems, and inaccuracies in long-term predictions for 
evolving material properties.

The primary objective of this study is to address these 
challenges by developing a multistage PINN approach 
designed for coupled multiphysics systems with com-
plex interactions, such as those encountered in material 
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degradation and fluid dynamics. The key contribution of 
this approach is a staged learning process that gradually 
incorporates different physical phenomena, enabling more 
effective handling of coupled multiphysics problems.

To illustrate the broad applicability of the method across 
various fields, the study examined asphalt aging predic-
tion and lid-driven cavity flow. The first application tack-
les a complex material degradation problem involving 
coupled heat transfer, oxygen diffusion, and time-dependent 
chemical reactions. The second application addresses fluid 
dynamics, showcasing the method’s adaptability in han-
dling diverse physical systems governed by the Navier-
Stokes equations. These phenomena are mathematically 
represented as a system of coupled, two-dimensional PDEs, 
capturing the spatial and temporal evolution of the materi-
al’s properties. The multistage PINN approach is compared 
with other methods, including standard PINNs and adaptive 
weighting techniques, to highlight the advantages in terms 
of accuracy and computational efficiency.

2  Theoretical background

2.1  General formulation of coupled PDE systems

Coupled multiphysics problems involve the interaction of 
multiple physical phenomena, each described by its own 
set of equations. These interactions can lead to complex 
behaviors that cannot be captured by considering each phe-
nomenon solely [1]. Coupled multiphysics problems can be 
generally expressed as a system of N interdependent PDEs 
[26]:

Fi

(
u,

∂u
∂t

, ∇u, ∇2u, x, t

)
= 0, i = 1, . . . , N � (1)

where u = (u1, . . . , uN ) is the vector of state variables, x is 
the spatial coordinate, t is time, and Fi are nonlinear differ-
ential operators. The coupling is shown in the dependence 
of each Fi on multiple components of u and its derivatives. 
These systems are typically subject to initial and boundary 
conditions:

u(x, 0) = u0(x), x ∈ Ω� (2)

Bi (u, ∇u, x, t) = 0, x ∈ ∂Ω, t > 0� (3)

where Ω is the spatial domain, ∂Ω is its boundary, u0 speci-
fies the initial state, and Bi are boundary condition opera-
tors. The coupling in these systems occurs in various forms 
within the equations [27].

Direct coupling occurs when the equation for one vari-
able explicitly contains another variable or its derivatives. 
This can be represented as:

Fi

(
u,

∂u
∂t

, ∇u, ∇2u, x, t

)
= fi(uj ,

∂uj

∂t
, ∇uj , ∇2uj), i ̸= j� (4)

Indirect coupling arises when the equations share common 
parameters that depend on multiple variables. This can be 
expressed as:

Fi

(
u,

∂u
∂t

, ∇u, ∇2u, x, t

)
= gi(p(u))� (5)

where p(u) is a vector of parameters that depends on mul-
tiple components of u. Boundary coupling occurs when the 
boundary conditions for one variable depend on another 
variable:

Bi (u, ∇u, x, t) = hi (uj , ∇uj) , i ̸= j, x ∈ ∂Ω� (6)

Initial condition coupling exists when the initial conditions 
for different variables are interrelated:

ui (x, 0) = ϕi (uj(x, 0)) , i ̸= j, x ∈ Ω� (7)

Figure 1 illustrates the structure and connections of such 
a system, highlighting the mathematical coupling between 
equations.

2.2  Basic principles of PINNs

PINNs represent a significant shift in scientific computing, 
integrating data-driven machine learning approaches with 

/ = ₁( , , )

/ = ₂( , , )/ = ₃( , , )

//

/ , /

Legend:

PDE 1 (u₁)

PDE 2 (u₂)

PDE 3 (u₃)

Fig. 1  Visualization of a coupled PDE system, illustrating the interde-
pendencies between equations through shared variables and coupling 
terms
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This approach allows for efficient and accurate computa-
tion of derivatives, which is essential for evaluating PDE 
residuals and their gradients during the training process. For 
a system of N coupled equations:

N i[u1, ..., uN ] = fi(x, t), i = 1, ..., N � (11)

The loss function for such a system becomes:

L(θ) =
N∑

i=1




Ldata,i(θ)︸ ︷︷ ︸
Data-driven

part

+ λiLPDE,i(θ)︸ ︷︷ ︸
Physical

model part




� (12)

This formulation allows PINNs to simultaneously solve 
multiple coupled PDEs by incorporating both the physics 
of the system and any available data. Algorithm 1 provides 
a general framework for solving coupled multiphysics sys-
tems using standard PINNs.

physics based modeling. PINNs address the limitations of 
purely data-driven methods and the computational chal-
lenges associated with solving complex, nonlinear PDEs. 
Consider a general nonlinear PDE of the form:

N u = f(x, t), x ∈ Ω, t ∈ [0, T ]� (8)

where N  is a nonlinear differential operator, u(x,  t) is the 
solution, f(x,  t) is a known function, and T represents the 
final time of interest for the problem. The PINN approach 
approximates the solution u(x,  t) using a neural network 
û(x, t, θ), where θ represents the network parameters. The 
key innovation of PINNs lies in the formulation of the loss 
function, which typically includes both data mismatch and 
PDE residual terms:

L(θ) = Ldata(θ)︸ ︷︷ ︸
Data-driven

part

+ λLPDE(θ)︸ ︷︷ ︸
Physical

model part
� (9)

Algorithm 1  PINN Algorithm for Coupled Multiphysics Systems

where Ldata(θ) measures the mismatch between network 
predictions and available data, which primarily consists of 
boundary conditions and initial conditions of the solution 
u(x,  t), and may also include additional measurements or 
observations when available, LPDE(θ) quantifies the resid-
ual of the PDE, and λ is a weighting parameter.

2.3  Formulation of standard PINN loss functions for 
coupled systems

A crucial feature of PINNs is their use of automatic differ-
entiation to compute derivatives. This capability helps the 
handling of complex, high-order PDEs. For a neural net-
work û(x, t, θ), derivatives are computed as:

∂û

∂x
= ∂

∂x
û(x, t, θ), ∂2û

∂x2 = ∂2

∂x2 û(x, t, θ)� (10)

2.4  Recent advancements in PINNs methodologies

Recent years have seen significant developments in PINNs 
methodologies. These advancements aim to improve the 
stability, efficiency, and accuracy of PINNs in various 
applications.

Researchers have introduced adaptive weighting tech-
niques to optimize the balance between different terms in 
the loss function. One study proposed an adaptive weighting 
scheme where the loss function is formulated as:

L(θ) =
N∑

i=1
wi(θ)Li(θ)� (13)

where wi(θ) are adaptive weights that evolve during training 
based on the relative magnitudes of the individual loss terms 
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Physics-constrained neural networks represent another 
advancement in incorporating domain knowledge directly 
into the network architecture. Research has demonstrated 
that custom activation functions σ(x) can be designed based 
on the underlying physics [12]:

σ(x) = f(x) + g(x)σ̃(x)� (17)

where f(x) and g(x) are chosen to satisfy known physical 
constraints, and σ̃(x) is a standard activation function. This 
approach can improve the stability and accuracy of the pre-
dictions, especially for long-term simulations.

An effective approach to further enhance the training 
process is to sample BCs and ICs adaptively. This ensures 
that the network accurately captures the boundary and ini-
tial conditions of the problem. Techniques such as impor-
tance sampling can prioritize regions with higher residuals 
or errors, ensuring that the network focuses on the most 
critical areas during training [31]. Another strategy involves 
gradually increasing the number of sampling points within 
the domain during training. This helps the network to first 
learn the overall structure of the solution and then refine 
it by focusing on finer details. Curriculum learning can be 
applied here, where the complexity of the problem is pro-
gressively increased by adding more sampling points or by 
refining the mesh used for sampling [32].

These recent advancements have significantly expanded 
the capabilities of PINNs in the handling of complex and 
interacting systems. However, there are still big challenges 
especially for complicated problems involving multiple 
physical processes. The multistage PINN approach pro-
posed in this study builds on these developments, offering 
a novel strategy to address some of these challenges. It pro-
vides a robust framework for solving PDEs efficiently and 
accurately in complex physical systems. Table 1 provides an 
overview of the recent advancements in PINN methodolo-
gies to solve complex physics problems.

3  Multistaged PINNs for coupled 
multiphysics systems

The foundation of this approach is a neural network 
designed to map spatial and temporal coordinates to the rel-
evant physical variables of the system. For a system with d 
spatial dimensions and n physical variables, the network can 
be expressed as:

N : Rd+1 → Rn� (18)

u = N (x, t; θ)� (19)

Li(θ). This approach has shown improved convergence and 
accuracy in various problems by dynamically balancing the 
contributions of physical constraints and boundary condi-
tions during the training [11].

Curriculum learning strategies gradually increase prob-
lem complexity during training. In the context of PINNs, this 
approach can be applied by simplifying equation parameters 
initially and progressively increasing them to their actual 
values [28]. Additionally, curriculum learning has been pro-
posed to automatically adjust sample weights, emphasizing 
easier non-layer regions. This technique improves the net-
work’s approximation accuracy for strongly singular per-
turbation problems [29]. A general equation for curriculum 
learning in PINNs can be expressed as:

Ltotal(θ, t) = α(t)Ldata(θ) + β(t)Lphysics(θ) + γ(t)Lboundary(θ)� (14)

where α(t), β(t), and γ(t) are time-dependent weight-
ing functions chosen to gradually increase the importance 
of different loss terms, and Ldata(θ), Lphysics(θ), and 
Lboundary(θ) represent the data, physics, and boundary con-
dition loss terms, respectively. This approach can improve 
the learning process and the model’s ability to capture com-
plex physical behaviors, especially in problems with mul-
tiple scales or strong nonlinearities.

To better handle multiscale phenomena, multifidelity 
PINNs have been developed. These approaches combine 
data from different fidelity levels to enhance the model’s 
ability to capture both large scale behavior and fine scale 
details [30]. The loss function in this case takes the form:

L(θ) = Llow(θ) + βLhigh(θ)� (15)

where Llow and Lhigh represent losses corresponding to low 
and high fidelity data, respectively, and β is a weighting fac-
tor. This is relevant for problems involving processes that 
occur at different spatial or temporal scales. Domain decom-
position techniques have been explored to address issues 
related to complex geometries and improve the overall effi-
ciency of the solution process. One approach is to divide 
the problem domain into subdomains and trains separate 
networks for each [15]. For a domain Ω divided into K sub-
domains, the global solution can be expressed as:

u(x) =
K∑

k=1

χk(x)uk(x)� (16)

where χk(x) are partition of unity functions and uk(x) are 
local solutions in each subdomain. This approach has shown 
improved performance for problems with complex geom-
etries or localized phenomena.
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are weighting parameters. The PDE residual term ensures 
the network’s predictions satisfy the governing equations:

Ls
PDE =

∑
i

∥∥∥∥fi

(
x, t, us,

∂us

∂x
,

∂us

∂t
, . . .

)∥∥∥∥
2

� (22)

where fi represents the i-th PDE in the system. Boundary 
and initial condition losses are formulated similarly:

Ls
BC =

∑
j

∥Bj (x, t, us)∥2
� (23)

Ls
IC =

∑
k

∥Ik (x, us(x, 0))∥2
� (24)

where Bj  and Ik represent boundary and initial conditions, 
respectively. For each stage s, the training process involves: 

1.	 Initializing the network Ns( or loading weights from 
the previous stage for s > 1).

2.	 Generating training data appropriate for the current 
stage.

3.	 Minimizing the loss function.
4.	 Saving the optimized weights for potential use in the 

next stage.

This process is repeated for a specified number of epochs or 
until convergence criteria are met. To facilitate knowledge 
transfer between stages, the optimized weights from stage s 
are used to initialize the network for stage s + 1. This trans-
fer allows the network to build upon previously learned fea-
tures and physics.

To validate and demonstrate the efficacy of the proposed 
multistaged PINN approach, two multiphysics problems are 
presented as test cases. The first example explores the com-
plex process of asphalt aging, a phenomenon of significant 
interest in civil engineering and materials science. The sec-
ond example examines the fluid dynamics in a lid-driven 
cavity, involving the coupled Navier-Stokes equations. Both 
examples are implemented using PyTorch, a machine learn-
ing library that provides efficient computation and auto-
matic differentiation capabilities, which is widely used for 
building PINNs models [36].

To address initialization dependence in PINNs, a con-
sistent initialization strategy was implemented using fixed 
random seeds (1234) for both PyTorch and NumPy libraries 
across all experiments. This approach ensures reproducible 
results by maintaining identical initial model parameters 
and stochastic processes across runs.

where u represents the vector of physical variables, x the 
spatial coordinates, t the time, and θ the network param-
eters. The learning process is divided into S stages, each cor-
responding to a level of physical complexity. In each stage 
s, the network focuses on a subset of the physical variables 
or equations:

us = Ns (x, t; θs) , s = 1, 2, . . . , S� (20)

where us represents the subset of physical variables con-
sidered in stage s. The loss function for each stage, Ls, is a 
crucial component and includes multiple terms:

Ls = λs
PDELs

PDE + λs
BCLs

BC + λs
ICLs

IC� (21)

where Ls
PDE represents the PDE residuals, Ls

BC the bound-
ary condition losses, Ls

IC the initial condition losses, and λ 

Table 1  Comparison of PINNs studies
Approach Strengths Limitations
Adaptive 
Weight 
PINNs [33]

Improved convergence; 
Better handling of stiff 
problems

May not fully address 
challenges in highly 
coupled systems; Poten-
tial instability in weight 
adaptation

Curriculum 
Learning 
PINNs [28, 
29, 34]

Improved stability in train-
ing; Better performance on 
complex problems

Requires careful design 
of curriculum; May not 
generalize well to all 
problems

hp-VPINNs 
[35]

Improved accuracy for 
problems with local-
ized features; Adaptive 
resolution

Increased computa-
tional complexity; May 
struggle with highly 
nonlinear coupled 
systems

Self-adaptive 
PINNs [11]

Efficient architecture 
optimization; Improved 
performance on various 
problems

Increased training time; 
May not always find 
optimal architecture

Multifidelity 
PINNs [30]

Improved accuracy with 
limited high-fidelity data; 
Efficient use of computa-
tional resources

Requires availability of 
multifidelity data; Com-
plexity in balancing 
different fidelity levels

Physics-
constrained 
PINNs [12]

Improved stability and 
accuracy for long-term 
predictions; Better adher-
ence to physical laws

Requires deep under-
standing of underlying 
physics; May limit flex-
ibility of the network

Domain 
Decomposi-
tion PINNs 
[15, 33]

Improved handling of 
complex geometries; 
Potential for parallelization

Challenges in ensur-
ing continuity across 
subdomains; Increased 
complexity in 
implementation

Multistage 
PINNs (This 
study)

Improved handling of 
coupled multiphysics prob-
lems; Significant reduction 
in training time

May require careful 
design of stages; Poten-
tial for underestimation 
in some variables
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hardening and brittleness of the asphalt, affecting its visco-
elastic properties and overall performance.

The governing equations of these variables (i.e., tem-
perature, oxygen pressure, carbonyl area) are presented as 
follows [47]:

1- Temperature diffusion: The temperature distribution 
within the asphalt is governed by the heat equation:

∂T

∂t
= α∇2T � (25)

where T is temperature, t is time, ∇( gradient operator) = [
∂

∂x , ∂
∂y

]
, and α is the thermal diffusivity of the asphalt.

2. Oxygen pressure diffusion: The oxygen pressure 
within the asphalt is described by a modified diffusion equa-
tion that accounts for oxygen consumption during the oxi-
dation process:

∂P

∂t
= D∇2P − c0RT

h
∗ ∂CA

∂t
� (26)

where P is oxygen pressure, D is the diffusion coefficient 
of oxygen in asphalt, R is the universal gas constant, h is 
the oxygen solubility in asphalt binder at a standard tem-
perature of 30°C, CA is the carbonyl area, c0 is a factor that 
converts reaction rate of CA to rate of oxygen consumption.

3. Carbonyl area formation: The formation of carbonyl 
compounds, represented by the carbonyl area (CA), is mod-
eled using a kinetic equation:

∂CA

∂t
= MRT F Okf e−kf t + kc� (27)

where MRT F O is the limiting amount of carbonyl formation 
due to the first-order reaction after hot mix production, kf  is 
the fast reaction rate constant, and kc is the constant reaction 
rate constant. The rate constants kf  and kc are temperature 
and pressure dependent, following the Arrhenius-type rela-
tionship [48]:

kf = Af

(
P

P0

)a

e−Eaf /RT � (28)

kc = Ac

(
P

P0

)a

e−Eac/RT � (29)

where Af  and Ac are pre-exponential factors, P0 is the ref-
erence pressure, a is the pressure exponent, Eaf  and Eac are 
activation energies.

4  Example 1: an advanced PINN-based 
multistage approach for modeling asphalt 
aging

4.1  Background on asphalt aging

Asphalt, a complex mixture of hydrocarbons derived from 
petroleum, is one of the most widely used materials in road 
construction. The viscoelastic properties of asphalt make 
it ideal for creating durable, flexible pavements capable of 
handling diverse traffic loads and environmental conditions 
[37, 38]. Asphalt binders, the adhesive component in asphalt 
mixtures, play a crucial role in determining the overall per-
formance of road surfaces.

However, the properties of asphalt materials are not 
static. They evolve over time due to various environmental 
factors. This phenomenon, known as asphalt aging, signifi-
cantly impacts the durability and functionality of pavements 
[39, 40]. Among the various aging mechanisms, oxidative 
aging stands out as a primary contributor to long-term 
asphalt degradation [41].

Oxidative aging is a complex process primarily driven 
by the interaction between asphalt binders and atmospheric 
oxygen and temperature. This aging mechanism can be 
characterized as a two-stage process [42]:

	● Fast-rate reaction: Initially, there is a rapid oxidation 
phase where the most reactive components of the as-
phalt binder quickly interact with oxygen. This stage is 
characterized by a high reaction rate and is particularly 
significant in the early life of the pavement.

	● Constant-rate reaction: Following the fast-rate period, 
the oxidation continues at a slower, more constant rate. 
This stage is known as the long-term aging process of 
the asphalt.

Temperature plays a crucial role in the aging process, with 
higher temperatures accelerating the oxidation reactions fol-
lowing the Arrhenius-type relationship [43]. The diffusion 
of oxygen within the asphalt matrix is also temperature-
dependent. Oxygen diffusion is equally important, as the 
availability and concentration of oxygen directly affect the 
rate of oxidation [44].

A primary indicator of oxidative aging is the formation 
of carbonyl compounds, quantified by the carbonyl area in 
infrared spectroscopy [45, 46]. The carbonyl area serves 
as a measure of the extent of oxidation and correlates with 
changes in the rheological properties of the asphalt binder. 
The increasing in the carbonyl content typically leads to 
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The second stage introduces a simplified version of the 
oxygen pressure process, coupling it with the temperature 
model. In this stage, a simplified oxygen pressure equation 
is used, where the term involving ∂CA

∂t  is omitted, assuming 
a constant rate of oxygen consumption. This simplification 
increases the complexity as the network must now solve two 
interrelated PDEs simultaneously, but without the full com-
plexity of the carbonyl area formation.

The final stage incorporates the full system, including the 
complete oxygen pressure equation and carbonyl area for-
mation. At this point, the PINN is tasked with solving the 
complete coupled system of PDEs that describe the asphalt 
aging process, including the interdependencies between 
temperature, oxygen pressure, and carbonyl area formation.

The use of a simplified oxygen pressure equation in the 
second stage serves as an intermediate step between the 
basic heat equation and the fully coupled system. This inter-
mediate stage helps the network to gradually adapt to the 
coupling between temperature and oxygen pressure before 
introducing the additional complexity of carbonyl area 
formation.

In addition to this multistage approach, an adaptive 
weight PINN method is also considered for comparison in 
this study. The adaptive weight PINN dynamically adjusts 
the weights of different loss components during training to 
enhance the balance between satisfying physical constraints 
and fitting boundary conditions during the training. This 
method provides an alternative approach to handling the 
complexities of the coupled PDE system in asphalt aging 
modeling.

While the temperature variable (T) appears to influence 
pressure (P) and carbonyl area (CA) more directly than vice 
versa, the temperature PDE residual is maintained in the 
loss function for all stages of the multistage PINN approach. 
This decision is based on several important considerations. 
First, real-world multiphysics systems often exhibit com-
plex, bidirectional couplings that may not be immediately 
apparent. By including the temperature residual throughout, 
the model ensures that any small, indirect effects of P and 
CA on T are captured. Second, this approach enhances the 
overall numerical stability of the solution. The temperature 
residual acts as a constraint, ensuring that the temperature 
field remains physically consistent throughout the optimiza-
tion process, even when the focus is on P and CA. Third, 
in coupled systems, errors in one variable can propagate 
and amplify in others. Maintaining the temperature residual 
minimizes the potential for error accumulation in the tem-
perature field, which could otherwise lead to inaccuracies in 
P and CA predictions. Lastly, while the current model may 
suggest a primarily one-way coupling, maintaining the full 

Figure 2 shows the coupling between the three governing 
equations, forming a complex multiphysics system.

The temperature (T) affects both oxygen pressure (P) and 
carbonyl area (CA) formation. It directly influences the reac-
tion rates kf  and kc in the CA formation equation through 
the Arrhenius relationships and appears in the oxygen pres-
sure equation, affecting the consumption term. Oxygen 
pressure (P) influences the carbonyl area (CA) formation 
through the pressure-dependent terms in the rate constants 
kf  and kc, which directly affect the CA formation rate. In 
turn, carbonyl area (CA) formation impacts the oxygen pres-
sure (P), as the rate of CA formation (∂CA/∂t) appears in 
the oxygen pressure equation, representing oxygen con-
sumption during oxidation.

This coupling creates a feedback loop where changes in 
one variable can propagate through the system, affecting the 
others. For instance, an increase in temperature can acceler-
ate CA formation, which in turn increases oxygen consump-
tion, potentially leading to changes in the oxygen pressure 
distribution. These interactions make the aging process of 
asphalt a complex phenomenon that requires simultaneous 
consideration of all three components for accurate modeling 
and prediction.

4.2  Training algorithm for asphalt aging prediction

The training process follows a curriculum learning strategy, 
which gradually increases the complexity of the task the 
neural network must learn. The curriculum is divided into 
three stages.

In the first stage, the network learns to model only the 
temperature diffusion process. This allows the PINN to 
establish a foundation in solving the basic heat equation.

Oxygen Pressure (Pb)
/ = ∇ − ( , )

,

( , )

T

P

,

T

CA

Temperature (T)

/ = ∇

Carbonyl Area (CA)

/ = ( , )

Fig. 2  Schematic representation of the coupled multiphysics system 
governing asphalt aging
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For oxygen pressure:

P (x, 0, t) = Pbottom

P (x, Ly, t) = Ptop

P (0, y, t) = Pleft

P (Lx, y, t) = Pright

where Lx and Ly  are the dimensions of the asphalt sample 
in the x and y directions, respectively. For the initial con-
ditions, specified values for T, P, and CA throughout the 
domain at time t = 0 are given as:

coupling in the formulation future-proofs the model. If future 
research reveals more complex interactions between T, P, 
and CA, the model structure is already equipped to accom-
modate these without requiring significant restructuring.

Dirichlet boundary conditions are employed for tempera-
ture (T), oxygen pressure (P) at the domain boundaries (top, 
bottom, left, and right edges of the asphalt sample). These 
conditions can be mathematically expressed as follows:

For temperature:

T (x, 0, t) = Tbottom

T (x, Ly, t) = Ttop

T (0, y, t) = Tleft

T (Lx, y, t) = Tright

Fig. 3  Spatial distribution of collocation points, boundary conditions, and initial conditions for the coupled PDE system
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where wbc, wic, and wpde are weighting factors for the 
boundary condition, initial condition, and PDE residual 
losses, respectively. i ∈ {T, P, CA} represents the vari-
ables temperature, oxygen pressure, and carbonyl area. 
Nbc, Nic, and Npde are the numbers of boundary points, 
initial condition points, and collocation points, respectively. 
ipred
j  and itrue

j  are the predicted and true values at bound-
ary points. ipred

k (t = 0) and iinit
k  are the predicted and ini-

tial values at t = 0. The last three terms represent the PDE 
residuals for temperature, oxygen pressure, and carbonyl 
area, respectively. This multistage approach allows the 
PINN to progressively learn more complex physics, starting 
from simple temperature diffusion and building up to the 
fully coupled system of asphalt aging. The overall algorithm 
is given as Algorithm 2

T (x, y, 0) = Tinit

P (x, y, 0) = Pinit

CA(x, y, 0) = CAinit

These boundary and initial conditions are incorporated into 
the loss function to ensure the PINN satisfies these con-
straints during training. Figure 3 shows the spatial distri-
bution of the boundary, initial conditions and collocation 
points for each PDE.

The loss function incorporates both the physics of the 
problem and the boundary/initial conditions. It is formulated 
as a weighted sum of three components: boundary condition 
loss, initial condition loss, and PDE residual loss. The com-
plete loss function of the multistage PINN for asphalt aging 
at the last stage can be expressed as:

Ltotal = wbc
∑

i∈{T,P,CA}

(
1

Nbc

Nbc∑
j=1

∣∣∣ipred
j − itrue

j

∣∣∣
2

)

︸ ︷︷ ︸
Data-driven part

+ wic
∑

i∈{T,P,CA}

(
1

Nic

Nic∑
k=1

∣∣∣ipred
k (t = 0) − iinit

k

∣∣∣
2

)

︸ ︷︷ ︸
Data-driven part

+ wpde

(
1

Npde

Npde∑
l=1

∣∣∣∂Tl

∂t
− α∇2Tl

∣∣∣
2

︸ ︷︷ ︸
Physical model part

+ 1
Npde

Npde∑
l=1

∣∣∣∂Pl

∂t
− D∇2Pl + c0RTl

h

∂CAl

∂t

∣∣∣
2

︸ ︷︷ ︸
Physical model part

+ 1
Npde

Npde∑
l=1

∣∣∣∂CAl

∂t
− MRTFOkf e−kf t − kc

∣∣∣
2
)

︸ ︷︷ ︸
Physical model part

� (30)

Table 2  Summary of hyperparameters used in the PINN model
Hyperparameter Value
No. of Inputs 3a

No. of Outputs 1–3b

No. of Hidden Layers 1–5c

No. of Hidden Neurons 10–130c

Activation Function Hyperbolic Tangent (tanh)
Optimizer Adam
Learning Rate 0.001
Batch Size Full datasetd

Epochs per Stage 100,000
aCorresponding to spatial coordinates (x, y) and time (t)
bVarying by curriculum learning stage: 1 (T), 2 (T and P), and 3 (T, 
P, and CA)
cRange explored in sensitivity analysis
dThe entire dataset is used for each iteration

Table 3  Model parameters for the asphalt aging simulation
Parameter Symbol Value Unit
Thermal diffusivity α 0.1 m2/s
Pressure exponent a 0.27 -
Pre-exponential factor (fast) Af 5.8446 × 105s−1

Pre-exponential factor (constant)
Ac 5.8264 × 108s−1

Activation energy (fast) Eaf
75,400 J/mol

Activation energy (constant)
Eac

103,800 J/mol
Oxygen diffusion coefficient D 1 × 10−11m2/s
Oxygen consumption factor c0

371 mol/m3

Oxygen solubility in bitumen h 0.0076 mol/(m3· Pa)
Universal gas constant R 8.314 J/(mol K)
The parameters are adapted from Omairey et al. (2022) [52] for a road 
section on US277 in Laredo, Texas

Table 4  Boundary and initial conditions for the asphalt aging simula-
tion
Variable Top Bottom Left Right Initial
T (K) 303.15 303.15 274.15 274.15 295.65
P (Pa) 1 × 107 1 × 107 1 × 106 1 × 106 1 × 107

CA (a.u.) – – – – 0.94
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and numerical stability of the PINN model, all input and 
output variables were scaled to the range [0, 1] prior to 
training. This normalization process helps to prevent issues 
related to widely varying magnitudes across different physi-
cal quantities, ensures consistent gradient propagation dur-
ing training, and generally improves the convergence of the 
neural network.

4.3.2  Training parameters

The following training parameters were maintained constant 
across all architectural configurations to ensure a fair com-
parison: A fixed learning rate of 0.001 was utilized, chosen 
based on preliminary experiments to balance convergence 
speed and stability. The Adam optimizer was employed 
due to its effectiveness in handling complex, non-convex 
optimization problems commonly encountered in neural 
network training [49]. Hyperbolic tangent (tanh) activa-
tion functions were employed between layers due to their 
suitability for physics-based problems [50, 51]. Each stage 
of the curriculum learning process was trained for 100,000 
epochs. This number of epochs was selected to ensure con-
vergence across all model configurations. Table 2 summa-
rize the hyperparameters adapted in this example.

Algorithm 2  Multistage PINN Training Algorithm for Asphalt Aging

4.3  Training hyperparameters

The performance and efficiency of PINNs are significantly 
influenced by their architecture and training hyperparam-
eters. To optimize the PINN model for solving the coupled 
PDEs governing asphalt aging, a sensitivity analysis was 
conducted. This analysis focused on the architectural and 
training hyperparameters, as detailed below:

4.3.1  Network architecture

The depth of the network was adjusted from 1 to 5 hidden 
layers. For each layer configuration, the width of the net-
work was varied, with the number of neurons per layer rang-
ing from 10 to 130. The input layer consistently comprised 3 
neurons, corresponding to the spatial coordinates (x, y) and 
time (t). The output layer, however, varied according to the 
curriculum learning stage: in the first stage, it contained 1 
neuron (T); in the second stage, 2 neurons (T and P); and in 
the third stage, 3 neurons (T, P, and CA). This progressive 
increase in output dimensionality aligned with the increasing 
complexity of the physical system being modeled across the 
curriculum learning stages. To ensure optimal performance 
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The oxygen diffusion coefficient (D) characterizes the 
rate of oxygen transport within the asphalt, while the oxygen 
consumption factor (c0) relates the carbonyl area formation 
rate to oxygen consumption. The oxygen solubility (h) rep-
resents the capacity of the asphalt binder to absorb oxygen 
at a reference temperature of 30◦C. The simulation domain 
is defined by spatial coordinates x and y, both ranging from 
0 to 1, representing a normalized unit square. The temporal 
dimension t extends from 0 to 1 × 107 seconds, which is the 
full duration of the aging process simulation. The boundary 
and initial conditions are summarized in Table 4.

While these parameters are specific to the studied road 
section, it is important to note that they may vary for differ-
ent asphalt mixtures and environmental conditions. Future 
studies could explore the model’s sensitivity to parameter 
variations and extend the application to diverse asphalt 
compositions and climatic scenarios.

4.4  Model parameters

The model parameters employed in this example are derived 
from a road section on US277 in Laredo, Texas, as docu-
mented by Omairey et al. (2022) [52]. These parameters 
characterize the physical and chemical properties of the 
asphalt material and the environmental conditions influenc-
ing the aging process. Table 3 summarizes the key param-
eters used in the coupled PDE system.

The thermal diffusivity (α) governs the rate of heat prop-
agation through the asphalt material. The pressure exponent 
(a) reflects the influence of oxygen pressure on oxidation 
reaction rates. Pre-exponential factors (Af , Ac) and activa-
tion energies (Eaf , Eac) are components of the Arrhenius 
equation, describing the temperature dependence of reaction 
rates for fast and constant oxidation processes, respectively.

Fig. 4  Sensitivity analysis of PINN architecture for asphalt aging prediction
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are presented in Fig.  4. Based on the analysis, a network 
architecture with 4 hidden layers and 10 neurons per layer 
was selected. This configuration demonstrates an excellent 
balance between model complexity and performance. The 
chosen architecture performs well in minimizing the ini-
tial condition (IC) loss and maintains low boundary condi-
tion (BC) and PDE losses. In addition, it was observed that 

4.5  Results: asphalt aging model

4.5.1  Sensitivity analysis

A sensitivity analysis was conducted to determine the 
optimal network architecture. The results of this analysis 

Fig. 5  The evolution of the BC, IC, PDE, and the total losses during the training process. a Multistage PINN b Adaptive Weigh PINN c PINN
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including carbonyl area formation. Despite the increased 
complexity, the network maintains stable performance. The 
total loss and BC loss remain relatively constant, while the 
IC and PDE losses continue to decrease slightly, indicating 
the network’s ability to capture the full complexity of the 
asphalt aging process (Fig.5a). The progression of losses 
depicted in Fig. 5b, c reveals higher loss values and greater 
fluctuations. This suggests that both the adaptive weight 
PINN and standard PINN encounter more challenges in 
achieving convergence.

The impact of collocation point distribution on the PINN 
model’s performance was analyzed by varying the number 
of points from 1000 to 5000 (Fig. 6). The results show that 
1000 collocation points provide the optimal configuration, 
minimizing the total loss while accurately representing BC, 
IC, and governing equations. At this point, additional points 
fail to contribute meaningful new insights into the underly-
ing physical system may introduce unnecessary redundancy 

increasing the network size beyond 4 layers or 10 neurons 
per layer often resulted in only marginal improvements or 
even decreased performance in some cases, suggesting a 
point of diminishing returns.

Figure 5 illustrates the evolution of the loss components 
during the training process for the selected optimal network 
architecture (4 hidden layers, 10 neurons per layer).

In Stage 1 (epochs 0-100,000), which focuses on temper-
ature diffusion, we observe a rapid initial decrease in all loss 
components, followed by a stable convergence. The BC loss 
and total loss stabilize quickly, while the IC loss continues 
to decrease gradually.

Stage 2 (epochs 100,000-200,000) introduces oxygen 
pressure diffusion. This transition is marked by a temporary 
spike in losses, particularly evident in the PDE loss. How-
ever, the network quickly adapts, and all loss components 
show a steady decline throughout this stage. Stage 3 (epochs 
200,000-300,000) incorporates the full coupled system, 

Fig. 6  Comparison of loss components a BC, b IC, and c PDE across different numbers of collocation points in the Multistage PINN framework
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respectively, where t represents normalized time step). In 
Fig. 7, the multistage PINN heatmap closely resembles the 
FEM result. It accurately captures the temperature gradients 
from the edges to the center of the domain. This visual simi-
larity is quantitatively supported by the centerline plots in 
Fig. 8, where the multistage PINN curves almost perfectly 
overlay the FEM solutions for both time steps and along 
both centerlines. In contrast, the standard PINN method 
shows discrepancies. It overestimates the high-temperature 
regions at the top and bottom. This overestimation is evident 
in Fig. 8’s centerline plots, particularly at t = 1 (s), where the 
standard PINN deviates from the FEM solution, especially 

in the data representation. This redundancy can potentially 
inject noise into the training process, complicating the mod-
el’s ability to accurately capture the essential physics of the 
problem [11, 22, 35, 53].

4.5.2  Temperature distribution

Figures 7 and 8 illustrate the performance of various PINN 
methods compared to the FEM solution for temperature 
distribution. The multistage PINN method demonstrates 
remarkable consistency with the FEM solution across 
both initially and at the final time step (t = 0 and t = 1, 

Fig. 7  A comparative visualization of temperature distributions using different computational methods: PINN, Adaptive Weight PINN, Multistage 
PINN, and FEM

 

1 3



Engineering with Computers

region, which is reflected in the centerline plots of Fig. 8. 
The centerlines plots show extreme oscillations at t = 0 (s) 
and underestimation of temperatures at the final time step.

near the domain boundaries. The adaptive weight PINN per-
forms poorly in both representations. The heatmap in Fig. 7 
shows a significantly underestimated central temperature 

Fig. 8  A quantitative analysis of temperature distributions along the centerlines using different computational methods: PINN, adaptive weight 
PINN, Multistage PINN, and FEM. a, b At t = 0 (s) while c, d at t = 1 (s)
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along both centerlines. The standard PINN method, while 
capturing the general pressure pattern, shows some limita-
tions. The heatmap in Fig.  9 indicates an underestimation 
of pressure values, particularly evident in the center of the 
domain and near the boundaries. This underestimation is 
consistently reflected in Fig.  10’s centerline plots, where 
the standard PINN predicts lower pressure values compared 
to the FEM solution, especially pronounced at t = 1 (s) 
along both horizontal and vertical centerlines. The adaptive 
weight PINN exhibits improved performance for oxygen 
pressure compared to its temperature predictions. The heat-
map in Fig. 9 shows a reasonable pressure distribution, with 

4.5.3  Oxygen pressure evolution

Figures 9 and 10 show the performance of various PINN 
methods compared to the FEM solution for oxygen pres-
sure distribution. The multistage PINN demonstrates high 
accuracy in capturing the oxygen pressure distribution. The 
heatmap in Fig. 9 closely aligns with the FEM result. This 
method can accurately captures the higher pressure region 
at the bottom and the lower pressure areas at the left and 
right boundaries. The centerline plots in Fig.  10, where 
the multistage PINN results were plotted, show excellent 
agreement with the FEM solutions at both time steps and 

Fig. 9  A comparative visualization of oxygen distributions using different computational methods: PINN, Adaptive Weight PINN, Multistage 
PINN, and FEM
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carbonyl area, particularly in the domain center. The stan-
dard PINN’s heatmap, however, underestimates the car-
bonyl area across the entire domain. It fails to capture the 
detailed spatial changes seen in the FEM solution. This 
underestimation is evident Fig. 12’s centerline plots, where 
the standard PINN consistently predicts lower carbonyl area 
values. The effect is more pronounced at t = 1 (s), where it 
fails to capture the curvature of the profiles, especially along 
the vertical centerline. The adaptive weight PINN’s heatmap 
shows a large overestimation of carbonyl area, especially in 
the middle of the domain. This result seems unrealistic and 
points to possible problems with how the method adjusts its 
weights for this variable.This overestimation is reflected in 
the centerline plots of Fig. 12, where the results show large 
oscillations at t = 0 (s) and extreme overestimation at t = 1 
(s).

some overestimation in the central region. This tendency is 
mirrored in the centerline plots of Fig. 10, where the results 
show slight oscillations at t = 0 (s) and overestimation of 
pressures at t = 1 (s), particularly in the central portions of 
both centerlines.

4.5.4  Carbonyl area formation

Figures 11 and 12 show the carbonyl area distribution results 
for different PINN methods compared to the FEM solution. 
In Fig. 11, the multistage PINN result closely matches the 
FEM solution. It accurately shows higher carbonyl concen-
trations at the top and bottom edges, with a gradual decrease 
towards the center and sides. This accuracy is further con-
firmed in Fig. 12’s centerline plots, where the multistage 
PINN results align closely with the FEM solutions at t = 
0 (s). However, at t = 1 (s), it slightly underestimates the 

Fig. 10  A quantitative analysis of oxygen distributions along the centerlines using different computational methods: PINN, Adaptive Weight PINN, 
Multistage PINN, and FEM. (a) and (b) at t = 0 (s) while (c) and (d) at t = 1 (s)
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substances. These equations model the physics of numerous 
phenomena of scientific and engineering interest, includ-
ing weather patterns, ocean currents, pipe flow, and air flow 
around aircraft wings.

For an incompressible Newtonian fluid in two dimen-
sions (x, y), the Navier-Stokes equations take the following 
form:

Continuity equation:

5  Example 2: an advanced PINN-based 
multistage approach for modeling Navier–
Stokes equations

5.1  Background in fluid dynamics

The Navier-Stokes equations are fundamental principles 
in fluid dynamics, describing the motion of viscous fluid 

Fig. 11  A comparative visualization of carbonyl area distributions using different computational methods: PINN, Adaptive Weight PINN, Multi-
stage PINN, and FEM
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Fig. 12  A quantitative analysis of carbonyl area distributions along the centerlines using different computational methods: PINN, Adaptive Weight 
PINN, Multistage PINN, and FEM. a, b At t = 0 (s) while c, d At t = 1 (s)
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the PINN is tasked with solving the complete coupled sys-
tem of PDEs that describe incompressible fluid flow: the 
u-momentum equation, v-momentum equation, and the con-
tinuity equation (which enforces mass conservation). This 
stage introduces the pressure gradient terms in the momen-
tum equations and requires the network to satisfy the diver-
gence-free condition for incompressible flow.

The problem under consideration is the classical lid-
driven cavity flow, a standard benchmark in computational 
fluid dynamics. The domain is a square cavity with sides of 
length Lx = Ly = 1.0, and the simulation time extends to 
t = 1.0( s). The boundary conditions for the velocity com-
ponents (u, v) are specified as follows:

At the bottom wall (y = 0) and side walls 
(x = 0 and x = Lx), both u and v are set to zero, imple-
menting a no-slip condition. At the top wall (y = Ly), 
u = U  and v = 0, where U = 1.0 is the constant velocity 
of the lid. For all walls, the pressure gradient normal to the 
wall is implicitly assumed to be zero (Neumann condition 
for pressure) through the enforcement of the incompress-
ibility constraint.

The initial conditions at t = 0 are defined as: 
u(x, y, 0) = U  if y = Ly, and 0 otherwise; v(x, y, 0) = 0 
everywhere; and p(x, y, 0) = 0 everywhere. The initial 
pressure is set to an arbitrary constant (zero in this case) 
since only pressure gradients are relevant in incompressible 
flow. The model architecture, hyperparameters, and collo-
cation points are similar to those used in the asphalt aging 
example. The final loss function of this example and the 
algorithm used are summurized in Eqs. 34 and Algorithm 
3, respectively.

Ltotal = wbc
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� (34)

where u and v are the velocity components in the x and 
y directions respectively ρ is the fluid density t is time p 
is pressure µ is the dynamic viscosity fx and fy  are body 
force components (like gravity). These PDEs are nonlinear, 
making them challenging to solve analytically for most real 
world situations. Their complexity lies in this nonlinear-
ity, which gives rise to phenomena such as turbulence. The 
equations find applications across various fields, including 
aerospace engineering, meteorology, civil engineering, and 
oceanography.

In practice, the Navier–Stokes equations are often solved 
numerically using computational fluid dynamics (CFD) 
techniques [54]. These methods discretize the equations and 
solve them iteratively, allowing for the simulation of com-
plex fluid flows in various scenarios.

Although standard PINNs have been previously 
employed to solve the Navier-Stokes equations, the objec-
tive by proposing this example is to compare the proposed 
multistage PINN with these established approaches and 
evaluate its effectiveness in handling complex fluid dynam-
ics problems under different BCs and ICs [6].

5.2  Training algorithm for the Navier-Stokes 
equations

Similar to the first example, the training process for the 
Navier-Stokes PINN follows a curriculum learning strat-
egy, which gradually increases the complexity of the task 
the neural network must learn. The curriculum is divided 
into three stages, each building upon the previous one to 
solve the full Navier-Stokes equations for incompressible 
fluid flow.

In the first stage, the network learns to model only the 
u-velocity component of the flow. This allows the PINN 
to establish a foundation in solving a simplified version of 
the momentum equation, focusing on the diffusion of the 
u-velocity field without considering the coupling with other 
velocity components or pressure.

The second stage introduces the v-velocity component, 
coupling it with the u-velocity model. In this stage, the net-
work learns to solve two coupled equations simultaneously: 
the u-momentum and v-momentum equations. However, the 
pressure term is still omitted, simplifying the task compared 
to the full Navier-Stokes equations. This intermediate step 
increases the complexity as the network must now account 
for the interactions between the two velocity components.

The final stage incorporates the full system, including 
the pressure field and the continuity equation. At this point, 
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Fig. 13  The evolution of the BC, IC, PDE, and the total losses during the training process for solving the Navier-Stokes equations. a Multistage 
PINN b adaptive weight PINN c standard PINN
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Fig. 14  A comparative visualization of velocities distributions using different computational methods: PINN, Adaptive Weight PINN, and FEM
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Algorithm 3  Multistage PINN Training Algorithm for Navier-Stokes Equations

Fig. 15  A comparative visualization of velocities distributions using Multistage PINN, and FEM
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in PDE complexity allows the model to explore a wider 
solution space. Despite this increase, the total loss and BC 
loss show a consistent downward trend, indicating overall 
convergence. The adaptive weight PINN demonstrates a 
smooth convergence among all the losses. This smooth con-
vergence suggests that dynamically adjusting the weights 

5.3  Results: Naviar Stokes model

Figure 13 illustrates the evolution of losses during the 
training process for the three PINN variants. The multi-
stage PINN exhibits a sharp spikes in PDE loss at 100,000 
and 200,000 epochs, suggesting that the gradual increase 

Fig. 16  A quantitative analysis of the velocities distributions along the centerlines using different computational methods: Multistage PINN, adap-
tive weight PINN, standard PINN and FEM. (a) and (b) at t = 0 (s) while (c) and (d) at t = 1 (s)
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and v) at different times and positions. In general, all PINN 
methods consistently capture the overall trends and patterns 
of both u and v velocities along both centerlines. However, 
the more complex the flow pattern (as seen in Fig 16d), 
the more pronounced the differences between the meth-
ods become, with advanced PINN methods showing their 
strength in capturing intricate details.

A notable advantage of the multistage PINN is its com-
putational efficiency. It is reported to be faster than the other 
methods, including the standard PINN and adaptive weight 
PINN. This significant speed improvement, combined 
with its superior accuracy, makes the multistage PINN 
particularly attractive for solving complex fluid dynamics 
problems.

6  Discussion

Figure 17 shows a schematic representation of the multi-
stage PINN architecture adapted in this study. The multi-
stage PINN approach offers a significant improvement in 
both accuracy and computational efficiency compared to 
other PINN methods. As shown in Table 5, it achieves supe-
rior results in less than half the time required by the adap-
tive weight PINN and less than a tenth of the time needed 
by the standard PINN. This efficiency does not come at 
the cost of accuracy. In fact, the multistage approach con-
sistently shows the smallest maximum differences from 
the FEM solution across all variables. The computational 
efficiency of the multistage PINN is attributed to its staged 

of different loss components effectively balances their con-
tributions throughout training. The standard PINN shows 
characteristics intermediate between the multistage and 
adaptive weight PINNs. While it achieves convergence, the 
final loss values are generally higher than those of the other 
two methods, indicating potentially lower accuracy in the 
final predictions.

For the standard PINN, weight-adaptive PINN (Fig. 
14), the u velocity predictions capture the overall pattern 
of the FEM results. The v-velocity predictions show good 
agreement in general distribution but exhibit some discrep-
ancies near boundaries and corners. The multistage PINN 
(Fig. 15) demonstrates the highest accuracy among the 
PINN variants where the u-velocity predictions are remark-
ably similar to FEM results, with the error map showing 
minimal and uniformly distributed discrepancies across the 
domain. The v-velocity predictions also closely match FEM 
results, accurately capturing complex flow patterns. While 
slightly higher errors are observed near corners and edges 
for v-velocity, the overall agreement is excellent.

Figure 16 presents a quantitative analysis of velocities 
distributions along the centerlines using different computa-
tional methods. The plots show the velocity components (u 

Table 5  Comparison of training times for different PINN Methods 
across two examples
Method Example 1 Example 2
Multistage PINN (s) 5364 5900
Adaptive Weight PINN (s) 13,060 14,205
Standard PINN (s) 72,792 80,590
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Fig. 17  Schematic representation of the multistage PINN architecture adapted in this study where v1, v2, v3 are the dependent variables for each 
PDE used in the adapted examples
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Fig. 19  L2 error analysis of PINN predictions compared to FEM for the lid-driven cavity flow

 

Fig. 18  L2 error analysis of PINN predictions compared to FEM for the asphalt aging example
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self-adaptive PINN techniques to further enhance training 
stability and efficiency.

Despite these advantages, the slight tendency to underes-
timate values and the variability in performance across dif-
ferent physical variables indicate that there is still potential 
for further refinement of the multistage approach. Future 
work could focus on optimizing the staging strategy and 
exploring hybrid approaches that combine the strengths of 
multiple PINN variants.

7  Applications and future work

7.1  Implications for pavement engineering and 
future research directions

The multistage PINN approach developed in this study offers 
several advantages. Firstly, the PINN employs a mesh-free 
approach, eliminating the need for complex meshing pro-
cedures that are often required in FEM. This significantly 
reduces pre-processing time and avoids issues related to 
mesh quality and refinement. Secondly, for complex, cou-
pled systems like asphalt aging, PINN can be more com-
putationally efficient than FEM, especially for long-term 
simulations. The neural network, once trained, can provide 
rapid predictions across the entire space-time domain with-
out the need for time-stepping procedures typical in FEM. 
Finally, the PINN approach allows for adaptive resolution in 
both space and time without the need for remeshing, which 
is often required in FEM for achieving higher accuracy in 
specific regions.

The flexibility of the PINN approach opens up possi-
bilities for future research. One promising direction is the 
incorporation of fillers into the model. This could involve 
adding new variables to represent filler properties (e.g., 
particle distribution), modifying the governing equations 
to account for filler-binder interactions, and exploring how 
fillers affect diffusion coefficients and reaction kinetics in 
the aging process. Such extensions would provide a more 
comprehensive understanding of how material composition 
affects long-term pavement performance.

7.2  Potential applications in other scientific 
domains

The concept of gradually increasing problem complex-
ity is well established in solving nonlinear problems. This 
application offers several advantages in the field of scien-
tific machine learning and computational physics. Firstly, 
PINNs face distinct challenges compared to traditional 
numerical methods, particularly in balancing multiple phys-
ics-informed loss terms and ensuring stable convergence. 

approach to optimizing the loss function. Conversely, a 
causal PINN method prioritizes temporal causality in time-
dependent PDEs [55]. Though effective for such cases, the 
multistage PINN approach better addresses coupled mul-
tiphysics systems, as demonstrated by the asphalt aging 
and Navier–Stokes examples. For instance, in the asphalt 
aging example, the model first incorporates terms related to 
temperature diffusion, then integrates oxygen pressure, and 
finally adds carbonyl area formation. While the standard 
PINN and adaptive weight PINN struggled to accurately 
model the final behavior, the multistage PINN achieved 
high prediction accuracy with minimal error. The presence 
of exponential terms in kf  and kc makes it more challenging 
for standard PINNs to accurately capture the final behavior 
of aging asphalt materials.

In the second example, although both the standard and 
adaptive weight approaches demonstrated high accuracy, 
the multistage PINN maintained the fastest training time 
(5900 seconds compared to 14,205 seconds and 80,590 sec-
onds for adaptive weight and standard PINNs, respectively.

To further quantify the accuracy of the multistage PINN, 
the L2 error norms between the predicted solutions and 
FEM solutions were calculated for both example problems. 
Figures 18 and 19 present the L2 error analysis for (a) the 
asphalt aging problem and the lid-driven cavity flow prob-
lem, respectively. For the asphalt aging example, the L2 
errors for T, P, and CA are consistently lower for the multi-
stage PINN compared to the standard and adaptive weight 
PINNs across the simulation period. The reduced L2 error 
reflects the ability of the multistage approach to effectively 
capture the coupled interactions between temperature, oxy-
gen diffusion, and chemical reactions through its curriculum 
learning strategy. Similarly, in the lid-driven cavity flow 
example, the L2 errors for the u and v velocities components 
at demonstrate that the multistage PINN achieves closer 
alignment with the FEM solution than its counterparts.

The choice of a fixed learning rate of 0.001 across all 
stages in both examples highlights the robustness of this 
approach in handling coupled multiphysics systems. While 
the fully coupled optimization in stage 3 increases the com-
plexity of the loss function, the curriculum learning strategy 
combined with weight transfer between stages effectively 
stabilizes the training process, allowing the fixed learning 
rate to remain effective. This contrasts with observations in 
more complex coupled PDE systems, where a smaller learn-
ing rate may be necessary to prevent instability as the loss 
landscape becomes more challenging. The success of the 
fixed learning rate in this study is likely due to the moder-
ate coupling strength and the staged approach, which avoids 
abrupt transitions in the optimization problem. However, 
for highly nonlinear or strongly coupled systems, future 
work could explore adaptive learning rate schedules or 

1 3



Engineering with Computers

maintaining better alignment with traditional numerical 
solutions.

The success of the multistage approach in capturing the 
interdependencies between multiple physical processes, 
from material degradation to fluid dynamics, highlights its 
potential for modeling a wide range of complex, coupled 
systems across various scientific and engineering domains. 
The significant reduction in training time without com-
promising accuracy is particularly promising for practical 
applications where computational efficiency is crucial. The 
method’s ability to handle both materials science and fluid 
dynamics problems demonstrates its diversity and broad 
applicability.

Future improvements to the multistage PINN approach 
could include optimizing the staging strategy to better bal-
ance variable interactions and integrating adaptive learn-
ing rate schedules to enhance training stability for highly 
nonlinear systems. Furthermore, exploring hybrid methods 
that combine multistage PINNs with other advanced PINN 
variants, such as self-adaptive or multifidelity approaches, 
could further boost accuracy and efficiency.
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The multistage approach specifically addresses these 
PINN-related issues. Secondly, PINNs have shown prom-
ise in solving individual PDEs but their application to cou-
pled multiphysics systems remains relatively unexplored. 
Lastly, the significant reduction in training time (over 90%) 
achieved through this approach is noteworthy in the compu-
tationally demanding context of multiphysics simulations.

For these reasons, the PINN approach could be adapted 
to model various multiphysics problems. For example, it 
can be implemented in material degradation processes, such 
as corrosion in metals or polymer degradation [56, 57]. 
Similar to asphalt aging, these phenomena involve coupled 
physical and chemical processes occurring over long time 
scales. The method’s ability to handle interactions between 
diffusion, chemical reactions, and mechanical stress makes 
it well-suited for predicting the long-term performance of 
diverse materials under complex environmental conditions.

In civil engineering, the method could be applied to 
model the aging of concrete structures. This process shares 
similarities with asphalt aging, involving factors such as 
carbonation, chloride ingress, and the effects of cyclic load-
ing [58, 59]. The PINN approach could provide more accu-
rate long-term predictions of concrete durability, accounting 
for the coupled effects of chemical reactions and mechanical 
stresses.

Future research could focus on adapting the multistage 
PINN approach to these related fields, potentially leading 
to improved predictive modeling across a range of mate-
rials and infrastructure applications. This could contribute 
to the development of more durable and sustainable engi-
neered systems in various domains. Future research could 
also investigate the optimization of hyperparameters, such 
as the learning rate, to adapt the multistage PINN approach 
to more complex multiphysics systems, potentially incor-
porating adaptive learning rate schedules or self-adaptive 
techniques to improve stability and convergence in stage 3.

8  Conclusions

This study introduced a novel multistage PINN approach for 
modeling complex, coupled multiphysics phenomena. The 
method was demonstrated through its application to two 
distinct problems: asphalt aging prediction and lid-driven 
cavity flow. The multistage PINN demonstrated superior 
performance in predicting the evolution of multiple inter-
connected variables in these complex systems. Compared 
to standard PINN and adaptive weight PINN methods, the 
proposed approach achieved higher accuracy and computa-
tional efficiency, reducing training time by over 90% while 
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