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SUMMARY

Failures of networks, such as power outages in power systems, congestions in

transportation networks, paralyse our daily life and introduce a tremendous cascad-

ing effect on our society. Networks should be constructed and operated in a robust

way against random failures or deliberate attacks.

We study how to add a single link into an existing network such that the ro-

bustness of the network is maximally improved among all the possibilities. A graph

metric, the effective graph resistance, is employed to quantify the robustness of the

network. Though exhaustive search guarantees the optimal solution, the computa-

tional complexity is high and is not scalable with the increase of network size. We

propose strategies that take into account the structural and spectral properties of

networks and indicate links whose addition result in a high robustness level.

To apply the effective graph resistance to real-world power grids and to cope

with the robustness of dynamical processes, we improve the robustness of power

grids against cascading failures by adding transmission lines. Compared to the ex-

isting robustness metrics investigated in power grids, the effective graph resistance

effectively quantifies the robustness by taking into account multiple paths and their

ability to accommodate power flows. Experimental results suggest the existence of

Braess’s paradox in power grids: introducing an additional line into the system oc-

casionally results in the decrease of the grid robustness.

Network science and graph theory are applied to investigate the robustness of

33 worldwide metro networks under random failures or targeted attacks. Ten the-

oretical and three numerical robustness metrics are studied in the metro networks.

We find that the robustness metrics capture two distinct aspects of the robustness

of metro networks: (i) several metrics place an emphasis on alternative paths and

(ii) other metrics highlight the length of the paths.

Robustness of networks is threatened by link failures in real-world networks,

for example failures of transmission lines in power grids. To analyse the robustness

vii



viii SUMMARY

of a network against link failures, we study line graphs which transform links in the

original graph into nodes. Fundamental properties including degree distribution,

degree assortativity of a line graph are explored. The line graphs of Erdös-Rényi

random graphs show the same degree distribution pattern. In addition, we find that

most synthetic and real-world networks exhibit positive assortativity in the corre-

sponding line graphs. Meanwhile, we find trees and non-trees consisting of cycles

and paths whose line graphs have negative assortativity.

Though various robustness metrics have been proposed and widely studied,

the spectrum of graph matrices is hardly understood. We approach the challenge

by studying the eigenvector matrix of the Laplacian matrix of a graph. We try to

understand fundamental properties of the eigenvector matrix such as number of

zeros, the sum of the elements, the maximum and the minimum element. For the

particular class of Erdös-Rényi random graphs, we find that a product of a Gaus-

sian and a super-Gaussian distribution approximates accurately the distribution of

a randomly chosen component from the row sum of the eigenvector matrix of the

Laplacian.

The study of single networks is limited to anticipating the interaction prop-

erty between real-world networks, particularly between the critical infrastructures.

Interdependent networks are proposed by researchers to incorporate the intercon-

nections between different networks.

Modelling the interconnection pattern between networks is a challenge in the

study of interdependent networks. Motivated by spatial networks where links be-

tween nodes are determined by locations of nodes, we investigate two interconnec-

tion topologies, the random geometric graph and the relative neighbourhood graph.

The two interconnection topologies generalize the one-to-one interconnection to

an arbitrary number of interconnections depending on the locations of nodes. To

evaluate the robustness of the two interconnection topologies against node failures,

we investigate the impact of node failures on the interdependent network, where

the robustness is quantified by the largest mutually connected component. We find

that the random geometric graph shows a higher robust level compared to the rel-

ative neighbourhood graph. In addition, we propose the derivative of the largest

mutually connected component as a new robust metric which addresses the impact

of a small fraction of node failures. To avoid the collapse of the whole network, the
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proposed robustness metric quantifies the damage of networks triggered by a small

fraction of failures, significantly smaller than the fraction at the critical threshold

that corresponds to the collapse of the whole network.

Real-world networks, such as smart grids consisting of sensor networks, power

networks and coupled infrastructures of power systems and fibre-optic communi-

cation systems, show a multiple-to-multiple interconnection pattern, which means

that one node in one network connects to multiple nodes in the other network and

vice versa. Different from the one-to-one interconnection pattern studied in liter-

ature, we study a general regular interconnection pattern (constant row and col-

umn sum). Consider an interdependent network consisting of two different types of

graphs G1 and G2 with the weight p on each interconnection link. If the interconnec-

tion matrix B = pI , where I is the identity matrix, there exists a structural transition

threshold p∗, where dynamic processes are separated into two regimes: (a) p > p∗,

the network acts as a whole; (b) p < p∗, the network operates as if the graph is sep-

arated G1 and G2. For the interdependent network with a regular interconnection

matrix B 6= pI , our findings include (i) an upper bound for the transition threshold

p∗; (ii) topologies of interdependent networks where the upper bound is reached;

(iii) the interpretation of the transition threshold p∗ in terms of the minimum cut;

(iv) the exact transition threshold p∗ for special scenarios; (v) a counter-example to

show that the structural transition p∗ does not always exist.





SAMENVATTING

Uitval van netwerken, zoals stroomuitval in elektriciteitssystemen, opstoppin-

gen in transportnetwerken, verlammen ons dagelijks leven en introduceren een enorm

domino-effect in onze maatschappij. Netwerken moeten op een robuuste manier

worden gebouwd en bestuurd tegen een toevallige uitval van functie of opzettelijke

aanvallen. We onderzoeken hoe een enkele verbinding in een bestaand netwerk kan

worden aangebracht, zodanig dat die van alle mogelijkheden de robuustheid van

het netwerk maximaal verbetert. Een parameter voor grafen, de effective graph re-

sistance, is toegepast om de robuustheid van het netwerk te kwantificeren. Hoewel

uitputtend onderzoekswerk de optimale oplossing garandeert, is de rekenkundige

complexiteit groot en kan niet worden opgeschaald met het toenemen van het net-

werkformaat. We stellen strategieën voor, die rekening houden met de structurele

en spectrale eigenschappen van netwerken, en wijzen verbindingen aan, waarvan

de toevoeging in een hoog niveau van robuustheid resulteert.

Voor de toepassing van de effective graph resistance in real-world elektriciteits-

netwerken en het hanteren van de robuustheid van dynamische processen, ver-

beteren we de robuustheid van de elektriciteitsnetwerken met de toevoeging van

transmissielijnen. Vergeleken met bestaande parameters voor robuustheid, die zijn

onderzocht in elektriciteitsnetten, kwantificeert de effective graph resistance de ro-

buustheid door rekening te houden met een verscheidenheid aan paden en hun

vermogen elektrische stroom te vervoeren. Experimentele resultaten geven aanwij-

zingen voor het bestaan van de Braess-paradox in elektriciteitsnetwerken: het aan-

brengen in het systeem van een toegevoegde lijn resulteert soms in een afname van

de robuustheid van het net.

Netwerkwetenschap en de graaftheorie worden toegepast om de robuustheid

van wereldwijd 33 metronetwerken te onderzoeken tijdens een toevallige uitval of

gerichte aanvallen. Tien theoretische en 3 numerieke maten voor robuustheid wor-

den onderzocht in de metronetwerken. We vinden dat de maat voor robuustheid

xi
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twee verschillende aspecten weergeven van de robuustheid van metro netwerken:

(i) diverse maten leggen de nadruk op alternatieve paden en (ii) andere maten be-

nadrukken de lengte van de paden.

De robuustheid van netwerken wordt bedreigd door uitval van verbindingen in

real-world netwerken, bijvoorbeeld uitval van transmissielijnen in elektriciteitsnet-

ten. Om de robuustheid van een netwerk tegen uitval van verbindingen te analy-

seren, onderzoeken we lijngrafen die verbindingen in de oorspronkelijke graaf ver-

anderen in knooppunten. Fundamentele eigenschappen, waaronder de degree ver-

deling en degree assortativiteit van een lijngraaf, worden onderzocht. De lijngrafen

van Erdös-Rényi random grafen laten hetzelfde patroon van degree verdeling zien.

Daarnaast vinden we dat de meeste gemodelleerde en real-world netwerken posi-

tieve assortativiteit vertonen in de overeenkomstige lijngrafen. Ondertussen vinden

we trees en non-trees bestaande uit cycli en paden, waarvan de lijngrafen negatieve

assortativiteit hebben.

Hoewel diverse parameters voor robuustheid zijn voorgesteld en uitgebreid be-

studeerd, wordt het spectrum van graafmatrixen amper begrepen. We benaderen de

uitdaging door de eigenvector matrix van de Laplace matrix van een graaf te onder-

zoeken. We proberen de fundamentele eigenschappen van de eigenvector matrix te

begrijpen, zoals het aantal nullen, de som van de elementen, het maximum en het

minimum element. Voor de afzonderlijke klasse van Erdös-Rényi random grafen

vinden we dat een product van een Gauss- en een super-Gaussverdeling nauwkeu-

rig de verdeling van een willekeurig gekozen component van de rijensom van de

eigenvector matrix van de Laplace matrix benaderen.

Het bestuderen van enkelvoudige netwerken wordt beperkt tot het anticipe-

ren op de eigenschap van interactie tussen real-world netwerken, met name tussen

de kritische infrastructuren. Onderling afhankelijke netwerken worden door onder-

zoekers voorgesteld om de onderlinge verbindingen tussen verschillende netwer-

ken te belichamen.

Een model maken van het interconnectiepatroon van onderlinge verbindingen

tussen netwerken is een uitdaging bij het bestuderen van onderling afhankelijke

netwerken. Geïnspireerd door ruimtelijke netwerken waarin verbindingen tussen

knooppunten bepaald worden door de locatie van de knooppunten, onderzoeken

we twee vermaasde topologieën, de random geometric graph en de relative neigh-
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bourhood graph. De twee interconnectie topologieën generaliseren de één-op-één

interconnectie naar een willekeurig aantal interconnecties afhankelijk van de loca-

tie van de knooppunten. Om de robuustheid van de twee vermaasde topologieën te-

gen uitval van knooppunten te evalueren, onderzoeken we de uitwerking van uitval

van knooppunten op het onderling afhankelijke netwerk, waarvan de robuustheid

wordt gekwantificeerd door middel van het grootste gemeenschappelijk verbonden

component. We vinden dat de random geometric graph een hoger niveau van ro-

buustheid vertoont in vergelijking met de relative neighbourhood graph. Daarnaast

stellen we het afleiden van het grootste gemeenschappelijk verbonden component

voor als een nieuwe parameter voor robuustheid, die de uitwerking van een uitval

van een klein deel van de knooppunten weergeeft. Om de ineenstorting van het

hele netwerk te vermijden, kwantificeert de voorgestelde maat van robuustheid de

schade aan netwerken uitgelokt door uitval van een klein deel, significant kleiner

dan de hoeveelheid van de kritische drempel waarbij een ineenstorting van het hele

netwerk optreedt.

Real-world scenario’s, zoals smart grids bestaande uit sensornetwerken, elek-

triciteitsnetwerken en eraan gekoppeld infrastructuren van elektriciteitssystemen

en glasvezelcommunicatiesystemen, vertonen een multiple-to-multiple intercon-

nectiepatroon, wat betekent dat één knooppunt in één netwerk verbonden is met

meerdere knooppunten in het andere netwerk en vice versa. Verschillend van het

één-op-één interconnectiepatroon, dat in de literatuur bestudeerd wordt, bestude-

ren wij een geheel regelmatig interconnectiepatroon (gelijke totalen in rijen en ko-

lommen). Overweeg een onderling afhankelijk netwerk bestaande uit twee verschil-

lende vormen van grafen G1 en G2 met een gewicht p op elke onderlinge verbinding.

Als de interconnectie matrix B = pI , waarbij I de identiteitsmatrix is, dan bestaat

daar een structurele overgangsdrempel p∗, waarbij dynamische processen worden

gescheiden in twee regimes: (a) p > p∗, het netwerk werkt als een geheel; (b) p < p∗,

het netwerk werkt alsof de grafen G1 and G2 zijn gescheiden. Voor het onderling

afhankelijke netwerk met een regelmatige interconnectie matrix B 6= pI , omvatten

onze bevindingen (i) een bovengrens aan de overgangsdrempel p∗ (ii)topologieën

van onderling afhankelijke netwerken waarvan de bovengrens is bereikt (iii) een in-

terpretatie van de overgangsdrempel p∗ in termen van de minimum cut (iv) een

exacte overgangsdrempel p∗ voor speciale scenario’s (v)een tegenvoorbeeld om te
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tonen dat de structurele overgang p∗ niet altijd bestaat.
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1
INTRODUCTION

Networks exist everywhere in the world and in our daily lives. Examples include

transportation networks (airline, metro, train and bus networks) [1], power/gas/water

networks [2], telecommunication networks [3], the Internet [4], social networks (Face-

book, Twitter, LinkedIn) [5], biological networks [6] and so on.

Though a commonly agreed definition for the robustness of networks does not

seem to exist, we interpret the robustness of networks, in this dissertation, as the

maintenance of functionality under external perturbations such as random failures

or targeted attacks. Motivation to study the robustness of networks is that failures of

networks affect directly the services running on the networks and introduce tremen-

dous cascading impact on our societies and our daily lives. Worldwide power out-

ages since 1960s, such as United States, India, Brazil [7], are examples of failures

of power networks. In August 14, 2003, the power outage in U.S.-Canada affected

an area with an estimated 50 million people and an estimate of total costs ranging

from 4 billion to 10 billion dollars [8]. The failure or disruption of transportation

networks, caused by accidents or nature disasters like hurricanes or snow storms,

affects people’s daily mobility [9, 10]. Flights might be cancelled and the travel time

and travel distance might be increased due to the disruption [11]. Economic crisis,

for example the global economic crisis [12] in 2008, highlights the need for a better

1
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understanding of economic networks [13]. To make things worse, the failures in one

infrastructure might propagate to other infrastructures due to the interdependency

between different networks [14], for example, power networks and telecommunica-

tion networks [15].

How do we understand, characterize, quantify and improve the robustness of

networks? Network theory is a powerful approach to investigate the robustness of

networks. A brief history of the network theory is presented. In 1736, the great Swiss

mathematician Leonhard Euler (1707-1783) solved the Königsberg bridges problem,

as illustrated in Figure 1.1, which is regarded as the birth point of graph theory. In

1959, two Hungarian mathematicians Paul Erdös (1913 - 1996) and Alfréd Rényi

(1921 - 1970) introduced random graphs [16] and established the random graph

theory. Random graphs are extensively exploited in the field of complex networks

to study the properties of graphs.

In 1967, the small-world phenomenon was observed in social networks. An

experiment was performed by social psychologist Stanley Milgram (1933-1984) in

the United States. The experiment aimed to figure out the number of social links

between two randomly selected individuals in an acquaintance network. The ex-

periment results showed that the number of social links on average is 5.5, which is

known as "six degrees of separation".

In 1998, Watts and Strogatz [17] discovered small-world phenomenon in nu-

merous real-world networks, including biological and technological networks. They

proposed a model to generate small-world networks where (i) the average shortest

path length between nodes is small, approximately in the order of the logarithm of

the network size, and (ii) the clustering coefficient1 is much higher than that in ran-

dom graphs.

Real-world networks, such as World Wide Web, protein-protein interaction net-

works, e-mail networks exhibit properties that can not be captured by either random

graphs proposed by Erdös and Rényi or small-world graphs proposed by Watts and

Strogatz. In 1999, Barabási and Albert [18] unravelled the power-law degree distri-

bution in networks like World Wide Web, known as scale-free networks. Barabási

and Albert further argued that the scale free nature is rooted in network growth and

1Clustering coefficient is a graph metric reflecting the connection density among the neighbors of a node. The defi-

nition refers to Chapter 4



1

3

preferential attachment [18].

(a) Königsberg bridge (b) Euler’s graphical representation

Figure 1.1: In the prussian city of Königsberg, there are four areas A, B, C, and D connected by seven bridges (Fig

1.1a). The problem is to devise a walk crossing each bridge once and only once. Euler simplified the problem by

constructing a graph (Fig 1.1b) where each node represents an area and each link stands for each bridge and proved

that such a walk is impossible.

The study of robustness, which is one of the early explored topics in complex

networks, encounters two variants. The first one is the robustness of the topologies

(maintenance of topological connectivity) of networks, called structural robustness,

against failures of nodes or links. The second one is the robustness of the dynamical

processes (maintenance of dynamical processes) running on networks, referred to

as dynamical robustness. In 2000, Albert et al. [19] studied the structural robustness

of complex networks against failures of nodes. The results show that scale-free net-

works display high tolerance to random failures while such networks are extremely

vulnerable to targeted attacks. In 2000, a mathematical model, percolation model,

which was first proposed by Broadbent et al. [20] in 1957, was employed to ana-

lytically study the structural robustness of networks [21, 22] followed by a series of

studies [4, 23, 24]. The theory of generating functions [25] is applied to the percola-

tion model in random graphs with arbitrary degree distribution [26].

The second ingredient of robustness needed to be accounted for is the dy-

namic process with emphasis on the interplay between the structure of a network

and dynamics on that network. Real-world dynamics are, but not limit to, epi-

demic spreading in a population [27], flow distribution in power grids [28, 29], pack-

ets delivery in the Internet [30]. Characterizing the robustness of dynamical pro-

cesses is in general complicate and difficult. Models, such as susceptible-infected-

susceptible (SIS) and susceptible-infected-removed (SIR) [27], for epidemic spread-

ing processes are proposed. The epidemic threshold, introduced by Kermack et al.

[31] in 1927, is regarded as a robustness metric above which the epidemic persists
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and below which epidemic dies out and the network is virus-free. Epidemic thresh-

old, in the N-Intertwined Mean-Field Approximation (NIMFA), is shown to be in-

versely proportional to the spectral radius which is the largest eigenvalue of the ad-

jacency matrix of a graph [27]. The synchronizability of a networks is characterized

by the algebraic connectivity which is the second smallest eigenvalue of the Laplca-

cian matrix of a graph [32]. The successful applications of spectral metrics including

another well-known example Google’s PageRank [33], attract studies on the spectral

domain [34] of networks.

The study on single networks is limited to anticipate the interaction between

real-world networks. The study of robustness has lately switched to interdependent

networks and focus on the understanding of the interconnection patterns between

networks and how the interconnection influences the structural and dynamical ro-

bustness. In 2010, Buldyrev et al. [35] proposed a model of interdependent net-

works and showed that interdependent networks are subject to cascading failures.

The discontinuous percolation transition behaves differently from the continuous

phase transition in single networks. The dynamic epidemic spreading process in in-

terdependent networks is characterized by the connection matrices of each coupled

graph and the interconnection topology between the coupled networks [36].

1.1. RESEARCH QUESTIONS

The focus of this thesis is the robustness of complex networks including both

theories and applications.

What is a robustness topology of a network against node or link failures? With

a given network, how do we characterize and quantify its robustness? How do we

add links into an existing network to maximally increase the robustness? Due to the

interplay between network topologies and dynamic processes, how do we design a

network that provides stable dynamic process, for example, the stable energy supply

in power grids? How do we analyze the robustness of real-world metro networks?

Percolation models are employed to study the structural robustness of net-

works against node failures. How do we deal with robustness against link failures,

for example the failure of transmission lines in power networks? How do we modify

the existing methodologies for node failures to analyse the robustness against link

failures? Shifting from topological domain, how do we understand and benefit from
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the spectral domain of networks?

Since real-world networks interact with each other, how is the robustness of

interdependent networks influenced by the interconnection pattern? How should

the interconnection between networks be modelled? Do the dynamics in interde-

pendent networks behave differently than the dynamics in single networks? When

the dynamics in interdependent networks are separated into two regimes: (i) the

interdependent network acts as a whole; (ii) the interdependent network operates

as separated networks? This thesis dedicates to a better understanding of the above

mentioned questions.

1.2. OUTLINE OF THIS THESIS

The thesis is organized in three parts. Part I presents robustness metrics and

their applications in real-world networks. Part II focuses on the fundamentals of

graph theory and part III investigates the robustness of interdependent networks.

1.2.1. PART I: ROBUSTNESS METRICS AND THEIR APPLICATIONS

In chapter 2, we investigate how to add a single link into an existing network

such that the robustness is improved the most among all the possibilities. Based

on the same principle, we study how to protect a link whose removal maximally

decreases the robustness of a network.

In chapter 3, we discuss the application of a robustness metric, the effective

graph resistance, in power systems. By adding single transmission lines, we improve

the robustness of power grids against cascading failures.

In chapter 4, we analyse the robustness of 33 real-world metro networks by

investigating ten theoretical and three numerical robustness metrics. We focus on

which aspect of metros is captured by a robustness metric and thus provide insights

for network planners on a robust design of metros.

1.2.2. PART II: FUNDAMENTALS OF GRAPH THEORY

Motived by the need to analyse robustness against link failures, we investigate a

graph transformation, line graph. A line graph transforms links in the original graph

to nodes in the line graph. In chapter 5, we study fundamental properties including
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the degree distribution and the degree assortativity of the line graphs of complex

networks.

Though the topological domain of a graph is widely studied, the spectral do-

main of a graph is less explored. Moving from structural properties of networks,

Chapter 6 investigates the fundamental spectral properties of complex networks.

1.2.3. PART III: ROBUSTNESS OF INTERDEPENDENT NETWORKS

Chapters 7 and 8 start to focus on interconnection properties of real-world net-

works. Chapter 7 models the interconnection pattern for interdependent networks

incorporating the locations of nodes. The robustness of interconnection patterns

against node failures are evaluated and a new robustness metric that addresses the

effect of a small fraction of failures, is proposed.

Chapter 8 studies the interdependent network consisting of two graphs with

interconnections between them. The interconnections between the two graphs are

represented by a weighted interconnection matrix B . We study the structural tran-

sition property for a regular interconnection matrix B (constant row and column

sum).

In chapter 9, we summary the contributions of the thesis and discuss the future

work in the field of the robustness of networks.



PART I: ROBUSTNESS METRICS

AND THEIR APPLICATIONS





2
IMPROVING ROBUSTNESS VIA THE

EFFECTIVE GRAPH RESISTANCE

2.1. INTRODUCTION

Several complex infrastructural networks are built to geographically distribute

flows of critical resources for our society. Electrical networks, via power lines, and

water/gas networks, via pipe lines, are representative examples. In the lines of these

networks, opposition forces, governed by physical laws1, resist the passage of elec-

tric current or water/gas molecules. It is shown that these physical characteristics

of resistance in individual lines play a key role in the robustness of the network as a

whole [37–39], e.g., network robustness under cascading failures [28].

This chapter studies the graph metric of effective graph resistance as a robust-

ness measure of complex networks. The effective graph resistance can be measured

in graphs, therefore, it is a robustness indicator for several real-world networks that

can be modeled as graphs. Ellens et al . [37] show that the lower the effective graph

resistance is, the more robust a network is. Adding a link reduces the effective graph

resistance and thus improves the robustness of a network. This scenario is appli-

1The Ohm’s law for electrical networks and the Poiseuille’s law for water networks.

9
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cable to infrastructural investments that shall increase system lifetime by installing

single lines. On the other hand, removing a link increases the effective graph re-

sistance. The robustness is improved by ‘protecting’ the link whose removal maxi-

mally increases the effective graph resistance. This scenario is applicable to cyber-

physical targeted attacks of infrastructural lines. The challenge in both scenarios

lies in the selection of a link, among all the possible ones, whose addition or removal

maximally decreases or increases the effective graph resistance.

Earlier work studies the effective graph resistance in networks that are topolog-

ically changed. For example, Ghosh et al . [40] study the minimization of the effec-

tive graph resistance by allocating link weights in weighted graphs. Van Mieghem et

al . [41] show the relation between the effective graph resistance and the linear de-

gree correlation coefficient. Abbas et al . [39] reduce the effective graph resistance

of a graph by adding links in a step-wise way. In contrast to the aforementioned ap-

proaches, this chapter focuses on the effective graph resistance as an indicator of

robustness in complex networks when single links are added or removed.

The contributions of this chapter are the following: (i) Theorems that prove up-

per and lower bounds of the effective graph resistance. (ii) Optimization strategies

that are experimentally evaluated under synthetic and real-world networks. These

strategies maximize the decrease or the increase of effective graph resistance un-

der link addition and removal respectively. (iii) A method and experimental results

that topologically compare the optimal added or removed links according to effec-

tive graph resistance and algebraic connectivity. Therefore, this chapter provides a

broad spectrum of theoretical and experimental findings on effective graph resis-

tance as an indicator of robustness in synthetic and real-world networks.

This chapter is organized as follows: Section 2.2 defines the effective graph re-

sistance and summarizes its properties. Section 2.3 derives bounds of the effective

graph resistance under link addition and removal. The design and evaluation of the

four strategies are illustrated in Section 2.4. The comparison between the optimiza-

tion of the effective graph resistance and the algebraic connectivity is investigated

in Section 2.5. Section 2.6 compares the optimization of the effective graph resis-

tance with other approaches in related work. Section 2.7 concludes the chapter and

outlines future work.
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2.2. EFFECTIVE GRAPH RESISTANCE IN COMPLEX NETWORKS

Let G(N ,L) be an undirected graph with N nodes and L links. Adding or re-

moving a link e = i ∼ j results in a graph G + {e} or G − {e}. The adjacency matrix A

of a graph G is an N ×N symmetric matrix with elements ai j that are either 1 or 0

depending on whether there is a link between nodes i and j or not. The Laplacian

matrix Q of G is an N×N symmetric matrix Q =∆−A, where∆=diag(di ) is the N×N

diagonal degree matrix with the elements di = ∑N
j=1 ai j . The average degree in G is

denoted as E [D] = 2L
N . The Laplacian eigenvalues of Q are all real and non-negative

[42]. The eigenvalues of Q are ordered as 0 =µN ≤µN−1 ≤ . . . ≤µ1. The second small-

est eigenvalue µN−1 = αG is coined by Fielder [43] as the algebraic connectivity. In

this chapter, the effective graph resistance RG is computed as follows [42]:

RG = N
N−1∑
i=1

1

µi
(2.1)

In order to compare the effective graph resistance RG between networks with differ-

ent size, the value of the effective graph resistance in Section 2.4 is normalized by

dividing RG with
(

N
2

)
.

The improvement of robustness via the effective graph resistance consists of

two parts: adding an optimal link lR+ that minimizes the effective graph resistance

RG+{e} and protecting the link lR− whose removal maximizes the effective graph resis-

tance RG−{e}. The effective graph resistance strictly decreases if a link is added into a

graph and strictly increases if a link is removed from a graph2[37, 44]. A strategy in

this work refers to the addition of a single link e = i ∼ j according to a specific rule,

with the aim to minimize the effective graph resistance of the graph G + {e}. The

possible number of links that can be added is:

Lc =
(

N

2

)
−L (2.2)

A strategy also selects a link to protect from all the possible links L whose removal

maximally increases the effective graph resistance.

The comparison between the optimal link lR+ for the effective graph resistance

RG+{e} and the optimal link lα+ for the algebraic connectivity αG+{e} is based on two

2This is also confirmed by Section 2.3 based on interlacing [42].
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computations. The two computations are also performed for the comparison be-

tween optimal links lR− and lα− .

The first computation calculates the probability that the two optimal links are

the same link. From the definition (2.1) of the effective graph resistance RG , the

algebraic connectivity αG can be written as αG = µN−1 = 1
RG /N−S , where S = ∑N−2

k=1
1
µk

.

Based on the definition of S, an upper and lower bound of the algebraic connectivity

in terms of the effective graph resistance is derived in the Appendix A. When S is

negligibly low, the two optimal links for the algebraic connectivity αG and for the

effective graph resistance RG are the same link with probability Pr[lR+ = lα+ ] for link

addition and Pr[lR− = lα− ] for link removal.

The second computation concerns the distance between lR+ and lα+ when they

are not the same link with probability 1−Pr[lR+ = lα+ ]. The distance between links

in a graph G is measured by the hopcount in the corresponding line graph G∗. A

line graph G∗ of a graph G is a graph in which every node of G∗ corresponds to a

link in G and two nodes of G∗ are adjacent if and only if the corresponding links in

G have a node in common [42]. The graph G is referred to as the root graph of G∗.

The links lR+ and lα+ in the root graph G are denoted as the nodes nR+ and nα+ in the

line graph G∗. The hopcount H(nR+ ,nα+) in G∗ is the number of links in the shortest

path between nodes nR+ and nα+ . The probability Pr[H(nR+ ,nα+) = 0] equals to the

probability Pr[lR+ = lα+ ]. The hopcount H(nR+ ,nα+) = 1 means that the link lR+ and

the link lα+ share a common node.

Table 2.1 illustrates the mathematical symbols used in this chapter.

The complex networks in which this chapter focuses on include synthetic and

real-world networks. Synthetic networks are as follows3:

Erdős-Rényi random graph [16] Gp (N ): This graph is generated from a set of N

nodes by randomly assigning a link between each node pair with probability p. The

probability p is also called the link density. When the link density p is higher than a

critical threshold pc ≈ ln N /N , the graph is connected [33].

Barabási-Albert power law graph [18]: This graph is generated by starting with m

nodes. At every time step, a new node with m links is connected to the m existing

nodes in the network. A new node connects to a node i in step t with probability

p = di /2L t , where di is the degree of node i and L t is the total number of links at

3All these listed networks are converted to undirected and unweighted connected networks.
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Table 2.1: An overview of the mathematical symbols

Symbol Interpretation Symbol Interpretation

G A graph G∗ Line graph of a graph G

N Number of nodes in a graph G nR+ Node in line graph corresponding to lR+

L Number of links in a graph G nR− Node in line graph corresponding to lR−

e A link in a graph G nα+ Node in line graph corresponding to lα+

A Adjacency matrix nα− Node in line graph corresponding to lα−

ai j An element in the adjacency matrix A H(nR+ ,nα+ ) Hopcount between nR+ and nα+

di Degree of a node i H(nR− ,nα− ) Hopcount between nR− and nα−

∆ Diagonal matrix with the nodal degrees ∆µi Increase or decrease of an eigenvalue µi

Q Laplacian matrix ρ Diameter of a graph G

E [D] Average degree Ss A strategy s

µi Eigenvalue of the Laplacian matrix y Fiedler vector

αG Algebraic connectivity Ri j Effective resistance between nodes i and j

RG Effective graph resistance for a graph G Q−1 Moore-Penrose pseudoinverse of Q

C∗ Effective graph conductance cci Closeness centrality of a node i

RG+{e} Effective graph resistance for G + {e} Hi j Hopcounts from a node i to a node j

RG−{e} Effective graph resistance for G − {e} Gp (N ) An Erdős-Rényi graph

lR+ Optimal link whose addition minimizes RG p Link density

lR− Optimal link whose removal maximizes RG lα+ Optimal link whose addition maximizes αG

lα− Optimal link whose removal minimizes αG E [H ] Average hopcount

Lc Number of possible links for link addition RDs Relative difference of RG

E [RDs ] Average of RDs
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time t .

Watts-Strogatz small-world graph [17]: This graph is generated from a ring lattice

of N nodes and k links per node. Each link is rewired at random with probability p.

These graph models have characteristics found in real-world networks. For ex-

ample, Erdős-Rényi graphs can model collaboration networks [45]. The world-wide

web follows approximately a power law degree distribution [46]. Social networks are

often connected as small world networks [17].

In this chapter the following real-world networks are considered:

Dutch Soccer Network [47]: A graph of the Dutch football in which players rep-

resent the nodes. Two nodes are connected if the corresponding two players have

played together in a football match.

Coauthorship Network of Scientists [48]: Scientists are nodes and two scientists are

considered connected if they are co-authors in one or more papers.

Protein-Protein Interaction Network4: The nodes are proteins and the links are

pairwise protein-to-protein interactions.

Citation Network5: The nodes are scientific papers and the links between the nodes

are citations.

Western States Power Grid Network [49]: The nodes represent transformers, sub-

stations and generators. The links represent high-voltage transmission lines.

Western European Railway Network [49]: The stations are the nodes and the links

are lines between the stations.

2.3. THEORETICAL BOUNDS

Topological network changes influence various graph metrics such as the ef-

fective graph resistance and algebraic connectivity studied in this chapter. Upper

and lower theoretical bounds measure the highest and lowest values that a graph

metric can have after certain topological network changes. Therefore, bounds can

be used to reason about robustness estimations under topological changes such as

link addition or removal. Bounds provide valuable estimations in various applica-

tion domains. For example, the upper and lower bounds of throughput instruct the

design of a wireless network in which node connections follow mobility patterns

4http://www.pdb.org/pdb/home/home.do (Last accessed: Apr. 2014).
5http://vlado.fmf.uni-lj.si/pub/networks/data/ (Last accessed: Apr. 2014).
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[50]. Another example is the estimation of interference by upper and lower bounds

when nodes are clustered in Ad Hoc Networks [51].

2.3.1. LINK ADDITION

After adding a link e, resulting in a graph G + {e}, a lower bound of the effec-

tive graph resistance RG+{e} is derived in Theorem 1. An upper bound RG+{e} ≤ RG is

obtained in the proof of Theorem 1 based on interlacing [42].

Theorem 1. By adding a link e to a graph G, resulting in the graph G + {e}, the lower

bound of the effective graph resistance RG+{e} is

RG+{e} ≥
RG

1+ ρ

2 N
(2.3)

where ρ is the diameter of G.

Proof. The sum of Laplacian eigenvalues equals [42]

N−1∑
j=1

µ j = 2L

After a link addition, graph G has L+1 links and it holds that
∑N−1

j=1 (µ j +∆µ j ) = 2(L+
1). The increase of the eigenvalue ∆µ j satisfies

∑N−1
j=1 ∆µ j = 2(L+1)−∑N−1

j=1 µ j = 2(L+
1)−2L = 2. Interlacing [42] µ j ≤µ j +∆µ j ≤µ j−1 shows that ∆µ j ≥ 0 for any j , so that

∆µ j ≤ 2. For positive real numbers q1, q2,. . ., qn and real numbers a1, a2,. . ., an , it

holds [42]

min
1≤k≤n

xk

ak
≤ x1 +x2 + . . .+xn

a1 +a2 + . . .+an
≤ max

1≤k≤n

xk

ak
(2.4)

Let x j = 1
µ j +∆µ j

and a j = 1
µ j

. Based on the definition (2.1) of the effective graph resis-

tance, inequality (2.4) yields

1

1+max1≤ j≤N−1
∆µ j

µ j

≤
∑N−1

j=1
1

µ j +∆µ j∑N−1
j=1

1
µ j

= RG+{e}

RG
≤ 1

Furthermore, with max1≤ j≤N−1
∆µ j

µ j
≤ 2

µN−1
and the lower bound [42] for the algebraic

connectivity µN−1 ≥ 4
ρN , the lower bound of (2.3) is derived.

A consequence of the lower bound (2.3) is
RG+{e1...em }

RG
≥ (

1+ mρ

2 N
)−1

after m re-

peated link additions. In particular, a graph G can always be constructed by starting
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from its minimum spanning tree and adding L −N + 1 links. Given that the effec-

tive graph resistance RMST = (N
2

)
E [HMST ] for a minimum spanning tree [42], where

HMST is the hopcount in any minimum spanning tree, the lower bound of the effec-

tive graph resistance can be expressed as follows:

RG ≥ RMST

1+ ρMST

2 N (L−N +1)

=
(N

2

)
E [HMST ]

1+ max HMST

2 N (L−N +1)

This bound may be valuable in sparse networks where L is not significantly larger

than N −1.
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(a) Erdős-Rényi graph
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(b) Barabási-Albert graph
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(c) Square lattice graph

Figure 2.1: Lower bounds of the effective graph resistance RG+{e}.

Figure 2.1 shows the lower bound of the effective graph resistance RG+{e} from

Theorem 1 in Erdős-Rényi, Barabási-Albert and square lattice6 graphs. The lower

bound is not tight, yet, a sharper lower bound can be derived by using the algebraic

connectivity µN−1 in the lower bound RG

1+ 2
µN−1

. Figure 2.1 also shows the improved

lower bound based upon the algebraic connectivity. This observation and the proof

followed here suggest that the lower bound (2.3) can be improved with a sharper

lower bound for the algebraic connectivity.

2.3.2. LINK REMOVAL

When a link e is removed from a graph, a lower bound of the effective graph

resistance RG−{e} is derived in Theorem 2 and an upper bound in Theorem 3.

6The square lattice graph is a two-dimensional grid. Excluding the boundary nodes, the square lattice can be regarded

as a regular graph with degree d = 4.
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Theorem 2. By removing a link e from a graph G, resulting in a reduced graph G−{e},

the lower bound of the effective graph resistance RG−{e} of the reduced graph G − {e} is

RG−{e} ≥ N (N −1)(N +1)

2(L−1)
(2.5)

where N is the number of nodes and L is the number of links of the original graph G.

Proof. Let∆µi defined as the amount of the decrease of an eigenvalue µi . The effec-

tive graph resistance RG−{e} of the reduced graph G − {e} is

RG−{e} = N
N−1∑
i=1

1

µi −∆µi

= N (
1

µN−1 −∆µN−1
+

N−2∑
i=1

1

µi −∆µi
) (2.6)

For positive real numbers a1, a2, . . ., an , the harmonic, geometric and arithmetic

mean inequality [42] is

n∑n
k=1

1
ak

≤ n

√
n∏

k=1

ak ≤ 1

n

n∑
k=1

ak (2.7)

with equality only if all ak are equal. Let a1, a2, . . ., an be equivalent to µN−2−∆µN−2,

µN−3 −∆µN−3, . . ., µ1 −∆µ1 and n = N −2. Inequality (2.7) is expressed as follows:

N −2∑N−2
i=1

1
µi−∆µi

≤ 1

N −2

N−2∑
i=1

(µi −∆µi ) (2.8)

Taking the reciprocal and then multiplying N−2 on both sides of the inequality (2.8)

yields

N−2∑
i=1

1

µi −∆µi
≥ (N −2)2∑N−2

i=1 (µi −∆µi )

= (N −2)2

2(L−1)− (µN−1 −∆µN−1)
(2.9)

where the sum of eigenvalues satisfies
∑N−1

i=1 (µi −∆µi ) = 2(L − 1). Substituting the

inequality (2.9) into (2.6) yields

RG−{e} ≥ N

(
1

µN−1 −∆µN−1
+ (N −2)2

2(L−1)− (µN−1 −∆µN−1)

)
Since the function, for x > 0,

f (x) = 1

x
+ (N −2)2

2(L−1)−x
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has a unique minimum at the positive value x = 2(L−1)
N−1 , it holds that

f (x) ≥ f (x1) = (N −1)(N +1)

2(L−1)

which leads to the lower bound (2.5).

Theorem 3. By removing a link e, resulting in a graph G−{e}, the upper bound of the

effective graph resistance RG−{e} of the reduced graph G − {e} is

RG−{e}

RG
≤ max

i

µi

µi+1

where i ∈ [1, N −2].

Proof. Let xk = 1
µ j −∆µ j

and ak = 1
µk

in inequality (2.4), then

1

1−min
i

(∆µi

µi )
≤

N−1∑
i=1

1
µi−∆µi

N−1∑
i=1

1
µi

≤ 1

1−max
i

(∆µi

µi
)

(2.10)

After a link removal, the interlacing property [42] shows that,

µi+1 ≤µi −∆µi ≤µi (2.11)

where i = 1, 2, . . ., N −1. Subtracting µi on both sides of (2.11) leads to

0 ≤∆µi ≤µi −µi+1 (2.12)

Substituting (2.12) into the right-hand side of (2.10) yields

1

1−max
i

(∆µi

µi
)

≤ 1

1−max
i

(µi−µi+1

µi
)

= 1

1− (1−min
i

(µi+1

µi
))

= 1

min
i

(µi+1

µi
)
= max

i
(
µi

µi+1
)

Based on definition (2.1) of the effective graph resistance, we establish the theorem.
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Figure 2.2 shows the probability that µi

µi+1
has a maximum at the index i within

103 instances of Erdős-Rényi and Barabási-Albert graphs, respectively. Figure 2.2a

shows that µi

µi+1
has a maximum at i = N−2 with a probability higher than 0.5. Figure

2.2b shows that µi

µi+1
has a maximum at i = 1 with a probability 0.35. In both Figure

2.2a and 2.2b, the maximum of µi

µi+1
is attained within several highest and lowest

values of the index i . Figure 2.3 shows the upper and lower bounds of the effective

graph resistance RG−{e} from Theorem 2 and 3.
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Figure 2.2: The probability that
µi
µi+1

has a maximum at the index i in Erdős-Rényi and Barabási-Albert graphs.
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Figure 2.3: Upper and lower bounds of the effective graph resistance RG−{e}.

2.4. OPTIMIZATION OF THE EFFECTIVE GRAPH RESISTANCE

This section introduces four strategies for selecting a link whose addition min-

imizes the effective graph resistance and for protecting a link whose removal maxi-

mizes the effective graph resistance. The strategies are evaluated by comparing with

the optimal effective graph resistance obtained by exhaustive search.



2

20 2. IMPROVING ROBUSTNESS VIA THE EFFECTIVE GRAPH RESISTANCE

2.4.1. STRATEGIES FOR LINK ADDITION AND REMOVAL

In an exhaustive search, the optimal link lR+ added between two nodes is dis-

covered by checking all the possible links Lc . Similarly, the optimal link lR− is deter-

mined among all the possible links L.

An exhaustive search is computationally expensive as the number of nodes in-

creases. More specifically, exhaustive search has a complexity order O(N 5). This is

computed by the computational order
(N

2

)−Lc for checking all possible links mul-

tiplied by the order O(N 3) for computing the pairwise effective resistance as illus-

trated in detail in Section 2.4.1. Strategies that determine the added or removed link

based on topological and spectral properties of a network, provide a trade-off be-

tween a scalable computation and a high decrease or increase in the effective graph

resistance. This section illustrates four strategies from which three of them are in-

troduced in earlier work [52, 53], yet none of these strategies are evaluated for the

effective graph resistance.

A strategy Ss , s ∈ {1, 2, 3, 4}, defines a link e = i ∼ j , where e does not already ex-

ist under link addition and e already exists under link removal. The selection criteria

of nodes i and j for each strategy are illustrated in the rest of this subsection. In this

chapter, strategies S1, S2 are topological strategies and S3, S4 are spectral strategies.

SEMI-RANDOM - STRATEGY S1

The node i has the minimum degree min(di ) and node j is randomly chosen

as r and{1, ..., Lc }.

The complexity of strategy S1 is O(N 2 − N + Lc + 1) computed as follows: (i)

O(N (N −1)) is for counting the degrees of all the nodes. (ii) O(Lc ) is for finding the

node i with minimum degree. (iii) O(1) is for finding a random node.

DEGREE PRODUCT - STRATEGY S2

The nodes i and j have the minimum7 product of degrees min(di d j ). If there

are multiple node pairs with the same minimum product of degrees, one of these

pairs is randomly chosen.

The complexity of strategy S2 is O(N 2−N+2Lc ) computed as follows: (i) O(N (N−
1)) is for counting the degrees of all the nodes. (ii) O(Lc ) is for computing di d j for Lc

7Adding a link between nodes with the highest degree is evaluated as well. However, the performance is low and

therefore this choice is not illustrated in this chapter.
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Table 2.2: A summary of the strategies and the order of their computational complexity.

Node i Node j Complexity Order

S1 argmin
i

(di ) r and{1,..., Lc or L} O(N 2)

S2 argmin
i , j

(di d j ) O(N 2)

S3 argmax
i , j

(
∣∣yi − y j

∣∣) O(N 3)

S4 argmax
i , j

(Ri j ) O(N 3)

unconnected node pairs. (iii) O(Lc ) is for finding the minimum product di d j .

FIEDLER VECTOR - STRATEGY S3

The nodes i and j correspond to the i th and j th components of the Fiedler

vector y that satisfy ∆y = max(|yi − y j |), where |yi − y j | is the absolute difference

between the i th and j th components of the Fiedler vector y .

For strategy S3, the complexity is O(N 3 +2Lc ) computed as follows: (i) O(N 3) is

for computing the Fiedler vector yi assuming the adoption of the QR algorithm [54]

for computation. (ii) O(Lc ) is for computing |yi − y j | for Lc unconnected node pairs.

(iii) O(Lc ) is for finding the maximum of the difference |yi − y j |.

EFFECTIVE RESISTANCE - STRATEGY S4

The nodes i and j have the highest effective resistance max(Ri j ). The pairwise

effective resistance Ri j can be calculated as Ri j = (Q̂−1)i i + (Q̂−1) j j −2(Q̂−1)i j , where

Q̂−1 is the Moore-Penrose pseudoinverse [42] of Q.

For strategy S4, the complexity is O(N 3 +4Lc ) computed as follows: (i) O(N 3) is

for computing Q̂−1. (ii) O(3Lc ) is for computing Ri j for Lc unconnected node pairs.

(iii) O(Lc ) is for finding the maximum Ri j .

In case of link removals, Lc is replaced with L in all the four strategies. Table

2.2 summarizes all the strategies that add or remove a link e = i ∼ j and the order of

their corresponding computational complexity.

The strategies illustrated in this chapter are indicative of a large number of

other possible strategies. For example, two other strategies are tested:

S5: The nodes i and j have the minimum product of closeness centrality min(cci cc j ).

The closeness of a node i , cci =
[∑

j 6=i , j∈G Hi j

]−1
, is computed as the inverse of the
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sum of hopcounts Hi j from a node i to each node j .

S6: The nodes i and j correspond to the i th and j th components of the principal

eigenvector x1 that have the maximum product max((x1)i (x1) j ) of the eigenvector

components. The principal eigenvector x1 belongs to the highest eigenvalue of the

adjacency matrix.

Strategy S5 has higher complexity than S1 and has approximately the same per-

formance with S1 for link addition. Strategy S6 has the lowest performance under

link addition and has approximately the same performance with S2 for link removal.

The rest of this chapter focuses on the four main strategies illustrated in this section.

2.4.2. STRATEGY EVALUATION

The strategies are implemented and evaluated in MATLAB R2012b. First, the

normalized optimal effective graph resistance R∗ is obtained by applying exhaus-

tive search. Second, the normalized effective graph resistance RSs
is computed by

adding or removing a link under each strategy s ∈ {1, 2, 3, 4}. Third, the absolute rel-

ative difference, RDs
=

∣∣∣ RSs −R∗

R∗

∣∣∣ and the probability Pr[RDs
Ê x], where x ∈ [min(RDs

),

max(RDs
)], evaluate the performance of the four strategies. The lower the proba-

bility is, the closer RSs
is to R∗ and the more effective the strategy is. The average

difference E [RDs
] = ∫ ∞

0 Pr[RDs
Ê x] d x computed by the area under the curve of the

probability distribution, indicates the average performance of the strategies.

ERDŐS-RÉNYI RANDOM GRAPH

Figure 2.4 illustrates the performance of the four strategies in Erdős-Rényi ran-

dom graphs. The figure is split into two subgraphs (a), (b), concerning link addition

and removal. Figure 2.4a demonstrates that strategy S4 is superior to all other strate-

gies. Strategy S2 outperforms strategy S3 and strategy S1 has the lowest performance.

In Figure 2.4a, the average difference E [RDs
] for strategies S1, S2, S3, S4 is 2.99×10−3,

0.24×10−3, 0.36×10−3, 0.04×10−3.

Figure 2.4b shows that strategy S4 is superior to S3 and S1. Compared to the

second highest performance in Figure 2.4a, strategy S2 has the lowest performance.

The average difference E [RDs
] of strategies S1, S2, S3, S4 is 1.26× 10−4, 4.39× 10−4,

1.31×10−4, 1.01×10−4.
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Figure 2.4: Pr[RDs Ê x] for each strategy Ss , s ∈ {1,2,3,4} in the Erdős-Rényi random graph with N = 100, p = 2pc .

BARABÁSI-ALBERT POWER LAW GRAPH

Figure 2.5 illustrates the performance of the four strategies in Barabási-Albert

power law graphs. Strategy S4 achieves the highest performance in Figure 2.5a.

Strategy S3 outperforms strategies S1 and S2. The average difference E [RDs
] in Figure

2.5a for strategies S1, S2, S3, S4 is 1.74×10−3, 1.69×10−3, 0.29×10−3, 0.01×10−3.
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Figure 2.5: Pr[RDs Ê x] for each strategy Ss , s ∈ {1,2,3,4} in the Barabási-Albert power law graph with N = 200, m = 3.

Figure 2.5b shows strategy S4 has the highest performance. The performance

curve for S3 crosses the curves for S2 and S1. Strategies S2 and S1 have comparable

performance. The average difference E [RDs
] for strategy S4 is 0.17×10−3. For strategy

S3, the average difference E [RDs
] is 0.95×10−3 compared to 1.09×10−3 for strategies

S2, S1, which indicates that strategy S3 slightly outperforms S2, S1.
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WATTS-STROGATZ SMALL-WORLD GRAPH

Figure 2.6 illustrates the performance of the four strategies in the Watts-Strogatz

small-world graphs. In contrast to the results for Erdős-Rényi and Barabási-Albert,

strategy S3 outperforms strategy S4 in both Figure 2.6a and 2.6b. Strategy S1 is supe-

rior to S2 in Figure 2.6a, while the opposite holds in Figure 2.6b.
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Figure 2.6: Pr[RDs Ê x] for strategy Ss , s ∈ {1,2,3,4} in the Watts-Strogatz small world graph with N = 100, k = 6 and

p = 0.1.

The average difference E [RDs
] for strategies S1, S2, S3, S4 in Figure 2.6a is 22.7×

10−3, 26.4×10−3, 0.34×10−3, 2.75×10−3. These values in Figure 2.6b are 1.34×10−2,

1.33×10−2, 0.10×10−2, 0.23×10−2.

REAL-WORLD NETWORKS

Table 2.3 illustrates the performance of the four strategies in real-world net-

works. The table is ordered by the number of nodes in the network. The optimal

added link by exhaustive search is not calculated because of the high computational

complexity. Using Western States Power Grid Network as an example, the number

of possible added links is 1.2× 107. Therefore, the four strategies are evaluated by

comparing the value of the effective graph resistance: the lower the effective graph

resistance after link addition or the higher the effective graph resistance after link

removal, the more effective the strategy.

For a given network, for example the Dutch Soccer Network in Table 2.3, the ef-

fective graph resistance of strategy S3 is 0.1318 that is the lowest one compared to

the effective graph resistance of S1, S2 and S4. Strategy S3 outperforms strategies S1,

S2 and S4. For all the listed networks except the Western European Railway Network
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in Table 2.3, S3 has the lowest effective graph resistance and outperforms the other

three strategies. In contrast, the strategy S4 outperforms strategy S3 in Western Eu-

ropean Railway Network. Strategy S4 has the same performance as strategy S3 in

Protein-Protein Interaction Network and Citation Network.

Table 2.3: The effective graph resistance of the four strategies after link addition in real-world networks.

Name N L RS1
RS2

RS3
RS4

Coauthorship 379 914 2.05 2.04 1.95 1.96

Protein 529 535 49.5 69.7 36.8 36.8

Dutch Soccer 685 10310 0.132 0.132 0.131 0.132

Citation 2678 10368 0.823 0.823 0.819 0.819

Power Grid 4941 6594 2.03 2.04 1.95 1.96

Railway 8710 11332 18.2 19.0 17.4 17.3

Table 2.4: The effective graph resistance of the four strategies after link removal in real-world networks.

Name N L RS1
RS2

RS3
RS4

Coauthorship 379 914 2.08 2.07 2.21 ∞
Protein 529 535 ∞ ∞ ∞ ∞
Dutch Soccer 685 10310 0.133 0.133 0.133 0.133

Citation 2678 10368 0.824 0.824 ∞ ∞
Power Grid 4941 6594 5.22 5.22 5.76 ∞
Railway 8730 11332 19.0 19.0 19.4 ∞

Table 2.4 shows the effective graph resistance of the four strategies under link

removal. The infinite value of the effective graph resistance indicates that the re-

moval of the selected link by a strategy disconnects the network. Strategy S4 has the

highest performance in all the listed networks. Strategy S3 has comparable perfor-

mance in Protein-Protein Interaction Network, Dutch Soccer and Citation Network.

PERFORMANCE OVERVIEW

Table 2.5 shows the ranking of the four strategies according to their perfor-

mance. Strategy S4 has the highest performance for both link addition and removal

in Erdős-Rényi and Barabási-Albert graphs. In contrast, strategy S3 has the highest
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Table 2.5: The ranking of the four strategies according to their performance.

Link Addition Link Removal
H
HHH

HHNetwork

Rank
1 2 3 4 1 2 3 4

Erdős-Rényi S4 S2 S3 S1 S4 S1 S3 S2

Barabási-Albert S4 S3 S2 S1 S4 S3 S2 S1

Watts-Strogatz S3 S4 S1 S2 S3 S4 S2 S1

Real-world S3 or S4 S1 or S2 S3 or S4 S1 or S2

performance in Watts-Strogatz graphs under link addition and removal. Results are

consistent with the larger graphs with number of nodes up to 400. In real world net-

works, either strategy S3 or strategy S4 has the highest performance for link addition

and removal.

Despite the lower performance of strategies S1 and S2, their computational

complexity is much lower compared to strategies S3 and S4. Therefore, the set of all

strategies provides a trade-off between a low changing value of effective graph resis-

tance and low computational complexity. Strategies S1 and S2 can be chosen when

the computational resources are limited. Assuming that the computation of the op-

timal R∗ is not an option for large networks, strategies S3 and S4 can be chosen under

two scenarios: (i) In case of long term investments on infrastructural networks, such

as railway networks, in which a link addition or removal is a costly operation and a

strategy close to optimal R∗ is a requirement. (ii) In case when the option of parallel

computations, e.g. with MapReduce [55], is possible.

2.5. EFFECTIVE GRAPH RESISTANCE VS ALGEBRAIC CONNEC-

TIVITY

The spectral expression of the effective graph resistance includes all the non-

zero Laplacian eigenvalues, whereas the algebraic connectivity is one of the N − 1

Laplacian eigenvalues. This section introduces a novel approach to compare the

optimal links lR+ , lα+ and lR− , lα− . The comparison includes the probability that two

optimal links are the same and the distance between the two optimal links in the

corresponding line graph.
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2.5.1. PROBABILITY OF THE SAME OPTIMAL LINK

Table 2.6 illustrates the probability Pr[lR+ = lα+ ] that lR+ equals lα+ in the 103

instances of Erdős-Rényi and Barabási-Albert graphs8. All the optimal links are ob-

tained by exhaustive search. Table 2.6 illustrates that the maximum probability

Pr[lR+ = lα+ ] obtained for Erdős-Rényi graph is 0.139 and for Barabási-Albert graph

is 0.105. The optimal link for the algebraic connectivity is different from the optimal

link for the effective graph resistance in most cases.

Table 2.6: The probability Pr [lR+ = lα+ ] in Erdős-Rényi and Barabási-Albert graphs.

Erdős-Rényi Probability Barabási-Albert Probability

G2pc
(50) 0.139 N = 100, m = 3 0.034

G2pc
(100) 0.102 N = 100, m = 4 0.105

G2pc
(200) 0.074 N = 200, m = 3 0.013

G4pc
(200) 0.068 N = 200, m = 4 0.066

Table 2.7 illustrates the probability Pr[lR− = lα− ] under link removal in the 103

instances of Erdős-Rényi and Bárabasi-Alber graphs. In contrast to the results in

Table 2.6, the probability Pr[lR− = lα− ] is higher than 0.6 in Erdős-Rényi graph with

link density p = 2pc . However, when the link density p increases to 4pc , the proba-

bility Pr[lR− = lα− ] drops to approximately zero. One explanation is that the number

of links in graph G increases with the increase of link density. The probability of

choosing two links among all the possibilities decreases. The maximum probabil-

ity Pr[lR− = lα− ] is 0.504 in Barabási-Albert graph. The decrease of the probability

Pr[lR− = lα− ] with the increase of link density is also observed.

Table 2.7: The probability Pr [lR− = lα− ] in Erdős-Rényi and Barabási-Albert graphs.

Erdős-Rényi Probability Barabási-Albert Probability

G2pc
(50) 0.677 N = 100, m = 3 0.504

G2pc
(100) 0.665 N = 100, m = 4 0.208

G2pc
(200) 0.613 N = 200, m = 3 0.460

G4pc
(200) 0.002 N = 200, m = 4 0.113

8Results for the Watts-Strogatz small-world graphs are not included to keep the illustrations more compact. However,

these results are available upon request
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2.5.2. PROXIMITY OF OPTIMAL LINKS

This subsection illustrates how the distance between the optimal links lR+ and

lα+ is computed when lR+ is different from lα+ . The hopcount in the corresponding

line graph is proposed as a measure of the distance between the two optimal links

lR+ and lα+ . Table 2.8 shows the average hopcount E [H ] between nodes nR+ and nα+

in the line graphs. In the line graphs of Erdős-Rényi graphs, the average hopcount

between nR+ and nα+ approximates 1 that means the links lR+ and lα+ share a node

in the original graph on average. The average hopcount between nR+ and nα+ in the

line graphs of Barabási-Albert graphs approximates 2. From the definition of line

graph, it can be derived that the end nodes of lR+ and lα+ are different but one of

the end nodes of lR+ is adjacent to one of the end nodes of lα+ . Table 2.8 indicates

that the optimal link for the algebraic connectivity is in a proximity of 1 or 2 hops

to the optimal link for the effective graph resistance. This distance corresponds to

25%−40% of the graph diameter.

Table 2.8: The average hopcount E [H ] between lR+ and lα+ in the Erdős-Rényi and Barabási-Albert graphs.

Erdős-Rényi E [H ] Barabási-Albert E [H ]

G2pc
(50) 0.987 N = 100, m = 3 1.759

G2pc
(100) 1.002 N = 100, m = 4 1.636

G2pc
(200) 1.001 N = 200, m = 3 2.285

G4pc
(200) 0.998 N = 200, m = 4 2

As shown in Table 2.9, the average hopcount between nR− and nα− under link

removal is lower than the average hopcount under link addition. For example, the

E [H ] between nR− and nα− is 0.584 compared to 1.001 between nR+ and nα+ in Erdős-

Rényi graph G2pc
(200). This observation is also confirmed by the fact that Pr[lR− =

lα− ] is higher than Pr[lR+ = lα+ ].

Figure 2.7 illustrates the distribution of the hopcount H(nR+ ,nα+) between the

node nR+ and nα+ in the line graph of the Erdős-Rényi and Barabási-Albert graphs.

In Figure 2.7a, the probability Pr[H(nR+ ,nα+)] is maximized for H(nR+ ,nα+) = 1. The

probability Pr[H(nR+ ,nα+) > 1] converges to zero in 2− 3 extra hops, especially for

large N . In Figure 2.7b, the probability Pr[H(nR+ ,nα+)] is maximized for H(nR+ ,nα+) =
1 and converges to zero for H(nR+ ,nα+) = 5.
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Table 2.9: The average hopcount E [H ] between lR− and lα− in the Erdős-Rényi and Barabási-Albert graphs.

Erdős-Rényi E [H ] Barabási-Albert E [H ]

G2pc
(50) 0.537 N = 100, m = 3 1.269

G2pc
(100) 0.517 N = 100, m = 4 1.628

G2pc
(200) 0.584 N = 200, m = 3 1.568

G4pc
(200) 1.334 N = 200, m = 4 1.916

1.0

0.8

0.6

0.4

0.2

0.0

P
r[

H
(n

R
+
,n

α
+
) 

=
 h

]

43210
Hopcount h

 N = 50, p = 2pc

 N = 100, p = 2pc

 N = 200, p = 2pc

 N = 200, p = 4pc
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Figure 2.7: The distribution of the hopcount H(nR+ ,nα+ ) in the line graph G∗ between the node nR+ and the node

nα+ .

Figure 2.8 illustrates the distribution of the hopcount H(nR− ,nα−) between the

node nR− and nα− under link removal. In Figure 2.8a, the probability Pr[H(nR− ,nα−)]

is maximized for H(nR− ,nα−) = 0 with link density p = 2pc . when link density p in-

creases, the peak of the probability shifts from 0 to 1. The probability Pr[H(nR− ,nα−) >
1] converges to zero in 2−3 extra hops. In Figure 2.8b, the peak of the probability

Pr[H(nR− ,nα−)] shifts from 0 to 1 as the average degree grows and the probability

Pr[H(nR− ,nα−) > 1] converges to zero at H(nR− ,nα−) = 5.

2.6. COMPARISON WITH RELATED WORK

Network robustness is mostly studied under topological perturbations that usu-

ally concern (i) addition of nodes or links, (ii) removal of nodes or links, (iii) rewiring

of links. These perturbations influence the spectral properties of networks. For ex-

ample, Takamitsu et al . [56] study the influence of node removal on the second

smallest Laplacain eigenvalue. Attilio et al . [57] focus on the largest eigenvalue un-
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Figure 2.8: The distribution of the hopcount H(nR− ,nα− ) in the line graph G∗ between the node nR− and the node

nα− .

der links perturbations. Van Mieghem et al . [53] study the spectral radius under link

removal, whereas, Li et al . [58] investigate the spectral radius under node removal.

In contrast to the spectral methodologies that consider a singe eigenvalue, the ef-

fective graph resistance studied in this chapter captures the information of all the

eigenvalues and therefore it contains a broader range of spectral information about

the network.

Various Internet protocols and applications transmit data packets via the short-

est path between a source and destination. The effect of perturbations is studied by

the changes of the shortest path length that is only one aspect influenced in the net-

work. Holme et al . [59] introduce the average inverse length of shortest path as a

measure of network robustness under perturbations. A higher shortest path length

may result in slower information propagation in the network. This approach is lim-

ited to the evaluation of the changes on the shortest path length. However, effective

graph resistance is a metric with a broader scope, e.g., power grid networks [60] in

which power flows are transmitted via all possible paths besides the shortest path.

In contrast to the measure of average shortest path length, the effective graph resis-

tance is based on pairwise resistance that measures information of all the possible

paths between a source and destination.

Furthermore, the study of topological perturbations in complex networks can

be used for link prediction originated from information science. Link prediction

refers to inferring added links in the near future or removed links from an observed
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network [61]. Link prediction is applied in recommendation systems such as friend-

ship recommendations between two strangers in social networks [62]. Algorithms

based on structural nodal properties, such as the number of common neighbors

[63] and an ensemble of all paths [62] are proposed for link prediction. Compared

to structural properties, spectral characteristics of nodes provide different insights

for link prediction, such as the Fiedler vector and effective resistance proposed in

the optimization strategies of this chapter. Therefore, the link addition and removal

strategies in this chapter can be potentially used in this application domain.

2.7. CHAPTER CONCLUSION

This chapter shows that adding or removing single links in theoretical and real-

world complex networks has a measurable impact on network robustness. This

chapter contributes theoretical and experimental findings that are applicable in real-

world scenarios such as single-line installments in infrastructural networks or single-

line protection against cyber-physical attacks. The upper and lower bounds intro-

duced in this chapter can be used to support policy and decision makers to choose

a line to install or protect given certain operational costs. Future work should study

such trade-offs in specific application domain such as power grids. Moreover, when

computational cost for finding optimal links to add or remove is prohibitive, the

topological and spectral strategies studied in this chapter can still indicate links re-

sulting in high robustness. This chapter also shows that if the optimal added or

removed links for algebraic connectivity are known, then the respective links for ef-

fective graph resistance are different but in close proximity. Deriving analytically

the optimal links of effective graph resistance given the optimal links of algebraic

connectivity and vice versa, is a theoretical challenge to address in future work.
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A NETWORK APPROACH FOR

POWER GRID ROBUSTNESS

3.1. INTRODUCTION

The electrical power grid is crucial for economic prosperities of modern soci-

eties. Disruptions to electrical power grids paralyze the daily life and cause huge

economical and social costs for these societies [64–66]. The strong dependency of

other crucial infrastructures such as telecommunication, transportation and water

supply on electrical power grids amplifies the severity of large scale blackouts [67].

The key importance of the power grid encourages further research into sustaining

power system reliability and developing new approaches to evaluate and mitigate

the risk of cascading blackouts.

Cascading failures are one of the main reasons for large scale blackouts [68].

Cascading failures are the consequence of the collective dynamics of a complex

power grid. Large scale cascades are typically due to the propagation of a local fail-

ure into the global network [69]. Consequently, analyzing and mitigating cascading

failures requires a system level approach. Recent advances in the field of network

science [70] provide the promising potential of complex network theory to investi-

gate the robustness of power grids at a system level. The robustness of power grids

33
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in this chapter refers to their maintenance of function after cascading failures trig-

gered by targeted attacks.

Analyzing and improving the network robustness includes two parts. The first

goal is the proposal of a proper metric that characterizes the robustness of a spe-

cific class of networks [71]. A second goal is to propose efficient strategies on graph

modification in order to increase the value of the proposed robustness metric. Con-

sequently, an effective robustness metric that incorporates the essence of the power

grids and effective strategies for graph modification are required to improve the ro-

bustness of power grids.

The effective graph resistance is a graph metric which characterizes the essence

of electrical power grids such as power flow allocation according to Kirchhoff’s laws.

Researchers in [28] show that the effective graph resistance effectively captures the

impact of cascading failures in a power grid. The lower the effective graph resis-

tance is, the more robust a power grid is against cascading failures. Adding a link

decreases the effective graph resistance [72]. This chapter focuses on enhancing the

grid robustness against cascading failures by applying the effective graph resistance

as a metric for network expansion.

Determining the right pair of nodes to connect in order to maximize the ro-

bustness is a challenge. Exhaustive search, i.e. checking all the possibilities, is com-

putationally expensive. Compared to exhaustive search, this chapter proposes four

strategies that provide a trade-off between a higher decrease of the effective graph

resistance and a lower computational complexity.

Exhaustively evaluating the impact of each link addition on robustness reveals

the occurrence of Braess’s paradox in power grids. Braess’s paradox, originally found

in traffic networks [73], shows that adding a link can decrease the robustness of the

network. Specific sub-structures that might result in Braess’s paradox by adding an

extra link are investigated. Simulation results indicate that the effective graph re-

sistance effectively identifies a link whose addition increases the robustness while

avoids the Braess’s paradox. Moreover, most of the strategies highly increase the

robustness at a low computational complexity.

This chapter is organized as follows: Section 3.2 introduces the model of cas-

cading failures in power grids. Section 3.3 presents the computation of the effective

graph resistance in power grids. Strategies to add a transmission line are illustrated
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in Section 3.4. The experimental methodology is illustrated in Section 3.5 and the

improvement of the grid robustness is evaluated in Section 3.6. Section 3.7 con-

cludes the chapter.

3.2. MODEL OF CASCADING FAILURES IN POWER GRIDS

A power grid is a three-layered network consisting of generation, transmission

and distribution parts. A graph can represent a power grid where nodes are gener-

ation, transmission, distribution buses and substations, and links are transmission

lines. Additionally, links are weighted by the admittance (or impedance) values of

the corresponding transmission lines.

Electrical power in a grid is distributed according to Kirchoff’s laws. Accord-

ingly, impedances, voltage levels at each individual power station, voltage phase

differences between power stations and loads at terminal stations control the power

flow in the grid. This chapter approximates the flow values in a grid by using a lin-

ear direct current (DC) flow equation that approximates the nonlinear alternative

current (AC) power flow equation [74].

The maximum capacity Cl of a line l is defined as the maximum power flow

that can be afforded by the line. As in [28], we assume that the maximum capacity

of a transmission line is proportional to its initial load Ll (0) as follows:

Cl =αl Ll (0) (3.1)

where αl is called the tolerance parameter of the line l .

In a power grid, transmission lines are protected by relays and circuit breakers.

A relay of a transmission line measures the load of that line and compares the load

with the maximum capacity Cl computed by equation (3.1). When the maximum

capacity is violated, and this violation lasts long enough, the relay notifies a circuit

breaker to trip the transmission line in order to prevent the line from permanent

damage due to overloading. We assume a deterministic model for the line tripping

mechanism. A circuit breaker trips at the moment the load of a transmission line

exceeds its maximum capacity.

The failure of a transmission line changes the balance of the power flow distri-

bution over the grid and causes a redistribution of the power flow over the network.

This dynamic response of the system to this triggering event might overload other
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transmission lines in the network. The protection mechanism trips these newly

overloaded transmission lines and the power flow is again redistributed potentially

resulting in new overloads. This cascading failure continues until no more trans-

mission lines are overloaded.

3.3. EFFECTIVE GRAPH RESISTANCE IN POWER GRIDS

This section explains the complex network preliminaries, presents the effective

graph resistance, and elaborates on how it is computed in electric power grids.

3.3.1. COMPLEX NETWORK PRELIMINARIES

The topology of complex networks can be represented by a graph G(N ,L ),

where N is the set of nodes and L is the set of links. The number of nodes is de-

noted by N = |N | and the number of links by L = |L |. Graphs with N nodes are

completely described by an N ×N adjacency matrix A, in which the element ai j = 1

if there is a link between nodes i and j , otherwise ai j = 0. In case of a weighted

graph, the network is represented by the weighted adjacency matrix W where the

element wi j is a real number that characterizes a certain property of the link i ∼ j .

The weight can be distances in transportation networks, the delay in the Internet,

the strength of the interaction in the brain networks, and so on.

The weighted Laplacian matrix Q = ∆−W of G is an N ×N matrix, where ∆ =
diag(di ) is the N × N diagonal degree matrix with the element di = ∑N

j=1 wi j . The

eigenvalues of Q are non-negative and at least one is zero [42]. Thus, the smallest

eigenvalue of Q is zero. The eigenvalues of Q are ordered as 0 =µN ≤µN−1 ≤ . . . ≤µ1.

Graph metrics measure the structural and spectral properties of networks. The

degree di of a node i specifies the number of connected neighbours to that node.

The largest eigenvalue λ1 (also called the spectral radius) of the adjacency matrix

highly influences the dynamic processes on networks such as virus spreading and

synchronization processes [75]. The eigenvector corresponding to the spectral ra-

dius is called principle eigenvector x1 that characterizes the influence of link/node

removal on spectral radius [53, 58]. The second smallest eigenvalue µN−1 of the

Laplacian matrix Q is coined by Fiedler [43] as the algebraic connectivity αG . The

corresponding eigenvector is called the Fiedler vector. The entries of the Fiedler

vector provide a powerful heuristic for community detection and graph partition-
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ing [76]. The strategies illustrated in Section 3.4 are based on these structural and

spectral graph metrics.

3.3.2. EFFECTIVE GRAPH RESISTANCE IN POWER GRIDS

Effective resistance Ri j is the electrical resistance between nodes i and j com-

puted by series and parallel manipulations when a graph is seen as an electrical cir-

cuit where each link in the graph has a unit resistance. According to the Ohm’s law,

the effective resistance is the potential difference between nodes i and j when a unit

current is injected at node i and withdrawn at node j . The effective graph resistance

RG is the sum of the effective resistance over all pairs of nodes RG =∑N
i=1

∑N
j=i+1 Ri j .

Computation of the effective graph resistance for a power grid necessitates the

topology of the grid (i.e. interconnection of nodes) and reactance (or susceptance)

values of the transmission lines in the grid. The weighted Laplacian matrix Q of a

power grid reflects the interconnection of nodes by transmission lines. The weight

wi j corresponds to the susceptance (the inverse of reactance) value of the line l =
i ∼ j . The effective resistance Ri j between a pair of nodes is computed as [42]:

Ri j =
(
Q̂−1

)
i i +

(
Q̂−1

)
j j −2

(
Q̂−1

)
i j (3.2)

where Q̂−1 is the Moore-Penrose pseudo-inverse of the Q.

In terms of eigenvalues of the weighted Laplacian matrix Q, the effective graph

resistance can be written as [42]

RG = N
N−1∑
i=1

1

µi
(3.3)

where µi is the i th eigenvalue of Q. In this chapter, we use equation (3.3), which is

computationally efficient, to compute the effective graph resistance.

3.4. STRATEGIES FOR ADDING A TRANSMISSION LINE

As a response to blackouts, additional transmission lines are placed aiming to

increase the robustness of power grids. Determining the right pair of nodes to con-

nect in order to maximize the robustness is the challenge. An exhaustive search,

identifying the best pair of nodes to connect by checking all Lc =
(N

2

)−L possibili-

ties, is computationally expensive especially when the number of nodes increases.



3

38 3. A NETWORK APPROACH FOR POWER GRID ROBUSTNESS

Therefore, strategies that determine the transmission line to be added, provide a

trade-off between a scalable computation and a high increase of the grid robust-

ness.

The effective graph resistance is shown to be able to anticipate the robustness

of power grids with respect to cascading failures [28]. This section investigates four

strategies, studied in [77], for selecting a link whose addition potentially minimizes

the effective graph resistance and accordingly maximizes the robustness. A strat-

egy defines a link l = i ∼ j and the selection of nodes i and j for each strategy are

illustrated in the rest of this section.

3.4.1. DEGREE PRODUCT

The nodes i and j have the minimum product of degrees min(di d j ). If there

are multiple node pairs with the same minimum product of degrees, one of these

pairs is randomly chosen.

The complexity for the strategy is O(N 2 − N + 2Lc ) computed as follows: (i)

O(N (N −1)) is for counting the degrees of all the nodes. (ii) O(2Lc ) is for computing

di d j for Lc unconnected node pairs and for finding min(di d j ).

3.4.2. PRINCIPLE EIGENVECTOR

The nodes i and j correspond to the i th and j th components of the princi-

pal eigenvector x1 that have the maximum product max((x1)i (x1) j ) of the principle

eigenvector components. The principal eigenvector x1 belongs to the largest eigen-

value of the weighted adjacency matrix W .

The complexity is O(N 3 + 2Lc ) computed as follows: (i) O(N 3) is for comput-

ing the principle eigenvector x1 assuming the adoption of the QR algorithm [54] for

computation. (ii) O(2Lc ) is for computing (x1)i (x1) j for Lc unconnected node pairs

and for finding max((x1)i (x1) j ).

3.4.3. FIEDLER VECTOR

The nodes i and j correspond to the i th and j th components of the Fiedler

vector y that satisfy ∆y = max(|yi − y j |), where |yi − y j | is the absolute difference

between the i th and j th components of the Fiedler vector [52].

The complexity is O(N 3 +2Lc ) computed as follows: (i) O(N 3) is for computing
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Table 3.1: A summary of the strategies and the order of their computational complexity.

Node i Node j Complexity Order

DegProd argmin
i , j

(di d j ) O(N 2)

PrinEigen argmax
i , j

(
(x1)i (x1) j

)
O(N 3)

FiedlerVector argmax
i , j

(
∣∣yi − y j

∣∣) O(N 3)

EffecResis argmax
i , j

(Ri j ) O(N 3)

Exhaustive Search argmin
i , j

(RG ) O(N 5)

the Fiedler vector yi . (ii) O(2Lc ) is for computing |yi − y j | for Lc unconnected node

pairs and for finding max|yi − y j |.

3.4.4. EFFECTIVE RESISTANCE

The nodes i and j have the highest effective resistance max(Ri j ), where Ri j is

computed by equation (3.2).

The complexity is O(N 3 +4Lc ) computed as follows: (i) O(N 3) is for computing

Q̂−1. (ii) O(4Lc ) is for computing Ri j for Lc unconnected node pairs and for finding

the maximum Ri j .

Table 3.1 summarizes all the strategies that identify a link l = i ∼ j and the or-

der of their corresponding computational complexity. Table 3.1 also presents the

complexity order of the exhaustive search in order to compare with the complexity

of the four strategies. The complexity order O(N 5) of the exhaustive search is com-

puted by O(N 2) for checking all the possibilities multiplied by O(N 3) for computing

the effective graph resistance after a link addition.

3.5. EXPERIMENTAL METHODOLOGY

The experimental method presented in this section evaluates the robustness

of the improved power system against cascading failures triggered by deliberate at-

tacks. This approach can be used to assess the performance of the effective graph

resistance as a metric for link addition on improving the robustness of power grids.

This section elaborates on attack strategies and the quantification of the grid ro-
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bustness after cascading failures.

3.5.1. ATTACK STRATEGIES

This subsection designs attack strategies based on electrical node significance

centrality and link betweenness centrality. The electrical node significance [66] is a

flow-based measure for node centrality, specifically designed for power grids. The

electrical node significance δi of a node i is defined as the total power Pi distributed

by node i normalized by the total amount of power that is distributed in the entire

grid:

δi = Pi∑N
j=1 P j

(3.4)

An attack based on δi refers to target the link incident to the node i that has the

highest electrical node significance. Since node i has the number di of incident

links, the link with the highest load is chosen.

The link betweenness centrality is a topological graph metric quantifying the

centrality of a link in complex networks [33]. The betweenness centrality of a link is

defined as the total number of the shortest paths that traverse the link l .

Bl =
N∑

i=1

N∑
j=1

1l∈P (i , j ) (3.5)

where 1{x} is the indicator function: 1{x} = 1 if the condition {x} is true, else 1{x} = 0,

and P (i , j ) is the shortest path between nodes i and j . An attack based on between-

ness centrality targets the link with the highest betweenness centrality.

Placing an additional line according to different strategies (presented in Sec-

tion 3.4) results in different improved power systems. In order to compare cascad-

ing damages of these improved systems, we always attack the same link identified by

the node significance centrality or link betweenness centrality of the original power

grid.

3.5.2. ROBUSTNESS EVALUATION

The robustness of power grids is evaluated by the criticality of the additional

line and the damages after cascading failures triggered by targeted attacks. To as-

sess the criticality of the newly added transmission line based on the effective graph

resistance, we deploy an analogous approach as in [78]: the criticality of an added



3.6. NUMERICAL ANALYSIS

3

41

line l in a graph G is determined by the relative decrease of the effective graph resis-

tance ∆R l
G that is caused by the addition of a link l :

∆R l
G = RG −RG+l

RG
(3.6)

where RG+l is the effective graph resistance of the grid after adding a link l into G .

Evaluation of equation (3.6) results in the theoretical robustness level of a power

grid.

Initially, a transmission line identified by the four strategies and exhaustive

search is added into the power grid. Then, the newly obtained grids are attacked

and the cascading damages are quantified.

The damage caused by the cascade is quantified in terms of normalized served

power demand DS: served power demand divided by the total power demand in

the network. Computing the normalized served demand for an interval of tolerance

parameters [αmi n ,αmax ] results in a robustness curve of a grid. The normalized area

below the robustness curve is computed by a Riemann sum [33]:

r =
∑m+1

i=1 DS(αi )∆α

αmax −αmi n
(3.7)

where the closed interval [αmi n ,αmax ] is equally partitioned by m points and the

length of the resulting interval is∆α = αmax−αmi n

m+1 . DS(αi ) is the normalized served de-

mand when the tolerance parameter of the network is αi ∈ [αmi n + (i −1)∆α,αmi n +
i∆α]. Since the maximum value of DS is 1, (αmax −αmi n) refers to the maximum pos-

sible area below the robustness curve ensuring that the value of r is between 0 and

1. Evaluation of equation (3.7) for the robustness curve results in the experimental

robustness level of a power grid with respect to cascading failures.

3.6. NUMERICAL ANALYSIS

This section investigates the effectiveness of the effective graph resistance as a

metric for line addition, the impact of structures on the Braess’s paradox, and the

performance of the four strategies. First, the power grid is expanded by adding sin-

gle links according to the minimization of the effective graph resistance, and the

criteria of the four strategies. Then, the robustness of the improved power grid is

assessed quantitatively under targeted attacks.
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3.6.1. ASSESSING EFFECTIVENESS OF THE EFFECTIVE GRAPH RESISTANCE

Exhaustively adding all the possible links provides us all the possibly improved

grids. Quantifying the cascading damages of all the improved grids under targeted

attacks provides the benchmark for the evaluation of the effective graph resistance.

The reactance value on each added line is assumed to be the average of all the exist-

ing transmission lines. The simulations are performed by MATCASC [79], a MATLAB

based cascading failures analysis tool implementing the model in Section 3.2.

Figure 3.1 shows the performance of the effective graph resistance on identify-

ing a critical link under a fixed tolerance parameter α= 2 in IEEE 57 and 118 power

test systems1. There are 1518 possible improved grids by adding a line to IEEE 57

and 6724 possible improved grids to IEEE 118. The original and improved power

systems are attacked based on the node significance centrality computed by equa-

tion (3.4). In Figure 3.1, line ID is sorted in order of increasing normalized served

demand DS. The horizontal line (i.e. the black line) is the served demand DS for

the original power grid after cascading failures. The points on the red curve refer to

the DS value of each improved grid that is obtained by adding one single line to the

original network.

0.8

0.7

0.6

0.5

0.4

0.3

F
ra

c
ti
o
n

 o
f 
s
e
rv

e
d
 d

e
m

a
n
d
 (

D
S

)

1400120010008006004002000

Line ID

        IEEE 57
 DS_Original grid
 DS_Improved grid
 DS_DegProd
 DS_PrinEigen
 DS_Fiedler
 DS_EffecResis
 DS_MinimumEGR

(a) IEEE 57

0.9

0.8

0.7

0.6

0.5

0.4

F
ra

c
ti
o
n
 o

f 
s
e
rv

e
d
 d

e
m

a
n
d
 (

D
S

)

6000500040003000200010000

Line ID

        IEEE 118
 DS_Original grid
 DS_Improved grid
 DS_DegProd
 DS_PrinEigen
 DS_Fiedler
 DS_EffecResis
 DS_MinimumEGR

(b) IEEE 118

Figure 3.1: The performance of the effective graph resistance in IEEE 57, IEEE 118 power system with the tolerance

parameter α= 2.

The performance of the effective graph resistance as a metric for link addition

and the performance of strategies are labelled in the Figure 3.1 with markers. The

added line that minimizes the effective graph resistance increases the robustness

1IEEE power test systems: http://www.ee.washington.edu/research/pstca/
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from 0.41 to 0.80 and improves the robustness by 95%. Compared to the possi-

bly maximal increase 0.86 by a single link addition, the effective graph resistance

achieves 93% accuracy in the IEEE 57 power system. Similarly in IEEE 118 power

system, the added line that minimizes the effective graph resistance increases the

robustness from 0.66 to 0.81. The effective graph resistance achieves 87% accuracy

identifying the optimal line in the IEEE 118 power system.

In Figure 3.1, the curve above the horizontal line shows an increase of the ro-

bustness after a link addition, while the curve below the horizontal line presents a

decrease of the robustness by adding a link. This counter-intuitive phenomenon is

linked to Braess’s paradox known for traffic networks, stating that adding extra ca-

pacity or links to a network occasionally reduces the overall performance of a net-

work [73].

The simulation results in Figure 3.1 illustrate the effectiveness of the effec-

tive graph resistance to identify a critical link. The addition of the critical link im-

proves the robustness of power grids regardless of the fact that the robustness can

be decreased according to Braess’s paradox. We further investigate more details on

Braess’s paradox in subsection 3.6.3.

3.6.2. ASSESSING THE EFFECTIVENESS OF STRATEGIES

To assess the effectiveness of the four strategies in Section 3.4, the IEEE 118

power system, consisting of 118 buses and 186 lines, is considered as a use case. For

each line identified by each strategy, equation (3.6) is evaluated and its impact on

the effective graph resistance is determined. Table 3.2 shows the lines to be added

identified by strategies and their impact on the decrease of RG .

Table 3.2: Added lines identified by the strategies and their impact on the decrease of RG .

Strategy line ID ∆R l
G (%)

DegProd l87−117 9.0

PrinEigen l87−111 4.2

Fiedler l111−117 11.3

EffectiveResis l87−117 9.0
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In Table 3.2, the strategy based on the Fiedler vector selects the line connecting

bus 111 and bus 117 and its addition causes 11.3% decrease of the effective graph re-

sistance. Strategies based on the degree product and the effective resistance have an

equal performance that decrease the effective graph resistance by 9%. The strategy

based on the principle eigenvector decreases the effective graph resistance by 4.2%.

Compared to other strategies, the strategy based on the Fiedler vector performs the

best.

To validate the results from Table 3.2, the original and improved IEEE 118 power

systems are attacked based on the electrical node significance and the link between-

ness, and damages after cascading failures are quantified. The improved power sys-

tem refers to the system after adding a transmission line identified by strategies in

Section 3.4. Figures 3.2 and 3.3 show the robustness curves for improved power grids

under an interval of tolerance parameters [αmi n ,αmax ] with∆α = 0.05, and highlight

the improvement of the grid robustness. In order to quantify the performance of the

four strategies in improving the grid robustness, the robustness value r in equation

(3.7) for each robustness curve is shown in Table 3.3.

Figure 3.2 and Table 3.3 show the performance of the strategies in the IEEE 118

power grid under the attack based on the node significance. The strategy based on

the Fiedler vector has a robustness value r = 0.777 which is an increase by 1.8%

compared to the original grid robustness (i.e. 0.763). The strategy based on the de-

gree product and on the effective resistance have an equal performance. These two

strategies have the same robustness value r = 0.769 and increase the robustness by

0.8%. The strategy based on the principle eigenvector has the lowest performance

and its robustness value is r = 0.757 that decreases the robustness by 0.8%.

Figure 3.3 and Table 3.3 present the performance of the strategies under the

betweenness based attack. The strategy based on the Fiedler vector has the highest

robustness value r = 0.991, which is an increase by 8.2% compared to the original

grid robustness (i.e. 0.916). The strategy based on the degree product and on the

effective resistance have an equal performance with the same robustness value r =
0.949. The robustness is increased by 3.6% compared to the original grid robustness.

In contrast, the strategy based on the principle eigenvector with r = 0.915 slightly

decreases the robustness by 0.1%. The performance order of the strategies shown in

Figures 3.2 and 3.3 and Table 3.3 is in agreement with the theoretical results in Table
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Figure 3.2: The performance of the four strategies in IEEE 118 power system under different tolerance parameters.

The attack strategy is based on the node significance centrality.

Table 3.3: Critical lines identified by the four strategies and the robustness value r in IEEE 118 power system.

Strategy
line ID

r r

(Node (Betweenness

Siginificance attack) attack)

DegProd l87−117 0.769 0.949

PrinEigen l87−111 0.757 0.915

Fiedler l111−117 0.777 0.991

EffectiveResis l87−117 0.769 0.949

When the computational cost for finding the optimal links to add is prohibitive,

the strategy based on the Fiedler vector with the highest performance is preferable

compared to other strategies. Assuming that computing the Fiedler vector for large

grids is not an option, the strategy based on the degree product can be an alterna-

tive. The degree based strategy is more likely to be chosen than the strategy based
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Figure 3.3: The performance of the four strategies in IEEE 118 power system under different tolerance parameters.

The attack strategy is based on betweenness centrality.

on the effective resistance due to the fact that these two strategies have comparable

performance, while the strategy based on the degree product has lower computa-

tional complexity.

3.6.3. ASSESSING THE IMPACT OF THE GRID TOPOLOGY ON BRAESS’S PARA-

DOX

Braess’s paradox in this chapter refers to the decrease of grid robustness by

placing additional links. The relationship between the grid topology and the Braess’s

paradox in power grids is investigated.

The Wheatstone bridge graph (shown in Figure 3.4) refers to a graph consisting

of four nodes, with four links creating a quadrilateral. A fifth link connects two op-

posite nodes in the quadrilateral, splitting the graph into two triangles [80]. We con-

sider the subgraph with four nodes and four links as the Wheatstone subgraph and

the fifth link as the Wheatstone link. Braess’s paradox indicates that the construc-

tion of the Wheatstone bridge graph by adding the Wheatstone link occasionally
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decreases the robustness of power grids. Let PWheatstone represent the percentage of

the Wheatstone links and PParadox be the percentage of the links, whose addition re-

sults in Braess’s paradox. In order to investigate the impact of the Wheatstone bridge

graph on Braess’s paradox, the correlation between the percentages PWheatstone and

PParadox is quantified. The number of Wheatstone links is computed by the number

of Wheatstone bridge subgraphs detected by FANMOD [81], a tool for fast network

motif detection.

Figure 3.4: Wheatstone bridge graph

Figure 3.5 shows two types, Type I and Type II, of Wheatstone subgraphs from

which a Wheatstone bridge graph is built by adding the Wheatstone link (the dashed

line). For each subgraph, the number of the Wheatstone links is two times the to-

tal number of subgraphs of Type I and Type II. The percentage PWheatstone of Wheat-

stone links in all the possible added links Lc is computed by PWheatstone = 2(NTypeI+NTypeII)

Lc
,

where NTypek is the number of subgraphs of Type k. Table 3.4 shows the percentage

PWheatstone of Wheatstone links and the percentage PParadox in Figure 3.1. The corre-

lation between PWheatstone and PParadox is 0.96 suggesting the criticality of the Wheat-

stone bridge graph (see Figure 3.4) to the occurrence of Braess’s paradox.

Besides the Wheatstone bridge graph that occasionally introduce Braess’s para-

dox, we further investigate other subgraphs that may lead to the Braess’s paradox.

Figure 3.6 shows other three types, Type III to Type V, of subgraphs resulting in

Braess’s paradox when a single link is added. The dashed lines in Figure 3.6 are

the possible links that cause the Braess’s paradox. Table 3.5 shows the percentage

PWheatstone after including the number of links added into Type III, IV and V. The per-

centage PWheatstone increases from 6.73% to 25.00% in IEEE 57 power system. An

increase of the PWheatstone from 4.53% to 15.44% is also observed in IEEE 118 and

from 1.34% to 4.11% in IEEE 247 power system. Accordingly, the correlation be-
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(a) Type I (b) Type II

Figure 3.5: Two types of subgraphs to build a Wheatstone bridge graph by adding the Wheatstone link. The dashed

lines are the possible Wheatstone links.

tween PWheatstone and PParadox increases to 0.971. The results indicate that the sub-

graphs from Type I to Type V provide an effective indication for the occurrence of

the Braess’s paradox in power grids.

(a) Type III (b) Type IV (c) Type V

Figure 3.6: Three types of subgraphs resulting in Braess’s paradox by adding an extra link.

Table 3.4: The percentage PWheatstone and PParadox in IEEE power systems

IEEE57 IEEE118 IEEE247

Lc 1516 6717 30026

NTypeI 0 20 30

NTypeII 51 132 171

PWheatstone(%) 6.73 4.53 1.34

PParadox (%) 53.16 20.67 4.57
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Table 3.5: The percentage PWheatstone and PParadox in IEEE power systems

IEEE57 IEEE118 IEEE247

NTypeIII 95 256 299

NTypeIV 91 216 255

NTypeV 0 15 8

PWheatstone(%) 25.00 15.44 4.11

3.7. CHAPTER CONCLUSION

This chapter investigates the effective graph resistance as a metric for network

expansions to improve the grid robustness against cascading failures. The effective

graph resistance takes the multiple paths and their ability to accommodate power

flows into account to quantify the robustness of power grids. The experimental veri-

fication on IEEE power systems demonstrates the effectiveness of the effective graph

resistance to identify single links that improve the grid robustness against cascad-

ing failures. Additionally, when computational cost for finding optimal links is pro-

hibitive, strategies that optimize the effective graph resistance can still identify an

added link resulting in a higher level of robustness. Specifically, the strategy based

on the Fiedler vector performs the best compared to other strategies and increases

the robustness by 8.2% in IEEE 118 power system under the betweenness based at-

tack, while reduces the computational complexity from O(N 5) to O(N 3).

The occurrence of Braess’s paradox in power grids suggests that the robustness

can be occasionally decreased by placing additional links. In particular, a badly de-

signed power grid may cause enormous costs for new lines that actually reduce the

grid robustness. The experimental results in this chapter provide insights in design-

ing robust power grids while avoiding the Braess’s paradox in power grids.





4
MULTI-CRITERIA ROBUSTNESS

ANALYSIS OF METRO NETWORKS

4.1. INTRODUCTION

With constant urbanization [82], cities around the world are not only growing

in number but they are also growing in size. As one of the main modes of urban

transportation, public transit systems are integral to move people efficiently in cities

[83–85]. Indeed, they provide myriads of benefits, from reducing traffic congestion

to having a lesser impact on the environment, emitting fewer greenhouse-gases per

capita than the conventional automobile [86, 87]. The future of public transporta-

tion is therefore bright. While increasing transit use is desirable, effort must be put

into developing designs that are also resilient and robust. These subjects have gath-

ered much interest in the scientific community in recent years, especially within the

context of resilience to extreme events [88–90]. Resilience typically refers to the abil-

ity to return to a previous state after a disruption, while robustness tends to measure

the amount of stress that can be absorbed before failure; Woods [91] inventoried

four uses of the concept of resilience.

Traditionally, transit resilience and robustness have been associated largely with

travel time reliability and variability [92]. It is still an important topic today from

51
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quantifying variability itself [93, 94] or its cost [95], to using reliability and variability

as a design criterion [96, 97]. Recently, the field of Network Science [98] has emerged

as particularly fitted to measure the robustness of a system, notably by studying the

impact of cascading failure [99–101]. Indeed, as physical networks, metros are com-

posed of stations (nodes) and rail tracks (links), and they therefore possess mea-

surable network properties [102, 103] that can be used to study their robustness

[104–106]. Several works have also tried to combine information from both tran-

sit operation and network properties to gain insight into the robustness of transit

networks [107–111].

In this work, our main objective is to analyse both theoretical and numerical ro-

bustness metrics for 33 worldwide metro systems within the realms of graph theory

and network science. Metro, here, refers to heavy rail transit systems, whether un-

derground, at grade, or overground. The freely available data from [112] was used1.

To assess the robustness of metros, our main research approach is to subject

metros to random failures and targeted attacks. Ten theoretical robustness met-

rics are investigated to anticipate the influence of failures and attacks in metro net-

works: (i) robustness indicator r T , see [105], (ii) effective graph conductance CG , see

[42],(iii) reliability RelG , see [113], (iv) average efficiency E [ 1
H ], see [98], (v) cluster-

ing coefficient CCG , see [98] (vi) algebraic connectivity µN−1, see [42] (vii) average

degree E [D], see [42] (viii) natural connectivity λ, see [114] (ix) degree diversity κ,

see [115] (x) meshedness coefficient MG , see [116]. Moreover, the critical thresholds

f90% and fc , see for instance [117], are obtained through simulations and categorize

as numerical robustness metrics which provide the ground-truth for the robustness

of metros under failures and attacks.

To evaluate whether the ten theoretical robustness metrics anticipate the met-

ros robustness with respect to node failures, we investigate the Pearson correlations

between theoretical and numerical robustness metrics. The strong correlations in-

dicate that different robustness metrics quantify different aspects of robustness and

highlight the multi-faced property of the robustness of metros. Finally, an overall

robustness is provided by radar diagrams that incorporate all the ten robustness

metrics.

The chapter is organized as follows. The definition and interpretation of theo-

1Available at http://csun.uic.edu/datasets.html, accessed July 8, 2016.
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retical robustness metrics are studied in Section 4.2. Section 4.3 presents the sim-

ulation approach for numerical robustness metrics in 33 metro networks. The per-

formance of the robustness metrics is assessed in Section 4.4. Section 4.5 concludes

the chapter.

4.2. THEORETICAL ROBUSTNESS METRICS

This section elaborates on the ten theoretical robustness metrics and how these

theoretical metrics relate to robustness of networks. A physical metro network can

be represented by an undirected graph G(N ,L) consisting of N nodes and L links.

The nodes are transfer stations and terminals, while the links are rail tracks that

physically join stations. A graph G can be completely represented by an adjacency

matrix A that is an N ×N symmetric matrix with element ai j = 1 if there is a con-

nection between nodes i and j , otherwise ai j = 0. The Laplacian matrix Q = ∆− A

of G is an N ×N matrix, where∆= diag(di ) is the N ×N diagonal degree matrix with

the elements di = ∑N
j=1 ai j . The eigenvalues of Q are non-negative and at least one

is zero [42]. The eigenvalues of Q are ordered as 0 =µN ≤µN−1 ≤ . . . ≤µ1. The degree

di = ∑N
j=1 ai j of a node i is the number of connections to that node. The degree for

the terminals is one.

4.2.1. THE ROBUSTNESS INDICATOR r T

The robustness indicator r T is suggested as a robustness metric for metro net-

works by Derrible and Kennedy [105]. It quantifies the robustness of a metro net-

work in terms of the number of alternative paths in the network topology divided by

the total number of stations in the system:

r T = µ−Lm

NS

where NS is the total number of stations (not limited to transfers and terminals), Lm

is the number of multiple links between two nodes (e.g., overlapping lines), and µ

is the cyclomatic number that calculates the total number of alternative paths in a

graph; µ= L−N +P , with L the number of links, N the number of nodes, and P the

number of subgraphs. Transit networks are typically connected and, thus P = 1. The

total number of stations, NS in the denominator represents a likelihood of failure;
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i.e., the larger the system, the more stations need to be maintained, and therefore

the more likely a station may fail.

For this work, we do not consider any multiple edges2. Moreover, we also use

the number of nodes N (i.e., transfer stations and terminals) in the denominator as

opposed to the total number of stations NS . Due to the sparsity of metro networks,

i.e., L < Lmax with Lmax = N (N−1)
2 obtained from the complete graph with N nodes,

the robustness indicator in this chapter is modified as:

r T = ln(L−N +2)

N
(4.1)

where ln(L −N +2) is employed rather than ln(L −N +1) to avoid infinity for a tree

graph with L = N − 1. Essentially, r T increases when alternative paths are offered

to reach a destination, and it decreases in larger systems, which are arguably more

difficult to upkeep. The normalized robustness indicator r T is obtained dividing by

r T = ln(Lmax−N+2)
N with Lmax = N (N−1)

2 .

4.2.2. THE EFFECTIVE GRAPH CONDUCTANCE CG

The effective graph resistance RG captures the robustness of a network by in-

corporating the number of parallel paths (i.e., redundancy) and the length of each

path between each pair of nodes. The existence of parallel paths between two nodes

in metro networks and a heterogeneous distribution of each path length result in a

smaller effective graph resistance and potentially a higher robustness level.

The effective resistance Ri j [42] between a pair of nodes i and j is the potential

difference between these nodes when a unit current is injected at node i and with-

drawn at node j . The effective graph resistance RG is the sum of Ri j over all pairs

of nodes in the network. An efficient method for the computation of the effective

graph resistance in terms of the eigenvalues is

RG = N
N−1∑
i=1

1

µi

where µi is the i th non-zero eigenvalue of the Laplacian matrix3. Properties of the

effective graph resistance are given in [42]. The effective graph resistance is consid-

2Even when two stations are directly connected by multiple lines, we assign a value of 1 to the adjacency matrix. The

definition is given in Section 4.3.1
3An N ×N matrix representing the graph. The definition is given in Section 4.3.1.
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ered as a robustness metric for complex networks [77], especially for power grids

[28, 29]. In this chapter, we use a normalized version of the effective graph resis-

tance, called the effective graph conductance, defined as

CG = N −1

RG
(4.2)

where CG satisfies 0 ≤CG ≤ 1. Here, a larger CG indicates a higher level of robustness.

The normalized CG enables the comparison of network robustness among different

cities with different metro size.

4.2.3. RELIABILITY

The reliability RelG of a network is the probability that the network is con-

nected given the failure probabilities of its components. In this chapter, we model

the reliability of each link specifically as opposed to the nodes. In the absence of ac-

tual reliability data (e.g., track maintenance and age), we use a constant value for the

link reliability of 0.999 in accordance with values found in the literature [118] that

includes, amongst others, vehicle breakdowns, power failures, and blockage. The

reliability of a link is defined as one minus the failure probability, and the method

assumes that the links have independent failure probabilities. This reliability mea-

sure is used often and in various contexts [119, 120], including in public transporta-

tion [121]. It essentially captures robustness by calculating the fraction of time every

station is accessible from every other station. The downside of using the reliability

is that it considers networks to be either fully operational or failed and does not pro-

vide any finer distinction. For further information, the reader is referred to [122].

4.2.4. AVERAGE EFFICIENCY E [ 1
H ]

The hopcount Hi j is the number of links in the shortest path between node i

and node j . The average hopcount E [H ] is defined as:

E [H ] = 2

N (N −1)

N∑
i=1

N∑
j=1

Hi j

When a network is disconnected, the shortest paths between certain node pairs

have infinite distance. To avoid an infinitely large metric under the scenario of a

disconnected graph, the global average efficiency E
[

1
H

]
is introduced by taking the
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reciprocal hopcount between two nodes [98]:

E

[
1

H

]
= 2

N (N −1)

N∑
i=1

N∑
j=1

1

Hi j
(4.3)

Assuming the transportation efficiency between two nodes is proportional to

the reciprocal of their distance, the global efficiency quantifies the efficiency of trans-

portation in a network on a global scale.

4.2.5. CLUSTERING COEFFICIENT CCG

The clustering coefficient has become a standard in the network science liter-

ature to assess how the neighbors of a node are connected with one another. It was

first introduced by [17]. The clustering coefficient of a node is defined as:

CCi = 2yi

di (di −1)

where yi is the number of links connecting neighbors of node i and di is the

degree of node i . The clustering coefficient of a node i characterizes the connec-

tion density among the neighbors of node i . The maximum clustering coefficient is

achieved in a complete graph where all the neighbors of a node are connected. In

this work, we use the average clustering coefficient that is defined as the average of

all individual clustering coefficients:

CCG = 1

N

N∑
i=1

CCi (4.4)

For a graph with N nodes, the clustering coefficient is bounded by

0 ≤CCG ≤ 1

where 0 is obtained in a tree and 1 is reached in a complete graph.

4.2.6. ALGEBRAIC CONNECTIVITY µN−1

The algebraic connectivity µN−1 is the second smallest eigenvalue of the Lapla-

cian matrix of a graph. WhenµN−1 = 0, the graph is disconnected whereas forµN−1 >
0 the graph is connected. It has been shown [42] that µN−1 ≤ κN (G) ≤ κL (G) where

κN (G) and κL (G) are node and link connectivity representing the minimum num-

ber of nodes and links whose removal disconnects the graph. Therefore, a high value
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of the algebraic connectivity indicates a more robust network. In addition, it implies

a strong synchrony in transport networks [123] and more difficulty to break down air

transport networks [124] under random failures. Because the maximum algebraic

connectivity for a graph with N nodes equals N , obtained for the complete graph,

we normalize by dividing the algebraic connectivity by N . The normalized algebraic

connectivity is denoted as µN−1.

4.2.7. AVERAGE DEGREE E [D]

For a graph with N nodes, the average degree can simply be written as:

E [D] =
∑N

i=1 di

N
(4.5)

where di is the degree of node i . Put simply, the average degree measures the

number of average connections of a node. A network with a higher average degree

can be thought of as more robust since it implies more connections (i.e., higher con-

nectivity). We normalize the average degree dividing by the maximal degree, which

is N − 1, for a graph with N nodes. The normalized average degree is denoted as

E [D].

4.2.8. NATURAL CONNECTIVITY λ

The natural connectivity is defined as:

λ= ln

[
1

N

N∑
i=1

eλi

]
(4.6)

whereλi denote the eigenvalues of the adjacency matrix of a graph. The natural

connectivity characterizes the redundancy of alternative routes and is considered

as a measure of structural robustness. The natural connectivity is a monotonical

function of eigenvalue λi that is sensitive even to a single link failure [114]. Conse-

quently, when link failures one by one, the natural connectivity is able to capture

each failure, in contrast to, for instance, link connectivity that might be the same for

certain link failures. The maximum natural connectivity for a graph with N nodes

is obtained in the complete graph which is N − ln N as N →∞. In order to compare

graphs with different sizes, we normalize the natural connectivity, denoted as λ
∗

,

dividing by the maximum natural connectivity N − ln N .
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4.2.9. DEGREE DIVERSITY κ

The degree diversity [115], also called the second-order average degree, is de-

fined as:

κ=
∑N

i=1 d 2
i∑N

i=1 di

(4.7)

It has been shown that κ positively relates to the percolation threshold pc [22]

via 1− pc = 1
κ−1 in the percolation model. The higher κ is, the more nodes need

to be removed to disintegrate a network. In addition, the robustness of dynamic

processes, e.g. epidemic spread, in a network relates to κ regarding the epidemic

threshold [125], where below the epidemic threshold the network is safeguarded

from long-term infection. As for homogeneous networks, such as regular graphs

where each node has the same degree, the degree diversity tends to the average de-

gree, κ→ E [D]. However, for scale-free networks with N →∞, the degree diversity

tends to the infinity, κ→∞. In order to scale the value of the degree diversity in the

interval [0,1], we take the inverse of the degree diversity.

4.2.10. MESHEDNESS COEFFICIENT MG

The meshedness coefficient MG is defined as:

MG = L−N +1

2N −5
(4.8)

measuring the cycle structure in a planar graph by dividing the actual number of

cycles by the potential number of cycles. It has notably been used to characterize

the structural properties of urban street networks [116]. The difference between the

meshedness coefficient MG and the robustness indicator r T lies in the denominator.

The robustness indicator r T considers the number of stations in the denominator,

while MG considers the maximal number of faces in a planar graph. The meshed-

ness MG satisfies 0 ≤ MG ≤ 1, where 0 is obtained in a tree graph with L = N −1 and

1 is reached in the maximal planar graphs with L = 3N −6.

4.3. NUMERICAL ROBUSTNESS METRICS

Numerical robustness metrics are obtained through simulations considering

the robustness of 33 metro networks against random failures or deliberate attacks.



4.3. NUMERICAL ROBUSTNESS METRICS

4

59

This approach can be used to evaluate the performance of different robustness met-

rics for metro networks under node failures/attacks. This section elaborates on the

metro networks, attack strategies and determination of the critical thresholds.

4.3.1. METRO NETWORKS

We define metros as urban rail transit systems with exclusive right-of-way whether

they are underground, at grade or elevated. We represent a metro network by a

graph, where nodes are transit stations and two nodes are connected if two transit

stations are reachable. In this article, we look at 33 worldwide metro networks. Fig-

ure 4.1 exemplifies the graphical representation of a physical metro network. Figure

4.1(a) shows the map of the Athens metro network4 and the graphical representation

is shown in Figure 4.1(b). In Figure 4.1(b), stations 1 to 9 are respectively: Kifissia,

Aghios Antonios, Attiki, Omonia, Monastiraki, Pireaus, Syntagma, Aghios Dimitrios,

and Airport Eleftherios Venizelos. In this article, only the termini and transfer sta-

tions are taken into account, other stations that do not offer transfers or do not end

lines are not considered as it was found preferable in [105, 112]. Moreover, they

tend to bias the results by simply connecting with two adjacent stations. For more

details on the methodology, see [105]. Note that the methodology presented here

can be readily generalized for networks including non-transfer stations by consid-

ering weighted graphs instead of unweighed graphs, where the weights equal the

number of non-transfer stations between two transfer stations plus one.

4.3.2. ATTACK STRATEGIES

To determine the robustness of metro networks, the response of metro net-

works to targeted attacks or random failures is investigated. This chapter consid-

ers two strategies for node removal: (i) random node removal and (ii) degree-based

node removal.

• Random removal: The node to be removed is chosen at random from all the

nodes in the network with equal probability.

• Degree-based removal: The node to be removed has the highest degree in the

network. If multiple nodes have the highest degree, one node is chosen at ran-

4Adapted from http://commons.wikimedia.org/wiki/File:Athens_Metro.svg
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(a) The map of the Athens metro network.
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(b) Graphical representation

Figure 4.1: Athens metro network

dom from all the highest-degree nodes with equal probability. In this chapter,

nodes are removed progressively. We first remove the node with highest de-

gree, and continue selecting and removing nodes in decreasing order of their

degree.

4.3.3. CRITICAL THRESHOLDS

Critical thresholds relate to the fraction of nodes that have to be removed from

the network, such that the size of the largest connected component of the remain-

ing network is equal to a predetermined fraction of the size of the original network.

Critical thresholds, which are also used in the percolation model [21, 126], charac-

terize the robustness of interconnection patterns with respect to the removal/failure

of network nodes.

After a node is removed, the size of the largest connected component of the re-

maining network is determined. Measuring the size of the largest connected com-

ponent for an interval of removed nodes [1, N ] results in a robustness curve. From

the robustness curve, we then determine the critical thresholds f90% and fc . The crit-

ical threshold f90% is the first point at which the size of the largest connected com-

ponent is less than 90% of the original network size. When determining the f90% for

random node removal, the size of the largest connected component is the average

of 1000 simulation runs. Similarly, the critical threshold fc is the first point at which
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the size of the largest connected component is one (i.e., the network is completely

disintegrated). Figure 4.2 exemplifies the determination of the critical thresholds

from the robustness curve in Tokyo metro network with 62 nodes. Computing the

size of the largest connected component for removed nodes from 1 to 62 results in

a robustness curve. The size of the largest connected component is 56.77 after ran-

domly removing 4 nodes. After removing 5 nodes, the size becomes 55.48 which

is smaller than 90%×62 = 55.8, i.e., 90% of the size of the network. Therefore, the

critical threshold f90% is determined as 5
62 . The threshold fc is determined in a simi-

lar way. The critical thresholds are regarded as the experimental robustness level of

metro networks with respect to node failures.
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Figure 4.2: The robustness curve for the Tokyo metro network.

In this chapter, we first consider the threshold f90%, the fraction of nodes that

have to be removed such that the remaining network has a largest connected com-

ponent that contains 90% of the original network. For the node removal process, we

simulate both random failures and targeted attacks. In the case of random failures,

the nodes are removed by random selection, while for targeted attacks, the nodes are

removed progressively based on their degrees (i.e., stations with many connections

are removed first).

For the targeted attacks and random failures, we also consider the critical thresh-

old fc defined as the fraction of nodes to be removed such that the largest compo-

nent is reduced to a size of one node (i.e., the network is completely disintegrated).

As opposed to the theoretical metrics discussed in Section 4.2, the critical thresholds

f90% and fc are obtained through simulations.
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4.4. METRIC ANALYSIS FOR METRO NETWORKS

In this section, we study the robustness metrics for the 33 metro networks.

Firstly, the ten theoretical robustness metrics are computed for the 33 metro net-

works. Secondly, the critical thresholds of metro networks under random failures

and targeted attacks are determined by simulations. Thirdly, the relationship be-

tween the theoretical robustness metrics and numerical robustness metrics is stud-

ied. Finally, the overall performance of all the robustness metrics for the 33 metros

is investigated.

4.4.1. EFFECTIVENESS OF ROBUSTNESS METRICS

Table 4.1 shows the values of the ten robustness metrics (from column 4 to col-

umn 13) computed using equations (4.1) to (4.8) and the four numerical robustness

metrics (from column 14 to column 17) using the algorithms described in Section

4.3.3 for the 33 metro networks.

According to the rank of the robustness indicator r T , the most robust network

is Tokyo with r T = 0.512, followed by Madrid and Paris with r T = 0.5 and 0.488, re-

spectively. Moreover, Seoul, Moscow and MexicoCity also have a relatively high ro-

bustness level. Clearly, the robustness indicator r T favors larger networks that have

developed many alternative paths between any pairs of nodes. At the same time, r T

discredits networks that have a high number of nodes while having few alternative

paths. This is particularly exemplified by the case of New York. Due to the topogra-

phy of the region, the New York metro lines run mostly North-South from the Bronx

to Lower Manhattan and East-West in Queens and Brooklyn. The lines therefore

seldom intersect as opposed to the case of the Seoul metro for instance.

According to the effective graph conductance CG , Rome with CG = 0.25 has the

highest robustness level, followed by Cairo and Marseille both with CG = 0.17. The

effective graph conductance accounts for the number of alternative paths, but it

emphasizes on the length of each alternative path. For instance, for smaller net-

works without cycles (e.g., star graph), the effective graph conductance increases

due to the lower average path length between two stations. The topologies in Fig-

ure 4.3a and Figure 4.3b are particular examples. In this case, a higher effective

graph conductance indicates a lower number of transfer hops between two tran-

sit stations. At the same time, effective graph conductance favors networks with
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the smallest length of the shortest paths. Taking Figure 4.3c (Montreal) and Figure

4.3d5 (Toronto) as examples, the difference between the topologies is that station

1 connects to 10 and then connects to station 3 in Toronto, while stations 1 and 10

separately connect to stations 2 and 3 in Montreal. The total length of shortest paths

from station 1 to the rest of the stations is higher in Toronto than in Montreal. Com-

pared to Toronto, the higher effective graph conductance in Montreal indicates that

the effective graph conductance favors the star-like topology with a smaller average

shortest path length.

The reliability RelG indicates, just as the effective graph conductance does, that

Rome is the most robust network with RelG = 0.996. After this, the most robust net-

works according to their reliability are Bucharest, Cairo and Marseille, each with

RelG = 0.995. Of these three, Cairo and Marseille are also in second place accord-

ing to the effective graph conductance. The reliability is sensitive to “bridges" in

the network. In this work, a “bridge" is an link that if removed disconnects the net-

work. They are of importance for the reliability because these edges must always

be operational if the network is to remain a single connected component. Using

this definition, we see that Rome has four bridges and the three networks following

have five. The network with the lowest reliability is London. This is also the network

with the most nodes and with the most bridges. Metro networks are often scale-free

[105], which means that larger networks have more degree one nodes (the links to

these nodes are always bridges). Therefore, it makes sense that the largest network

has the highest amount of bridges and is the least reliable. Of course with different

link reliabilities this line of reasoning would not hold any more.

According to the rank of r T , 1
κ

and MG , Tokyo is the most robust metro net-

work compared to other 32 metros. Meanwhile, according to CG , RelG , E [ 1
H ], µN−1,

E [D] and λ
∗

, Rome is the most robust metro. Barcelona is considered as a robust

network by the clustering coefficient CCG . Madrid has a relatively high robustness

level favoured by r T and MG . Tokyo and Paris are considered as robust networks

by CCG and 1
κ

, respectively. Cario and Marseille have a relatively high robustness

level regarding the second highest value of metrics CG , RelG , E [ 1
H ], µN−1, E [D] and

λ
∗

. The differences in these results suggest that robustness is a multi-faceted no-

5In order to compare the topology of Montreal and Toronto, a link between stations 4 and 5 is added into Toronto and

the effective graph conductance is 0.099.
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Table 4.1: Robustness metrics in 33 metro networks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Metros N L r T CG RelG E [ 1
H ] CCG µN−1 E [D] λ

∗ 1
κ

MG f90%-Degree f90%-Random fc -Degree fc -Random Area

Athens 9 9 0.206 0.11 0.994 0.54 0.09 0.031 0.25 0.14 0.38 0.08 0.11 0.11 0.44 0.89 0.63

Barcelona 29 42 0.456 0.03 0.987 0.37 0.17 0.006 0.1 0.06 0.26 0.26 0.07 0.03 0.62 0.97 0.81

Berlin 32 43 0.417 0.03 0.986 0.36 0.08 0.005 0.09 0.05 0.28 0.2 0.09 0.06 0.56 0.97 0.45

Boston 21 22 0.209 0.03 0.984 0.37 0.03 0.005 0.1 0.06 0.34 0.05 0.05 0.05 0.43 0.95 0.17

Brussels 9 9 0.206 0.11 0.994 0.55 0.09 0.034 0.25 0.14 0.38 0.08 0.11 0.11 0.44 0.89 0.64

Bucharest 11 12 0.287 0.1 0.995 0.52 0.06 0.036 0.22 0.12 0.35 0.12 0.09 0.09 0.45 0.91 0.63

BuenosAires 12 13 0.273 0.09 0.992 0.52 0.08 0.03 0.2 0.12 0.28 0.11 0.08 0.08 0.33 0.92 0.68

Cairo 6 5 0 0.17 0.995 0.62 0 0.073 0.33 0.18 0.45 0 0.17 0.17 0.33 0.83 0.79

Chicago 25 30 0.346 0.03 0.986 0.37 0.07 0.004 0.1 0.05 0.3 0.13 0.08 0.08 0.52 0.96 0.34

Delhi 8 7 0 0.12 0.993 0.57 0 0.044 0.25 0.14 0.37 0 0.13 0.13 0.25 0.88 0.54

HongKong 17 18 0.229 0.04 0.99 0.4 0.04 0.006 0.13 0.07 0.37 0.07 0.06 0.06 0.47 0.94 0.23

Lisbon 11 11 0.181 0.09 0.993 0.52 0 0.04 0.2 0.11 0.34 0.06 0.09 0.09 0.36 0.91 0.46

London 83 121 0.455 0.01 0.966 0.24 0.1 0.001 0.04 0.02 0.27 0.24 0.06 0.07 0.69 0.99 0.44

Lyon 10 10 0.192 0.11 0.994 0.53 0 0.048 0.22 0.12 0.36 0.07 0.1 0.1 0.4 0.9 0.53

Madrid 48 79 0.5 0.03 0.988 0.32 0.13 0.003 0.07 0.04 0.25 0.35 0.08 0.1 0.67 0.98 0.77

Marseille 6 5 0 0.17 0.995 0.62 0 0.073 0.33 0.18 0.45 0 0.17 0.17 0.33 0.83 0.79

MexicoCity 35 52 0.465 0.03 0.989 0.36 0.1 0.007 0.09 0.05 0.27 0.28 0.09 0.06 0.6 0.97 0.6

Milan 14 15 0.251 0.06 0.99 0.45 0.07 0.013 0.16 0.1 0.33 0.09 0.07 0.07 0.43 0.93 0.41

Montreal 10 10 0.192 0.11 0.994 0.53 0 0.048 0.22 0.12 0.36 0.07 0.1 0.1 0.4 0.9 0.53

Moscow 41 62 0.471 0.03 0.983 0.35 0.09 0.005 0.08 0.04 0.25 0.29 0.07 0.07 0.61 0.98 0.59

NewYork 77 109 0.443 0.01 0.971 0.25 0.05 0.001 0.04 0.02 0.28 0.22 0.06 0.04 0.68 0.99 0.29

Osaka 36 51 0.443 0.03 0.988 0.34 0.08 0.004 0.08 0.04 0.28 0.24 0.08 0.06 0.61 0.97 0.47

Paris 78 125 0.488 0.01 0.975 0.27 0.13 0.001 0.04 0.02 0.24 0.32 0.08 0.06 0.71 0.99 0.66

Prague 9 9 0.206 0.12 0.994 0.57 0.06 0.061 0.25 0.15 0.33 0.08 0.11 0.11 0.33 0.89 0.76

Rome 5 4 0 0.25 0.996 0.7 0 0.2 0.4 0.22 0.4 0 0.2 0.2 0.2 0.8 1.51

Seoul 71 111 0.48 0.01 0.98 0.26 0.09 0.001 0.04 0.02 0.27 0.3 0.08 0.07 0.76 0.99 0.46

Shanghai 22 28 0.389 0.04 0.989 0.41 0.05 0.01 0.12 0.07 0.28 0.18 0.09 0.09 0.55 0.95 0.45

Singapore 12 13 0.273 0.08 0.993 0.49 0.06 0.02 0.2 0.11 0.35 0.11 0.08 0.08 0.5 0.92 0.5

StPetersburg 14 16 0.317 0.07 0.992 0.49 0.07 0.026 0.18 0.1 0.31 0.13 0.07 0.07 0.43 0.93 0.56

Stockholm 20 19 0 0.02 0.981 0.34 0 0.003 0.1 0.05 0.4 0 0.05 0.05 0.4 0.95 0.05

Tokyo 62 107 0.512 0.02 0.985 0.31 0.15 0.002 0.06 0.03 0.23 0.39 0.08 0.06 0.71 0.98 0.88

Toronto 10 9 0 0.07 0.991 0.47 0 0.018 0.2 0.1 0.45 0 0.1 0.1 0.5 0.9 0.26

WashingtonDC 17 18 0.229 0.04 0.988 0.41 0.04 0.01 0.13 0.07 0.35 0.07 0.06 0.06 0.47 0.94 0.24

tion, and one single measure cannot fully capture the overall robustness of a metro

network.
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Figure 4.3: The topology of metro networks.

Studying critical thresholds, Figure 4.4 shows the robustness level of metro net-
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works, taking the Athens and London metro networks as examples, under random

failures and deliberate attacks. The corresponding critical thresholds f90% for tar-

geted attacks (column 14) and random failures (column 15), and fc for targeted at-

tacks (column 16) and random failures (column 17) are shown in Table 4.1. Columns

14 and 15 in Table 4.1 show similar behavior of f90% for targeted attacks and random

failures.

Similar to the effective graph conductance CG , Rome has the highest robust-

ness level with f90% = 0.20 both for targeted attacks and random failures. Cairo and

Marseille have the second highest robustness level with f90% = 0.17 for both targeted

attacks and random failures. In contrast, and similar to the robustness indicator

r T , an evaluation of the critical threshold fc under targeted attacks shows that Seoul

and Tokyo are the most robust networks. Seoul has a critical threshold fc = 0.76 in-

dicating that 76% of nodes need to be removed before the network collapses. The

critical threshold fc under random failures shows that London, NewYork, Paris and

Seoul are the most robust networks.
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Figure 4.4: Critical thresholds in metro networks under nodes removal.

4.4.2. METRIC CORRELATIONS

To assess the performance of theoretical metrics in capturing robustness, the

Pearson correlation ρ between the ten robustness metrics and the critical thresh-

olds in the metro networks is investigated. Moreover, the correlations within the ten

robustness metrics are studied.
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CORRELATION BETWEEN THEORETICAL AND NUMERICAL ROBUSTNESS METRICS

Table 4.2 presents the Pearson correlation between ten theoretical metrics and

critical thresholds. The correlations between CG and f90% for random failures and

targeted attacks are 0.89 and 0.91, respectively. The high positive correlation in-

dicates that CG effectively captures the 10% failure of the metro networks under

node removal. Moreover, E [ 1
H ] and µN−1 also characterize the 10% failure of metro

networks with performance slightly lower than CG . The reliability RelG positively,

but less strongly, correlates with critical thresholds f90%. However, the above men-

tioned metrics negatively correlate with fc (ρ(CG , fc ) =−0.82 for targeted attacks and

ρ(CG , fc ) =−0.97 under random failures).

Table 4.2: Pearson correlation ρ between theoretical robustness metrics and the critical thresholds.

f90%-Degree f90%-Random fc -Degree fc -Random

r T -0.41 -0.52 0.87 0.85

CG 0.89 0.91 -0.82 -0.97

RelG 0.54 0.59 -0.72 -0.75

E [ 1
H ] 0.76 0.81 -0.9 -0.96

CCG -0.41 -0.52 0.73 0.66

µN−1 0.86 0.85 -0.71 -0.85

E [D] 0.83 0.87 -0.87 -0.99

λ
∗

0.81 0.85 -0.88 -0.98

1/κ 0.56 0.64 -0.74 -0.83

MG -0.43 -0.53 0.89 0.8

The high correlation between r T and fc shows that r T effectively character-

izes when the network collapses under node removal. One explanation for the high

correlation between r T and fc is that the robustness indicator r T and the critical

threshold fc both characterize the number of alternative paths. Besides r T , the cor-

relations of metrics MG and CCG to fc suggest that these metrics have comparable

performance in capturing when the network collapses. Yet, the correlations of r T ,

MG and CCG to f90% are negative.

Metrics that positively correlate with f90% and those that positively correlate

with fc therefore capture different aspects of metro networks as hinted above, and
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both are important for robustness. Redundancy and contradiction between theo-

retical metrics are observed when capturing robustness of metros under node re-

moval. Redundancy means that more than one metric positively correlates with

critical thresholds and contradiction means that one specific metric positively cor-

relates to f90% while negatively correlates to fc and vice versa.

CORRELATION WITHIN THEORETICAL ROBUSTNESS METRICS

To analyse the redundancy and contradiction of metrics, the Pearson correla-

tion ρ between all the theoretical robustness metrics is investigated in Figure 4.5. In

Figure 4.5, CG , E [ 1
H ],µN−1 and RelG that effectively capture the critical threshold f90%

show a higher mutual correlation (e.g. ρ
(
CG ,E [ 1

H ]
)= 0.95). Similarly, for metrics r T ,

MG and CCG that capture the critical threshold fc , a higher mutual correlation result

is observed (e.g. ρ
(
r T ,CCG

)
= 0.84).
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Figure 4.5: Pearson correlation ρ between theoretical robustness metrics.

As shown in Figure 4.5, these robustness metrics have a higher mutual corre-

lation which indicates redundancy in capturing the robustness. Correspondingly,

a representative set of robustness metrics by including only one metric from the

mutually strongly depend set of metrics tends to sufficiently and effectively char-

acterize the robustness [115]. For example, when quantifying the robustness f90%,

including CG in the representative set is more sufficient and effective than including

CG , µN−1 and E [ 1
H ].
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In contrast to the positive and high correlations between certain metrics, the

negative correlations in Figure 4.5 (e.g. −0.73 between r T and CG ) might be prob-

lematic. In particular, when a higher f90% and fc are desired in the design of a metro,

optimizing, for instance, both the robustness metrics r T and CG is beyond reach.

Because maximizing r T minimizes CG and vice versa. This is therefore a major is-

sue, which is not atypical of any robustness study. Indeed, while it is easy to develop

design recommendations that can make a system more robust to certain conditions,

it is much more challenging to develop recommendations that can make a system

more robust overall. This point emphasizes the need to use multiple criteria when

assessing the design of metro networks. It also points to the fact that robustness

(and resilience more generally) are terms that are difficult to define and that can-

not be solved with a simple objective function within an operation research context

[127]. Instead, much work remains to be done to successfully come up with clear

guidelines to transit planners, and simulation and network science may play an im-

portant part towards that end.

A possible approach to deal with this issue is suggested by Van Mieghem et al.

[128], who defined a R-value, which is a weighted sum of all the considered theoret-

ical metrics, i.e., R-value =∑M
i=1 wi mi , where wi is the weight for each metric mi and

M is the number of metrics taken into account. In the next subsection, we discuss

another approach, which is based upon radar diagrams that are commonly used in

urban planning and geography.

4.4.3. OVERALL ROBUSTNESS

To combine the ten calculated theoretical metrics that capture different as-

pects of robustness, we choose to draw radar diagrams for each metro. A radar

diagram (also called star or spider diagram) is plot with as many axes as there are

metrics, and the overall performance is calculated by measuring the area of the

polygon formed. This type of diagram is especially useful when it is not possible

to assign weights to individual metrics. First, for each set of metrics, each individual

value xi is being rescaled to a value in the interval [0,1] using the rescaling formula:

(xi −xmi n)/(xmax −xmi n). In the radar diagram, the robustness metrics are placed in

a clockwise order. Metrics that are positively correlated with the critical threshold

f90% are located on one side and metrics that are negatively correlated to the critical
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threshold f90% are placed on the other side.

Figure 4.6 shows the radar plots for the 33 metro networks6. Moreover, Table

4.1 (last column) contains the areas of the polygons calculated. Overall, we can

see that Rome and Tokyo are the top two of the most robust networks. Tokyo has

many transfer stations in the periphery of the network that both enables it to offer

many alternative paths and keep a relatively low resistance, hence ensuring a ro-

bust system. At the other hand of the spectrum, Stockholm, Boston and Hong Kong

(the three least robust metros) have extensive networks with few transfer stations

that inherently affect their robustness. Even Washington DC does not perform well

because the transfer stations tend to be located in the city center, and it therefore

achieves poorly in terms of “resistance" (i.e., long many stations without transfer

from the terminals in the suburbs to the city center).

Most other networks tend to perform somewhat in between. From Figure 4.6,

networks with polygons that are large in the bottom right corner tend to have many

alternative paths. In contrast, metros with polygons that are large in the left-hand

side tend to perform well in terms of resistance (as is the case for Rome despite its

simple topology). Mexico City and Berlin deserve special attention since they seem

to perform well in nearly all dimensions. Berlin has a particularly dense U-Bahn

system, and Mexico City is known to have L-shaped lines to favor transferring [129].

From this work, clear recommendations can be set to promote a robust metro:

• Transfer stations are desirable to offer alternative paths. However, although

large hubs are desirable to facilitate transferring, smaller hubs are as desirable

to offer more options to transfer, thus offering more alternative paths (more-

over they are less vulnerable to targeted attacks than large hubs).

• Long line sections are undesirable since a failure on one station will affect

many passengers, likely resulting in the need for an emergency bus service

to substitute failed stations. Transfer stations can therefore be located strate-

gically to offer alternative paths while ensuring that line segments without

transfer stations are kept as short as possible.

6The degree diversity κ instead of 1
κ

is used in the radar diagram for the simplicity of computing the area.
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Figure 4.6: Radar diagrams for the 33 Metro Networks
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4.5. CONCLUSION

The main objective of this work was to investigate the robustness of metro net-

works by analyzing several robustness metrics. In particular, we study ten theoret-

ical robustness metrics and four numerical metrics. For the latter, we investigated

two critical thresholds f , when 90% of the network is still remaining, f90%, and when

the complete network is disintegrated, fc (both under random failure and targeted

attack).

Overall, we find that the ten theoretical robustness metrics capture two dis-

tinct aspects of the robustness of metro networks. A first aspect deals with the num-

ber of alternative paths, suggesting that more alternative paths is more desirable, as

captured in r T . In contrast, the second aspect deals with “resistance", suggesting

that longer lines with no shorter alternative paths perform poorly, as captured in

CG . Essentially, as metro networks are expanded, effort should be put into creating

transfer stations, both in city centers and peripheral areas to ensure that not only

many alternative paths are created to reach a destination, but also that the average

number of stations between two transfers is kept to a minimum. Overall we found

that Rome benefits from shorter transferring paths and Tokyo are able to accomplish

more transferring options.

Based on these observations and to fully capture these two aspects and assess

the robustness of metro networks, we plotted the ten theoretical measures (stan-

dardized) on radar plots. This method offers both an equal representation of the

variables at play as well as aesthetically-pleasing visual aid to help planners in their

task to design robust metro networks.





PART II: FUNDAMENTALS OF

GRAPH THEORY





5
DEGREE DISTRIBUTION AND

ASSORTATIVITY IN LINE GRAPHS

5.1. INTRODUCTION

Infrastructures, such as the Internet, electric power grids and transportation

networks, are crucial to modern societies. Most researches focus on the robustness

of such networks to node failures [22, 130]. Specifically, the effect of node failures on

the robustness of networks is studied by percolation theory both in single networks

[22] and interdependent networks that interact with each other [35]. However, links

frequently fail in various real-world networks, such as the failures of transmission

lines in electrical power networks, path congestions in transportation networks. The

concept of a line graph, that transforms links of the original graph into nodes in the

line graph, can be used to understand the influence of link failures on infrastructure

networks.

An undirected graph with N nodes and L links can be denoted as G(N ,L). The

line graph l (G) of a graph G is a graph in which every node in l (G) corresponds to a

link in G and two nodes in l (G) are adjacent if and only if the corresponding links in

G have a node in common [42]. The graph G is called the original graph of l (G).

Line graphs are applied in various complex networks. Krawczyk et al . [131]

75
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propose the line graph as a model of social networks that are constructed on groups

such as families, communities and school classes. Line graphs can also represent

protein interaction networks where each node represents an interaction between

two proteins and each link represents pairs of interaction connected by a common

protein [132]. By the line graph transformation, methodologies for nodes can be

extended to solve problems related to links in a graph. For instance, the link chro-

matic number of a graph can be computed from the node chromatic number of its

line graph [133]. Evan et al. [134] use algorithms that produce a node partition in the

line graph to achieve a link partition in order to uncover overlapping communities

of a network. Wierman et al. [135] improve the bond (link) percolation threshold of

a graph by investigating site (node) percolation in its line graph.

Previous studies focus on various mathematical properties of line graphs. Whit-

ney’s Theorem [136] states that, if line graphs of two connected graphs G1 and G2

are isomorphic, the graphs G1 and G2 are isomorphic unless one is the complete

graph K3 and the other one is the star K1,3. Krausz [137], Van Rooij and Wilf [138]

have investigated the conditions for a graph to be a line graph. Van Rooij and Wilf

[138] have studied the properties of graphs obtained by iterative usage of the line

graph transformation, e.g., the line graph l (G) of a graph G , the line graph l (l (G))

of the line graph l (G), etc. Furthermore, Harary [139] has shown that for connected

graphs that are not path graphs, all sufficiently high numbers of iterations of the

line graph transformation produce Hamiltonian graphs1. The generation of a ran-

dom line graph is studied in [140]. An original graph can be reconstructed [141–143]

from its line graph with a computational complexity that is linear in the number of

nodes N .

In this chapter, we analytically study the degree distribution and the assorta-

tivity of line graphs and the relation to the degree distribution and the assortativity

of their original networks. We show that the degree distribution in the line graph of

the Erdős-Rényi graph follows the same pattern as the degree distribution in Erdős-

Rényi. However, the line graph of an Erdős-Rényi graph is not an Erdős-Rényi graph.

Additionally, we investigate the assortativity of line graphs and show that the assor-

tativity is not linearly related to the assortativity in the original graphs. The line

1A Hamiltonian graph is a graph possessing a Hamiltonian cycle which is a closed path through a graph that visits

each node exactly once.
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graphs are assortative in most cases, yet line graphs are not always assortative. We

investigate graphs with negative assortativity in their line graphs. The remainder of

this chapter is organized as follows. The degree distribution of line graphs is pre-

sented in Section 5.2. Section 5.3 provides the assortativity of line graphs. We con-

clude in Section 5.4.

5.2. DEGREE DISTRIBUTION

Random graphs are developed as models of real-world networks of several ap-

plications, such as peer-to-peer networks, the Internet and the World Wide Web.

The degree distribution of Erdős-Rényi random graphs and scale free graphs are rec-

ognized by the binomial distribution and the power law distribution, respectively.

This section studies the degree distribution of the line graphs of Erdős-Rényi and

scale free graphs.

Let G(N ,L) be an undirected graph with N nodes and L links. The adjacency

matrix A of a graph G is an N ×N symmetric matrix with elements ai j that are either

1 or 0 depending on whether there is a link between nodes i and j or not. The degree

di of a node i is defined as di = ∑N
k=1 ai k . The degree vector d = (d1 d2 · · · dN ) has

a vector presentation as Au = d , where u = (1,1, · · · ,1) is the all-one vector. The

adjacency matrix [42] of the line graph l (G) is Al (G) = RT R −2I , where R is an N ×L

unsigned incidence matrix with Ri l = R j l = 1 if there is a link l between nodes i

and j , elsewhere 0 and I is the identity matrix. The degree vector dl (G) of the line

graph l (G) is dl (G) = Al (G)uL×1. For an arbitrary node l in the line graph l (G), which

corresponds to a link l connecting nodes i and j in graph G (as shown in Figure 5.1),

the degree dl of the node l follows

dl = di +d j −2 (5.1)

The random variable D i denotes the degree of a randomly chosen node i in

Erdős-Rényi graphs Gp (N ) and (5.1) shows that the degree D l of a link l with end

node i in the corresponding line graph is D l = D i +D j −2.

Theorem 4. The degree distribution of the line graph l (Gp (N )) of an Erdős-Rényi
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l(G)

l
i j

G

l

Figure 5.1: Node l in line Graph l (G) corresponds to the link l in G .

graph Gp (N ) follows a binomial distribution

Pr[D l = k] =
(

2N −4

k

)
pk (1−p)(2N−4−k) (5.2)

with average degree E [D l (Gp (N ))] = (2N −4)p.

Proof. Applying (5.1), the degree distribution D l of a node l in a line graph is

Pr[D l = k] = Pr[D i +D j −2 = k]

Using the law of total probability [33] yields

Pr[D l = k] =
k∑

m=1

Pr[D j = k −m +2 | D i = m]Pr[D i = m]

Since the random variables D i and D j in Gp (N ) are independent, we have

Pr[D l = k] =
k∑

m=1

Pr[D j = k −m +2]Pr[D i = m] (5.3)

An arbitrarily chosen (i.e. uniformly at random) node l in the line graph l (G)

corresponds to an arbitrarily chosen link in G . The degree distribution [33] of the

end node i of an arbitrarily chosen link in G is

Pr[D i = m] = mPr[D = m]

E [D]
(5.4)

where Pr[D = m] is the degree distribution of an arbitrarily chosen node in graph

G and E [D] is the average degree of an arbitrarily chosen node. In an Erdős-Rényi

graph, we have Pr[D = m] = (N−1
m

)
pm(1−p)N−1−m and E [D] = (N −1)p. By substitut-

ing (5.4) into (5.3) and applying the binomial distribution of random variables D i
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and D j , we have

Pr[D l = k] =
k∑

m=1

(k −m +2)Pr[D = k −m +2]

E [D]

mPr[D = m]

E [D]

=
k∑

m=1

(k −m +2)
( N−1

k−m−2

)
pk−m+2(1−p)N−1−(k−m+2)

(N −1)p

m
(N−1

m

)
pm(1−p)N−1−m

(N −1)p

= pk (1−p)2N−4−k
k∑

m=0

(
N −2

k −m

)(
N −2

m

)

Using Vandermonde’s identity
(m+n

r

)= r∑
k=0

(m
k

)( n
r−k

)
, we arrive at (5.2).

Theorem 4 illustrates that the degree distribution of the line graph l (G) of an

Erdős-Rényi graph G follows a binomial distribution with average degree E [D l (G)] =
(2N −4)p. Compared to the average degree E [D] = (N −1)p, the average degree of

the line graph of the Erdős-Rényi graph is two times the average degree E [D] of the

Erdős-Rényi graph minus 2p.

Figure 5.2 shows the degree distribution of the line graphs of Erdős-Rényi graphs

GN (p) for N = 100, 200 and p = 2pc (pc ≈ ln N
N ), where 105 Erdős-Rényi graphs are

generated. In Figures 5.2(a) and (b), the degree distributions of Erdős-Rényi graphs

(red circle) follow a binomial distribution. The degree distribution of the corre-

sponding line graph (black square) is fitted by a binomial distribution B(2N −4, p).

The simulation results agree with Theorem 4. Moreover, the average degree E [D l (G)]

of the line graph is approximately two times the average degree E [D] of the graph G .

Since the degree distribution of the line graphs of Erdős-Rényi graphs follows

a binomial distribution, we pose the question: Is the line graph of an Erdős-Rényi

graph also an Erdős-Rényi graph? In order to answer this question, we investigate

the eigenvalue distribution of the line graph. Figure 5.3 shows the eigenvalue distri-

bution of Erdős-Rényi graphs and their line graphs. As shown in [42], the eigenvalue

distribution of Erdős-Rényi graphs follows a semicircle distribution. The eigenvalue

distribution of the line graphs of Erdős-Rényi graphs follows a different distribution

than a semicircle distribution. Since the spectrum of a graph can be regarded as the

unique fingerprint of that graph to a good approximation [144], we conclude that

the line graphs of Erdős-Rényi graphs are not Erdős-Rényi graphs.

Generating functions are powerful to study the degree distribution of networks
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Figure 5.2: The degree distribution of Erdős-Rényi graphs and their corresponding line graphs.
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Figure 5.3: The eigenvalue distribution of Erdős-Rényi graphs and their corresponding line graphs. The simulations

are performed on 105 instances.

[33]. Assuming the degree independence of nodes in graph G , Theorem 5 shows the

generating function for the line graph l (G) of an arbitrary graph.

Theorem 5. Assuming that the degrees of nodes in a graph G are independent, the

generating function for the degree D l in the line graph l (G) follows

ϕDl
(z) =

(
E [zDl+ ]

z

)2

(5.5)

where D l+ is the degree of the end node of an arbitrarily chosen link l in G.

Proof. The probability generating function for the degree D l of a node l in the line
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graph is

ϕDl
(z) = E [zDl ]

Using (5.1), we have

ϕDl
(z) = E [zDi+D j −2]

Since the condition in the theorem assumes that the random variables D i and D j

are independent and identically distributed as D l+ , we establish Theorem 5.

We apply the generating function (5.5) in the line graph whose original graph

has a power law degree distribution with the exponent γ, and has independent

nodal degrees. In Appendix B, we deduce that, with γG = 3 in the original graph,

Pr[D l = k] ∝
( 1

k +2

)γl (G)

(5.6)

where γl (G) = 2. Equation (5.6) illustrates that, when we assume that the degrees

in the original graph are independent, the degree distribution in the line graph fol-

lows a power law degree distribution. However, due to the preferential attachment

in scale-free graphs and 2L = ∑N
i=1 di , the node degrees are dependent rather than

independent. Correspondingly, a gap is observed in Figure 5.4 between the approx-

imation equation (5.6) (blue circle) and the simulation result (red square).
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Figure 5.4: The degree distribution in the line graph of the Barabási-Albert graph both from simulations and the

approximation equation (5.6). Both the x-axis and the y-axis are in log scale. The simulations are performed on 105

Barabási-Albert graphs with N = 500 and average degree 4. The cut-off in the simulation is due to the finite size of the

Barabási-Albert graph.
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The dependency assumption in (5.5) can be assessed by the total variation dis-

tance dT V (X ,Y ), defined as [33]:

dT V (X ,Y ) =
∞∑

k=−∞

∣∣Pr[X = k]−Pr[Y = k]
∣∣

where Pr[X = k] denotes the probability density function for (5.6) and Pr[Y = k] for

simulations.

Figure 5.5 shows the total variation distance when the number of nodes N in

Barabási-Albert graphs increases from 500 to 1000 with average degree 4. For each

size of the original graph, 105 graphs are generated. Figure 5.5 demonstrates that

dT V (X ,Y ) decreases with the number of nodes N , starting from 0.667 when N = 500

to 0.640 when N = 1000. Accordingly, the accuracy of the approximation equation

(5.6) increases with the size of the original graph.
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Figure 5.5: The total variation distance dT V (X ,Y ) when the original graph has different number of nodes from 500 to

1000.

5.3. ASSORTATIVITY

Networks with a same degree distribution may have significantly different topo-

logical properties [145]. Networks, where nodes preferentially connect to nodes

with (dis)similar property, are called (dis)assortative [146]. An overview of the as-

sortativity in complex networks is given in [147]. Assortativity is quantified by the

linear degree correlation coefficient defined as

ρDl (G)
= E [D l+D l− ]−E [D l+ ]E [D l− ]

σDl+σDl−
(5.7)
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where E [X ] and σX are the mean and standard deviation of the random variable X .

The definition (5.7) has been transformed into a graph formulation in [145]. In this

section, we investigate the assortativity ρDl (G)
of the line graph l (G) and its relation

to the assortativity of the graph G .

5.3.1. ASSORTATIVITY IN THE LINE GRAPH

In this subsection, we derive a formula for the assortativity in a general line

graph, represented in Theorem 6. The relation between the assortativity in the line

graph and the assortativity in the original graph is shown in Corollary 1.

Theorem 6. The assortativity in the line graph l (G) of a general graph G is

ρDl (G)
= 1− d T A∆d −N4

3d T A∆d +∑N
k=1 d 4

k −2
∑N

k=1 d 3
k −2N3 − (N3+∑N

k=1 d 3
k−2N2)2

N2−N1

where d is the degree vector, ∆ = di ag (di ) is the diagonal matrix with the nodal de-

grees in G and Nk = uT Ak u is the total number of walks of length k.

The proof for Theorem 6 is given in Appendix B.2. In order to investigate the

relation between the assortativity of the line graph l (G) and the assortativity of the

graph G , Corollary 1 rephrases the assortativity ρDl (G)
of the line graph l (G) in terms

of the assortativity ρD of the graph G .

Corollary 1. The assortativity ρDl (G)
of the line graph can be written in terms of the

assortativity ρD of the graph G as

ρDl (G)
= 1− (d T A∆d −N4)µ2

(N2 −N1)

(
−4(1+ρD )2

(
1

N1

∑N
i=1 d 3

i −
(

N2

N1

)2
)2

+2µ2(1+ρD )

(
1

N1

∑N
i=1 d 3

i −
(

N2

N1

)2
)
+µu3

)
where µ= E [D l (G)] and u3 = E [(D l (G) −E [D l (G)])3].

The proof for Corollary 1 is given in Appendix B.3. Corollary 1 indicates that

the assortativity of the line graph is not linearly related to the assortativity of the

original graph. For the Erdős-Rényi graphs, a relatively precise relation between the

assortativity of the line graph and the one of the original graph is given in Theorem

7.

Theorem 7. The difference between the assortativity ρDl (G)
of the line graph of an

Erdős-Rényi graph GN (p) and the assortativity ρDG
of GN (p) converges to 0.5 in the

limit of large graph size N .
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Proof. Based on the definition in equation (5.7) and denoting l+ = i ∼ c and l− = c ∼
j , we have

ρDl (G)
= E [(D i +Dc )(D j +Dc )]−E [D i +Dc ]E [D j +Dc ]

σDi+Dc
σD j +Dc

= E [D i D j ]−E [D i ]E [D j ]+E [D i Dc ]−E [D i ]E [Dc ]+E [D j Dc ]−E [D j ]E [Dc ]+E [D2
c ]−E 2[Dc ]

V ar [D i ]+V ar [Dc ]+2E [(D i −E [D i ])(Dc −E [Dc ])]

In the connected Erdős-Rényi random graph in the limit of large graph size N , the

assortativity ρDG
converges to zero [42] and we have

E [D i D j ]−E [D i ]E [D j ] ≈ 0

Similarly, E [D i Dc ]−E [D i ]E [Dc ] ≈ 0 and E [D j Dc ]−E [D j ]E [Dc ] ≈ 0. Combining with

E [(D i −E [D i ])(Dc −E [Dc ])] = E [D i Dc ]−E [D i ]E [Dc ] ≈ 0, we arrive at

ρDl (G)
≈ E [D2

c ]−E 2[Dc ]

2Var[Dc ]
= 0.5

In order to verify Theorem 7, Figure 5.6 shows the assortativity of (a) Erdős-

Rényi graphs, (b) Barabási-Albert graphs, and the assortativity of their correspond-

ing line graphs. In Figure 5.6(a), the assortativity of Gp (N ) converges to 0 with the

increase of the graph size N . Correspondingly, the assortativity in the line graph of

Gp (N ) converges to 0.5 which confirms Theorem 7. Based on the assortativity ρD of

a connected Erdős-Rényi graph Gp (N ), which is zero [42, 146] in the limit of large

graph size, we again verify that the line graph of an Erdős-Rényi graph is not an

Erdős-Rényi graph. Figure 5.6(b) illustrates the assortativity ρDl (G)
of the line graph

of the Barabási-Albert graph is also positive and increases with the graph size.

Youssef et al. [148] show that the assortativity is related to the clustering co-

efficient2 CG . Specifically, assortative graphs tend to have a higher number NG of

triangles and thus a higher clustering coefficient compared to disassortative graphs.

Figure 5.6 shows that the assortative line graphs of both Erdős-Rényi and Barabási-

Albert graph have a higher clustering coefficient (above 0.5). The results agree with

the findings in [148].

2The clustering coefficient CG = 3NG
N2

is defined as three times the number NG of triangles divided by the number N2

of connected triples.
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(a) Erdős-Rényi graph.
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(b) Barabási-Albert graph.

Figure 5.6: Assortativity ρD and clustering coefficient CG of the (a) Erdős-Rényi graph Gp (N ) with p = 2pc , (b)

Barabási-Albert graph with the average degree E [D] = 4 and the corresponding line graph l (G).

Table 5.1: Assortativity of real-world networks and their corresponding line graphs.

Networks Nodes Links ρD ρDl (G)

Co-authorship Network [48] 379 914 −0.0819 0.6899

US airports [149] 500 2980 −0.2679 0.3438

Dutch Soccer [47] 685 10310 −0.0634 0.5170

Citation [150] 2678 10368 −0.0352 0.8127

Power Grid [17] 4941 6594 −0.0035 0.7007

Table 5.1 shows the assortativity of real-world networks and their correspond-

ing line graphs. As shown in the table, the line graphs of all the listed networks show

assortative mixing even though the original networks show dissortative mixing.

5.3.2. NEGATIVE ASSORTATIVITY IN LINE GRAPHS

Although the assortativity of a line graph is predominantly positive, we cannot

conclude that the assortativity in any line graph is positive. This subsection presents

graphs, whose corresponding line graphs possesses a negative assortativity.

THE LINE GRAPH OF A PATH GRAPH

A path graph PN is a tree with two nodes of degree 1, and the other N −2 nodes

of degree 2. The line graph l (P ) of a path graph PN is still a path graph but with N −1

nodes. Observation 1 demonstrates that the assortativity in the line graph of a path
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graph is always negative.

Observation 1. The assortativity of the line graph l (P ) of a path PN is

ρDl (P )
=− 1

N −3

where N is the number of nodes in the original path graph.

Proof. The reformulation [42] of the assortativity can be written as

ρD = 1−
∑

i∼ j (di −d j )2∑N−1
i=1 (di )3 − 1

2L (
∑N−1

i=1 d 2
i )2

(5.8)

Since the line graph of a path with N nodes is a path graph with N −1 nodes, where

2 nodes have node degree 1 and the other (N −1)−2 nodes have degree 2, we have

that
N−1∑
i=1

d k
i = 2×1k + ((N −1)−2)×2k (5.9)

and ∑
i∼ j

(di −d j )2 = 2×12 (5.10)

Applying equations (5.9) and (5.10) into (5.8), we establish the Observation 1.

The negative assortativity ρDl (P )
of the line graph l (P ) of a path graph is an ex-

ception to the positive assortativity of the line graphs of the Erdős-Rényi graph,

Barabási-Albert graph and real-world networks given in Table 5.1. Moreover, the

assortativity of the line graph l (P ) is a fingerprint for the line graph l (P ) to be a path

graph.

THE LINE GRAPH OF A PATH-LIKE GRAPH

Let P m1, m2, ··· , mt
n1, n2, ··· , nt , p be a path of p nodes (1 ∼ 2 ∼ ·· · ∼ p) with pendant paths of ni

links at nodes mi , following the definition in [151]. We define the graph DN through

DN = P 2
1, N−1 as drawn in Fig. 5.7. Observation 2 shows that the assortativity in the

corresponding line graph l (DN ) is always negative.

Observation 2. The assortativity of the line graph l (DN ) of the graph DN in Figure

5.7 is

ρDl (DN )
=− 1

2N −3

where N is the number of nodes in the graph DN .
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Figure 5.7: The graph DN whose line graph has the negative assortativity.

Proof. Since 1 node has node degree 1, 1 node has node degree 3 and the other

(N −1)−2 nodes have degree 2, we have that

N−1∑
i=1

d k
i = 1×1k +1×3k + ((N −1)−2)×2k (5.11)

and ∑
i∼ j

(di −d j )2 = 1×12 +3×12 (5.12)

Applying equations (5.11) and (5.12) into (5.8), we establish the Observation 2.

We define the graph EN through EN = P 3
1, N−1 as drawn in Fig. 5.8. The graph

EN is obtained from DN by moving the pendant path from node 2 to node 3. The

assortativity of the line graph l (EN ) of the graph EN is

ρDl (EN )
=− 1

N −2

For the graphs P mi

1, N−1 with one pendant path of 1 link at node mi (i = 2, 3, · · · , N−2),

�� �����

Figure 5.8: The graph EN whose line graph has the negative assortativity.

there are N −3 positions to attach the pendant path. Since the position for adding

the pendant path is symmetric at dN−1
2 e. We only consider i from 2 to dN−1

2 e. Among

all the graphs P mi

1, N−1 where i = 2, 3, · · · , dN−1
2 e), the line graphs of the graph DN and

EN always have negative assortativity. The line graph of the graph P mi

1, N−1, where i =
4, 5, · · · , dN−1

2 e, has negative assortativity when the size N is small and has positive

assortativity as N increases.

The graph D̃N is defined through D̃N = P 2, N−3
1, 1, N−2 as drawn in Fig. 5.9. Observa-

tion 3 shows that the assortativity in the corresponding line graph l (D̃N ) is always

negative.
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Figure 5.9: The graph D̃N whose line graph has the negative assortativity.

Observation 3. The assortativity of the line graph l (D̃N ) of the graph D̃N in Figure

5.9 is

ρDl (D̃N )
=− 3

N −3

where N is the number of nodes in D̃N .

Proof. Since 2 nodes have node degree 3 and the other (N −1)−2 nodes have degree

2, we have that
N−1∑
i=1

d k
i = 2×3k + ((N −1)−2)×2k (5.13)

and ∑
i∼ j

(di −d j )2 = 6×12 (5.14)

Applying equations (5.13) and (5.14) into (5.8), we establish the Observation 3.

The graphs ẼN and F̃N are defined through ẼN = P 2, N−4
1, 1, N−2 and F̃N = P 3, N−4

1, 1, N−2 as

drawn in Fig. 5.10. The assortativity for the line graph of ẼN is

ρDl (ẼN )
=− 16

5N −16

The assortativity for the line graph of F̃N is

ρDl (F̃N )
=− 25

7N −25

��� ����� �

��� ����� )

Figure 5.10: The graphs ẼN and F̃N whose line graphs have the negative assortativity.
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Graphs D̃N , ẼN , F̃N are the graphs whose line graphs always have the negative

assortativity. For the remaining graphs P
mi , m j

1, 1, N−2, i 6= j , their line graphs have nega-

tive assortativity when N is small. As N increases, the assortativity of the line graphs

is positive.

LINE GRAPH OF NON-TREES

Both the path graphs and path-like graphs are trees. In this subsection, we

study whether there exist non-trees whose line graphs have negative assortativity.

We start by studying the non-trees l (DN ), l (EN ) and l (D̃N ), l (ẼN ), l (F̃N ) in Fig-

ures 5.7-5.10. The non-tree graphs consist of cycles of 3 nodes connected by disjoint

paths. The line graph of the non-tree l (DN ) is denoted as l (l (DN )), which is also the

line graph of the line graph of DN . By simulations we determine the non-tree graphs

whose line graphs have negative assortativity. The results are given in Figures 5.11

and 5.12.

Figure 5.11: Non-tree graphs l (DN ), l (EN ) whose line graphs l (l (DN )), l (l (EN )) have negative assortativity.

(a) l (D̃N )

(b) l (ẼN )

(c) l (F̃N )

Figure 5.12: Non-tree graphs l (D̃N ), l (ẼN ), l (F̃N ) whose line graphs l (l (D̃N )), l (l (ẼN )), l (l (F̃N )) have negative assorta-

tivity.

As shown in Figures 5.11 and 5.12, for the line graphs of the non-trees to have

negative assortativity, there can be either 1 or 2 cycles in the non-trees. In Figure

5.11, the line graph l (l (EN )) of l (EN ) has 1 cycle connected by two paths and the

maximal path length is 2. In Figure 5.12, two cycles are connected by maximal 3
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paths and the maximal path length is 4 in the line graph l (l (F̃N )). Moreover, for a

line graph to have negative assortativity, the size of the original graph is in general

small, less than 14 nodes in our simulations.

5.4. CHAPTER CONCLUSION

Topological characteristics of links influence the dynamical processes executed

on complex networks triggered by links. The line graph, which transforms links

from a graph to nodes in its line graph, generalizes the topological properties from

nodes to links. This chapter investigates the degree distribution and the assorta-

tivity of line graphs. The degree distribution of the line graph of an Erdős-Rényi

random graph follows the same pattern of the degree distribution as the original

graph. We derive a formula for the assortativity of the line graph. We indicate that

the assortativity of the line graph is not linearly related to the assortativity of the

original graph. Moreover, the assortativity is positive for the line graphs of Erdős-

Rényi graphs, Barabási-Albert graphs and most real-world networks. In contrast,

certain types of trees, path and path-like graphs, have negative assortativity in their

line graphs. Furthermore, non-trees consisting of cycles and paths can also have

negative assortativity in their line graphs.



6
ORTHOGONAL EIGENVECTOR

MATRIX OF THE LAPLACIAN

6.1. INTRODUCTION

Networks abound more than ever before. While many graph metrics have been

proposed, that are reviewed e.g. in [152–154], the eigenvector structure of graph re-

lated matrices is hardly understood. A graph on N nodes can be represented by an

N ×N adjacency matrix A with ai j = 1 if the pair of nodes is connected, otherwise

ai j = 0. Another graph related matrix is the Laplacian matrix Q = ∆− A, where ∆ =
diag(di ) is the N ×N diagonal degree matrix and the degree of node i is di =∑N

j=1 ai j

. When confining to an unweighted and undirected graph, the Laplacian matrix Q is

symmetric and possesses the eigenvalue decomposition Q = Z M Z T . The equality

implies that all information at the left-hand side, that we call the topology domain, is

also contained in the right-hand side, that we call the spectral domain. Most insight

so far in graphs is gained in the topology domain that allows a straightforward draw-

ing of a graph: nodes are interconnected by links and display a typical graph repre-

sentation, attractive and understandable to humans. The spectral domain, consist-

ing of the set {z1, z2, . . . , zN }of eigenvectors of the Laplacian Q and the corresponding

set of eigenvalues in M , is less intuitive for humans. However, as mentioned in the

91
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preface of [42], the spectral decomposition Q = Z M Z T (or A = XΛX T ) represents a

transformation of a similar nature as a Fourier transform, which suggests that some

information is better or more adequately accessible in one domain and other infor-

mation in the other domain.

Most spectral results are obtained for eigenvalues, and in particular the largest

eigenvalue or spectral radius [155] for the adjacency matrix and the second smallest

eigenvalue or the algebraic connectivity [43] for the Laplacian matrix. The spectral

radius plays an important role in characterizing the dynamical process on networks,

such as SIS (susceptible-infected-susceptible) epidemic spread [27]. The algebraic

connectivity [43] plays an important role in bounding the node and link connec-

tivity, i.e. the number of nodes and links that have to be removed to disconnect

the graph. Correspondingly, the algebraic connectivity is considered as a robust-

ness measure against node/link failures [156]. The sum of the inverse Laplacian

eigenvalues, called the effective graph resistance [72], can be used to improve the

robustness of complex networks [77].

While the number of mathematical results on other eigenvalues is already con-

siderably less, results on eigenvectors are relatively scarce [157, 158]. Most results on

eigenvectors focus on the principle eigenvector [53], the eigenvector corresponding

to the largest eigenvalue of the adjacency matrix of a graph, or the Fiedler vector

[43, 159], the eigenvector belonging to the second smallest eigenvalue of the Lapla-

cian matrix.

Here, we approach the challenge of unravelling the “hidden information” in

the orthogonal eigenvector matrix Z of the Laplacian matrix by extensive simula-

tions, because the purely mathematical discovery of nice properties of the matrix

Z seems of a daunting difficulty. Since many properties of the Erdős-Rényi (ER)

graphs Gp (N ) are known [160], we concentrate here only on this class of graphs.

An ER graph Gp (N ) on N nodes and with link density p is generated by randomly

connecting a pair of nodes with a probability p, independently of any other pair. Al-

though ER graphs are generally not good representatives of real-world networks, we

believe that, if we cannot understand this simple class of random graphs, the more

realistic (but more complex) classes of graphs are certainly beyond reach. Thus,

here, we make a first step to learn about the properties of orthogonal eigenvector

matrix Z of the Laplacian by confining to ER graphs. An extra bonus, apart from a
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computational advantage, is that relatively small sizes N in the class Gp (N ), even

below N = 100, already give a good reflection of the general properties for any N .

The chapter is organized as follows. Section 6.2 presents the definition and

the orthogonality properties of the eigenvector matrix of the Laplacian. Section 6.3

illustrates the properties of the eigenvector matrix. The dual fundamental weight

vector is introduced and the distribution of the dual fundamental weight is studied

in Section 6.4. Section 6.5 concludes the chapter.

6.2. EIGENSTRUCTURE OF THE LAPLACIAN Q OF A GRAPH

As in [42], we denote by zk the eigenvector of the N × N symmetric matrix Q

belonging to the eigenvalue µk , normalized so that zT
k zk = 1. The eigenvalues of

Q = QT are real and can be ordered as µ1 ≥ µ2 ≥ . . . ≥ µN . The all-one vector u =
(1,1, . . . ,1) is the eigenvector belonging to µN = 0, since the row sum is Qu = 0 for

any Laplacian matrix. Let Z be the orthogonal matrix with the eigenvectors of Q in

the columns,

Z =
[

z1 z2 z3 · · · zN

]
or explicitly in terms of the m-th component

(
z j

)
m of eigenvector z j ,

Z =



(z1)1 (z2)1 (z3)1 · · · (zN )1

(z1)2 (z2)2 (z3)2 · · · (zN )2

(z1)3 (z2)3 (z3)3 · · · (zN )3

...
...

...
. . .

...

(z1)N (z2)N (z3)N · · · (zN )N


(6.1)

where the element Zi j =
(
z j

)
i . The eigenvalue equation Qzk =µk zk translates to the

matrix equation Q = Z M Z T , where M = diag
(
µk

)
.

The relation Z T Z = I = Z Z T (see e.g. [42, p. 223]) expresses, in fact, double

orthogonality. The first equality Z T Z = I translates to the well-known orthogonality

relation

zT
k zm =

N∑
j=1

(zk ) j (zm) j = δkm (6.2)

stating that the eigenvector zk belonging to eigenvalue µk is orthogonal to any other

eigenvector belonging to a different eigenvalue. The second equality Z Z T = I , which
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arises from the commutativity of the inverse matrix Z−1 = Z T with the matrix Z it-

self, can be written as
∑N

j=1

(
z j

)
m

(
z j

)
k = δmk and suggests us to define the row vector

in Z as

ym = ((z1)m , (z2)m , . . . , (zN )m) (6.3)

Then, the second orthogonality condition Z Z T = I implies orthogonality of the vec-

tors

yT
l y j =

N∑
k=1

(zk )l (zk ) j = δl j (6.4)

The fundamental weightωk = uT zk and the dual fundamental weightϕ j = uT y j

have been introduced in [161]. The corresponding vectors ω= (ω1, ω2, · · · , ωN ) and

ϕ = (ϕ1, ϕ2, · · · , ϕN ) can be written as the column sum and the row sum, respec-

tively, of the orthogonal matrix Z

ω= Z T u (6.5)

and

ϕ= Z u (6.6)

Instead of concentrating on the adjacency matrix A, we consider here the Laplacian

matrix Q, mainly because the all-one vector u is always an eigenvector of Q, which

greatly simplifies the fundamental weight vector ω. Indeed, since the normalized

Laplacian eigenvector zN = up
N

belonging to the smallest eigenvalue µN = 0 is or-

thogonal to all other eigenvectors, it follows from (6.5) that, in a connected graph,

ω= (0,0, · · · ,
p

N ) =
p

N eN (6.7)

6.3. EXPLORING PROPERTIES OF THE ORTHOGONAL EIGEN-

VECTOR MATRIX Z OF THE LAPLACIAN Q
Via extensive simulations on Erdős-Rényi (ER) graphs Gp (N ), initial insight is

gained in the sum of all the elements, the number of zero elements and the maxi-

mum and the minimum element in the eigenvector matrix Z of the Laplacian matrix

Q.

6.3.1. THE SUM sZ OF THE ELEMENTS IN Z

Let sZ be the sum of the elements in the matrix Z . Using the definitions (6.5)

and (6.6) for a connected graph, the sum sZ = uT Z u = uTϕ as well as sZ = (
Z T u

)T
u =
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ωT u =p
N , where (6.7) has been used. In a disconnected graph G , the sum sZ is

sZ =
c∑

j=1

N∑
k=1

(z j )k

where c is the number of components in the disconnected graph G . For the case

c = 2, more details are discussed in the Appendix C.
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Figure 6.1: The probability density function of sZ in ER random graphs Gp (N ) for N = 50 and various average degree

dav = p (N −1), ranging from dav = 1 up to dav = 7. The y-axis is in log-scale.

Fig. 6.1 shows the probability density function fsZ
(z) in ER graphs Gp (N ) for

N = 50 and various average degree dav = p(N−1), ranging from dav = 1 up to dav = 7.

We have generated 108 ER graphs Gp (50). Fig. 6.1 demonstrates that the maximum

value of fsZ
(z) at z = p

N increases with the average degree dav . For dav ≥ 4, the

maximum value of fsZ
(z) is dominantly high because most generated graphs are

connected. Indeed [33], for N = 50 and dav ≈ 3.9, Pr[Gp (N ) is connected] is about

36%. Moreover, ignoring the peak value at z =p
N , we observe that fsZ

(z) is roughly

symmetric around 0.

6.3.2. THE NUMBER zZ OF ZERO ELEMENTS IN Z

The number of zero elements in the orthogonal matrix Z is an integer smaller

than N 2 −N , because each eigenvector is different from the zero vector and, thus,

should contain at least one non-zero element. Hence, 0 ≤ zZ ≤ N 2 −N . In the sim-

ulations, an element in Z with absolute value smaller than 10−10 is considered as
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zero.
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Figure 6.2: The probability Pr[zZ = k] that the number of zeros in Z equals k in ER random graphs Gp (N ) for N = 50

and various average degree dav = p (N −1), ranging from dav = 1 up to dav = 7. The y-axis is in log-scale.

Fig. 6.2 shows that, in ER graphs of N = 50 nodes, the average number E [zZ ]

of zero elements decreases with the average degree dav . The probability Pr[zZ = 0]

that there is no zero element increases with dav . More specifically, for small average

degrees, dav = 1 and dav = 2, the average number E [zZ ] of zero elements is high and

the probability that Pr[zZ = 0] is small (and almost zero for dav = 1). For dav ≥ 4,

the probability Pr[zZ = 0] is dominantly high. Moreover, only for dav ≤ 3, the curve

Pr[zZ = k] versus k is reasonably stable, but for dav ≥ 4, large scattering is observed.

6.3.3. THE MINIMUM AND MAXIMUM ELEMENT IN Z

We denote the minimum element in the orthogonal matrix Z by ζZ = mini j zi j

and the maximum element by ξZ = maxi j zi j .

Figs. 6.3 and 6.4 demonstrate that ξZ
d= −ζZ , where

d= denotes equality in dis-

tribution, which is less strong than maxi j zi j =−mini j zi j . Fig. 6.4 indicates that the

lower the average degree dav , the higher the probability that the maximum ξZ at-

tains the value 1. If only one element is non-zero, then that element must equal ±1

because of the normalization of eigenvectors.

If the graph is connected, then zN = up
N

(else, there are c components leading

to a different normalization of the u vector, see the Appendix C). The second orthog-
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onality condition (6.4) requires that the square of a row sum in Z equals one so that,

for node j ,

1 =
N∑

k=1

(zk )2
j =

N−1∑
k=1

(zk )2
j +

1

N

implying that 1
N ≤ max1≤k≤N (zk )2

j ≤ 1− 1
N . Hence, in any connected graph, we find
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that 1p
N
≤ ξZ ≤

√
1− 1

N < 1 and, similarly, −
√

1− 1
N ≤ ζZ ≤− 1p

N
.

6.4. DUAL FUNDAMENTAL WEIGHT VECTOR ϕ
In this section, we study, both numerically and analytically, the distribution of a

random component in the dual fundamental weight vectorϕ, defined in (6.6). First,

we note [161] that the sum sZ 2 of the elements of Z 2 is

sZ 2 = uT Z 2u =ωTϕ

and with ω=p
N eN , we have for a connected graph,

sZ 2 =
p

NϕN

where ϕN =∑N
j=1(zN ) j is the N -th row sum of Z .

6.4.1. RANDOMLY CHOSEN COMPONENT OF THE DUAL FUNDAMENTAL WEIGHT

VECTOR ϕ

As shown in [161], the vector ω is invariant with respect to a node relabeling

transformation, but the dual fundamental weight vector ϕ is not, nor is sZ 2 . The

consequence is that, by generating Erdős-Rényi random graphs, the node labeling

is uniformly distributed so that the random variable sZ 2
d=p

NϕU , where U ∈ [1, N ]

is a discrete uniform random variable.

The expectation of a randomly chosen element ϕU is

E
[
ϕU

]= N∑
k=1

ϕk Pr[U = k] = 1

N

N∑
k=1

ϕk = 1

N
uTϕ

Since uTϕ= uTω=p
N (see [161]), we find that

E
[
ϕU

]= 1p
N

(6.8)

The variance of ϕU , Var
[
ϕU

] = E
[
ϕ2

U

]− (
E

[
ϕU

])2
follows, with

∑N
k=1ϕ

2
k = N (see

[161]) from

E
[
ϕ2

U

]= N∑
k=1

ϕ2
k Pr[U = k] = 1

N

N∑
k=1

ϕ2
k = 1

so that

Var
[
ϕU

]= 1− 1

N
(6.9)
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Extensive simulations on ϕU in Erdős-Rényi random graphs Gp (N ) are per-

formed. We simulate ER random graphs for various N , where N = 10, 20, 30, · · · , 100

and with the link density p = 0.3. For each N , we have simulated 108 ER random

graphs that resulted in 108 realizations ofϕU . The probability density function fϕU (z)

for each N is plotted and fitted.

Next, we show that ϕU does not depend on the degree vector d for a regular

graph. We start from

d Tϕ=
N∑

k=1

dkϕk = N
N∑

k=1

dkϕk Pr[U = k] = N E
[
dUϕU

]
Thus, the correlation coefficient

ρ
(
dU ,ϕU

)= 1

N
d Tϕ−E [dU ]E

[
ϕU

]= 1

N
d Tϕ− 2L

N

1p
N

and

ρ
(
dU ,ϕU

)= 1

N

(
d Tϕ− 2Lp

N

)
The dependence or correlation between the degree vector d and the dual funda-

mental weight vector ϕ is zero provided d Tϕ= 2Lp
N

. In a regular graph, for example,

d = r u, 2Lp
N
= r

p
N and d Tϕ= r uTϕ= r uTω= r

p
N , so that ρ

(
dU ,ϕU

) = 0. Simula-

tions hint that ρ
(
dU ,ϕU

)≈ 0 for ER random graphs, too! Fig. 6.5 demonstrates that

the probability density function fϕU (z) is approximately an invariant with respect to

the average degree dav (and thus the link density p in Gp (N )).

6.4.2. THE PRODUCT OF A GAUSSIAN AND A SUPER-GAUSSIAN DISTRIBU-

TION

The probability density function fϕU (z) is accurately fitted by the probability

density function

fX (z) = c exp
[−b(z − z0)2

]
exp

[−a(z − z0)4
]

(6.10)

which is a product of a Gaussian and a super-Gaussian distribution. A random vari-

able Ym possesses a super-Gaussian distribution, defined by

fYm (z) = Am exp
[−a(z − z0)m

]
where m is an even integer and a > 0 is a positive real number.
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Figure 6.5: The probability density function fϕU (z) of ϕU for connected ER random graphs Gp (N ) for N = 50 and

vaious average degree dav , ranging from dav = 4 up to dav = 10. The y-axis is in log-scale.

Next, we focus on determining the parameters a, b and c in (6.10). Since
∫ ∞
−∞ fX (z)d z =

1, with z − z0 = x, we have

c
∫ ∞

−∞
exp[−bx2 −ax4]d z = 1

The integral, proved in [162],∫ ∞

0
exp

[−bu2 −au4
]

du = 1

4

√
b

a
e

b2

8a K 1
4

(
b2

8a

)
and where Ks (z) is the modified Bessel function of the Second Kind [163], deter-

mines c as

c = 1

2
∫ ∞

0 exp[−bu2 −au4]du
=

√
a

b

2e− b2

8a

K 1
4

(
b2

8a

) (6.11)

Since fX (z) is a symmetric function around z0, all odd centered moments around

z0, E
[
(X − z0)k

]= ∫ ∞
−∞ (x − z0)k fZ (x)d x, are zero and, thus E [X ] = z0. Combination

with (6.8) shows that z0 = 1p
N

. We can compute the variance Var[X ] = E
[
(X − z0)2

]
explicitly as

Var[X ] = 1

2b
h

(
y2

8

)
(6.12)

with

h (t ) = 2t

(
K 3

4
(t )

K 1
4

(t )
+

K 5
4

(t )

K 1
4

(t )
−2

)
−1



6.4. DUAL FUNDAMENTAL WEIGHT VECTOR ϕ

6

101

where y2 = b2

a . Further, Var[X ] is increasing with y from 0 (for y = 0) to 1
2b (when

y →∞). Using (6.9) yields

b =
h

(
y2

8

)
2
(
1− 1

N

) (6.13)

while y2 = b2

a then leads to

a =
h2

(
y2

8

)
4y2

(
1− 1

N

)2 (6.14)

Hence, (6.13) and (6.14) indicate that b increases with y towards 1
2(1− 1

N ) , while a

decreases with y towards 0.

6.4.3. FITTING RESULT

Fig. 6.6 shows the natural logarithm of the probability density function f ϕU (z)

for ϕU from simulations, fitted by the function (6.10). As observed from Fig. 6.6, the

simulations agree astonishingly well with (6.10) for all N simulated in this chapter.

Fig. 6.7 shows that the parameter y2 = b2

a is approximately linear in N ,

y2 = 0.5N −3.85 (6.15)

Substituting the linear function (6.15) into (6.14) and (6.13) determines a and b

analytically. As shown in Figs. 6.8 and 6.9, a and b (red curve, theory from (6.14) and

(6.13) with (6.15)) agree well with simulations of ϕU (black dots), after fitting a and

b from (6.10). Fig. 6.10 shows c from (6.11) and from fitting function (6.10) for fϕU
(z)

for each N . Fig. 6.11 presents z0 from (6.8) and from the fitting function (6.10).

As shown in Fig. 6.8-6.11, the fitting parameters a, b, c, z0 in (6.10) from sim-

ulations agree well with equations (6.14), (6.13), (6.11), (6.8), respectively. Thus,

our simulations lead us to believe that the distribution of the components of the

dual fundamental weight vector ϕ in Erdős-Rényi random graphs is given by (6.10),

which is the product of a Gaussian and a super-Gaussian. Fig. 6.8 and (6.14) (with

(6.15)) show that a tends as O (1/N ) to zero with N , implying that, for large N , the

super-Gaussian disappears and the expected Gaussian behavior (from random ma-

trix theory) appears. The parameter a in (6.10) constraints the Gaussian behavior,

which is likely due to the orthogonality conditions (6.2) and (6.4) that create de-

pendence among the eigenvector components. Indeed, the larger N , the less the or-
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thogonality conditions are confining, which suggest that a would decrease inversely

proportional to N , precisely as observed in Fig. 6.8.

6.4.4. VERY SMALL SIZES OF N

We observe that when N < 8 (obtained at the point y2 < 0 in (6.15)), the sim-

ulation result is better fitted by a Gaussian distribution, instead of the product of a

Gaussian and a super-Gaussian.

As shown in Fig. 6.12, the product of a Gaussian and super-Gaussian distribu-

tion does not precisely fit the simulations at the tail. When N is decreased to 6 in

Fig. 6.13, the simulation is fitted by a Gaussian distribution.

6.5. CHAPTER CONCLUSION

We have studied the eigenvector matrix Z of the Laplacian matrix Q for a graph

G with the aim to understand how properties of Z contain information about the

structure of G . We find that the sum sZ of all the elements in Z increases with the

size of the graph as O
(p

N
)
. The higher the average degree in a graph, the lower

the number of zeros in the eigenvector matrix. Moreover, the distribution of the

maximum element in the eigenvector matrix is the same as the distribution of the

minimum element.

The row sum of the eigenvector matrix Z of the Laplacian Q, coined the dual

fundamental weight ϕ, in Erdős-Rényi random graphs follows closely the product

of a Gaussian and a super-Gaussian distribution.
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Figure 6.6: Natural logarithm ln( f ϕU (z)) of the probability density function fϕU (z) for ER graphs with p = 0.3 and

various N , ranging from N = 10 to N = 100.
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Figure 6.12: Natural logarithm ln( f ϕU (z)) of the probability density function fϕU (Z ) for 108 ER graphs with p =
2log(N )/N (to make sure the graph is connected) and N = 8.
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7
MODELLING REGION-BASED

INTERCONNECTION FOR

INTERDEPENDENT NETWORKS

7.1. INTRODUCTION

In the real world, most networks are interdependent. For example, power net-

works depend on communication networks, where each node in a communication

network controls one or more nodes in a power network, while each communi-

cation node needs power to function [164]. Most infrastructures are interdepen-

dent networks, such as transportation networks, communications and energy sup-

ply networks. An interdependent network is a network consisting of different types

of networks that interact with each other via interconnected links [165].

In interdependent networks, a cascade of failures leads to the first-order (dis-

continuous) percolation transition whereas a second-order (continuous) phase tran-

sition characterizes the collapse of a single network [35, 166]. Some types of interde-

pendent networks also feature a structural transition [167] between distinguishable

and non-distinguishable network components. The exact transition threshold for

111
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such a structural transition is determined in [168]. Most previous studies are re-

stricted to a one-to-one interdependency between networks, where one-to-one in-

terdependency means that one node in one network connects to one and only one

node in the other network and vice versa. Boccaletti et al. [166] introduce models

that enable nodes in one network connect to multiple nodes in the other network,

with a given degree sequence for interconnections. Moreover, the location of the

nodes is not considered when designing the interconnection between interdepen-

dent networks, although connecting geographically close nodes is less costly than

connecting those that are far away from each other.

We propose two topologies, the random geometric graph and the relative neigh-

bourhood graph, that incorporate the location of nodes for the design of intercon-

nection in interdependent networks. The advantages of the models are that (i) the

interdependency is generalized from one-to-one to one-to-many interconnections;

(ii) the sizes of the interdependent networks are not necessarily equal.

We derive the average number of links for the two topologies which enables

the comparison between simulations performed on them. For the two topologies,

we investigate the impact of the interconnection structure on the robustness of the

network under node failures. The size of the largest mutually connected component

(the number of functioning nodes) is employed as a robustness metric. In addition,

we propose the derivative of the largest mutually connected component with re-

spect to the fraction of failed nodes as a new robustness metric. The proposed ro-

bustness metric quantifies the damage on the whole network triggered by a small

fraction of non-functioning nodes.

The paper is organized as follows. Section 7.2 illustrates two interconnection

topologies that incorporate the location of nodes. Section 7.3 presents the cascading

failures in interdependent networks. The simulation results are presented in Section

7.4 and Section 7.5 concludes the paper.
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7.2. REGION-BASED INTERDEPENDENCY

Consider an interdependent graph G(N ,L) with N nodes and L links consisting

of two graphs G1 and G2. The adjacency matrix A of G can be written as

A =
[

(A1)n×n Bn×m(
B T

)
m×n (A2)m×m

]
(7.1)

where A1 is the n×n adjacency matrix of the graph G1 with n nodes, A2 is the m×m

adjacency matrix of the graph G2 with m nodes and B is the n ×m interconnection

matrix connecting G1 and G2. The total number of nodes in G is N = n +m. The

interaction between networks G1 and G2 completely relies on the interconnection

matrix B . The design of B is, therefore, crucial for the interdependent networks to

function properly as a whole.

In this paper, we propose two topologies for the interconnection matrix B in-

corporating the geographical location of nodes. Associating each node with a coor-

dinate, we analyse the interconnection matrix B with elements bi j in the following

two ways: bi j = 1 if

1. random geometric graph [169]: the Euclidean distance di j between node i and

node j is smaller than a given threshold r ;

2. relative neighbourhood graph [170]: there is no third node in the intersection

region of two circles with centres at nodes i and j with the same radius equal

to their Euclidean distance di j .

Figure 7.1 shows the two topologies of the interconnection matrix B .

7.2.1. RANDOM GEOMETRIC GRAPH

A random geometric graph, denoted as Gpi j
(N ), consists of N nodes and two

nodes i and j are connected by a link with probability pi j . Consider N indepen-

dent and identically distributed nodes in a two-dimensional square with size Z . Any

square with size Z can be normalized [171] to a unit square (Z = 1) without chang-

ing the probability pi j . For simplicity, we consider a unit square with size Z = 1. Let

(xi , yi ) and (x j , y j ) be the coordinates for nodes i and j as illustrated in Figure 7.2.

Let r ≥ 0 be a non-negative and real number which is referred to as the radius of a



7

114 7. MODELLING REGION-BASED INTERCONNECTION

if dij < r

i j

x

y

(a)

j

x

y

i

(b)

Figure 7.1: Two topologies for B : (a) random geometric graph; (b) relative neighbourhood graph: since there is no

third node in the intersection region (marked as yellow), nodes i and j are connected. Nodes from G1 are represented

with filled circles, whereas nodes from G2 are represented with unfilled circles.

node. The probability pi j (r ) = Pr[di j ≤ r ] is the probability that the Euclidean dis-

tance di j =
√

(xi −x j )2 + (yi − y j )2 between two uniformly distributed nodes i and j

is less than or equal to the radius r . The maximum Euclidean distance between two

nodes in a two-dimensional square with size Z = 1 is
p

2. When r ≥ p
2, the prob-

ability for nodes i and j being connected is pi j = 1 and thus, the graph Gpi j
(N ) is a

complete graph KN .

i j

x

y

(xi, yi)

1

1(0,0)

(xj, yj)

Figure 7.2: Node coordinate

In subsection 7.2.1, we prove a theorem for pi j in a general random geometric

graph in a two-dimensional square with size Z = 1.
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PROBABILITY pi j OF HAVING A LINK BETWEEN NODES i AND j

Theorem 8. The probability pi j (r ) that there is a link li j between nodes i and j in a

random geometric graph in a two-dimensional unit square is

pi j (r ) =


πr 2 − 8

3 r 3 + 1
2 r 4 0 ≤ r ≤ 1

1
6

[
−3r 4 + (16r 2 +8)

p
r 2 −1+12r 2

(
arctan

(
2−r 2

2
p

r 2−1

)
−1

)
+2

]
1 < r ≤p

2

1
p

2 < r

Proof. The probability pi j (r ) that there is a link li j between nodes i and j in a square

with size Z = 1 is

pi j (r ) = Pr
[
(xi −x j )2 + (yi − y j )2 ≤ r 2

]
Let Z1 = |X1−X2| and Z2 = |Y1−Y2| be random variables. The probability distribution

function for Z1 is, when 0 ≤ z1 ≤ 1,

F (z1) = Pr[−z1 ≤ X1 −X2 ≤ z1]

Since X1 and X2 are independent uniform random variables, we obtain

Pr[X1 −X2 ≤ z1] =
∫ 1−z1

0

∫ x2+z1

0
d x1d x2 +

∫ 1

1−z1

∫ 1

0
d x1d x2

=1

2

(
1− z2

1

)+ z1

Analogously,

Pr[X1 −X2 ≤−z1] = 1

2
(z1 −1)2

With F (z1) = Pr[X1 −X2 ≤ z1]−Pr[X1 −X2 ≤−z1], we arrive at

F (z1) =−z2
1 +2z1

The probability density function f (z1) = F ′(z1) follows, when 0 ≤ z1 ≤ 1,

f (z1) = 2(1− z1)

Since Z1 and Z2 are independent and identically distributed, we have

Pr
[
(xi −x j )2 + (yi − y j )2 ≤ r 2

]= ∫ ∫
z1

2+z2
2≤r 2

f (z1) f (z2)d z1d z2
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For 0 ≤ r ≤ 1, we have, after transformation to polar coordinates,

Pr
[
(xi −x j )2 + (yi − y j )2 ≤ r 2

]=∫ r

0

∫ p
r 2−z2

2

0
f (z1) f (z2)d z1d z2

=πr 2 − 8

3
r 3 + 1

2
r 4 (7.2)

Similarly, we find, for 1 < r ≤p
2,

Pr
[
(xi −x j )2 + (yi − y j )2 ≤ r 2

]=∫ 1

0

∫ p
r 2−1

0
f (z1) f (z2)d z1d z2 +

∫ 1

p
r 2−1

∫ p
r 2−z2

1

0
f (z1) f (z2)d z1d z2

=1

3
+2r 2

(
arctan

(
2− r 2

2
p

r 2 −1

)
−1

)
+ 8r 2 +4

3

p
r 2 −1− 1

2
r 4

(7.3)

For r > p
2, the distance between two nodes in a unit square is always less than or

equal to
p

2. Hence, the probability pi j (r ) is always 1. Combining (7.2) and (7.3)

establishes Theorem 8.

Figure 7.3 shows the probability pi j as a function of the radius r in a random

geometric graph Gpi j
(N ) with N = 104 nodes. The simulation shows an excellent

agreement with Theorem 8. From Theorem 8, the average number of links for a
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Figure 7.3: The probability pi j (r ) that nodes i and j are connected as a function of the radius r in a random geometric

graph with N = 104 nodes.

random geometric graph with N nodes is E [L] = (N
2

)
pi j (r ).
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7.2.2. RELATIVE NEIGHBOURHOOD GRAPH

A relative neighbourhood graph, denoted as RNG(N ), consists of N nodes and

two nodes i and j are connected if di j ≤ max(di k ,d j k ) for all the other nodes k =
1,2, . . . , N , k 6= i , j . Figure 7.4 shows a set of N nodes in a two-dimensional square

with size Z = 1 and its relative neighbourhood graph. In subsection 7.2.2, we prove a

theorem for the lower bound of the probability pi j of nodes i and j being connected

in a general relative neighbourhood graph.
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Figure 7.4: An example of (a) a set of N nodes and its (b) relative neighbourhood graph.

PROBABILITY pi j OF HAVING A LINK BETWEEN NODES i AND j

Theorem 9. The probability pi j that for a relative neighbourhood graph there is a

link li j between nodes i and j in a two-dimensional square with size Z = 1 is lower

bounded by

pi j ≥ πcN +1

c2N (N −1)
− 2

p
πΓ (N −1)

c
3
2Γ

(
N + 1

2

) (7.4)

where c =
(

2π
3 −

p
3

2

)
and Γ(x) is the gamma function.

Proof. Given a pair of nodes i and j uniformly distributed in the square with size

Z = 1, let A be the random variable for the area of the intersection region (marked

as yellow in Fig. 7.1(b)) of two circles centred at nodes i and j and with di j as the

radius. For a two-dimensional square with size Z = 1, the area of the square is 1.

The probability pi j that nodes i and j being connected equals the probability that

all the other N −2 nodes are not in the intersection region A:

pi j = (1− A)N−2
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Using the law of total probability [33], we have

pi j =
∫ 1

0
(1−x)N−2 f A(x)d x (7.5)

where f A(x) is the probability density function of A. The probability distribution

function for the variable A is

FA(x) = Pr[A ≤ x]

Let D be the random variable of the distance between two nodes. The area [172] of

the intersection of two circles can be computed by D2c, where c =
(

2π
3 −

p
3

2

)
. When

the intersection is completely in the two-dimensional unit square, it holds that A =
D2c. When the intersection is partially in the unit square, we have, for ε > 0, that

A+ε= D2c and, hence,

FA(x) = Pr
[
D2c −ε≤ x

]
≥ Pr

[
D2c ≤ x

]

Applying D2 = (xi −x j )2 + (yi − y j )2 and r 2 = x
c < 1 in (7.2) yields,

Pr
[
D2c ≤ x

]= πx

c
− 8

3

( x

c

) 3
2 + 1

2

( x

c

)2

The probability distribution function is lower bounded by

FA(x) ≥ πx

c
− 8

3

( x

c

) 3
2 + 1

2

( x

c

)2

from which

f A(x) ≥ π

c
−4

( x

c3

) 1
2 + x

c2

Thus, we have for (7.5)

pi j ≥
∫ 1

0
(1−x)N−2

(
π

c
−4

( x

c3

) 1
2 + x

c2

)
d x (7.6)

Using the Beta function B(x, y) = ∫ 1
0 ux−1 (1−u)y−1 du = Γ(x)Γ(y)

Γ(x+y) in (7.6), we establish

Theorem 9.

It has been shown [170] that the relative neighbourhood graph is a superset of

the minimum spanning tree. The number L of links in the relative neighbourhood

graph with N nodes is bounded [170] by

N −1 ≤ L ≤ 3N −6 (7.7)
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Hence, the link density p = L

(N
2 ) for a relative neighbourhood graph is bounded by

2
N ≤ p ≤ 6(N−2)

N (N−1) which shows that the relative neighbourhood graph is a sparse graph:

the larger the size N of the graph, the sparser the graph is. From Theorem 9, we

deduce the lower bound for the average number E [L] of links

E [L] ≥
(

N

2

)
pi j (7.8)

A different lower bound for E [L] is presented in [173]

E [L] ≥ 0.689N (7.9)

Figure 7.5 shows the average number of links E [L] for RNG(N ) with N ranging

from 50 to 200. Figure 7.5 shows that our bound (7.8) is close to the simulations and

outperforms bound (7.9).
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Figure 7.5: Number of links for RNG(N ) with N ranging from 50 to 200.

7.3. CASCADING FAILURES IN INTERDEPENDENT NETWORKS

When nodes in one network fail, the interconnection structure between two

networks causes dependent nodes in the other network also to fail. This may hap-

pen recursively and may invoke a cascading failure until no more nodes fail. In this

section, we investigate the impact of interconnection topologies on the robustness
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of interdependent networks against cascading failures. The robustness is quantified

by (i) Largest Mutually Connected Component (LMCC); (ii) derivative of the largest

mutually connected component with respect to the fraction of removed nodes.

7.3.1. LARGEST MUTUALLY CONNECTED COMPONENT

Different from the models [35, 174, 175] where a node from one network de-

pends on one and only one node from the other network (one-to-one interconnec-

tion), we generalize the interconnection pattern to one-to-many: a node might de-

pend on zero or one or more than one node depending on the distance to other

nodes.

In our model, we assume a node n1 in network G1 to be functional if (i) its inter-

dependent nodes in network G2 are functioning; (ii) the node belongs to the giant

component of the functional nodes in network G1. Since a node n1 in G1 may have

more than one support node in G2, we assume two scenarios for n1 being supported

by nodes in G2: (i) at least one of the supported nodes in G2 is functioning; (ii) all of

its supported nodes in G2 are functioning. The same assumptions are applied to the

nodes in network G2.

A random removal of a fraction 1 − q of nodes in network G1, on one hand,

isolates nodes in network G1 and on the other hand causes nodes in network G2 to

fail because of removed interconnected nodes in G1. The failed nodes in network

G2 isolate nodes from the giant component in networks G2. The isolated nodes in

G2 further introduce failures in G1 and so on. The cascading failures continue until

no more nodes are failed. The remaining set of functional nodes is referred to the

largest mutually connected component (LMCC). We assume, without loss of general-

ity, that the fraction 1−q of nodes is removed from graph G1.

ALGORITHM DESCRIPTION

The metacode for computing the largest mutually connected component is

given in Algorithm 1. The main algorithm starts at line 3 where n is the number

of realizations of G . Lines 4 to 16 generate an interdependent graph G consisting of

either two Erdős-Rényi (ER) graphs or two Barabási-Albert (BA) graphs. The inter-

connection topology is either the random geometric graph (RGG in line 12) or the

relative neighbourhood graph (RNG in line 14). From line 17 to line 22, we com-
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pute the largest mutually connected component after cascading failures triggered

by 1−q removals. Lines 23 and 25 average the largest mutually connected compo-

nent over n instances of G . The metacode for function CASCADING (line 20) and

COMPONENT (line 21) is given in the Appendix D.1.

We elaborate on two special values of 1− q , i.e., 0 and N1

N . For 1− q = 0, we

assume LMCC = 1. We encounter a special scenario that there exists nodes without

supporting nodes before any removals, as shown in Figure 7.6, due to their location

being far away from nodes in the other network. We assume such nodes are alive

until they are isolated from their own network. When 1−q = N1

N , the nodes in graph

G1 are completely removed. Nodes in G2 have no supporting nodes from G1 and thus

also fail. Hence, there is no largest mutually connected component and LMCC = 0.

Figure 7.7 exemplifies Algorithm 1 when G1 and G2 are complete graphs and

the interconnection matrix is B = J where J is the all one matrix representing all-to-

all interconnections. We assume that a node is alive if at least one of its supporting

nodes is alive. Figure 7.7 shows that when 1−q = 0, the interdependent network is

fully connected and LMCC = 1. With the increase of 1−q removals, LMCC decreases

linearly with 1−q . The slope of the line is −1. When 1−q = N1

N (0.5 in Figure 7.7), the

nodes in graph G1 are completely removed and LMCC = 0.

G1

G2

Figure 7.6: An interdependent network with nodes having no interconnected nodes

7.3.2. DERIVATIVE FOR THE LARGEST MUTUALLY CONNECTED COMPONENT

In the real world, a network that completely collapses is a disaster for network

providers. To avoid the disaster, understanding the impact of the failure of a rel-

atively small fraction, e.g. 10%, of nodes is significant for network providers. We

theoretically approach the robustness of interdependent networks under a small
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Algorithm 1 AverageLMCC

1: Input: Sizes N1 and N2 for graphs G1 and G2, respectively; The parameter graph

specifies G1 and G2 to be ER graphs with link density p or BA graphs with m; The

parameter interconnection specifies B to be RGG with radius r or RNG.

2: Output: Average of the largest mutually connected component (LMCC) over n

graph instances.

3: for i=1 to n do

4: if graph = ER then

5: G1 ← ER(N1, p) {generate an ER graph where nodes are connected with

probability p }

6: G2 ← ER(N2, p)

7: else if graph = BA then

8: G1 ← BA(N1,m) {generate a BA graph where a new node with m links pref-

erentially connects to high degree nodes}

9: G2 ← BA(N2,m)

10: end if

11: if interconnection = RGG then

12: B ← RGG(N1, N2,r ) {N1 ×N2 interconnection matrix where Bi j = 1 if di j < r

}

13: else if interconnection = RNG then

14: B ← RNG(N1, N2) {N1 × N2 interconnection matrix where Bi j = 1 if di j ≤
max(di k ,d j k ) for all k = 1,2, . . . , N , k 6= i , j }

15: end if

16: G ←
[

G1 B

B T G2

]
17: N1 ← node labels of G1 in G

18: N2 ← node labels of G2 in G

19: for 1−q = 0 to N1

N step 0.01 do

20: endGr aph ← CASCADING(G ,1−q,N1,N2)

21: T1−q ← ∣∣COMPONENT(endGr aph,N1,N2)
∣∣

22: end for

23: LMCC[i ] ← T

24: end for

25: return mean(LMCC)
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Figure 7.7: Largest mutually connected component as a function of the fraction of removed nodes in interdependent

networks. The coupled graphs are complete graphs and the interconnection matrix is B = J .

fraction of failures by investigating the derivative of the largest mutually connected

component close to 1− q = 0. We suggest that this derivative can be used as a ro-

bustness measure of a network indicating the extent of damage on networks when

a small fraction of nodes initially fails. The smaller the absolute derivative is, the

higher robustness the network exhibits.

Starting from the derivative in a single network in subsection 7.3.2, we move

step by step towards the derivative in interdependent networks with one-to-many

interconnection in Subsection 7.3.2.

DERIVATIVE OF THE LARGEST CONNECTED COMPONENT FOR A SINGLE NETWORK

Given the probability generating function ϕD (z) of the degree D of an arbitrary

node, the probability generating function ϕ(Dl+−1) of the degree of an end node l+

reached by following an arbitrarily chosen link l is
ϕ′

D (z)

ϕ′
D (1) , see [33]. Let ϕCl+ (z) be the

generating function of the size Cl+ of components that are reached by following a

random link l towards one of its end nodes l+. If we choose a random node n in G

and let n = l−, we reach a component with generation function ϕCn
(z) by following

the link l towards the other end node l+. If a node in the graph is occupied uni-

formly at random with probability q , the probability generating functions ϕCl+ (z)
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and ϕCn
(z) follow [33]

ϕCl+ (z) = 1−q +qzϕ(Dl+−1)
[
ϕCl+ (z)

]
ϕCn

(z) = 1−q +qzϕD

[
ϕCl+ (z)

]
Let S be the fraction of nodes in the largest connected component. Since ϕCn

(z)

generates the probability distribution of Cn excluding the giant component and with

ϕCn
(1) = 1, we have that [33]

S = 1−ϕCn
(1) = q −qϕD

[
ϕCl+ (1)

]
where

ϕCl+ (1) = 1−q +qϕ(Dl+−1)
[
ϕCl+ (1)

]
(7.10)

The derivative of the largest connected component S with respect to q is

dS

d q
= 1−ϕD (u)−qϕ′

D (u)u′

where u =ϕCl+ (1). The derivative of (7.10) follows

u′ =ϕ(Dl+−1)(u)+qϕ′
(Dl+−1)(u)u′−1

Combining u+q−1
q =ϕ(Dl+−1) (u) = ϕ′

D (z)

ϕ′
D (1) and ϕ′

D (1) = E [D], we arrive at

dS

d q
= S

q
− E [D] (u −1)

(
u −1+q

)
q

(
1−qϕ′

(Dl+−1)(u)
) (7.11)

When graph G is a large ER random graph, there holds to a good approximation

[33, p. 39] thatϕD (z) =ϕ(Dl+−1)(z) = eE [D](z−1). In that case, the derivative dS
d q in (7.11)

can be simplified, with u = 1−S, to

dS

d q
= S

q
(
1−E [D]

(
q −S

))
Figure 7.8 shows the straight line y = − dS

d q

∣∣∣
1−q= 1

N

(
1−q

)+ 1 and simulations of the

largest mutually connected component. The straight line with slope− dS
d q

∣∣∣
1−q= 1

N

shows

a good estimation for the largest mutually connected component when a small frac-

tion 1−q of nodes is removed.
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Figure 7.8: Largest connected component as a function of the fraction of removed nodes in Erdős-Rényi graphs Gp (N ).

DERIVATIVE FOR INTERDEPENDENT NETWORKS WITH ONE-TO-ONE INTERCONNEC-

TION

Let uA =ϕCl+ (1) for graph G1 and uB =ϕCl+ (1) for graph G2. For interdependent

networks with one-to-one interconnection, we have

uA =ϕ(Dl+−1)(1−q(1−uB )(1−uA)) (7.12)

Analogously,

uB =ϕ(Dl+−1)(1−q(1−uA))(1−uB ))

A randomly chosen node in G1 belongs to the largest mutually connected compo-

nent if (i) the node is occupied with probability q ; (ii) the node with probability

1−ϕCG1
(1) belongs to the giant component in G1; (iii) the corresponding depen-

dent node with probability 1−ϕCG2
(1) belongs to the giant component in G2. When

graphs G1 and G2 are two large ER random graph Gp (N ) with approximate Poisson

degree distribution, we have ϕD (z) =ϕ(Dl+−1)(z) = eE [D](z−1). Thus, ϕCG1
(1) = uA and

ϕCG2
(1) = uB . The fraction S of nodes in the largest mutually connected component

follows

S = q (1−uA) (1−uB ) (7.13)

where {
uA = e−qE [D](uA−1)(uB−1)

uB = e−qE [D](uA−1)(uB−1)
(7.14)
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The derivative of the largest mutually connected component with respect to q in

(7.13) is
dS

d q
= (1−uA) (1−uB )−q

[
(1−uB )

duA

d q
+ (1−uA)

duB

d q

]
The derivative for uA in (7.12) follows as

duA

d q
=

−ϕ′
(Dl+−1)(uA) (1−uA)2

1−2q (1−uA)ϕ′
(Dl+−1)(uA)

For ER random graphs, we have that ϕ′
(Dl+−1)(uA) = E [D]uA . Thus,

duA

d q
= −E [D]uA (1−uA)2

1−2quA (1−uA)E [D]

With (1−uA) (1−uB ) = S
q and uA = uB from (7.14), we arrive at

dS

d q
= S

q
(
1−2E [D]

(√
Sq −S

)) (7.15)

Figure 7.9 shows the straight line y =− dS
d q

∣∣∣
1−q= 1

N

(
1−q

)+1 with slope computed from

(7.15) and simulations of the largest mutually connected component for coupled ER

random graphs Gp (N ). Again, the straight line with slope − dS
d q

∣∣∣
1−q= 1

N

shows a good

estimation for the largest mutually connected component when a small fraction 1−
q of nodes is removed.

FRACTION OF LARGEST MUTUALLY CONNECTED COMPONENT WITH ONE-TO-MANY IN-

TERCONNECTIONS

Assume that a node is alive if at least one of its interdependent nodes is alive.

Theorem 10 presents the fraction S1 and S2 of the largest mutually connected com-

ponent for network G1 and G2, respectively.

Theorem 10. Consider an interdependent network consisting of two graphs G1 and

G2. The interconnection topology between graphs G1 and G2 is the random geometric

graph. The fraction Si (i = 1,2) of the largest mutually connected component as a

function of 1−q removals is approximated by

S1 = q
(
1−ϕCG1

(1)
)(

1− (1−pi j )(1−ϕCG2
(1))N )

(7.16)

S2 =
(
1−ϕCG2

(1)
)(

1− (1−pi j )q(1−ϕCG1
(1))N )

(7.17)
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Figure 7.9: Largest mutually connected component as a function of the fraction of removed nodes in interdependent

networks. The coupled graphs are Erdős-Rényi random graphs Gp (N ) with N = 50 and the average degree E [D] = 6.

The interdependency is one-to-one. The results are averaged over 104 realizations of interdependent graphs.

with ϕCG1
(1) =ϕDG1

(
1−q

(
1− (1−pi j )(1−uB )N

)
(1−uA)

)
ϕCG2

(1) =ϕDG2

(
1− (1− (1−pi j )q(1−uA )N )(1−uB )

)
and uA =ϕ(Dl+−1)

(
1−q

(
1− (1−pi j )(1−uB )N

)
(1−uA)

)
uB =ϕ(Dl+−1)

(
1− (1− (1−pi j )q(1−uA )N )(1−uB )

)
where pi j is the probability that there is a link li j between node i in graph G1 and node

j in graph G2. 1−ϕCG1
(1) is the fraction of nodes belonging to the giant component

in graph G1 and 1−ϕCG2
(1) in graph G2.

Proof. For network G1, a node i is occupied with probability q . The node i is sup-

ported with at least one node with probability 1−(
1−pi j

)(1−uB )N
where

(
1−pi j

)(1−uB )N

is the probability that node i does not connect to any nodes in the giant component

in graph G2. Therefore, (7.12) is modified to

uA =ϕ(Dl+−1)

(
1−q

(
1− (

1−pi j

)(1−uB )N
)

(1−uA)
)

Analogously, for network G2

uB =ϕ(Dl+−1)
(
1− (1− (1−pi j )q(1−uA )N )(1−uB )

)
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Since we do not remove nodes from graph G2 at the beginning of the removal, nodes

in graph G2 are occupied with probability 1. After cascading failures, a node in

G1 is in the largest mutually connected component if (i) the node is occupied with

probability q ; (ii) the node with probability 1−ϕCG1
(1) belongs to the giant compo-

nent in G1; (iii) at least one of the corresponding dependent node with probability(
1− (1−pi j )(1−ϕCG2

(1))N )
belongs to the giant component in G2. A node in G2 is in the

largest mutually connected component if (i) the node with probability 1−ϕCG2
(1)

belongs to the giant component in G2; (iii) at least one of the corresponding depen-

dent node with probability
(
1− (1−pi j )q(1−ϕCG1

(1))N )
belongs to the giant component

in G1.

When graphs G1 and G2 are two large ER random graphs withϕD (z) =ϕ(Dl+−1)(z) =
eE [D](z−1), (7.16) and (7.17) can be simplified to

S1 = q(1−uA)(1− (1−pi j )(1−uB )N ) (7.18)

S2 = (1−uB )(1− (1−pi j )q(1−uA )N ) (7.19)

with {
uA = eE [D1]q(1−(1−pi j )(1−uB )N )(uA−1)

uB = eE [D2](1−(1−pi j )q(1−uA )N )(uB−1)
(7.20)

Figures 7.10(a) and 7.10(b) show the simulation results and S1 and S2 in (7.18) and

(7.19) in coupled ER graphs with interconnection of random geometric graph with

radius r = 0.2. Since uA and uB are functions of q , computing the derivatives of uA

and uB with respect to q in (7.20) is complicated. The derivatives of S1 and S2 with

respect to q in (7.18) and (7.19) are even more complex. Therefore, we numerically

compute the derivative dSi

d q (i = 1,2) based on (7.18) and (7.19). Figures 7.10(c,d)

show the simulation results and a straight line y =− dSi

d q

∣∣∣
1−q= 1

N

(
1−q

)+1 (i = 1,2). In

Figures 7.10(c,d), the straight line with slope − dSi

d q (i = 1,2) obtained from Theorem

10 shows a good approximation for the simulations for a small fraction of removals.

For the assumption that a node is alive if all its dependent nodes are alive, the

results are given in the Appendix D.2.
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Figure 7.10: Largest mutually connected component as a function of the fraction of removed nodes in interdependent

networks. The coupled graphs are Erdős-Rényi graphs Gp (N ) with N = 50 and the average degrees E [D1] = 6 and

E [D2] = 8. The interconnection topology is the random geometric graph with r = 0.2. The results are averaged over

103 realizations of interdependent graphs.

7.4. SIMULATION RESULTS

In this section, we investigate the impact of two interconnection topologies, the

random geometric graph and the relative neighbourhood graph, on the robustness

of interdependent networks against cascading failures. The robustness is quantified

by the largest mutually connected component (LMCC) when a fraction 1−q of nodes

are removed.

We simulate a two-fold interdependent network consisting of two Erdős-Rényi

(ER) graphs Gp (N ) or two Barabási-Albert (BA) graphs. We consider two scenar-

ios for a node being supported by the coupled network: (i) at least one dependent

nodes alive and (ii) all the dependent nodes alive. Each node has randomly assigned

coordinates 0 ≤ xi ≤ 1 and 0 ≤ yi ≤ 1.
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7.4.1. RANDOM GEOMETRIC GRAPH AS INTERCONNECTION

The interconnection topology between two graphs is the random geometric

graph with radius r . Figure 7.11 shows the largest mutually connected component

as a function of the fraction 1−q of the removed nodes from G1. The interdependent

network consists of two Erdős-Rényi graphs Gp (N ) with N = 50 and the average de-

gree E [D] = 6. We assume a node is supported by its interconnected nodes when at

least one of the interconnected nodes is alive.

For a given radius r , the LMCC in Figure 7.11 firstly decreases almost linearly

with the increase of the fraction of removed nodes. Then, the LMCC experiences a

first-order phase transition which is different from second-order phase transition in

a single network also observed in [35] with one-to-one interconnection. Moreover,

the largest mutually connected component decreases with the decrease of the ra-

dius r . For example, when a fraction 0.2 of nodes are removed, we have LMCC = 0.79

for r =p
2 and LMCC = 0.69 for r = 0.1. The reason is that with the decrease of r , a

node tends to have less interconnection nodes which increases the probability for a

node to fail due to the failures of its interconnection nodes.

Figure 7.12 shows the largest mutually connected component as a function of

the fraction of the removed nodes in coupled Barabási-Albert graphs. We assume

a node alive when at least one of the interconnected nodes is alive. Coupled BA

graphs have less distinguishable LMCC for different radius r compared to coupled

ER graphs. The reason is two-fold: (i) BA graphs are robust to random failures; (ii)

When we increase the radius r , a node tends to have more than one interconnec-

tions.

Figure 7.13 shows the largest mutually connected component as a function of

the fraction of the removed nodes in coupled Erdős-Rényi graphs. A node is alive

when all of the interconnected nodes are alive. The LMCC in Figure 7.13 decreases

dramatically fast with the increase of the fraction of removed nodes. With the in-

crease of the radius r , LMCC decreases even faster. When r = 0.2, the failure of 2%

of the nodes collapses the whole interdependent network.

Figure 7.14 shows the largest mutually connected component as a function of

the fraction of the removed nodes in coupled Barabási-Albert graphs. A node is alive

when all of the interconnected nodes are alive. For a small radius r , LMCC decreases

slowly with the increase of the fraction of removed nodes because (i) BA graphs are
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robust to random failures; (ii) failures are less likely propagating to another network

with small interconnections resulting from small r . However, for a larger radius r ,

LMCC decreases fast with the increase of removals 1−q .
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Figure 7.11: Largest mutually connected component as a function of the fraction of removed nodes in interdependent

networks. The coupled graphs are Erdős-Rényi graphs Gp (N ) with N = 50 and the average degree E [D] = 6. The radius

r in the random geometric graph is ranging from 0.1 to
p

2. The simulations are averaged over the results from 1000

interdependent graphs.

7.4.2. RELATIVE NEIGHBOURHOOD GRAPH AS INTERCONNECTION

To compare the interconnection structure of the relative neighbourhood graph

and the random geometric graph, we simulate the two topologies with the same

interlink density derived in Theorems 8 and 9. Figures 7.15 and 7.16 show the largest

mutually connected component as a function of the fraction 1− q of the removed

nodes in interdependent networks. The interdependent network consists of two

Erdős-Rényi graphs with N = 50 and the average degree E [D] = 6 in Figure 7.15 and

consists of two Barabási-Albert graphs with N = 500 and the average degree E [D] = 6

in Figure 7.16.

For both the assumptions of at least one interdependent node alive and all in-

terdependent nodes alive, Figure 7.15 shows that the interconnection structure of

the random geometric graph is more robust compared to that of the relative neigh-

bourhood graph. An explanation is that interconnected links are evenly distributed
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Figure 7.12: Largest mutually connected component as a function of the fraction of removed nodes in interdependent

networks. The coupled graphs are Barabási-Albert with N = 500 and the average degree E [D] = 6. The radius r in the

random geometric graph is ranging from 0.05 to
p

2. The results are averaged over 103 realizations of interdependent

graphs.

in relative neighbourhood graph, whereas in random geometric graph, the inter-

connected links might be highly connect to few nodes depending on the location of

nodes.

In Figure 7.16, the interdependent graph with coupled BA graphs shows com-

parable results with coupled ER graphs. Random geometric graph performs much

better than relative neighbourhood graph when at least one interlinks alive. For the

assumption of all interlinks alive, random geometric graph is also more robust than

relative neighbourhood graph.

7.4.3. REAL-WORLD NETWORKS

To demonstrate the effectiveness of the two interconnection topologies, we in-

terconnect two real-world coupled infrastructures in Italy [164, 176] by the random

geometric graph and the relative neighbourhood graph and investigate their robust-

ness under cascading failures.

One network is the Italian high-bandwidth backbone of the Internet consist-

ing of N = 39 nodes and L = 50 links. The other network is the Italian high-voltage

electrical transmission network consisting of N = 310 nodes and L = 347 links (ex-
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Figure 7.13: Largest mutually connected component as a function of the fraction of removed nodes in interdependent

networks. The coupled graphs are Erdős-Rényi graphs Gp (N ) with N = 50 and the average degree E [D] = 6. The

radius r in the random geometric graph is ranging from 0.1 to 0.16. The results are averaged over 103 realizations of

interdependent graphs.

cluding the double links). Given the geographical locations of the nodes in the In-

ternet and in the electrical network, we generate interconnection topologies of the

random geometric graph and the relative neighbourhood graph as shown in Figures

7.17 and 7.18.

Figure 7.19 shows the largest mutually connected component as a function of

the fraction of removed nodes in coupled real-world networks. The interconnection

topologies are the random geometric graph and the relative neighbourhood graph

with the same link density. For the assumption of at least one interlink alive, Fig-

ure 7.19 shows that the interconnection topology of the random geometric graph is

more robust than that of the relative neighbourhood graph. However, the relative

neighbourhood graph is more robust than the random geometric graph for the as-

sumption of all interlinks alive.

7.5. CONCLUSION

In this paper, we investigate two interconnection topologies for interdependent

networks that incorporate the locations of nodes. The two topologies generalize the
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Figure 7.14: Largest mutually connected component as a function of the fraction of removed nodes in interdependent

networks. The coupled graphs are Barabási-Albert with N = 500 and the average degree E [D] = 6. The radius r in the

random geometric graph is ranging from 0.01 to 0.04. The results are averaged over 103 realizations of interdependent

graphs.

one-to-one interconnection to an arbitrary number of interconnections depending

on the locations of nodes. We analyse the properties of the two topologies and the

impact of the two interconnection structures on robustness of interdependent net-

works against cascading failures. Specifically, the derivation of the number of links

in the two topologies enables the comparison of robustness performance between

the two topologies. In particular, the random geometric graph provides the flexibil-

ity for network providers to determine the link density of interconnection in order

to achieve the desired robustness level. The relative neighbourhood graph, often

used in wireless networks [177] to provide optimal coverage with least energy con-

sumption, as an interconnection structure is less robust compared to the random

geometric graph.

In addition, we propose the derivative of the largest mutually connected com-

ponent as a new robust metric which addresses the impact of a small fraction of

failed nodes. To avoid the collapse of the whole network, the proposed robustness

metric quantifies the damage of networks triggered by a small fraction of failures,

significantly smaller than the fraction at the critical threshold, that corresponds to

the collapse of the whole network.
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Figure 7.15: Largest mutually connected component as a function of the fraction of removed nodes in interdepen-

dent networks. The coupled graphs are Erdős-Rényi graphs Gp (N ) with N = 50 and the average degree E [D] = 6.

The interconnection topology is the relative neighbourhood graph. The results are averaged over 103 realizations of

interdependent graphs.
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Figure 7.16: Largest mutually connected component as a function of the fraction of removed nodes in interdepen-

dent networks. The coupled graphs are Barabási-Albert graphs with N = 500 and the average degree E [D] = 6. The

interconnection topology is the relative neighbourhood graph. The results are averaged over 103 realizations of inter-

dependent graphs.
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Figure 7.17: Coupled Italian electrical transmission network (blue) and the Italian backbone of the Internet (red) with

the interconnection topology of the random geometric graph.

Figure 7.18: Coupled Italian electrical transmission network (blue) and the Italian backbone of the Internet (red) with

the interconnection topology of the relative neighbourhood graph.
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Figure 7.19: Largest mutually connected component as a function of the fraction of removed nodes in interdependent

networks. The coupled graphs are the Italian high-bandwidth backbone of the Internet and the Italian high-voltage

electrical transmission network. The interconnection topologies are the random geometric graph and the relative

neighbourhood graph with the same link density.
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STRUCTURAL TRANSITION IN

INTERDEPENDENT NETWORKS

WITH REGULAR

INTERCONNECTIONS

8.1. INTRODUCTION

An interdependent network, also called an interconnected network or a net-

work of networks, is a network consisting of different types of networks that depend

upon each other for their functioning [178]. For example, power networks depen-

dent on communication networks, where each node in a communication network

controls one or more nodes in a power network, while each communication node

needs power to function [164]. Critical infrastructures, such as telecommunications,

power systems, transportation, water/oil/gas-supply systems, are highly intercon-

nected and mutually depend upon each other. Due to the interdependencies be-

tween infrastructures, Little [179] proposed to view infrastructures as systems of

systems to understand their robustness against cascading failures. Disasters like

137
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large-scale blackouts have shown that most vulnerability lies in the interdependen-

cies between different infrastructures which allow the failure in one infrastructure

to propagate to another infrastructure [180].

The coupling between networks can modify the dynamical processes running

on interdependent networks. For example, Buldyrev et al. [35] show that the col-

lapse of interdependent networks occurs abruptly while the collapse of individual

networks is approached continuously. The epidemic threshold for epidemic spread-

ing processes is characterized by both the topologies of each coupled network and

the interconnection topology between them [36, 181].

Radicchi and Arenas [182] motivated the use of an interdependent model con-

sisting of two connected networks, G1 and G2, with weighted interconnection links.

The coupling weight between two networks is determined by a non-negative real

value p. In coupled electrical and communication networks, the weight can be in-

terpreted as the power dispatched by the electrical node. Radicchi and Arenas [182]

and also Martin-Hernandez et al. [183] found the existence of a structural transition

point p∗ that separates an interdependent network into two regimes: for p > p∗, the

interdependent network acts as whole, whereas for p < p∗, the network is struc-

turally separated as graphs G1 and G2. The explicit expression for the transition

threshold p∗ is determined in [184].

However, the model of Radicchi and Arenas [182] is limited to a one-to-one in-

terconnection which means that one node in graph G1 connects to one and only one

node in graph G2 and vice versa. When the interconnection pattern is not one-to-

one, i.e. B 6= pI , as in most real-world examples, the determination of the transition

threshold p∗ is more complex. Examples for a multiple-to-multiple interconnection

pattern rather than a one-to-one interconnection can be found in (i) smart grids

consisting of coupled sensor networks and power networks [15, 185, 186] where a

sensor might control multiple power stations due to cost and energy budget; (ii)

functional brain networks modelled as multi-layer network where one brain region

in one layer can exert influence over any node in the other layer [187]; (iii) infras-

tructures like power systems and fiber-optic communication systems that are geo-

graphically interconnected based on spatial proximity [188].

In this paper, we investigate the structural threshold p∗ in interdependent net-

works with a general k-to-k (k is a positive integer) interconnection as shown in Fig-
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ure 8.1. We derive an upper bound for the structural threshold p∗. We find certain

topologies where the upper bound is reached. We interpret the physical meaning

of the structural threshold p∗ with respect to the minimum cut. For some special

cases, an analytical expression for the structural threshold p∗ is presented. Further-

more, we show with a counter example that the structural threshold p∗ does not

always exist.

p
p

p
p

(a) one-to-one interconnection

p
p

p
p

p
p

p
p

(b) a general k-to-k interconnection with k = 2

Figure 8.1: We generalize the model of Radicchi and Arenas from a one-to-one interconnection to a general k-to-k

interconnection.

The paper is organized as follows. Section 8.2 introduces interdependent net-

works. Section 8.3 provides an upper bound for the structural threshold p∗ for a

general k-to-k interconnection pattern. Section 8.4 interprets the physical mean-

ing of the structural threshold p∗. Section 8.5 derives the exact structural threshold

p∗ for special cases of the interconnection and presents a counter example for the

non-existence of the structural threshold p∗. Section 8.6 concludes the paper.

8.2. AN INTERDEPENDENT NETWORK

Let the graph G(N ,L) represent an interdependent network consisting of two

networks, represented by graph G1 with n nodes and graph G2 with m nodes. The

total number of nodes in G is N = n +m. An interdependency link connects a node

i in network G1 to a node j in network G2. The adjacency matrix A of the interde-

pendent network G has the block structure

A =
[

(A1)n×n Bn×m(
B T

)
m×n (A2)m×m

]
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where A1 is the n ×n adjacency matrix of G1, A2 is the m ×m adjacency matrix of

G2 and B is the n×m interconnection matrix representing the interconnections be-

tween G1 and G2. If each interdependent link is weighted with a non-negative real

number p, the matrix B is a weighted matrix with elements bi j = p if node i in G1

connects to node j in G2, otherwise bi j = 0. The definition for B in [178] is more gen-

eral where the weight on each interdependent link can be different. Here, matrix B

corresponds to the scenario that each interdependent link has a weight of p.

A k-to-k interconnection, where k = 1, 2, · · · , min(n,m), means that one node

in graph G1 connects to k nodes in graph G2 and vice-versa. We only consider undi-

rected interconnection links. The k-to-k interconnection requires a square inter-

connection matrix B with n = m, because the number kn of interconnection links

computed in graph G1 must equal to the number km computed in graph G2, i.e.,

kn = km. In the rest of this article, we focus on a square interconnection matrix B

with n = m and the subscript of matrix B is omitted. The k-to-k interconnection is a

generalization of the one-to-one interconnection (B = pI ) studied in [35, 182, 184].

For a square interconnection matrix B , a k-to-k interconnection can be con-

structed via a circulant matrix [42] with the form

B =

1 2 3 · · · n



1 c1 c2 c3 · · · cn

2 cn c1 c2 · · · cn−1

3 cn−1 cn c1 · · · cn−2

...
...

...
. . .

. . .
...

n c2 c3 c4 · · · c1

(8.1)

where the row vector (c1, c2, . . . , cn) has exactly k elements of p and n−k elements of

0. Each row and each column of B contains the same number of non-zero elements,

but the position of the non-zero elements is shifted. For example, a symmetric ma-
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trix B for a 2-to-2 (k = 2) interconnection can be written as

B =

1 2 3 · · · n



1 0 p 0 · · · p

2 p 0 p · · · 0

3 0 p 0 · · · 0
...

...
...

. . .
. . .

...

n p 0 0 · · · 0

Analogous to the definition of the Laplacian matrix Q = ∆− A in a single net-

work, where∆ is the diagonal matrix of node degrees, we use the following diagonal

matrices:

∆1
de f= diag(Bu)

∆2
de f= diag

(
B T u

)
to define the Laplacian matrix Q of the interdependent network G as

Q =
[

Q1 +∆1 −B

−B T Q2 +∆2

]

where Q1 and Q2 are the Laplacian matrices of networks G1 and G2, respectively.

The all-one vector is denoted by u and the subscript of u is used if the dimension

is not clear. Since the Laplacian matrix Q is symmetric, the eigenvalues of Q are

non-negative and at least one is zero [42]. We order the eigenvalues of the Lapla-

cian matrix Q as 0 =µN ≤µN−1 ≤ ·· · ≤µ1 and denote the eigenvector corresponding

to the k-largest eigenvalue by xk . The second smallest eigenvalue of the Laplacian

matrix Q is coined by Fiedler [189] as the algebraic connectivity µN−1 of a graph G .

The algebraic connectivity plays a key role in different aspects of the robustness of

networks, such as diffusion processes [183, 190], synchronization stability [191] and

network robustness against failures [156].

The Laplacian eigenvalue equation for the eigenvector xk = (
xT

1 , xT
2

)T
, where

x1 and x2 are n ×1 vectors, belonging to the eigenvalue µk is[
Q1 +∆1 −B

−B T Q2 +∆2

][
x1

x2

]
=µk

[
x1

x2

]
(8.2)
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The normalized vector xN = 1p
N

(
uT

n , uT
n

)T
is an eigenvector belonging to the small-

est eigenvalue µN = 0 of the Laplacian Q. We briefly present a theorem in [178, The-

orem 3] to introduce a non-trivial eigenvalue and eigenvector of the Laplacian Q.

Theorem 11. Only if the n ×m interconnection matrix B̃ has a constant row sum

equal to µ∗

N m and a constant column sum equal to µ∗

N n, which we call the regularity

condition for B̃n×m , B̃um = µ∗

N mun

B̃ T un = µ∗

N num

then is

x = 1p
N

[√
m

n
uT

n , −
√

n

m
uT

m

]T

an eigenvector of Q belonging to the eigenvalue

µ∗ =
(

1

n
+ 1

m

)
uT

n B̃n×mum

and uT
n B̃n×mum equals the sum of the elements in B̃ , representing the total strength of

the interconnection between graphs G1 and G2.

Corollary 2. Consider an interdependent graph G with N nodes consisting of two

graphs each with n nodes, whose interconnections are described by a weighted inter-

connection matrix B. For a k-to-k interconnection pattern with the coupling weight

p on each interconnection link, the vector

x = 1p
N

[
uT

n , −uT
n

]T
(8.3)

is an eigenvector of the Laplacian matrix Q of graph G belonging to the eigenvalue

µ∗ = 2kp (8.4)

Proof. For a k-to-k interconnection, the row and column sum of the interconnec-

tion matrix B is a constant which equals to kp,Bun = kpun

B T un = kpun

which obeys the regularity condition in Theorem 11. With n = m and the total cou-

pling strength uT
n B̃n×mum = kpn in Theorem 11, we establish the Corollary 2.
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The coupling weight p on each interconnection link can be varied from 0 to ∞.

Corollary 11 implies that there is a value of p > 0 for which µ∗ = 2kp in (8.4) can be

made the smallest positive eigenvalue, which then equals the algebraic connectivity

µN−1 of the whole interdependent network G . By increasing the coupling weight

p, the non-trivial eigenvalue µ∗ = 2kp is no longer the second smallest eigenvalue.

There exists a transition threshold p∗ such that µN−1 6= 2kp when p > p∗. Because

the eigenvalues of Laplacian Q are continuous functions of the coupling weight p,

the second and third smallest eigenvalue coincide [184] at the point of the transition

threshold p∗.

The Laplacian matrix Q for a k-to-k interconnection can be written as the sum

of two matrices Q =
[

Q1 O

O Q2

]
+

[
kpI −B

−B T kpI

]
. According to the interlacing theorem

for the sum of two matrices [42], a lower bound for the third smallest eigenvalue

µN−2 of the Laplacian matrix Q follows

µN−2 (Q) ≥ min(µn−2 (Q1) , µn−2 (Q2)) (8.5)

where µn−2 (Q1) and µn−2 (Q2) are the third smallest eigenvalue of graphs G1 and G2,

respectively.

8.3. AN UPPER BOUND FOR THE TRANSITION THRESHOLD

p∗

This section derives an upper bound for the transition threshold p∗ of inter-

dependent networks with k-to-k interconnection patterns. We find topologies for

interdependent networks, where the upper bound is attained.

8.3.1. UPPER BOUND FOR p∗

For a given interconnection matrix B with a k-to-k interconnection, i.e. Bu =
B T u = kpu, the Laplacian matrix Q is written as

Q =
[

Q1 +kpI −B

−B T Q2 +kpI

]
(8.6)
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For any normalized vector x = (
xT

1 , xT
2

)T
, the quadratic form xT Qx of the Laplacian

Q follows

xT Qx = kp +xT
1 Q1x1 +xT

2 Q2x2 −2xT
1 B x2 (8.7)

Let x1 be an eigenvector corresponding to the second smallest eigenvalueµn−1(Q1)

of Q1 and x2 = 0. For vector x = (
xT

1 , 0
)T

, the normalization of vector x reads xT x =
xT

1 x1 = 1. Thus, the quadratic form in (8.7) follows xT Qx = kp +µn−1(Q1). Analo-

gously, we have xT Qx = kp+µn−1(Q2) when x1 = 0 and x2 be the eigenvector belong-

ing to µn−1(Q2). Applying the Rayleigh inequality [42] to the algebraic connectivity

µN−1 yields

µN−1 ≤ xT Qx

xT x

With vector x = (
xT

1 , 0
)T

or vector x = (
0, xT

2

)T
, we arrive at

µN−1 ≤ min
(
µn−1(Q1), µn−1(Q2)

)+kp (8.8)

Equality holds when x is the eigenvector belonging to the algebraic connectivity

µN−1.

The non-trivial eigenvalue µ∗ = 2kp in (8.4) corresponding to eigenvector x =
1p
N

(
uT

n , −uT
n

)T
can be made the algebraic connectivity µN−1 for p < p∗, whereas µ∗

is no longer the algebraic connectivity µN−1 for p > p∗. At the transition threshold

p∗, the algebraic connectivity is µN−1 = 2kp∗. Substituting µN−1 = 2kp∗ and p = p∗

in (8.8), we arrive at an upper bound for the transition threshold p∗

p∗ ≤ 1

k
min(µn−1(Q1), µn−1(Q2)) (8.9)

Figures 8.2 and 8.3 show the accuracy of the upper bound (8.9) in interdepen-

dent networks with size N = 1000 consisting of two Erdős-Rényi graphs Gq (n) with

link density q and two Barabási-Albert graphs with average degree dav = 6. The in-

terconnection pattern is 2-to-2 (k = 2). The upper bound in Figure 8.2 provides a

good approximation for the transition threshold p∗. The upper bound in Figure 8.3

is less accurate than that in Figure 8.2.

Radicchi and Arenas [182] show that the transition threshold p∗ is upper bounded

by p∗ ≤ 1
4µN−1(Q1+Q2) when B = pI (the k-to-k interconnection with k = 1). The ex-

act p∗ is determined in [184] when B = pI . However, the method in [184] cannot be

readily generalized to a two-to-two nor to a general k-to-k (k 6= 1) interconnection.
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Figure 8.2: Accuracy of the bound for the transition threshold p∗ in interdependent networks consisting of two Erdős-

Rényi graphs Gq (n) with n = 500 and average degree dav = 6. The interconnection pattern is 2-to-2, i.e., k = 2.
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Figure 8.3: Accuracy of the bound for the transition threshold p∗ in interdependent networks consisting of two

Barabási-Albert graphs with n = 500 and average degree dav = 6. The interconnection pattern is 2-to-2, i.e., k = 2.

8.3.2. TOPOLOGIES FOR WHICH THE UPPER BOUND (8.9) IS EXACT

An interesting question is when vectors x = (
xT

1 , 0
)T

and x = (
0, xT

2

)T
are eigen-

vectors of Q belonging to eigenvalues of µn−1(Q1)+kp and µn−1(Q2)+kp. Theorem

12 presents two conditions for vector x to be an eigenvector of the Laplacian Q. We
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firstly introduce two definitions. A graph is defined as a singular graph if its adja-

cency matrix has at least one zero eigenvalue. A kernel eigenvector is an eigenvector

of a singular graph belonging to the zero eigenvalue [192].

Theorem 12. Vector x = (
xT

1 , 0
)T

is an eigenvector of Q belonging to the eigenvalue

µn−1(Q1)+kp if

(i) x1 is the eigenvector corresponding to the second smallest eigenvalue µn−1(Q1)

of Q1;

and

(ii) x1 is the kernel eigenvector of matrix B T , i.e., B T x1 = 0.

Proof. Assuming a k-to-k interconnection pattern, the Laplacian eigenvalue equa-

tion (8.2) for x = (
xT

1 , 0
)T

reads[
Q1 +pkI −B

−B T Q2 +pkI

][
x1

0

]
=

[
Q1x1 +kpx1

−pB T x1

]

Conditions (i) and (ii) yield Q1x1 =µn−1(Q1)x1 and B T x1 = 0. Thus, we have[
Q1 +pkI −pB

−pB T Q2 +pkI

][
x1

0

]
= (

µn−1(Q1)+kp
)[x1

0

]

from which we establish Theorem 12.

Analogously, Theorem 12 identifies vector x = (
0, xT

2

)T
as an eigenvector be-

longing to µn−1(Q2)+pk if x2 satisfies conditions (i) and (ii).

We now present the topology of an interdependent graph G consisting of graphs

G1 and G2, where Theorem 12 holds and the upper bound (8.9) for transition thresh-

old p∗ is attained. Without loss of generality, we assume that graph G1 has a smaller

algebraic connectivityµn−1(Q1) thanµn−1(Q2). We construct a graph G1 and an inter-

connection matrix B where conditions (i) and (ii) in Theorem 12 are satisfied. Graph

G2 can be any topology with µn−1(Q2) ≥µn−1(Q1).

The join [193] of two graphs H1 and H2 with adjacency matrices AH1
and AH2

,

denoted as H1 ∨ H2, is a graph consisting of graphs H1 and H2 where each node in

H1 is connected to each node in H2 as shown in Figure 8.4. The adjacency matrix of

the join graph H1 ∨H2 has the block form

[(
AH1

)
n×n Jn×m(

J T
)

m×n

(
AH2

)
m×m

]
, where Jn×m is the
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Figure 8.4: Two examples for the join of two graphs

n ×m all-one matrix. The join operation on two graphs is useful in determining the

synchronizability of complex networks [194].

For a k-to-k interconnection pattern, we divide graph G1 on n nodes into n
k

subgraphs H1, . . . , H n
k

where each subgraph has exactly k nodes and n
k is an integer.

In other words, k is chosen in such a way that k | n, i.e., k is a divisor of n. The k ×k

adjacency matrix for a subgraph Hi is denoted by AHi
. Graph G1 is constructed as

the join of n
k graphs G1 = H1∨H2∨ . . .∨H n

k
. The adjacency matrix A1 of graph G1 can

be written as a block matrix

A1 =


AH1

J

J AH2
J

. . .
. . .

. . .

J AH n
k

 (8.10)

To obey the condition (i) in Theorem 12, we focus on the eigenvector x1 be-

longing to the algebraic connectivity of graph G1. A theorem proved in [195], is in-

troduced for the Laplacian eigenvalues of the join of two graphs.

Theorem 13. Let G1 and G2 be graphs on n and m nodes, respectively. Ifµ1, µ2, . . . , µn

are the Laplacian eigenvalues of graph G1 andα1, α2, . . . , αm are the Laplacian eigen-

values of graph G2, then the Laplacian eigenvalues of the join G1 ∨G2 are m +n,µ1 +
m, . . . , µn−1 +m, α1 +n, . . . , αm−1 +n and 0. Suppose that y is an eigenvector of G1
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that is orthogonal to the all-one vector un . Extend y to a vector of size m+n by defin-

ing the m components to be zero. If y is an eigenvector belonging to the eigenvalue

µ, the extension of y is an eigenvector of G1 ∨G2 belonging to the eigenvalues µ+m.

Similarly, an eigenvector of the eigenvalueα in G2 extends to an eigenvector of G1∨G2

belonging to the eigenvalueα+n. The eigenvalue m+n corresponds to the eigenvector

x = 1p
m+n

[√
m
n uT

n , −
√

n
m uT

m

]T
.

Theorem 13 can be generalized from the join of two graphs to the join of n
k

graphs. The Laplacian eigenvalues of graph G1 = H1 ∨H2 ∨ . . .∨H n
k

are 0, n and the

Laplacian eigenvalues µ (Hi ) of each subgraph Hi plus k. The eigenvector for eigen-

value µ (Hi )+ k is the extension of eigenvector x (Hi ) belonging to the eigenvalue

µ (Hi ) in subgraph Hi .

The algebraic connectivity µn−1 of graph G1 equals

µn−1 = min
(
µk−1 (H1) , µk−1 (H2) , . . . , µk−1

(
H n

k

))+k

where µk−1 (Hi ) is the second smallest eigenvalue of subgraph Hi on k nodes. Par-

ticularly, if we assume that subgraph H1 has the smallest algebraic connectivity after

node relabelling, then the algebraic connectivity of graph G1 is µn−1 = µk−1 (H1)+k

and the corresponding eigenvector is

x1 = [
(
xT

k−1

)
1×k , O1×(n−k)]

T (8.11)

where xk−1 is the eigenvector corresponding to the second smallest eigenvalueµk−1 (H1)

of subgraph H1. The eigenvector in (8.11) is orthogonal to the all-one vector un×1

and determines the topology of the interconnection matrix B .

Next, we construct a matrix B that satisfies condition (ii) in Theorem 12, i.e.,

B T x1 = 0,

B T =
[

p Jk×k Ok×(n−k)

O(n−k)×k C(n−k)×(n−k)

]
(8.12)

where the matrix C can be a general regular matrix with Cun−k =C T un−k = kpun−k .

The matrix Jk×k in the block matrix B T means that the nodes labelled 1, . . . , k in

G2 are fully connected to nodes labelled 1, . . . , k in G1. The matrix C(n−k)×(n−k) in

the block matrix B T means that the remaining nodes labelled k +1, . . . , n in G2 can

connect to any k nodes labelled k +1, . . . , n in G1, and vice-versa.
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Matrices A1 in (8.10) and B in (8.12) satisfy Theorem 12, because the vector

x = (
xT

1 , 0
)T

is an eigenvector belonging to the eigenvalueµn−1(Q1)+kp of the Lapla-

cian Q. The lower bound in (8.5) shows that the third smallest eigenvalue µN−2 (Q) ≥
µn−2 (Q1) ≥ µn−1 (Q1). The eigenvalue µn−1(Q1)+kp can be made the third smallest

eigenvalue µN−2 (Q) of the Laplacian Q if the coupling weight p is small. At the tran-

sition threshold p∗, the third smallest eigenvalue µN−2 (Q) = µn−1(Q1)+ kp equals

to the second smallest eigenvalue µ∗ = 2kp of the Laplacian matrix Q. The exact

transition threshold p∗ thus follows from µn−1(Q1)+kp∗ = 2kp∗ as

p∗ = 1

k
µn−1(Q1) (8.13)

Figure 8.5 shows an example with graph G1 and interconnection matrix B constructed

from (8.10) and (8.12). In Figure 8.5(a), graph G1 is the join of graphs H1 and H2. The

interconnection matrix with a 2-to-2 (k = 2) interconnection is B =
[

p J2×2 O

O p J2×2

]
.

Figure 8.5(b) shows that the transition occurs at the point p∗ = 1
kµn−1(Q1), as pre-

dicted in (8.13).

4 2

3 1

3 2

4 1

����

��

��

(a) An example graph
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Figure 8.5: An example topology where the upper bound (8.9) is exact.

8.4. PHYSICAL MEANING OF p∗ IN TERMS OF THE MINIMUM

CUT

In graph theory, a cut [42] is defined as the partition of a graph into two disjoint

subgraphs G̃1 and G̃2. A cut set refers to a set of links between subgraphs G̃1 and

G̃2. For a weighted graph, the minimum cut refers to a cut set whose cut weight R is
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minimized, where the cut weight R is the sum of link weights over all links in the cut

set. In this paper, the interdependent network G is weighted, where each link within

graphs G1 and G2 has weight 1 and each link between graphs G1 and G2 has weight

p.

A normalized index vector y for a cut of a graph G into subgraphs G̃1 and G̃2 is

defined as

yi =
√

1

N

1 if node i ∈ G̃1

−1 if node i ∈ G̃2

where yT y = 1. The cut weight R follows [42] from the quadratic form of the Lapla-

cian matrix Q

R = N p

4

∑
l∈L

(yl+ − yl−)2 = N

4
yT Q y

because yl+−yl− = 2p
N

if the starting node l+ and the ending node l− of a link l belong

to different subgraphs, otherwise yl+ − yl− = 0. The minimum cut is [42]

Rmin = N

4
min

y∈Y
yT Q y

where Y is the set of all possible normalized index vectors of the N -dimensional

space. Rayleigh’s theorem [42] states that, for any normalized vector y orthogonal

to the all-one vector u, we have that µN−1 ≤ yT Q y
yT y ≤ yT Q y because yT y = 1, and the

equality holds when y is an eigenvector belonging to µN−1. With µN−1 ≤ yT Q y , the

minimum cut Rmin follows

Rmin ≥ N

4
µN−1

If the index vector y is an eigenvector of G belonging to the eigenvalue µN−1, then

we obtain that Rmin = NµN−1

4 . Corollary 2 implies that the eigenvalue µ∗ = 2kp can

be made the second smallest eigenvalue µN−1 with eigenvector x = 1p
N

[
uT

n , −uT
n

]T

if p < p∗. If p < p∗, the partition corresponding to y = x results in the minimum

cut with Rmin = NµN−1

4 . The resulting subgraphs from that partition are exactly graphs

G1 and G2 and the cut set contains all the interdependent links. When the coupling

weight p > p∗, the eigenvector x = 1p
N

[
uT

n , −uT
n

]T
is no longer an eigenvector of

graph G belonging to the second smallest eigenvalue µN−1. The minimum cut can-

not be achieved by only cutting all the interconnection links.

The physical meaning of p∗ in terms of the minimum cut is that if p < p∗, the

minimum cut can be achieved by cutting all the interconnection links, while above
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p∗, the minimum cut involves both links within each subgraph and the interdepen-

dent links between two subgraphs of an interdependent network G .

8.5. EXACT THRESHOLD FOR SPECIAL STRUCTURES OF IN-

TERDEPENDENT NETWORKS

In this section, we analytically determine the structural threshold p∗ for special

graphs G1 and G2 or a special interconnection matrix B .

8.5.1. COUPLED IDENTICAL CIRCULANT GRAPHS

Let xn−1 be the eigenvector belonging to the second smallest eigenvalueµn−1(Q1)

of the Laplacian matrix Q1 of graph G1. For vector x = (
xT

n−1, xT
n−1

)T
and Q2 =Q1, the

eigenvalue equation in (8.2) reads[
Q1 +kpI −pB̂

−pB̂ T Q1 +kpI

][
xn−1

xn−1

]
=

[
µn−1(Q1)xn−1 +kpxn−1 −pB̂ xn−1

µn−1(Q1)xn−1 +kpxn−1 −pB̂ T xn−1

]
(8.14)

where B̂ is a zero-one matrix satisfying B̂ = B
p . A circulant matrix is a matrix where

each row is the same as the previous one, but the elements are shifted one position

right and wrapped around at the end. Matrix B in (8.1) is an example of a circulant

matrix. Circulant matrices are commutative [196]. If two matrices commute, the

two matrices have the same set of eigenvectors [42]. When Q1 and B̂ are symmetric

circulant matrices, Q1 and B̂ commute, i.e., Q1B̂ = B̂Q1, and the eigenvectors of Q1

and B̂ are the same [42]. The eigenvector xn−1 of the Laplacian Q1 is also an eigen-

vector of matrix B̂ belonging to the eigenvalue λ, where λ = xT
n−1B̂ xn−1

xT
n−1 xn−1

= 2xT
n−1B̂ xn−1

because the normalization xT x = 2xT
n−1xn−1 = 1. Substituting B̂ xn−1 =λxn−1 in (8.14)

yields [
Q1 +kpI −pB̂

−pB̂ T Q1 +kpI

][
xn−1

xn−1

]
= (

µn−1(Q1)+kp −λp
)[xn−1

xn−1

]

The vector x = (
xT

n−1, xT
n−1

)T
is an eigenvector of Q belonging to eigenvalue µ =

µn−1(Q1)+ (k −λ)p.

When the coupling weight p is small enough, the non-trivial eigenvalue µ∗ =
2kp in (8.4) can be made the algebraic connectivity µN−1 and eigenvalue µn−1(Q1)+
(k−λ)p can be made the third smallest eigenvalue µN−2. By increasing the coupling
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weight p, a transition of the algebraic connectivity µN−1 occurs, where µ∗ = 2kp is

no longer the second smallest one. The transition occurs at the point p∗ such that

2kp∗ =µn−1(Q1)+ (k −λ) p∗, from which

p∗ = µn−1

k +λ
where λ= 2xT

n−1B̂ xn−1.

Figure 8.6 shows the algebraic connectivity of the interdependent network con-

sisting of two identical circulant graphs with a 2-to-2 (k = 2) interconnection. The

size of each circulant graph is n = 100 with average degree dav = 6. When the cou-

pling strength p ≤ p∗, the algebraic connectivity µN−1 is 4p. When p ≥ p∗, the alge-

braic connectivity in Figure 8.6 is analytically expressed asµN−1 =µn−1(Q1)+(2−λ)p.

The transition occurs at the point p∗ = µn−1

2+λ , where λ= 2xT
n−1B̂ xn−1.
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Figure 8.6: Algebraic connectivity in the interdependent network consisting of two identical circulant graphs with a

2-to-2 (k = 2) interconnection. The number of nodes for each circulant graph is n = 100 and the average degree is

dav = 6.

8.5.2. n-TO-n INTERCONNECTION

For an n-to-n interconnection pattern, the Laplacian matrix of the interdepen-

dent graph G reads

Q =
[

Q1 +pnI −p Jn×n

−p Jn×n Q2 +pnI

]
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where n ×n all-one matrix J represents that one node in graph G1 connects to all

nodes in graph G2 and vice versa. Graph G is the join [193] of graphs G1 and G2 if the

coupling weight p = 1.

Let x1 be the eigenvector belonging to the eigenvalue µn−1(Q1) of graph G1 and

x2 be the eigenvector belonging to the eigenvalue µn−1(Q2) of graph G2. For vectors

x = (
xT

1 , 0
)T

and x = (
0, xT

2

)T
, the eigenvalue equation for the Laplacian matrix Q of

G can be written as

[
Q1 +pnI −p J

−p J Q2 +pnI

][
x1

0

]
= (µn−1(Q1)+np)

[
x1

0

]

[
Q1 +pnI −p J

−p J Q2 +pnI

][
0

x2

]
= (µn−1(Q2)+np)

[
0

x2

]

For an n-to-n (k = n) interconnection, the non-trivial eigenvalue µ∗ = 2np can be

made the algebraic connectivity µN−1 (Q) of the Laplacian Q if the coupling weight p

is small. The eigenvalue min{µn−1(Q1), µn−1(Q2)}+np can be made the third smallest

eigenvalue µN−2 (Q) with a small coupling weight p. The transition threshold p∗

occurs when µN−1 (Q) =µN−2 (Q) resulting in

p∗= min

{
µn−1(Q1)

n
,
µn−1(Q2)

n

}
(8.15)

Figure 8.7 shows the algebraic connectivity of the interdependent network con-

sisting of two Erdős-Rényi graphs Gp (n) with n = 500 nodes and average degree

dav = 6 and the interconnection pattern is n-to-n. Figure 8.7 demonstrates that

when the coupling weight p is small, the algebraic connectivity is µN−1 = 2np. With

the increase of p, the algebraic connectivity is described byµN−1 = min{µn−1(Q1), µn−1(Q2)}+
np. The transition occurs when 2np = min{µn−1(Q1), µn−1(Q2)}+np and the thresh-

old p∗ obeys (8.15).

8.5.3. (n −1)-TO-(n −1) INTERCONNECTION

When B = p (J − I ) and G2 =G1, the eigenvalue equation for the Laplacian ma-

trix Q reads, with vector x = (
xT

n−1, −xT
n−1

)T
where xn−1 is an eigenvector correspond-

ing to the algebraic connectivity µn−1(Q1) of graph G1,
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Figure 8.7: Algebraic connectivity µN−1 in the interdependent network consisting of two Erdős-Rényi graphs with

n = 500 nodes and average degree dav = 6. The interconnection pattern is n-to-n.

[
Q1 +p(n −1)I −p (J − I )

−p (J − I ) Q1 +p(n −1)I

][
xn−1

−xn−1

]
= (

µn−1(Q1)+ (n −2) p
)[ xn−1

−xn−1

]
(8.16)

The non-trivial eigenvalue follows µ∗ = 2(n −1)p for an (n −1)-to-(n −1) intercon-

nection. When p is small, the eigenvalue 2(n −1)p can be made the algebraic con-

nectivity µN−1 and the eigenvalue µn−1(Q1)+ (n −2) p can be made the third small-

est eigenvalue µN−2. At the transition threshold p∗, we have that µN−1 = µN−2 from

which the threshold p∗ follows

p∗= µn−1(Q1)

n

8.5.4. A GRAPH COUPLED WITH ITS COMPLEMENTARY GRAPH

The complementary graph Gc
1 of a graph G1 has the same set of nodes as G1

and two nodes are connected in Gc
1 if they are not connected in G1 and vice versa

[42]. The adjacency matrix of the complementary graph Gc
1 is Ac

1 = J − I − A1. The

Laplacian of the complement graph Gc
1 follows nI − J −Q1.

For an interdependent graph G consisting of a graph G1 and its complemen-

tary graph Gc
1 with an n-to-n interconnection pattern, the Laplacian matrix Q of the
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interdependent graph G reads

Q =
[

Q1 +npI −p J

−p J nI − J −Q1 +npI

]

Let xn−1 be the eigenvector belonging to the eigenvalue µn−1 of the graph G1

and x1 be the eigenvector belonging to the eigenvalue µ1. For vectors x = (
xT

n−1, 0
)T

and x = (
0, xT

1

)T
, the eigenvalue equation for the Laplacian matrix Q of G can be

written as[
Q1 +npI −p J

−p J nI − J −Q1 +npI

][
xn−1

0

]
= (µn−1(Q1)+np)

[
xn−1

0

]
(8.17)

[
Q1 +npI −p J

−p J nI − J −Q1 +npI

][
0

x1

]
= (n +np −µ1(Q1))

[
0

x1

]
(8.18)

When the coupling weight p is small, eigenvalueµ∗ = 2np can be made the algebraic

connectivityµN−1 (Q) =µ∗ = 2np and eigenvalue min
(
µn−1(Q1)+np, n +np −µ1(Q1)

)
can be made the third smallest eigenvalue µN−2 (Q). From µN−1 (Q) =µN−2 (Q) at the

transition point p∗, we arrive at

p∗= min

(
µn−1(Q1)

n
, 1− µ1(Q1)

n

)

8.5.5. AN EXAMPLE OF THE NON-EXISTENCE OF THE STRUCTURAL TRANSI-

TION

In this subsection, we consider an interdependent network consisting of a star

graph G1 and its complementary graph Gc
1 while the interconnection pattern is n-

to-n. For a star graph with size n, the eigenvalues of the Laplacian [42] are 0, 1 with

multiplicity n − 2 and n. Substituting µn−1(Q1) = 1 and µ1(Q1) = n into eigenvalue

equations (8.17) and (8.18) yields two eigenvalues np and np +1.

When the coupling weight p > 0, the non-trivial eigenvalueµ∗ = 2np cannot be

the second smallest eigenvalue of the Laplacian Q because it is always larger than

the eigenvalue np. Hence, the transition between µ∗ and the algebraic connectivity

µN−1 (Q) will never occur as shown in Figure 8.8(a). Instead, when p is small, the

non-trivial eigenvalue µ∗ = 2np can be made the third smallest eigenvalue µN−2 (Q).

By increasing the coupling weight p, the eigenvalue µ∗ = 2np may no longer be the
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third smallest eigenvalue of the Laplacian Q. There exists a threshold denoted as

p∗
N−2 such that µ∗ = 2np exceeds µN−2 (Q) when p > p∗

N−2.

When p ≤ p∗
N−2 then the third smallest eigenvalue followsµN−2 (Q) = 2np. Above

the transition point p∗
N−2, the non-trivial eigenvalue µ∗ = 2np exceeds eigenvalue

1+np. The transition occurs when 2np∗ = 1+np∗ resulting in p∗
N−2 = 1

n . Figure

8.8(b) shows that the transition occurs at the point p∗
N−2 = 1

n .
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(a) Algebraic connectivity µN−1
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(b) Third smallest eigenvalue µN−2

Figure 8.8: An interdependent network consisting of a star graph and its complement with n-to-n interdependency.

The size n of the star graph is 100.

In the above example, the complementary graph Gc
1 of a star is a disconnected

graph. The hub node in the star G1 is an isolated node in graph Gc
1. The coupling

is stronger between graph G1 and the connected component in graph Gc
1 than that

between graph G1 and the isolated node in Gc
1. The isolated node first decouples

from the interdependent network G before the connected component in Gc
1 decou-

ples from interdependent graph G . As a result, the structural transition in p occurs

at the third smallest eigenvalue rather than at the second smallest eigenvalue. The

above example also agree with the upper bound in (8.9) that the threshold p∗ = 0

when µn−1(Q1) = 0 or µn−1(Q2) = 0. There is no transition between non-trivial eigen-

value µ∗ = 2kp and the algebraic connectivity µN−1, if one of the coupled graphs is

disconnected.

8.6. CONCLUSION

We generalize a one-to-one interconnection to a general k-to-k interconnec-

tion for interdependent networks. The interconnection matrix B representing the
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k-to-k interconnection obeys regularity (constant row and column sum) and a non-

trivial eigenvalue of such interdependent networks can be deduced [178]. For B =
pI (one-to-one interconnection), it has been shown [182, 184] that there exists a

structural transition p∗: when p < p∗, the network acts as separated graphs G1 and

G2; when p > p∗, the network acts as a whole.

For a general k-to-k interconnection (B 6= pI unless k = 1), we analyse the

properties of the transition threshold p∗. For connected graphs G1 and G2, we show

that the transition threshold p∗ is upper bounded by the minimum algebraic con-

nectivity of graphs G1 and G2 divided by k for a k-to-k interconnection. If graph G1 is

the join of subgraphs each with k nodes and the matrix B is singular with the kernel

vector to be the eigenvector of the algebraic connectivity of graph G1 (as shown in

(8.10) and (8.12)), then the upper bound for the transition threshold p∗ is attained.

The upper bounds and the exact value of the transition threshold p∗ can be applied

for the identification of the interaction and multi-layer coupling pattern of neural

networks given that a healthy human brain operates around the transition point

[187].

In addition, the physical meaning of the threshold p∗ is that below the transi-

tion threshold p∗, the minimum cut of the network includes all the interconnection

links, whereas above the transition threshold p∗, the minimum cut contains both

the interconnection links between graphs G1 and G2 and the links within G1 and

G2. For special topologies (as specified in Section 8.5), the threshold p∗ can be de-

termined exactly. If one of the graphs G1 or G2 is disconnected, then the structural

threshold p∗ for the algebraic connectivity does not exist.





9
CONCLUSION

The thesis investigates the robustness of complex networks including theoret-

ical approaches and application of theories to real-world networks. The main con-

tribution of the thesis is a better understanding on how topologies and properties of

networks influence the structural and dynamical robustness of networks. The take-

away message of this thesis is that the analysis of the robustness of networks is a

multi-objective problem. Failure scenarios, quantification or characterization of the

robustness anticipating the specific functionality of a specific network, topological

and dynamical properties networks and the complex nature of real-world networks

all play a role in designing a robust network or enhancing an existing network.

9.1. MAIN CONTRIBUTIONS

Chapter 2 contributes to the theoretical and experimental findings that are ap-

plicable in real-world scenarios such as single-line instalments in infrastructural

networks or single-line protection against cyber-physical attacks. The upper and

lower bounds introduced in chapter 2 can be used to support policy and decision

makers to choose a line to install or protect given certain operational costs. More-

over, when computational cost for finding optimal links to add or remove is pro-

159
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hibitive, the topological and spectral strategies can still indicate links resulting in a

high robustness level. If the optimal added or removed links for the algebraic con-

nectivity are known, then the respective links for the effective graph resistance are

different but in close proximity.

Chapter 3 employs the effective graph resistance as a robustness metric for net-

work expansions to improve the grid robustness against cascading failures. The ef-

fective graph resistance takes the multiple paths and their ability to accommodate

power flows into account to quantify the robustness of power grids. The experimen-

tal verification on IEEE power systems demonstrates the effectiveness of the effec-

tive graph resistance to identify single links that improve the grid robustness against

cascading failures. Additionally, when computational cost for finding optimal links

is prohibitive, strategies that optimize the effective graph resistance can still iden-

tify an added link resulting in a high level of robustness. The occurrence of Braess’s

paradox in power grids suggests that the robustness can be occasionally decreased

by placing additional links. In particular, a badly designed power grid may cause

enormous costs for new lines that actually reduce the grid robustness.

Chapter 4 investigates the robustness of metro networks by analysing ten the-

oretical robustness metrics and three numerical metrics. For the latter, we investi-

gate two critical thresholds f , when 90% of the network is still remaining, f90% (both

under random failure and targeted attack), and when the complete network is dis-

integrated, fc (under targeted attack). We find that the ten theoretical robustness

metrics capture two distinct aspects of the robustness of metro networks. A first

aspect deals with the number of alternative paths, suggesting that more alternative

paths are more desirable. In contrast, the second aspect deals with “resistance", sug-

gesting that longer lines with no shorter alternative paths perform poorly. As metro

networks are expanded, effort should be put into creating transfer stations, both in

city centres and peripheral areas to ensure that not only many alternative paths are

created to reach a destination, but also that the average number of stations between

two transfers is kept to a minimum. To fully capture these two aspects and assess the

robustness of metro networks, we plot the ten theoretical measures (standardized)

on radar plots. This method offers both an equal representation of the variables at

play as well as an aesthetically-pleasing visual aid to help planners in their task to

design robust metro networks.
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Chapter 5 investigates fundamental properties including the degree distribu-

tion and the assortativity of line graphs, which transform links from a graph to nodes

in its line graph. The degree distribution of the line graph of an Erdős-Rényi ran-

dom graph follows the same pattern of the degree distribution as the original graph.

We derive a formula for the assortativity of a line graph which indicates that the

assortativity of a line graph is not linearly related to the assortativity of its origi-

nal graph. Moreover, the assortativity is positive for the line graphs of Erdős-Rényi

graphs, Barabási-Albert graphs and most real-world networks. In contrast, certain

types of trees, path and path-like graphs, have negative assortativity in their line

graphs. Furthermore, non-trees consisting of cycles and paths can also have nega-

tive assortativity in their line graphs.

Chapter 6 studies the eigenvector matrix Z of the Laplacian matrix Q for a

graph G with the aim to understand how properties of matrix Z contain informa-

tion about the structure of graph G . We find that the sum sZ of all the elements in

Z increases with the size of the graph as O
(p

N
)
. The higher the average degree

in a graph, the lower the number of zeros in the eigenvector matrix. Moreover, the

distribution of the maximum element in the eigenvector matrix is the same as the

distribution of the minimum element. The row sum of the eigenvector matrix Z

of the Laplacian Q, coined the dual fundamental weight ϕ, in Erdős-Rényi random

graphs follows closely the product of a Gaussian and a super-Gaussian distribution.

Chapter 7 investigates two interconnection topologies for interdependent net-

works that incorporate the locations of nodes. The two topologies generalize the

one-to-one interconnection to an arbitrary number of interconnections depending

on the locations of nodes. We analyse the properties of the two topologies and the

impact of the two interconnection topologies on robustness of interdependent net-

works against cascading failures. Specifically, the derivation of the number of links

in the two topologies enables the comparison of robustness performance between

the two topologies. We fined the random geometric graph provides the flexibility

for network providers to determine the link density of interconnections in order

to achieve the desired robustness level. The relative neighbourhood graph, often

used in wireless networks [177] to provide optimal coverage with least energy con-

sumption, as an interconnection topology is less robust compared to the random

geometric graph.
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In addition, we propose the derivative of the largest mutually connected com-

ponent as a new robust metric which addresses the impact of a small fraction of

failed nodes. To avoid the collapse of the whole network, the proposed robustness

metric quantifies the damage of networks triggered by a small fraction of failures,

significantly smaller than the fraction at the critical threshold, that corresponds to

the collapse of the whole network.

Chapter 8 investigates the structural transition threshold for the interdepen-

dent network consisting of two graphs G1 and G2 with a regular interconnection

pattern. The transition threshold p∗ is upper bounded by the minimum algebraic

connectivity of graphs G1 and G2 divided by k for a k-to-k interconnection. The

upper bound for the transition threshold p∗ is attained if graph G1 is the join of sub-

graphs each with k nodes and the matrix B is singular with the kernel vector to be

the eigenvector of the algebraic connectivity of graph G1. The physical meaning of

the threshold p∗ is that below the transition threshold p∗, the minimum cut of the

network includes all the interconnection links, whereas above the transition thresh-

old p∗, the minimum cut contains both the interconnection links between graphs

G1 and G2 and the links within G1 and G2. For special topologies, the threshold p∗

can be determined exactly. If one of the graphs G1 or G2 is disconnected, then the

structural threshold p∗ for the algebraic connectivity does not exist.

9.2. DIRECTIONS FOR FUTURE WORK

The research questions of this thesis and insights gained from the results of this

thesis open doors to a few future research directions.

1. The influence of the topology of a network on the dynamic process in that net-

work is intensively explored in complex networks. However, the inverse, how

the dynamic process influences the topology of a growing network, is rarely

studied. It would be interesting to investigate the influence of dynamic pro-

cesses on the topology of a network. A real-world example is that the traffic

flow in a transportation network impacts the extension of that transportation

network.

2. In chapter 2, we explore adding single links into an existing network or remov-

ing single links from that network. The goal is to determine the link whose ad-
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dition maximally increases the robust and the link to protect under a limited

budget. A generalized question, which remains open, is that the determina-

tion of multiple links whose addition maximally increases the robustness of a

network.

3. Chapter 7 investigates the robustness of interdependent networks under ran-

dom failures. However, targeted attacks, as happened in most real-world net-

works, might severely destroy the network. Which node or which set of nodes

will dramatically destroy the network upon removal? Safely protecting such

nodes results in a high level of the robustness of interdependent networks.

4. Power networks are subject to failures of transmission lines. The line graph,

studied in chapter 5, transforms links in the original graph into nodes. The

study of failures of nodes in line graphs enables a better understanding on

the impact of link failures on power grids. The relation between the impact of

failures of links in the original graph and the impact of failures of the corre-

sponding nodes in the line graph, remains open.

5. Spectral metrics, such as spectral radius, algebraic connectivity, play a key role

in characterizing network robustness. However, the eigenvectors of graph ma-

trices are rarely explored. The results in chapter 6 are only a tip of the ice-

berg. Various questions remain open. For example, how the dual fundamen-

tal weight (row sum of the eigenvector matrix of the Laplacian) relates to the

properties, i.e., importance of a node, of a graph? Does the dual fundamen-

tal weight provide a better graph partition than the Fiedler vector? Is there a

correlation between the dual fundamental weight and the degree vector of a

graph?





A
BOUNDS FOR THE ALGEBRAIC

CONNECTIVITY

In this appendix, we derive upper and lower bounds for the algebraic connec-

tivity in terms of the effective graph resistance.

The analogy of inequality (2.8) is:

N −2∑N−2
j=1

1
µ j

≤ 1

N −2

N−2∑
j=1

µ j

Introducing the definition S = ∑N−2
j=1

1
µ j

, with the sum of all the eigenvalues [42] sat-

isfying
∑N−1

j=1 µ j = 2L, it follows that

N −2

S
≤ 2L−µN−1

N −2

With the definitions S = RG

N − 1
µN−1

, αG = µN−1 and by assuming a connected graph

(µN−1 > 0), it holds, for N > 2

αG ≤ 2L− (N −2)2

RG

N − 1
αG

which is transformed into a quadratic inequality of αG :
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RG

N
α2

G + ((N −2)2 −1−2L
RG

N
)αG +2L ≤ 0 (A.1)

In a factored form and by denoting 2LRG

N = R̃G , the quadratic inequality (A.1) is ex-

pressed as follows:

0 ≥
(
αG − R̃G − (N −1)(N −3)−ξ

R̃G /L

)(
αG − R̃G − (N −1)(N −3)+ξ

R̃G /L

)
(A.2)

where ξ=
√

[R̃G − (N −3)2][R̃G − (N −1)2] is the squareroot of the discriminant. The

lower [42] bound RG ≥ (N−1)2

E [D]
, rephrased as R̃G ≥ (N −1)2, shows that R̃G −(N −3)2 > 0

and R̃G − (N − 1)(N − 3) > 0, hence, ξ is real. Therefore, the quadratic equation in

(A.1) has the following two real roots:

x1 = R̃G − (N −1)(N −3)−ξ
R̃G /L

x2 = R̃G − (N −1)(N −3)+ξ
R̃G /L

Vieta’s formula indicates that the product of roots equals x1x2 = 2L
RG
N

> 0 that results

in both x1 and x2 being either positive or negative. Since x2 > 0, the root x1 is also

positive. In summary, we deduce a new lower bound:

αG ≥ L
(
1− (N−1)(N−3)

R̃G
−

√
[1− (N−3)2

R̃G
][1− (N−1)2

R̃G
]
)

and an upper bound for the algebraic connectivity:

αG ≤ L
(
1− (N−1)(N−3)

R̃G
+

√
[1− (N−3)2

R̃G
][1− (N−1)2

R̃G
]
)

Figure A.1 illustrates the lower and upper bounds of the algebraic connectivity

αG for Erdős-Rényi graphs with different link density p. As link density increases,

the upper and lower bounds come closer. The bounds converge to the algebraic

connectivity resulting in an equality for (15).
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Figure A.1: Upper and lower bounds of the algebraic connectivity αG .





B
PROOFS FOR LINE GRAPHS

This appendix presents three proofs for the formulas in chapter 5.

B.1. PROOF OF EQUATION (5.6)
The degree distribution in scale free graphs G is

Pr[D = k] = k−γ

c1
, k = s, · · · ,K (B.1)

where c1 =∑K
k=s k−γ is the normalization constant and s is the minimum degree and

K is the maximum degree in G . Assuming the node degrees in the scale free graph

are independent, the generating function for the line graph of scale free graphs can

be written as equation (5.5). Substituting the derivative of the generating function

ϕ
′
D (z) = 1

E [D]

∑N−1
k=0 kzk−1Pr[D = k] and the average degree E [D] = ∑N−1

k=0 kPr[D = k] =
c2

c1
, where c2 =∑K

k=s k1−γ, into equation (5.5) yields

ϕDl
(z) =

(
c1

c2

)2 (
ϕ

′
D (z)

)2
(B.2)

and the Taylor coefficients obey

Pr[D l = k] =
(

c1

c2

)2 1

k !

d k
(
ϕ

′
D (z)

)2

d zk

∣∣∣∣∣
z=0
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Using the Leibniz’s rule ( f g )(k) =∑k
m=0

( k
m

)
f (m)g (k−m), where f = g =ϕ′

D (z), yields

Pr[D l = k] =
(

c1

c2

)2 1

k !

k∑
m=0

(
k

m

)
d m+1(ϕD (z))

d zm+1

d k−m+1(ϕD (z))

d zk−m+1

∣∣∣∣∣
z=0

Substituting k !Pr[D = k] = d k (ϕD (z))
d zk

∣∣∣
z=0

, we arrive at

Pr[D l = k] = 1

k !

(
c1

c2

)2 k∑
m=0

k !

m!(k −m)!
(m+1)!Pr[D = m+1](k−m+1)!Pr[D = k−m+1]

Applying the power law degree distribution in equation (B.1), we have

Pr[D l = k] = 1

c2
2

k+1∑
m=1

(
m(k +2−m)

)1−γ
(B.3)

For γ= 3, we transform equation (B.3) in the following form:

c2
2 Pr[D l = k] = 1

(k +2)3

k+1∑
i=1

1

( i
k+2 )2(1− i

k+2 )2

1

k +2
(B.4)

We use the following expression between a sum in the limit to infinity and a definite

integral [197]

b∫
a

f (x)d x = lim
n→∞

n∑
k=1

f (xk )∆x

We set ∆x = 1
k+2 , xi = i∆x = i

k+2 , f (x) = 1
x2(1−x)2 and (B.4) boils down to

c2
2 Pr[D l = k] = 1

(k +2)3

k+1∑
i=1

f (xi )∆x (B.5)

We consider the case of limit to infinity for k (k →∞) or k very large and evaluate

the sum
k+1∑
i=1

f (xi )∆x, which can be transformed into

k+1∑
i=1

f (xi )∆x ≈
k+1
k+2∫

1
k+2

f (x)d x (B.6)
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Now,

k+1
k+2∫

1
k+2

f (x)d x =
k+1
k+2∫

1
k+2

1

x2(1−x)2
d x

=
k+1
k+2∫

1
k+2

( 2

x
+ 2

1−x
+ 1

x2
+ 1

(1−x)2

)
d x

= 2
(
2ln(k +1)+ k(k +2)

k +1

)
(B.7)

Using (B.7) and (B.6) into (B.5), leads to

c2
2 Pr[D l = k] ≈ 2

(k +2)2

(2ln(k +1)

k +2
+ k

k +1

)
Since lim

k→∞
ln(k+1)

k+2 = 0 and lim
k→∞

k
k+1 = 1, we arrive at

Pr[D l = k] ≈ 1

c2
2

(k +2)−2 (B.8)

B.2. PROOF FOR THEOREM 6
Proof. A link l with end nodes l+ and l− in the line graph l (G) corresponds to a

connected triplet in G . Without loss of generality, we assume that nodes l+ and l−

in the line graph correspond to links l+ = i ∼ c and l− = j ∼ c, where links i ∼ c

and j ∼ c share a common node c, in the original graph as shown in Figure B.1.

The degree in line graph is dl+ = di +dc −2 and dl− = d j +dc −2. Since subtracting

l+

i j

l(G) G

l+ l-

c

l-

Figure B.1: Link transformation.
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2 everywhere does not change the linear correlation coefficient, we proceed with

dl+ = di +dc and dl− = d j +dc . First, we compute the joint expectation

E [D l+D l− ] =

N∑
i=1

N∑
j=1
j 6=i

N∑
c=1

(di +dc )(d j +dc )ai c a j c

2Ll (G)

=

N∑
i=1

N∑
j=1

N∑
c=1

(di +dc )(d j +dc )ai c a j c −
N∑

i=1

N∑
c=1

(di +dc )2a2
i c

2Ll (G)

=

N∑
i=1

N∑
j=1

N∑
c=1

di ai c a j c d j +2
N∑

i=1

N∑
j=1

N∑
c=1

di ai c a j c dc +
N∑

i=1

N∑
j=1

N∑
c=1

d 2
c ai c a j c

2Ll (G)

−
2

N∑
i=1

N∑
c=1

d 2
i a2

i c +2
N∑

i=1

N∑
c=1

di a2
i c dc

2Ll (G)

With
∑N

j=1 a j c = dc , we arrive at

E [D l+D l− ] = d T A2d +2d T A∆d +∑N
i=c d 4

c −2
∑N

i=1 d 3
i −2d T Ad

2Ll (G)
(B.9)

The average degree E [D l+ ] = E [D i+Dc ] is the average degree of two connected nodes

i and c from a triplet (see Figure B.1) in the original graph. Thus,

E [D l+ ] =

N∑
i=1

N∑
j=1
j 6=i

N∑
c=1

(di +dc )ai c a j c

2Ll (G)

=

N∑
i=1

N∑
j=1

N∑
c=1

di ai c a j c +
N∑

i=1

N∑
j=1

N∑
c=1

dc ai c a j c −
N∑

i=1

N∑
c=1

di a2
i c −

N∑
i=1

N∑
c=1

dc a2
i c

2Ll (G)

from which

E [D l+ ] = d T Ad +∑N
c=1 d 3

c −2d T d

2Ll (G)
(B.10)
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The variance σ2
Dl+

=V ar [D l+ ] = E [D2
l+ ]− (E [D l+ ])2 and

E [D2
l+ ] =

N∑
i=1

N∑
j=1
j 6=i

N∑
c=1

(di +dc )2ai c a j c

2Ll (G)

=

N∑
i=1

N∑
j=1

N∑
c=1

d 2
i ai c a j c +2

N∑
i=1

N∑
j=1

N∑
c=1

di ai c a j c dc +
N∑

i=1

N∑
j=1

N∑
c=1

d 2
c ai c a j c

2Ll (G)

−
2

N∑
i=1

N∑
c=1

d 2
i a2

i c +2
N∑

i=1

N∑
c=1

di a2
i c dc

2Ll (G)

which we rewrite as

E [D2
l+ ] = 3d T A∆d +∑N

c=1 d 4
c −2

∑N
i=1 d 3

i −2d T Ad

2Ll (G)
(B.11)

The number of links Ll (G) in a line graph is [42]

Ll (G) = 1

2
d T d −L = 1

2
(N2 −N1) (B.12)

After substituting equations (B.9-B.12) into (5.7), we establish the Theorem.

B.3. PROOF FOR COROLLARY 1
Proof. Using the varianceσ2

Dl+
= Var[D l+ ] = E [D2

l+ ]−(E [D l+ ])2, we rewrite the defini-

tion of assortativity (5.7) as

ρDl (G)
= 1+ E [D l+D l− ]−E [D2

l+ ]

σ2
Dl+

(B.13)

According to equations (B.9) and (B.11), we have that

E [D l+D l− ]−E [D2
l+ ] = d T A2d −d T A∆d

2Ll (G)

= N4 −d T A∆d

2Ll (G)
(B.14)

The variance Var[D l+ ] of the end node of an arbitrarily chosen link can be written in

terms of the variance Var[D l (G)] of an arbitrarily chosen node [198]

σ2
Dl+

= µu3 − (Var[D l (G)])2 +µ2Var[D l (G)]

µ2
(B.15)
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where µ= E [D l (G)] and u3 = E [(D l (G) −E [D l (G)])3]. The variance Var[D l (G)] of an arbi-

trarily chosen node can be written in terms of the assortativity [42]

Var[D l (G)] = 2(1+ρD )

(
1

N1

N∑
i=1

d 3
i −

(
N2

N1

)2)
(B.16)

Substituting (B.14-B.16) into (B.13), we prove the Corollary 1.



C
PROPERTY OF THE EIGENVECTOR

MATRIX OF THE LAPLACIAN FOR A

DISCONNECTED GRAPH

In this appendix, we deduce the sum sZ of elements in the eigenvector matrix

Z of the Laplacian Q for a disconnected graph. We write the N×N symmetric matrix

A as a block matrix

A =
[

A1 B

B T A2

]
where A1 is an (N −m)× (N −m) symmetric matrix and A2 is a m ×m symmetric

matrix with1 0 ≤ m < N
2 . For example, for a graph G , A1 and A2 are the adjacency

matrices of two subgraphs G1 and G2 of G , B represents the interconnection matrix

of the links between G1 and G2. The eigenvalue equation Ax = λ (A) x is written as

the linear block set, with the eigenvector xT =
[

v(N−m)×1 wm×1

]T
,

{
A1v +B w =λ (A) v

B T v + A2w =λ (A) w

1If m ≥ N
2 , we can interchange subgraph G1 and G2 so that m < N

2 .

175



C

176
C. PROPERTY OF THE EIGENVECTOR MATRIX OF THE LAPLACIAN FOR A DISCONNECTED

GRAPH

where we choose the normalization xT x = 1, equivalent to v T v + w T w = 1. If the

coupling matrix B = 0, then the set simplifies to{
A1v =λ (A) v

A2w =λ (A) w

which illustrates that v and w are eigenvectors (satisfying v T v+w T w = 1) belonging

to the eigenvalue λ (A), which is also an eigenvalue of at least one matrix, A1 or A2,

because an eigenvector x is different from the zero vector, so that not both v and w

can be the zero vector.

In the case of the Laplacian Q of G , where u is an eigenvector of Q1, Q2 and Q

belonging to eigenvalue µ= 0, then it holds that{
Q1v = 0

Q2w = 0

where v = αu and w = βu with 1 = α2 (N −m)+β2m. The latter is the equation of

an ellipse with the two main axes 1p
N−m

and 1p
m

,

α2(
1p

N−m

)2 +
β2(
1p
m

)2 = 1 (C.1)

and any set
(
α,β

)
with both α 6= 0 and β 6= 0 on the ellipse is a solution. Hence2,

for m > 0, there exists infinitely many normalizations of the eigenvector of Q be-

longing to the eigenvalue µN = 0. When m → 0 (and hence β = 0), the ellipse de-

generates into the points α = ± 1p
N

. Moreover, we can construct two orthogonal

eigenvectors (since the multiplicity of µ = 0 is two). Let xT
1 =

[
αu βu

]T
and

xT
2 =

[
γu δu

]T
, where

(
γ,δ

)
is also a point on the above ellipse. Orthogonality

requires that

0 = xT
1 x2 =

[
αu βu

]T
[
γu

δu

]
=αγ (N −m)+βδm

leading to

γ=− βm

α (N −m)
δ

2When there are c disconnected subgraphs in G , the normalization procedure results in c-dimensional ellipsoid lead-

ing to c −1 degrees of freedom to normalize the c eigenvectors belonging to eigenvalue µN = 0 of Q.
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but also 1 = γ2 (N −m)+δ2m. Combined yields δ = ± 1√(
βm

α
p

N−m

)2+m
and, after using

1 =α2 (N −m)+β2m, we find

δ=±α
p

N −mp
m

(C.2)

and

γ=∓ β
p

mp
N −m

(C.3)

In conclusion, with each choice of
(
α,β

)
as a point on the ellipse, there correspond

two points
(
γ,δ

)
(with oppositive sign) on the same ellipse, for which we obtain two

orthogonal vectors
(
αβ=−γδ)

. All other eigenvectors are orthogonal on x1 and x2.

Thus, xT
k =

[
vk wk

]T
obeys xT

k x1 = 0 and xT
k x2 = 0,{

αv T
k u +βw T

k u = 0

γv T
k u +δw T

k u = 0

or [
α β

γ δ

][
v T

k u

w T
k u

]
= 0

which only has the zero solution v T
k u = w T

k u = 0 because det

[
α β

γ δ

]
= 1p

(N−m)m
>

0. Since all other eigenvectors xk are orthogonal to u (with
∑N

j=1 (xk ) j = uT xk = 0),

the sum of the elements in Z equals the sum of the elements in x1 and x2:

sZ = (
α+γ)

(N −m)+ (
β+δ)

m

Introducing the expression (C.3) for γ and (C.2) for δ into sZ gives us

sZ =αN + (
α−β)p

m
(p

N −m −p
m

)
From 1 = α2 (N −m)+β2m, we eliminate α =

√
1−β2m
N−m and, after substitution, we

have

sZ = N

√
1−β2m

N −m
+

√1−β2m

N−m
−β

pm
(p

N−m−pm
)

illustrating that, if m = 0 and the graph is connected, then sZ = p
N . Moreover, sZ

is a function of the integer m and the real number β. For the case 1 ≤ m < N
2 , it is

convenient to denote y =β2m ∈ (0,1) and write

sZ

(
m, y

)=N

√
1− y

N−m
+

(√
1− y

N−m
−

p
yp

m

)
p

m
(p

N−m−pm
)
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For y = 0, we have sZ (m,0) =p
N −m+pm. Since

(p
N −m +p

m
)2 = N+2

p
m
p

N −m >
N , we find that sZ (m,0) >p

N . The other extremum sZ (m,1) =−(p
N −m −p

m
)
is

smaller than sZ (m,1) < 0 <p
N . Since y is a continuous real variable and sZ

(
m, y

)
is monotonously decreasing in y , there must exist, for each integer m ∈ [1, N

2 ), a

y∗ ∈ (0,1) for which sZ

(
m, y∗) = p

N . In summary, we have demonstrated the fol-

lowing Theorem:

Theorem 14. If the graph G is connected, then the number sZ of elements in the or-

thogonal matrix Z of the Laplacian of the graph G equals sZ =p
N . The converse, “if

sZ =p
N , then the graph G is connected” is not always true.



D
CASCADING FAILURES IN

INTERDEPENDENT NETWORKS

This appendix describes algorithms in Chapter 7. In addition, the derivative of

the largest mutually connected component if all interlinks are alive, is presented.

D.1. ALGORITHMS: CASCADING AND COMPONENT
Algorithm 2 describes the function of cascading failures in interdependent net-

works. Lines 3 to 5 initialize a flag vector with flag = 1 if a node is not removed, oth-

erwise flag = 0. Lines 6 to 9 remove the desired fraction 1−q of nodes and set flag = 0

for removed nodes. Due to the interconnection structure, the initial failures cause

dependent nodes to fail executed by lines 13 to 26. As specified in line 18, a node u

in G1 is removed if it does not belong to the largest mutually connected component

CG1
or it loses all the dependent nodes. The same rule is applied for a node in G2

as shown in line 23. Lines 18 and 23 correspond to the scenario of at least one in-

terdependent node alive. The failure of a node u may introduce further failures and

may invoke a cascading failure (line 11 is true). The cascading process is terminated

if no more nodes fail and delNodes (in line 12) is not changed. Line 28 returns the

resulting graph after removing all the failed nodes.
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Algorithm 2 Function CASCADING(G , 1−q , N1, N2)

1: Input: Graph G and fraction of removal 1−q ; Sets N1, N2 of nodes in G1 and G2,

respectively

2: Output: endGraph: a graph after removing all the failed nodes from G

3: for each node u ∈G do

4: flag[u] ← 1

5: end for

6: for i = 1 to
⌈(

1−q
)

N
⌉

do

7: G ←G\{u1,u2, · · · ,ui } {ui is a randomly chosen node from graph G1}

8: flag[u1,u2, · · · ,ui ] ← 0;

9: end for

10: delNodes ← 1

11: while delNodes 6= 0 do

12: delNodes ← 0

13: for each node u ∈G do

14: LMCC ← COMPONENT(G ,N1,N2)

15: CG1
←N1 ∩LMCC

16: CG2
←N2 ∩LMCC

17: N [u] ← get neighbors of u

18: if u ∈N1 and
(
u ∉CG1

or N [u]∩CG2
=∅

)
and flag[u]=1 then

19: endGraph ←G\{u}

20: flag[u] ← 0

21: delNodes ← 1

22: G ← endGraph

23: else if u ∈N2 and
(
u ∉CG2

or N [u]∩CG1
=∅

)
and flag[u]=1 then

24: repeat lines 18-21

25: end if

26: end for

27: end while

28: return endGraph
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Algorithm 3 extracts the largest mutually connected component from a given

graph G . In line 3, we first obtain all the connected components Ci of G with sizes

in descending order. Then, lines 4 to 9 return the first connected component that

includes nodes both in G1 and G2.

Algorithm 3 Function COMPONENT(G ,N1,N2)

1: Input: Graph G ; Sets N1, N2 of nodes in G1 and G2, respectively

2: Output: Largest mutually connected component LMCC

3: Get connected components C1, C2, . . ., CN of G ordered as |C1| ≤ . . . ≤ |CN |
4: for i = 1 to N do

5: if Ci ∩N1 6=∅ and Ci ∩N2 6=∅ then

6: LMCC ←Ci

7: break

8: end if

9: end for

10: return LMCC

D.2. DERIVATIVE OF THE LARGEST MUTUALLY CONNECTED

COMPONENT IF ALL INTERLINKS ARE ALIVE

Theorem 15. Consider an interdependent network consisting of two graphs G1 and

G2. The interconnection topology between graphs G1 and G2 is the random geometric

graph. Assume a node is alive when all of its interdependent nodes are alive. The

fraction Si (i = 1,2) of the largest mutually connected component as a function of

1−q removals is approximated by

S1 = q
(
1−ϕCG1

(1)
)

exp
(−pi j NϕCG2

(1)
)

(D.1)

S2 =
(
1−ϕCG2

(1)
)

exp
(
pi j N

(
q −qϕCG1

(1)−1
))

(D.2)

where ϕCG1
(1) =ϕDG1

(
1−q exp

(−pi j NuB

)
(1−uA)

)
ϕCG2

(1) =ϕDG2

(
1−exp

(
pi j N

(
q −quA −1

))
(1−uB )

)
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and uA =ϕ(Dl+−1)
(
1−q exp

(−pi j NuB

)
(1−uA)

)
uB =ϕ(Dl+−1)

(
1−exp

(
pi j N

(
q −quA −1

))
(1−uB )

)
where pi j is the probability that there is a link li j between node i in graph G1 and node

j in graph G2. 1−ϕCG1
(1) is the fraction of nodes belonging to the giant component

in graph G1 and 1−ϕCG2
(1) in graph G2.

Proof. For a node n in G1 with k dependent nodes in G2, the probability that all the

dependent nodes are alive follows

∞∑
k=0

Pr[DB = k] (1−uB )k

which can be written as the generating function ϕDB (1−uB ) of DB with parameter

1−uB . Assuming DB follows a binomial distribution, it holds [33] thatϕDB (1−uB ) =
exp(−E [DB ]uB ) for a large interconnection matrix B . When B is the random ge-

ometric graph, the degree distribution of DB follows a binomial distribution [169]

with average degree E [DB ] = pi j N . Therefore, the probability that all the dependent

nodes in G2 of a node n in G1 are alive is exp
(−pi j NuB

)
.

The self-consistent equation for uA in interdependent network with one-to-

many interconnection follows

uA =ϕ(Dl+−1)
(
1−q exp

(−pi j NuB

)
(1−uA)

)
where q is the probability for a node n to be occupied, and exp

(−pi j NuB

)
is the

probability that all the interdependent nodes of a node n in G1 belong to the giant

component in graph G2. Analogously,

uB =ϕ(Dl+−1)
(
1−exp

(
pi j N

(
q −quA −1

))
(1−uB )

)
Since we do not remove nodes from graph G2 at the beginning, nodes in graph G2

are occupied with probability 1. The probability exp
(
pi j N

(
q −quA −1

))
represents

that all the dependent nodes of a node in G2 are occupied and belong to the giant

component in G1.

For the scenario of all interdependent nodes alive, Figures D.1(a) and D.1(b)

show the simulation results and S1 and S2 in (D.1) and (D.2) in coupled ER graphs

with interconnection of random geometric graph with radius r = 0.02. Figures D.1(c,d)
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Figure D.1: Largest mutually connected component as a function of the fraction of removed nodes in interdependent

networks. The coupled graphs are Erdős-Rényi graphs Gp (N ) with N = 50 and the average degrees E [D1] = 6 and

E [D2] = 8. The interconnection topology is the random geometric graph with r = 0.02. The results are averaged over

104 realizations of interdependent graphs.

show the simulation results and a straight line y = − dSi

d q

∣∣∣
1−q= 1

N

(
1−q

)+ 1 (i = 1,2),

where the derivative dSi

d q (i = 1,2) is numerically computed based on (D.1) and (D.2).

In Figures D.1(c,d), the straight line with slope− dSi

d q (i = 1,2) obtained from Theorem

15 shows a good approximation for the simulations for a small fraction of removals.
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