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Abstract

Physics Informed Neural Networks (PINNs) have been rarely applied to solve multiphysics systems due to the inherent
challenges in optimizing their complex loss functions, which typically incorporate multiple physics-based terms. This
study presents a multistage PINN approach designed to efficiently solve coupled multiphysics systems with strong interde-
pendencies. The multistage PINN progressively increases the complexity of the physical system being modeled, enabling
more effective capture of coupling between different physics. The computational merits of this approach are demonstrated
through two illustrative applications: prediction of asphalt aging and modeling of lid-driven cavity flow. Quantitative and
qualitative comparisons with standard PINN and adaptive weight PINN approaches demonstrate the enhanced precision
and computational efficiency of the proposed algorithm. The multistage PINN achieves a reduction in training time of
more than 90% compared to standard PINNs while maintaining better alignment with the finite element method (FEM)
solutions. The improvement in computational efficiency, coupled with enhanced accuracy, positions the multistage PINN
as a powerful tool for addressing complex multiphysics problems across various engineering disciplines. The method’s
ability to handle interactions between multiple physical processes, such as diffusion, chemical reactions, and fluid dynam-
ics, makes it suitable for simulating long-term material behavior and complex fluid systems.

Keywords Multiphysics modeling - Multistage learning - Asphalt aging - Physics informed neural networks - Partial
differential equations

1 Introduction

1.1 Advancements in multiphysics modeling: a

background
Multiphysics systems, characterized by the interaction of
>4 Mahmoud Khadijeh multiple physical phenomena, are crucial in science and
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porous media flow [2—4]. Sequential approaches, on the
other hand, manage coupling by iterating between physi-
cal processes over discrete time steps, as seen in heat trans-
fer and reactive transport simulations [5]. These strategies
reduce computational complexity but may introduce errors
at the interfaces of subproblems or require careful tuning of
time steps, motivating the development of machine learn-
ing-based alternatives.

In recent years, physics informed neural networks
(PINNs) have gained attention as a promising, mesh-free
alternative for solving complex PDEs, including those that
govern multiphysics systems. Introduced by Raissi et al.
[6], PINNs use the universal approximation capabilities of
neural networks while incorporating physical laws directly
into the loss function. This approach allows for the simul-
taneous satisfaction of governing equations and boundary/
initial conditions, potentially leading to more accurate and
efficient solutions for complex physical systems [7-9].

PINNSs face several challenges when applied to complex
systems. These include difficulties in balancing multiple
loss terms, slow convergence for highly nonlinear prob-
lems, and potential instabilities in long-term predictions
[10]. Additionally, their training time remains a limitation
compared to traditional methods for simpler forward prob-
lems. To address these issues, researchers have proposed
various innovative strategies.

One such approach involves adaptive weighting
schemes, which dynamically adjust the weights of differ-
ent terms in the loss function during training [11]. Another
strategy employs curriculum learning, gradually increas-
ing the complexity of the problem during training [12].
Physics-constrained neural networks represent another
advancement that incorporates domain knowledge directly
into the network architecture [13, 14]. This approach can
improve the stability and accuracy of predictions, especially
for long-term simulations. Researchers have also explored
domain decomposition techniques, which divide the prob-
lem domain into subdomains and train separate networks
for each [15]. A more detailed discussion of these strategies,
including their mathematical formulations and comparative
performances, is presented in section 2.4.

1.2 PINNs in complex systems: applications and
current limitations

Recent studies have revealed several limitations in the PINN
methodology when applied to complex, coupled systems.
For example, in fluid dynamics, PINNs have shown promise
in solving coupled advection-diffusion equations and non-
linear Burgers equations [16, 17]. However, these studies
revealed challenges in handling high Péclet number flows
and capturing shock phenomena accurately. On the other
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hand, research on turbulent flows using PINNs demon-
strated limitations in modeling high Reynolds number sce-
narios, where the complexity of the flow physics becomes
particularly challenging [18, 19].

In materials science and solid mechanics, PINNs have
been applied to phase-field fracture dynamics and poro-
elasticity problems [20]. These applications revealed chal-
lenges in handling discontinuities associated with fracture
propagation and difficulties in modeling large deforma-
tions in porous media. The modeling of coupled thermo-
hydro-mechanical processes in porous media using PINNs
showcased their potential in complex geosystems but also
exposed limitations in dealing with multiscale phenomena
[21]. The interaction of processes occurring at different
spatial and temporal scales proved challenging for standard
PINN formulations.

In the context of materials degradation, several studies
have highlighted specific limitations of PINNs. Corrosion
modeling using PINNs successfully captured coupled elec-
trochemistry and ion transport but struggled with moving
boundary problems associated with corrosion front propa-
gation [22]. Fatigue crack growth predictions using PINNs
showed good agreement with experimental data but faced
difficulties in accurately representing discontinuities in the
solution field [23].

Polymer degradation modeling using advanced machine
learning techniques, including PINNs, revealed challenges
in accurately predicting complex chemical kinetics involved
in the degradation process [24]. Similarly, concrete aging
models using PINNs and hybrid physics-ML approaches
faced difficulties in bridging multiple scales and capturing
long-term behavior accurately [25]. These limitations high-
light the need for advanced PINN methodologies that can
address the challenges associated with complex, coupled
multiphysics systems.

1.3 Objectives and contributions: PINNs for
multiphysics modeling

The modeling of coupled multiphysics systems presents
significant challenges for existing computational methods.
PINNs have shown promise in this area, but still face limita-
tions in handling complex, nonlinear coupled systems effi-
ciently and accurately. These limitations include difficulty
in balancing multiple physics-informed loss terms, slow
convergence and instability in training for highly coupled
systems, and inaccuracies in long-term predictions for
evolving material properties.

The primary objective of this study is to address these
challenges by developing a multistage PINN approach
designed for coupled multiphysics systems with com-
plex interactions, such as those encountered in material
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degradation and fluid dynamics. The key contribution of
this approach is a staged learning process that gradually
incorporates different physical phenomena, enabling more
effective handling of coupled multiphysics problems.

To illustrate the broad applicability of the method across
various fields, the study examined asphalt aging predic-
tion and lid-driven cavity flow. The first application tack-
les a complex material degradation problem involving
coupled heat transfer, oxygen diffusion, and time-dependent
chemical reactions. The second application addresses fluid
dynamics, showcasing the method’s adaptability in han-
dling diverse physical systems governed by the Navier-
Stokes equations. These phenomena are mathematically
represented as a system of coupled, two-dimensional PDEs,
capturing the spatial and temporal evolution of the materi-
al’s properties. The multistage PINN approach is compared
with other methods, including standard PINNs and adaptive
weighting techniques, to highlight the advantages in terms
of accuracy and computational efficiency.

2 Theoretical background
2.1 General formulation of coupled PDE systems

Coupled multiphysics problems involve the interaction of
multiple physical phenomena, each described by its own
set of equations. These interactions can lead to complex
behaviors that cannot be captured by considering each phe-
nomenon solely [1]. Coupled multiphysics problems can be
generally expressed as a system of N interdependent PDEs
[26]:

Legend:
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Fig. 1 Visualization of a coupled PDE system, illustrating the interde-
pendencies between equations through shared variables and coupling
terms

F; (u,%,Vu,V%,x,t):O, i=1,....,N (1)

where u = (uy, ..., uy) is the vector of state variables, x is
the spatial coordinate, ¢ is time, and JF; are nonlinear differ-
ential operators. The coupling is shown in the dependence
of each F; on multiple components of u and its derivatives.
These systems are typically subject to initial and boundary
conditions:

u(x,0) = up(x), x€0 )

B; (0, Vu,x,t) =0, x€99Q, t>0 3)
where () is the spatial domain, 0f2 is its boundary, ug speci-
fies the initial state, and B; are boundary condition opera-
tors. The coupling in these systems occurs in various forms
within the equations [27].

Direct coupling occurs when the equation for one vari-
able explicitly contains another variable or its derivatives.

This can be represented as:

OJu Ou,; .,
Fi (u, E,Vu, V3u,x, t) = fi(u;j, a—tJ,Vu]»,Vzuj), 1] 4)

Indirect coupling arises when the equations share common
parameters that depend on multiple variables. This can be
expressed as:

-Fi <ua %7 Vua v2u7 X, t> = gl(p(u)) (5)

where p(u) is a vector of parameters that depends on mul-
tiple components of u. Boundary coupling occurs when the
boundary conditions for one variable depend on another
variable:

B; (u,Vu,x,t) = h; (uj, Vu;), 1#j, x€IN (6)

Initial condition coupling exists when the initial conditions
for different variables are interrelated:

U (X7O) :(rbl (Uj(X,O)), Z;’é]a x e (7)
Figure 1 illustrates the structure and connections of such
a system, highlighting the mathematical coupling between
equations.

2.2 Basic principles of PINNs

PINNS represent a significant shift in scientific computing,
integrating data-driven machine learning approaches with

@ Springer



Engineering with Computers

physics based modeling. PINNs address the limitations of
purely data-driven methods and the computational chal-
lenges associated with solving complex, nonlinear PDEs.
Consider a general nonlinear PDE of the form:

Nu=f(z,t), z€Q, te[0,T] ®)
where A is a nonlinear differential operator, u(x, t) is the
solution, f{x, f) is a known function, and T represents the
final time of interest for the problem. The PINN approach
approximates the solution u(x, f) using a neural network
@(x,t,0), where 6 represents the network parameters. The
key innovation of PINNS lies in the formulation of the loss
function, which typically includes both data mismatch and
PDE residual terms:

'C(a) = Edata(e) + )\»CPDE(G)

———— ——
Data-driven Physical ©)

part model part

This approach allows for efficient and accurate computa-
tion of derivatives, which is essential for evaluating PDE
residuals and their gradients during the training process. For
a system of N coupled equations:

Niluy,...,uy] = fi(z,t), i=1,.,N (11)
The loss function for such a system becomes:
N
L(0) = Z Laata,i(0) + NiLppr,i(0) (12)
= —— —_———
Data-driven Physical
part model part

This formulation allows PINNs to simultaneously solve
multiple coupled PDEs by incorporating both the physics
of the system and any available data. Algorithm 1 provides
a general framework for solving coupled multiphysics sys-
tems using standard PINNs.

: procedure SOLVECOUPLEDMULTIPHYSICSPINN(F;, B, uo, Q, T, Nepochs)

1

2 Initialize neural network parameters 6

3 for epoch = 1t0o Nepocns do

4: Sample collocation points (z,t) € Q X [0, T]
5: Sample boundary points z € 92

6: Sample initial points zg € §2

7 Forward pass: Compute u = PINN(z, t; 0)

8

Compute PDE residuals: R; = F; (u, %, Vu, VZu,z, t)

9: Compute BC residuals: Rp; = Bi(u, Vu, zp, t)

10: Compute IC residuals: Ryc = u(zo, 0) — ug(zo)

11: Compute total loss: £ = w1 3, [|Rs[|* + w2 ¥, R B, 1?2 + ws||Ric|)?
12: Backpropagate: Update 6 using an optimizer (e.g., Adam)

13: end for

14: return Trained PINN parameters 6
15: end procedure

Algorithm 1 PINN Algorithm for Coupled Multiphysics Systems

where Ldata(f) measures the mismatch between network
predictions and available data, which primarily consists of
boundary conditions and initial conditions of the solution
u(x, f), and may also include additional measurements or
observations when available, Lppr () quantifies the resid-
ual of the PDE, and ) is a weighting parameter.

2.3 Formulation of standard PINN loss functions for
coupled systems

A crucial feature of PINNSs is their use of automatic differ-
entiation to compute derivatives. This capability helps the
handling of complex, high-order PDEs. For a neural net-
work @(z,t,0), derivatives are computed as:

o1 a . 0% 0% |
% - %u('xat79)7 - (.'I/',t,e)

=+t _ 2 10
0x?2  Ox2 v (10)

@ Springer

2.4 Recent advancements in PINNs methodologies

Recent years have seen significant developments in PINNs
methodologies. These advancements aim to improve the
stability, efficiency, and accuracy of PINNs in various
applications.

Researchers have introduced adaptive weighting tech-
niques to optimize the balance between different terms in
the loss function. One study proposed an adaptive weighting
scheme where the loss function is formulated as:

(13)

where w; (0) are adaptive weights that evolve during training
based on the relative magnitudes of the individual loss terms
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L;(0). This approach has shown improved convergence and
accuracy in various problems by dynamically balancing the
contributions of physical constraints and boundary condi-
tions during the training [11].

Curriculum learning strategies gradually increase prob-
lem complexity during training. In the context of PINNSs, this
approach can be applied by simplifying equation parameters
initially and progressively increasing them to their actual
values [28]. Additionally, curriculum learning has been pro-
posed to automatically adjust sample weights, emphasizing
easier non-layer regions. This technique improves the net-
work’s approximation accuracy for strongly singular per-
turbation problems [29]. A general equation for curriculum
learning in PINNs can be expressed as:

l:totle(07 t) = a(t)ﬁddtd(g) + g(ﬂﬁphysics (‘9) + ’Y(t)‘cbolmdary (6) (14)

where «(t), S(t), and ~(t) are time-dependent weight-
ing functions chosen to gradually increase the importance
of different loss terms, and Lgata(0), Lphysics(#), and
Lioundary (0) represent the data, physics, and boundary con-
dition loss terms, respectively. This approach can improve
the learning process and the model’s ability to capture com-
plex physical behaviors, especially in problems with mul-
tiple scales or strong nonlinearities.

To better handle multiscale phenomena, multifidelity
PINNs have been developed. These approaches combine
data from different fidelity levels to enhance the model’s
ability to capture both large scale behavior and fine scale
details [30]. The loss function in this case takes the form:

L(a) = Elow(a) + 6£high (9) (15)

where Liow and Lygn represent losses corresponding to low
and high fidelity data, respectively, and 3 is a weighting fac-
tor. This is relevant for problems involving processes that
occur at different spatial or temporal scales. Domain decom-
position techniques have been explored to address issues
related to complex geometries and improve the overall effi-
ciency of the solution process. One approach is to divide
the problem domain into subdomains and trains separate
networks for each [15]. For a domain €2 divided into K sub-
domains, the global solution can be expressed as:

K
u(x) =Y xu(x)ug(z) (16)
k=1

where i () are partition of unity functions and uy(z) are
local solutions in each subdomain. This approach has shown
improved performance for problems with complex geom-
etries or localized phenomena.

Physics-constrained neural networks represent another
advancement in incorporating domain knowledge directly
into the network architecture. Research has demonstrated
that custom activation functions o () can be designed based
on the underlying physics [12]:

o(x) = f(x) + g(x)5(x) (17

where f(x) and g(x) are chosen to satisfy known physical
constraints, and & () is a standard activation function. This
approach can improve the stability and accuracy of the pre-
dictions, especially for long-term simulations.

An effective approach to further enhance the training
process is to sample BCs and ICs adaptively. This ensures
that the network accurately captures the boundary and ini-
tial conditions of the problem. Techniques such as impor-
tance sampling can prioritize regions with higher residuals
or errors, ensuring that the network focuses on the most
critical areas during training [31]. Another strategy involves
gradually increasing the number of sampling points within
the domain during training. This helps the network to first
learn the overall structure of the solution and then refine
it by focusing on finer details. Curriculum learning can be
applied here, where the complexity of the problem is pro-
gressively increased by adding more sampling points or by
refining the mesh used for sampling [32].

These recent advancements have significantly expanded
the capabilities of PINNs in the handling of complex and
interacting systems. However, there are still big challenges
especially for complicated problems involving multiple
physical processes. The multistage PINN approach pro-
posed in this study builds on these developments, offering
a novel strategy to address some of these challenges. It pro-
vides a robust framework for solving PDEs efficiently and
accurately in complex physical systems. Table 1 provides an
overview of the recent advancements in PINN methodolo-
gies to solve complex physics problems.

3 Multistaged PINNs for coupled
multiphysics systems

The foundation of this approach is a neural network
designed to map spatial and temporal coordinates to the rel-
evant physical variables of the system. For a system with d
spatial dimensions and # physical variables, the network can
be expressed as:

N R4 4R (18)

u= N (x,t0) (19)

@ Springer
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Table 1 Comparison of PINNSs studies

Approach Strengths Limitations
Adaptive Improved convergence; May not fully address
Weight Better handling of stiff challenges in highly
PINNs [33] problems coupled systems; Poten-
tial instability in weight
adaptation
Curriculum  Improved stability in train- Requires careful design
Learning ing; Better performance on of curriculum; May not
PINNs [28,  complex problems generalize well to all
29, 34] problems
hp-VPINNs  Improved accuracy for Increased computa-
[35] problems with local- tional complexity; May
ized features; Adaptive struggle with highly
resolution nonlinear coupled
systems
Self-adaptive Efficient architecture Increased training time;
PINNs [11]  optimization; Improved May not always find
performance on various optimal architecture
problems
Multifidelity Improved accuracy with Requires availability of
PINNs [30]  limited high-fidelity data;  multifidelity data; Com-
Efficient use of computa-  plexity in balancing
tional resources different fidelity levels
Physics- Improved stability and Requires deep under-
constrained  accuracy for long-term standing of underlying
PINNs [12]  predictions; Better adher-  physics; May limit flex-
ence to physical laws ibility of the network
Domain Improved handling of Challenges in ensur-
Decomposi- complex geometries; ing continuity across
tion PINNs  Potential for parallelization subdomains; Increased
[15,33] complexity in
implementation
Multistage ~ Improved handling of May require careful
PINNs (This  coupled multiphysics prob- design of stages; Poten-
study) lems; Significant reduction tial for underestimation

in training time

in some variables

where u represents the vector of physical variables, x the
spatial coordinates, ¢ the time, and 6 the network param-
eters. The learning process is divided into S stages, each cor-
responding to a level of physical complexity. In each stage
s, the network focuses on a subset of the physical variables
or equations:

uw = N°(x,t6°), s=12,...,8 (20)
where u® represents the subset of physical variables con-
sidered in stage s. The loss function for each stage, L*, is a
crucial component and includes multiple terms:
L? = MpprLlepe + AscLie + AfcLic (21)
where L{ g represents the PDE residuals, L~ the bound-
ary condition losses, L{- the initial condition losses, and A
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are weighting parameters. The PDE residual term ensures
the network’s predictions satisfy the governing equations:

< . ou® ou’
LPDE:Z’fi (th,u ’6x’at’”'>

where f; represents the i-th PDE in the system. Boundary
and initial condition losses are formulated similarly:

2
(22)

s s\ (12
BC = zj: [1B; (x,t,u)|| (23)

Lic = > | (x, 0 (x, 0) | (24)
k

where B; and Ij, represent boundary and initial conditions,
respectively. For each stage s, the training process involves:

1. Initializing the network N°( or loading weights from
the previous stage for s > 1).

2. Generating training data appropriate for the current
stage.

3. Minimizing the loss function.

4. Saving the optimized weights for potential use in the
next stage.

This process is repeated for a specified number of epochs or
until convergence criteria are met. To facilitate knowledge
transfer between stages, the optimized weights from stage s
are used to initialize the network for stage s + 1. This trans-
fer allows the network to build upon previously learned fea-
tures and physics.

To validate and demonstrate the efficacy of the proposed
multistaged PINN approach, two multiphysics problems are
presented as test cases. The first example explores the com-
plex process of asphalt aging, a phenomenon of significant
interest in civil engineering and materials science. The sec-
ond example examines the fluid dynamics in a lid-driven
cavity, involving the coupled Navier-Stokes equations. Both
examples are implemented using PyTorch, a machine learn-
ing library that provides efficient computation and auto-
matic differentiation capabilities, which is widely used for
building PINNs models [36].

To address initialization dependence in PINNs, a con-
sistent initialization strategy was implemented using fixed
random seeds (1234) for both PyTorch and NumPy libraries
across all experiments. This approach ensures reproducible
results by maintaining identical initial model parameters
and stochastic processes across runs.
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4 Example 1: an advanced PINN-based
multistage approach for modeling asphalt

aging
4.1 Background on asphalt aging

Asphalt, a complex mixture of hydrocarbons derived from
petroleum, is one of the most widely used materials in road
construction. The viscoelastic properties of asphalt make
it ideal for creating durable, flexible pavements capable of
handling diverse traffic loads and environmental conditions
[37, 38]. Asphalt binders, the adhesive component in asphalt
mixtures, play a crucial role in determining the overall per-
formance of road surfaces.

However, the properties of asphalt materials are not
static. They evolve over time due to various environmental
factors. This phenomenon, known as asphalt aging, signifi-
cantly impacts the durability and functionality of pavements
[39, 40]. Among the various aging mechanisms, oxidative
aging stands out as a primary contributor to long-term
asphalt degradation [41].

Oxidative aging is a complex process primarily driven
by the interaction between asphalt binders and atmospheric
oxygen and temperature. This aging mechanism can be
characterized as a two-stage process [42]:

e Fast-rate reaction: Initially, there is a rapid oxidation
phase where the most reactive components of the as-
phalt binder quickly interact with oxygen. This stage is
characterized by a high reaction rate and is particularly
significant in the early life of the pavement.

e Constant-rate reaction: Following the fast-rate period,
the oxidation continues at a slower, more constant rate.
This stage is known as the long-term aging process of
the asphalt.

Temperature plays a crucial role in the aging process, with
higher temperatures accelerating the oxidation reactions fol-
lowing the Arrhenius-type relationship [43]. The diffusion
of oxygen within the asphalt matrix is also temperature-
dependent. Oxygen diffusion is equally important, as the
availability and concentration of oxygen directly affect the
rate of oxidation [44].

A primary indicator of oxidative aging is the formation
of carbonyl compounds, quantified by the carbonyl area in
infrared spectroscopy [45, 46]. The carbonyl area serves
as a measure of the extent of oxidation and correlates with
changes in the rheological properties of the asphalt binder.
The increasing in the carbonyl content typically leads to

hardening and brittleness of the asphalt, affecting its visco-
elastic properties and overall performance.

The governing equations of these variables (i.e., tem-
perature, oxygen pressure, carbonyl area) are presented as
follows [47]:

1- Temperature diffusion: The temperature distribution
within the asphalt is governed by the heat equation:

oT
— =aV?T 25
5 = @ (25)
where T is temperature, ¢ is time, V( gradient operator) =
{%, a%] , and « is the thermal diffusivity of the asphalt.

2. Oxygen pressure diffusion: The oxygen pressure
within the asphalt is described by a modified diffusion equa-
tion that accounts for oxygen consumption during the oxi-

dation process:

9P ., c¢RT 9CA
T iy T

(26)

where P is oxygen pressure, D is the diffusion coefficient
of oxygen in asphalt, R is the universal gas constant, 4 is
the oxygen solubility in asphalt binder at a standard tem-
perature of 30°C, CA4 is the carbonyl area, cg is a factor that
converts reaction rate of C4 to rate of oxygen consumption.

3. Carbonyl area formation: The formation of carbonyl
compounds, represented by the carbonyl area (CA), is mod-
eled using a kinetic equation:

% = Mprrokse ™ + k. 27)

where M rrro is the limiting amount of carbonyl formation
due to the first-order reaction after hot mix production, £ is
the fast reaction rate constant, and k.. is the constant reaction
rate constant. The rate constants k; and k. are temperature
and pressure dependent, following the Arrhenius-type rela-
tionship [48]:

P a

k= A, () ¢ Per /T (28)
P
P a

ke = Ac () e~ Fac/ BT (29)
Py

where Ay and A, are pre-exponential factors, F is the ref-
erence pressure, a is the pressure exponent, I,y and E, are
activation energies.
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Temperature (T)

aT/dt = aV?T

Oxygen Pressure (Pb)
dP/dt = DV?P — f(T,CA)

Carbonyl Area (CA)
aCcA/dt = f(T,P)

Fig. 2 Schematic representation of the coupled multiphysics system
governing asphalt aging

Figure 2 shows the coupling between the three governing
equations, forming a complex multiphysics system.

The temperature (7) affects both oxygen pressure (P) and
carbonyl area (CA) formation. It directly influences the reac-
tion rates ks and k. in the CA4 formation equation through
the Arrhenius relationships and appears in the oxygen pres-
sure equation, affecting the consumption term. Oxygen
pressure (P) influences the carbonyl area (CA) formation
through the pressure-dependent terms in the rate constants
ks and k., which directly affect the CA formation rate. In
turn, carbonyl area (CA) formation impacts the oxygen pres-
sure (P), as the rate of CA formation (OC'A/0t) appears in
the oxygen pressure equation, representing oxygen con-
sumption during oxidation.

This coupling creates a feedback loop where changes in
one variable can propagate through the system, affecting the
others. For instance, an increase in temperature can acceler-
ate CA formation, which in turn increases oxygen consump-
tion, potentially leading to changes in the oxygen pressure
distribution. These interactions make the aging process of
asphalt a complex phenomenon that requires simultaneous
consideration of all three components for accurate modeling
and prediction.

4.2 Training algorithm for asphalt aging prediction

The training process follows a curriculum learning strategy,
which gradually increases the complexity of the task the
neural network must learn. The curriculum is divided into
three stages.

In the first stage, the network learns to model only the
temperature diffusion process. This allows the PINN to
establish a foundation in solving the basic heat equation.

@ Springer

The second stage introduces a simplified version of the
oxygen pressure process, coupling it with the temperature
model. In this stage, a simplified oxygen pressure equation
is used, where the term involving ag—tA is omitted, assuming
a constant rate of oxygen consumption. This simplification
increases the complexity as the network must now solve two
interrelated PDEs simultaneously, but without the full com-
plexity of the carbonyl area formation.

The final stage incorporates the full system, including the
complete oxygen pressure equation and carbonyl area for-
mation. At this point, the PINN is tasked with solving the
complete coupled system of PDEs that describe the asphalt
aging process, including the interdependencies between
temperature, oxygen pressure, and carbonyl area formation.

The use of a simplified oxygen pressure equation in the
second stage serves as an intermediate step between the
basic heat equation and the fully coupled system. This inter-
mediate stage helps the network to gradually adapt to the
coupling between temperature and oxygen pressure before
introducing the additional complexity of carbonyl area
formation.

In addition to this multistage approach, an adaptive
weight PINN method is also considered for comparison in
this study. The adaptive weight PINN dynamically adjusts
the weights of different loss components during training to
enhance the balance between satisfying physical constraints
and fitting boundary conditions during the training. This
method provides an alternative approach to handling the
complexities of the coupled PDE system in asphalt aging
modeling.

While the temperature variable (7) appears to influence
pressure (P) and carbonyl area (CA) more directly than vice
versa, the temperature PDE residual is maintained in the
loss function for all stages of the multistage PINN approach.
This decision is based on several important considerations.
First, real-world multiphysics systems often exhibit com-
plex, bidirectional couplings that may not be immediately
apparent. By including the temperature residual throughout,
the model ensures that any small, indirect effects of P and
CA on T are captured. Second, this approach enhances the
overall numerical stability of the solution. The temperature
residual acts as a constraint, ensuring that the temperature
field remains physically consistent throughout the optimiza-
tion process, even when the focus is on P and CA. Third,
in coupled systems, errors in one variable can propagate
and amplify in others. Maintaining the temperature residual
minimizes the potential for error accumulation in the tem-
perature field, which could otherwise lead to inaccuracies in
P and CA predictions. Lastly, while the current model may
suggest a primarily one-way coupling, maintaining the full
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coupling in the formulation future-proofs the model. If future =~ For oxygen pressure:
research reveals more complex interactions between 7, P,

and C4, the model structure is already equipped to accom- P(2,0,t) = Pyottom

modate these without requiring significant restructuring. P(xz,Ly,t) = Piop
Dirichlet boundary conditions are employed for tempera- P(0,y,t) = Peg

ture (7)), oxygen pressure (P) at the domain boundaries (top, P(Ly,y,t) = Pright

bottom, left, and right edges of the asphalt sample). These
conditions can be mathematically expressed as follows:

For temperature: where L, and L, are the dimensions of the asphalt sample
in the x and y directions, respectively. For the initial con-
T'(z,0,t) = Thottom ditions, specified values for 7, P, and CA throughout the
T(z, Ly, t) = Tiop domain at time ¢ = 0 are given as:
(0 Y, ) T‘left
( x5 Y5 ) rlght
Temperature Equation______ ;,______Oxygen Pressure Equation

Lo——
0.8
06|
0.4 .

0.2 n

O.%.._. s _ - o . J 0.%..., S 02

1.0 _ Carbqnyl Area Equat_ior!_

Q0 o2 04 06 08 1.0
X
Collocation Boundary Initial

Fig. 3 Spatial distribution of collocation points, boundary conditions, and initial conditions for the coupled PDE system
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Table 2 Summary of hyperparameters used in the PINN model

Hyperparameter Value

No. of Inputs 32

No. of Outputs 1-3°

No. of Hidden Layers 1-5°

No. of Hidden Neurons 10-130°

Activation Function Hyperbolic Tangent (tanh)
Optimizer Adam

Learning Rate 0.001

Batch Size Full dataset®

Epochs per Stage 100,000

aCorresponding to spatial coordinates (x, y) and time (¢)

bVarying by curriculum learning stage: 1 (7), 2 (T and P), and 3 (T,
P, and CA4)

°Range explored in sensitivity analysis

dThe entire dataset is used for each iteration

T(CE, Y, 0) = /Tinit
P(iﬂ,y, 0) = -Pinit
OA(:E7 Y, 0) = CAinit

These boundary and initial conditions are incorporated into
the loss function to ensure the PINN satisfies these con-
straints during training. Figure 3 shows the spatial distri-
bution of the boundary, initial conditions and collocation
points for each PDE.

The loss function incorporates both the physics of the
problem and the boundary/initial conditions. It is formulated
as a weighted sum of three components: boundary condition
loss, initial condition loss, and PDE residual loss. The com-
plete loss function of the multistage PINN for asphalt aging
at the last stage can be expressed as:

Nye
1 < 2
_ .pred ‘true
Liotal =Wpe Y ( > Jibred — i

N,
ie{T,P,CA} be 551

Data-driven part

twe Y ( Z‘P‘Gdt—o init

ie{T,P,CA} Nie k=1

Data-driven part

Npde oT, 9
+“’I"*e< Npe ;‘ ~ V| (30)

Physical model part

ff‘@fpvp

coRT; 0C Ay ‘2
h ot

pde

Physical model part

Npde
A 2
Z ‘60 L Myrpokye™*rt _kc’ )

pde

Physical model part
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where wye, Wi, and wpqe are weighting factors for the
boundary condition, initial condition, and PDE residual
losses, respectively. i € {T, P,C A} represents the vari-
ables temperature, oxygen pressure, and carbonyl area.
Ny, Nic, and Npqe are the numbers of boundary points,
initial condition points, and collocation points, respectively.

?re and %™ are the predicted and true values at bound-

ary points. zpred(t = 0) and " are the predicted and ini-
tial values at ¢ = 0. The last three terms represent the PDE
residuals for temperature, oxygen pressure, and carbonyl
area, respectively. This multistage approach allows the
PINN to progressively learn more complex physics, starting
from simple temperature diffusion and building up to the
fully coupled system of asphalt aging. The overall algorithm
is given as Algorithm 2

Table 3 Model parameters for the asphalt aging simulation

Parameter Symbol Value Unit
Thermal diffusivity o 0.1 m?2/s
Pressure exponent a 0.27 -
Pre-exponential factor (fast) Af 5.8446 x 307
Pre-exponential factor (constant) A, 5.8264 x 30%
Activation energy (fast) Eaf 75,400  J/mol
Activation energy (constant) B, 103,800 J/mol
Oxygen diffusion coefficient D 1x1 0,11m2 /s
Oxygen consumption factor co 371 mol/m?®
Oxygen solubility in bitumen h 0.0076  mol/(m®- Pa)
Universal gas constant R 8.314 J/(mol K)

The parameters are adapted from Omairey et al. (2022) [52] for a road
section on US277 in Laredo, Texas

Table 4 Boundary and initial conditions for the asphalt aging simula-
tion

Variable Top Bottom  Left Right Initial
T(K) 30315 30315 27415 27415 295.65
P (Pa) 1x107 1x107 1x10° 1x10° 1x107
CA(au) - - - - 0.94
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1: procedure TRAINMULTISTAGEPINN(Ncpochs)

2 Initialize PINN parameters 6

3 for epoch = 1t0 Nepocns do

4: Sample collocation points (z, y, t)

5: // Stage 1: Temperature Diffusion

6: Forward pass: Compute 7" = PINN(z, y, t; 0)
7 Compute PDE residual: R, = !% — aV2T|
8 Compute L, L1c for temperature

9: Compute loss £1 = Lpc + L1c + R1 (Unweighted summation)

10: Backpropagate and update 6 using optimizer

11: end for

12: for epoch = 1t0 Nepocns do

13: Sample collocation points (z, y, t)

14: // Stage 2: Temperature and Oxygen Pressure Diffusion
15: Forward pass: Compute T', P = PINN(z, y, t; 6)

16: Compute PDE residuals:

17: R1=|4L — aV?T|

18: Re = |35 - DV2P + 07T |

19: Compute Lpc, Lrc for T and P

20: Compute loss L2 = Lo + L1c + R1 + R2 (Unweighted summation)
21: Backpropagate and update 6 using optimizer

22: end for

23: for epoch = 1t0 Nepocns do

24: Sample collocation points (z, y, t)

25: // Stage 3: Full Coupled System

26: Forward pass: Compute T', P, CA = PINN(z, y, t; 0)
27: Compute PDE residuals:

28 R1 = |9F — aV?T|

29 Rz =|%F - DV2P + 0T 0G4 |

30: Rz = ‘BgtA —MRTF()k‘fe_kft —kc

31: Compute Lgc, Lrc forT, P,and CA

32: Compute loss L3 = Lpc + L1c + R1 + R2 + Rs (Unweighted summation)
33: Backpropagate: Update 6 using an optimizer (Adam)
34: end for

35: return Trained PINN parameters 6

36: end procedure

Algorithm 2 Multistage PINN Training Algorithm for Asphalt Aging

4.3 Training hyperparameters

The performance and efficiency of PINNs are significantly
influenced by their architecture and training hyperparam-
eters. To optimize the PINN model for solving the coupled
PDEs governing asphalt aging, a sensitivity analysis was
conducted. This analysis focused on the architectural and
training hyperparameters, as detailed below:

4.3.1 Network architecture

The depth of the network was adjusted from 1 to 5 hidden
layers. For each layer configuration, the width of the net-
work was varied, with the number of neurons per layer rang-
ing from 10 to 130. The input layer consistently comprised 3
neurons, corresponding to the spatial coordinates (x, y) and
time (¢). The output layer, however, varied according to the
curriculum learning stage: in the first stage, it contained 1
neuron (7); in the second stage, 2 neurons (7 and P); and in
the third stage, 3 neurons (7, P, and CA). This progressive
increase in output dimensionality aligned with the increasing
complexity of the physical system being modeled across the
curriculum learning stages. To ensure optimal performance

and numerical stability of the PINN model, all input and
output variables were scaled to the range [0, 1] prior to
training. This normalization process helps to prevent issues
related to widely varying magnitudes across different physi-
cal quantities, ensures consistent gradient propagation dur-
ing training, and generally improves the convergence of the
neural network.

4.3.2 Training parameters

The following training parameters were maintained constant
across all architectural configurations to ensure a fair com-
parison: A fixed learning rate of 0.001 was utilized, chosen
based on preliminary experiments to balance convergence
speed and stability. The Adam optimizer was employed
due to its effectiveness in handling complex, non-convex
optimization problems commonly encountered in neural
network training [49]. Hyperbolic tangent (tanh) activa-
tion functions were employed between layers due to their
suitability for physics-based problems [50, 51]. Each stage
of the curriculum learning process was trained for 100,000
epochs. This number of epochs was selected to ensure con-
vergence across all model configurations. Table 2 summa-
rize the hyperparameters adapted in this example.
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Fig. 4 Sensitivity analysis of PINN architecture for asphalt aging prediction

4.4 Model parameters

The model parameters employed in this example are derived
from a road section on US277 in Laredo, Texas, as docu-
mented by Omairey et al. (2022) [52]. These parameters
characterize the physical and chemical properties of the
asphalt material and the environmental conditions influenc-
ing the aging process. Table 3 summarizes the key param-
eters used in the coupled PDE system.

The thermal diffusivity («) governs the rate of heat prop-
agation through the asphalt material. The pressure exponent
(a) reflects the influence of oxygen pressure on oxidation
reaction rates. Pre-exponential factors (A, A.) and activa-
tion energies (F, s, F,.) are components of the Arrhenius
equation, describing the temperature dependence of reaction
rates for fast and constant oxidation processes, respectively.

@ Springer

The oxygen diffusion coefficient (D) characterizes the
rate of oxygen transport within the asphalt, while the oxygen
consumption factor (cp) relates the carbonyl area formation
rate to oxygen consumption. The oxygen solubility (%) rep-
resents the capacity of the asphalt binder to absorb oxygen
at a reference temperature of 30°C. The simulation domain
is defined by spatial coordinates x and y, both ranging from
0 to 1, representing a normalized unit square. The temporal
dimension ¢ extends from 0 to 1 x 107 seconds, which is the
full duration of the aging process simulation. The boundary
and initial conditions are summarized in Table 4.

While these parameters are specific to the studied road
section, it is important to note that they may vary for differ-
ent asphalt mixtures and environmental conditions. Future
studies could explore the model’s sensitivity to parameter
variations and extend the application to diverse asphalt
compositions and climatic scenarios.
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Fig.5 The evolution of the BC, IC, PDE, and the total losses during the training process. a Multistage PINN b Adaptive Weigh PINN ¢ PINN

are presented in Fig. 4. Based on the analysis, a network

4.5 Results: asphalt aging model architecture with 4 hidden layers and 10 neurons per layer
was selected. This configuration demonstrates an excellent
4.5.1 Sensitivity analysis balance between model complexity and performance. The

chosen architecture performs well in minimizing the ini-
A sensitivity analysis was conducted to determine the  tial condition (IC) loss and maintains low boundary condi-
optimal network architecture. The results of this analysis  tion (BC) and PDE losses. In addition, it was observed that
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Fig.6 Comparison of loss components a BC, b IC, and ¢ PDE across different numbers of collocation points in the Multistage PINN framework

increasing the network size beyond 4 layers or 10 neurons
per layer often resulted in only marginal improvements or
even decreased performance in some cases, suggesting a
point of diminishing returns.

Figure 5 illustrates the evolution of the loss components
during the training process for the selected optimal network
architecture (4 hidden layers, 10 neurons per layer).

In Stage 1 (epochs 0-100,000), which focuses on temper-
ature diffusion, we observe a rapid initial decrease in all loss
components, followed by a stable convergence. The BC loss
and total loss stabilize quickly, while the IC loss continues
to decrease gradually.

Stage 2 (epochs 100,000-200,000) introduces oxygen
pressure diffusion. This transition is marked by a temporary
spike in losses, particularly evident in the PDE loss. How-
ever, the network quickly adapts, and all loss components
show a steady decline throughout this stage. Stage 3 (epochs
200,000-300,000) incorporates the full coupled system,
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including carbonyl area formation. Despite the increased
complexity, the network maintains stable performance. The
total loss and BC loss remain relatively constant, while the
IC and PDE losses continue to decrease slightly, indicating
the network’s ability to capture the full complexity of the
asphalt aging process (Fig.5a). The progression of losses
depicted in Fig. 5b, c reveals higher loss values and greater
fluctuations. This suggests that both the adaptive weight
PINN and standard PINN encounter more challenges in
achieving convergence.

The impact of collocation point distribution on the PINN
model’s performance was analyzed by varying the number
of points from 1000 to 5000 (Fig. 6). The results show that
1000 collocation points provide the optimal configuration,
minimizing the total loss while accurately representing BC,
IC, and governing equations. At this point, additional points
fail to contribute meaningful new insights into the underly-
ing physical system may introduce unnecessary redundancy
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Fig.7 A comparative visualization of temperature distributions using different computational methods: PINN, Adaptive Weight PINN, Multistage

PINN, and FEM

in the data representation. This redundancy can potentially
inject noise into the training process, complicating the mod-
el’s ability to accurately capture the essential physics of the
problem [11, 22, 35, 53].

4.5.2 Temperature distribution

Figures 7 and 8 illustrate the performance of various PINN
methods compared to the FEM solution for temperature
distribution. The multistage PINN method demonstrates
remarkable consistency with the FEM solution across
both initially and at the final time step (+ = 0 and ¢ = I,

respectively, where ¢ represents normalized time step). In
Fig. 7, the multistage PINN heatmap closely resembles the
FEM result. It accurately captures the temperature gradients
from the edges to the center of the domain. This visual simi-
larity is quantitatively supported by the centerline plots in
Fig. 8, where the multistage PINN curves almost perfectly
overlay the FEM solutions for both time steps and along
both centerlines. In contrast, the standard PINN method
shows discrepancies. It overestimates the high-temperature
regions at the top and bottom. This overestimation is evident
in Fig. 8’s centerline plots, particularly at ¢ = / (s), where the
standard PINN deviates from the FEM solution, especially
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near the domain boundaries. The adaptive weight PINN per-  region, which is reflected in the centerline plots of Fig. 8.
forms poorly in both representations. The heatmap in Fig. 7 The centerlines plots show extreme oscillations at # = 0 (s)
shows a significantly underestimated central temperature  and underestimation of temperatures at the final time step.
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4.5.3 Oxygen pressure evolution

Figures 9 and 10 show the performance of various PINN
methods compared to the FEM solution for oxygen pres-
sure distribution. The multistage PINN demonstrates high
accuracy in capturing the oxygen pressure distribution. The
heatmap in Fig. 9 closely aligns with the FEM result. This
method can accurately captures the higher pressure region
at the bottom and the lower pressure areas at the left and
right boundaries. The centerline plots in Fig. 10, where
the multistage PINN results were plotted, show excellent
agreement with the FEM solutions at both time steps and

along both centerlines. The standard PINN method, while
capturing the general pressure pattern, shows some limita-
tions. The heatmap in Fig. 9 indicates an underestimation
of pressure values, particularly evident in the center of the
domain and near the boundaries. This underestimation is
consistently reflected in Fig. 10’s centerline plots, where
the standard PINN predicts lower pressure values compared
to the FEM solution, especially pronounced at ¢ = [ (s)
along both horizontal and vertical centerlines. The adaptive
weight PINN exhibits improved performance for oxygen
pressure compared to its temperature predictions. The heat-
map in Fig. 9 shows a reasonable pressure distribution, with
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Fig. 10 A quantitative analysis of oxygen distributions along the centerlines using different computational methods: PINN, Adaptive Weight PINN,
Multistage PINN, and FEM. (a) and (b) at t = 0 (s) while (c) and (d) at t=1 (s)

some overestimation in the central region. This tendency is
mirrored in the centerline plots of Fig. 10, where the results
show slight oscillations at # = 0 (s) and overestimation of
pressures at ¢ = [ (s), particularly in the central portions of
both centerlines.

4.5.4 Carbonyl area formation

Figures 11 and 12 show the carbonyl area distribution results
for different PINN methods compared to the FEM solution.
In Fig. 11, the multistage PINN result closely matches the
FEM solution. It accurately shows higher carbonyl concen-
trations at the top and bottom edges, with a gradual decrease
towards the center and sides. This accuracy is further con-
firmed in Fig. 12’s centerline plots, where the multistage
PINN results align closely with the FEM solutions at ¢ =
0 (s). However, at t = [ (s), it slightly underestimates the
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carbonyl area, particularly in the domain center. The stan-
dard PINN’s heatmap, however, underestimates the car-
bonyl area across the entire domain. It fails to capture the
detailed spatial changes seen in the FEM solution. This
underestimation is evident Fig. 12’s centerline plots, where
the standard PINN consistently predicts lower carbonyl area
values. The effect is more pronounced at ¢ = / (s), where it
fails to capture the curvature of the profiles, especially along
the vertical centerline. The adaptive weight PINN’s heatmap
shows a large overestimation of carbonyl area, especially in
the middle of the domain. This result seems unrealistic and
points to possible problems with how the method adjusts its
weights for this variable.This overestimation is reflected in
the centerline plots of Fig. 12, where the results show large
oscillations at # = 0 (s) and extreme overestimation at ¢ = /

(s).
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Fig. 11 A comparative visualization of carbonyl area distributions using different computational methods: PINN, Adaptive Weight PINN, Multi-

stage PINN, and FEM

5 Example 2: an advanced PINN-based
multistage approach for modeling Navier-
Stokes equations

5.1 Background in fluid dynamics

The Navier-Stokes equations are fundamental principles
in fluid dynamics, describing the motion of viscous fluid

substances. These equations model the physics of numerous
phenomena of scientific and engineering interest, includ-
ing weather patterns, ocean currents, pipe flow, and air flow
around aircraft wings.

For an incompressible Newtonian fluid in two dimen-
sions (X, y), the Navier-Stokes equations take the following
form:

Continuity equation:
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where u and v are the velocity components in the x and
y directions respectively p is the fluid density ¢ is time p
is pressure u is the dynamic viscosity f, and f, are body
force components (like gravity). These PDEs are nonlinear,
making them challenging to solve analytically for most real
world situations. Their complexity lies in this nonlinear-
ity, which gives rise to phenomena such as turbulence. The
equations find applications across various fields, including
aerospace engineering, meteorology, civil engineering, and
oceanography.

In practice, the Navier—Stokes equations are often solved
numerically using computational fluid dynamics (CFD)
techniques [54]. These methods discretize the equations and
solve them iteratively, allowing for the simulation of com-
plex fluid flows in various scenarios.

Although standard PINNs have been previously
employed to solve the Navier-Stokes equations, the objec-
tive by proposing this example is to compare the proposed
multistage PINN with these established approaches and
evaluate its effectiveness in handling complex fluid dynam-
ics problems under different BCs and ICs [6].

5.2 Training algorithm for the Navier-Stokes
equations

Similar to the first example, the training process for the
Navier-Stokes PINN follows a curriculum learning strat-
egy, which gradually increases the complexity of the task
the neural network must learn. The curriculum is divided
into three stages, each building upon the previous one to
solve the full Navier-Stokes equations for incompressible
fluid flow.

In the first stage, the network learns to model only the
u-velocity component of the flow. This allows the PINN
to establish a foundation in solving a simplified version of
the momentum equation, focusing on the diffusion of the
u-velocity field without considering the coupling with other
velocity components or pressure.

The second stage introduces the v-velocity component,
coupling it with the u-velocity model. In this stage, the net-
work learns to solve two coupled equations simultaneously:
the u-momentum and v-momentum equations. However, the
pressure term is still omitted, simplifying the task compared
to the full Navier-Stokes equations. This intermediate step
increases the complexity as the network must now account
for the interactions between the two velocity components.

The final stage incorporates the full system, including
the pressure field and the continuity equation. At this point,

the PINN is tasked with solving the complete coupled sys-
tem of PDEs that describe incompressible fluid flow: the
u-momentum equation, v-momentum equation, and the con-
tinuity equation (which enforces mass conservation). This
stage introduces the pressure gradient terms in the momen-
tum equations and requires the network to satisfy the diver-
gence-free condition for incompressible flow.

The problem under consideration is the classical lid-
driven cavity flow, a standard benchmark in computational
fluid dynamics. The domain is a square cavity with sides of
length L, = L, = 1.0, and the simulation time extends to
t = 1.0( s). The boundary conditions for the velocity com-
ponents (u, v) are specified as follows:

At the bottom wall (y=0) and side walls
(x =0and z = L,), both u and v are set to zero, imple-
menting a no-slip condition. At the top wall (y = L,),
u=U and v = 0, where U = 1.0 is the constant velocity
of the lid. For all walls, the pressure gradient normal to the
wall is implicitly assumed to be zero (Neumann condition
for pressure) through the enforcement of the incompress-
ibility constraint.

The initial conditions at ¢=0 are defined as:
u(z,y,0) =U if y = L,, and 0 otherwise; v(z,y,0) =0
everywhere; and p(x,y,0) =0 everywhere. The initial
pressure is set to an arbitrary constant (zero in this case)
since only pressure gradients are relevant in incompressible
flow. The model architecture, hyperparameters, and collo-
cation points are similar to those used in the asphalt aging
example. The final loss function of this example and the
algorithm used are summurized in Eqs. 34 and Algorithm
3, respectively.

1 Npe
_ spred -true|2
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1: procedure TRAINMULTISTAGEPINN(Ncpochs, Liws Ly, T, v, U)
2 Initialize PINN parameters 6

3 for stage = 1to 3 do

4. for epoch = 1t0o Nepocns do

5: Sample collocation points (x, y, t)

6: // Stage 1: u-velocity

7 if stage == 1 then

8: Forward pass: Compute u = PINN(z y, t; 9)

9: Compute PDE residual: R1 = | 3% — v V7|

10: Compute L, L1c foru
11: Compute loss £1 = Lpc + L1¢ + R1 (Unweighted summation)
12: end if
13: // Stage 2: u-velocity and v-velocity
14: if stage == 2 then
15: Forward pass: Compute u, v = PINN(z, y, t; 0)
16: Compute PDE residuals:
17: R1 = ’ + ug“ + v 1/V2u’
18: Ro = | +ug” +v quv‘
19: Compute LBC,LIC foruandv
20: Compute loss Lo = Lo + L1c + R1 + R2 (Unweighted summation)
21: end if
22: /I Stage 3: Full Navier-Stokes system
23: if stage == 3 then
24: Forward pass: Compute u, v, p = PINN(z, y, t; 0)
25: Compute PDE residuals:
26: R1—|6 +u6m+vg + —szu‘
27: Ro = |g—+ug" +v6” + —VVZ’U‘
. _la
28: Rs = |ﬁ + g
29: Compute Lgc, L1¢ foru, v, and p
30: Compute loss L3 = Lpc + L1c + R1 + R2 + R3 (Unweighted summation)
31: end if
32: Backpropagate and update 6 using optimizer (Adam)
33: end for
34: end for

35: return Trained PINN parameters 6
36: end procedure

Algorithm 3 Multistage PINN Training Algorithm for Navier-Stokes Equations
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5.3 Results: Naviar Stokes model

Figure 13 illustrates the evolution of losses during the
training process for the three PINN variants. The multi-
stage PINN exhibits a sharp spikes in PDE loss at 100,000
and 200,000 epochs, suggesting that the gradual increase

in PDE complexity allows the model to explore a wider
solution space. Despite this increase, the total loss and BC
loss show a consistent downward trend, indicating overall
convergence. The adaptive weight PINN demonstrates a
smooth convergence among all the losses. This smooth con-
vergence suggests that dynamically adjusting the weights
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Fig. 17 Schematic representation of the multistage PINN architecture adapted in this study where v1, v2, v3 are the dependent variables for each

PDE used in the adapted examples

Table 5 Comparison of training times for different PINN Methods
across two examples

Method Example 1 Example 2
Multistage PINN (s) 5364 5900
Adaptive Weight PINN (s) 13,060 14,205
Standard PINN (s) 72,792 80,590

of different loss components effectively balances their con-
tributions throughout training. The standard PINN shows
characteristics intermediate between the multistage and
adaptive weight PINNs. While it achieves convergence, the
final loss values are generally higher than those of the other
two methods, indicating potentially lower accuracy in the
final predictions.

For the standard PINN, weight-adaptive PINN (Fig.
14), the u velocity predictions capture the overall pattern
of the FEM results. The v-velocity predictions show good
agreement in general distribution but exhibit some discrep-
ancies near boundaries and corners. The multistage PINN
(Fig. 15) demonstrates the highest accuracy among the
PINN variants where the u-velocity predictions are remark-
ably similar to FEM results, with the error map showing
minimal and uniformly distributed discrepancies across the
domain. The v-velocity predictions also closely match FEM
results, accurately capturing complex flow patterns. While
slightly higher errors are observed near corners and edges
for v-velocity, the overall agreement is excellent.

Figure 16 presents a quantitative analysis of velocities
distributions along the centerlines using different computa-
tional methods. The plots show the velocity components (u

@ Springer

and v) at different times and positions. In general, all PINN
methods consistently capture the overall trends and patterns
of both u and v velocities along both centerlines. However,
the more complex the flow pattern (as seen in Fig 16d),
the more pronounced the differences between the meth-
ods become, with advanced PINN methods showing their
strength in capturing intricate details.

A notable advantage of the multistage PINN is its com-
putational efficiency. It is reported to be faster than the other
methods, including the standard PINN and adaptive weight
PINN. This significant speed improvement, combined
with its superior accuracy, makes the multistage PINN
particularly attractive for solving complex fluid dynamics
problems.

6 Discussion

Figure 17 shows a schematic representation of the multi-
stage PINN architecture adapted in this study. The multi-
stage PINN approach offers a significant improvement in
both accuracy and computational efficiency compared to
other PINN methods. As shown in Table 5, it achieves supe-
rior results in less than half the time required by the adap-
tive weight PINN and less than a tenth of the time needed
by the standard PINN. This efficiency does not come at
the cost of accuracy. In fact, the multistage approach con-
sistently shows the smallest maximum differences from
the FEM solution across all variables. The computational
efficiency of the multistage PINN is attributed to its staged
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approach to optimizing the loss function. Conversely, a
causal PINN method prioritizes temporal causality in time-
dependent PDEs [55]. Though effective for such cases, the
multistage PINN approach better addresses coupled mul-
tiphysics systems, as demonstrated by the asphalt aging
and Navier—Stokes examples. For instance, in the asphalt
aging example, the model first incorporates terms related to
temperature diffusion, then integrates oxygen pressure, and
finally adds carbonyl area formation. While the standard
PINN and adaptive weight PINN struggled to accurately
model the final behavior, the multistage PINN achieved
high prediction accuracy with minimal error. The presence
of exponential terms in &k and k. makes it more challenging
for standard PINNSs to accurately capture the final behavior
of aging asphalt materials.

In the second example, although both the standard and
adaptive weight approaches demonstrated high accuracy,
the multistage PINN maintained the fastest training time
(5900 seconds compared to 14,205 seconds and 80,590 sec-
onds for adaptive weight and standard PINNSs, respectively.

To further quantify the accuracy of the multistage PINN,
the L2 error norms between the predicted solutions and
FEM solutions were calculated for both example problems.
Figures 18 and 19 present the L2 error analysis for (a) the
asphalt aging problem and the lid-driven cavity flow prob-
lem, respectively. For the asphalt aging example, the L2
errors for T, P, and CA are consistently lower for the multi-
stage PINN compared to the standard and adaptive weight
PINNs across the simulation period. The reduced L2 error
reflects the ability of the multistage approach to effectively
capture the coupled interactions between temperature, oxy-
gen diffusion, and chemical reactions through its curriculum
learning strategy. Similarly, in the lid-driven cavity flow
example, the L2 errors for the u and v velocities components
at demonstrate that the multistage PINN achieves closer
alignment with the FEM solution than its counterparts.

The choice of a fixed learning rate of 0.001 across all
stages in both examples highlights the robustness of this
approach in handling coupled multiphysics systems. While
the fully coupled optimization in stage 3 increases the com-
plexity of the loss function, the curriculum learning strategy
combined with weight transfer between stages effectively
stabilizes the training process, allowing the fixed learning
rate to remain effective. This contrasts with observations in
more complex coupled PDE systems, where a smaller learn-
ing rate may be necessary to prevent instability as the loss
landscape becomes more challenging. The success of the
fixed learning rate in this study is likely due to the moder-
ate coupling strength and the staged approach, which avoids
abrupt transitions in the optimization problem. However,
for highly nonlinear or strongly coupled systems, future
work could explore adaptive learning rate schedules or
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self-adaptive PINN techniques to further enhance training
stability and efficiency.

Despite these advantages, the slight tendency to underes-
timate values and the variability in performance across dif-
ferent physical variables indicate that there is still potential
for further refinement of the multistage approach. Future
work could focus on optimizing the staging strategy and
exploring hybrid approaches that combine the strengths of
multiple PINN variants.

7 Applications and future work

7.1 Implications for pavement engineering and
future research directions

The multistage PINN approach developed in this study offers
several advantages. Firstly, the PINN employs a mesh-free
approach, eliminating the need for complex meshing pro-
cedures that are often required in FEM. This significantly
reduces pre-processing time and avoids issues related to
mesh quality and refinement. Secondly, for complex, cou-
pled systems like asphalt aging, PINN can be more com-
putationally efficient than FEM, especially for long-term
simulations. The neural network, once trained, can provide
rapid predictions across the entire space-time domain with-
out the need for time-stepping procedures typical in FEM.
Finally, the PINN approach allows for adaptive resolution in
both space and time without the need for remeshing, which
is often required in FEM for achieving higher accuracy in
specific regions.

The flexibility of the PINN approach opens up possi-
bilities for future research. One promising direction is the
incorporation of fillers into the model. This could involve
adding new variables to represent filler properties (e.g.,
particle distribution), modifying the governing equations
to account for filler-binder interactions, and exploring how
fillers affect diffusion coefficients and reaction kinetics in
the aging process. Such extensions would provide a more
comprehensive understanding of how material composition
affects long-term pavement performance.

7.2 Potential applications in other scientific
domains

The concept of gradually increasing problem complex-
ity is well established in solving nonlinear problems. This
application offers several advantages in the field of scien-
tific machine learning and computational physics. Firstly,
PINNs face distinct challenges compared to traditional
numerical methods, particularly in balancing multiple phys-
ics-informed loss terms and ensuring stable convergence.
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The multistage approach specifically addresses these
PINN-related issues. Secondly, PINNs have shown prom-
ise in solving individual PDEs but their application to cou-
pled multiphysics systems remains relatively unexplored.
Lastly, the significant reduction in training time (over 90%)
achieved through this approach is noteworthy in the compu-
tationally demanding context of multiphysics simulations.

For these reasons, the PINN approach could be adapted
to model various multiphysics problems. For example, it
can be implemented in material degradation processes, such
as corrosion in metals or polymer degradation [56, 57].
Similar to asphalt aging, these phenomena involve coupled
physical and chemical processes occurring over long time
scales. The method’s ability to handle interactions between
diffusion, chemical reactions, and mechanical stress makes
it well-suited for predicting the long-term performance of
diverse materials under complex environmental conditions.

In civil engineering, the method could be applied to
model the aging of concrete structures. This process shares
similarities with asphalt aging, involving factors such as
carbonation, chloride ingress, and the effects of cyclic load-
ing [58, 59]. The PINN approach could provide more accu-
rate long-term predictions of concrete durability, accounting
for the coupled effects of chemical reactions and mechanical
stresses.

Future research could focus on adapting the multistage
PINN approach to these related fields, potentially leading
to improved predictive modeling across a range of mate-
rials and infrastructure applications. This could contribute
to the development of more durable and sustainable engi-
neered systems in various domains. Future research could
also investigate the optimization of hyperparameters, such
as the learning rate, to adapt the multistage PINN approach
to more complex multiphysics systems, potentially incor-
porating adaptive learning rate schedules or self-adaptive
techniques to improve stability and convergence in stage 3.

8 Conclusions

This study introduced a novel multistage PINN approach for
modeling complex, coupled multiphysics phenomena. The
method was demonstrated through its application to two
distinct problems: asphalt aging prediction and lid-driven
cavity flow. The multistage PINN demonstrated superior
performance in predicting the evolution of multiple inter-
connected variables in these complex systems. Compared
to standard PINN and adaptive weight PINN methods, the
proposed approach achieved higher accuracy and computa-
tional efficiency, reducing training time by over 90% while

maintaining better alignment with traditional numerical
solutions.

The success of the multistage approach in capturing the
interdependencies between multiple physical processes,
from material degradation to fluid dynamics, highlights its
potential for modeling a wide range of complex, coupled
systems across various scientific and engineering domains.
The significant reduction in training time without com-
promising accuracy is particularly promising for practical
applications where computational efficiency is crucial. The
method’s ability to handle both materials science and fluid
dynamics problems demonstrates its diversity and broad
applicability.

Future improvements to the multistage PINN approach
could include optimizing the staging strategy to better bal-
ance variable interactions and integrating adaptive learn-
ing rate schedules to enhance training stability for highly
nonlinear systems. Furthermore, exploring hybrid methods
that combine multistage PINNs with other advanced PINN
variants, such as self-adaptive or multifidelity approaches,
could further boost accuracy and efficiency.
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