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Abstract

Several studies examined what drives citizens’ support for COVID-19 measures, but no
works have addressed how the effects of these drivers are distributed at the individual
level. Yet, if significant differences in support are present but not accounted for, policy-
makers’ interpretations could lead to misleading decisions. In this study, we use XGBoost,
a supervised machine learning model, combined with SHAP (Shapley Additive eXplana-
tions) to identify the factors associated with differences in policy support for COVID-19
measures and how such differences are distributed across different citizens and measures.
We use secondary data from a Participatory Value Evaluation (PVE) experiment, in which
1,888 Dutch citizens answered which COVID-19 measures should be imposed under four
risk scenarios. We identified considerable heterogeneity in citizens’ support for different
COVID-19 measures regarding different age groups, the weight given to citizens’ opinions
and the perceived risk of getting sick of COVID-19. Data analysis methods employed in
previous studies do not reveal such heterogeneity of policy support. Policymakers can use
our results to tailor measures further to increase support for specific citizens/measures.

Keywords XGBoost - SHAP - Policy support - COVID-19 - SARS-CoV-2 - Participatory
Value Evaluation

1 Introduction

The outbreak of the COVID-19 pandemic forced governments to strategically adopt meas-
ures to control multiple waves of the virus. With new variants of SARS-CoV-2 appearing
(e.g., Alpha, Delta, Omicron), governments faced a trade-off between different measures
that could prevent new infections, avoid further deaths due to COVID-19 and reduce the
risk of overloading the healthcare system. However, such measures would also increase
psychological stress and impact the economy, which in turn would hinder the citizens’ sup-
port and decrease adherence. By understanding what factors explain the citizens’ policy
support (i.e., the extent that citizens agree with conducting specific policy options) for
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COVID-19 measures, governments can prioritise those measures that are effective in curb-
ing the spread of the virus and, at the same time, are widely accepted.

Previous studies shed light on the factors that explain the support for COVID-19 meas-
ures, mostly by using descriptive statistics, regression analysis, discrete choice model-
ling and Latent Class Cluster Analysis (LCCA). These studies conclude, for instance, that
higher policy support for COVID-19 measures is associated with the citizens’ trust in insti-
tutions (Dohle et al. 2020; Gotanda et al. 2021), perceived risk, sociodemographic charac-
teristics (Mouter et al. 2022; Sicsic et al. 2022) and geographical factors (Loria-Rebolledo
et al. 2022). However, in most of these works, the existence of (observed) heterogeneity
of preferences across respondents is barely studied or, in some cases, overlooked because
their data analysis methods can only explain the policy support in terms of “average”
effects. For instance, regressions and discrete choice models provide outcomes that are
interpretable for a representative citizen or specific measure, while LCCA identifies dif-
ferent groups of citizens and characterises them in terms of averages within each group.
In all cases, the effects are “averaged-out” in different degrees. This could lead researchers
to overlook potential differences in preferences across specific citizens or measures that, if
substantial, can lead to misguided policy advices.

To overcome these limitations, supervised machine learning (ML) models can be used.
A supervised ML model aims to predict one or more response variables (e.g., whether an
individual accepts COVID-19 measures) in terms of a set of covariates. Among specific
supervised ML models, XGBoost can learn complex interactions between covariates and
individual effects without the need of being previously specified by the analyst, reaching
a high prediction performance and, at the same time, overcoming the limitations of previ-
ous studies to explain the policy support for COVID-19 measures. But like many other
ML methods, XGBoost only provides an overall importance level of each covariate for
predicting the response variable (i.e., a global explanation), making this ML method rel-
atively ‘opaque’ in terms of explainability. So-called explainable Al (XAI) methods can
overcome this limitation of XGBoost. XAI methods aim to provide explanations from an
otherwise ‘opaque’ ML model. An XAI method that gained popularity nowadays in litera-
ture is SHAP. This method relies on coalitional game theory to provide local explanations
(i.e., at the individual level). The idea behind SHAP is to explain how the response of
each individual did deviate from the average response, in terms of a set of covariates (e.g.,
sociodemographic characteristics, experimental features, etc.). This approach is similar to
other XAI methods, namely LIME or LRP, but the advantage of SHAP their rooting in a
formal theory, which provides this method with a greater robustness and makes it more
trustable for its use in policy applications. Therefore, using XGBoost and SHAP to explain
the policy support for COVID-19 measures allow researchers to, for instance, explain how
the differences in policy support are distributed across respondents, spot non-linear effects
that could be overlooked by conventional methods, or explain responses of specific profiles
of respondents that are of the interest of policymakers. Furthermore, such information can
be used by policymakers to tailor policies for specific citizens in order to increase their
acceptance for specific COVID-19 measures in future pandemics.

This paper aims for two goals. Firstly, we explore the extent that XGBoost combined
with SHAP can explain the differences in policy support for COVID-19 measures at the
respondent level. Secondly, we explore the extent that SHAP differs from conventional data
analysis methods used in previous studies, namely choice models and LCCA, in terms of
their degree of detail, interpretation and technical aspects (e.g., statistical significance, esti-
mation time). To reach these goals, this paper makes use of a dataset originally reported by
Mouter et al. (2022) from a Participatory Value Evaluation (PVE) experiment conducted in
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the Netherlands to infer the Dutch citizens’ preferences for reimposing a set of COVID-19
measures under different risk scenarios.

2 Experiment and data

This paper makes use of a dataset from a PVE experiment. PVE experiments have been
applied in diverse fields, including COVID-19 measures (Mouter, Hernandez, et al., 2021),
healthcare investments (Mulderij et al. 2021; Rotteveel et al. 2022) and public infrastruc-
ture projects (Mouter, Koster, et al. 2021a, b). In a PVE experiment, respondents are asked
to imagine a certain scenario and then choose a combination of policy alternatives for
addressing the scenario.

In the PVE experiment of Mouter et al. (2022), four different scenarios were designed,
describing different levels of COVID-19 threat and the current hospital overcrowding risk
(see Table 1).

Each scenario was embedded in an independent PVE experiment choice task. For every
scenario, a list of possible policy alternatives was presented. By choosing a policy alterna-
tive, the hospital overcrowding risk is reduced in a specific percentage within predefined
ranges (see Table 2), defined in consultation with healthcare experts (Mouter et al. 2022).
In scenarios 1, 2 and 3, respondents were allowed to choose any combination of policy
alternatives, whereas in scenario 4, they must choose a combination that results in at least
a 30% reduction in the hospital overcrowding risk. Each respondent answered three out of
four scenarios: scenarios 1 and 2 are answered by all respondents, and scenarios 3 and 4
are randomly assigned to each respondent.

The PVE experiment choice tasks were embedded in a web survey. After the presenta-
tion of an instruction video, respondents were presented with the PVE choice tasks (see an
example in Fig. 1). Policy alternatives with their respective reductions of the hospital over-
crowding risk are presented in the left-side pane, whereas the total hospital overcrowding
risk is detailed in the right-side pane as an interactive gauge. After answering the choice
tasks, respondents have to fill out a questionnaire about their sociodemographic profile
(e.g., gender, age, living province) and perception questions (e.g., perceived risk of being
affected by a COVID-19 infection, the weight they believe governments should give to sci-
entists or citizens’ opinion, etc.)

The data was collected between 3 and 10 February 2022 and corresponds to a represent-
ative panel collected by a specialised survey company (Mouter et al. 2022). After clean-
ing missing values and no responses, the final dataset used for this paper comprises 5,664
responses from 1,888 respondents (since each respondent answered three choice tasks) and
15 variables (see Table 3).

We considered 14 covariates, based on previous studies including the original work of
Mouter et al. (2022). We distinguish between four covariates types: experimental features,
sociodemographic characteristics, vaccination status, and perception indicators. Regarding
the experimental features, we include the overcrowding risk reduction of each COVID-19
measure. The sociodemographic characteristics considered in this study are the respond-
ents’ gender, age group, education level, living province, city size and work status. The
vaccination status is divided into two covariates: whether the respondent is vaccinated at
least once, and whether they received a booster shot. The first set of perception indica-
tors considered in this study is the respondent’s perceived risk that their health would be
affected by COVID-19 in four levels: getting infected by the virus, getting very sick, being
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Table2 COVID-19 measures per scenario, adapted from Mouter et al. (2022)

Scenarios
Measures Riskred.range S1 S2 S3 S4
Advice to wash hands frequently and thoroughly 1-3 X
Advice to stay at home with COVID-19 symptoms and to do atest ~ 3-5 X
Advice not to shake hands 8-14 X
Advice to ventilate 3-7 X
Advice to keep 1.5 m distance 7-13 X
Quarantine if in intensive contact with person infected with 4-8 X
COVID-19
Advice to work at home a few days a week 2-4 X
Advice to work at home, unless it is absolutely necessary 6-10 X X X
Mouth mask obligation in public transport/shops/hospitality 2-6 X X X
industry
Vaccination passport hospitality industry (2G or 3G) 3-5 X X X
Vaccination passport for people working with vulnerable people 5-8 X X X
Vaccination passport except in schools, work and essential shops 4-10 X X X
Encourage self-testing by making it available free of charge 6-10 X X
Starting a booster campaign which starts with vulnerable people 10-15 X X X
Requiring shops to offer time slots for people with vulnerable 5-8 X X
health
Limit number of customers per square metre in non-essential shops 1-3 X
Pick up orders in non-essential shops 2-4 X X X
1/3 capacity and fixed seating at events 2-6 X X
Banning festivals and major sporting events 4-8 X X
Strict advice not to have more than 2 visitors per day at home 5-10 X X X
Advice higher education online and maximum number of students ~ 4-8 X X X
per college
Lockdown after 5 pm 8-10 X
Lockdown after 8 pm 4-8 X X
Closing restaurants/cafés 10-15 X
Closing sports venues 5-10 X
Closing cinemas, theatres, concert halls 5-10 X
Closing primary/secondary schools 15-20 X

Situation 1: Few people need care due to Covid-19

use the € buttons to setect options.

Advice to stayhome anddo [l

a test when you have

rdanweiionss [ ssicssencesmuiarmss [

thoroughly and regularly

symptoms

8 B vciiviie B

distance

Fig. 1 Example choice task presented in the PVE experiment for scenario 1

Restrictions
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hospitalised and dying due to the disease. The final perception indicator is the respond-
ent’s weight they think the government should give to the citizens’ opinion, relative to the
scientists’ opinion. Finally, the response variables (Choice) are binary variables equal to
one if a COVID-19 measure was chosen by the respondent and zero otherwise. Each meas-
ure is associated with an independent response variable, and the response variables for the
same measure are independent across scenarios. Furthermore, the response variables are
not mutually exclusive. Therefore, the policy support for COVID-19 measures consist of
the extent that citizens agree/disagree with conducting each measure on each scenario of
the PVE experiment.

3 Methods

Data is analysed using XGBoost (Chen & Guestrin 2016), a supervised ML model of the
family of tree-boosting models. XGBoost was chosen among alternative ML models (i.e.
neural networks and random forests) since tree-boosting models have been proven to be
robust to overfitting and, furthermore, reaching higher predictive performance in choice
data (Wang et al. 2021)." After the model is trained, SHAP is applied on it to uncover what
relations has been learned from the data and explain the differences on the predicted the
policy support for COVID-19 measures, measured as the predicted probability of choos-
ing such measure for each respondent. Finally, the outcomes of SHAP are visualised and
interpreted.
The following subsections describe XGBoost, SHAP and the use of their outcomes.

3.1 XGBoost

XGBoost is a ML system for tree-boosting. Tree-boosting is an algorithm that combines
the outcomes of a set of decision tree (DT) models to form a model with higher predictive
performance. A DT is a ML model that predicts one or more response variables contained
in Y as a set of conditions that the set of covariates X must hold, forming a tree structure.
Given Y and a set of covariates X, the tree-boosting algorithm aims to predict Y as detailed
in Eq. (1):

T
¥ =Fx) =) fX), (1
t=1

where T is the number of DT models, fT is the tree-boosted model and ]/‘\, is the t-th DT
model. In the tree-boosting algorithm, each DT model is added sequentially. On each
iteration, the new DT model corrects the mispredictions of the tree-boosted model that is
formed thus far. Mathematically, the tree- boostlng algorlthm optimises a loss function I(-)
that depends on Y; at a step ¢ and the predictions Y ) of the previous ¢ — 1 models, plus
a regularisation term Q(-). On each step ¢ of the tree -boosting algorithm, the overall loss
function can be written as in Eq. (2):

! Furthermore, no considerable model fit improvements were found with alternative ML models in prelimi-
nary tests.
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XGBoost is a form of gradient-boosting (Friedman 2001) in which the objective func-
tion depends on the learning problem (e.g., classification, regression, etc.), the loss function
that is optimised in XGBoost changes. Our implementation of XGBoost is for a multi-label
classification problem, since the responses of the PVE experiment are binary, non-mutually
exclusive variables. Therefore, the output of XGBoost is a vector of probabilities of choos-
ing each of the COVID-19 measures, independently.

Given the learning problem of our implementation, the objective function and evalua-
tion metric of XGboost are a logistic and log-loss functions, respectively (see Table 4). In
addition, we optimised three hyperparameters using a grid search process, in which each
possible combination of hyperparameters are used to train the XGBoost model using a ten-
fold cross validation. The average loss is computed and the final model is the one for which
the average loss is minimum. For all scenarios, the optimal hyperparameters are a Gamma
value equal to 2, a maximum tree depth equal to 3 and a minimum child weight equal to 5.

After selecting the optimal hyperparameters, the training process was done using a com-
bination of tenfold cross validation and a split sample. On each scenario, a random split of
the data is done: 80% of the sample is used for training, and the remaining 20% is left as
a holdout (test) sample. The training process is performed using tenfold cross validation
using the training sample only. After the model is trained, the SHAP values are computed
for the holdout sample.

3.2 SHAP

SHAP (Lundberg et al. 2017) is a technique to provide explanations for an otherwise
“opaque” ML model. SHAP calculates how much each covariate contributes to the predic-
tion of each respondent of the sample with respect to the average prediction in terms of
Shapley values. Shapley values are a concept of coalitional game theory that describes the
distribution of payments across coalitions of players in a cooperative game.

While SHAP has gained increasing popularity in the ML field, its use for choice prob-
lems has been rather minor and recent. A brief literature review shows that the use of
SHAP to address choice problems has been scoped mostly in the transportation field (e.g.,
Dong et al. 2022; Ji et al. 2022; Jin et al. 2022; Lee 2022). For instance, Dong et al. (2022)
use SHAP in an artificial neural network to explain individual and general route choice
behaviour from GPS data in South Korea; Ji et al. (2022) applies SHAP in an XGBoost
model to uncover interactions between covariates that explain Cyclists’ behaviour in
China; Jin et al. (2022) compares the explanations from gradient-boosting methods and
SHAP with the interpretations of a multinomial logit model to explain vehicle transactions
in the United States; and Lee (2022) uses SHAP and XGBoost to explain the decision of
giving up the use of public transport during the COVID-19 pandemic in South Korea. To
the authors’ knowledge, the only applications of SHAP outside the transportation field are
Wang et al. (2022), who use SHAP and a series of ML models (e.g., random forests, neural
networks, XGBoost) to explain the decision of getting online healthcare in China, and this
work.

SHAP relates ML with game theory by assuming that a set of covariates
X, = {x,1.x,,, ... } for a specific respondent n are players in a game that consists of pre-
dicting the response variable Y. The game is the ML model, and the payoffs are the pre-
dictions ]/‘\(Xn). Each covariate can contribute to the prediction standalone or forming a
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coalition with one or more other covariates. The Shapley value ¢, of a covariate value x,,
for a respondent 7 is the averaged marginal contribution of x, to predict ¥,, across all pos-
sible coalitions (Molnar 2020), given by Eq. (3):

S|(K=|S|=D! ~ ~
d)nk:ZSC{l K}\(k)%(ﬂ(b‘uk)—fx(&), 3)

where S is a subset of the covariates of the model, K is the number of covariates, and ]/‘;(S)
is the prediction for the covariates in set S marginalised over the covariates that are not
included in S.

The outcome of SHAP is a matrix N X K of SHAP values, computed per response vari-
able. In other words, SHAP values are computed at each respondent’s level, per covariate
and per response variable (i.e., per COVID-19 measure). There are multiple algorithms to
compute SHAP values. In our implementation, we use the so-called Exact Explainer, in
which actual Shapley values are computed through enumeration.

SHAP values satisfy the properties of local accuracy, missingness and consistency
(Lundberg et al. 2017). Local accuracy guarantees that the sum of SHAP values for a
respondent 7 is equal to the difference between the prediction for n and the average predic-
tion across all respondents. Missingness guarantees that if a covariate value x,,; is missing,
then its SHAP value is zero, thus not affecting the local accuracy property. Consistency
guarantees that if the contribution of x,, increases, then its SHAP value also increases.

SHAP presents three key advantages over alternative XAI methods, such as the Local
Interpretable Model-Agnostic Explanations (LIME) proposed by Ribeiro et al. (2016) and
Layer-Wise Relevance Propagation (LRP) proposed by Bach et al. (2015). Firstly, SHAP
bases its explanations on computing Shapley values, which makes this method theoreti-
cally robust and stable compared to LIME and LRP, which base their explanations on ran-
dom perturbations over the dataset. Secondly, SHAP is model agnostic, similar to LIME,
but different from LRP, which is specific to neural networks. Therefore, SHAP can be used
on any supervised ML model. Thirdly, SHAP allows for both local and global explana-
tions, since the computed Shapley values can be aggregated (i.e., averaged) to explain the
mean contribution of each covariate.

3.3 Using the outcomes of SHAP: SHAP importances and visualising SHAP values

SHAP values are used in two forms (see Table 5). Firstly, we compute so-called SHAP
importances. The SHAP importance of a covariate is the absolute value of its associated
SHAP values averaged across respondents and policies of a specific scenario, as shown in
Eq. (4):

d)k _ ZnN=1¢nk

| 0

SHAP importances are bound between O and 1 since its associated SHAP values repre-
sent variations of the probability of choosing specific policies from the average response,
in a specific scenario. Higher (lower) SHAP importances indicate that, on average, a covar-
iate has a greater (smaller) effect on the policy support for COVID-19 measures. Thus, the
analyst should prioritise interpreting covariates with high SHAP importances.

SHAP importances are a form to provide global explanations from SHAP values, and
they are comparable to the variable importances of XGBoost. However, SHAP importances
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measure the average deviation of a covariate from the average response, as a difference
from the variable importances of XGBoost, which are the average contribution that each
variable’s split point improves the performance measure used during training. In conse-
quence, the interpretation of SHAP importances is more related to variations on policy
support than the native importances of XGBoost.

It is important to notice that a low SHAP importance does not necessarily mean that
a covariate has a negligible effect, but it means that such effect is smaller than the effect
of other covariates. Hence, we use SHAP importances to identify the three most relevant
covariates in all three risk scenarios, to focus the visualisation and interpretation of SHAP
values in this paper. A detailed visualisation of all covariates per scenario is presented in
supplementary material 1.

After the three most important covariates are identified, SHAP values are visualised in
three specific plots to facilitate their interpretation. The first visualisation is the so-called
summary plot. Given a specific covariate, a summary plot details how much the SHAP
values are distributed across respondents in terms of magnitude and direction. Each point
of the summary plot is the SHAP value of a specific respondent associated with a specific
covariate. The horizontal axis details the magnitude of the SHAP value. If two SHAP val-
ues are of similar value, they are stacked vertically, showing observed homogeneity/hetero-
geneity of effects for different respondents. Specifically, a summary plot with SHAP val-
ues with higher height indicates a group of respondents with homogeneous policy support
for the associated COVID-19 measure, whereas a plot with a lower height (or resembling
a line) indicates few respondents with similar policy support for COVID-19 measures.
Finally, SHAP values are coloured according to the covariate values to detail the direction
of the effects of each covariate.

The second visualisation is scatter plots of the SHAP values for a specific COVID-19
measure and covariate. Scatter plots detail the relationship between a specific covariate
with its associated SHAP values. The vertical axis of the scatter plot details the magni-
tude of the SHAP values associated with a specific covariate, whereas the horizontal axis
details the values of such covariate. SHAP scatter plots allow analysts to identify how the
effects on the policy support for a COVID-19 measure are distributed across the values of a
specific covariate. From a scatter plot, the analyst can identify nonlinear effects or specific
effects per groups of respondents.

The third visualisation is so-called waterfall plots for the SHAP values of a specific
respondent and COVID-19 measure. Given a specific respondent (hence, a vector of spe-
cific covariate values), waterfall plots detail how much each covariate did contribute (pos-
itively or negatively) from the average probability of choosing a COVID-19 measure to
the predicted probability of a specific respondent. Hence, waterfall plots can be used to
explain the responses of specific citizens profiles, in terms of the covariates used to fit the
XGBoost model.

4 Results
4.1 SHAP importances

We compute the SHAP importances per risk scenario, averaged across respondents and
COVID-19 measures (see Table 6). In addition, the average SHAP importance across
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Table 6 SHAP importances per risk scenario

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Average
Gender 0.013 0.011 0.019 0.011 0.014
Age 0.032 0.025 0.023 0.029 0.027
Education 0.017 0.015 0.018 0.009 0.015
Province 0.022 0.019 0.021 0.021 0.021
City size 0.008 0.011 0.014 0.015 0.012
Work status 0.021 0.018 0.026 0.019 0.021
Vaccinated 0.021 0.016 0.014 0.011 0.016
Boosted 0.013 0.024 0.023 0.013 0.018
Risk (infected) 0.015 0.010 0.012 0.012 0.012
Risk (getting sick) 0.029 0.026 0.027 0.013 0.024
Risk (hospitalised) 0.011 0.013 0.016 0.020 0.015
Risk (death) 0.019 0.015 0.019 0.017 0.017
Weight citizens/scientists opinion 0.027 0.032 0.039 0.021 0.030
Overload risk reduction 0.011 0.008 0.012 0.012 0.011

The filling intensity details a higher importance per scenario. The three most relevant covariates are in bold

risk scenarios is calculated (last column) to identify which covariates are the most (least)
important across scenarios, on average.

On average, the most important covariates are, in descending order, the weight of citi-
zens’/scientists’ opinion, age and the perceived risk of getting sick of COVID-19. These
three covariates are also the most important in all scenarios, except in scenario 3, where
work status becomes the third-most important covariate. On the other hand, the overcrowd-
ing risk reduction generated by the measures is consistently ranked as one the least impor-
tant covariates. These results indicate that sociodemographic characteristics and perception
indicators explain better the differences in the policy support for COVID-19 measures than
the resulting reductions in the risk of overloading the healthcare system. In the following
subsections, we focus on the visualisation of SHAP values of age, the perceived risk of get-
ting sick of COVID-19 and the weight of citizens’/scientists’ opinion.

4.2 Visualising SHAP values

Now, we present visualisations of the SHAP values for the three most important covariates,
namely the age group, the weight of citizens’/scientists’ opinion and the perceived risk of
getting sick of COVID-19. A complete set of summary plots per covariate, measure and
scenario is provided in supplementary material 1.

4.2.1 Agegroup

We generate summary plots of the SHAP values associated with age per COVID-19
measure and risk scenario (see Fig. 2). As a first observation, the overall effects tend to
be smaller for scenario 1 (less severe) compared to the other risk scenarios. Aside from
the findings in line with previous studies, i.e., older age is associated with higher policy
support, visual inspection of the summary plots confirms heterogeneous distributions of
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Fig.3 SHAP values of age of implementing a 3G COVID-19 certificate for scenario 1

the effects, potential nonlinear effects and effects with an opposite direction for specific
measures.

Heterogeneous distributions of the effects are shown in summary plots either as clus-
ters of SHAP values agglomerated in one or more locations or as a line of SHAP values
sparsely distributed in a plot. Clusters are associated with groups of respondents with a
similar effect on policy support. In contrast, sparsely distributed effects indicate differences
in policy support for respondents that belong to an age group. For instance, the SHAP val-
ues associated with an advice to work from home in scenario 1 and to receive a maximum
of two visitors per day in scenario 2 present three clusters of effects, with a first cluster
associated with a lower effect on policy support and low age, a second cluster associated
with close-to-null effects and middle age, and a third cluster associated with higher effect
and older age. Sparse distributions are observed, for instance, for the advice of having
maximum 2 visitors per day at home in scenario 3, or a 2G COVID-19 certificate for those
who work with vulnerable people in scenario 4, where the sparse effects are associated
with the extreme age groups, indicating clear differences on the policy support for such
measures across respondents of the extreme age groups.

Nonlinear effects are shown in summary plots as SHAP values with similar effects (i.e.,
close together) but associated with different age groups. An example of nonlinear effects
is with the imposition of a 3G COVID-19 certificate for public transport, shows and res-
taurants in scenario 1. While visual inspection confirms that older age is associated with
higher policy support for the measure, there is a group of points associated with middle age
(coloured in purple) located in the lower tail of the plot, indicating that such respondents
have low policy support comparable with respondents of the lowest age group. A scat-
ter plot (see Fig. 3) confirms that the effect of age for implementing this measure resem-
bles a piecewise-linear function. Age groups between 25 and 44 years old are associated
with negative SHAP values, while from 45 years and older, the SHAP values are positive.
The effect does not seem to be increasing or decreasing within each of the two groups but
remains constant, with a jump at 45-54 years old and then remaining constant.

As another example, the SHAP values associated with imposing a COVID-19 certifi-
cate (2G) for those who work with vulnerable people in scenario 4 present a region of
points around zero (no effect) and positive values associated with the lowest age. Further
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Fig.4 SHAP values of age of implementing a 2G COVID-19 certificate for those who work with vulner-
able people in scenario 4

inspection with a scatter plot (Fig. 4) shows clear differences in the policy support for such
measure per specific age group. The group of 18-24 years old has dispersed effects around
zero and above. The age groups between 25 and 64 years old are associated with negative
to no support, being respondents of 25-34 years old the group with the lowest support. The
group of 65 years old or more are the respondents with positive support for this measure.

Finally, the effect of age on the policy support of certain measures goes in the opposite
direction than expected for specific measures (recall Fig. 2). For instance, we observe that
some people (points) of the lowest age groups are associated with higher policy support for
advising online higher education in scenarios 3 and 4, and for closing schools in scenario
4, since these measures are likely not to affect them directly as they have lower chances of
having children, compared to middle and older age groups.

4.2.2 Weight citizens’ opinion compared to scientists’ opinion

We generate the SHAP summary plots for the Weight citizens’ opinion compared to sci-
entists’ opinion per COVID-19 measure and risk scenario (see Fig. 5). As a first result, we
observe that respondents who believe the government should weigh the citizens’ opinion
more than the opinion of scientists are associated with lower policy support for COVID-19
measures, and vice versa for respondents who give more weight to scientists’ opinion. This
result was not explored further in the previous analysis of this PVE experiment, despite this
covariate being important for explaining the differences in policy support. Furthermore,
SHAP summary plots evidence heterogeneous effects, either in clusters (agglomerations)
of effects and sparse distributions or a combination of both.

A combination of clusters of effects and sparse distribution is observed in a summary
plot as one or more groups of SHAP values associated with a specific group of covariate
values (i.e., the values of the weight of citizens’/scientists’ opinion), followed by a line of
points associated with the rest of respondents, or vice versa. For example, consider the
SHAP summary plot for the advice of working from home in scenario 2. On the one hand,
respondents who believe the government should only consider citizens’ opinion are asso-
ciated with lower policy support for this measure, and such effect widely differs across
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respondents, illustrated by the blue line of points. This result indicates strong differences
in the support for this measure for respondents with the same perception about the weight
the government should give to citizens’ opinion. On the other hand, for the same measure,
respondents who believe the government should give more opinion to scientists’ opinion
are associated with higher policy support, and they are concentrated in a single cluster, and
hence they have a similar effect on the support for this measure.

4.2.3 Perceived risk of becoming sick of COVID-19

We generate the summary plots of the perceived risk of becoming sick of COVID-19,
per measure and risk scenario (see Fig. 6). As a difference with the previous covariates,
sparsity of effects is more observed for respondents with a stronger opinion, i.e., with the
highest and lowest perceived risk of becoming sick of COVID-19. In contrast, respondents
with a moderate opinion are concentrated in a cluster close to the origin. As expected, the
range of SHAP values is higher in scenarios 1, 2 and 3 since this covariate was one of the
most important, whereas for scenario 4, the range of SHAP values is considerably shorter.
Nevertheless, further inspection of SHAP values per scenario confirms differences in the
importance of this covariate between specific measures in the same scenario. For instance,
in scenario 2, for imposing mandatory masks, starting a booster campaign, working from
home and encouraging self-testing, the range of SHAP values is considerably higher than
for the rest of the measures in the same scenario. This is a sign that, for these measures, the
perceived risk of getting sick of COVID-19 is of considerably higher importance than for
the other measures in this scenario.

4.3 Explaining policy support of specific respondent profiles with waterfall plots

To illustrate the how SHAP values explain the policy support at the respondent level, we
present two waterfall plots based on two citizen profiles based on the test sample, namely
Profile A and Profile B (Table 7). The selection criterion was based on four covariates:
gender, age, education level and city size, in order to show clear differences between both
types of respondents. In case of two or more observations of the test sample did fit with the
selection criterion, the selected individual is selected randomly among them. For illustra-
tive purposes, we only focus on the waterfall plots associated to requesting masks in public
transport, shops, and restaurants under Scenario 1.

The waterfall plot of the citizen of Profile A (respondent ID =207) shows how his prob-
ability of choosing a mask mandate under Scenario 1 is explained by his age, city size, vac-
cination status, gender, and the risk reduction of other five measures (Fig. 7). For Profile A,
age is the most relevant covariate and it is associated with an increase of the probability of
choosing a mask mandate of 13%, the fact he lives in a village is associated with a reduc-
tion of this choice probability in a 5%, and the overload risk reduction of requesting to ven-
tilate spaces (measure 4) of the same Scenario is associated with an 3% increase of choice
probability. Other covariates that play a lower role are, for instance, vaccination status (3%
increase) and his gender (3% reduction). Overall, all covariates explain a higher choice
probability than the average (from 0.309 to 0.532).

For profile B (respondent ID=502), her probability of choosing a mask mandate
under Scenario 1 is explained by, mostly, her age, her perceived risk of getting very sick
or dying of COVID-19, her living province, her vaccination status and the risk reduction
of other four measures (Fig. 8). The fact this citizen is of 25-34 years old is associated
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Table 7 Citizen profiles for

waterfall plots Covariate Profile A Profile B
Gender Male Female
Age 75 years or more  25-34 years
Education level Low Middle
Province North-Brabant South-Holland
City size Village Big city
Work status Retired Full-time
Vaccinated / Boosted Yes / Yes Yes / No
Risk (infected) Moderate High risk
Risk (getting sick) Moderate High risk
Risk (hospitalised) Low risk No risk
Risk (death) Low risk No risk
Weight citizens/scientists opinion More to citizens ~ Only citizens
Respondent ID (from test sample) 207 502

fix) =0.532

0 = City size

3 = Overload risk reduction (4)
1 = Vaccinated
0 = Gender (1=Woman)

7 = Overload risk reduction (5)
14 = Overload risk reduction (3) - +0.02
4 = Overload risk reduction (6) - +0.02
2 = Overload risk reduction (1) ' +0.01
13 other features

0.35 0.40 0.45 0.50 0.55
ETAX)] = 0.300

Fig.7 Waterfall plot of profile A for imposing a mask mandate under Scenario 1

fix) =0.258

3 = Risk (getting sick)
5 — Province
0 = Risk (death)
10 = Overload risk reduction (5)
1 = Vaccinated
3 = Overload risk reduction (7)

14 = Overload risk reduction (3)
3 = Overload risk reduction (2)
13 other features
0.26 0.28 0.30 0.32 0.34 0.36

E[fX)] = 0.309

Fig.8 Waterfall plot for profile B for imposing a mask mandate under Scenario 1
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with a reduction of the choice probability of 9%, her perceived risk of getting very sick of
COVID-19 is associated with an increase of choice probability of 3%, and the fact she lives
in the province of South-Holland is associated with a 3% probability increase. Overall, all
covariates explain a lower choice probability than the average (from 0.309 to 0.258).

4.4 Contrasting SHAP with choice modelling analysis and LCCA

The findings obtained with SHAP are contrasted with the results obtained from a choice
model and LCCA for scenario 1 (see Table 8). The choice model and LCCA correspond to
the models used by Mouter et al. (2022). We estimated a new version of the choice model,
in which the same covariates of this study are included per COVID-19 measure, as a dif-
ference from the original study, in which only a set of constants and a single parameter
for the overcrowding risk reduction were estimated. The results and the choice model are
detailed in supplementary material 2. The results of the LCCA presented in this section are
from Mouter et al. (2022). In this paper, only the results of scenario 1 are compared and
contrasted since it is the only scenario in which the choice model converged in a reasonable
amount of time (i.e., less than six hours).

We find that SHAP reaches the same interpretations of the choice model while add-
ing new insights in terms of heterogeneity of effects across respondents. Compared with
LCCA, SHAP identifies a more detailed level of heterogeneity as the effects are computed
per respondent instead of effects per pre-defined groups. For instance, we find in all mod-
els that people of the oldest age are associated with higher policy support. In SHAP, we
also identify clusters of respondents with similar effects, sparse distributions of effects for
respondents of a similar age and nonlinear effects that the other models do not identify. The
results for the other covariates follow the same pattern: SHAP provides equivalent results
to choice models and LCCA, with the addition of heterogeneity at the respondent level.

Regarding statistical significance and importance of covariates, we find that the covari-
ates identified as the most important in SHAP coincide with the covariates identified as
statistically significant in the choice model per specific COVID-19 measures. On the one
hand, age group, the weight of citizens’/scientists’ opinion and the perceived risk of get-
ting very sick of COVID-19 are identified as the most important covariates on average by
SHAP (see Table 5), and for each specific measure, these covariates rank on the higher part
of the most important covariates per specific COVID-19 measures and at the same time
they are statistically significant in the choice model (see supplementary material 1 and 2).
On the other hand, the overcrowding risk reduction is ranked as the least-important covari-
ate on average, and it ranks in the lowest positions per COVID-19 measure, coinciding
with the fact that this covariate is not statistically significant in the choice model. Neither
the weight of citizens’/scientists’ opinion, the perceived risk of getting sick of COVID-19
nor the overcrowding risk reduction is considered in the LCCA analysis of Mouter et al.
(2022).

Based on the analyses made in this paper, we compare and contrast SHAP with choice
models and LCCA in four dimensions (see Table 9).

In terms of interpretation of results, we find that SHAP allows identifying the
effect of covariates in the policy support in a similar way as in a choice model, with
the addition of providing information at the respondent level. A similar analysis can be
done with LCCA, in which the interpretation of results is made per predefined groups
in terms of the probability of belonging to each of such groups. Regarding identify-
ing the importance of covariates, both choice models and LCCA rely on identifying the
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statistical significance of a set of estimated parameters. In contrast, SHAP identifies the
importance order of each covariate in terms of the SHAP importances.

In terms of heterogeneity, all models can capture observed (differences on effects
of covariates) heterogeneity, whereas a choice model can also capture unobserved (sto-
chastic) heterogeneity. On the one hand, SHAP is able to identify observed heterogene-
ity at the respondent level, thus identifying how the effects of each covariate are distrib-
uted across covariates and measures. On the other hand, choice models and LCCA can
capture observed heterogeneity, but such ability is limited by the a priori model specifi-
cation provided in the former, and the a priori definition of the number of latent classes
in the latter. However, evaluating all possible model specifications in a choice model is
time-unfeasible, whereas specifying a too high number of latent classes in LCCA can
lead to a non-informative model (i.e., non-parsimonious, with few or no statistically sig-
nificant parameters).

A final and practical difference between all models is the estimation time, which is
critical in crises when results are needed in shorter time spans for decision-making. On
the one hand, choice models are the least convenient approach, with an estimation time
of around one hour for scenario 1. Furthermore, after six hours, we could not obtain
convergence of the choice model for scenarios 2, 3 and 4. On the other hand, LCCA and
SHAP estimation times are around three minutes for all scenarios. Considering that we
show SHAP provides similar results as a choice model in the same scenario, with the
addition of identifying heterogeneity of effects per covariate and measure, SHAP can be
used instead of the choice model for this application.

5 Discussion

In this paper, we study the factors (covariates), i.e., sociodemographic characteristics,
perception indicators and experimental variables, that lead to differences in the policy
support for COVID-19 measures under different risk scenarios, with a focus on how
such differences are distributed across citizens. We use data from a PVE experiment to
determine the citizens’ preferences for COVID-19 measures in the Netherlands (Mouter
et al. 2022). We model the data with XGBoost, a ML model, and compute the SHAP
values to identify the effect of each used covariate on the policy support for COVID-19
measures for each respondent of the PVE experiment. Our results show that the hetero-
geneity of effects on the policy support for measures can lead to considerable differ-
ences between respondents of similar profiles (e.g., age, perception) or nonlinear effects
that, if neglected by only considering average effects, could lead to misinterpretation
of results. Furthermore, compare and contrast SHAP with other data analysis methods,
namely choice models and LCCA. We show that SHAP analysis provides similar results
as conventional approaches (i.e., choice models), but with the addition of providing
effects at the respondent level and in a considerably minor estimation time.

A methodological contribution is that we explored how policy makers could use the
results of a SHAP analysis in their daily practices. We found that policy makers regard
SHAP as a useful instrument to predict policy support among detailed subsegments of the
population and also better understand (lack of) policy support. The fact that the results
can be derived in two to three minutes is particularly useful in the context of COVID-19
decision-making where all decisions need to be taken under high time pressure.
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5.1 Main findings

First, we show how the policy support for COVID-19 measures is distributed across
respondents in terms of the age group of respondents, the weight they believe the govern-
ment should give to the opinion of citizens compared to the opinion of scientists, and the
perceived risk of becoming sick of COVID-19, which are the covariates identified as with
the highest importance by SHAP importances (see Table 6). Aside from confirming the
findings of previous studies, including the first analysis of the PVE experiment (Mouter
et al. 2022), we identify clusters of different types of respondents but with similar policy
support, sparse distributions of effects for respondents with similar characteristics, effects
in the opposite direction for specific measures and nonlinear effects for specific groups of
respondents. For instance, we find that for closing schools in a high-risk scenario (scenario
4), respondents of the lowest age group are associated with higher policy support for the
measure than respondents of other age groups, going in an opposite direction to the “aver-
age” interpretation for the rest of measures (see Fig. 2). As another example, we find that
the policy support for implementing a COVID-19 certificate in scenario 1 across differ-
ent age groups is a piecewise-linear function, with a negative effect for groups less than
45 years old and a positive effect for older groups (see Fig. 3). Similar findings are made
for the weight of citizens’/scientists’ opinion and perceived risk of getting sick of COVID-
19, where combinations of clusters and sparse distributions of effects are found for specific
measures and scenarios (see Figs. 5 and 6). Additionally, we show specific illustrations
on how SHAP values can be used to explain the policy support of specific individuals, by
using two citizen profiles and waterfall plots (Figs. 7 and 8).

Second, we show that SHAP analysis delivers the same interpretation results and iden-
tification of important covariates as a conventional choice model, with the addition of pro-
viding how the effects are distributed at the respondent level (see Tables 8 and 9), whereas
contrasted with an LCCA, SHAP provides a deeper level of heterogeneity as there is no
need of pre-defining a number of latent classes. The visualisation of SHAP values allows
determining that older age, a higher weight to the opinion of scientists and a higher per-
ceived risk of getting sick of COVID-19 are associated with higher policy support for
COVID-19 measures, with a similar conclusion obtained from interpreting the estimated
parameters of the choice model (see Table 8). Furthermore, SHAP values also provide
information about how the effects are distributed across respondents, allowing for a more
nuanced analysis per covariate, measure and risk scenario. Finally, we argue in favour of
using SHAP for interpreting results and identifying importance, as this method provides
the same results as a choice model in a considerably shorter time: two to three minutes
contrasted with one to more than six hours (see Table 9).

5.2 Policy implications

SHAP analysis can help policymakers understand which types of citizens are the most
(least) reluctant to specific measures in greater detail than previous methods (i.e., choice
models and LCCA) and tailor measures to increase policy support. For instance, as we
found that negative support for a COVID-19 certificate in a low risk scenario (scenario 1)
is concentrated in citizens 45 years old or less (see Fig. 3), policymakers can build infor-
mation campaigns focused on such age groups to increase support for this measure. As
another example, since we found that respondents of the middle and high age groups are
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associated with lower policy support for closing schools in a high-risk scenario (scenario
4, Fig. 2), policymakers can focus on such age groups to prepare compensation packages,
since at the same time these groups are more likely to have children in school age than
citizens of the lowest age group (i.e., below 25 years old). And, as we see that citizens who
think that they have a low chance of getting sick from COVID-19 particularly dislike meas-
ures such as the advice to not shake hands and self-testing it is important to tailor commu-
nication to this group and explain the importance of the measure to people who think that
they have a low chance of getting sick from COVID-19.

5.3 Considerations and research directions

We identify a few considerations in this paper. First, our findings are bounded by the popu-
lation context, the moment the sample was collected and the use of PVE as an elicita-
tion framework. Therefore, the findings of this paper should not be extrapolated for other
countries or other moments of the pandemic, even though our findings align with previous
studies regarding policy support for COVID-19 measures (Sicsic et al. 2022). Second, it
is relevant to notice that neither XGBoost or SHAP establish causal relationships per se
(e.g., if age is higher, then policy support is higher and not vice versa). In consequence,
our approach only allows policymakers to safely identify associations between covariates
and the policy support for COVID-19 measures. We strongly recommend to contrast the
findings from SHAP with more structural methods, such as choice models, as we did in
the present work. Finally, SHAP has a longer computation time than alternative explana-
tion methods (e.g., LIME, LRP), often in the order of minutes at the minimum. Hence,
researchers and policymakers should carefully assess the advantages of SHAP (i.e., built in
solid theory, global and local explanations) in light of its computational demands, particu-
larly when the urgency of obtaining results is a priority.

Finally, as a further research direction, we envision using SHAP to further explain the
policy support for measures for specific profiles of respondents. This paper did only cover
this direction for two examples since the range of possible profiles to explore is unfeasible
to cover in a manuscript. To overcome this, developing a consultation (web-based) plat-
form to build specific queries is possible. The interested analyst can construct specific pro-
files of citizens from a previously trained ML model and obtain their specific set of SHAP
values as a result. Policymakers could benefit from such a web-based platform by counting
with information about the policy support for COVID-19 measures for different individu-
als, different measures, and scenarios in a fine-grained level of detail.
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