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Abstract

The increasing popularity of e-commerce has led to a greater emphasis on improving parcel delivery pro-
cesses. Among the various stages of the delivery process, packing parcels into delivery vans affects the de-
livery time. The efficiency of delivery is optimized when each parcel is conveniently accessible upon arrival,
thereby minimizing the requirement for additional repacking time. Therefore, streamlining parcel packing
within delivery vehicles is a crucial aspect of improving overall delivery times in e-commerce. This thesis
focuses on developing a packing solution that conforms to the Last-In-First-Out (LIFO) principle, which is
defined as ensuring that a parcel can be accessed by the delivery driver as soon as they reach the destination
of the parcel. This is described as the 3D-Bin Packing Problem with Loading Constraints (3L-BPP). To solve
this problem, a formulation of a Mixed Integer Linear Program (MILP) has been developed. To improve the
speed and accuracy of the solution, a novel placement heuristic has been created. This heuristic is derived
from the established Distance to the Front-Top-Right Corner (DFTRC)-2 method and is designed to generate
an initial solution.

Both the MILP and the heuristic are tested on a data set of 789 distinct rides, provided by a Dutch postal
company. The results demonstrate that (a modified version of) the heuristic successfully generated an initial
solution for all rides in the dataset, with 98.9% being found within 3 seconds, and for the remaining 1.1%,
the inclusion of a Genetic Algorithm led to a solution being found within 90 seconds. By using the heuristic
to establish an initial solution that is then refined through optimization techniques for the MILP, the find-
ings indicate that this approach yields the best outcomes in minimizing the number of incorrectly positioned
parcels.

Keywords: 3D-Bin Packing Problem, Mixed Integer Linear Program, Placement heuristics, LIFO
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1
Introduction

1.1. Problem description
From 2014 until 2021, the retail e-commerce sales worldwide grew from 1.3 to 5.2 billion US dollar, implying
that the size quadrupled in only seven years. Expected is that in 2026 this number even grows to 8.2 billion US
dollars [1]. The growth in retail e-commerce has a significant impact on the parcel delivery market, as a vast
number of products are shipped through this channel. In the Netherlands, the number of parcels delivered
went from 343 million in 2014 to 954 million in 2021 [2]. This increase calls for optimization in the process of
parcel delivery in the e-commerce branch.

Parcels are more often than not going through a long process before reaching the consumer. Starting from
collection at warehouses of the customer, multiple overlays at sorting centers, going from truck to truck, to
finally end up on the doorstep of the consumer. The last part of this process, from the final sorting center to
the delivery address is called the Last Mile Delivery (LMD). This part is crucial for any postal service, as this is
the part where the company comes in contact with the consumer. One part of LMD is the packing process of
the delivery van. In this thesis, this step is being investigated.

One of the unfavorable situations for parcel delivery services is that during the trip the delivery driver has
to rearrange a part of the van to be able to reach a specific parcel. This situation is inconvenient both for the
delivery driver, who has to handle additional tasks, and for the consumers, who have to wait longer to receive
their parcel. Also, having to pack the van is stated as one of the most stressful obligations of the delivery
drivers and especially hard for the new delivery drivers and those who just got assigned a new route [3].

In order to address these issues, it is important to devise a packing strategy for the parcel delivery van.
For many parcel delivery services, the delivery sequence and parcel dimensions are known beforehand. This
information can be used to create an optimized layout for the van through the use of exact and algorithmic
mathematical methods. The research conducted in this thesis aims to provide a solution to the question:

Research question

What modifications can be made to existing parcel packing optimization models to a create feasible
packing solution within delivery vans, given a specific set of parcels and delivery sequence?

.
In order to answer this question, sub-questions are formulated focusing on the different parts of the problem:

1. How can criteria be defined that make a packing feasible and can these criteria be expressed as a math-
ematical problem?

2. Is it possible to construct an exact model that solves the packing problem and to provide proof of its
correctness?

7



8 1. Introduction

3. What is the most effective heuristic solution method for finding a feasible packing, given the defined
criteria?

4. How does the runtime performance and reliability of unloading ease compare between the exact model
and the heuristic solution method?

This thesis is structured as follows: in the rest of this chapter a literature overview is set forth, in which an
analysis is done on the previous work related to this problem. Then, in Chapter 2, the preliminaries needed
for this research are given. In Chapter 3, the problem is described, and an analytical model is proposed to
solve the problem, which addresses the first two sub-questions. The heuristic solution methods are discussed
in Chapter 4, addressing the third sub-question. Chapter 5 outlines modifications made to both models and
demonstrates how the heuristic approach serves as a foundation, while the analytical model is employed
to optimize the outcome. The models are tested on an extensive dataset, and the results are examined in
Chapter 6, answering the last question. Finally, Chapter 7 concludes the research, discusses its implications,
and suggests options for future research.

1.2. Literature overview
As stated in the previous section, the optimization of container and van packing has garnered significant
attention over the past few decades, owing to the increasing market of e-commerce since the advent of the
internet and the rise in globalization and complexity of world markets [4]. Consequently, the relevance of
container packing has increased in academic research. Although there is no specific model that addresses
the problem of generating a feasible packing for a parcel delivery van, a substantial amount of research has
been conducted on the 3D-Bin Packing Problem (3D-BPP), which serves as a strong foundation for solving
the given problem. Therefore, this section covers the literature pertaining to the 3D-BPP and related prob-
lems.

The 3D-BPP is defined as follows: Given are a set of heterogeneous items that are rectangular in shape
and an infinite set of identical bins or containers that are also rectangular. The objective of the problem is to
pack all the items into the minimum number of bins. Two assumptions are made in the basis of the problem:
the items should not be placed diagonally in the van, thus that they are packed with each edge parallel to one
of the bin edges, and none of the items is (in any direction) larger than the containers [5].

The first known interest in this problem was in 1971 by Brown [6] in his book on optimum packing and
depletion. After that, the problem was mentioned several times, but each time with a different name or de-
scription. In 1990 Dyckhoff [7] gave an overview of the research done so far and categorized all the variations
of the problem that were given. A more structured approach to research in this area was then developed. This
categorization will also be used in this thesis.

The 3D-bin packing problem is, naturally, a generalization of the 1D-bin packing problem. This problem
is strongly NP-hard, making 3D-BPP also strongly NP-hard [5]. Many different methods have been used to
solve 3D-BPP, going from analytical to heuristic solution methods.

Changes in the constraints or assumptions can be made to make 3D-BPP more realistic. Chen et al.[8] did
this in 1995 by removing the assumption that the containers are homogeneous. This leads to the objective to
minimize the unused space, for which they presented a Mixed Integer Linear Program (MILP). This model is
described in Chapter 2 and is also discussed in the model description in Chapter 3. This model can be seen
as the basis on which many subsequent articles have been built.

Another connection with 3D-BPP was made by Kantorovich [9] in 1939, associating it with cutting prob-
lems. Later Dyckhoff [7] and Faina [10] established the same parallels. The important relationship between
the two, as Faina noted, comes from the duality of the problems: packing boxes into a container can be seen
as cutting the space of the container into pieces [10].

This gave rise to the 3D-Strip Packing Problem (3D-SPP). In this variation of 3D-BPP the height of the
container (the strip) is used as a variable instead of a parameter. The objective is to find a load of items that
makes the height as small as possible. This approach to the problem was used by George and Robbinson
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[11], Maarouf [12] and Bischoff [13] in heuristic solution methods for 3D-BPP, where they were able to find
an optimal position for 500 boxes in a few minutes. They did so by creating slices of minimal height in the
container and then pushing them together.

A considerable proportion of articles on bin packing modify the problem to minimise the Capacitated
Vehicle Routing Problem (CVRP). Here they only include the packing procedure as a constraint [4] [14] [15].
Genreau et al. [16] were the first to introduce the Capacitated Vehicle Routing Problem with 3D Loading
Constraints. This was done by creating a 3D-packing space and assigning items to coordinates within this
space. They added four constraints related to the packing strategy:

1. Fixed vertical orientation: The height of the items is displayed on the z-axis. Items can still rotate 90° in
the x y-plane.

2. Fragility: If an item is marked as fragile, only other fragile items can be placed on top of it.

3. Sufficient support area: The support area of an item is defined as the combined area of its bottom
surface and the top surface of any overlapping items at the same height on the x y-plane. This area
should be at least a given percentage of the item size.

4. Last-In-First-Out (LIFO) policy: If a customer is visited earlier than the others, the item(s) belonging
to that customer should be accessible from the back of the van. This means that it should be placed
above the other items (so higher on the z-axis) or in front of them (so further away from the origin on
the y-axis).

These constraints are all considered for this research and adopted when relevant to the model. More about
the constraints used can be found in Section 3.1.

A rather different approach to the problem was taken by Lurkin in 2015 [17], who introduced the Air-
line Container Loading Problem with Pickup and Delivery (ACLPPD). In this problem, the input is a set of
containers, a cargo aircraft and a flight plan. An important difference in the approach is that this aircraft is
compartmentalized. Lurkin created a MILP in which each container is assigned to one of the compartments
in the aircraft. Because it is an assignment problem and does not work with x-, y- and z-coordinates, it is
significantly more efficient than the model created by Chen et al.. The paper presents an instance of 128 con-
tainers solved within 10 minutes. This outcome is noteworthy considering the added complexity of ensuring
that the containers are accessible from the back in a specific order during placement.

The most common heuristic method for solving 3D-BPP is the Deepest-Bottom-Left with Fill (DBLF) al-
gorithm. The first step in formulating this algorithm was taken by Jakobs in 1996 [18], when he devised an
algorithm for packing a 2D bin. In the Bottom-Left algorithm, each item is placed as much as possible to-
wards the bottom and then as much as possible to the left. The elegance of this algorithm is that the running
time is only O (n2), where n is the number of items to pack. The disadvantage of this algorithm is that it leaves
a lot of empty space between the packed items.

An extension was made by Hopper [19], who made the Bottom-Left with Fill algorithm. In this algorithm,
the item fills the smallest possible area of the bin. This unfortunately makes the algorithm O (n3), but im-
proves the results of creating a compact packing. Karabulut and İnceoğlu [20] then converted this to the 3D
variant. Here they listed the empty volumes by size. Then, for each item, they place it in the smallest possi-
ble empty volume and update the volume sizes. This is a very basic way of filling the box, but together with
a hybrid genetic algorithm to find the input order, it gives some favorable results. The pseudo-code of this
algorithm is given in Section 2.4.1.

This thesis presents a novel approach to find a feasible packing for parcel delivery vans, referred to as
the 3D-Bin Packing Problem with Loading Constraints (3L-BPP). This problem combines elements of both
the 3D-Bin Packing Problem (3D-BPP) and the Capacitated Vehicle Routing Problem with 3D Loading Con-
straints (3L-CVRP). To address this problem, an analytical model is introduced that provides an exact solu-
tion. Additionally, several heuristic methods are explored, and the best one is selected, and also changed to
be more fitting for the problem. Finally, the analytical model is combined with the created heuristic method
to produce a solution that is as optimal as possible. The proposed models are tested and verified to ensure
their accuracy and effectiveness in solving the 3L-BPP.





2
Preliminaries

2.1. Mixed Integer Linear Program (MILP)
To tackle the problem outlined in Section 1.1, the powerful technique of Linear Programming (LP) is em-
ployed. This approach is rooted in the Operational Research subfield of mathematics, and involves formulat-
ing a problem in mathematical terms and then seeking an optimal or feasible solution. A brief introduction
on this topic is given.

2.1.1. General model
According to Vanderbei’s book [21], the concept of LP can be described as follows: In this method, the values
of certain variables x need to be determined. The objective is to maximize the objective function, which is
a linear function of the decision variables. Additionally, there are constraints that the variables must satisfy.
These constraints are bounds on the linear combinations of the variables. Therefore, the standard form of an
LP is as follows, with c and b a vector and A a matrix:

Maximize c⊤x

Such that Ax ≤ b

x ≥ 0

The variables in an LP are continuous. An Integer Linear Program (ILP) is a program of the same form, but
where all variables x are integer. Next to that, there is the Mixed Integer Linear Program (MILP), where at least
one variable is non-integer. Several techniques and specialized software packages are available to optimize
these types of problems.

2.2. MILP for the 3D-Bin Packing Problem
The 3D-Bin Packing Problem (3D-BPP) concerns the problem of packing a given set of items into a set of bins.
A description of this poblem can be found in Section 1.2. For the remainder of this thesis, the terms “vans"
and “parcels" refer to the bins and items, respectively. A MILP for this problem was given by Chen et al. in
1995 [8]. This model is based on describing the vans as a 3D-space and assigning each parcel an (x, y, z)-
coordinate within this space. In this section this model is presented. The parameters and variables are given
first, followed by the objective function and constraints.

2.2.1. Parameters
Table 2.1 displays the parameters of the MILP for the 3D-BPP. These parameters must be defined in advance.
Specifically, the length of a parcel refers to its longest dimension, the height to its shortest dimension, and the
width to the remaining dimension. So, this denotes that pi ≥ qi ≥ ri .

2.2.2. Variables
In Table 2.2, the variables of the model are presented. The value of these variables will be determined by the
model itself.

11
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Table 2.1: Parameters used in the Mixed Integer Linear Program of the 3D-Bin Packing Problem

Symbol Description

P The set of parcels to be packed

N Total number of parcels to be packed in the van, equal to |P |
V Set of vans that are available

m Total number of vans that are available, equal to |V |
M A large number for modeling purposes(
pi , qi ,ri

)
Parameters describing the length, width and height of parcel i(

L j ,W j , H j
)

Parameters describing the length, width and height of van j

Figure 2.1: Parcels 1, 2 and 3 in a 3-dimensional field. Here the values for the variables for relative position are a23 = d12 = f13 = 1 and 0
for the rest. This means that parcel 2 is on the left of parcel 3, parcel 1 is in front of parcel 2 and parcel 1 is on top of parcel 3. The corner
where the axes come together is the origin.

The term “parcel i to the left of k" denotes that parcel i is located closer to the origin on the x-axis than
parcel k. Conversely, “parcel i on the right side of k" means that parcel i is further from the origin on the
x-axis than parcel k. When “parcel i is in front of parcel k”, it indicates that parcel i is located further away
from the origin than parcel k on the y-axis, which may seem counter-intuitive at first. Lastly, if “parcel i is
below parcel k”, it means that parcel i is located closer to the origin on the z-axis than parcel k. The variables
ai k , ..., fi k denote the relative position variables.

An illustration of three parcels and their relative positions is shown in Figure 2.1. In this example, the
variables a23, d12, and f13 are equal to 1, while all other variables that determine relative position are 0. It is
important to note that variables for relative position are only defined for i < k. The Left-Bottom-Back Corner
(LBBC) of a parcel is represented by the (x, y, z)-coordinates of the corner closest to the origin.
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Table 2.2: Variables used in the Mixed Integer Linear Program of the 3D-Bin Packing Problem

Symbol Description

(
xi , yi , zi

) Continuous variables indicating the (x,y ,z)-coordinates

of the Left-Bottom-Back Corner (LBBC) of parcel i

(
lxi , lyi , lzi

) Binary variables indicating whether the length of

parcel i is parallel to either the x-, y- or z-axis.

(
wxi , wyi , wzi

) Binary variables indicating whether the width of

parcel i is parallel to either the x-, y- or z-axis

(
hxi ,hyi ,hzi

) Binary variables indicating whether the height of

parcel i is parallel to either the x-, y- or z-axis

si j
1 if parcel i is assigned to van j

0 otherwise

n j
1 if van j is used

0 otherwise

ai k
1 if parcel i is on the left side of parcel k

0 otherwise

bi k
1 if parcel i is on the right side of parcel k

0 otherwise

ci k
1 if parcel i is behind parcel k

0 otherwise

di k
1 if parcel i is in front of parcel k

0 otherwise

ei k
1 if parcel i is below parcel k

0 otherwise

fi k
1 if parcel i is above parcel k

0 otherwise
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2.2.3. Objective and Constraints
Underneath, the objective function and the constraints for the MILP of the 3D-BPP are presented:

Minimize
m∑

j=1
L j ·W j ·H j ·n j −

N∑
i=1

pi ·qi · ri (2.1)

Subject to xi +pi · lxi +qi ·wxi + ri ·hxi ≤ xk + (1−ai k ) ·M ∀i ,k ∈ P : i < k, (2.2)

xk +pk · lxk +qk ·wxk + rk ·hxk ≤ xi + (1−bi k ) ·M ∀i ,k ∈ P : i < k, (2.3)

yi +qi ·wyi +pi · lyi + ri ·hyi ≤ yk + (1− ci k ) ·M ∀i ,k ∈ P : i < k, (2.4)

yk +qk ·wyk +pk · lyk + rk ·hyk ≤ yi + (1−di k ) ·M ∀i ,k ∈ P : i < k, (2.5)

zi + ri ·hzi +qi ·wzi +pi · lzi ≤ zk + (1−ei k ) ·M ∀i ,k ∈ P : i < k, (2.6)

zk + rk ·hzk +qk ·wzk +pk · lzk ≤ zi +
(
1− fi k

) ·M ∀i ,k ∈ P : i < k, (2.7)

ai k +bi k + ci k +di k +ei k + fi k ≥ si j + sk j −1 ∀i ,k ∈ P : i < k, (2.8)

m∑
j=1

si j = 1 ∀i ∈ P (2.9)

N∑
i=1

si j ≤ M ·n j ∀ j ∈V , (2.10)

xi +pi · lxi +qi ·wxi + ri ·hxi ≤ L j + (1− si j ) ·M ∀i ∈ P, (2.11)

yi +qi ·wyi +pi · lyi + ri ·hyi ≤W j + (1− si j ) ·M ∀i ∈ P, (2.12)

zi + ri ·hzi +qi ·wzi +pi · lzi ≤ H j + (1− si j ) ·M ∀i ∈ P (2.13)

lxi + lyi + lzi = 1 ∀i , j ∈ P, (2.14)

wxi +wyi +wzi = 1 ∀i , j ∈ P, (2.15)

hxi +hyi +hzi = 1 ∀i , j ∈ P, (2.16)

lxi +wxi +hxi = 1 ∀i , j ∈ P, (2.17)

lyi +wyi +hyi = 1 ∀i , j ∈ P, (2.18)

lzi +wzi +hzi = 1 ∀i , j ∈ P, (2.19)

lxi , lyi , lzi , wxi , wyi , wzi ,hxi ,hyi ,hzi ∈ {0,1} ∀i ∈ P,

ai k ,bi k ,ci k ,di k ,ei k , fi k , si j ,n j ∈ {0,1} ∀i ,k ∈ P, j ∈V

xi , yi , zi ≥ 0 ∀i ∈ P.

The objective function, as defined in equation (2.1), aims to minimize the unused volume of all vans used to
pack parcels. This is done by summing the volume of the actual used vans (calculated using n j ) minus the
total volume of all parcels.

Constraints (2.2)–(2.7) are essential for ensuring that the parcels do not overlap with each other. In order
to explain how these constraints work, constraints (2.2) will be used as an example, but note that the same
approach applies to all the other constraints as well. In constraints (2.2), the variables are bounded only when
ai k = 1. If ai k ̸= 1, then the right-hand side of the equation activates a large value M , rendering the constraint
irrelevant.

When ai k = 1, it means that the location of parcel i is to the left of parcel k. Consequently, the LBBC of
parcel k can only be assigned further along the x-axis than parcel i . Therefore, xk must be greater than xi plus
the length of parcel i in the x-axis direction. Depending on the orientation of the parcel, the length can be
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defined by pi , qi , or ri , corresponding to the length, width, and height of the parcel respectively. Constraints
(2.3)–(2.7) work in a similar way but take into account different directions and relative positions of the parcels.

Constraints (2.8) guarantee that if parcels i and k are assigned to the same van j , they must have at least
one relative position to each other. This is important to avoid the possibility of the variables ai k , ..., fi k being
assigned a value of 0, which would make constraints (2.2)–(2.7) ineffective. To ensure that each parcel is
assigned to one and only one van, constraints (2.9) are implemented. Additionally, constraints (2.10) ensure
that parcels are not assigned to a van until that van has been selected. Constraints (2.11),(2.12) and (2.13)
certify that the parcels packed into van j will not exceed the dimensions of the van. Finally, Constraints
(2.14)–(2.19) establish that, for each parcel, its length, width and height have a one-to-one relationship with
the x-, y- and z-axes.

2.2.4. Dependent variables exclusion
Examining constraints (2.14)–(2.19), it is apparent that the orientation variables are interdependent. By ex-
pressing certain variables in terms of others, it is possible to eliminate five variables, thereby significantly
reducing the size of the model [8]. Specifically, the variables lyi , wzi , wxi , hxi , and hyi can be eliminated. The
reformulated variables are presented below:

lyi =1− lxi − lzi

wzi =1− lzi −hzi

wxi =1−wyi −wzi = 1−wyi − (1− lzi −hzi )

=1−wyi −1+ lzi +hzi = lzi +hzi −wyi

hxi =1− lxi −wxi = 1− lxi −
(
1−wy −wz

)
=1− lxi −1+wyi +wzi = wyi +wzi − lxi

=wyi +1− lzi −hzi − lzi

=1− lzi −hzi − lxi +wyi

hyi =1−hxi −hzi

=1− (
1− lzi −hzi − lxi +wyi

)−hzi

=1−1+ lzi +hzi + lxi −wyi −hzi

=lzi + lxi −wyi

This leads to the following reformulation of the constraints (2.2)–(2.7) and (2.11)–(2.13):

xi +pi lxi +qi
(
lzi −wyi +hzi

)+ ri
(
1− lxi − lzi +wyi −hzi

)≤ xk + (1−ai k ) ·M ∀i ,k : i < k (2.2′)
xk +pk lxk +qk

(
lzk −wyk +hzk

)+ rk
(
1− lxk − lzk +wyk −hzk

)≤ xi + (1−bi k ) ·M ∀i ,k : i < k (2.3′)
yi +qi wyi +pi (1− lxi − lzi )+ ri

(
lxi + lzi −wyi

)≤ yk + (1− ci k ) ·M ∀i ,k : i < k (2.4′)
yk +qk wyk +pk (1− lxk − lzk )+ rk

(
lxk + lzk −wyk

)≤ yi + (1−di k ) ·M ∀i ,k : i < k (2.5′)
zi + ri hzi +qi (1− lzi −hzi )+pi lzi ≤ zk + (1−ei k ) ·M ∀i ,k : i < k (2.6′)

zk + rk hzk +qk (1− lzk −hzk )+pk lzk ≤ zi +
(
1− fi k

) ·M ∀i ,k : i < k (2.7′)

xi +pi lxi +qi
(
lzi −wyi +hzi

)+ ri
(
1− lxi − lzi +wyi −hzi

)≤ L j + (1− si j ) ·M ∀i , (2.11′)
yi +qi wyi +pi (1− lxi − lzi )+ ri

(
lxi + lzi −wyi

)≤W j + (1− si j ) ·M ∀i , (2.12′)
zi + ri hzi +qi (1− lzi −hzi )+pi lzi ≤ H j + (1− si j ) ·M ∀i (2.13′)

Chen et al. [8] conducted several tests and applications to validate the proposed model. Further information
on this can be found in their paper.

2.3. Improved MILP by Pedruzzi et al.
Although Chen et al. [8] laid a solid foundation for the model, there are still some unresolved issues. In
2016, Pedruzzi et al. [22] improved the existing model by making some necessary changes. There are three
shortcomings in the model they focus on:



16 2. Preliminaries

1. Parcels may float in the solution.

2. The order of removal of the parcels is not considered.

3. There is no assurance for the supporting area.

The following section discusses each of these issues in detail and explores how the modification of Pedruzzi
et al. helps to address these concerns.

2.3.1. Non-floating constraints
The first shortcoming of the model that is addressed is that the parcels are able to float. In this context, “float-
ing" refers to a situation where the LBBC of a parcel has a z-value that is not equal to 0, but there is no parcel
underneath it to support it. This does not reflect real-life situations. To correct this issue, a term is added to
the objective function that minimizes the values of xi , yi and zi , while multiplying it by a small parameter
to ensure that it does not have a significant impact on the decision process of assigning parcels to vans. As
a result, the parcels are placed in a more compact manner, which ensures that parcels are always placed as
low as possible on the z-axis. This means that each parcel is either placed on the floor or on another parcel,
making the model more realistic.

2.3.2. Last-In-First-Out (LIFO) constraints
Another important addition to the model is the inclusion of Last-In-First-Out (LIFO) constraints. LIFO is a
term widely used in the logistics sector, which dictates that the last item placed inside van should be the first
to be removed from it. To implement this, an extra parameter, oi ,∀i ∈ P , is introduced to indicate the delivery
sequence of each parcel. It is required that if oi < ok , then parcel i must be delivered before parcel k. The
constraints that ensure the LIFO order are as follows: for parcels i and k, if oi < ok , then parcel i cannot be
placed under or behind parcel k. This is translated into mathematical constraints in the following way:

xi + (1− ci k ) ·M ≥xk ∀i ,k ∈ P : i ̸= k,oi < ok (2.20)

xi +pi lxi +qi (1− lxi )+ (1− ci k ) ·M ≥
xk +pk lxk +qk (1− lxk ) ∀i ,k ∈ P : i ̸= k,oi < ok (2.21)

zi + (1−ei k ) ·M ≥zk ∀i ,k ∈ P : i ̸= k,oi < ok (2.22)

zi + ri + (1−ei k ) ·M ≥zk + rk ∀i ,k ∈ P : i ̸= k,oi < ok (2.23)

If ci k = 1, it means that parcel i is placed further back in the van than parcel k. To ensure that parcel i can still
be accessed before parcel k is removed from the van, they must be placed next to each other on the x-axis.
This requirement is enforced through constraints (2.20) and (2.21). Constraints (2.22) and (2.23) operate in
the same manner for the z-axis.

The paper assumes that the height of each parcel should be parallel to the z-axis, which means that
hzi = 1. As a result, constraints (2.20) and (2.21) include only qi and pi , while constraints (2.22) and (2.23)
only include ri .

To ensure the proper functioning of these constraints, it is necessary to include relative position variables
for k < i . This is because constraints (2.20)-(2.23) rely on the use of ei k and ci k for all i ,k ∈ P . As a result, the
following constraints are introduced:

ai k = bki , ∀i ,k ∈ P : i ̸= k

ci k = dki , ∀i ,k ∈ P : i ̸= k

ei k = fki , ∀i ,k ∈ P : i ̸= k

For every constraint in the model, ∀i ,k : i < k is changed into ∀i ,k : i ̸= k.

2.3.3. Supporting area constraints
Pedruzzi et al. introduced constraints to ensure that every parcel in their model is sufficiently supported by
either the floor or another parcel below it. They achieved this by introducing a new parameter, as ∈ [0,1]
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(area support), which specifies how well each direction of the parcel should be supported. For instance, if
as = 0.8, at least 80% of the parcel’s length on the x-axis and 80% of the parcel’s length on the y-axis must be
in contact with either the parcel below it or the floor, resulting in 64% support of the bottom surface area. The
constraints that enforce these requirements are listed below:

xi +pi lxi +qi (1− lxi )+ (1−ei k ) ·M ≥xk ∀i ,k : i ̸= k (2.24)

xi +pi lxi +qi (1− lxi )−xk + (1−ei k ) ·M ≥(
pk lxk +qk (1− lxk )

) ·as ∀i ,k : i ̸= k (2.25)

yi +pi lyi +qi
(
1− lyi

)+ (1−ei k ) ·M ≥yk ∀i ,k : i ̸= k (2.26)

yi +pi lyi +qi
(
1− lyi

)− yk + (1−ei k ) ·M ≥(
pk lyk +qk

(
1− lyk

)) ·as ∀i ,k : i ̸= k (2.27)

The constraints ensure that each parcel is well supported. They apply only when parcel i is placed underneath
parcel k (i.e., when ei k = 1). In this case, the position of parcel k on the x- and y-axes must be bounded from
above by the position of parcel i plus the length of parcel i on the respective axis. These bounds are enforced
by constraints (2.24) and (2.26). Additionally, the difference between the endpoint of parcel i on the x-axis
and the starting point of parcel k on that axis must not exceed as times the length of parcel k on the x-axis.
Similar constraints are applied to the y-axis, as shown in (2.25) and (2.27). For a more elaborate explanation
of the constraints, see Pedruzzi’s paper [22].

2.4. Heuristic solution methods for 3D-BPP
In addition to analytical models, several heuristics have been developed to solve the problem of 3D-Bin Pack-
ing Problem (3D-BPP). This section describes the specific heuristics used in this thesis. These heuristic solve
the problem as defined as in Section 1.2, so not including the constraints given by Pedruzzi [22].

2.4.1. Deepest-Bottom-Left with Fill Packing
As mentioned in Section 1.2, the Deepest-Bottom-Left with Fill (DBLF) is one of the most commonly used
heuristics to solve the 3D-BPP. The pseudo-code of the heuristic can be found in Procedure 1.

Procedure 1 Deepest-Bottom-Left with Fill

Input: Sorted list P with parcels to be packed, dimension L, W and H for the van.
Output: x-, y- and z-coordinates for the LBBC of every parcel

V← L×W ×H ▷ A list with ES sorted by non-decreasing volume
V ′ ←V
while V ′ ̸= ; do

while P ̸= ; do
Get parcel p first in list P
Get smallest v in list V ′
if Parcel p fits in open volume v then

check if parcel p fits in one of its orientations in ES without intersecting another parcel
place parcel p in open volume v , minimizing first on the x-axis,
then the y-axis and then the z-axis
update the volumes of the ES in V
P ← P \ p
V ′ :=V

else
V ′ ←V ′ \ v

end if
end while
return Placement

end while
return False

The heuristic takes an ordered list of parcels as input to start the packing process. It maintains a list of
all available Empty Spaces (ES) in the van, sorted in non-decreasing order of volume. An ES is a rectangular
volume that is defined by two points — one closest to the origin and the other furthest from the origin — that
must both fall within the dimensions of the van being used. This volume represents a space where no parcels



18 2. Preliminaries

Figure 2.2: An example of DBLF. In this 3D-space three parcels have already been placed, and a fourth one still needs placing. The Empty
Spaces (ES) are showed and ordered in non-decreasing from 4′ to 4′′′.

Figure 2.3: An example of DFTRC. In this 3D-space three parcels have already been placed, and a fourth one still needs placing. The
Empty Spaces (ES) are showed, together with the distances to the Front-Top-Right Corner.

have been placed yet. For each parcel, the algorithm attempts to place it in the smallest ES available. If no ES
has enough volume to accommodate the parcel, the algorithm returns false. Otherwise, it returns the feasible
packing arrangement. The rotation of the parcels is always its length on the x-axis, width on the y-axis and
height on the z-axis.

Figure 2.2 provides a visual demonstration of a single step in the algorithm. The figure depicts a van with
three parcels already in place, and a fourth parcel yet to be packed. There are three ES available for the fourth
parcel, ranging from 4′ to 4′′′, sorted by volume. In this particular instance, Parcel 4 fits into the open volume
4′, and so it is placed there accordingly.

2.4.2. Distance to the Front-Top-Right Corner
Another effective heuristic for packing parcels within a van is the Distance to the Front-Top-Right Corner
(DFTRC), as proposed by Gonçalves [23]. Like the previous heuristic, this approach also involves maintaining
a list of ES within the van. However, instead of prioritizing by volume, the DFTRC algorithm calculates the
distance between the LBBC of the ES and the Front-Top-Right Corner of the van, and chooses the placement
with the longest distance. Essentially, the same procedure as outlined in Procedure 1 can be followed, but in
this case, the algorithm maintains a list of distances D , and makes its placement decisions based on these
distances.

Figure 2.3 provides a visualization of the placement step in this algorithm. It shows the placement of the
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Figure 2.4: An example of DFTRC-2. In this 3D-space three parcels have already been placed, and a fourth one still needs placing. The
possible placements in the Empty Spaces (ES) for both orientations is showed, together with the distances to the Front-Top-Right Corner.

Figure 2.5: The outcome of the DBLF, DFTRC and DFTRC-2 from the examples of figures 2.2, 2.3 and 2.4, respectively from left to right.

same three boxes as in Figure 2.2, but also indicates the distance between the two previously specified points.
The distance to the ES on top of parcel 1 is the longest, and therefore, this is chosen to place Parcel 4.

An improvement to the existing rule was proposed by Gonçalves [23] and is known as DFTRC-2. This rule
measures the distance between the Front-Top-Right Corner of the van and the LBBC of the parcel’s place-
ments instead of the ES. This approach takes into account the possible orientations of the parcel and results
in an even more compact solution. The visual representation of this approach is illustrated in Figure 2.4.

In this example, the parcel is equally long and high, and thus it can be oriented in only two ways. These
different options are ‘placed’ into the van, and the distances are calculated. The placement of Parcel 4 on top
of Parcel 1 is the furthest away, as was the case with the DFTRC. However, putting the parcel upright increases
the distance to the Front-Top-Right Corner of the van, making this the better placement option.

Figure 2.5 displays the final placement achieved by all three heuristics. It is noticeable that the parcels are
positioned differently for each of the three options. This illustrates that selecting a placement procedure has
a significant influence on the final packing of the van.

2.4.3. Genetic Algorithm
As previously mentioned, the 3D-Bin Packing Problem (3D-BPP) problem is known to be N P-hard, meaning
that finding an optimal solution can be computationally intractable for large input sizes. Although a greedy
algorithm such as the Deepest-Bottom-Left with Fill (DBLF) can be used to obtain a decent solution, it may
not always yield the best possible outcome. To further improve the quality of the solution, genetic algorithms
can be employed to iteratively evaluate and refine the output of the heuristic.
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A Genetic Algorithm (GA) is a computational technique that use principles inspired by natural selection
and genetics to search for solutions to optimization and search problems [24]. The basic idea behind a GA
is to start with a population of candidate solutions, each of which is represented as a string of symbols. The
fitness of each individual is evaluated using a function that measures how well it performs on the problem
being solved. Based on their fitness, individuals are selected for crossover to create new offspring individu-
als, that inherit characteristics from their parents. These offspring individuals then undergo mutation, which
introduces small random changes to their genetic makeup. The process of selection, crossover, and mutation
is repeated over many generations, with the purpose that the population will evolve towards better solutions
to the problem.

Gonçalves [23] presents an approach to enhance the performance of the DFTRC-2 algorithm by incorpo-
rating a GA. To achieve this, Gonçalves creates a genetic string that encodes the order in which the parcels are
fed into the algorithm. By evolving the genetic string using a genetic algorithm, they are able to explore and
identify better orderings of the parcels, resulting in improved solutions.



3
Mixed Integer Linear Program for the

3L-BPP

In order to solve the problem as described in Section 1.1, a Mixed Integer Linear Program (MILP) is devel-
oped. This model is based on the analytical model for the 3D-Bin Packing Problem (3D-BPP) developed by
Chen et al. [8] and the improvements made by Pedruzzi et al.[22], as presented in sections 2.2 and 2.3. On this
basis, adjustments have been made to enable the model to solve the 3D-Bin Packing Problem with Loading
Constraints (3L-BPP).

There is a need for change of the model for the following reasons: for the model solving the given problem,
a feasible solution and not an optimal solution is sought. This means that there is no need for an objective
function. So both minimizing the unused space as well as minimizing the xi , yi and zi are being removed.
Deriving from this, some extra constraints and changes are required.

The improvements made in comparison to the original model are: going from multiple vans to one, in-
cluding the van interior aspects and including non-floating-, supporting area- and Last-In-First-Out con-
straints. All these changes are described in this chapter. The same principles to describe the van are used, so
the x-axis is related to left and right, the y-axis to front and back and the z-axis for on top and under.

Analogous to the 3D-BPP, the model has two basic assumptions: Second, the dimensions of all items
should be smaller than those of the loading space of the van.

3.1. Problem description
The first step in the process of creating a MILP for the problem is to define when a packing is feasible. This is
done using a combination of constraints presented in other papers ([25] [19]) as well as the logical application
of this problem to delivery vans. An assumption underlying the problem is that the dimensions of all items
being packed into the van must be smaller than the dimensions of the van’s packing space. A solution is a
feasible solution if it complies with the following conditions:

1. Single van loading: It is not allowed to put parcels into a second van.

2. Non-overlapping constraints: The parcels should not overlap, which means that if a parcel is assigned
a (x, y, z)-coordinate for the LBBC and a specific orientation, then no other parcel should be placed
within the distance of that parcel on each axis.

3. Volumetric constraints: The dimensions of the van should be respected by the dimensions and place-
ment of the parcels.

4. Perpendicular constraints: The parcels are not placed diagonally in the van. This means that each edge
is parallel to the x-, y- or z-axis.

21
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5. Supporting area constraints: To ensure stability, each parcel must be supported either by another par-
cel, the floor, or a shelf. A specified percentage of the bottom area of each parcel must be in contact with
a supporting surface. It is assumed that a parcel cannot be stabilized by resting on two other parcels
simultaneously.

6. Van specification input: For application to delivery vans, van-specific properties must be taken into ac-
count. These properties must be included as inputs in the model. Examples of such properties include
the number of shelves in the van.

7. Last-In-First-Out (LIFO) policy: If one client is visited earlier then the others, the parcel(s) belonging to
that client should be accessible from the back of the van. This can be achieved by placing the earlier
parcel(s) above the other parcels, i.e., higher on the z-axis, or in front of them, i.e., further away from
the origin on the y-axis. If items are placed next to each other on the x-axis, it still qualifies as a feasible
LIFO loading. However, if a parcel is placed on a shelf, the LIFO order changes. For shelves on the
left side of the van, parcels belonging to clients who are visited earlier should be placed further on the
x-axis, while for a shelf on the right, they should be placed closer to the origin on the x-axis.

These conditions serve as the foundation for constructing the MILP.

When looking at the changes made in Section 2.2.4, it is evident that the readability is reduced. In order to
restore this, new notation is introduced, namely the variables Xi , Yi and Zi , which are equal to the distance
of parcel i on the different axes. So, the following equations are added:

Xi = pi lxi +qi
(
lzi −wyi +hzi

)+ ri
(
1− lxi − lzi +wyi −hzi

)
Yi = qi wyi +pi (1− lxi − lzi )+ ri

(
lxi + lzi −wyi

)
Zi = ri hzi +qi (1− lzi −hzi )+pi lzi

3.2. Van interior modeling
This section presents constraints that precisely capture the interior of the van in the model. Initially, con-
straints incorporating shelves are included, followed by modifying the existing constraints to account for a
single van filling.

3.2.1. Adding shelves
As delivery vans usually have shelves in their interiors, this is considered as input to the model. To incorporate
the shelves in the problem, it is chosen to model them as parcels. By doing this, all the non-overlapping and
volumetric constraints are incorporated at the same time as the problem is solved. The difference is that the
orientation and LBBC of the shelves are already predetermined in the model, the latter denoted as Xi , Yi and
Zi . A change is made for the input: the items to be placed inside the van are denoted as I = P ∪S, with P the
set of parcels and S the set of shelves. This is accompanied by the the following constraints:

xi =Xi ∀i ∈ S

yi =Yi ∀i ∈ S

zi =Zi ∀i ∈ S

lxi = wyi = hzi = 1 ∀i ∈ S

3.2.2. Single van filling
Some adjustments to 3D-BPP are needed as it is designed for loading multiple vans. The parameters L j , W j ,
and H j will become L, W , and H respectively. Additionally, the variables si j and n j are not needed as all
parcels will be placed in the same van. Hence, the constraints will be adjusted as follows:

ai k +bi k + ci k +di k +ei k + fi k ≥ 1 ∀i ,k ∈ I : i ̸= k, (2.2′)
xi +Xi ≤ L ∀i ∈ I , (2.11′)
yi +Yi ≤W ∀i ∈ I , (2.12′)
zi +Zi ≤ H ∀i ∈ I . (2.13′)
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Figure 3.1: Distance between zk and zi +Zi of parcels i and k in a 3D-space.

3.3. Non-floating constraints
The constraints introduced in this section aim to prevent parcels from floating during loading. This is achieved
by first verifying that each parcel is placed at the correct height on another parcel, and then ensuring that the
underlying parcel provides enough supporting area.

3.3.1. Direct placement on another parcel
In order to prevent the parcels from floating in the van, some adjustments are made to the model. First, the
floor of the van is defined as a parcel by adding it to the set S. Its LBBC is set to (0,0,0), its length to L, its width
to W and its height to 0. In this way it is possible to force each parcel to be directly attached to another parcel
along the z-axis.

To mathematically enforce that each parcel must be directly attached to another parcel in the z-axis di-
rection, a new binary variable ni k is introduced. This variable is set to 0 if parcel k is placed directly on top
of parcel i , and 1 otherwise. Additionally, a new parameter B M ≥ M +L is introduced for modeling purposes.
Then, the following constraints are added:

zk − (zi +Zi )+ (1−ei k )M ≤ ni k B M ∀i ,k ∈ I : i ̸= k (3.1)

N∑
i :i ̸=k

ni k ≤ N −1 ∀k ∈ P (3.2)

ni k ∈ {0,1} ∀i ,k ∈ I

The design of the constraints is such that ni k must be chosen unequal to 1 for at least one i for each parcel k.
This is modelled by constraints (3.2). It can be seen that the constraints (3.1) require that if two parcels i and
k are not placed on top of each other, ni k must be equal to 1. This is because if ei k = 0, the right hand side of
the inequality must be greater than M , and the only way to achieve this is to set ni k to 1. If ei k = 1, this part
of the inequality is equal to 0. The first part of the left hand side of the inequality represents

( the bottom of the upper parcel− the top of the lower parcel ),

which must be equal to 0 at least once, in order for the right side to also be zero. This distance is also shown
in Figure 3.1. By this construction, the parcels are forced to be directly placed on at least one other parcel,
and thus they are not able to float in the air. Note that shelves are allowed to float (as they are attached to the
wall), and thus constraint (3.2) does not hold for shelves.

3.3.2. Supporting area constraints
Pedruzzi et al. [22] introduced supporting area constraints in their work to improve the stability of the packing
given by the solution. In their approach, they minimized the variables xi , yi , and zi to satisfy the supporting
area constraints. However, this minimization is no longer used in the model, and therefore the supporting
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Figure 3.2: The four different distances between the corner points of two superimposed parcels i and k, which are restricted to a specific
size by constraints (3.3)–(3.6).

(a) An example where parcel i is above k on a shelf, showing the re-
stricted area.
.

(b) Continued example where parcel i is above k, showing that there
would not be sufficient stability if the parcels were placed directly on
top of each other

Figure 3.3: Example of two parcels, i and k, where i is positioned above k, but not within the restricted area outlined in constraints (3.3)–
(3.6). Despite their proximity, this arrangement is permissible since they are separated by a shelf, and the variable λi ks1s2

is introduced
to account for this.

area constraints need to be reformulated.

Currently, if parcel i is positioned below parcel k, denoted by ei k = 1, and parcel i is placed further along
the x-axis than parcel k, the constraint (2.24) is still fulfilled. This same scenario applies for the three other
directions and their corresponding constraints (2.25)–(2.27). As a result, it is possible for a parcel to be placed
at the correct height but not above another parcel as required. To prevent this from happening, the following
constraints are added:

(xi +Xi )−xk + (1−ei k ) ·M ≥ Xk ·as ∀i ∈ I ,k ∈ P : i ̸= k (3.3)

(xk +Xk )−xi + (1−ei k ) ·M ≥ Xk ·as ∀i ∈ I ,k ∈ P : i ̸= k (3.4)

(yi +Yi )− yk + (1−ei k ) ·M ≥ Yk ·as ∀i ∈ I ,k ∈ P : i ̸= k (3.5)

(yk +Yk )− yi + (1−ei k ) ·M ≥ Yk ·as ∀i ∈ I ,k ∈ P : i ̸= k (3.6)

The constraints (3.3)–(3.6) use the differences between the top corners of parcel i and the bottom corners of
parcel k. When ei k = 1, this distance must be at least as times the size of parcel k on that axis. This situation is
illustrated in Figure 3.2. Since constraints (3.1) and (3.2) require ei k to be 1 at least once, the aforementioned
constraints are met at least once, ensuring that all parcels have sufficient supporting area underneath them.

When adding constraints to restrict the placement of parcels to a specific area, it is important to con-
sider existing constraints that affect the relative positions of parcels. There is a scenario that is not currently
modeled: two parcels are partially on top of each other on separate shelves, but not completely within the
constrained area. This scenario is illustrated in Figure 3.3. Due to constraints (2.2)–(2.5), ai k ,bi k ,ci k and di k

cannot be set to 1. In addition, the constraints (3.3)–(3.6) prevent ei k and fi k from being chosen as 1. To allow
for this situation, a new binary variable λi ks1s2 is introduced, which equals 1 if parcel i is on a shelf above
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(a) An example where s1 = s2 = s and eks1
=

es1i = 1, resulting in λki ss = 1

(b) An example where s1 > s2 and eks2
= es1i =

1, resulting in λki s1 s2
= 1

(c) An example where s1 < s2 and eks2
= es1i =

1, resulting in λki s1 s2
= 1

Figure 3.4: Three different options for the variable λki s1s2
getting value 1.

parcel k. To ensure that λi ks1s2 behaves as desired, the following constraints are added.

λi ks1s2 ≤
1

2
(es1i +eks2 ) ∀i ,k ∈ P : i ̸= k;∀s1, s2 ∈ S, s1 ≥ s2 (3.7)

The constraints (3.7) can be divided into two cases: when s1 = s2 and when s1 > s2, where the ordering in-
dicates that a shelf has a higher z-coordinate if it is larger. First, consider the case where s1 = s2 = s. In this
case, the constraints ensure that λi kss can be set to 1 when parcel i stands on the shelf directly above k. Since
esi = 1 implies that parcel i is above shelf s, it can be deduced that parcel i is on top of shelf s. Similarly,
esk = 1 indicates that shelf s is above k. The factor 1

2 is added because λi kss can only be equal to 1 if both
conditions are true. Hence, if only one of them holds, the left-hand side becomes 1

2 , and λi kss is then forced
to become 0. An example of when λi kss = 1 can be found in Figure 3.4a.

Now say s1 > s2. These constraints are needed for cases where there are at least 2 shelves between parcels
i and k. The constraints work as above, but the difference is that parcel i is on shelf s1 and parcel k is below
shelf s2, where s1 and s2 are not the same shelf. An example of the situation where λi ks1s2 = 1 can be found in
the Figure 3.4b.

Please note that the variables λi ks1s2 are restricted to cases where s1 ≥ s2. This is because, if s1 < s2, then
the combination 1

2 (es1i + eks2 ) would suggest that parcel i is on top of a shelf s1 and parcel k is underneath a
higher shelf s2. This could result in violating the non-overlapping constraints after placing the parcels on the
same shelf. Figure 3.4c provides an illustration of the situation that needs to be prevented.

Having established that the variables λki s1s2 behave as desired, constraints (2.2) need to be adjusted. In
addition to the variables ai k , ..., fi k , the variable λki s1s2 should be included as a relative position indicator.
The updated constraint is given by:

ai k +bi k + ci k +di k +ei k + fi k ≥ 1− ∑
s1,s2∈S,

s1≥s2

(λi ks1s2 +λki s1s2 ) ∀i ,k ∈ I : i ̸= k (2.2′)

3.4. Last-In-First-Out policy constraints
As explained in Section 3.1, a solution is considered feasible only if it adheres to the Last-In-First-Out (LIFO)
policy. This means that for parcels i and k, if oi < ok , then parcel i cannot be placed underneath or behind
parcel k. This results in the following, straightforward, constraints:

ci k = 0 ∀i ,k ∈ P : i ̸= k;oi < ok (3.8)

ei k = 0 ∀i ,k ∈ P : i ̸= k;oi < ok (3.9)
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3.4.1. Parcel stacking
The constraints (3.8) do not apply if there is a shelf between two parcels, because then the order in the z-
direction is reset. To take into account the effect of shelves, the variable ni k is used, as it says something
about being placed directly on top of each other. If ni k is 0, then parcel i is directly below parcel k, and so the
order should be maintained. This leads to the following adjustment of constraints (3.9):

ei k ≤ ni k ∀i ∈ P,∀k ∈ I : i ̸= k;oi < ok (3.9′)

3.4.2. Shelf ordering
In accordance with the problem description in Section 3.1, the order of parcel removal changes once it is
placed on a shelf. Instead of being placed towards the back of the van (i.e., further along the y-axis), it should
be retrieved from the end of the shelf, so closest to the line x = L

2 . For the left side of the van, this means
further away from the origin on the x-axis, and for the right side, it means closer to the origin. Consequently,
using the ci k variable is not fitting, and instead, the ai k and bi k variables must be used. To facilitate this, the
shelves are partitioned into two groups: those on the left side and those on the right side of the van, Sl and
Sr respectively, with S = Sl ∪Sr . The ensuing constraints are introduced to guarantee that the correct order
of parcel retrieval is maintained on the shelves:

ai k ≤ (1−ei s )+ (1−eks ) ∀i ,k ∈ P : i ̸= k;∀s ∈ Sl : oi < ok (3.10)

ai k ≤ (1− fi s )+ (1− fks ) ∀i ,k ∈ P : i ̸= k;∀s ∈ Sl : oi < ok (3.11)

bi k ≤ (1−ei s )+ (1−eks ) ∀i ,k ∈ P : i ̸= k;∀s ∈ Sr : oi < ok (3.12)

bi k ≤ (1− fi s )+ (1− fks ) ∀i ,k ∈ P : i ̸= k;∀s ∈ Sr : oi < ok (3.13)

Constraints (3.10) function as follows: when parcels i and k are on the same shelf s, both ei s and eks are set
to 1, resulting in a right-hand side of 0. The only parcels that are effected are the ones placed on the left shelf.
if oi < ok , parcel k cannot be placed to the left of parcel i , so ai k is forced to be 0. Constraints (3.11) enforce
this for parcels on the ground beneath a shelf. Constraints (3.12) and (3.13) operate similarly, but for the right
side of the van.

As ei s and fi s are now used in the model, it is necessary that these variables are only set to one if parcel i
is actually on or under shelf s. As previously mentioned, constraints (3.3)–(3.6) only apply to k ∉ S. To ensure
this, similar constraints are created for both Sl and Sr :

Xi +xi ≤ Xs + (1−ei s ) ·M ∀i ∈ P ;∀s ∈ Sl (3.14)

Xi +xi ≤ Xs + (1− fi s ) ·M ∀i ∈ P ;∀s ∈ Sl (3.15)

xi + (1−ei s ) ·M ≥ xs ∀i ∈ P ;∀s ∈ Sr (3.16)

xi + (1− fi s ) ·M ≥ xs ∀i ∈ P ;∀s ∈ Sr (3.17)

Constraints (3.14) and (3.15) ensure that, for the shelves on the left side, the x-coordinate of the endpoint of
parcel i is less than the length of the shelf. If this is the case, then parcel i is qualified as being up or under
one of the shelves on the left side. Constraints (3.16) and (3.17) work similarly, with the difference that the
starting point on the x-axis of parcel i should be greater than the starting point of the shelf.

3.4.3. Aisle ordering
Lastly, a change of the constraints is required to regulate the behavior of parcels on the aisle. Firstly, a modifi-
cation to (3.8) is necessary as it only applies to parcels in the aisle. If the sum of all ei s and fi s is 0 for a specific
parcel i , it indicates that that parcel is in the aisle, and the original constraints should apply. This is reflected
in the following constraints:

ci k ≤ ∑
s∈S

(ei s + fi s ) ∀i ,k ∉ S : i ̸= k;oi < ok (3.8′)

In addition, when a parcel is placed in the aisle, it becomes inaccessible to reach the parcels on the shelves.
Therefore, constraints are needed to guarantee that the parcels placed in the aisle are the ones that need to
be unloaded first from the van. This can be achieved by implementing the next constraints:∑

s∈S
(ei s + fi s ) ≤ ∑

s∈S
(eks + fks ) ∀i ,k ∈ P : i ̸= k,oi < ok (3.18)
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(a) Example where τ3i = 1. Firstly, τ1i = 1 because xi ≤ Xs .
Secondly, τ2i = 1 because xi +Xi ≥ Xs . This together gives the
result.

(b) Example where τ6i = 1. Firstly, τ4i = 1 because xi ≤ xs .
Secondly, τ5i = 1 because xi + Xi ≥ xs . This together gives the
result.

Figure 3.5: Examples of situations where the parcels are placed partly under the shelves. This leads to a result of τ3i = 1 and τ6i = 1.

Constraints (3.18) assure that for every parcel i ,
∑

s∈S (ei s + fi s ) can only become 1 if another parcel k for
which yields oi < ok already has that

∑
s∈S (eks + fks ) = 1. In words that means that once a parcel is placed on

the shelves, non of the successive parcel can be placed in the aisle.

3.4.4. Parcels partly under the shelf
By adding the constraints (3.14)–(3.17), it is now forbidden for parcels to be partly under a shelf and partly
in the aisle. This should be allowed without re-creating the problem of misusing the ei s and fi s variables.
So, new binary variables are created, τ3i and τ6i , which are assigned a value of 1 when a package is partially
under the left or right shelf, respectively.

To ensure proper behavior of these new variables, additional binary variables τ1i , τ2i , τ4i , and τ5i have
been added to reflect the position of the parcel relative to the shelf. Specifically, τ1i is assigned a value of 1
if one end of the parcel is positioned under the shelves on the right, and τ2i is assigned a value of 1 if the
other end of the parcel is in the aisle. The same approach is applied to the other two variables. The following
constraints are added to make the variables work:

Xs −xi ≤ τ1i ·M , ∀i ∈ P,∀s ∈ Sl (3.19)

xi +Xi −Xs ≤ τ2i ·M ∀i ∈ P,∀s ∈ Sl (3.20)

τ1i +τ2i ≤ τ3i +1 ∀i ∈ P (3.21)

xs −xi ≤ τ4i ·M ∀i ∈ P,∀s ∈ Sr (3.22)

xi +Xi −xs ≤ τ5i ·M ∀i ∈ P,∀s ∈ Sr (3.23)

τ4i +τ5i ≤ τ6i +1 ∀i ∈ P (3.24)

τ1i ,τ2i ,τ3i ,τ4i ,τ5i ,τ6i ∈ {0,1} ∀i ∈ P

The constraints defined in (3.19) operate as follows: if a parcel is positioned with its left end under a shelf,
then Xs − xi > 0. In order to satisfy the constraint, τ1i must be set to 1. Figure 3.5a illustrates this scenario.
If Xs − xi < 0, then τ1i ≥ 0, and the model will select 0 if possible, as the τ variables increase the model com-
plexity, which will be explained below.

Similarly, if the end of the parcel extends beyond the shelf, constraint (3.20) ensures that if xi +Xi −Xs > 0,
then τ2i = 1. If τ1i = τ2i = 1, constraint (3.21) ensures that τ3i = 1. If only one of τ1i or τ2i is 1, then τ3i ≥ 0,
and the model will select 0 if possible. These rules apply to parcels positioned on the right as well, using con-
straints (3.22), (3.23), and (3.24). Figure 3.5b illustrates the scenario where τ6i = 1.

Now that the variables behave as desired, it is necessary to construct the LIFO order constraints. Since
these parcels are located in both the aisle and under the shelves, both directions must be considered. There-
fore, the following constraints are needed:

(1−τ3i ) ≥ ai k + ci k ∀i ∈ P (3.25)

(1−τ6i ) ≥ bi k + ci k ∀i ∈ P (3.26)
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Table 3.1: Input used in the Mixed Integer Linear Program of the 3D-Bin Packing Problem with Loading Constraints.

Symbol Description

I Set of all items to be placed in the van

P ⊆ I Set of parcels to be placed in the van

S ⊆ I Set of shelves to be placed in the van(
pi , qi ,ri

)
Parameters describing the length, width and height of parcel i

(L,W, H) Parameters describing the length, width and height of the van

(Xi ,Yi ,Zi ) Parameters desrcibing the LBBC of shelf i .

as percentage of a parcel that should be supported by a parcel underneath it

M and B M Large numbers for modeling purposes, B M > M

In constraints (3.25) and (3.26), the variables ai k and bi k are used for parcels on the left and right sides,
respectively, as previously done in other constraints. However, there is one final aspect that needs to be
modified, as the constraints (3.14)–(3.17) must account for the possibility of τ3i and τ6i being equal to 1. In
such cases, ei s or fi s may also need to be set to 1 to ensure that the parcels maintain their relative positions
with respect to the shelves. Therefore, the following changes are made to the constraints:

Xi +xi ≤ Xs + (1−ei s ) ·M +τ3i ·2M ∀i ∈ P ; s ∈ Sl (3.14′)
Xi +xi ≤ Xs + (1− fi s ) ·M +τ3i ·2M ∀i ∈ P ; s ∈ Sl (3.15′)

xi + (1−ei s ) ·M ≥ xs −τ6i ·2M ∀i ∈ P ; s ∈ Sr (3.16′)
xi + (1− fi s ) ·M ≥ xs −τ6i ·2M ∀i ∈ P ; s ∈ Sr (3.17′)

After conducting some tests with the model, it was discovered that the situation where parcels are partially
under a shelf and partially in the aisle was only theoretically interesting. In practice, this situation rarely
occurred as the optimal solution. Additionally, including the extra variables and constraints decreased the
speed and therefore the quality of the model. Consequently, for the remainder of this research, it was decided
not to include these variables in the model. It is assumed that a solution is feasible if all parcels are placed
entirely under or on a shelf or in the aisle.

3.5. The complete Mixed Integer Linear Program (MILP)

In this section, the complete MILP is presented. Firstly, the the input parameters and variables required for
the model are shown, followed by a presentation of all the constraints.

3.5.1. Input and variables

The parameters that are needed as input for the model are presented in Table 3.1 and the variables in Table
3.2.
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Table 3.2: Variables used in the Mixed Integer Linear Program of the 3D-Bin Packing Problem with Loading Constraints.

Symbol Description

(
xi , yi , zi

) Continuous variables indicating the (x, y , z)-coordinates

of the Left-Bottom-Back Corner (LBBC) of parcel i

(Xi ,Yi , Zi )
Continuous variables indicating the distance of parcel i

on the x-, y- and z-axis

(
lxi , lyi , lzi

) Binary variables indicating whether the length of

parcel i is parallel to either the x-, y- or z-axis.

(
wxi , wyi , wzi

) Binary variables indicating whether the width of

parcel i is parallel to either the x-, y- or z-axis

(
hxi ,hyi ,hzi

) Binary variables indicating whether the height of

parcel i is parallel to either the x-, y- or z-axis

ai k
1 if parcel i is on the left side of parcel k

0 otherwise

bi k
1 if parcel i is on the right side of parcel k

0 otherwise

ci k
1 if parcel i is behind parcel k

0 otherwise

di k
1 if parcel i is in front of parcel k

0 otherwise

ei k
1 if parcel i is below parcel k

0 otherwise

fi k
1 if parcel i is above parcel k

0 otherwise

λi ks1s2

1 if parcel i is on shelf s1 above parcel k, which is below shelf s2

0 otherwise

ni k
0 if parcel i is directly underneath parcel k

1 otherwise



30 3. Mixed Integer Linear Program for the 3L-BPP

3.5.2. Constraints
Now that the necessary input parameters and variables have been defined, the constraints can be presented.
These constraints serve to enforce the desired conditions and restrictions on the final packing solution.

Minimize −
Subject to

xi +Xi ≤ xk + (1−ai k ) ·M ∀i ,k ∈ I : i ̸= k,

xk +Xk ≤ xi + (1−bi k ) ·M ∀i ,k ∈ I : i ̸= k,

yi +Yi ≤ yk + (1− ci k ) ·M ∀i ,k ∈ I : i ̸= k,

yk +Yk ≤ yi + (1−di k ) ·M ∀i ,k ∈ I : i ̸= k, (3.27)

zi +Zi ≤ zk + (1−ei k ) ·M ∀i ,k ∈ I : i ̸= k,

zk +Zk ≤ zi +
(
1− fi k

) ·M ∀i ,k ∈ I : i ̸= k,

1− ∑
s1,s2∈S

(λi ks1s2 +λki s1s2 ) ≤

ai k +bi k + ci k +di k +ei k + fi k ∀i ,k ∈ I : i ̸= k, (3.28)

xi +Xi ≤ L ∀i ∈ I ,

yi +Yi ≤W ∀i ∈ I , (3.29)

zi +Zi ≤ H ∀i ∈ I ,

lxi + lyi + lzi = 1, ∀i ∈ I ,

wxi +wyi +wzi = 1, ∀i ∈ I ,

hxi +hyi +hzi = 1, ∀i ∈ I , (3.30)

lxi +wxi +hxi = 1, ∀i ∈ I ,

lyi +wyi +hyi = 1, ∀i ∈ I ,

lzi +wzi +hzi = 1, ∀i ∈ I ,

ai k = bki , ∀i ,k ∈ I : i ̸= k,

ci k = dki , ∀i ,k ∈ I : i ̸= k, (3.31)

ei k = fki , ∀i ,k ∈ I : i ̸= k,

zk − (zi +Zi )+ (1−ei k ) ·M ≤ ni k B M ∀i ,k ∈ I : i ̸= k,

N∑
i∈I :i ̸=k

ni k ≤ N −1 ∀k ∈ P, (3.32)

Xk ·as ≤ (xi +Xi )−xk + (1−ei k ) ·M ∀i ,k ∈ P : i ̸= k,

Xk ·as ≤ (xk +Xk )−xi + (1−ei k ) ·M ∀i ,k ∈ P : i ̸= k, (3.33)

Yk ·as ≤ (yi +Yi )− yk + (1−ei k ) ·M ∀i ,k ∈ P : i ̸= k,

Yk ·as ≤ (yk +Yk )− yi + (1−ei k ) ·M ∀i ,k ∈ P : i ̸= k,

λi ks1s2 ≤
1

2
(es1i +eks2 ) ∀i ,k ∈ P : i ̸= k; (3.34)

s1, s2 ∈ S, s1 ≥ s2,



3.6. Proof correctness of the model 31

Xi +xi ≤ Xs + (1−ei s ) ·M ∀i ∈ P ; s ∈ Sl ,

Xi +xi ≤ Xs + (1− fi s ) ·M ∀i ∈ P ; s ∈ Sl , (3.35)

xs ≤ xi + (1−ei s ) ·M ∀i ∈ P ; s ∈ Sr ,

xs ≤ xi + (1− fi s ) ·M ∀i ∈ P ; s ∈ Sr ,

ei k ≤ ni k ∀i ∈ P,∀k ∈ I : i ̸= k : oi < ok ,

ci k ≤ ∑
s∈S

(ei s + fi s ) ∀i ,k ∈ P : i ̸= k,oi < ok , (3.36)∑
s∈S

(ei s + fi s ) ≤ ∑
s∈S

(eks + fks ) ∀i ,k ∈ P : i ̸= k,oi < ok ,

ai k ≤ (1−ei s )+ (1−eks ) ∀i ,k ∈ P : i ̸= k,oi < ok ; s ∈ Sl

ai k ≤ (1− fi s )+ (1− fks ) ∀i ,k ∈ P : i ̸= k,oi < ok ; s ∈ Sl , (3.37)

bi k ≤ (1−ei s )+ (1−eks ) ∀i ,k ∈ P : i ̸= k,oi < ok ; s ∈ Sr ,

bi k ≤ (1− fi s )+ (1− fks ) ∀i ,k ∈ P : i ̸= k,oi < ok ; s ∈ Sr ,

Xi = pi · lxi +qi ·wxi + ri ·hxi ∀i ∈ P,

Yi = qi ·wyi +pi · lyi + ri ·hyi ∀i ∈ P, (3.38)

Zi = ri ·hzi +qi ·wzi +pi · lzi ∀i ∈ P,

xi = Xi ∀i ∈ S,

yi = Yi ∀i ∈ S, (3.39)

zi = Zi ∀i ∈ S,

lyi = wxi = hzi = 1 ∀i ∈ S.

lxi , lyi , lzi , wxi , wyi , wzi ,hxi ,hyi ,hzi ∈ {0,1} ∀i ∈ I ,

ai k ,bi k ,ci k ,di k ,ei k , fi k ,λi ks1s2 ,ni k ∈ {0,1} ∀i ,k ∈ I , (3.40)

xi , yi , zi , Xi ,Yi , Zi ≥ 0 ∀i ∈ I .

3.6. Proof correctness of the model
In the problem description in Section 3.1, the 3D-Bin Packing Problem with Loading Constraints (3L-BPP) is
defined by seven conditions (1–7). To demonstrate that the constraints outlined in this chapter result in a so-
lution that meets the defined conditions, a two parted proof is presented. Firstly, it is shown that if a feasible
packing according to the conditions is given, it satisfies all the constraints. Secondly, it is proven that if the
variables are all in compliance with the constraints, it results in a feasible packing for the 3L-BPP.

Before presenting the proof, the modeling of the van will be described. The bottom left point, located as
far from the back door as possible, is defined as (0,0,0). On the other hand, the top right corner closest to the
back door is designated as (L,W, H), representing the van’s specified dimensions. All parcels will be contained
within the interior of the van, occupying the three-dimensional space of L×W ×H .

Lemma 1. A feasible packing (which complies with all seven conditions as presented in Section 3.1) leads to a
solution for the MILP presented in Section 3.5.
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Proof. For each parcel in the feasible packing, the corner point that is the closest to (0,0,0) is the Left-Bottom-
Back Corner (LBBC). We set variables (xi , yi , zi ),∀i ∈ P equal the coordinates of the LBBC. This also applies
to the shelves.

For each parcel, its dimensions are specified. The longest dimension is referred to as its length pi , the
middle dimension as its width qi , and the shortest dimension as its height ri , so we have that pi ≥ qi ≥ ri . In
addition, the distances on each axis are known and set as Xi , Yi , and Zi . Due to condition 4, these distances
will always be parallel to one of the axes.

We can establish a one-to-one relationship between Xi , Yi , and Zi and pi , qi , and ri . This means that
(Xi ,Yi , Zi ) is a permutation of (pi , qi ,ri ), and we can find a 3× 3 permutation matrix M that satisfies the
equation M • (pi , qi ,ri ) = (Xi ,Yi , Zi ). We set:

M =


lxi wxi qxi

lyi wyi qyi

lzi wzi qzi


Then, because M is a permutation matrix, every row and column have exactly one variable equal to 1. In this
way, constraints (3.30) are met.

By condition 1, we know that all parcels are placed within the same van, leading to the conclusion that
every pair of parcels, i and k, have a defined relative position to one another. If they are placed on the same
height, we can determine whether they are located to the left, right, front, or back of each other, and assign
ai k , bi k , ci k , or di k equal to 1 respectively. It is also important to note that if ai k = 1, then bki = 1, and if ci k = 1
then dki = 1, and vice versa. In all cases, we set λi ks1s2 = 0 and ni k = 1. In the event that the parcels overlap
both in the x-axis and the y-axis, meaning that they are placed above each other, there are three options:

1. They are directly placed on top of each other. Say w.l.o.g. that parcel i on top of parcel k. Then we put
fi k = eki = 1, λi ks1s2 = 0 and nki = 0

2. They are placed above each other on the same pile, but not directly. Say w.l.o.g. that parcel i above
parcel k. Then we put fi k = eki = 1, λi ks1s2 = 0 and nki = 1.

3. They are placed above each other, but there is a shelve s1 or multiple shelves s1 and s2 between them
(s1 ≥ s2). Say w.l.o.g. that parcel i above parcel k. Then we put fi k = eki = 0, es1i = eks2 = 1, λi ks1s2 = 1
and nki = 1.

Now that all the variables in the model are assigned to a value, it is needed to verify that our solution sat-
isfies all the constraints. This involves confirming that each assigned value of the variable is compatible with
the constraints imposed upon it. Given conditions 1 and 3, it follows that all parcels are placed within the
van, thereby ensuring that constraints (3.29) are met. Constraints (3.31), (3.38), (3.40) and (3.39) also follow
directly, because of the way we choose the variables and because of condition 6. Finally, constraints (3.34)
follow directly from point 3, as λi ks1s1 = 1 only when es1i = eks2 = 1.

As stated earlier, every two parcels in the van have a relative position to each other. As can be seen in the
way that the variables are chosen, either one of ai k ,bi k ,ci k ,di k ,ei k , fi k orλi ks1s2 is 1. So, constraints (3.28) are
met. To illustrate the satisfaction of constraints (3.27), we will demonstrate the validity of the first constraint,
as the reasoning can be extended to the other five constraints. If ai k = 0 the constraint is automaticly met.
Now if ai k = 1, parcel i is to the left of parcel k. Now the endpoint of parcel i , xi + Xi , is before the start of
parcel k, xk , as they are non-overlapping by condition 2. Thus the constraints are satisfied.

The constraints in equation (3.33) are straightforward to verify. Only a check is needed when ei k = 1,
so parcel k is placed above parcel i . As per condition 5, every parcel is supported by another parcel or the
floor/shelves, ensuring that the constraints are always met. This follows in a similar way for constraints (3.35),
but then for the shelves. If ei s = fi s = 1, parcels are underneath or above a shelf. So their coordinates match
with the wanted placement, meeting the constraints.
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We know that each parcel is placed on another parcel, floor or a shelf. So, for a parcel k, we have (from
point 1) that there is one parcel/floor/shelf i such that ni k = 0. This leads to the fulfillment of the second line
in constraints (3.32). The first line in these constraints only need verification if ni k = 0. Then the left hand
side should be 0 as well. The first part, ei k = 0, follows directly from our choice in point 1. The requirement of
zk − (zi +Zi ) = 0 is satisfied as the distance between the top of parcel i and the bottom of parcel k is indeed 0
if they are placed on top of each other. Thus, these constraints are also fulfilled.

Lastly, we demonstrate that constraints (3.36) and (3.37) are satisfied by using condition 7. In the first line
of (3.36), certification is only needed if ni k = 0 and oi < ok . We know by the condition that ‘the earlier parcel
should be placed above the other parcels (so higher on the z-axis)’. Thus we have that ei k = 0 if parcel i is before
parcel k in the order, fulfilling the constraints.

The second line of constraints (3.36) only needs verification for parcel i if
∑

s∈S (ei s+ fi s ) = 0, so that means
when the parcel is in the aisle. Then by condition 7, no parcel k can be placed in front of it if oi < ok , so the
constraints are met. Finally, the third line only needs to be checked for parcels i and k if

∑
s∈S (eks + fks ) = 0,

which means that parcel k is placed on the aisle. As oi < ok , parcel i needs to be reached earlier then parcel k.
So if k is placed on the aisle, by condition 7 parcel i is also placed on the aisle, and thus also

∑
s∈S (ei s + fi s ) = 0

and the constraints are met. We have that
∑

s∈S (ei s + fi s ) ≤ 1, i ∈ P , so no other situations have to be verified.

To verify that all constraints (3.37) are satisfied, we first check the first line. Conformation is only needed
when ei s = eks = 1, s ∈ Sl , indicating that parcels i and k are on the same shelf on the left side. We leverage,
again by condition 7, the fact that: ‘[...] for shelves on the left side of the van, that parcels belonging to clients
which are visited earlier are placed further on the x-axis’. Hence, if oi < ok , parcel i is not placed on the left of
parcel k and thus ai k = 0. Following this reasoning through for the other side, all constraints (3.37) are met.

Therefore, by using a feasible packing that adheres to all the conditions outlined in Section 3.1, we have
successfully derived a solution to the model presented in Section 3.5. This completes the proof.

Lemma 2. A solution to the MILP presented in 3.5 results in a feasible packing solution that satisfies all seven
conditions outlined in Section 3.1.

Proof. Given the values for all variables in the MILP model presented in Section 3.5, chosen in a manner that
satisfies all constraints, we will demonstrate that it corresponds to a packing that adheres to the seven condi-
tions outlined in Section 3.1. We only need to check conditions 2–7, as condition 1 is implicit.

To do this, we construct a feasible packing by placing the LBBC of each parcel i at (xi , yi , zi ) in the 3D
space of the van. The orientation of the parcel is determined by the variables l , w , and h. For instance, if
lxi = 1, then parcel i is aligned with its length parallel to the x-axis. The same logic applies for the other axes.
By doing so, the sides of each parcel are parallel to the axes, and thus condition 4 is directly satisfied.

Condition 2 is fulfilled by constraints (3.27), which prevent parcels placed next to each other from overlap-
ping in their coordinates. For a more detailed explanation, please refer to Section 2.2.3. In addition, condition
3 is satisfied by constraints (3.29), as these ensure that all parcels are placed inside the van while respecting
its dimensions.

Condition 5 is achieved through the combined implementation of constraints (3.32) and (3.33). Con-
straints (3.32) mandate that each parcel is placed on either another parcel, the floor, or a shelf. Constraints
(3.33) then ensure that, if a parcel is placed on another parcel, it is adequately supported. A more in-depth
examination of these constraints and how they function can be found in Section 3.3.2. Furthermore, condi-
tion 6 is satisfied by using the variables in constraints (3.39) as the shelves within the van.

Condition 7 is satisfied through the interplay of constraints (3.36) and (3.37). The first line of (3.36) en-
sures a proper ordering in the z-axis, while the second line establishes the proper order towards the door
for parcels in the aisle. The third line ensures that parcels can only be placed in the aisle once all preceding
parcels have also been placed there. For a more comprehensive explanation of these constraints, see Section
3.4. In the same section, the role of constraints (3.37) in establishing the correct order on shelves is also ex-
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A feasible
packing

Solution of
the MILP

Lemma 1

Lemma 2
Figure 3.6: Proof structure for Theorem 3

plained.

So, by adhering to all the constraints outlined in the MILP in Section 3.5, we have established that the
resulting packing meets all conditions (1)–(7) as described in Section 3.1. This concludes the proof.

Theorem 3. The MILP in Section 3.5 correctly models the 3D-Bin Packing Problem with Loading Constraints
(3L-BPP).

Proof. This immediately follows from the combination of Lemmas 1 and 2. This is made visual in Figure
3.6.



4
Heuristic Solution Method for the 3L-BPP

This chapter presents a heuristic solution method developed for the 3D-Bin Packing Problem with Loading
Constraints (3L-BPP), based on the DFTRC-2 described in Section 2.4.2. The adjustments to the basic method
aim to make it more applicable to the 3L-BPP and produce an initial solution for the Mixed Integer Linear
Program (MILP) (presented in Chapter 3). The heuristic method starts by addressing the floating parcel issue,
then incorporates shelves into the van, and finally modifies the distance measurement method.

4.1. Non-floating improvements
When looking at the DFTRC-2, it can be seen that the x-, y- and z-axis are all treated the same. although this
is logical from an algorithmic point of view, this does not solve the problem as described in Section 3.1. By
treating all the axes the same, the parcels can ‘float’, meaning they do not have any other parcel, a shelf or the
floor underneath it. This is because of how the Empty Spaces (ES) are created. If a parcel is placed, three new
ES are created; one on each axis along its sides. This is made visible in Figure 4.1a, where every newly created
ES is showed by a different color. This allows for the placement of parcels in the resulting ES on the z-axis,
but without stability guaranteed by another parcel. This problem can be solved by changing the ES from the
whole area above the parcel, to only the area directly adjacent to the parcel itself. This change can be seen in
figure 4.1b.

There is one other change needed to ensure the stability of the parcels. For the parcels that are placed
on the ground, the ES are now created in a correct way. But once a second parcel is placed on top of it, new
issues occur. That is because the ES in the direction of the x-axis and y-axis are going all the way to the back
of the van. Because these areas are already above the ground, this creates ES where no stability on the parcels
is ensured. This issue is tackled by changing these ES in such a way that they stop at the x- and y-coordinate
of the parcel below. In this way, it is still ensured that every parcel is standing on the floor or on top of another
parcel. The first situation is visible in Figure 4.2a and the situation after the change can be seen in Figure 4.2b.

4.2. Adding shelves
For the original model, as elaborated in Section 2.4.2, this problem is solved in an empty squared space. The
3L-BPP, however, involves parcel delivery vans that may have shelves. To address this, a modification to the
method is proposed. The initial ES is the space starting at (0,0,0) and ending in (L,W, H). This one is also
shown in Figure 4.3a. By changing this initial ES, shelves can be added.

For example, if |S| = 2, five ES will be created; two below the shelves, two above the shelves and one
between the shelves. This situation can be seen in Figure 4.3b. Using this as the initial ES, the method will be
able to place parcels here and change the empty spaces to smaller ones as soon as a parcel is placed there, but
will not create any new ES in the air. So this, combined with the changes proposed in Section 4.1, the method
will always place a parcel on the ground, on another parcel, or on a shelf. The shelves can thus be taken as
input with this change, as other input will produce other initial ES, but will not change the method itself.

35
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(a) The original method for constructing the ES, which in-
volves creating three 3D-spaces towards the corner point
(L,W, H).
.

(b) The adjusted method for constructing the ES, which in-
volves creating a 3D-space above the parcel that extends to-
wards the corner point located at the Right-Front of the parcel,
and has a height of H .

Figure 4.1: Example of how the heuristic generates Empty Spaces (ES) for a first parcel and adjustments to this process.

(a) The method for constructing the ES for a second par-
cel, which involves creating two 3D-spaces towards the point
(L,W, H)
.

(b) The adjusted method for constructing the ES for a sec-
ond parcel, which involves creating three 3D-spaces around
the parcel that extends towards the corner point located at the
Right-Front of the parcel, and has a height of H .

Figure 4.2: Example of how the heuristic creates Empty Spaces (ES) for a second parcel and adjustments to this creation.
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(a) The initial ES when no shelves are used.
(b) The initial ES when two shelves are used.

Figure 4.3: Example of two shelves are used as input to change the initial ES for the heuristic.

4.3. Distance determination methods
The original heuristic solution method aimed to place parcels as compactly as possible in a quick manner.
However, for the 3L-BPP, an additional objective has been introduced: to adhere to the Last-In-First-Out
(LIFO) order of the parcels. This greedy solution method operates within polynomial time and, unless N P = P
is proven, it may not always provide an optimal solution. Nevertheless, by altering the placement method, it
can yield a more coherent solution with respect to the LIFO order. One way to achieve this is to modify the
DFTRC method with a different distance determination.

4.3.1. Three enhancements to distance determination
Figure 4.4 presents various options for distance determination. In Figure 4.4a, the method (DFTRC) outlined
in Section 2.4.2 is used, which involves computing the maximal distance to the point (L,W, H). This results in
a tightly packed configuration in the lower left corner. To calculate the placement of parcel i , denoted as ρi ,
the following formula is employed:

ρi = max{(L−xi −Xi )2 + (W − yi −Yi )2 + (H − zi −Zi )2;

(xi , yi , zi ) the LBBC for every ES;

Xi ,Yi and Zi for all possible orientations}

Where Xi ,Yi and Zi are taken as in Chapter 3, i.e. the distance of the parcel on the x-, y- and z-axis respec-
tively. This is checked for all six different orientations of the parcel and the placement for which this sum is
the largest, is taken.

The results obtained using a different distance formula are shown in Figure 4.4b. This formula was de-
veloped by taking into account the LIFO condition for the model described in Section 3.1. According to this
condition, it is not desirable to place parcels that are going out last on the aisle. Additionally, the parcels on
the shelves should be arranged in the order of their x-axis position (i.e., length of the van), from back to front.
However, it is not necessary for the parcels to be ordered from back to front on the y-axis. Therefore, the dis-
tance to the y-axis can be disregarded, and a line is selected as the reference point for distance measurement.
Ideally, the floor should be left unused, so the farthest distance to the ground (which is at height z = 0) is
chosen as the base for measuring distance. Consequently, the maximal distance between the ES and the line
( L

2 , y,0), y ∈ [0,W ] is calculated.

When the distance is measured between the line ( L
2 , y,0), y ∈ [0,W ] and the LBBC of the ES, it creates

inconsistencies in the measurements. This is since the left corner of the parcel is chosen. If choosing between
placing a parcel with its furthest corner at point xi = 0 or xi = L, the distance is not the same (excluding if
Xi = 0). To address this issue, a different measurement point will be used for locations where xi > L

2 . In this
case, the distance between the line and the Right-Bottom-Back Corner (RBBC) will be measured. The formula
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(a) Point (L,W, H). (b) Line ( L
2 , y,0), y ∈ [0,W ].

(c) Line ( L
2 , y, H

4 ), y ∈ [0,W ]. (d) Face ( L
2 , y, z), y ∈ [0,W ], z ∈ [0, H ].

Figure 4.4: Options for selecting a base point, line or face to determine the placement of parcels. The parcels are placed the furthest away
(in euclidean distance) from this base.
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(a) Point (L,W ). (b) Line ( L
2 , y), y ∈ [0,W ].

Figure 4.5: Options for selecting a base point or line to determine the farthest placement of squares in a 2-dimensional example.

for ρi then becomes:

ρi = max

{((
L

2
−xi −Xi

)2

+ (0− zi −Zi )2 ;
(
xi , yi , zi

)
the LBBC for every ES; with xi ≤ L

2

Xi ,Yi and Zi for all possible orientations

)
,((

L

2
−xi −Xi

)2

+ (0− zi −Zi )2 ;
(
xi , yi , zi

)
the RBBC for every ES with xi > L

2
;

Xi ,Yi and Zi for all possible orientations

)}
To ensure that the parcels are placed without preference for above or below the shelve, the base line from
which the distance is taken can be chosen in between the shelves. For instance, if two shelves are placed at
a height of H

2 , then the baseline can be set at a height of H
4 . This means that the formula used to calculate

distances will remain the same as before, but with the substitution of (0− zi − Z i )2 with ( H
4 − zi − Z i )2. An

illustrative example of this can be found in Figure 4.4c.

One way to achieve a more general placement of parcels is to exclude the height variable from the equa-
tion. This method ensures that the parcels are placed without any preference for the y- and z-axes, and as
far away as possible from the center of the van, while forming a face with dimensions of W by H placed at
L
2 on the x-axis. This approach is particularly useful when dealing with more than two shelves (|S| > 2). An
illustration of this placement strategy is presented in Figure 4.4d.

4.3.2. Possible compactness loss
One potential disadvantage of modifying the distance calculations is that it can reduce the compactness of
the solution. This is because when the method builds up the solution from two opposite sides, gaps may
appear where the two sides meet in the middle. If the parcels are placed from a single corner, the likeli-
hood of creating gaps will be minimal. The efficacy of this approach is dependent on the input, but generally
speaking, using a single corner as the distance base tends to outperform using a face or line in terms of com-
pactness.

The problem becomes apparent when examining a 2-dimensional example. Figure 4.5 illustrates the
placement of 8 squares in a square area of L ×W . In Figure 4.5a, the placement method maximizes the
distance to the point (L,W ). As shown, the squares are carefully placed either above or beside each other.
Even after placing square 8, there is still some space available in the L ×W square. In contrast, Figure 4.5b
presents a placement method that maximizes the distance to the line ( L

2 , y), y ∈ [0,W ]. Here, the squares are
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placed one by one on either the left or right side of the square. After square 6 is placed, square 7 cannot fit
between squares 5 and 6, forcing it to be positioned to the right and leaving a significant gap between them.
As a result, there is not enough contiguous area left to place square 8. This example clearly demonstrates that
the solution achieved with this placement method is less compactly designed.

In developing the heuristic solution, it is necessary to balance the trade-off between maintaining the
LIFO order and possibly losing some compactness in the solution. These trade-offs are based on the findings
presented in Chapter 6.



5
Combined model for 3L-BPP

In this chapter, a combined model for the 3D-Bin Packing Problem with Loading Constraints (3L-BPP) is pre-
sented, which consists of the Mixed Integer Linear Program (MILP) presented in Chapter 3 and the heuristic
presented in Chapter 4. When looking at the models, they both have different assets. The MILP provides a
complete solution to the problem, addressing all the complexities that arise in real-world scenarios. How-
ever, it generates a large number of variables and constraints, which may result in significant runtime. On the
other hand, the heuristic approach is fast, but it gives no guarantees in how well the Last-In-First-Out (LIFO)
order is maintained in the solution.

The respective strengths of the models can be used in a combined approach. To do so, modifications are
made to the MILP to increase its usability, even for larger datasets. Then, the heuristic method is used to find
a feasible solution, with the addition of different distance base points and a Genetic Algorithm. In the last
section, the two models are combined into the full model, which is utilized to gather results in Chapter 6.

5.1. Adjustments to the MILP
The MILP presented in Chapter 3 provides a feasible solution for the 3L-BPP by ordering the parcels in a way
that they are reachable when visiting the client (the LIFO order). The constraints related to this order increase
the complexity of the problem. To address this, adjustments are made to the model to enhance its feasibility.
Firstly, improvements in efficiency are made, followed by converting these constraints to soft constraints to
ensure that a solution, although not necessarily optimal, is available for any input.

5.1.1. Efficiency improvement
To improve the efficiency in terms of runtime, it is crucial to wisely choose the value of big M in the con-
straints. Constraints containing a big M have more expansive solution space for the linear relaxation, and
decreasing this space can decrease the solving time. First, the constraints (3.27) are reviewed. When examin-
ing the dimensions on different axes, it is apparent that they can never exceed the size of the van. Therefore,
the constraints are adjusted using L, W , and H . The same approach is applied to constraints (3.35). Addition-
ally, constraints (3.32) feature both big M and B M . For big M , H can be used as these constraints manage the
coordinates on the z-axis. Both parts of the left-hand side can have a maximum of H , so the right-hand side
can be limited to 2H . The modified constraints are listed below:

xi +Xi ≤ xk + (1−ai k ) ·L ∀i ,k ∈ I : i ̸= k,

xk +Xk ≤ xi + (1−bi k ) ·L ∀i ,k ∈ I : i ̸= k,

yi +Yi ≤ yk + (1− ci k ) ·W ∀i ,k ∈ I : i ̸= k,

yk +Yk ≤ yi + (1−di k ) ·W ∀i ,k ∈ I : i ̸= k, (3.27′)
zi +Zi ≤ zk + (1−ei k ) ·H ∀i ,k ∈ I : i ̸= k,

zk +Zk ≤ zi +
(
1− fi k

) ·H ∀i ,k ∈ I : i ̸= k,

41
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Xk ·as ≤ (xi +Xi )−xk + (1−ei k ) ·H ∀i ,k ∈ P : i ̸= k,

Xk ·as ≤ (xk +Xk )−xi + (1−ei k ) ·H ∀i ,k ∈ I : i ̸= k,

Yk ·as ≤ (yi +Yi )− yk + (1−ei k ) ·H ∀i ,k ∈ I : i ̸= k, (3.35′)
Yk ·as ≤ (yk +Yk )− yi + (1−ei k ) ·H ∀i ,k ∈ I : i ̸= k,

zk − (zi +Zi )+ (1−ei k ) ·H ≤ ni k ·2H ∀i ,k : i ̸= k,

Some evident constraints can be added to limit the solution space of the relaxation as well. First of all, one
can see that if a parcel is on the left of another parcel, it cannot be also on the right of that parcel. This leads
to the constraints ai k +bi k ≤ 1. This can be extended to the other two dimensions as well. Using constraints
(3.30) one more constraint can be added. One can see that for every parcel i , exactly three variables regarding
the rotation have to be chosen. Adding this as a constraint also reduces the solution space without changing
the model itself. The newly added constraints will be:

ai k +bi k ≤ 1 ∀i ,k ∈ I : i ̸= k (5.1)

ci k +di k ≤ 1 ∀i ,k ∈ I : i ̸= k (5.2)

ei k + fi k ≤ 1 ∀i ,k ∈ I : i ̸= k (5.3)

lxi + lyi + lzi +wxi +wyi +wzi +hxi +hyi +hzi = 3 ∀i ∈ I (5.4)

To improve efficiency, constraints (3.36) can be modified. Currently, each constraint checks whether none of
the preceding parcels have been placed on the floor. However, it suffices to only check if the directly preceding
parcel is not on the ground, and then iteratively check all the previous parcels. By doing so, a reduction in the
number of constraints from (P \S)×(P \S) to (P \S) is achieved. Less constraints can lead to less solving time,
although this varies per model. The modified constraints are as follows:∑

s∈S
(ei s + fi s ) ≤ ∑

s∈S
(e(i+1)s + f(i+1)s ) ∀i ∈ P (3.36′)

In many MILP problems, symmetries can arise in the solution space. Multiple solutions can lead to the same
objective. However, in the case of the 3L-BPP, all solutions are unique. This is because every interior of a van
is different, meaning that flipping the solution as a whole has no effect.

5.1.2. Soft constraints
As mentioned earlier, the problem at hand is classified as N P-hard, meaning that finding a solution can be
time-consuming. Thus, it may be advantageous to find a near-feasible solution and employ optimization
techniques to reach a feasible solution. To guarantee that the model can produce a solution within a pre-
determined time frame, certain hard constraints are transformed into soft constraints. By allowing these
constraints to be violated with an assigned penalty cost, the objective function is adjusted accordingly [26].

To achieve the desired outcome, it is chosen to revise all constraints related to the Last-In-First-Out (LIFO)
order of the parcels, that include constraints (3.36) and (3.37). Upon examination, these constraints all be-
have the same: they enforce a binary variable to be 0 in specific scenarios. To soften these constraints, one
strategy can be applied to all constraints: add a binary slack variable to the right-hand side, which can be
chosen as one, and include this variable in the objective function.

To reduce the number of variables used, it is necessary to identify which situations cannot occur simulta-
neously. In such cases, the same variable can be used. For instance, within all the constraints (3.37), none of
these can occur at the same time, as ei s + fi s ≤ 1. Therefore, the first two and the second two can never both
be true. Additionally, ei s1 + ei s2 ≤ 1 : s1 ∈ Sr ; s2 ∈ Sl , i ∈ P , as a parcel cannot be underneath a shelf on both
the left and right side. So for all these situations, a binary variable αi k ∈ {0,1} is introduced and added to the
right-hand side of the constraints.

ai k ≤ (1−ei s )+ (1−eks )+αi k ∀i ,k ∈ P : i ̸= k,oi < ok ; s ∈ Sl

ai k ≤ (1− fi s )+ (1− fks )+αi k ∀i ,k ∈ P : i ̸= k,oi < ok ; s ∈ Sl

bi k ≤ (1−ei s )+ (1−eks )+αi k ∀i ,k ∈ P : i ̸= k,oi < ok ; s ∈ Sr (3.37′)
bi k ≤ (1− fi s )+ (1− fks )+αi k ∀i ,k ∈ P : i ̸= k,oi < ok ; s ∈ Sr
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When examining constraints (3.36), there are three distinct scenarios. The first line pertains to the stacking
order of parcels, and is relevant in all situations, regardless of whether the parcels are located on shelves or
in the aisle. To accommodate this, a dedicated binary variable, βi k ∈ {0,1}, is introduced and included on the
right-hand side of the constraint.

The second line of constraints (3.36) only applies to parcels located in the aisle, while constraints (3.37)
only apply to parcels on the shelves, and therefore, these constraints are mutually exclusive. Consequently,
the binary variable αi k can be used to represent both sets of constraints. Since the last line of constraints
(3.36) applies to all parcels, a new binary variable is introduced, γi k ∈ {0,1}. These variables are included in
the constraints, which can be seen below:

ei k ≤ ni k +βi k ∀i ∈ P,∀k ∈ I : i ̸= k : oi < ok

ci k ≤ ∑
s∈S

(ei s + fi s )+αi k ∀i ,k ∈ P : i ̸= k,oi < ok (3.36′)∑
s∈S

(ei s + fi s ) ≤ ∑
s∈S

(e(i+1)s + f(i+1)s )+γi k ∀i ∈ P

The next step is to include the variables in the objective function. As there was no objective function estab-
lished previously, the new objective function will consist entirely of the violation variables. The objective is
to minimize the number of incorrectly placed parcels, taking all types of violations into account. When a
parcel is incorrectly placed, a counter of wrongly placed parcels is set to 1. To accomplish this, an additional
variable, δi ∈ {0,1}, is introduced. The following constraints are then added to ensure that δi counts wrongly
placed parcels correctly:

δi ≥αi k ∀i ,k ∈ P (5.5)

δi ≥βi k ∀i ,k ∈ P (5.6)

δi ≥ γi k ∀i ,k ∈ P (5.7)

Now, the objective function value becomes as follows:

min
∑
i∈P

δi (5.8)

5.2. Adjustments to the Heuristic solution method
In this section, modifications made to the heuristic solution method (DFTRC-2) will be discussed. These
modifications aim to provide feasible solutions to the MILP problem while considering the adjustments made
to the model in Section 5.1.2. The adjustments include selecting a suitable distance baseline, examining the
input order for the heuristic, and integrating a Genetic Algorithm (GA) into the solution method.

5.2.1. Choice for distance baseline

As discussed in Section 4.3, the choice of face, line, or point from which the distance is measured in the
heuristic method has a significant impact on the solution. After conducting several tests on some try-out
data, it is found that using the face ( L

2 , y, z) with y ∈ [0,W ] and z ∈ [0, H ] resulted in favorable outcomes. This
approach effectively exploited the sides of the van, the shelves, and the ground while minimizing the use of
the aisle. However, it is found that while this approach was effective, it lacked in terms of compactness. When
optimizing the distance to the middle, all the parcels were turned with the shortest side on the x-axis, result-
ing in a sub-optimal solution in terms of stability.

To address this issue, a minor factor is introduced that minimized the y-coordinate in addition to the
optimization of the distance to the middle. This approach allowed the shelves to remain the preferred loca-
tion for the parcels while choosing a more compact orientation. Specifically, the formula for placement ρi of
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Figure 5.1: Using the line ( L
2 ,W, z), z ∈ [0, H ] to determine the placement of parcels. The parcels are placed the furthest away (in euclidean

distance) from this base.

parcel i is now determined as follows, with 0 < ε< 0.5:

ρi = max

{((
L

2
−xi −Xi

)2

+ε · (W − yi −Yi
)2 ;

(
xi , yi , zi

)
the LBBC over all the ES; with xi ≤ L

2

Xi ,Yi and Zi for all possible orientations

)
,((

L

2
−xi −Xi

)2

+ε · (W − yi −Yi
)2 ;

(
xi , yi , zi

)
the RBBC over all the ES with xi > L

2
;

Xi ,Yi and Zi for all possible orientations

)}
As a result, the line taken as the distance baseline is ( L

2 ,W, z), z ∈ [0, H ]. This can be seen in figure 5.1.

5.2.2. Choice for input order
Section 2.4.1 specifies that the method requires a sorted list of parcels as input, and the choice of this list has
a significant impact on the outcome of the packing. To achieve a better solution in terms of maintaining the
LIFO order, a smart choice must be made. The most obvious choice is to sort the parcels in reverse order
of when they should be reached. This ensures that the first parcel placed is the one that needs to be reached
last. Since the heuristic then places the next parcel mostly before or on top of it, the LIFO order is will be quite
well maintained, resulting in favorable outcomes. Only if one of the Empty Spaces (ES) is relatively small, it
is possible that many parcels may not be placed in that ES, but instead in front of it. In such cases, when a
parcel that fits inside this smaller space, it will be placed behind the other parcels, which may result in minor
errors in the placement concerning the LIFO order.

To address this issue, one possible solution is to modify the minimum volume of the ES. By default, this
is set to the smallest volume of the remaining parcels to be packed. Increasing this minimum value will
eliminate the ES more quickly, resulting in fewer ES behind the other parcels. However, this could lead to less
compact packing, and the heuristic may be unable to discover a feasible packing.

5.2.3. Genetic Algorithm
Using the reverse order as input for the heuristic is a useful technique for maintaining the LIFO order. How-
ever, in some cases, this method may not result in a solution where all parcels fit inside the van. In such
situations, it is chosen to adjust the order in which parcels are inputted. To accomplish this in a structured
manner, a Genetic Algorithm (GA) (as detailed in Section 2.4.3) has been integrated into the heuristic solution
method. The heuristic terminates once a solution is found where all parcels fit inside the van.

The initial solution of the GA is the same as the solution presented above, with parcels inputted in in-
verted order. Afterwards, the GA applies three operators: selection, crossover and mutation. For crossover,
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Figure 5.2: The process of creating a new generation in the Genetic Algorithm (GA) from the old population.

the Parameterized Uniform Crossover method is used, as done by Gonçalves in 2005 [27]. The fitness function
is defined as the solution that minimizes the volume of the remaining boxes that have yet to be fitted into the
van. A schematic overview on how the GA creates a new offspring population is given in Figure 5.2.

The parameters are chosen according to the 2012 paper by Gonçalves [23], as this led to favorable results
in their research. The crossover probability is set to 0.8, the mutant probability to 0.1, and the population to
approximately 15 times the number of parcels (i.e., ≈ 15 · |P |). These parameter configuration also resulted in
good outcomes for this model, as discussed in Chapter 6.

5.3. Combined model
With both models adjusted, it is now possible to formulate the combined model, that consists of several steps.
To provide clarity, this section offers a logical schedule and pseudo-code for the model.

5.3.1. Logical schedule
A logical schedule of the full model can be found in Figure 5.3. In this section, the different steps as presented
in this logical schedule will be elaborated on one by one.

Input In order to run the model, certain inputs are required, which consist of several parts:

1. Van properties; The dimensions of the specific parcel delivery van that needs to be packed, along with
the number of shelves and their placement.

2. Parcel properties; The dimensions of all the parcels, as well as the delivery order. The input requires a
sorted list of parcels, with the first one being the last to be delivered (LIFO).

3. A value for as; This indicates the percentage of the length and width of the parcels that must be covered
by a surface below them for stability.

4. Two time limits; One for how long the GA should search before terminating, and one for the optimiza-
tion time for the objective function of the MILP.

Heuristic The first step of the model is to find a feasible solution using the heuristic solution method. To
create a solution that maintains the LIFO order as good as possible, two settings are used: the distance base-
line selected in Section 5.2.1 and an input order coherent with the LIFO order, as presented in Section 5.2.2.
If this step leads to a feasible packing, the model proceeds to the next step, which involves using the feasible
solution as an initial solution for the MILP. However, if no feasible solution is found with these settings, the
model will attempt the heuristic again, but with different settings.

Heuristic with changed baseline If the heuristic described above fails to find a solution, a change is made
to the distance baseline. As mentioned in Section 4.3.2, using the original DFTRC-2 heuristic can result in a
more compact solution with fewer gaps. By measuring the distance from the point (L,W, H) instead of the
line ( L

2 ,W, z), z ∈ [0, H ], a more compact solution may be achieved (although it is not guaranteed). If a feasible
solution is found using this method, the model moves on to the MILP. If this approach also fails to produce a
feasible solution, the model then runs the heuristic with a GA over the input.
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Figure 5.3: Logical schedule of the combined model
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Heuristic with GA If the previous two steps failed to produce a feasible solution, the model changes the
input order using a GA, as described in Section 5.2.3. The first time limit from the input is considered in
this step. If the GA does not succeed to find a feasible solution within this time limit, the model terminates,
indicating that no feasible solution has been found for the given input. However, if a feasible solution is
found, the model proceeds to the MILP.

End; no solution If the heuristic fails to find a solution, the model terminates. An option is to remove one
or more large parcels and run the model again. The parcels that are not included in the model should then
be assigned to a different delivery van.

MILP start values After the heuristic finds a solution, the model proceeds to the next step, which involves
running the MILP. The MILP uses two data points per parcel obtained from the heuristic; the (x, y, z)-coordinates
of the LBBC and the orientation of the parcel to create a complete packing of the van. During this step, the
model assigns values to all other variables (such as ai k , Xi , lxi , etc.) based on the packing. Once this is
completed, the model begins optimizing the objective functions.

MILP LIFO In this step, the objective is to minimize the number of parcels that cannot be reached if the
parcel deliverer arrives at their destination. This is quantified in the MILP through the minimization of the
function

∑
i∈P δi . Details of this objective function can be found in Section 5.1.2. The optimization process

stops either when a predetermined time limit is reached, or when an optimal solution is found. Once this
step is completed, the model terminates.

End; output packing After completing all the steps, the model terminates. The output is a value for all
the variables of the MILP. This can be translated to a value for the objective function and to create a visual
representation of the packing by using the coordinates and orientation of the parcels.

5.3.2. Pseudo-code
To finalize the description of the full model, a pseudo-code of the model can be found in Procedure 2, which
follows the same steps as those explained previously.
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Procedure 2 Combined model for 3L-BPP

Input: Sorted list P with parcels to be packed, dimension L, W and H for the van, shelves dimensions, area
support parameter as and time limit A and B.

Output: A Placement containing the (x, y, z)-coordinates for the LBBC and the orientation of every parcel.

Heuristic method with ρi = max{( L
2 −xi −Xi )2 +ε · (W − yi −Yi )2

if Placement is feasible then
Placement = Placement found by the heuristic

else
Heuristic method with ρi = max{( L

2 −xi −Xi )2 + ( W
2 − yi −Yi )2 + ( H

2 − zi −Zi )2

if Placement is feasible then
Placement = Placement found by the heuristic

else
Heuristic method with GA on the input order andρi = max{( L

2 −xi −Xi )2 + ( W
2 − yi −Yi )2 + ( H

2 − zi −Zi )2

until time limit A is reached
if Placement is feasible then

Placement = Placement found by the heuristic
else

return False ▷No solution has been found within the time limit
end if

end if
end if
check Placement is a solution to the MILP with soft constraints
minimize the objective

∑
i∈P δi in the MILP with Placement as input until optimized or time limit B is

reached
return Placement



6
Results

This chapter aims to evaluate the model presented in Chapter 5 by conducting tests with real-world data.
Specifically, the testing process utilizes historical data of particular rides, which encompasses information
such as parcel dimensions, delivery order, and van dimensions. As the model is exclusively tailored to ad-
dress the 3D-Bin Packing Problem with Loading Constraints (3L-BPP), a problem that is uniquely defined in
this thesis, no other models currently exist to provide benchmark results for comparison. Consequently, the
evaluation will focus on assessing the performance of the model in terms of both speed and accuracy, rather
than comparing it against existing benchmarks.

The chapter begins with a description of the data set characteristics, model parameters, and implementa-
tion features. Then, results are presented about the first stage of the model, which uses a heuristic approach.
This is followed by a comparison of the heuristic approach with the MILP. Thereafter, the data of the com-
bined model is collected and analyzed. Then, the model is applied to a real-world situation where a van is
loaded using the outcome of the model. Finally, a brief preliminary investigation of alternative model options
is provided.

The model is implemented in Python 3.10, using Gurobi Optimizer
©

version 9.5.2 buildv9.5.2rc0 (win64)
for the optimization of the MILP. The computer that is used uses a 11th Gen Intel(R) Core(TM) i5-1145G7
@ 2.60GHz with a Windows operating system.

6.1. Data set and parameter settings
In this section, it is defined what the data consists of, how the data is collected and selected, the parameter
settings and what preprocessing is done.

Data content The model is tested on data provided by PostNL Holding B.V., a leading postal and parcel
delivery company in the Netherlands, that serves approximately 50 to 55% of the consumers parcel delivery
service of the country [28]. The company provided four datasets, each containing information on all rides
conducted by a specific parcel delivery depot on a given day. These datasets include parcel dimensions and
corresponding delivery orders for every ride. Table 6.1 provides an overview of the properties of each dataset,
which collectively comprise 739 unique rides.

Data selection To ensure the data is diverse, the set includes a mix of different locations, days of the week,
and periods throughout the year. The choice in datasets is made to have a wide spectrum of different inputs
during the testing. There are three locations inside the agglomeration of cities in Netherlands (Randstad) and
one in the rural area. For the purpose of this research, it was opted to gather more data from depots located in
urban areas. This decision was based on the observation that, on average, rides in urban areas tend to contain
a greater number of parcels than those in rural areas. As the packing problem becomes increasingly complex
as the number of parcels increases, studying the performance of the model in high-density scenarios can pro-
vide valuable insights into its capabilities and limitations. Therefore, by focusing on these more challenging
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Table 6.1: Overview of the properties of the different data sets used to generate results on the model.

Location Area Type Date Weekday No. rides
Mean
no. parcels

Mean
fill rate

.Zwolle .Rural .20-5-2022 .Friday .205 .141 .26.2%

.Den Hoorn .Urban .15-11-2022 .Tuesday .182 .155 .27.7%

.Amsterdam .Urban .10-1-2022 .Monday .172 .159 .28.1%

.Sassenheim .Urban .30-11-2022 .Wednesday .180 .228 .38.4%

settings, it is possible to gain a better understanding of the strengths and weaknesses of the model.

Notably, the datasets included two dates in November. This is typically the busiest month for PostNL due
to holidays and special occasions such as Black Friday, Cyber Monday and ‘Sinterklaas’, and already the early
shopping for Christmas. Conducting tests on the November datasets, which include a mid-month dataset and
an end-of-month dataset, is particularly interesting due to the exceptionally high number of parcels delivered
during this period, for the same reason that urban areas are of particular interest.

Parameters settings Appendix A specifies a standard size for the delivery van loading space of (L×W ×H) =
(192×323×178) cm. The area support parameter, as, is taken equal to 0.9 and applied uniformly across all
data sets. The vans contain four shelves, each with a length of L

4 and a width of W . The shelves are placed on

the left and right at heights of H
3 and 2H

3 . The fill rate for one ride is defined as
∑

i pi ·qi ·ri
L·W ·H ·100%, where the sum

is over all parcels i in that specific ride.

Preprocessing Before running the model, certain data preprocessing steps are required. Firstly, parcels
lacking information on their length, width, or height are removed from the data set. Secondly, parcels that
exceed the available shelf space are classified as ‘large’ and placed in the aisle without incurring penalties
based on their position in the aisle, as determined by the γi k variable.

Data merging In the next section, it will be shown that the performance of the various data sets is similar,
with no significant differences between them. While rides originating from Sassenheim have a higher fill rate
compared to others, rides with similar fill rates across different data sets also generate similar results. This
similarity is also observed in the solution method used. Therefore, the full data set can be treated as a single
set with varying data for each ride, instead of dividing it into four separate sets.

6.2. Results for the Heuristic Solution Method
In this section, the computational results for the heuristic solution method, as constructed in Chapter 4 and
adjusted in Section 5.2, are examined. First, the different solution options are explored, then the results on
the runtime and the objective function value are analyzed and concluded.

6.2.1. Solution options
When looking at the heuristic solution method described in Section 5, the first part consists of finding a
feasible solution. There are four possible outcomes of this step, which will be numbered and referred to by
their respective number for the remainder of this chapter.

1. The heuristic with the LIFO input order and the adjusted distance measure found a solution.

2. The heuristic with the LIFO input order and the original DFTRC-2 distance measure found a solution.

3. The heuristic with a GA incorporated to determine the input order and the original DFTRC-2 distance
measure found a solution.

4. No solution was found within the time limit using the same settings as in solution option 3.
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Table 6.2: Results after running the heuristic on the data set of 789 rides. The properties are divided into which solution option found a
feasible packing.

Solution
Percentage
of rides Av. runtime

Av. objective
function value

Av. wrongly
placed parcels

.1 .97.7% .0.4 sec .11 .6%

.2 .1.2% .1.2 sec .165 .54%

.3 .1.1% .38.1 sec .205 .66%

.4 .0% .- .- .-
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Figure 6.1: Results after running the heuristic on the data set of 789 rides, where every point represents one ride and the solution options
are showed with different colors/shapes. The lower plot shows the runtime needed to create a feasible packing in seconds on the y-axis,
plotted against the fill rate of the van on the x-axis. The upper plot shows a zoom from this plot for only the solutions up to 2 seconds.

As described, the model will also follow these ordered steps to find a feasible packing. It begins with
the first option and, if it is unable to find a feasible solution, proceeds to the next option and continues the
process until option 4.

6.2.2. Runtime
The results of the feasible solutions of the heuristic are shown in Table 6.2. The heuristic successfully finds
a solution for 721 out of 739 rides (97.7%) using the 1st option. The quickness with which these 1st option
solutions are generated is noteworthy, with all solutions of this type being found within just 1.5 seconds, and
an average time of only 0.4 seconds.

In Figure 6.1, one sees for every ride in a different color/symbol which solution option ([1/2/3]) was suc-
cessful to find a feasible solution. Here, the runtime in seconds is plotted against the fill rate in percentage.
The lower plot shows the results of all the different rides, going from 0 to 100 seconds. The upper plot shows
a zoom of the range, going from 0 to 2 seconds. One can see that the first solution option is adequate for all
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(a) On the y-axis the number of wrongly placed parcels within the
packing is shown, plotted against the fill rate of the van on the x-axis.
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(b) On the y-axis the percentage of wrongly placed parcels within the
packing is shown, plotted against the fill rate of the van on the x-axis.

Figure 6.2: Results after running the heuristic on the data set of 789 rides regarding the wrongly placed parcels. Every point represents
one ride.

rides up to a fill rate of 50%. However, beyond that point, some rides require the second or third option to
find a feasible solution. One can conclude that, as the fill rate gets higher, the model is less likely to find a
solution using the 1st option. It is worth noting that the model always managed to find a solution within 90
seconds, so the fourth solution option did not occur for the entire data set.

6.2.3. Objective function value
To evaluate the validity of the initial solution of the heuristic, the values of the objective function outlined in
Section 5.1.2 are analyzed. The objective function is designed to minimize the value of

∑
i∈P δi , which repre-

sents the number of parcels that are incorrectly loaded into the van according to the LIFO filling principle.

Table 6.2 displays the mean objective function value for each solution type. The results can also be found
in Figure 6.2a, where the fill rate is plotted against the number of wrongly placed parcels. It is apparent that
the mean value for the first solution type is respectively 15 and 18 times smaller than the second and third
solution option. To investigate whether a lower number of parcels for these rides could be the reason behind

this result, also the percentage of wrongly placed parcels is included. This is calculated as
∑

i∈P δi
|P | ·100%. This

is included for the comparison, as extra parcels will naturally lead to extra wrongly placed parcels. This can
be found in Figure 6.2b, where the percentage of wrongly placed parcels is plotted against the fill rate of the
ride in percentage.

Figure 6.2 reveals that for Solution 1, solutions in the higher segments of the fill rate have a higher objec-
tive function value compared to those with a lower fill rate. Nonetheless, the objective function values given
by Solution 2 and Solution 3 are significantly higher, even when corrected for the number of parcels inside
the van.

It is important to note that the comparison between the two solutions is not entirely fair, as the second
solution is only used after the first one fails to find a feasible solution. Therefore, the rides being compared are
not identical. To address this, Figure 6.3a shows the results of using both the first and second methods on the
same set of rides. Only rides for which both solution method 1 and 2 were able to find feasible solutions are
included in this analysis, which corresponds to 709 rides. The x-axis represents the fill rate, while the y-axis
represents the number of parcels that are wrongly placed. Overall, the first solution has a significantly lower
number of wrongly placed parcels than the second solution, with an average difference of 65. Figure 6.3b also
displays the percentage of wrongly placed parcels for both options against the fill rate, which makes it even
clearer that the first option performs significantly better than the second. The average percentage difference
between the number of wrongly placed parcels per van is 41.3%.
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(a) On the y-axis the number of wrongly placed parcels within the
packing is shown, plotted against the fill rate of the van on the x-axis.
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(b) On the y-axis the percentage of wrongly placed parcels within the
packing is shown, plotted against the fill rate of the van on the x-axis.

Figure 6.3: Results after running the heuristic on the data set of 789 rides regarding the wrongly placed parcels twice. Once for solution
method 1 and once for solution method 2. Every point represents one ride. The 8 rides with solution method 3 are left out of the plot.

Comparing the same rides with the third option is not possible since its initial value is based on the input
of solution 2. If solution 2 finds a solution, the model terminates without executing any GA steps. As a result,
it is not possible to make a fair comparison between the third option and the other two solutions.

6.3. Results for the Mixed Integer Linear Program
In this section, the results for the MILP, as constructed in Chapter 3 and adjusted in Section 5.1, will be dis-
cussed. The findings of the attempts to obtain a feasible solution without employing the heuristic approach
are presented.

6.3.1. Runtime

As discussed in the previous section, the heuristic algorithm is capable of finding a feasible solution for the
rides within a matter of seconds. This raises the question of whether this step is necessary or if the MILP can
achieve similar results. Therefore, the results are collected for finding a feasible solution by the MILP.

In Figures 6.4a and 6.4b the runtime of the MILP in seconds is plotted against both the fill rate and the
number of parcels of the rides. There are, in contrast to the heuristic, 60 rides analyzed. The reason for ana-
lyzing fewer rides is due to the extensive computation time required for the model.

As illustrated in Figure 6.4b, it is apparent that the runtime of the MILP solution increases significantly,
taking up to 1000-2000 seconds (15-30 minutes), once more than 60 parcels are inside the delivery van. This
difference is substantial compared to the heuristic solution method, which proves to be quicker and more
consistent in runtime. When attempting to find a solution for four rides with roughly 80 parcels, the MILP
was unable to find a solution within the time limit of 10,000 seconds. In conclusion, the heuristic approach is
a more efficient and consistent method to find feasible solutions compared to the MILP when looking at the
runtime.

Figure 6.4a does not reveal a clear pattern. Figure 6.4b, does more clearly show that in most cases, as
the number of parcels increases, the runtime also increases. This observation is interesting but also has a
potential explanation. The variables and constraints in the MILP are all dependent on the set of parcels P ,
which causes the runtime of the model to potentially increase exponentially with an increase in the size of P .
This is not directly linked to the fill rate, which could suggest that it is independent of it.
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(a) Run time in seconds for the MILP to find a feasible solution against
the fill rate of the van.
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(b) Run time in seconds for the MILP to find a feasible solution against
the number of parcels.
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(c) Number of wrongly placed parcels in the solution generated by the
MILP, plotted against the fill rate of the van.
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(d) Number of wrongly placed parcels in the solution generated by the
MILP, plotted against the number of parcels.

Figure 6.4: Results after running the MILP to find a feasible solution on the data set of 60 rides. Every point represents one ride.

6.3.2. Objective function value
The next step is to evaluate the effectiveness of the initial solutions based on the objective function value.
Figure 6.4c the number of wrongly placed parcels for both the MILP and the heuristic method against the fill
rate, while Figure 6.4d shows the same comparison against the number of parcels. As depicted in the figures,
the heuristic approach outperforms the initial solution of the MILP in terms of maintaining the LIFO order.
The value of the objective function increases quickly as the number of parcels increases. Please note that
although a feasible solution has been found, the objective function value has not yet been optimized. This
can lead to high values, which may not provide much insight.

6.4. Results for the combined model
This section presents the results of the combined model discussed in Section 5.3. Firstly, the check time for
the heuristic solution of the MILP is examined. Subsequently, the results of optimizing the solution of the
heuristic method by using the MILP are discussed.

6.4.1. Checking feasibility
Once the heuristic has found a solution, the next step is to use this solution as the initial input for the MILP.
This entails transforming the information gathered from the heuristic, which is the placement coordinates
and orientation of each parcel, into a suitable solution for the MILP. This process involves creating all the
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(a) Percentage change plotted against the fill rate.
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(b) Percentage change plotted against the number of parcels.

Figure 6.5: Percentage change of the number of wrongly placed parcels from the initial to the optimized solution by the MILP with a
maximum runtime of 2000 seconds, using the heuristic solution as a feasible initial solution. Every point represents the percentage
change of one ride, for a data set containing 142 rides.

necessary variables, assigning appropriate values to them, and verifying that the constraints are satisfied
based on these values. The results are that the runtime increases almost quadratically with the number of
parcels, while its correlation with the fill rate is less significant. This is in line with the findings of the previous
sections. When the number of parcels increases, the check time increases, with an average time of 0.5 second
per parcel and a maximum total time of 500 seconds.

6.4.2. Improving the objective function value
Once the initial solution given by the heuristic has been transformed to a feasible solution for the MILP, the
subsequent step, as per the model outlined in Section 3.5, is to minimize the objective function value using
the Gurobi Optimizer. Due to the long running time during the collection of these results, only 142 rides are
analyzed in stead of the total dataset.

Different time limits of 500, 1000 and 2000 seconds are used to obtain the results. This maximum is de-
cided upon considering that the process of PostNL, the company providing the data, is structured in a manner
that allows for ± 1 hour between the availability of data and the actual packing of the parcel delivery van. As
a result, because the first steps of the model costs some time as well, a maximum of around 30-minute opti-
mization window is considered feasible before the results need to be collected.

Optimization results after 2000 seconds First, the results after 2000 seconds of optimization are analyzed.
Figure 6.5 presents the percentage change in the number of wrongly placed parcels on the y-axis. For 6.5a,
the fill rate is plotted on the x-axis while for 6.5b, this is the number of parcels. Note that the rides with op-
timal values achieved by the heuristic (i.e., an objective function value of 0) are not included in this analysis
since the MILP is incapable of improving upon these outcomes. A total of 50 rides from the test data fall into
this category.

For some rides with a lower number of parcels, the heuristic incurs minor penalties due to suboptimal
parcel placement, which can be addressed by the MILP through parcel replacements, resulting in a 100% im-
provement. However, as the number of parcels increases, the model requires more time to optimize, which
results in a decrease in the percentage change. Beyond 250 parcels, the MILP is unable to enhance the ob-
jective value further. This is most likely because replacing even a single parcel would necessitate modifying a
considerable number of variables, resulting in extensive computation time that exceeds the available time of
2000 seconds.
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Table 6.3: Results on the improvements of the number of wrongly placed parcels using the MILP optimization over time.

Max. runtime
MILP

Av. improved no. wrongly
placed parcels per ride

Av. improvement objective
function value per ride

.500 sec .0.86 .-29%

.1000 sec .1.28 .-35%

.2000 sec .1.66 .-37%

Optimization over time This analysis examines the optimization results achieved under different time lim-
its (500, 1000, and 2000 seconds). Table 6.3 presents two main findings. Firstly, the average improvement in
the number of placed parcels per ride was computed by summing the differences between the heuristic ob-
jective function value and the value after 500, 1000 and 2000 seconds of optimization, divided by the number
of rides. The results suggest an average improvement of only about one parcel per ride. Within the first 500
seconds, the average improvement was 0.8 parcels per ride, with an additional 0.8 parcels per ride over the
following 1500 seconds.

Secondly, the average improvement in the objective function value per ride, expressed as a percentage,
provides a better understanding of the optimization process. The results show that 29% of the improvement
was achieved within the first 500 seconds of optimization, with an additional 6 percentage points achieved af-
ter the next 500 seconds. However, from 1000 to 2000 seconds, only 2 extra percentage points were achieved.
These results suggest that while additional optimization time can add value, the marginal return on invest-
ment diminishes rapidly as the total time increases.

Thirdly, Figure 6.6 provides additional insights into the optimization process over time. The figure shows
the objective function value on the y-axis and the number of parcels on the x-axis. The results are plotted
for solutions obtained using the heuristic method and the MILP after a maximum runtime of 500 and 1000
seconds. The results with a maximum runtime of 2000 seconds are not included in the figure, as they only
exhibit small differences compared to the solutions obtained after 1000 seconds. Two zoomed-in plots of the
lower figure are shown at the top of the graph, where x ∈ [75,125], y ∈ [0,20] and x ∈ [135,185], y ∈ [0,20] to
highlight specific values.

It is interesting to note that the improvement is mostly achieved within the first 500 seconds in the zoomed-
in plot for x ∈ [75,125]. However, in the higher segment, x ∈ [135,185], the 500 seconds of optimization only
provides an in-between value. Moreover, beyond 200 parcels, the objective function value almost does not
decrease. This observation was already established with the results presented in Figure 6.5b.

6.4.3. Try-out of the combined model
An additional real life try-out is conducted to evaluate the performance of the full model, which involved
using the heuristic method to find a feasible solution and optimizing the MILP for 2000 seconds. The test is
organized at a parcel delivery depot, and a report of this test and the results is provided in Appendix B. The
key takeaway from this test is that it successfully demonstrated the feasibility of implementing this model in
real-life scenarios.

6.5. Changes to the interior of the van
In addition to providing a feasible packing for parcel delivery vans, the model described in Chapter 5 can
also be used to analyze the interior of the van under different conditions. By examining the effects of various
factors, such as enlarging the van or adding/removing shelves, this model can help explore new possibilities
for improving delivery efficiency. To demonstrate this, five additional scenarios are examined in addition to
the one discussed in Section 6.1.

In the first scenario, the dimensions of the van are modified to (L ×W ×H) = (172×252×141) cm, which
corresponds to the dimensions of a distinct type of delivery van [29]. This represents a 55% reduction in the
volume of the van. In another scenario, the van’s shape is modified to be higher than its length to investigate
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Figure 6.6: Results after running the heuristic and the MILP on a data set of 142 rides regarding the wrongly placed parcels. The initial
solution by the heuristic and the optimization after 500 seconds and 1000 seconds are given. The lower plot shows the whole set, the left
upper plot a zoom for number of parcel going from 75 to 125, the right upper plot for number of parcels going from 135 to 185.
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Table 6.4: Results after running the heuristic method on the data set of 739 rides with different input on the interior of the van. The
interior has either more or less shelves then the original (which has 4), or decreased dimensions.

Van interior
Av. objective
function value

Percentage of rides
no solution found

Average runtime
heuristic

.Original .15.2 .0% .1.0 sec

.Dim. 172×252×141 .69.7 .14.9% .14.6 sec

.Dim. 180×257×195 .31.5 .2.4% .41.5 sec

.Two shelves .19.9 .0% .2.3 sec

.Six shelves .11.5 .0% .1.2 sec

.No shelves .33.7 .0.4% .14.6 sec

potential alternative results. The dimensions for this scenario are chosen as (L ×W ×H) = (180×257×195),
representing an 18% reduction in size compared to the original. The remaining three configurations retain
the original size of the van, but with different shelving arrangements. One setup has two shelves placed at
a height of z = H

2 , while another has six shelves arranged at different heights including two at z = H
4 , two at

z = H
2 , and two at z = 3·H

4 . The third configuration, however, has no shelves. Table 6.4 displays the results for
the different inputs. Only the initial solution generated by the heuristic is taken into account, so the MILP did
not perform any optimization.

Significantly, in scenarios with reduced dimensions, the average value of the objective function increases
by 61% despite only an 18% reduction in space, and by 458% with a 55% reduction in space. This increase in
objective function value is considerably higher than the reduction in space. It is worth noting that if no solu-
tion is found, the objective function value is taken as |P |, which represents the number of incorrectly placed
parcels.

Another interesting finding is that having the same dimensions but a different number of shelves has a
significant influence on the objective function. By going from 4 to 6 shelves in the vans, the average objective
function value generated by the heuristic decreases by 25%. While this is only a preliminary investigation, it
demonstrates the model’s potential to generate useful insights into the optimal interior design for a parcel
delivery van.

6.5.1. Other applications
The model has been designed in a general manner, allowing the possibility to be applied beyond the context
of parcel delivery vans. It can be applied to packing and unloading tasks in various ways. The only require-
ment is that there are dimensions for the objects that need to be packed and the object in which they can be
packed. If applicable, the loading sequence can also be included, although the model can generate a feasible
solution even without this information. This can make the model suited for various applications, including
but not limited to warehouses, shop shelves, parcel lockers, and parcel delivery cargo bikes.
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Conclusion and discussion

The purpose of this thesis was to find an answer to the following research question:

Research question

What modifications can be made to existing parcel packing optimization models to a create feasible
packing solution within delivery vans, given a specific set of parcels and delivery sequence?

To tackle this question, a series of steps were taken. First, the problem was defined by using the frame-
work of an existing problem, namely the 3D-Bin Packing Problem (3D-BPP). The criteria used in this problem
were modified to focus on the specific problem properties for a parcel delivery van. This led to the definition
of seven conditions, which together formed the 3D-Bin Packing Problem with Loading Constraints (3L-BPP).

To construct an analytical model for the 3L-BPP, an existing Mixed Integer Linear Program (MILP) for the
3D-BPP was used as a starting point. The model was adjusted by systematically addressing each of the con-
ditions that needed to be met, and by developing constraints to handle them. Changes were made to allow
for the inclusion of shelves, ensure that parcels could not float, guarantee that parcels had adequate bottom
support, and maintain the Last-In-First-Out (LIFO) principle. To ensure correctness, a mathematical proof
was conducted.

The results showed that the MILP was indeed able to find a feasible solution for the 3L-BPP. As expected
for an analytical model solving a problem that is N P-hard, it took a vast amount of time to find this solution
as the input increased. For a small number of parcels, less then 30, it was able to find the solution within 5
minutes.As the number of parcels increased, so did the time required to find a solution, resulting in the time
limit being reached before a solution could be found for instances with approximately 80 parcels.

To ensure a solution for instances with a higher number of parcels, a novel heuristic method was devel-
oped. The Distance to the Front-Top-Right Corner (DFTRC)-2 provided the foundation for this heuristic, as it
produces solutions for the 3D-BPP. The model was modified to satisfy most of the constraints of the 3L-BPP,
namely to ensure that the parcels do not float and that shelves are included in the solution. This was achieved
by ensuring that the Empty Spaces (ES) used to place the parcels were created in a correct manner. Finally, the
distance measurement was altered to improve the maintenance of the LIFO order. After implementing this
new new measurement method, the number of misplaced parcels decreased significantly. On average, there
was a 41.3% reduction in the number of incorrectly placed parcels per ride compared to previous solutions.

The newly developed heuristic successfully found a solution for 97.7% of the rides in the dataset within 3
seconds. To address the remaining 2.3% of the rides, some modifications were made. By using the original
distance measurement, 1.2 percentage points of the remaining rides were solved within 2 seconds. For the
remaining unsolved rides, an Genetic Algorithm (GA) was incorporated to reorder the input in a structured
manner, which led to a feasible solution for all rides within 100 seconds.

59
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In conclusion, the heuristic method significantly reduced the time required to obtain results, minimized
the objective function value, and improved the feasibility of finding a solution within the given time limit. By
adding the GA, the heuristic was able to ensure a feasible solution for all rides.

Ultimately, the proposed problem was solved by combining the heuristic and the MILP into a single
model. The heuristic was first used to create a feasible solution, which was then optimized using the MILP.
For rides with a small number of parcels (up to about 125), this approach resulted in solutions with minimal
incorrectly placed parcels. In the cases where the heuristic produced a solution with some misplaced parcels,
the MILP optimization process was able to significantly improve the solution within a short time frame.

Even when the number of parcels increased to approximately 200, the MILP still managed to produce
improved solutions, although at the cost of longer run times. For the highest number of parcels (above 200),
the MILP optimization process generally did not improve the solution given by the heuristic method. This
result is not surprising, given that this problem is classified as N P-hard. Overall, the findings show that op-
timization by MILP can effectively reduce the number of wrongly placed parcels, but the benefits are less
pronounced as the number of parcels increases.

A try-out was preformed to assess the feasibility of implementing the model in a real-world scenario. This
gave the fruitful result that there surely is a possibility to apply the model at parcel delivery companies if a
few adjustment are made to the model.

Finally, although the primary objective of the model was to find feasible packing solutions for parcel de-
livery vans, it was discovered that the model could have other potential applications as well. The model has
the capability to suggest optimal ways to design the parcel delivery vans to make the most out of the available
space. Some preliminary tests showed that if PostNL B.V. decided to switch from 4 to 6 shelves inside their
vans, the average percentage of wrongly placed parcels per ride, as found by the heuristic, would be reduced
by 25%. This application is fairly interesting and could be further investigated. Next to that, the models flexi-
ble input makes that it can be used to pack other types of objects as well, such as the shelves in a warehouse
or a store.

This thesis presented a novel problem description and no other existing solution methods can be used
for comparison. To better assess the performance of the model, other solution methods should be created
and tested against a similar data set. Therefore, it cannot be concluded that the final model is the optimal
strategy for creating a feasible packing in general. However, it can be stated that among the solution methods
explored in this thesis, using the combined model as presented in Chapter 5 gives the optimal strategy to
create a feasible packing.

The results clearly indicate that the heuristic is notably faster in finding solutions than the MILP. There-
fore, when considering possible enhancements for this model, it would be beneficial to explore ways in which
the heuristic can generate a better initial solution. It may be acceptable to sacrifice some time for this purpose
since, for most applications of this model, an immediate solution is not necessarily required. One approach
to improving the model would be to generate an ES only if the placement conforms to the LIFO principle. Ad-
ditionally, the model currently only considers square shapes, and expanding it to include other shapes could
be a potential future direction for the development of the model.

To sum up, this thesis presented a model to create a feasible packing inside a delivery van, given a set of
parcels and a complementary delivery sequence. Tests have shown that using a heuristic method to gener-
ate an initial solution, which was further optimized by a MILP, led to favorable results. All in all, the model
performed well on a large set of test data, has the potential to be applied in real-life scenarios, and can be
extended to other applications. These results create a foundation for further research in this field.
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66 A. Technical specifications delivery van

 
Technische specificaties 

www.Mercedes-Benz.nl 

            3 . . CDI FWD bestelwagen  
   

Artikelcode: 1901.03  01-12-2021 

Type Vermogen Treingewicht (kg)  Wettelijk toegestane gewichten (kg) 
311 CDI 84 kW (114 pk) 5200 5500  toelaatbaar totaalgewicht (GVW) 3200 3500 
311 CDI Functional 84 kW (114 pk)    max. toelaatbaar voorasgewicht 1750 1750 
315 CDI 110 kW (150 pk)    max. toelaatbaar achterasgewicht 2100 2100 
315 CDI Functional 110 kW (150 pk)    max. toelaatbaar AHW-gewicht geremd 2000 
 

 

Basis auto 311 CDI met laag dak. Gewichten in kg, afmetingen in cm, hoogte maten onbelast. 
 

(910 63.) WB 325 WB 392 WB 325 WB 392 
Maximaal toelaatbaar totaalgewicht  3200 3200 3500 3500 
Eigengewicht  2020 2085 2020 2085 
Eigengewicht onder de vooras 1280 1320 1280 1320 
Eigengewicht onder de achteras 740 765 740 765 
NUTTIG LAADVERMOGEN 1180 1115 1480 1415 
Breedte laadruimte 178 178 178 178 
Breedte laadvloer tussen wielkasten 141 141 141 141 
Wielkuip hoogte / lengte 40 / 93 40 / 93 40 / 93 40 / 93 
Dagmaat (max) achterdeuren h x b 163 x 155 163 x 155 163 x 155 163 x 155 
Dagmaat (max) hoge achterdeuren h x b 192 x 155 192 x 155 192 x 155 192 x 155 
Dagmaat (max) zijschuifdeur h x b 159 x 100 159 x 126 159 x 100 159 x 126 
Dagmaat (max) hoge zijschuifdeur h x b 189 x 100 189 x 126 189 x 100 189 x 126 
Draaicirkel over de bumper 1300 1520 1300 1520 

 
WB VO AO TL TH LH LL HL Laadruimte Opp./Inh. 

Laag dak  (stahoogte 178) 
325 101 100 527 236 178 260 58 4,3 m2 / 7,8 m3 
392 101 100 593 235 178 327 57 5,5 m2 / 9,5 m3 

Hoog dak  (stahoogte 207) 
325 101 100 527 264 207 260 57 4,3 m2 / 8,8 m3 
392 101 100 593 264 207 327 57 5,5 m2 / 11,0 m3 

 
Afwijkende gewichten t.o.v. basis auto   
Functional uitvoering -10 Dak hoog (D03) +35 



B
Try-out of the model

To evaluate the performance of the model in a real-world scenario, a test was conducted at one of the parcel
delivery depots of PostNL B.V., the same company that provided the data for the results in Chapter 6. The
test ride had 186 parcels, with a fill rate of 33.7%. Using the first solution method, the model found a feasi-
ble packing within 0.36 seconds. The initial solution was improved by the MILP, going from

∑
i∈P δi = 10 to∑

i∈P δi = 9, within a time limit of 2000.

In order to translate the solution of the model into a practical solution, the van was divided into multiple
sections, each designated by a number and a letter. These numbers corresponded to specific areas within the
van as follows:

0. the space in front of the side door

1. The space beneath the right shelf

2. The space beneath the left shelf

3. The area on the right lower shelf

4. The area on the left lower shelf

5. The area on the right upper shelf

6. The area on the left upper shelf

7. The aisle

To indicate the appropriate placement of parcels within the van, the letters F, M, and B were used, rep-
resenting Front, Middle, and Back, respectively. For instance, the combination M6 would indicate that the
parcel should be placed in the middle of the van, on top of the upper left shelf. The number 0 is the only
compartment that does not require a letter, as it already constitutes a single compartment. A visualization of
how one of the shelves of the van is compartmentalized can be seen in Figure B.1.

The barcode of each parcel was linked to the specific letter-number combination, and this information
was loaded onto a digital glove. The glove featured a scanner and a screen, allowing the user to scan a parcel
and instantly display its corresponding placement code on the screen. Visuals of this process can be found in
Figure B.2. By using this technique, the process of loading the van proceeded smoothly. All of the compart-
ments had enough available space. This successful test demonstrated the feasibility of implementing this
model in real-life scenarios.

Recommended for parcel delivery companies is that with a few adjustment the model can be made more
applicable in real life, such as marking items as fragile, grouping parcels from the same household, letting
soft parcel not stand underneath other parcels, etc. These relative small adjustments are outside the scope of
this research, but could be very useful in real life applications.

(2.3),(2.4),(2.5),(2.6)(2.15) (2.16),(2.17),(2.18),(2.19)(3.4)(3.5)(3.8)(5.1)(5.2)(5.3)(5.4)(5.5)(5.6)(5.7)(5.8)
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68 B. Try-out of the model

Figure B.1: Compartmentalization of one shelf of the van.

(a) Step one in the process: scanning the parcel. (b) Step two in the process: receiving the placement information.

Figure B.2: Two steps when using the model in a real life packing situation.
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