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Abstract. For the pure feedback systems with uncertain actuator nonlinearity
and non-differentiable non-affine function, a novel adaptive neural control
scheme is proposed. Firstly, the assumption that the non-affine function must be
differentiable everywhere with respect to control input has been canceled; in
addition, the proposed approach can not only be applicable to actuator input
dead zone nonlinearity, but also to backlash nonlinearity without changing the
controller. Secondly, the neural network (NN) is used to approximate unknown
nonlinear functions of system generated in the process of control design and a
nonlinear robust term is introduced to eliminate the actuator nonlinearity
modeling error, the NN approximation error and the external disturbances.
Semi-globally uniformly ultimately boundedness of all signals in the closed loop
system is analytically proved by utilizing Lyapunov theory. Finally, the effec-
tiveness of the designed method is demonstrated via two examples.

Keywords: Adaptive neural control � Robust control � Actuator input
nonlinearity � Non-affine function

1 Introduction

As we all know, pure feedback systems have a more general form than strict feedback
systems, and many industrial applications such as biochemical process, mechanical
systems and dynamic model in pendulum control have the form of pure feed feedback
systems. Many approaches have been investigated for this class of systems [1–4].
However, it is worth mentioning that, for non-affine nonlinear pure feedback systems,
the main difficulty of controller design is that there is no affine control appearance of
control input in systems; therefore, the approaches developed for affine nonlinear
systems cannot be directly applied to control design for pure feedback systems in
non-affine form. To overcome this difficulty, some remarkable methods have been
presented for pure feedback systems such as in [5, 6]. Nevertheless, it is worth noting
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that the commonly used assumption in the above schemes is that the non-affine
function of the pure feedback system is always assumed to be differentiable with
respect to the control input or state variable. This is a restrictive condition for non-affine
function due to the fact that the non-affine functions in some practical systems are
always continuous but not differentiable.

Evident examples of such functions are non-smooth nonlinear characteristics such as
dead-zone, backlash, and hysteresis, which extensively appear inmechanical connection,
hydraulic servo valves, piezoelectric translators, and electric servomotors, andwhichmay
lead to instability of the closed-loop system if their effect is not taken into account
properly. Although some constructive methods have been designed to eliminate the
adverse influence in closed-loop systems such as in [7], it should be noted that the
approach in [7] is only applicable to strict feedback nonlinear systems but is not be suitable
for pure feedback systems. What’s more, to the best of the authors’ knowledge, the
research for control design of pure feedback systems with uncertain actuator nonlinearity
is an open problem, which motivates us to explore new methods to solve this problem.

Motivated by above discussion, this work proposes a novel adaptive neural control
scheme for pure feedback systems with uncertain actuator input nonlinearity. The main
contributions of this paper are as follows:

(1) The restrictive differentiability condition for non-affine function of pure feedback
systems is removed and only a semi-bounded condition is required.

(2) Different from all the previous researches, in this paper, actuator input dead zone
nonlinearity and backlash nonlinearity of pure feedback systems are both con-
sidered by modeling actuator nonlinearity appropriately when designing con-
troller, which is a completely new work for pure feedback systems. The proposed
method is not only applicable to the actuator dead zone nonlinearity, but also is
suitable for the backlash nonlinearity, which has a more relaxed application scope
than existing works such as in [1, 2].

2 Problem Statement and Preliminaries

Consider a class of pure feedback systems with actuator input nonlinearity as follows:

_xi ¼ xiþ 1; i ¼ 1; 2. . .; n� 1
_xn ¼ f ðx; vðuðtÞÞÞþ dðx; tÞ
y ¼ x1

8<
: ð1Þ

where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . .; xnðtÞ�T 2 Rn and y 2 R denote the system states and
output, respectively; dðx; tÞ represents systems external disturbance; f ðx; vðuðtÞÞÞ is an
unknown function such that f ðx; 0Þ ¼ gðxÞ; uðtÞ and vðuðtÞÞ are the actuator input and
output, respectively. The actuator nonlinear model can be expressed as

vðuðtÞÞ ¼ kðu; tÞ � uþ eu ð2Þ
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where kðu; tÞ is an unknown positive constant and eu is a modeling error satisfying
euj j � e�u with e�u being an unknown positive constant.

Assumption 1: There exist unknown constants m1 and m2 such that

0\m1 � kðu; tÞ�m2 ð3Þ

Assumption 2: There exists an unknown positive constant d� such that dðtÞj j � d�.

Assumption 3: Define Fðx; vÞ ¼ f ðx; vÞ � f ðx; 0Þ, there always exists an unknown
positive mi ði ¼ 1; 2; 3; 4Þ making the following inequalities hold.

m1v�Fðx; vÞ�m2v; v� 0

m3v�Fðx; vÞ�m4v; v\0

(
ð4Þ

Remark 1: It should be noted that the unknown function f ðx; vðuðtÞÞÞ is commonly
assumed to satisfy 0\g1 � @f ðx; vðuðtÞÞÞ=@v� g2 such as in [2, 8] with g1 and g2
being unknown positive constants, which is seen as the controllability condition of their
systems. However, in this paper, Assumption 3 is utilized to guarantee the controlla-
bility of system (1), while the restrictive assumption that non-affine function must be
differentiable has been removed. Moreover, we have also considered a class of
uncertain actuator nonlinearity simultaneously when designing the control scheme.

According to Assumption 3, if v\0, we have

Fðx; vÞ ¼ 1� h1ðtÞð Þm1 þm2h1ðtÞ½ �v ð5Þ

where h1ðtÞ 2 ½0; 1�, if v\0, we obtain

Fðx; vÞ ¼ 1� h2ðtÞð Þm3 þm4h2ðtÞ½ �v ð6Þ

with h2ðtÞ 2 ½0; 1�.
Define

GðtÞ ¼ 1� h1ðtÞð Þm1 þm2h1ðtÞ; v� 0

1� h2ðtÞð Þm3 þm4h2ðtÞ; v\0

(
ð7Þ

Then, one has 0\ min
i¼1;2;3;4

fmig�GðtÞ� max
i¼1;2;3;4

fmig ¼ Gmax ð8Þ
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Hence, the non-affine system (1) can be converted into the following affine system

_xi ¼ xiþ 1; i ¼ 1; 2. . .; n� 1
_xn ¼ gðxÞþ kðu; tÞGðtÞuðtÞþGðtÞeu þ dðx; tÞ
y ¼ x1

8<
: ð9Þ

Radial basis function neural network can approximate any continuous nonlinear
function hðZÞ with any precision. Namely

hðZÞ ¼ W�TwðZÞþ e ð10Þ

where Z 2 Xz � Rn is a input vector; n is the input dimension of neural network; e is
the approximation error satisfying ej j � e� with e� being an unknown positive constant;
wðZÞ 2 Rl is commonly selected as Gaussian function, and W� 2 Rl is the optimal
weight vector defined by

W� ¼ arg min
W 2Rl

sup
Z2XZ

jhðZÞ �WTwðZÞj
( )

ð11Þ

where W is a weight vector.
The following definition and lemma are instrumental to stability analysis.

Definition 1: A function Nð�Þ is called a Nussbaum-type function if it has the
following properties

lim
s!1 sup 1

s

R s
0 NðfÞdf ¼ þ 1;

lim
s!1 inf 1s

R s
0 NðfÞdf ¼ �1 ð12Þ

Lemma 1 [9]: Vð�Þ and fð�Þ are smooth functions defined on ½0; tf Þ with VðtÞ� 0, and
NðfÞ is a Nussbaum-type function. If the following inequality holds

VðtÞ� c1 þ e�c2t
Z t

0
gðxðsÞÞNðfðsÞÞþ 1½ � _fe�c2sds ð13Þ

where c1 and c2 are positive constants; gðxðsÞÞ is a time-varying parameter which takes
values in the intervals I ¼ l�; lþ½ � with 0 62 I, then, VðtÞ, fðtÞ and R t

0 NðfðsÞÞ _fds are
bounded in ½0; tf Þ.

We are now in the position to state the control objective.

Control objective: Design an adaptive neural network control law combined with the
Nussbaum gain technology to make the system output y follow the desired trajectory yd
accurately. Assume that the desired reference trajectory yd is bounded, namely, yd , y

ð1Þ
d ,

yð2Þd , …,yðnÞd are continuous and bounded, we define xd ¼ ½yd ; _yd; . . .; yðn�1Þ
d �T , xd 2 Rn,

where e ¼ x� xd is the tracking error.
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For compactness, in the following let 	j j denote the Euclidean norm of vector 	,
jj � jj represents the 2-norm, 	̂ is the estimate of 	� with ~	 ¼ 	� � 	̂, and the Nussbaum

function is chosen as NðfÞ ¼ ef
2
cosðpf=2Þ in this paper.

3 Controller Design and Stability Analysis

To begin with the design, we firstly define a filtered tracking. Using the idea of sliding
mode control, the filtered tracking error is designed as follows

r ¼ ½KT 1�e ð14Þ

where K ¼ ½kn�1; kn�2; . . .; k1�T is a design vector with sn�1 þ k1sn�2 þ � � � þ kn�1 a
Hurwitz polynomial. The time derivative of the filtered tracking error is

_r ¼ gðxÞþ kðu; tÞGðtÞuðtÞþGðtÞeu
þ dðx; tÞ � yðnÞd þ ½0 KT �e

ð15Þ

To consider the stability of (15), define a quadratic function as follows

Vr ¼ 1
2
r2 ð16Þ

The time derivative of Vr along (15) is

_Vr ¼ r½gðxÞþ kðu; tÞGðtÞuðtÞþ ½0 KT �e
þ GðtÞeu þ dðx; tÞ � yðnÞd �

ð17Þ

From Assumption 2 and (8), we have

_Vr � rgðxÞþ rkðu; tÞGðtÞuðtÞ
þ rj jðGmaxe

�
u þ d�Þ þ rYd

ð18Þ

where Yd ¼ �yðnÞd þ ½0 KT �e. Since gðxÞ is an unknown continuous function, we apply
a RBF neural network to approximate it on a compact set, namely

gðxÞ ¼ W�TwðxÞþ e ð19Þ

where e is the approximation error. It follows from (10) that there exists an unknown
positive e� such that ej j � e� with e� being an unknown positive constant. Since the
optimal weight vector W� is unknown, we will use its estimate Ŵ for the controller
design. Substituting (19) into (18) yields
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_Vr � rW�TwðxÞþ rkðu; tÞGðtÞuðtÞ
þ rj jðGmaxe

�
u þ d� þ e�Þþ rYd

� rW�TwðxÞþ rj jd� þ rkðu; tÞGðtÞuðtÞþ rYd

ð20Þ

with d� ¼ Gmaxe�u þ d� þ e� being an unknown positive constant.
Consider the following Lyapunov function

V ¼ Vr þ 1
2
~WTC�1 ~Wþ 1

2c
~d2 ð21Þ

where C ¼ C�1 denotes adaptive gain matrix; and c is an adaptive gain coefficient;
~W ¼ W� � Ŵ and ~d ¼ d� � d̂ are parameter estimation errors.

It follows from (20) that the time derivative of V is

_V � rW�TwðxÞþ rj jd� þ rkðu; tÞGðtÞuðtÞþ rYd

� ~WTC�1 _̂W � 1
c
~d _̂d

ð22Þ

Design the actual control law and adaptation laws as follows

u ¼ NðfÞ brþ ŴTwðxÞþ d̂ � tanhðr
s
Þþ Yd

h i
ð23Þ

_f ¼ br2 þ rŴTwðxÞþ d̂ � r tanhðr
s
Þþ rYd ð24Þ

_̂W ¼ CðrwðxÞ � r1ŴÞ
_̂d ¼ cðr tanhðr

s
Þ � r2d̂Þ

8<
: ð25Þ

where b[ 0, s[ 0, r1 [ 0 and r2 [ 0 are design parameters.
Then, the stability of the closed-loop system is analyzed as follows.
Substituting (23) into (22), we obtain

_V � rW�TwðxÞþ rj jd� þ kðu; tÞGðtÞNðfÞ _f
þ rYd � ~WTC�1 _̂W � 1

c
~d _̂d

ð26Þ

From (26) we can further have

_V � kðu; tÞGðtÞNðfÞ _f þ d� rj j � r tanhðr
s
Þ

h i
� ~WTC�1 _̂W � rCwðxÞ

h i
� br2

� 1
c
~d _̂d� c � r tanhðr

s
Þ

h i
þ _f

ð27Þ
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and substituting (25) into (27), one has

_V � � br2 þ kðu; tÞGðtÞNðfÞ _fþ r1 ~WTŴ

þ r2~dd̂þ d� rj j � r tanhðr
s
Þ

h i
þ _f

ð28Þ

Using the following inequality for any s[ 0 and r 2 R [10].

rj j � r � tanhðr=sÞ� 0:2785s ð29Þ

Substituting (29) into (27), we obtain

_V � � br2 þ kðu; tÞGðtÞNðfÞ _fþ _f

þ r1 ~WTŴþ r2~dd̂þ 0:2785sd�
ð30Þ

Utilizing the following inequalities

r1 ~WTŴ� � r1
2

~W
�� ��2 þ r1

2
W�k k2

r2~dd̂� � r2
2
~d2 þ r2

2
d�2

Consequently, we can further have

_V � � a1V þ kðu; tÞGðtÞNðfÞþ 1½ � _fþ a0 ð31Þ

where a1 ¼ min 2b; r1
kmaxðC�1Þ ; r2c

n o
a0 ¼ 0:2785sd� þ r1

2 W�k k2 þ r2
2 d

�2.

Multiply (31) by ea1t and integrate (31) over ½0; t�, we have

VðtÞ� a0
a1

þðVð0Þ � a0
a1
Þe�a1t þ

e�a1t
Z t

0
kðu; tÞGðsÞNðfÞþ 1½ � _fea1sds

� a0
a1

þVð0Þ

þ
Z t

0
kðu; tÞGðsÞNðfÞþ 1½ � _fe�a1ðt�sÞds

ð32Þ

In view of Lemma (1), we know that VðtÞ, fðtÞ and
R t
0 kðu; tÞGðsÞNðfÞ _fds are

bounded on ½0; tf Þ. Therefore, letZ t

0
kðu; tÞGðsÞNðfÞþ 1j j _fe�a1ðt�sÞds�Q ð33Þ
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From (32) and (33), one has

lim
t!1VðtÞ� a0

a1
þVð0ÞþQ ð34Þ

Since VðtÞ is bounded, we derive that all signals of closed-loop system are
SGUUB.

Then, define

C0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða0=a1 þVð0ÞþQÞ

p
ð35Þ

According to (21) and (35), we obtain

r�
ffiffiffiffiffiffiffiffiffiffiffi
2VðtÞ

p
�C0 ð36Þ

Therefore, by invoking the definition of filter tracking error r, we know the tracking
error e is bounded, moreover, when r ! 0, tracking error e ! 0. Consequently, the
system output y can track the desired trajectory yd accurately.

4 Simulation Results

Example 1: Consider a class of pure feedback nonlinear systems with actuator input
dead zone nonlinearity as follows

_x1 ¼ x2
_x2 ¼ �p1x1 � px2 � x31 þ q cosðwtÞ

þ hðx; vðuðtÞÞÞþ dðx; tÞ
y ¼ x1

8><
>:

where hðx; vðuðtÞÞÞ ¼ ð1þ 0:1 cos x1Þð1þ 0:2 cos vðuðtÞÞÞ 
 vðuðtÞÞ is a non-affine
term and dðx; tÞ ¼ 0:1ðx21 þ x22Þ � sin t denotes external disturbance; p1 ¼ �0:2;
q ¼ 5þ 0:1 cosðtÞ; p ¼ 0:2þ 0:2 cosð5x1Þ and w ¼ 0:5þ 0:1 sinðtÞ are uncertain
parameters, initial conditions x1ð0Þ ¼ 0:5, x2ð0Þ ¼ 0 and we assume the desired tra-
jectory yd ¼ 0:5
 ðsin tþ sinð0:5tÞÞ.

The model of actuator dead zone nonlinearity is as follows

vðuðtÞÞ¼
ð1þ 0:3 sinðuÞÞðu� 0:5Þ 0:5� u

0 � 0:3� u� 0:5

ð0:8þ 0:2 cosðuÞÞðuþ 0:3Þ u� � 0:3

8><
>:

In the simulation, the controller uðtÞ is designed as (23), the parameter adaptation
laws are chosen as (24) and (25), respectively. The Gaussian function is selected as the
basis function of RBF neural network as follows
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wðZÞ ¼ e�ðZ�liÞT ðZ�liÞ=t2i ; i ¼ 1; 2; . . .; l

The parameters of RBF neural network are set as: ŴTwðxÞ contains l ¼ 27 nodes,
the center liði ¼ 1; 2; . . .; 27Þ is evenly distributed ½�10; 10� 
 ½�10; 10�, width
ti ¼ 2ði ¼ 1; 2; . . .; 27Þ. The initial values of neural networks weights Ŵð0Þ are set to
zero and the initial conditions of parameters estimations are set as d̂ð0Þ ¼ 0 and
fð0Þ ¼ 1. The remaining parameters are selected as: C ¼ diag½0:5�, k1 ¼ 1:5,
r1 ¼ r2 ¼ 0:5, c ¼ 1:5, s ¼ 0:2, b ¼ 2:5. Simulation results are shown in Fig. 1. It is
seen from Fig. 1 that the proposed approach is sufficient to make the systems output
follow the desired reference trajectory and fairly good tracking performance has been
achieved. In addition, the boundedness of variable x2 and control input u can also be
observed from Fig. 1.

Note that the non-affine function hðx; vðuðtÞÞÞ contains dead zone nonlinearity and
is therefore obviously non-differentiable, which implies that the existing methods
cannot work, while our approach is adequate to control this system.

Moreover, when designing the controller, all the existing methods have not con-
sidered the influence of actuator input nonlinearity, while our scheme has taken it into
account.

Example 2: Consider a Genesio system with parametric perturbations and actuator
input backlash nonlinearity as follows

Fig. 1. The response curves of Example 1 Fig. 2. The responses of Genesio system
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_x1 ¼ x2
_x2 ¼ x3
_x3 ¼ �cx1 � bx2 � ax3 þ x21 þ hðx; vðuðtÞÞÞþ dðx; tÞ
y ¼ x1

8>><
>>:

where hðx; vðuðtÞÞÞ ¼ ð2þ cos x1Þð1þ 0:2 sin2 vðuðtÞÞÞ
 vðuðtÞÞ is non-affine func-
tion; dðx; tÞ ¼ sinð0:1tÞ denotes external interference and a ¼ 1:6; b ¼ 3; c ¼ 6; initial
states are set as x1ð0Þ ¼ 1, x2ð0Þ ¼ 0, x3ð0Þ ¼ 0. Set the desired output trajectory as
yd ¼ 0:5ðsin tþ sinð0:5tÞÞ.

The model of actuator backlash nonlinearity is expressed as

vðuðtÞÞ ¼
1:2ðu� 0:5Þ; _u[ 0 and uðuÞ ¼ 1:2ðu� 0:5Þ
1:2ðuþ 0:6Þ; _u\0 and uðuÞ ¼ 1:2ðuþ 0:6Þ
vðt Þ otherwises

8<
:

In the simulation, the design parameters are selected as: C ¼ diag½0:5�, k1 ¼ 2,
k2 ¼ 1, r1 ¼ r2 ¼ 0:3, c ¼ 1:2, s ¼ 0:5, b ¼ 5 and the remaining parameters and the
controller structure keep unchanged. The results are depicted in Fig. 2.

It can be easily seen from Fig. 2 that the proposed scheme can not only achieve
good tracking performance even in the presence of actuator input dead zone nonlin-
earity while taking actuator input backlash nonlinearity, but also in the presence of
non-differentiable non-affine functions.

5 Conclusions

By modeling the non-affine function and actuator dead zone and backlash model
appropriately, a novel adaptive neural tracking control scheme is presented for a more
general class of uncertain pure feedback systems. The proposed method is not only
applicable to the actuator dead zone nonlinearity, but also is suitable for the backlash
nonlinearity. In addition, the assumption that the actuator function must be known has
been canceled and the restrictive differentiability condition of non-affine function has
been relaxed. Finally, the performance of the proposed approach has been verified
through two simulation examples.
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