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Abstract
Solving conjugate heat transfer design problems is relevant for various engineering applications requiring efficient thermal 
management. Heat exchange between fluid and solid can be enhanced by optimizing the system layout and the shape of the 
flow channels. As heat is transferred at fluid/solid interfaces, it is crucial to accurately resolve the geometry and the physics 
responses across these interfaces. To address this challenge, this work investigates for the first time the use of an eXtended 
Finite Element Method (XFEM) approach to predict the physical responses of conjugate heat transfer problems considering 
turbulent flow. This analysis approach is integrated into a level set-based optimization framework. The design domain is 
immersed into a background mesh and the geometry of fluid/solid interfaces is defined implicitly by one or multiple level 
set functions. The level set functions are discretized by higher-order B-splines. The flow is predicted by the Reynolds Aver-
aged Navier–Stokes equations. Turbulence is described by the Spalart–Allmaras model and the thermal energy transport 
by an advection–diffusion model. Finite element approximations are augmented by a generalized Heaviside enrichment 
strategy with the state fields being approximated by linear basis functions. Boundary and interface conditions are enforced 
weakly with Nitsche’s method, and the face-oriented ghost stabilization is used to mitigate numerical instabilities associated 
with the emergence of small integration subdomains. The proposed XFEM approach for turbulent conjugate heat transfer 
is validated against benchmark problems. Optimization problems are solved by gradient-based algorithms and the required 
sensitivity analysis is performed by the adjoint method. The proposed framework is illustrated with the design of turbulent 
heat exchangers in two dimensions. The optimization results show that, by tuning the shape of the fluid/solid interface to 
generate turbulence within the heat exchanger, the transfer of thermal energy can be increased.

Keywords Level set · Topology optimization · XFEM · Conjugate heat transfer · Heat exchanger · Turbulence · Spalart–
Allmaras

1 Introduction

Solving conjugate heat transfer problems is relevant for vari-
ous engineering applications. For systems operating at large 
or small scales, such as gas turbines or micro-electronic 

modules, an efficient thermal management is crucial to 
ensure reliable functionality. Heat exchangers are often 
added to systems to provide an efficient temperature con-
trol. They are made of highly conductive materials and are 
cooled or heated through natural or forced convection, i.e., 
a moving fluid is used to transport the heat to or away from 
the systems. By modifying the layout of heat exchangers, 
the flow path and the flow conditions can be altered which 
in turn influences the heat transfer between fluid and solid. 
Therefore, the performance in terms of heat transfer and dis-
sipative losses can be improved by optimizing the geometry 
of the heating or cooling devices.

Since the seminal work of Bendsøe and Kikuchi (1988), 
topology optimization has become a popular tool to sys-
tematically address design problems and generate layouts 
with enhanced performance under specific requirements, 
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see Sigmund and Maute (2013) and Deaton and Grandhi 
(2014). Originally introduced for structural designs, topol-
ogy optimization was first applied to fluid problems by Bor-
rvall and Petersson (2003). Considering Stokes flows, they 
introduced a porosity variable to represent the distribution 
of fluid and solid regions through the design domain. The 
method was extended to laminar Navier–Stokes models by 
Gersborg-Hansen et al. (2006). Following these pioneering 
works, various flow design problems have been solved by 
topology optimization, see Alexandersen and Andreasen 
(2020) for a comprehensive review.

While most designs are optimized assuming laminar 
flow, a wide range of fluid systems operate in the turbulent 
regime. Accurately modeling turbulence at an acceptable 
computational cost remains challenging, see Spalart (2000). 
High fidelity models, such as Direct Numerical Simulations 
(DNS) or Large Eddy Simulations (LES), are time-consum-
ing and integrating them into an optimization loop remains 
impractical. Lower fidelity models based on time averaged 
velocity and pressure fields, such as the Reynolds Averaged 
Navier–Stokes (RANS) model, are commonly used. To rep-
resent the Reynolds stresses, they are generally coupled to 
eddy viscosity models, such as the Spalart–Allmaras (SA), the 
k − � , or the k − � model, see Spalart and Allmaras (1992) 
and Wilcox (1993). To date, the design of fluid systems for 
turbulent flows is mainly based on RANS models.

Working with finite volumes, Othmer (2008) proposed a 
continuous adjoint approach with respect to density design 
variables and studied turbulent flows in ducts under the 
assumption of frozen turbulence, i.e., the variations of the 
turbulence variables are not accounted for in the sensitiv-
ity analysis. Zymaris et al. (2009) extended the continuous 
adjoint approach with respect to shape parameters to account 
for the turbulence variations modeled by the SA equation. 
They showed that, considering frozen turbulence, sensitivi-
ties can exhibit erroneous signs. Philippi and Jin (2015) 
developed an adjoint sensitivity method where the turbulent 
flow in porous media is represented by a k − � model. They 
used finite volumes to design channels for minimal mechani-
cal energy loss under the assumption of frozen turbulence. 
Papoutsis-Kiachagias and Giannakoglou (2016) leveraged 
the continuous adjoint approach to perform shape and den-
sity-based topology optimization on aero- and hydrodynamic 
industrial applications. Working with finite elements, Yoon 
(2016) proposed a density-based optimization framework 
for the design of channels with minimal turbulent energy 
dissipation. The framework relies on a discrete adjoint sen-
sitivity analysis of the RANS equations closed with the 
SA model. The approach was further extended to the k − � 
turbulence model in Yoon (2020). Dilgen et al. (2018a) 
designed channels and manifolds for turbulent flows with 
minimal power dissipation using a density-based topology 
optimization approach. They used a finite volume approach 

and automatic differentiation to perform the discrete adjoint 
sensitivity analysis of the RANS equations with different 
eddy viscosity models. Sá et al. (2021) tackled the specific 
case of rotating flows with an adapted version of the SA 
model and using a density-based approach.

While all aforementioned studies rely on density-based 
approaches, other optimization techniques have also been 
applied to turbulent flow design problems. Kubo et al. (2021) 
proposed a level set-based approach with Ersatz material 
and finite volumes. They represented the turbulence with 
the k − � and k − � models under the assumption of frozen 
turbulence. Picelli et al. (2022) used a binary topology opti-
mization approach in combination with a geometry trimming 
procedure to design channels for minimum turbulent energy 
dissipation with the k − � and k − � models. Alonso et al. 
(2022) extended the framework to the Wray–Agarwal tur-
bulence model. To improve the predictive capabilities of the 
RANS equations, Hammond et al. (2022) used data-driven 
turbulence modeling and designed fluid systems with turbu-
lent flows under the frozen turbulence assumption.

Along with the development of topology optimization 
approaches for fluid problems, multi-physics fluid problems 
gained in popularity, in particular conjugate heat transfer 
problems. Initial works on density-based methods consider-
ing conjugate heat transfer by Dede (2009) and Yoon (2010) 
focused on the design of channels for forced convection with 
laminar flows. Over the years, the complexity has increased 
to cover different heat transfer phenomena, different flow 
conditions, and to include multiple fluids. The interested 
reader is referred to Dbouk (2017) for an extensive overview.

As turbulence allows for increased heat transfer between 
fluid and solid phases as well as for an improved heat transport 
through the fluid, several research efforts have been devoted 
to the development of topology optimization frameworks for 
heat transfer with turbulent flows. Kontoleontos et al. (2013) 
extended the continuous adjoint approach of Zymaris et al. 
(2009) to account for turbulent heat transfer and generated 
channel layouts maximizing the energy transfer for a con-
strained pressure loss using density-based topology optimiza-
tion. Koga et al. (2013) designed heat sinks for maximum heat 
transfer and minimum pressure loss considering Stokes flow 
discretized by finite volumes. In a post-design stage, they car-
ried out validation simulations and considered turbulent flows 
with a k − � model. Pietropaoli et al. (2017) used density-
based topology optimization and a discrete adjoint approach 
to design internal channels heated at the outer walls. Turbu-
lence was described by a k − � model under the assumption of 
frozen turbulence. Dilgen et al. (2018b) extended their work 
on turbulent flow topology optimization to include thermal 
transport and design heat sinks for forced convection with 
turbulent flow modeled by the k − � model. Lee et al. (2020) 
developed a simplified non-exact adjoint sensitivity analysis 
for the design of aero-thermal systems including internal and 
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external turbulent flows based on the SA model and finite 
volumes. Yaji et al. (2020) proposed a multi-fidelity design 
approach for thermal turbulent flow optimization problems. 
Zhao et al. (2021) used a multi-layer thermo-fluid model for 
the design of turbulent forced convective heat sinks using the 
SA model. Ghosh et al. (2022) focused on the design of inter-
nal cooling ducts for gas turbine blades using finite volumes 
and under the frozen turbulence assumption.

All previously cited works on turbulent conjugate heat 
transfer rely on density-based methods. As the key physics 
phenomenon, i.e., the heat transfer, happens at the fluid/solid 
interface and as the flow fields are strongly influenced by 
the shape of the fluid/solid interface, it is crucial that both 
the geometry and the physics responses across the interface 
are accurately resolved. Combining the level set method 
(LSM) with immersed finite element methods (IFEM) offers 
an elegant approach to tackle such problems. Several fluid 
design problems were studied using level set-based topology 
optimization with IFEM, such as hydrodynamic Boltzmann 
transport in Makhija et al. (2014), fluid-structure interac-
tions in Jenkins and Maute (2016), heat transfers via natural 
convection in Coffin and Maute (2016), and species transport 
in Villanueva and Maute (2017). So far, design problems 
focusing on turbulent conjugate heat transfer have not been 
addressed using such techniques.

In this paper, a level set-based topology optimization 
framework for turbulent conjugate heat transfer problems 
is proposed. To obtain a crisp description of the fluid/solid 
interface, the design domain is immersed into a background 
mesh, and the design geometry is defined implicitly by one 
or multiple level set functions (LSF). For the first time, an 
eXtended Finite Element Method (XFEM) approach is used 
to predict the physical responses of the systems. To model 
turbulent conjugate heat transfer, the flow is described by 
the RANS equations for incompressible flows and stabilized 
by the Streamline Upwind Petrov-Galerkin (SUPG) and the 
Pressure Stabilizing Petrov-Galerkin (PSPG) formulations. 
Turbulence is described by the one-equation SA model. As 
the turbulence explicitly depends on the distance to the clos-
est wall, a distance field is constructed based on the heat 
method, see Crane et al. (2017). The thermal energy trans-
port in the fluid phase is predicted by an advection-diffusion 
equation. The temperature field in the solid phase is gov-
erned by a linear diffusion equation.

To discretize and solve conjugate heat transfer problems, 
an XFEM approach is adopted. This approach is similar to 
the XIGA approach presented in Noël et al. (2022) but is 
restricted to first-order approximations for the state vari-
able fields. Higher-order B-spline functions are used for the 
geometry representation as was done in Noël et al. (2020). 
A generalized Heaviside enrichment strategy with multiple 
enrichment levels is used to ensure independent approxima-
tion on each connected fluid or solid subregion. Boundary 

and interface conditions are enforced weakly via Nitsche’s 
method, see Nitsche (1971). Additionally, the face-oriented 
ghost stabilization is used to mitigate numerical instabilities 
resulting from the creation of small integration subdomains, 
see Burman (2010) and Burman and Hansbo (2014).

Design problems are solved by a gradient-based optimiza-
tion algorithm. The gradients of the objective and constraint 
functions are evaluated by the adjoint method. The optimi-
zation framework is applied to the design of heat exchang-
ers considering turbulent flows to enhance heat transfer and 
thermal management with acceptable pressure losses.

The remainder of the paper is structured as follows. Sec-
tion 2 is devoted to the geometry representation of the designs 
using one or several LSFs. In Sect. 3, the basic concepts of 
the XFEM approach such as the enrichment strategy, the 
face-oriented ghost stabilization, and the numerical integra-
tion scheme are briefly described. Section 4 details the phys-
ics model used to predict the solution of turbulent conjugate 
heat transfer problems. The handling of the governing equa-
tions using the XFEM approach is detailed. The ability of the 
proposed approach to solve turbulent conjugate heat transfer 
problems is demonstrated in Sect. 5 with benchmark problems, 
namely the backward facing step and the flow over a thick con-
ducting plate. The formulation of the optimization problems 
is discussed in Sect. 6. In Sect. 7, the proposed optimization 
framework is illustrated with two dimensional heat exchanger 
design problems. Variations of the design problem are con-
sidered in terms of the outer geometry of the heat exchangers, 
of the imposed flow conditions, and of the formulation of the 
optimization problems. Finally, Section 8 draws conclusions 
on the developed framework and proposes extensions of the 
framework for future research.

2  Geometry representation

The LSM was introduced by Osher and Sethian (1988) to 
efficiently track propagating fronts. Soon after its introduc-
tion, the LSM has been used in combination with shape and 
topology optimization, see Sethian and Wiegmann (2000), 
Wang et al. (2003), Allaire et al. (2004), and van Dijk et al. 
(2013) for an overview. The method describes geometries 
implicitly by LSFs. The iso-level �0 of a LSF �(�) defines 
an interface or a boundary Γ± that separates the domain Ω 
into two subdomains, Ω+ and Ω− , such that:

(1)𝜙(�)

⎧⎪⎨⎪⎩

< 𝜙0, ∀ � ∈ Ω+,

> 𝜙0, ∀ � ∈ Ω−,

= 𝜙0, ∀ � ∈ Γ±.



 L. Noël, K. Maute 

1 3

    2  Page 4 of 31

This paper follows the work by Vese and Chan (2002) on a 
multi-phase level set approach. One or multiple LSFs �i(�) 
with i = 1,… , n are used to describe the design geometry. 
With n LSFs, 2n subregions can be identified within the 
domain Ω . Each subregion is characterized by a unique 
combination of the LSF signs, describing whether a point 
� lies inside, outside, or on the interface. Each subregion 
is associated with the fluid, the solid, or the void phase, 
and their respective properties. An illustration of the geom-
etry description of a fluid/solid/void problem is presented 
in Fig. 1. The design domain Ω is defined by the dashed 
line. The fluid, the solid, and the void domains are repre-
sented in blue, grey, and white and are denoted by Ωf  , Ωs , 
and Ωv , respectively. The symbols Γf  and Γs denote the inter-
faces of the fluid and solid domains with the void domain, 
respectively. The fluid/solid interface is denoted by Γfs , i.e., 
Γfs = Γf ∩ Γs.

The level set description of the design domain geometry 
for a fluid/solid/void problem is shown in Fig. 2. Eight LSFs 
in green, �1(�),… ,�8(�) , are used to define the boundaries 
of the design domain that is fully immersed in a background 
analysis domain. The fluid/solid interfaces within the design 
domain are described by one LSF �9(�) in red. The minus 
sign associated to each isoline �i(�) = �0 indicates the 
region where 𝜙i(�) < 𝜙0.

For numerical analysis, each LSF �i(�) is discretized on 
a mesh and approximated as:

where Bk(�) are B-spline basis functions and (�i)k are the 
coefficients associated with the LSF �i(�) , similarly to Noël 
et al. (2022). In contrast to advancing the LSFs in the optimi-
zation process through the solution of the Hamilton–Jacobi 
equation, see approaches by Sethian and Wiegmann (2000), 
Wang et al. (2003), and Allaire et al. (2004), the coefficients 
of the LSFs are expressed as explicit functions of the design 

(2)�h
i
(�) =

∑
k

Bk(�) (�i)k,

variables � . They are updated by mathematical programming 
methods driven by shape sensitivities.

3  XFEM formulation

IFEMs alleviate the need for generating conforming analy-
sis meshes. IFEMs using enrichment functions enable the 
representation of discontinuities within a mesh element by 
augmenting the standard finite element approximation with 
enrichment functions. The XFEM was proposed by Moës 
et al. (1999) and Belytschko and Black (1999) to model 
crack propagation without remeshing. Over the years, the 
method has been successfully applied to various types of 
problems including the multi-phase problems considered 
here, see for example Burman and Hansbo (2014), Schott 
and Wall (2014), and Schott et al. (2015).

In this paper, an XFEM approach is adopted, which 
allows for accurate and efficient resolution of multi-phase 
problems with evolving interfaces and boundaries. The 
approach is similar to the XIGA proposed in Noël et al. 
(2022) but restricts the approximation of the state variable 
fields to first-order functions. The main ingredients of the 
XFEM approach are briefly recalled in this section. First, 
the enrichment strategy is described in Subsect. 3.1. Sub-
section 3.2 introduces the face-oriented ghost stabilization 
used to mitigate instabilities resulting from the generation 
of small integration subdomains. Finally, the numerical inte-
gration scheme used to accommodate elements occupied by 
multiple phases is explained in Subsect. 3.3.

ΩfΩs
Ωv

Γ fs

Γ f

Ω
Γ s

Fig. 1  Geometric description of fluid/solid/void design domain Ω

φ1 =φ0

−

φ2 =φ0

−

φ3 =φ0

−

φ4 =φ0

− φ
5
=

φ
0

−

φ
6
=

φ
0

−

φ
7
=

φ
0

−

φ
8
=

φ
0

−φ9 =φ0
−

−

Fig. 2  Geometric description of fluid/solid/void design domain Ω 
using multiple LSFs
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3.1  Enrichment strategy

In this paper, the enrichment strategy described in Makhija 
and Maute (2014) is extended to enrich each individual basis 
function separately based on the topology of the phase lay-
out within the basis function support as described in Noël 
et al. (2022). Considering a multi-phase problem, a state 
field �(�) is approximated as:

where K is the number of background basis functions and Lk 
is the number of separate connected subregions {Ω�

k
}
Lk
�=1

 in 
the support of the background basis function Bk . The coeffi-
cients a�

k
 are the degrees of freedom (DOFs) associated with 

the basis function Bk and phase subregions Ω�

k
 . The indicator 

function ��

k
(�) determines whether a point � belongs to a 

phase subregion Ω�

k
:

The selection of the enrichment levels is illustrated for a 
fluid/solid problem in Fig. 3. A basis function Bk spans 
both the fluid and the solid phases and its support is delim-
ited by a red-dashed line. Five separate connected material 
subregions Ω�

k
 exist within the basis support. Each sub-

region is occupied by one and only one phase, such that 
supp (Bk) =

⋃5

�=1
Ω�

k
 . Three subregions Ω�=1

k
 , Ω�=2

k
 , and 

(3)�h(�) =

K∑
k=1

Lk∑
�=1

��

k
(�)Bk(�) a

�

k
,

(4)��

k
(�) = IΩ�

k
(�) =

{
1, if � ∈ Ω�

k
,

0, otherwise .

Ω�=3
k

 are occupied by the fluid phase and two subregions 
Ω�=4

k
 and Ω�=5

k
 are occupied by the solid phase. As five sub-

regions Ω�

k
 exist within the basis support, five enrichment 

levels Lk = 5 are necessary.

3.2  Face‑oriented ghost stabilization

Enriched IFEMs may suffer from numerical instabilities when 
boundaries and interfaces intersect the mesh such that small 
integration subdomains are generated. In this situation, the 
contributions of the basis functions approximating the state 
variable fields might vanish and lead to a poorly conditioned 
system of equations. To mitigate this issue, the face-oriented 
ghost stabilization penalizes the jump in state field gradients 
across so-called ghost facets, as proposed in Burman (2010) 
and Burman and Hansbo (2014). In this work, the approach of 
Noël et al. (2022) is adopted.

The set of ghost facets FG is the set of facets that lie inside 
the design domain and that are intersected by interfaces and 
boundaries. A ghost facet F  is shared between two adjacent 
elements Ω+

F
 and Ω−

F
 , and is characterized by a normal �F , 

defined so as to align with the outward normal to Ω+
F
 and 

�F = �+
F
= −�−

F
 . The elements adjacent to the facet F  are sub-

divided by the phase layout into N+
F
 and N−

F
 connected subdo-

mains Ω+
F,i

 and Ω−
F,j

 with i = 1,… ,N+
F
 and j = 1,… ,N−

F
 . The 

jump in the state field gradients across the facet F  is penalized 
if Ω+

F,i
 and Ω−

F,j
 are occupied by the same phase, i.e., Ω+

F,i
 and 

Ω−
F,j

 are associated to the same material indices M+
F,i

= M
−
F,j

 
corresponding to either fluid or solid, and meet along a portion 
of the facet with a non-zero measure. For a state field, denoted 
here by � , and the corresponding trial field �� , the ghost stabi-
lization for facet F  is denoted G�

F
 and is computed as:

where the set JF,i defines the subdomains Ω−
F,j

 that with the 
subdomain Ω+

F,i
 satisfy the conditions for penalization. The 

parameter p is the degree of the considered approximation 
and the jump operator [[∙]] is defined such that:

where �+
F,i

 and �−
F,j

 are the polynomial extensions of the fields 
�|Ω+

F,i
 and �|Ω−

F,j
 respectively to all of ℝnd with nd the spatial 

dimension. The jump is defined similarly for the trial field 
�� . The operator �k

n
(∙) is the kth order normal derivative 

operator and �n(∙) = ∇(∙) ⋅ �F with ∇(∙) the spatial derivative 
operator. The ghost penalty parameters ��

G
 , used in this 

paper, are further described in Subsect. 4.6.

(5)G
�
F
(�, ��) =

N+
F∑

i=1

∑
j∈JF,i

[
p∑

k=1
∫
F

��
G

[[
�k
n
��

]]
⋅
[[
�k
n
�
]]
dΓ

]
,

(6)
[[
�k
n
�
]]

=
(
�k
n
�+
F,i

− �k
n
�−
F,j

)
,

Bk

�=1Ω�=1
k

�=2

Ω�=2
k

�=3

Ω�=3
k

�=4
Ω�=4

k

�=5

Ω�=5
k

Fig. 3  Enrichment strategy on a fluid/solid problem
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Figure 4 illustrates the subdivision of Ω+
F
 and Ω−

F
 into 

connected subdomains Ω+
F,i

 and Ω−
F,j

 and the associated 
indices M+

F,i
 and M−

F,j
 for a fluid/solid problem. The con-

sidered ghost facet F  and the adjacent background ele-
ments are marked using a red box. The background ele-
ment Ω−

F
 is occupied by three connected subdomains Ω−

F,1
 , 

Ω−
F,2

 , and Ω−
F,3

 while the background element Ω+
F
 is divided 

into two connected subdomains Ω+
F,1

 and Ω+
F,2

 . As Ω−
F,2

 and 
Ω+

F,1
 have the same material index M−

F,2
= M

+
F,1

 and meet 
along the facet, the jump in the associated field gradients 
is penalized across the facet. The same holds for the pairs 
Ω−

F,1
 and Ω+

F,2
 , and Ω−

F,3
 and Ω+

F,2
.

3.3  Numerical integration

The XFEM approach allows for the presence of multiple 
solid, fluid, and void phases within a single mesh ele-
ment. The integration of the weak form of the governing 
equations is performed separately on each subdomain. 
For this purpose, a conforming integration mesh is built 
for each intersected element. A quadrangular intersected 
element is subdivided into triangular integration elements 
that align with the boundaries and interfaces described by 
the LSFs. It should be noted that the cost for generating 
the conforming XFEM models is negligible in compari-
son to the cost of the forward and sensitivity analyses. 
Standard quadrature is then performed on each triangu-
lar integration element and non-intersected background 
element. The reader is referred to Villanueva and Maute 
(2014) and Noël et al. (2022) for further details on the 
subdivision strategy.

4  Physics model

This section focuses on the physics models used to repre-
sent turbulent conjugate heat transfer problems. The govern-
ing equations and their weak formulations are detailed. The 
fluid flow is described by the incompressible Navier–Stokes 
equations. Subsection 4.1 details the implementation of these 
equations within the XFEM approach. The SA turbulence 
equation is used to model the eddy viscosity, as described in 
Subsect. 4.2. Subsection 4.3 is dedicated to the conjugate heat 
transfer and the associated diffusion-advection equation. As 
the SA turbulence model depends on the distance to the closest 
wall, the heat method is used to construct a distance field over 
the fluid domain, as explained in Subsect. 4.4. As advection-
dominated problems may suffer from numerical instabilities, 
i.e., spurious oscillations of the state variable fields, subgrid 
stabilization is used as shown in Subsect. 4.5. Finally, the 
face-oriented ghost stabilization, introduced in Subsect. 3.2, 
is detailed for the particular case of turbulent conjugate heat 
transfer problems in Subsect. 4.6.

4.1  Incompressible Navier–Stokes equations

In this work, the fluid flow is governed by the incompressible 
Navier–Stokes equations. The residuals of the strong form of 
the momentum equilibrium equations ��

Ω
 and of the incom-

pressibility condition rp
Ω
 are given as:

where � is the fluid velocity, p is the pressure, and � is the 
constant fluid density. The Cauchy stress tensor is denoted 
by �(�, p) and is computed as:

(7)
��
Ω
= �� ⋅ ∇� − ∇ ⋅ �(�, p) = �,

r
p

Ω
= ∇ ⋅ � = 0,

(8)�(�, p) = −p � + 2� �(�),

F

n−
Fn+

F

Ω−
F Ω+

F

Ω−
F,2

Ω−
F,3

Ω−
F,1

Ω+
F,1

Ω+
F,2

M−
F,2

M−
F,3

M−
F,1

M+
F,1

M+
F,2

Fig. 4  Ghost stabilization on a fluid/solid problem



XFEM level set-based topology optimization for turbulent conjugate heat transfer problems  

1 3

Page 7 of 31     2 

where � is the identity matrix, � is the fluid dynamic viscos-
ity, and �(�) is the strain rate tensor defined as:

The residuals of the weak form of the momentum equations 
and of the continuity condition within the fluid domain are 
given as:

where � and �� are the velocity field and test function, and p 
and �p are the pressure field and test function, respectively.

Boundary conditions on the fluid velocity field are 
imposed weakly via Nitsche’s formulation, see Nitsche 
(1971) and Bazilevs and Hughes (2007). To prescribe a 
velocity �D on Γf

D
 , the following contributions are added to 

the velocity and pressure residuals:

where ��
N

 and �p
N

 are parameters used to obtain a symmetric 
( ��

N
= 1 , �p

N
= 1 ) or a skew-symmetric ( ��

N
= −1 , �p

N
= −1 ) 

Nitsche’s formulation. In this paper, a skew-symmetric for-
mulation is adopted for both contributions. The Nitsche’s 
penalty parameter is denoted ��

N
 and is defined following 

Schott et al. (2015) as:

where ��
N

 is a constant parameter chosen to achieve a 
desired accuracy in satisfying the boundary conditions. 
The first term accounts for viscosity-dominated flows and 
h is the length of the interface within an intersected ele-
ment, while the second term accounts for convection flows. 
The operator ‖ ∙ ‖∞ is the infinite norm operator, such that 
‖ ∙ ‖∞ = max(�).

At the inflow, imposing inlet velocity conditions might 
cause inflow instabilities. To alleviate this issue, an addi-
tional up-winding term is added to the residual ��

ΓD
:

(9)�(�) =
1

2

(
∇� + ∇�T

)
.

(10)

��
Ω
=∫Ωf

�� ⋅

(
�� ⋅ ∇�

)
dΩ

+ ∫Ωf

��(�) ∶ �(�, p) dΩ,

R
p

Ω
=∫Ωf

�p
(
∇ ⋅ �

)
dΩ,

(11)

��
ΓD

= − ∫Γ
f

D

�� ⋅

(
�(�, p) ⋅ �

)
dΓ

− ��
N ∫Γ

f

D

�

(
2� �(�) ⋅ �

)
⋅

(
� − �D

)
dΓ

+ ∫Γ
f

D

��
N
�� ⋅

(
� − �D

)
dΓ,

R
p

ΓD
= �

p

N ∫Γ
f

D

(
�p�

)
⋅

(
� − �D

)
dΓ,

(12)��
N
= ��

N

�
�

h
+

� ‖�‖∞
6

�
,

where ��
up

 is the up-winding parameter and is set to ��
up

= 1 , 
as proposed in Schott and Wall (2014).

The pressure pN can be imposed on the fluid boundaries 
Γ
f

N
 . The weak form of the residual for the Neumann bound-

ary condition is evaluated as:

4.2  Spalart–Allmaras turbulence model

In this paper, heat transfer with turbulent flows is considered. 
Turbulence introduces additional stresses in the fluid due to 
the presence of turbulent eddies in the flow. These eddies 
generate additional shear stress, i.e., the so-called Reynolds 
stress �t . This stress is modeled based on the Boussinesq 
eddy viscosity assumption as:

where �t is the turbulent dynamic viscosity. The stress tensor 
takes the form:

The RANS system of equations is closed using the turbu-
lence model of Spalart and Allmaras (1992) and the turbu-
lent dynamic viscosity is evaluated as:

where �̃� is the so-called modified viscosity and is the addi-
tional state variable introduced in the SA model. The resid-
ual of the strong from of the SA equation is given as:

where P is the production term, D the wall destruction term, 
and K the diffusion coefficient. The modified velocity �̃ is 
defined as:

where the constants cb2 and � are set to cb2 = 0.622 , and 
� = 2∕3.

The original model presented in Spalart and Allmaras 
(1992) only admits non-negative values for the modified vis-
cosity �̃� given non-negative boundary and initial conditions. 
However, coarse grids and transient states may yield negative 
values. To handle these situations, a continuation model for 
negative turbulence values was proposed in Allmaras et al. 

(13)��
up

= ∫Γ
f

D

��
up
�� ⋅

[(
� ⋅ �

)
⋅

(
� − �D

)]
dΓ,

(14)��
ΓN

= ∫Γ
f

N

�� ⋅

(
pN �

)
dΓ.

(15)�t = 2�t �(�),

(16)�(�, p) = −p � + 2
(
� + �t

)
�(�).

(17)𝜇t = f (�̃�),

(18)r�̃�
Ω
=
(
�̃ ⋅ ∇�̃�

)
− P �̃� + D �̃� −

[
∇ ⋅

(
K ∇�̃�

)]
= 0,

(19)�̃ = � − cb2 ∇
(
�̃�

𝜎

)
,
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(2012). The modified model recovers the original SA model 
for positive �̃� values, while a negative value of the modified 
viscosity �̃� produces zero eddy viscosity, i.e., �t = 0 . The 
modified version of the model is adopted in this paper and is 
described hereunder in the context of the XFEM.

The turbulent dynamic viscosity �t is evaluated as:

where � is the kinematic viscosity such that � = � � , and cv1 
is a constant set to cv1 = 7.1.

The production term P is defined as:

where �ft2 is a parameter that controls the use of the ft2 term, 
i.e., �ft2 = 1 to account for and �ft2 = 0 to exclude the ft2 term 
from the formulation. The ft2 term was initially introduced 
to control the laminar regions and to render solutions with 
�̃� = 0 stable. Rumsey (2007) showed that the ft2 term can 
be omitted for reasonably high Reynolds number. In this 
paper the influence of omitting the ft2 term on the optimi-
zation results is investigated. The constant parameter �P is 
used to enhance the numerical behavior of the model when 
�̃� becomes negative and should be set such that �P ≥ 1.0 , 
see Anderson et al. (2019). In this paper, the parameter 
is set to �P = 10.0 . The constants cb1 , ct3 , and ct4 are set to 
cb1 = 0.1355 , ct3 = 1.2 , and ct4 = 0.5 , respectively.

The wall destruction term D is defined as:

where d is the distance to the closest wall. The constants 
� and cw3 are set to � = 0.41 and cw3 = 2 . The intermediate 
variable g is computed as:

(20)

𝜇t(�̃�) =

{
𝜌 fv1 �̃�, if �̃� ≥ 0,

0, if �̃� < 0,

with fv1 =
𝜒3

𝜒3 + c3
v1

, and 𝜒 =
�̃�

𝜈
,

(21)
P =

{
cb1

(
1 − 𝛽ft2 ft2

)
S̃, if �̃� ≥ 0,

cb1𝛼P
(
1 − ct3

)
S, if �̃� < 0,

with ft2 = ct3 exp(−ct4 𝜒
2),

(22)

D =

⎧
⎪⎨⎪⎩

�
cw1 fw −

cb1

𝜅2
𝛽ft2 ft2

��
�̃�

d2

�
, if �̃� ≥ 0,

−cw1

�
�̃�

d2

�
, if �̃� < 0,

with

cw1 =
cb1

𝜅2
+

(1 + cb2)

𝜎
,

fw = g

�
1 + c6

w3

g6 + c6
w3

� 1

6

,

(23)
g = r + cw2(r

6 − r),

with r = min

[
�̃�

S̃𝜅2d2
, rlim

]
,

where cw2 and rlim are constants set to cw2 = 0.3 and 
rlim = 10.0.

The diffusion coefficient K is defined as:

where cn1 is a constant set to cn1 = 16.
The value of the modified vorticity S̃ should always 

be positive and greater than 0.3 S for physically relevant 
configurations. Numerically, the model allows for zero or 
negative values of S̃ . To ensure the non-negativity of the 
modified vorticity S̃ , the following modifications were pro-
posed in Allmaras et al. (2012):

where the magnitude of the vorticity S is evaluated as:

and the intermediate variable S as:

Finally, the residual of the weak form of the SA equation 
is given as:

where �̃� and 𝛿�̃� are the modified viscosity field and test func-
tion, respectively.

As the flow at the fluid/solid interface is close to zero, 
i.e., it is laminar, the viscosity is prescribed to zero, i.e., 
�̃� = 0 . A prescribed modified viscosity �̃�D is imposed 
weakly via Nitsche’s formulation as:

(24)
K =

⎧
⎪⎪⎨⎪⎪⎩

𝜈 + �̃�

𝜎
if �̃� ≥ 0,

𝜈 + �̃� fn

𝜎
, if �̃� < 0,

with fn =
cn1 + 𝜒3

cn1 − 𝜒3
,

(25)S̃ =

⎧⎪⎨⎪⎩

S + S, if S ≥ −cv2S,

S +
S
�
c2
v2
S + cv3S

�

�
cv3 − 2cv2

�
S − S

, if S < −cv2S,

(26)S =
√
2� ∶ �, with � =

1

2

�
∇� − ∇�T

�
,

(27)S =
�̃�

𝜅2d2
fv2, with fv2 = 1 −

𝜒

1 + 𝜒 fv1
.

(28)

R�̃�
Ω
=∫Ωf

𝛿�̃�

(
�̃ ⋅ ∇�̃�

)
dΩ

− ∫Ωf

𝛿�̃� P �̃� dΩ

+ ∫Ωf

𝛿�̃� D �̃� dΩ

+ ∫Ωf

𝛿∇�̃� ⋅
(
K ∇�̃�

)
dΩ,
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where 𝛽�̃�
N

 is a parameter used to obtain a symmetric ( 𝛽�̃�
N
= 1 ) 

or a skew-symmetric ( 𝛽�̃�
N
= − 1 ) Nitsche’s formulation. In 

this paper, a skew-symmetric formulation is adopted. The 
Nitsche’s penalty parameter 𝛾�̃�

N
 is defined as:

where 𝛼�̃�
N

 is a constant penalty parameter chosen to achieve 
a desired accuracy in satisfying the boundary conditions.

At the inflow, enforcing inlet viscosity conditions might 
cause instabilities. Similarly to Eq. (14), an additional up-
winding term is added to the residual R�̃�

ΓD
:

where the up-winding parameter 𝛾�̃�
up

 is set to 𝛾�̃�
up
= 1.0.

4.3  Advection–diffusion equation

The heat transfer in the fluid is described by an advection–dif-
fusion equation where the velocity is governed by the flow 
model. The residual of the strong form of the advection–dif-
fusion equation is given as:

where cp is the heat capacity, and Q is the body heat load. 
The diffusive heat flux is denoted by � and is computed as:

where � is the isotropic diffusion tensor and � = � � with � 
the conductivity. The presence of turbulence results in an 
additional turbulent heat flux �t defined as:

where �
t
 is the turbulent isotropic diffusion tensor and 

�t = �t � with �t , the turbulent conductivity. Finally, the dif-
fusive heat flux takes the form:

The turbulent conductivity �t is evaluated as:

(29)

R�̃�
ΓD

= − ∫Γ
f

D

𝛿�̃�

[(
K ∇�̃�

)
⋅ �

]
dΓ

− 𝛽�̃�
N ∫Γ

f

D

𝛿

[(
K ∇�̃�

)
⋅ �

](
�̃� − �̃�D

)
dΓ

+ ∫Γ
f

D

𝛾�̃�
N
𝛿�̃�

(
�̃� − �̃�D

)
dΓ,

(30)𝛾�̃�
N
= 𝛼�̃�

N

𝜈

h
,

(31)R�̃�
up

= ∫Ωf

𝛾�̃�
up
𝛿�̃�

[(
�̃ ⋅ �

)(
�̃� − �̃�D

)]
dΓD,

(32)rT
Ω
= � cp

(
� ⋅ ∇T

)
− ∇ ⋅ � − Q,

(33)� = � ⋅ ∇T ,

(34)�t = �t ⋅ ∇T ,

(35)� =
(
� + �t

)
⋅ ∇T ,

where Prt is the turbulent Prandtl number and is set to 
Prt = 0.9.

The residual of the weak form of the advection-diffusion 
equation is given as:

where T and �T  are the temperature field and test function, 
respectively.

For heat conduction in the solid, a linear diffusion model 
is used and can be obtained by omitting the advection term 
in Eqs. (32) and (53) and replacing the conductivity of the 
fluid, � = � f  , with the one of the solid, � = �s.

Boundary conditions on the temperature field are pre-
scribed weakly via Nitsche’s formulation:

where TD is a prescribed temperature, �T
N

 is a parameter 
used to obtain a symmetric ( �T

N
= 1 ) or a skew-symmetric 

( �T
N
= − 1 ) Nitsche’s formulation. A skew-symmetric for-

mulation is implemented in this paper. The Nitsche’s penalty 
parameter �T

N
 is expressed as:

where �T
N

 is a constant parameter chosen to achieve a desired 
accuracy in satisfying the boundary conditions.

The continuity of temperature and heat flux at the fluid/
solid interface Γfs is imposed weakly via Nitsche’s formula-
tion as follows:

(36)𝜅t = f (�̃�) =
cp 𝜇t(�̃�)

Prt
,

(37)

RT
Ω
=∫Ωf

�T
(
� cp � ⋅ ∇T

)
dΩ

+ ∫Ωf

�∇T ⋅ � dΩ

− ∫Ωf

�T QdΩ,

(38)

RT

ΓD = − ∫Γ
f

D

�T
[
� ⋅ �

]
dΓ

− �T
N ∫Γ

f

D

�

[
� ⋅ �

](
T − TD

)
dΓ

+ ∫Γ
f

D

�T
N
�T

(
T − TD

)
dΓ,

(39)�T
N
= �T

N

�

h
,

(40)

RT

Γfs = − ∫Γfs

[[�T]]
{
� ⋅ �

}
dΓ

− �T
I ∫Γfs

�

{
� ⋅ �

}
[[T]] dΓ

+ ∫Γfs

�T
I
[[�T]] [[T]] dΓ,
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where �T
I

 is a parameter used to obtain a symmetric ( �T
I
= 1 ) 

or a skew-symmetric ( �T
I
= − 1 ) Nitsche’s formulation. The 

jump operator [[∙]] computes the difference in the considered 
quantity between fluid and solid domains as [[∙]] = ∙f − ∙s . 
The mean operator {∙} evaluates a weighted sum of the 
considered quantity over the fluid and solid domains as 
{∙} = wf ∙f +ws ∙s . The weights are defined following Dol-
bow and Harari (2009) and Annavarapu et al. (2012) as:

where meas (Ωf ) and meas (Ωs) are the surface area of fluid 
and solid within the intersected element. The penalty param-
eter �T

I
 is evaluated as:

where meas (Γfs) is the length of the interface within the 
intersected element.

4.4  Wall distance through the heat method

The one-equation SA turbulence model requires the distance to 
the closest wall d. In this paper, the wall distance is constructed 
using the heat method, see Crane et al. (2017). First, a transient 
heat conduction problem for the additional state variable field 
� is solved over the design domain. The residual of the strong 
form of the conduction equation is written as:

where �� , c�
p
 , and �� are the density, the specific heat capac-

ity, and the isotropic diffusion tensor of the heat method. 
Zero initial boundary conditions, i.e., �||t=0 = 0.0 , are 
imposed on the design domain Ω and a fixed temperature, 
i.e., �||Γfs = 1.0 , is enforced at the interface Γfs between fluid 
and solid. The equation is solved in one single time step. The 
time step size is selected following the work by Geiss et al. 
(2019), i.e., just large enough to yield non-zero gradient over 
the design domain.

The distance �D is constructed by solving a Poisson’s equa-
tion with a body heat load dependent on the normalized gradi-
ent of the additional temperature field � . The strong form of the 
residual for the Poisson’s equation is expressed as:

(41)
wf =

meas (Ωf )∕� f

meas (Ωf )∕� f + meas (Ωs)∕�s
,

ws =
meas (Ωs)∕�s

meas (Ωf )∕� f + meas (Ωs)∕�s
,

(42)�T
I
=

2 cT
I
meas (Γfs)

meas (Ωf )∕� f + meas (Ωs)∕�s
,

(43)r�
Ω
= �� c�

p

��

�t
− ∇ ⋅

(
�
�
⋅ ∇�

)
,

(44)r
�D

Ω
= Δ�D − ∇ ⋅

(
−

∇�

|∇�|
)
.

A distance �D
||Γfs = 0.0 is enforced on the interface Γfs 

between fluid and solid.
The weak form of the residuals in Eqs.  (43, 44) are 

formulated similarly to the advection-diffusion equations 
presented in Subsect. 4.3. It should be noted that building 
a wall distance field using the heat method requires the 
introduction of two additional state variable fields � and 
�D and the solution of two additional scalar partial dif-
ferential equations.

In the vicinity of and at the walls, the obtained distance 
field �D might exhibit values close to machine precision 
and suffer from small spurious node-to-node variations. 
This issue results from the weak imposition of zero dis-
tance boundary conditions within the XFEM approach. 
The small variations might be amplified through the for-
mulation of the SA source terms and lead to large node-
to-node variations of the production and wall destruction 
coefficients, which in turn jeopardize the stability of the 
SA model. To mitigate this issue and regularize the dis-
tance field, a L2 projection scheme is used. First, a loga-
rithmic function of the square of the distance �D is pro-
jected to a intermediate distance variable �P , such that:

where �P and ��P are the intermediate distance field and 
the test function, respectively. Finally, the wall distance d 
is computed from the intermediate distance variable �P as:

4.5  Subgrid stabilization

Spurious node-to-node velocity oscillations can arise from 
the convective terms in the incompressible Navier–Stokes 
equations, the SA turbulence equation, and the advection-
diffusion equation, see Eqs. (7, 18, 32). Additionally, using 
approximations of the same order for both the velocity 
and the pressure fields may lead to spurious pressure 
oscillations. To mitigate these issues, the incompressible 
Navier–Stokes equations are augmented by the SUPG 
and the PSPG formulations of Tezduyar et al. (1992). The 
SUPG formulation introduced in Franca et al. (1992) is 
used to augment both the SA turbulence equations and the 
advection-diffusion equation.

The contribution of the SUPG/PSPG formulations 
to the weak form of the residuals of the incompressible 
Navier–Stokes equations is given as:

(45)R
�P

Ω
= ∫Ωf

��P

(
�P − log10(1∕�

2
D
)
)2

dΩ,

(46)d =
√
10−�P .
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Following the approach of Taylor et al. (1998) and Whiting 
and Jansen (2001), the stabilization parameters ��

SUPG
 and 

�
p

PSPG
 are defined as:

where CI is a constant set to 36.0 for linearly interpolated 
finite elements, see Whiting (1999). The operator tr (∙) eval-
uates the trace as tr (∙) = ∙ii and the contravariant metric ten-
sor � is expressed as:

with � are the parametric coordinates in the background 
element.

The weak form of the residual for the turbulence equation 
is augmented with the SUPG formulation as:

The stabilization parameter 𝜏�̃�
SUPG

 is evaluated following 
Tezduyar and Osawa (2000) as:

where ‖ ∙ ‖ is the Frobenius norm and h�̃ is a length measure 
defined as:

where | ∙ | is the absolute value operator and Bi are the basis 
functions used to approximate the velocity field.

Finally, the weak form of the residual for the advection-
diffusion equation is augmented with the SUPG formulation 
as:

The stabilization parameter �T
SUPG

 is formulated, similarly 
to Eq. (50), as:

(47)

��
ΩSUPG

=∫Ωf

(
�� ⋅ ∇��

)
⋅

(
��
SUPG

��
Ω

)
dΩ

+ ∫Ωf

(
∇ ⋅ ��

)
⋅

(
�
p

PSPG
r
p

Ω

)
dΩ,

R
p

ΩPSPG
=∫Ωf

�∇p ⋅

(
��
SUPG

��
Ω

)
dΩ.

(48)

��
SUPG

=
1√

(��) ⋅� ⋅ (��) + CI �
2 � ∶ �

,

�
p

PSPG
=

1

��
SUPG

tr (�)
,

(49)Gij =

nd∑
k=1

��k

�xi

��k

�xj
,

(50)R�̃�
Ω,SUPG

= ∫Ωf

(
�̃ ⋅ ∇𝛿�̃�

)(
𝜏�̃�
SUPG

r�̃�
Ω

)
dΩ.

(51)𝜏�̃�
SUPG

=

��2 ‖�̃‖
h�̃

�2

+
�
4K

h2
�̃

�2

+
�
D − P

�2
�− 1

2

,

(52)h�̃ =
2 ‖�̃‖∑

i ��̃ ⋅ ∇Bi�
,

(53)RT
Ω,SUPG

= ∫Ωf

(
1

� cp
� ⋅ ∇�T

)(
�T
SUPG

rT
Ω

)
dΩ.

where the length measure h� is defined as:

4.6  Face‑oriented ghost stabilization

To counteract the effect of numerical instabilities related 
to small integration subdomains, the face-oriented ghost 
stabilization presented in Subsect. 3.2 is adopted in this 
work. The formulation of the residual of the weak form 
of the stabilization for a generic state field � is given as:

where G�
F
 is the ghost penalization for facet F  as presented 

in Subsect. 3.2.
A viscous ghost penalty term ��,visc

FG
 , as defined in 

Eqs. (5, 56), is added to the residual ��
Ω

 . Following Bur-
man and Hansbo (2014), the associated ghost penalty 
parameter ��,visc

G
 is given as:

where ��,visc

G
 is a constant penalty parameter, hF is the length 

associated with ghost facet F  , and p is the order of the con-
sidered approximation, as introduced in Eq. (5).

A convective ghost penalty term ��,conv

FG
 acting on the 

first order gradient of velocity field � only, as defined in 
Eqs. (56, 5) with p = 1 , is added to the residual ��

Ω
 as 

proposed in Schott and Wall (2014). The associated ghost 
penalty parameter ��,conv

G
 is given as:

where ��,conv

G
 is a constant penalty parameter.

To control pressure instabilities, a ghost penalty term 
R
p

FG
 is added to the pressure residual Rp

Ω
 , as proposed in 

Schott et  al. (2015), and the associated ghost penalty 
parameter �p

G
 is defined as:

where both viscous and convective flows are handled by the 
first and second term respectively and �p

G
 is a constant pen-

alty term.

(54)�T
SUPG

=

��2 ‖�‖
h�

�2

+
�

4 �

� cp h
2
�

�2
�− 1

2

,

(55)h� =
2 ‖�‖∑

i �� ⋅ ∇Bi�
.

(56)��
FG

=
∑
F∈FG

G
�
F
(�, ��),

(57)�
�,visc

G
= �

�,visc

G
� h

2(k−1)+1

F
, k = 1,… , p

(58)�
�,conv

G
= �

�,conv

G
� |� ⋅ �F| h2F,

(59)�
p

G
= �

p

G

�
�

hF
+

� ‖�‖∞
6

�−1

h2k
F
, k = 1,… , p,
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Instabilities in the modified viscosity field �̃� are mitigated 
by adding a ghost stabilization term to the viscosity residual 
R�̃�
Ω

 . The associated ghost penalty parameter is given as:

where 𝛼�̃�
G

 is a constant penalty parameter.
Finally, a ghost penalization term is added to the tem-

perature residual RT
Ω

 and the ghost penalty parameter �T
G

 is 
defined as:

where �T
G

 is a constant penalty parameter. Similar ghost 
penalization terms are introduced to stabilize the additional 
temperature � , distance �D , and approximate distance �P 
fields.

5  Validation examples

To validate the physics model presented in Sect. 4, two well-
known academic examples are reproduced using our XFEM 
approach and are compared against numerical results from 
the literature. All verification examples are analyzed with 
the flow channels immersed in a background mesh to dem-
onstrate the accuracy of the proposed numerical models for 
settings encountered in the optimization studies of Sect. 7.

Studying turbulent flows, the physics responses are often 
presented in terms of normalized quantities. In the follow-
ing examples, the normalized distance to the wall y+ , the 
normalized velocity u+ , and the normalized temperature T+ 
are used and are expressed as:

The friction velocity u� and the friction temperature T� are 
defined as:

where �w , Tw , qw are quantities evaluated at the wall and are 
the wall shear, the wall temperature, and the wall heat flux, 
respectively. A normalized distance to the wall of approxi-
mately y+ ≈ 1 is recommended to accurately resolve bound-
ary layer phenomena in turbulent flows.

The numerical studies presented in the paper are per-
formed with a parallelized implementation of the XFEM 
approach into an in-house C++ code. The forward analy-
sis uses a staggered solution strategy, i.e., the problem is 
solved successively for the heat method state variables, for 
the distance variables, followed by the flow and SA state 
variables, and finally the temperature variables. The flow-SA 

(60)𝛾�̃�
G
= 𝛼�̃�

G
𝜈 h

2(k−1)+1

F
, k = 1,… , p,

(61)�T
G
= �T

G
� h

2(k−1)+1

F
, k = 1,… , p,

(62)y+ =
y u�

�
, u+ =

u

u�
, T+ =

T

T�
.

(63)u� =

√
�w∕�

f , T� = �f cf
p
u� (Tw − T)∕qw,

equations are solved staggered using a pseudo time step-
ping with a local CFL strategy and an increasing time step 
size are used to reach steady state, see Ceze and Fidkowski 
(2013) and Witherden et al. (2017). The fluid and SA sub-
problems are solved by Newton’s method. All linear and 
linearized systems of equations are solved by MUMPS, see 
Amestoy et al. (2001). Gauss quadrature rules are used to 
integrate the set of discretized governing equations on each 
integration subdomains. Working in two dimensions, a 2×2
-point integration rule is used for quadrangular integration 
elements, a 7-point integration rule is used for triangular 
integration elements, and a 2-point integration rule is used 
for interface line elements.

5.1  Backward facing step

This subsection focuses on the validation of the XFEM 
formulation of the incompressible Navier–Stokes and SA 
models. The energy transport, in the fluid or solid phase, is 
not considered here. To this end, the backward facing step 
problem is investigated numerically using the approach pro-
posed in Sect. 4. Following NASA Langley Research Center 
(2022a), the geometry of the backward facing step is illus-
trated in Fig. 5, where the dimension H is set to H = 0.0127 
m. It should be noted that the geometry is not represented 
to scale.

The fluid is chosen as water and is characterized 
by a density �f = 1.18 kg/m3 and a kinematic viscosity 
�f = 1.57×10−5 m 2 /s at atmospheric conditions, and at a ref-
erence temperature of 300 K. The boundary conditions are 
presented in Fig. 5. The inflow conditions are represented 
in blue. A uniform inlet velocity with ux,in = 41.5 m/s and 
uy,in = 0 m/s is enforced corresponding to a Reynolds num-
ber of Re = 33, 570 . A uniform inlet viscosity is prescribed 
with �̃�in = 3 𝜈f  . Additionally, symmetry conditions, in green, 
are imposed close to the inlet, i.e., a zero tangent velocity 
uy,sym = 0 m/s and a prescribed viscosity �̃�sym = 3 𝜈f  . At the 
walls, colored in black, a no-slip condition is imposed on 
the velocity, i.e., ux,wall = uy,wall = 0 m/s, and the modified 
viscosity is set to zero �̃�sym = 0  m2/s. At the outlet, marked 
in red, the pressure is set to zero. The properties used for the 

ux,wall uy,wall ν̃wall

x

y
uy,sym ν̃sym

ux,in
uy,in
ν̃in

pout

0.0
H

8H

−130H −110H 0.0 50H

Fig. 5  Backward facing step: geometry (not drawn to scale) and 
boundary conditions
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heat method are chosen as �� = 1.0 kg/m3 , c�
p
= 0.1 J/kgK, 

and �� = 1.0 W/mK. Finally, the different penalty parameters 
introduced in Sect. 4 are detailed in Table 1.

The ability of the proposed method to model turbulent 
flow is demonstrated by comparison against experimental 
results from Driver and Seegmiller (1985) and numerical 
results from NASA Langley Research Center (2022b). This 
study is performed on a refined mesh around the walls to 
allow for an accurate resolution of the wall distance field 

and of the boundary layer phenomena, as shown in Fig. 6. 
Mesh elements have an initial size h=H∕5  and are refined 
seven times around the walls leading to a mesh size of 
h=H∕(5×27) , 2,727,478 mesh elements, and 7,781,480 
DOFs. This refinement leads to a normalized distance to 
the wall y+ ≈ 3 for the first element near the wall.

Different settings of the SA model are considered. In par-
ticular, the use of the ft2 term in Eqs. (21, 22) and the use of 
the proposed approximated distance d in Eq. (46) instead of an 
exact analytical distance function are investigated. The solu-
tion obtained using the ft2 term and the exact wall distance is 
presented in Fig. 7.

Figure  8 presents the velocity and turbulence pro-
files at different locations downstream of the step, i.e., 
x∕H = 1.0, 4.0, 6.0 and 10.0. Figure 8 shows that, regard-
less of the SA model configuration, the numerical results 
produced using the XFEM approach are in good agree-
ment with both the numerical results from NASA Langley 

Table 1  Backward facing step: Nitsche’s and Ghost penalty param-
eters

u,visc
N γu,visc

up
ν̃
N

T
N

cT
I

θ
N

φD

N

10.0 1.0 10.0 10.0 10.0 100.0 100.0

αu,visc
G αu,conv

G αp
G αν̃

G αT
G αθ

G αφD

G αφP

G

0.005 0.005 0.0005 0.005 0.005 0.01 0.01 0.005

� � � � �

Fig. 6  Backward facing step: mesh refinement around walls

Velocity magnitude ‖u‖

0.0 1.1

Pressure p

−1.4e−1 1.8e−2

Relative viscosity χ

0.0 4.3e2

Fig. 7  Backward facing step: flow solution obtained using the f
t2 term and the exact wall distance in the SA model
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Research Center (2022b) and the experimental results from 
Driver and Seegmiller (1985) for all locations downstream 
of the step considered. Small discrepancies between all 
numerical models and the experimental results are only 
observed in the recirculation domain, here x∕H = 1.0 . 
Using the approximated wall distance d or an analytical 
expression of the distance yields similar results, i.e., both 
the solid and dashed blue curves and the solid and dashed 
red curves overlap for all locations downstream of the step. 
These results indicate that the wall distance field is suffi-
ciently resolved by the approximate wall distance proposed 
in Eq. (46). Therefore, this approximation will be used in 
subsequent simulations. Concerning the effect of the ft2 
term, numerical results show that the term has a minor 
influence on the flow conditions at this Reynolds number. 
Small difference between velocity profiles with �ft2 = 0 
(solid and dashed red curves) and �ft2 = 1 (solid and dashed 
blue curves) are only observed inside the channel. These 
results agree with the observations of Rumsey (2007). The 
influence of the ft2 term on topology optimization results 
is further studied in Sect. 7.

5.2  Laminar and turbulent flow over a thick flat 
plate

In this subsection, the coupling of the flow model with the 
advection–diffusion equation is investigated. The problem 
of a laminar or a turbulent flow over a thick plate with a pre-
scribed temperature at its bottom side is studied numerically 
using the proposed XFEM approach. Following Vynnycky 
et al. (1998), the geometry of the computational domain 
is presented in Fig. 9, where the dimensions are set with 
H = 1 m.

The boundary conditions are illustrated in Fig. 9. The 
inflow conditions consist of a constant inlet velocity with 
ux,in = 0.1 m/s and uy,in = 0 m/s and an inlet temperature 
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Fig. 8  Backward facing step: comparison of velocity profiles at 
locations downstream the step with x∕H = 1.0, 4.0, 6.0 and 10.0 for 
numerical results from XFEM approach with f

t2 term ( �
f
t2
= 1 ) and 

with exact distance, without f
t2 term ( �

f
t2
= 0 ) and with exact dis-

tance, with f
t2 term ( �

f
t2
= 1 ) and with approximate distance d, with-

out f
t2 term ( �

f
t2
= 0 ) and with approximate distance d, numerical 

results from NASA Langley Research Center (2022b), and experi-
mental results from Driver and Seegmiller (1985)
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Tin
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0.0

H/2
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Fig. 9  Turbulent flow over a thick flat plate with a prescribed tem-
perature at its bottom side: geometry and boundary conditions
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Tin = 300 K. If a turbulent flow is considered, a uniform 
inlet viscosity �̃�in = 3 𝜈f  is prescribed. Symmetry condi-
tions are imposed along the edges in green. A zero tangent 
velocity uy,sym = 0 m/s and a zero viscosity �̃�sym = 0  m2/s are 
imposed. On the surface of the plate and at the bottom of 
the fluid domain, represented in yellow, a no-slip condition 
is imposed, and the modified viscosity is set to zero. The 
plate is heated to a constant temperature Tb = 310 K at its 
bottom side colored in orange. The outflow conditions con-
sist of a zero pressure at the outlet in red. Finally, the flow 
and heat transfer are governed by fixed adimensional num-
bers. For all simulations, a Reynolds number Re = 10, 000 
is used. Two different Prandtl numbers, Pr = 0.01 and 100 
are investigated.

The solid plate has a density �s = 1.0 kg/m3 and a con-
ductivity �s = 100.0 W/mK. The fluid has a density �f = 1.0 
kg/m3 , a kinematic viscosity �f = ux,in H∕ Re , and a dynamic 
viscosity �f = �f �f  related to the flow conditions. The ther-
mal properties of the fluid are defined by a conductiv-
ity � f = �s∕� , where � is a prescribed conductivity ratio 
between the solid and the fluid, and a specific heat capac-
ity cfp = � f Pr ∕�f  J/kgK. When considering turbulence, the 
SA model is used with �ft2 = 0 and with the approximate 
wall distance. The properties used for the heat method are 
�� = 1.0 kg/m3 , c�

p
= 0.1 J/kgK, and �� = 1.0 W/mK. Finally, 

the penalty parameters are set as detailed in Table 2.
The ability of the proposed method to model conjugate 

heat transfer is demonstrated by comparison against analyti-
cal results from Vynnycky et al. (1998) and numerical results 
from Yau (2016). The XFEM analysis is performed on a 
mesh refined near the plate to allow for an accurate resolu-
tion of boundary layer phenomena. Mesh elements have an 
initial size h=H∕5  and are refined six times near the plate, 
as shown in Fig. 10. The resulting mesh has a minimum 
element size of h=H∕(5×26) with 143,844 quadrangular 
elements and 398,592 DOFs. For the turbulent case, this 
mesh refinement lead to a normalized distance to the wall 
y+ = 0.87.

Figure 11 presents the adimensional temperature con-
tours in the fluid and solid domains obtained with the XFEM 
approach considering a laminar and a turbulent flow with a 
fixed Reynolds number of Re = 10, 000 and for two Prandtl 

numbers, Pr = 0.01 and Pr = 100 . The adimensional tem-
perature Tadim is defined as follows:

For a lower Prandtl number, a low ratio � allows for a larger 
temperature drop within the solid. For a higher Prandtl num-
ber, the temperature drop is limited to the solid domain. The 
temperature profiles observed for the laminar and the tur-
bulent flow are similar suggesting that turbulence has little 
effect on the thermal response and the problem is convection 
dominated.

The evolution of the adimensional temperature in terms 
of the distance x along the plate is shown in Fig. 12. The 
numerical results obtained with the XFEM approach are 
compared against studies from Vynnycky et al. (1998) and 
Yau (2016) for a laminar flow over the plate. The obtained 
temperature profiles are in good agreement with both ana-
lytical results from Vynnycky et al. (1998) and numerical 
results from Yau (2016). This comparison verifies the abil-
ity of the proposed XFEM approach to accurately model 
conjugate heat transfer.

6  Optimization problems

In this paper, we consider optimization problems that can be 
formulated as follows:

where the vector � contains the Ns design variables and 
s and s are the imposed lower and upper bounds, respec-
tively. The vector �(�) collects all state variables such that 
�(�) = [� p �̃� T 𝜃 𝜙D 𝜙P]

T . Note that the state variables used 
in Eq. (65) satisfy the discretized governing equations for a 
given design � . The objective function is denoted by z(�, �(�)) 
and gj(�, �(�)) is the j th constraint function considered in the 
problem.

(64)Tadim =
T − Tin

Tb − Tin
.

(65)
min
�

z(�, �(�))

s.t. gj(�, �(�)) ≤ 0, j = 1,… ,Ng,

s ≤ si ≤ s, i = 1,… ,Ns,

Table 2  Turbulent flow over a thick flat plate with a prescribed tem-
perature at its bottom side: Nitsche’s and Ghost penalty parameters

u,visc
N γu,visc

up
ν̃
N

T
N cT

I
θ
N

φD

N

10.0 1.0 10.0 10.0 10.0 10.0 10.0

αu,visc
G αu,conv

G αp
G αν̃

G αT
G αθ

G αφD

G αφP

G

0.005 0.005 0.0005 0.005 0.005 0.01 0.01 0.005

� � � � �

Fig. 10  Turbulent flow over a thick flat plate with a prescribed tem-
perature at its bottom side: mesh refinement near the plate
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The objective function is defined as:

(66)z(�, �(�)) = wf F(�, �(�)) + wp Pp(�) + wr Pr(�),

where F(�, �(�)) is the quantity of interest to minimize; Pp(�) 
and Pr(�) are the perimeter penalty and the regularization 
penalty, as further defined in Subsect. 6.1. The parameters 

κ = 1

κ = 20

Adimensional temperature Tadim

0.0 1.0

(a) Laminar flow with Prandtl number Pr=0 .01

κ = 1

κ = 20

Adimensional temperature Tadim

0.0 1.0

(b) Laminar flow with Prandtl number Pr=100

κ = 1

κ = 20

Adimensional temperature Tadim

0.0 1.0

(c) Turbulent flow with Prandtl number Pr=0 .01

κ = 1

κ = 20

Adimensional temperature Tadim

0.0 1.0

(d) Turbulent flow with Prandtl number Pr=100

Fig. 11  Flow over a thick flat plate heated at its bottom side to a prescribed temperature: adimentional temperature Tadim in the fluid and solid 
domains for a Reynolds number Re = 10, 000 obtained with the XFEM approach

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x/H

T
ad

im

Pr=10−2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

x/H

T
ad

im

Pr=102
κ=10 XFEM laminar
κ=50 XFEM laminar
κ=20 XFEM laminar
κ=10 XFEM turbulent
κ=50 XFEM turbulent
κ=20 XFEM turbulent
κ=10 Yau (2016)
κ=50 Yau (2016)
κ=20 Yau (2016)
κ=10 Vynnycky et al. (1998)
κ=50 Vynnycky et al. (1998)
κ=20 Vynnycky et al. (1998)

Fig. 12  Turbulent flow over a flat plate with a prescribed temperature 
at its bottom side: adimensional temperature profile over the plate 
for conductivity ratios � = 1, 5, 20 considering laminar and turbulent 

results from the XFEM approach and laminar analytical results from 
Vynnycky et al. (1998) and numerical results from Yau (2016)
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wf  , wp , and wr are weights associated with the terms in the 
objective function.

6.1  Regularization

Following Haber et al. (1996), the perimeter control penal-
ization Pp is added to the objective function to ensure the 
well-posedness of the optimization problem and to prevent 
the emergence of numerical artefacts, such as irregular 
geometric features:

where P0 is the initial perimeter value.
To avoid spurious oscillations of the level set field that 

might deteriorate the stability and the convergence of the 
optimization problem, the regularization scheme proposed 
in Geiss et al. (2019) is adopted. The regularization pro-
motes the convergence of the level set field � to a smooth 
target field �̃� with advantageous properties, i.e., the con-
vergence to an upper or lower bound �B away from the 
interface and to a uniform gradient along the interface. 
The scheme is enforced by adding the penalty term Pr to 
the objective function:

The weights w� and w∇� are evaluated as:

where the parameter �Pr
 controls the regions of influence of 

the regularization, i.e., regions near and away from the inter-
face. The weights w�1

 , w�2
 control the mismatch between 

design and target LSF near and away from the interfaces, 
respectively. The weights w∇�1

 and w∇�2
 play the same role 

for the mismatch between design and target gradients of the 
LSF. The smooth target level set field �̃� is built from the dis-
tance field �D , obtained by the heat method in Eq. (44), as:

where ��B
 is a parameter that is set to 1 or −1 to select the 

upper bound �B for the fluid domain or lower bound −�B for 
the solid domain respectively.

(67)Pp =
1

P0
∫Γfs

dΓ,

(68)Pr =
∫Ω

w𝜙

(
𝜙 − �̃�

)2

dΩ

∫Ω

𝜙2
B
dΩ

+
∫Ω

w∇𝜙
|||∇𝜙 − ∇�̃�

|||
2

dΩ

∫Ω

dΩ

.

(69)

w𝜙 = w𝜙1
𝛼 + w𝜙2

(1 − 𝛼),

w∇𝜙 = w∇𝜙1
𝛼 + w∇𝜙2

(1 − 𝛼),

with 𝛼 = exp(−𝛾Pr
(�̃�∕𝜙B)

2),

(70)�̃� =

(
2

1 + exp(−2𝜙D∕𝛽𝜙B
𝜙B)

− 1

)
𝛽𝜙B

𝜙B,

6.2  Sensitivity analysis

In this paper, the update of the design variables is per-
formed by mathematical programming techniques driven 
by shape sensitivity computations.

The derivative of a generic objective or constraint func-
tion F(�, �(�)) with respect to a design variable si is com-
puted as:

where the first and the second term in the right-hand side 
account for the explicit and the implicit dependency on the 
design variables, respectively. Using the adjoint approach, 
see Michaleris et al. (1994), the implicit term is evaluated as:

where � is a collection of the residuals presented in Sect. 4 
for the forward analysis and � represents the adjoint 
responses, evaluated through:

The semi-analytical approach of Sharma et al. (2017) is used 
to evaluate the derivatives with respect to the design vari-
ables. During the sensitivity analysis, all the terms in the 
governing equations introduced in the forward analysis in 
Sect. 4 are accounted for, and all required derivatives with 
respect to the state variables are derived analytically follow-
ing the approach of Zymaris et al. (2009) and Yoon (2016) 
to yield consistent sensitivities.

7  Numerical optimization examples

In this section, the features of the proposed XFEM level 
set-based optimization framework for solving turbulent 
conjugate heat transfer design problems are investigated. 
Two different optimization problem formulations are 
considered aiming at: (i) minimizing the maximum tem-
perature, and (ii) maximizing the heat transfer within the 
heat exchangers, while maintaining an acceptable pressure 
drop. Additionally, two different heat exchanger geometric 
configurations are studied to demonstrate the flexibility of 
the approach.

Unless specified otherwise, all subsequent simulations 
are carried out using the following settings. By default, the 
ft2 term is omitted in the SA model. For specific configura-
tions the analysis and optimization results are compared 

(71)
dF(�, �(�))

dsi
=

�F

�si
+

�F

��

d�

dsi
,

(72)
�F

��

d�

dsi
= −�T ��

�si
,

(73)� =
�F

��

[
��

��

]−1
.
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when using or omitting the ft2 term. The approximate dis-
tance field in Eq. (46) is used for the wall distance and 
the properties for the heat method are chosen as �� = 1.0 
kg/m3 , c�

p
= 0.1 J/kgK, and �� = 1.0 W/mK. The penalty 

parameters introduced in Sect. 4 are detailed in Table 3.
In the following examples, the state variable fields are 

approximated with linear B-spline functions, while the 
design variable field is approximated with quadratic B-spline 
functions, as they promote smoother designs, mitigate the 
development of spurious features, and limit the need for 
additional filtering techniques, see Noël et al. (2020). Filter-
ing is achieved through a coarser and higher-order B-spline 
interpolation for the design variable field.

The set of discretized governing equations and adjoint 
sensitivity equations are built and solved following the 
approach described in Sect. 5, except that for the sensitivity 
analysis, the flow and the SA adjoints are solved for simul-
taneously using a monolithic formulation. The optimization 
problems are solved by the Globally Convergent Method of 
Moving Asymptotes (GCMMA) of Svanberg (2002). The 
initial, lower, and upper asymptote adaptation parameters 
in GCMMA are set to 0.5, 0.7, and 1.2, respectively. No 
inner iterations are used. The optimization problems are 
considered converged if the design is visually converged, if 
the objective function stagnates, and if the constraints are 
satisfied. The weights and parameters introduced in Sect. 6 
are given in Table 4.

While adaptive mesh refinement is performed to resolve 
the boundary layer for the benchmark problems presented 
in Sect. 5, uniformly refined meshes are used for the opti-
mization problems. This choice is made as the Reynolds 
numbers considered in this section are lower, and therefore 
sufficiently fine, uniform meshes can be used. This is veri-
fied in Subsect. 7.2 by solving the same optimization prob-
lem on a reference and a refined mesh.

7.1  Heat exchanger with single outlet

In this subsection, a heat exchanger with a single outlet is opti-
mized for minimal average temperature in the solid subject to a 

constraint on the power dissipation. The problem is taken from 
Dilgen et al. (2018b) and the setup is presented in Fig. 13. The 
fluid is chosen as water and is used to cool a heated solid, here 
aluminum. The dimensions of the heat exchanger are described 
in terms of half the inlet size H = 0.1 m. The inlet and outlet 
channels are extended, see red and blue dashed lines, to reduce 
the influence of the inlet and outlet conditions on the flow 
inside the heat exchanger.

The working fluid is water with a density �f = 1.18 kg/m3 
and a dynamic viscosity �f = 1.77×10−5 kg/ms. The fluid has 
a specific heat capacity cfp = 1004.9 J/kgK and a conductivity 
� f = 2.54×10−2  W/mK. The turbulent Prandtl number is set 
to Prt = 0.9 . The solid phase is aluminum with a thermal con-
ductivity �s = 237 W/mK.

At the inlet Γin , boundary conditions are prescribed for the 
fluid. To obtain a developed flow at the inlet, a power law 
velocity profile is enforced, following Kubo et al. (2021), such 
that:

The magnitude uin is chosen to yield specific Reynolds num-
bers Re = �f uin H∕�f  . A constant viscosity is prescribed at 
the inlet with a magnitude �̃�in = 3 𝜈f  . The fluid enters the heat 
exchanger at a temperature Tin = 300 K. At the outlet Γout , 
the pressure is prescribed to zero pout = 0 Pa. The solid is 
heated by a constant volumetric heat load Q= 10.0 kW/m2.

To minimize the solid temperature, the objective function 
is formulated as:

ux, in = uin

(
1 −

y

H

) 1

n

, n = 2 log10
Re

10.0
,

(74)F(�, �(�)) =
T
s

Vs

V
s
0

Ts
0

Table 3  Numerical optimization examples: Nitsche’s and Ghost pen-
alty parameters
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G αφD
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G
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Table 4  Numerical optimization 
examples: optimization penalty 
parameters
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Fig. 13  Heat exchanger with a single outlet: geometry and boundary 
conditions
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where Ts is the temperature integrated over the solid domain 
Ωs:

The reference temperature Tref is set to the inlet temperature, 
i.e., Tref = 300 K. The volume Vs of the solid domain Ωs is 
evaluated as:

The parameters Ts
0
 and Vs

0
 are the integrals of the temperature 

over the solid domain and the volume of the solid evaluated 
for the initial design.

The power dissipation constraint is formulated as:

where

and Din∕out,0 is the dissipated power integrated over the inlet 
or the outlet for the initial design. The weight wd controls 
the allowed power dissipation through the heat exchanger.

Finally, a volume constraint is enforced on the fluid 
domain to avoid a trivial solution with no solid and to con-
trol the amount of energy injected into the heat exchanger 
through the solid. The constraint is formulated as:

where Vf  is the volume of the fluid domain Ωf  evaluated as 
in Eq. (76), V is the volume of the design domain, and wv 
is the allowed fluid volume faction, here set to wv = 0.55.

The initial design is seeded with multiple solid inclu-
sions, as shown in Fig. 14. The level set field is approxi-
mated by quadratic B-spline and is discretized on a coarse 
uniform background mesh with an element size h=H∕5 , 
leading to 4284 design variables. The state variable fields 
are discretized on a finer uniform background mesh with 
an element size h=H∕40 , leading to 251,264 quadrangu-
lar elements and 896,292 DOFs including 414,924 flow 
DOFs, 125,879 temperature DOFs, 251,758 DOFs for the 
heat method, and 103,731 DOFs for the construction of the 
approximate distance. This mesh size leads to normalized 
distances to the wall y+ ≈ 2, 5, and 10 for Reynolds numbers 

(75)T
s = ∫Ωs

(
T − Tref

)
dΩ.

(76)V
s = ∫Ωs

dΩ.

(77)g1(�, �(�)) =
Din +Dout(

Din,0 +Dout,0

) − wd ≤ 0,

(78)

Din∕out = ∫Γin∕out

[(
� ⋅ �

)(
1

2
� ⋅ � + p

)

− 2 (� + �t)
(
�(�)�

)
⋅ �

]
dΓ,

(79)g2(�, �(�)) =
V
f

wvV
− 1 ≤ 0,

Re = 1000, 2500, and 5000, respectively, which is insuffi-
cient to fully resolve boundary layer phenomena, but offers 
a reasonable compromise between accuracy and computa-
tional cost.

The optimization problem is solved considering three dif-
ferent inlet velocities uin = 0.15 , 0.375, and 0.75 m/s leading 
to the following Reynolds numbers, Re = 1000 , 2500, and 
5000. The power dissipation is limited to a third of the dis-
sipation observed for the initial design, i.e., the weight in 
Eq. (77) is set to wd = 0.33 . It should be noted that, as the 
inlet velocity changes, so does the initial power dissipation, 
and thus the allowed power dissipation in the heat exchanger. 
Therefore, comparison between the optimized designs and 
their performances should be made carefully.

The optimized designs and the corresponding level set 
fields are shown in Fig. 15. For all Reynolds numbers, the 
optimized design features a network of channels. Owing to 
the regularization, the level set fields converge to the upper 
and lower bounds in the bulk of the fluid and solid domains 
and have close to uniform spatial gradient along the fluid/
solid interface.

The solution fields over the optimized designs are pre-
sented in Fig. 16. For different Reynolds numbers, the veloc-
ity magnitude, the viscosity ratio, and the temperature over 
the optimized heat exchanger, as well as the performance 
of the designs in terms of average temperature in the solid 
domain Ts∕Vs , are provided. Focusing on the geometry of 
the designs, a tendency to generate smooth straight channels 
that align with the flow is observed for all considered Reyn-
olds numbers. For lower Reynolds numbers and thus lower 
power dissipation, smooth wide channels are created. As the 
Reynolds number is increased and a larger power dissipation 
is allowed, narrower channels with higher flow velocities are 
formed. These observations agree with the results presented 
in Dilgen et al. (2018b).

As expected, the heat transfer is enhanced for higher 
Reynolds numbers, allowing a larger dissipation in the heat 
exchanger. This is evident from the decrease of the maxi-
mum temperature in the solid phase, i.e., the adimensional 
maximum temperature reaches Tmax∕Tin = 2.4755, 1.5528, 

Fig. 14  Heat exchanger with a single outlet: initial design
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Fig. 15  Heat exchanger with a single outlet: optimized designs and level set fields for different Reynolds number Re = 1000 , 2500, and 5000 at a 
fixed power dissipation with w

d
= 0.33

Adimensional velocity magnitude ‖u‖/uin

0.0 1.3

Viscosity ratio χ

−0.4 6.0

Adimensional temperature T/Tin

1.0 2.5

R
e
=

10
00

T s/Vs =1.9638 K

R
e
=

25
00

T s/Vs =1.3632 K

R
e
=

50
00

T s/Vs =1.2068 K
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and 1.2997 for Reynolds numbers Re = 1000, 2500, and 
5000.

The contour plots of the viscosity ratio in Fig. 16 show 
that the optimized designs exhibit low or no turbulence in 
the channels within the heat exchanger. Interestingly, the 
maximum viscosity ratio decreases as the Reynolds num-
ber increases: � = 5.9648 , 4.3823, and 3.7297 for Reynolds 
numbers Re = 1000 , 2500, and 5000, respectively. As the 
Reynolds number and the allowed power dissipation are 
increased, the optimized designs feature narrower channels 
which impede the development of turbulence.

To separate the influences of increasing the Reynolds 
number and the allowed power dissipation on the generated 
design, the optimization problem is solved considering three 
different constraint weights wd = 0.25 , 0.33, and 0.50 at a 
fixed inlet velocity uin = 0.375 m/s leading to a Reynolds 
number Re = 2500 . Figure 17 shows the velocity magnitude, 
the viscosity ratio, and the temperature over the optimized 
heat exchanger considering different allowed power dissipa-
tion. The performance in terms of average temperature in the 
solid domain Ts∕Vs is provided for each design.

As the allowed pressure drop is increased, a larger num-
ber of narrower channels through the heat exchanger is 
created. A larger pressure drop across the heat exchanger 
allows for the development of narrow channels with higher 
flow velocities, and advective energy transport, which in 
turns enhances the heat transfer and lowers the adimen-
sional maximum temperature: Tmax∕Tin = 1.5985, 1.5528, 
and 1.4009 for constraint weights wd = 0.25, 0.33, and 0.50, 
respectively. It should be noted that the distribution of the 
turbulence and the maximum viscosity ratios within the heat 
exchanger � = 4.1064, 4.3823, and 3.7496 are similar for all 
considered pressure drops.

The influence of the ft2 term in the SA model is investi-
gated by solving the optimization problem with and without 
the ft2 term, i.e., setting �ft2 to 1 or 0. The velocity magnitude, 
the viscosity ratio, and the temperature distributions over the 
optimized heat exchangers, as well as the performance in 
terms of the average temperature in the solid domain Ts∕Vs , 
are presented in Fig. 18 for Re = 1000 and wd = 0.50 and in 
Fig. 19 for Re = 5000 and wd = 0.33 . Reanalyses are per-
formed on the designs, i.e., designs optimized with �ft2 = 0 
are reanalyzed setting �ft2 = 0 and �ft2 = 1 , see Fig. 18a, and 
designs optimized with �ft2 = 1 are reanalyzed setting �ft2 = 0 
and �ft2 = 1 , see Fig. 18b.

For a lower Reynolds number in Fig. 18, the designs 
generated with and without the ft2 term differ only slightly. 
Performing reanalyses shows that marginally lower mean 
temperatures over the heat exchanger are obtained when 
dropping the ft2 term, i.e., Ts∕Vs = 1.6774 K for �ft2 = 0 
versus 1.6779 K for �ft2 = 1 when optimizing designs with 
�ft2 = 0 , and Ts∕Vs = 1.6880 K for �ft2 = 0 versus 1.6886 K 

for �ft2 = 1 for design obtained with �ft2 = 1 . Note that when 
predicting the thermal response with �ft2 = 1 , the design 
optimized without the ft2 term has a slightly lower mean 
temperature than the design optimized with the ft2 term. 
This issue is likely explained by the non-convexity of the 
problems solved.

For a higher Reynolds number in Fig. 19, similar obser-
vations can be made and reanalyses lead to Ts∕Vs = 1.2063 
K for �ft2 = 0 versus 1.2064 K for �ft2 = 1 when generating 
designs with �ft2 = 0 , and Ts∕Vs = 1.2022 K for �ft2 = 0 versus 
1.2024 K for �ft2 = 1 when generating designs with �ft2 = 1 . 
It should be noted that the effect of the ft2 term is less pro-
nounced for Re = 5000 than for the lower Reynolds num-
ber case. In conclusion, while the design layout marginally 
changes, performances across designs optimized with and 
without the ft2 term differ insignificantly. In agreement with 
Rumsey (2007), the effect of including the ft2 term becomes 
negligible as the Reynolds number increases.

7.2  Heat exchanger with split outlet

In this subsection, the versatility of the proposed optimiza-
tion approach is illustrated by varying the design domain, 
the inflow conditions, and the heat loading. The influence 
of the formulation of the optimization problem is also inves-
tigated. A heat exchanger with a split outlet is optimized 
for maximum heat transfer under a mass flow constraint, 
see Fig. 20. Contrary to the single outlet case in Sect. 7.1, 
the geometry of the design domain prevents the develop-
ment of a straight channel between the inlet and the outlet. 
In contrast to the previous example, a constant pressure is 
imposed at the inlet fixing the allowed pressure drop through 
the heat exchanger. In this example, the solid is heated up to 
a prescribed temperature and the design goal is to maximize 
the heat transfer between fluid and solid. The effects of these 
variations on the optimization process and the geometry of 
the optimized designs, i.e., the arrangement of the cooling 
channels within the heat exchanger, are investigated.

The problem setup is presented in Fig. 20. Water is used 
to cool heated aluminum. The dimensions of the design 
domain are described in terms of half of the inlet size 
H = 0.1 m. The inlet and outlet channels are again extended, 
see red and blue dashed lines, to mitigate the influence of 
inlet and outlet conditions on the flow in the heat exchanger. 
The fluid and solid properties are identical to the ones 
described for the single outlet heat exchanger in Sect. 7.1.

At the inlet Γin , the following boundary conditions are 
prescribed on the fluid flow. A constant inlet pressure 
pin = 𝜌f ũ2

in
 is enforced and is defined as a function of a 

nominal inlet velocity ũin that corresponds to a desired 
Reynolds number Re = 𝜌f ũin H∕𝜇f  . The inlet pressure 
increases with the Reynolds number as the dynamic 
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viscosity remains constant. A constant viscosity is pre-
scribed at the inlet with a magnitude �̃�in = 3 𝜈f  . The fluid 
enters the heat exchanger at a temperature Tin = 300 K. At 
the outlet Γout , the pressure is prescribed to zero pout = 0 
Pa. The solid is heated up to a temperature of Tref = 325 
K through a temperature dependent volumetric heat load 
Q(T) = h (T − Tref ) W/m2 with h= 14, 583.3 W/m2K.

To maximize the heat transfer through the exchanger, 
the objective function is defined as:

where the convective flux Qin∕out at the inlet or the outlet is 
evaluated as:

(80)F(�, �(�)) =
Qin −Qout

Qin,0 −Qout,0

,

and Qin∕out,0 is the convective flux evaluated at the inlet or 
the outlet for the initial design.

The mass flux constraint ensures a non-zero flow from 
the inlet to the outlet and that the solid does not obstruct 
the heat exchanger. The constraint is formulated as:

where the mass flux Min∕out through the inlet or the outlet 
is evaluated as:

(81)Qin∕out = ∫Γin∕out

�f cf
p
T
(
� ⋅ �

)
dΓ,

(82)g1(�, �(�)) = 1 −
(Mout −Min)∕2

wm (Mout,0 −Min,0)∕2
≤ 0,
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Fig. 17  Heat exchanger with a single outlet: optimized designs and performance in terms of average temperature in the solid domain Ts∕Vs for a 
Reynolds number Re = 2500 and different power dissipation constraint weights w
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and Min∕out,0 is the mass flux computed at the inlet or the 
outlet for the initial design. The weight wm specifies the 
allowed mass flux through the heat exchanger and is set to 
wm = 0.5.

The initial design is seeded with multiple solid inclusions, 
as shown in Fig. 21. The level set field is discretized with 
quadratic B-spline on a coarse uniform background mesh 
with an element size h=H∕10 , leading to 16,059 design 
variables. The state variable fields are discretized on a finer 
mesh with an element size h=H∕40 , leading to 245,616 
quadrangular elements and 875,477 DOFs including 405,640 
DOFs for the turbulent flow, 122,809 DOFs for the tempera-
ture, 245,618 DOFs for the heat method, and 101,410 DOFs 
to build the distance field. This mesh size leads to normal-
ized distances to the wall y+ ≈ 2 , 5, and 10 for Reynolds 
numbers Re = 1000 , 2500, and 5000, respectively, which is 
again insufficient to fully resolve boundary layer phenomena 

(83)Min∕out = ∫Γin∕out

�

(
� ⋅ �

)
dΓ,

but offers a reasonable compromise between accuracy and 
computational cost, as further discussed later.

The influence of the inlet flow conditions on the opti-
mized designs and their performances is investigated by 
solving the problem for three different inlet pressures corre-
sponding to Reynolds numbers Re = 1000 , 2500, and 5000. 
The optimized designs are shown in Fig. 22. For each design, 
the velocity magnitude, the viscosity ratio, the temperature, 
and the performance in terms of heat flux ΔQ=Qin −Qout 
are provided. Contrary to the single outlet case in Sect. 7.1, 
tortuous channels around multiple solid inclusions and 
recirculation areas are generated for all Reynolds numbers 
considered here. Such geometric features increase the area 
between fluid and solid, and in turn the heat transfer. With 
the increase in the Reynolds number, the large central chan-
nel tends to split into multiple narrow and tortuous channels.

As the Reynolds number increases, the turbulence distri-
bution changes and areas with larger viscosity ratio move 
from the inlet to the core of the heat exchanger. Note that 
with increasing Reynolds number, the surface of the channels 
tends to be less smooth and presents a secondary oscillatory 

Adimensional velocity magnitude ‖u‖/uin

0.0 1.2

Viscosity ratio χ

−0.4 6.0

Adimensional temperature T/Tin

1.0 2.1

β
f
t
2
=

0

T s/Vs =1.6774 K

β
f
t
2
=

1

T s/Vs =1.6779 K

(a) Optimized design for βft2 = 0

β
f
t
2
=

0

T s/Vs =1.6880 K

β
f
t
2
=

1

T s/Vs =1.6886 K

(b) Optimized design for βft2 = 1

Fig. 18  Heat exchanger with a single outlet: optimized designs and performance in terms of average temperature in the solid domain Ts∕Vs for a 
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pattern, especially visible for the design at a Reynolds num-
ber Re = 5000 . In the following, these patterns are investi-
gated to understand whether they are a numerical artifact 
or present a physical advantage. To this end, the maximum 
heat transfer optimization problem with Re = 5000 is solved 
on a refined mesh with an element size of h=H∕80  and 

a normalized distance to the wall of approximately y+ ≈ 5 . 
Note that the level set field is represented with the same 
spatial discretization as used previously, i.e., a coarser mesh 
with an element size h=H∕10 . The velocity magnitude, the 
viscosity ratio, and the temperature fields on the optimized 
designs, as well as the performance in terms of heat flux ΔQ , 
for the reference and the refined mesh are shown in Fig. 23.
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Fig. 19  Heat exchanger with a single outlet: optimized designs and performance in terms of average temperature in the solid domain Ts∕Vs for a 
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While their geometry differs in their detailed layout, 
both designs present similar turbulence generating fea-
tures, i.e., multiple narrow, tortuous channels and second-
ary patterns along the channels. The designs performance 
differs by less than one percent. The design optimized on 
the reference mesh achieves a slightly higher heat flux with 
ΔQ= 25, 959.9 W/m2 compared to the design optimized on 
the fine mesh with ΔQ= 25, 029.3 W/m2 . The close-ups 
provided in Fig. 23 confirm that the finer mesh allows for 
an improved resolution of the boundary layer. The veloc-
ity profile and the temperature gradient close to the solid/
fluid interface are represented across several elements, which 
yields a better accuracy. Nonetheless, the reference mesh 
provides a good compromise between accuracy and com-
putational cost.

To gain insight into the reasons behind the development 
of oscillatory channel walls, the optimization problem at 
a fixed Reynolds number Re = 5000 is solved considering 
three different settings of the SA model namely, the presence 
of the ft2 term and the turbulent fluid conductivity �t . Con-
figuration (a) represents the setting used previously, i.e., the 
ft2 term is dropped and the turbulent fluid conductivity �t is 
accounted for. In Configuration (b), the ft2 term is accounted 
for, i.e., �ft2 = 1 , as well as the turbulent fluid conductivity 
�t . Finally, for Configuration (c), the ft2 term is included, 
but the turbulent fluid conductivity is set to zero, i.e., �ft2 = 1 
and �t = 0.

The velocity magnitude, the viscosity ratio, and the 
temperature distributions over the optimized heat exchang-
ers are presented in Fig. 24. For each configuration of the 
SA model, reanalyses are performed on each optimized 
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design. The design generated with setting (a) is analyzed 
using settings (a), (b), and (c), see Fig. 24a. A similar 
procedure is followed for designs obtained with settings 
(b) and (c) as shown in Fig. 24b and c, respectively. For 
each analysis, the value of the heat flux ΔQ=Qin −Qout 
is provided.

From the results in Fig. 24a and b, similar conclusions 
to the study on the ft2 term presented in Subsect. 7.1 can be 
drawn. While the design geometry slightly changes, the per-
formances of the designs generated including or neglecting 
the ft2 terms only differ marginally. However, omitting the 
turbulent diffusivity �t leads to noticeable drop in heat flux.

Figure 24c shows the design generated when omitting the 
turbulent diffusivity �t . In this case, the design only features 

Adimensional velocity magnitude ‖u‖/uin

0.0 2.06e−1

Viscosity ratio χ

−0.2 4.46e−1

Adimensional temperature T/Tin

1.0 1.16e−1
R
ef
er
en

ce
m
es
h
h
=

H
/
40

∆Q=25, 959.9 W/m2

R
efi

ne
d
m
es
h
h
=

H
/
80

∆Q=25, 029.3 W/m2

Fig. 23  Heat exchanger with a split outlet: optimized design and performance in terms of heat flux ΔQ for a Reynolds number Re = 5000 com-
parison of a reference h=H∕40  and a refined mesh h=H∕80 



XFEM level set-based topology optimization for turbulent conjugate heat transfer problems  

1 3

Page 27 of 31     2 

Adimensional velocity magnitude ‖u‖/uin

0.0 1.3

Viscosity ratio χ

−0.1 4.0

Adimensional temperature T/Tin

1.0 1.3

β
f
t
2
=

0

κ
t
≥

0

∆Q=25, 959.9 W/m2
β
f
t
2
=

1

κ
t
≥

0

∆Q=25, 716.7 W/m2

β
f
t
2
=

1

κ
t
=

0

∆Q=24, 630.4 W/m2

(a) Optimized design for βft2 =0 and κt ≥ 0

β
f
t
2
=

0

κ
t
≥

0

∆Q=25, 790.5 W/m2

β
f
t
2
=

1

κ
t
≥

0

∆Q=25, 672.9 W/m2

β
f
t
2
=

1

κ
t
=

0

∆Q=24, 690.3 W/m2

(b) Optimized design for βft2 =1 and κt ≥ 0

β
f
t
2
=

0

κ
t
≥

0

∆Q=25, 177.9 W/m2

β
f
t
2
=

1

κ
t
≥

0

∆Q=25, 175.9 W/m2

β
f
t
2
=

1

κ
t
=

0

∆Q=25, 107.5 W/m2

(c) Optimized design for βft2 =1 and κt =0

Fig. 24  Heat exchanger with a split outlet: optimized design and performance in terms of heat flux ΔQ for a Reynolds number Re = 5000 con-
sidering three settings of the SA model: (a) �

f
t2
= 0 and �

t
≥ 0 , (b) �

f
t2
= 1 and �

t
≥ 0 , and (c) �

f
t2
= 1 and �

t
= 0



 L. Noël, K. Maute 

1 3

    2  Page 28 of 31

smooth channel surfaces, but the heat flux is significantly 
lower than the ones achieved when considering the turbulent 
conductivity �t as a result of increased turbulence. This study 
suggests that the development of oscillatory shapes along the 
channels is used to generate an increased turbulence within 
the heat exchanger, which in turn increases the total thermal 
conductivity in the fluid and leads to an enhanced heat trans-
fer. Additional studies using different turbulence models are 
needed to confirm these results.

8  Conclusions

In this paper, we proposed an XFEM level set-based topol-
ogy optimization framework for turbulent conjugate heat 
transfer design problems. To achieve a crisp description of 
the fluid/solid interface, the geometry of the design is repre-
sented by one or multiple LSFs and the physical responses 
of the design are predicted using an IFEM, here the XFEM 
approach. The fluid flow is modeled by the RANS equations 
and the system is closed by the SA turbulence model. As the 
turbulence equation depends on the distance to the closest 
wall, a distance field is constructed using the heat method. 
The heat transfer in the fluid phase is described by the advec-
tion-diffusion equation and in the solid by linear isotropic 
diffusion. Boundary and interface conditions are enforced 
weakly with Nitsche’s method, and the face-oriented ghost 
stabilization is used to mitigate numerical instabilities asso-
ciated with small integration subdomains. Verification cases 
are solved to show that the XFEM approach can reproduce 
benchmark results using an immersed geometry description. 
The ability of the proposed optimization framework to solve 
turbulent conjugate heat transfer problems is illustrated with 
the design of heat exchangers in two dimensions.

Numerical simulations show that the proposed XFEM 
approach is able to accurately predict the physics responses 
in turbulent flows. Using an immersed geometry description 
and an IFEM, benchmark results for the backward facing 
step and the turbulent flow over a thick conducting plate are 
reproduced. Additionally, the influence of the setting of the 
SA model on the numerical results is investigated and the 
numerical results with and without specific terms, such as 
the ft2 term, are in agreement with literature.

Numerical optimization examples demonstrate the ability of 
the proposed level set-based optimization framework to solve 
conjugate heat transfer design problems considering turbulent 
flows. The design of heat exchangers is performed under differ-
ent flow conditions and for different geometries of the design 
domains. The optimized layouts achieve enhanced cooling or 
heat transfer under prescribed conditions. Furthermore, the 
versatility of the framework is illustrated by solving different 
optimization problems. The numerical examples show that the 
formulation of the optimization problem has a large influence on 

the optimized geometries. The optimization on the split outlet 
heat exchanger suggests that under particular flow conditions 
heat transfer can be enhanced through channel wall shapes that 
generate turbulence, and in turns increase the total conductivity 
of the fluid.

This work opens up several follow-up research tracks. As 
shown in the benchmark examples, an increased resolution of 
the fluid/solid interface is desirable, i.e., y+ around 1, to achieve 
a more precise description of the interface and a higher accu-
racy of the physics predictions. To this end, different strate-
gies could be investigated: the use of hierarchical B-splines to 
carry out local mesh refinement, the use of wall functions for 
an improved description of the near-wall behavior, or the abil-
ity to generate a boundary layer mesh with immersed methods. 
The second optimization problem suggests that, using the SA 
model, oscillatory channel walls can be used to generate turbu-
lence and increase the heat transfer. Additional studies relying 
on different turbulence models should be carried out to confirm 
this result and to understand the influence of turbulence models 
on the optimized topology and geometry. The extension of the 
framework to three dimensional optimization problems also pre-
sents various challenges. An overall increased efficiency of the 
computational strategy, including the use of local mesh refine-
ment and iterative solvers, will be necessary to meet the mesh 
resolution requirements and to handle the sizes of the systems 
of discretized equations. Finally, including additional physics 
phenomena in the model, such as fluid/structure interaction or 
chemical reaction, would allow us to tackle a broader range of 
applications.
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