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Abstract

In a reliabilist epistemology of algorithms, a high frequency of accurate output repre-
sentations is indicative of the algorithm’s reliability. Recently, Humphreys challenged
this assumption, arguing that reliability depends not only on frequency but also on
the quality of outputs. Specifically, he contends that radical and egregious misrep-
resentations have a distinct epistemic impact on our assessment of an algorithm’s
reliability, regardless of the frequency of their occurrence. He terms these statistically
insignificant but serious errors (SIS-Errors) and maintains that their occurrence war-
rants revoking our epistemic attitude towards the algorithm’s reliability. This article
seeks to defend reliabilist epistemologies of algorithms against the challenge posed
by SIS-Errors. To this end, I draw upon computational reliabilism as a foundational
framework and articulate epistemological conditions designed to prevent SIS-Errors
and thus preserve algorithmic reliability.

Keywords Reliabilist epistemologies of algorithms - Computational reliabilism -
SIS-Errors - Paul Humphreys

1 Introduction

In 2009, there was a short-lived debate about the alleged novelty of computer simula-
tions in the scientific domain. Frigg and Reiss argued that, although technologically
novel, computer simulations did not constitute a philosophical novelty nor “[a] revo-
lutionary departure from everything that philosophers were worried about in the past”
(Frigg & Reiss, 2009, 601). In response, Humphreys highlighted four specific issues
in the context of computer science that bear philosophical novelty (Humphreys, 2009).
One of these issues is epistemic opacity.

B Juan M. Durdn
j-m.duran@tudelft.nl

Technology, Policy and Management, Delft University of Technology, Jaffalaan 5, 2628 BX Delft,
The Netherlands

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s13194-025-00664-2&domain=pdf
http://orcid.org/0000-0001-6482-0399

37 Page2of20 European Journal for Philosophy of Science (2025) 15:37

Humphreys provided the following formal definition:

[A] process is epistemically opaque relative to a cognitive agent S at time ¢ just
in case S does not know at ¢ all of the epistemically relevant elements of the
process (Humphreys, 2009, 618)!

To grasp this definition, Humphreys offers an analogy with mathematical proofs.
According to this analogy, a mathematician might consider at some point in the proof
that a particular step is epistemically relevant for the justification of the theorem—or,
conversely, that the step is sufficiently trivial to be eliminable. The key to the analogy
is that mathematicians can, and often do, survey mathematical proofs. It is through
this form of surveyability that they confer justification to their results.

With algorithms, Humphreys tells us, the situation is rather different. For starters,
“no human can examine and justify every element of the computational processes
that produce the output of a computer simulation or other artifacts of computational
science” (Humphreys, 2009, 618). The surveyability of a mathematical proof, i.e.,
that S knows at ¢ all the epistemically relevant elements in the proof, is, in principle,
unrealizable in the context of algorithms. This, roughly, forms the basis of epistemic
opacity, and it has been the main route that many have taken (Durdn & Formanek,
2018; Beisbart, 2021; Boge, 2022), including Humphreys himself (2020; 2021).

A central motivation for seeking justification is that algorithms are often epistemi-
cally opaque. How, then, do we currently justify their outputs? What is the prevailing
epistemology of algorithms? Transparency emerges as an initial response, precisely
because it is framed as the opposite of opacity (Creel, 2020). Broadly speaking, trans-
parency justifies the belief that the algorithm’s output represents by offering reasons
or supporting evidence for that belief (Kroll et al., 2017; Guidotti et al., 2019; Zerilli,
2022). Reasons and supporting evidence is typically achieved by “convey[ing] the
internal state or logic of an algorithm” (Wachter et al., 2018, 845), that is, by revealing
or explaining the functions, values, and properties that produce the output in question
(Durén, 2021). Understood in this way, transparency treats justification as internal to
the algorithm.

Humphreys initially considered transparency as a potential candidate for the epis-
temology of algorithms but quickly dismissed it as unsuitable.?

[i]f we think in terms of such a [computer] process and imagine that its step-
wise computation was slowed down to the point where, in principle, a human
could examine each step in the process, the computationally irreducible process
would become epistemically transparent. What this indicates is that the practical
constraints we have previously stressed, primarily the need for computational
speed, are the root cause of all epistemic opacity in this area. Because those
constraints cannot be circumvented by humans, we must abandon the insistence
on epistemic transparency for computational science. What replaces it would

! There is a further specification on the nature of S in Humphrey’s definition of essential epistemic opacity.
For the purposes of this article, this specification is unproblematic.

2 This is, of course, not to say that transparency is not intrinsically valuable. There are several noteworthy
attempts to promote transparency in various forms, such as efforts aimed at understanding (e.g., Sullivan,
2022; Paez, 2023).
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require an extended work in itself, but the prospects for success are not hopeless.
(Humphreys, 2004, 150. Emphasis mine.)

The suggested alternative is to construe justification as external to the algorithm,
that is, as a form of reliabilist epistemology. Humphreys’ position is, in fact, one
that adopts a frequentist version of process reliabilism (Goldman, 1979), where a high
ratio of beliefs that represent confers reliability to the process. There are, however, two
key modifications to the original process reliabilism that are central to his argument.
First, Humphreys specifies that the notion of “process” refers specifically to computer
processes-namely, algorithms executed by a computer. This contrasts with perceptual,
introspective, and testimonial processes also discussed in the context of reliabilist
epistemologies. Second, the beliefs in question concern algorithmic outputs that, to
a degree acceptable to the relevant epistemic community, accurately represent a fact
(F) or afact that entails F (Humphreys, 2020, 13:50). Under this heading, Humphreys
argues that a single output misrepresenting a fact F' may epistemically compel us to
revoke our assessment toward the algorithm’s reliability, even if the overall frequency
of representations remains unaltered. In other words, it is not only the quantity of
output representations that matters for the reliability of the algorithm; their quality is
also crucial.

To illustrate this problem, consider the following toy example: say that an algo-
rithm is used in forensics for identifying, via facial detection, the suspect of a crime.
Suppose that the algorithm is highly successful in identifying the right suspects and,
therefore, is reliable. Now, according to Humphreys, if the algorithm were to misiden-
tify a single individual, given the egregious epistemic nature of this misidentification,
we have grounds for revoking our assessment of the algorithm from reliable to unre-
liable. Humphreys referred to this problem as statistically insignificant but serious
errors (henceforth, SIS-Errors), and considers it a core problem for any reliabilist
epistemology of algorithms.

This article defends reliabilist epistemologies against SIS-Errors. To this end, I
adopt computational reliabilism (henceforth, CR) for this task (Durén, forthcoming).
The reasons for this choice are fully presented in Section 4. Now, it is worth mention-
ing that my defense takes two routes that depart in novel ways from those standardly
found in the literature. First, SIS-Errors are considered an epistemological problem. As
I briefly cover in Section 2, the literature on algorithmic reliability typically addresses
concerns about (mis)representations in terms of design decisions, coding strategies,
and implementation practices. That is, reliability is primarily a matter of the method-
ology of algorithms. Admittedly, CR does offer its own version of this methodological
matter, and the argument presented here does rely, to some extent, on how CR builds
on practices and methodologies. But SIS-Errors are primarily framed and discussed as
a problem of justification, and therefore as a matter of belief formation. As such, the
main issue here is our epistemic attitude towards the reliability of the algorithm. The
second route consists of creating epistemic conditions such that we suspend, revise,
and override our assessment of the reliability of the algorithm, beyond the occurrence
of SIS-Errors. Again, this is primarily an epistemic concern rather than a question
about which methodologies could prevent the occurrence of SIS-Errors. Only very
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tangentially will this article discuss how the epistemic conditions put forward here
can be designed and implemented in an algorithm.

The strategy for this article is the following. First, I follow the literature in iden-
tifying sources of algorithmic errors. This is at the basis of SIS-Errors understood as
misrepresentations that warrant a revoke of our epistemic attitude towards the reliabil-
ity of the algorithm. I also discuss in detail SIS-Errors, what they are, how they occur,
and why addressing them is crucial for reliabilist epistemologies of algorithms. All
of this happens in Sections 2 and 3. I then map algorithmic errors with the reliability
indicators advanced by CR. This is a key move, as it allows me to argue that SIS-Errors
occur when a reliability indicator is inadequate, incorrect, or missing. This tripartite
distinction is explained in Section 4. I then use these results to discuss a variety of
epistemic conditions that, I submit, protect the reliability of an algorithm against the
need to revoke our epistemic attitude in the presence of SIS-Errors. This happens in
Sections 5.1 and 5.2. Finally, in Section 6, I present some further thoughts on the
epistemological implications of SIS-Errors for any epistemology of algorithms.

2 When things go wrong

Algorithms sometimes fail. They miscompute, misrepresent, and deviate from their
intended goals. Such algorithmic errors (henceforth ‘errors’) generate considerable
epistemic anxiety. Pearl succinctly captures the challenge of dealing with these errors
in the following way:

Once you unleash it on large data, deep learning has its own dynamics, it does
its own repair and its own optimization, and it gives you the right results most of
the time. But when it doesn’t, you don’t have a clue about what went wrong and
what should be fixed. In particular, you do not know if the fault is in the program,
in the method, or because things have changed in the environment. (Pearl, 2019,
15)

Following Pearl, we can typify three classes of errors in algorithms. These are,
class errors, which occur when the algorithm produces incorrect results due to mis-
calculations. This could be due to issues like rounding errors, overflow, or underflow
in numerical c:omputations.3 There are also classy errors, understood as errors that
arise when the methods or techniques implemented in the algorithm are inherently
flawed, or inappropriate for specific tasks. This includes issues with the models, met-
rics, or algorithmic techniques used (e.g., using an inappropriate sorting algorithm for
a specific task), as well as the interpretation and implementation of core concepts (e.g.,
‘criminal/non-criminal’ in the case of forensic Al discussed earlier). Finally, there are
classs errors. These errors occur when changes in the context or environment render
the algorithm and its outputs unsuitable, regardless of how well they performed in the

3 It is unclear whether Pearl attributes these errors to the algorithm itself or to the computational process
executing it. For example, a division-by-zero error may produce incorrect calculations, but its cause could
stem from poor programming practices or bit flips induced by electromagnetic interference. The nature of
these errors and the methods for addressing them differ (see, for instance, Primiero (2020); Pfleeger and
Atlee (2009)). For simplicity, I will treat them as indistinguishable.
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past. For example, a facial detection algorithm designed to identify individuals based
on the curvature of their mouth will probably fail in the case of facial occlusion, such
as when wearing masks.

It goes without much arguing that these errors do not necessarily occur indepen-
dently of one another, thus making them difficult to isolate. The crucial point is, as
suggested by Pearl, that either individually or collectively, the occurrence of these
errors compromises the reliability of the algorithm. This is an intuitive and reasonable
claim that conflicts with reliabilist commitments. Consider again forensic science,
which increasingly relies on algorithms for facial and voice detection (Ruifrok et al.,
2022). The Federal Rule of Evidence 702 (FRE 702) governs the admissibility of
expert witness testimony, such as forensic experts in U.S. federal courts. Among other
stipulations, FRE 702 mandates that the methods used by the expert “are based on a
reliable, refutable scientific basis, that it has been verified and error rates are known,
and that it is available for peer-review and publication” (Jacquet & Champod, 2022, 3).
Imagine now an algorithm for facial detection that can place suspects at a crime scene.
Suppose that this algorithm has a flawless history of accurately identifying suspects,
with a high predictive accuracy. Under this heading, it is reasonable to assume that
most forensic experts would, perhaps unknowingly, adopt a reliabilist epistemology.
They are reliabilists precisely because the algorithm has a strong history of success in
identifying the right suspect. When called to testify, these experts are confident that
their algorithm meets FRE 702 requirements to an acceptable extent. As reliabilists,
they must also accept that the algorithm might occasionally misidentify a suspect.
This happens very rarely, and insofar as it does not shift the frequency of accurate
identifications, there are no real reasons to revoke their assessment of the reliability of
the algorithm. There is, after all, an acceptable degree of limited competence in their
testimony: the algorithm is reliable to the best of their epistemic efforts and within
their field’s acceptable degree of certainty. Additionally, these experts count with an
epistemic safety net: in forensic science, different sources determine the final ruling
on a suspect—with forensic DNA being the holy grail. So, even in the presence of an
egregious error, such as misidentifying a suspect, neither the algorithm’s reliability
nor the epistemic assessment of the expert needs to be revoked.

Problems arise when algorithms gain greater influence in determining the culpabil-
ity of a suspect, particularly in cases where DNA evidence is unavailable (Carriquiry
et al., 2019; Delgado et al., 2021). In such cases, the epistemic role of algorithms is
somewhat shifted: they are no longer merely tools that assist experts in producing
and communicating knowledge but are increasingly regarded as independent sources
of knowledge themselves. We have seen this happen multiple times, as algorithms
increasingly take over decision-making processes. And while some of these deci-
sions may be harmless, egregious errors often lead to serious epistemic and moral
consequences. This poses a challenge for reliabilism, as even a small number of
errors—despite a high frequency of accurate output representations—can undermine
claims about knowledge and justification. This is, in essence, Humphreys’ critique of
any reliabilist epistemology of algorithms. As he argues: “The quantitative success
of an epistemic agent needs to be balanced with the severity of the errors that agent
makes. If the errors are serious enough, they can undermine the belief that the agent
truly knows what they are talking about” (Humphreys, 2020, 8:40). In this view, it
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is no longer the frequency of accurate output representations that matters most, but
also their quality. Humphreys encapsulates this idea succinctly by noting that statisti-
cally insignificant but serious errors can and do undermine otherwise high algorithmic
reliability (Humphreys, 2020).

Does Humphreys present a compelling challenge to reliabilist epistemologies? I
believe so, and this article is an attempt to defend reliabilism against SIS-errors. As
noted in the introduction, the arguments put forward here are primarily epistemic. That
is, they are a matter of how we maintain justification under the occurrence of SIS-
Errors. We must note, however, a growing tradition in the philosophical literature that
treats reliability as contingent upon design and implementation strategies that generate
accurate representations. When approached this way, reliability is a methodological
concern, and SIS-Errors can be resolved through various design practices. In a recent
survey, Grote, Genin, and Sullivan (Grote et al., 2024) largely framed the ongoing
debate on the reliability of algorithms in this way, fostering “an accessible introduc-
tion to key concepts in statistics and machine learning—as far as they are concerned
with reliability” (Grote et al., 2024, 2). This framing allows the authors to unify what
they claim to be technical issues of statistical learning theory with methodological con-
cerns about the robustness of models and what they call ‘socio-technical accounts of
reliability’—the latter two being framed as distinct philosophical views on reliability.
Buijsman has also put forward a similar argument: “[w]hen we have a belief-forming
process that produces a certain output, how reliable is the process that produced it?
That is the central question I am posing here, and where I've argued that the answer
requires a method of determining the range of evaluation over which this reliability
is determined” (Buijsman, 2024, 2655). A final example of this methodological ori-
entation is Duede, who evaluates three distinct conceptions of reliability. Upon close
inspection, one can discern a methodological emphasis underlying Duede’s treatment
of reliability. For instance, so-called ‘instrumental reliability’ depends on how abstract
processes such as algorithms are designed and implemented (Duede, 2022, 491). In
this article, however, I do not aim to examine the methodology for designing and
implementing reliable algorithms. If there is any methodological foundation in what
follows, it is the one inherited through the adoption of computational reliabilism (CR)
as the primary epistemological framework.

3 Misrepresentations and SIS-Errors

Let me now discuss what SIS-Errors are, how they occur, and why they constitute a
central problem for any reliabilist epistemology. I begin by using Humphrey’s def-
inition of accurate representations. Let us note that the use of ‘instruments’ in the
definition below entails algorithms in the sense given above.

Let F be a fact. Then an instrument / provides a basis for knowledge that F if
and only if / contains an output representation R, R is an accurate representation
of F or of a fact that entails F, and a reliable process forms the representation
R, where a reliable representation-producing process is one that produces a high
proportion of accurate output representations (Humphreys, 2020, 13:50)

@ Springer



European Journal for Philosophy of Science (2025) 15:37 Page7of 20 37

Following this definition, a misrepresentation occurs when the output of an algo-
rithm (R) does not match, to the degree permissible by the relevant community, an
accurate representation of a fact (F) or a fact that entails F.* Now, an output R does
not match an accurate representation of F when a reliable representation-producing
process has failed to form said representation. In Humphreys’ terms, this happens
when an algorithmic error of some kind has occurred. To give a well-known example
of this, consider the case of a misclassification of the husky, the wolf, and the snow
(Ribeiro et al., 2016). The goal of the algorithm is to accurately classify whether a
given picture is of a husky or of a wolf. As it is known, the algorithm creates and relies
on irrelevant features for the classification (e.g., snow), instead of inherent features
of the animals (e.g., fur, shape, eyes, etc.). As a result, it creates spurious correlations
that lead to misrepresent a husky as a wolf with a snow background.

Now, according to Humphreys, if the misrepresentation is radical and egregious
and the number of observed outputs is not large enough to shift the reliability of the
algorithm, then that output misrepresentation is a statistically insignificant but serious
error (SIS-Error) (Humphreys, 2020, 12:00).5 When an SIS-Error occurs, and always,
according to Humphreys, the algorithm can no longer be considered the provider of a
basis for knowledge that F.

This reconstruction shows that there is a correspondence between algorithmic
output misrepresentations (R), classes of errors in term of Pearl’s categories, and
representation-producing processes relevant for the formation of beliefs that R accu-
rately represents F—or a fact that entails . And all this seems right. To illustrate this
three-fold correspondence, consider the Ariane 5 Flight 501 Failure. Approximately
37 seconds after launch, the vehicle’s structural integrity failed due to extreme stresses
caused by the deviation in its intended trajectory (i.e., R misrepresents F), triggering its
own self-destructive mechanism to prevent harm to people or property on the ground.
The investigation later showed that the Inertial Reference System (IRS) attempted to
convert a 64-bit floating point number to a 16-bit signed integer. The floating-point
value, representing the rocket’s horizontal velocity relative to the launch pad, exceeded
the maximum value that the 16-bit integer could store. This caused an arithmetic over-
flow (i.e., class; of Pearl’s categories). The error arose from the reuse of modules from
the Ariane 4 rocket without adequately verifying its compatibility with the Ariane 5’s
different flight dynamics (Agency, 1996). Formal verification of the algorithmic mod-
ule would have detected the semantic mispresentation (i.e., formal verification is the
representation-producing procedure (Fetzer, 1998)).

Why do SIS-Errors, such as the Ariane 5 case, constitute a central problem for
any reliabilist epistemology? Because the IRS system worked properly in a number
of past occasions—all those related to Ariane 4 as well as all testing on Ariane 5.

4 Let me quickly note that the notion of “accuracy” should not be merely taken as gauging how well an
algorithm prediction correspond to actual outcomes, but also in terms of the correctness, robustness, and
overall reliability of the procedures employed that lead to that output. This is a common misconception
about reliabilism.

3 Humphreys provides no indications on how to delimit a non-SIS-Error from an actual SIS-Error. For
simplicity, I assume that the relevant community can recognize these instances, and the primary purpose
of this recognition is to evaluate whether they should revoke their assessment of an otherwise reliable
algorithm. No moral, political, or other characteristics necessarily define or derive from these errors.
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As the frequency-based reliabilist that Humphrey is, the system operating Ariane 5
was reliable. Statistically speaking, its disintegration during takeoff is an insignificant
error. Epistemically speaking, we can no longer consider the algorithm controlling the
onboard IRS to be reliable.

4 SIS-Errors and computational reliabilism

Computational reliabilism (CR) follows process reliabilism in that an algorithm’s out-
put is justified if it is produced by a reliable process® (Durdn & Formanek, 2018;
Durén, forthcoming). The focus is then on the consistency of producing, most of the
time, accurate output representations.” As a reliabilist epistemology, CR contrasts with
transparency-based approaches in that it does not justify belief in an algorithm’s output
by appeal to internal reasons or supporting evidence. It also departs from process relia-
bilism in the ways by which beliefs are formed. To CR, itis central to identify practices,
metrics, methodologies, and research cultures that convey our best epistemic efforts to
justify the belief that an algorithm’s outputs represent, to the degree permissible by the
relevant community, a fact in the world—or a fact entailed by it. These serve as indica-
tors of good methodological, scientific, and social practices and are divided into three
types of reliability indicators (RI): typei-RI: Technical performance of algorithms,
which “focuses on the specification, coding, execution, maintenance, and other tech-
nical features that contribute to the performance of the algorithm (e.g., high accuracy
and low rate of errors, but also tolerance to domain change, repurposability, reusability,
modularity, etc.)” (Durdn, forthcoming); typez-RI: Computer-based scientific practice,
which “focuses on securing algorithmic-based scientific research [resulting from] the
operationalization and implementation of scientific concepts, causal structures, models
and theories, laws and law-like principles, taxonomies, but also scientific metaphors
and intuitions, values (epistemic and otherwise), idealizations, abstractions, and rep-
resentations” (Durdn, forthcoming); and types-RI: Social construction of reliability,
which “focuses on broader goals related to accepting—or rejecting—algorithms and
their outputs by diverse communities (e.g., scientific, academic, the general public),
the realization of intended values and goals, and the overall assessment of the algo-
rithm’s scientific merits [through] debates, experimentation and testing, replicability
of results, and other forms of intellectual exchange.” (Durén, forthcoming).

Each type-RI subsumes diverse token-RI, the latter understood as specific instances
of type-RI. Examples of fokeni-RI include verification and validation metrics, robust-
ness analysis, and other practices that enhance precision and accuracy of the algorithm
and its outputs. Examples of token;-RI include the various ways in which scientific
concepts and theories are interpreted and implemented in the algorithm. Examples

6 1t must be noted that CR holds that a process is broader than the algorithm gua logico-mathematical
entity. It also encompasses a wider socio-techno-scientific context in which the algorithm is designed, used,
and maintained.

7 Strictly speaking, computational reliabilism refers to the algorithm’s output as ‘scientifically valid out-
puts’, which includes but is not limited to accurate output representations. The reason is that CR constitutes
a valid epistemology beyond the representationalist view.
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of token3-RI range from clinical trials to Participatory Technology Assessments.®
Let us finally note that CR acknowledges that errors—such as rounding mistakes,
division-by-zero, incomplete databases, or unskilled programming—can and do occur,
revealing the inherent fragility of reliabilist epistemologies discussed in this article.

Now, the value of analyzing SIS-Errors with CR is that we can draw a seamless
correspondence between misrepresentations, Pearl’s classes of errors, and reliability
indicators. Briefly, program errors fall under class; errors and are associated with
type1-RI, since they pertain to the performance of the algorithm. Misrepresentations
due to miscomputations or other computer-based failures are of this kind. Implement-
ing a flawed method, a class, error, is an instance of type,-RI, as it involves scientific
practices and domain knowledge embedded in the algorithm. Thus, misrepresentations
stemming from wrongly implementing a scientific concept, for instance, are of this
kind. Finally, changes in the environment, a classs error, are either instances of type-
RI—such as changes in methods for data analysis—or of type3-RI—such as shifts
in scientific expectations regarding differences between training and testing contexts.
Misrepresentations arising from changes in the domain of applicability, for example,
fall into this category.

What advantages does this mapping offer? Two are of particular interest for this arti-
cle. First, it connects algorithmic misrepresentations to types of reliability indicators.
If SIS-Errors warrant revoking our initial assessment of an algorithm’s reliability, then
our best strategy is to trace the relationship between the error that led to the egregious
misrepresentation and the RI that failed to confer reliability. As I will frame it here,
SIS-Errors arise when one or more reliability indicators are inadequate, incorrect, or
missing.” T will elaborate more on this point in the next section. Second, and at the
risk of some repetition, SIS-Errors should be understood as an epistemological matter
rather than a methodological one. The objective is to safeguard algorithmic reliabil-
ity by drawing on epistemic conditions that enable us to suspend, revise, or override
our beliefs in response to changing circumstances, new evidence, and emerging con-
straints. The focus, therefore, is not on prescribing optimal design or coding practices
to prevent SIS-Errors—the standard approach in the literature—but on establishing
conditions that significantly reduce the likelihood of having to revoke our assessment
of the reliability of the algorithm when SIS-Errors occur.

8 Participatory Technology Assessments engage diverse stakeholders—such as citizens, policymakers, sci-
entists, industry representatives, and others—in the evaluation and decision-making processes surrounding
the development, deployment, and regulation of new technologies.

9 An anonymous reviewer correctly pointed out that non-SIS-Errors may also result from inadequate,
incorrect, or missing reliability indicators (see next section). This suggests that non-SIS-Errors, like SIS-
Errors, signal a failure to meet the criteria for reliability, which ultimately implies the unreliability of the
algorithm in question. In other words, any form of error implies some degree of unreliability of the algorithm.
While this is a point that warrants careful debate, I agree in principle with the reviewer’s concern. Intuitively,
it seems uncontroversial to hold that the reliability of an algorithm is, so to speak, readjusted in light of the
number of accurate representations and misrepresentations it produces. Let us recall that CR allows for a
level of tolerance toward non-SIS-Errors, provided that their frequency does not shift their reliability. Under
CR, then, it is legitimate to hold that non-SIS-Errors are either absorbed by the algorithm’s prior reliability
or, following the logic developed in the case of SIS-Errors, addressed through one or more of the epistemic
conditions proposed here.
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4.1 Inadequate, incorrect, and missing reliability indicators

Let me now further motivate the value of the mapping introduced earlier. To this
end, consider an otherwise reliable facial detection algorithm. Its reliability derives,
inter alia, from the implementation of industry standards for bio-indicators in facial
recognition, the maintenance of a well-curated database (e.g., biometric passport pho-
tos), and the exclusion of cases involving underexposed or overexposed photographs.
The algorithm remains reliable as long as the conditions of its use remain consistent
with its design specifications. Now, suppose we introduce facial occlusions, such as
surgical masks during the COVID-19 pandemic outbreak. While the algorithm may
continue to function adequately in many cases, there is a significant likelihood that
it will misrepresent some individuals (Ekenel & Stiefelhagen, 2009). After all, facial
occlusion falls outside its original design parameters. Suppose further that some of
these misrepresentations qualify as SIS-Errors. As Humphreys argues, under such
conditions, we can no longer maintain that the algorithm forms beliefs appropriately,
regardless of its prior accuracy in facial detection. The changing conditions warrant
an epistemic revocation of the algorithm’s reliability. Under these conditions, one or
more Rl is inadequate for belief formation—inadequate in the sense that it confers
reliability only under specific, circumscribed circumstances.

If these changing conditions persist over time or become permanent, the algorithm
can no longer be considered reliable. In such cases, we must seriously entertain the
possibility that incorrect RI are being used to confer reliability to the algorithm. To
illustrate what I mean by an incorrect RI, consider a somewhat extreme example of
facial detection: the use of a convolutional neural network (CNN) to identify sus-
pected criminals based on facial traits (Wu & Zhang, 2016, 2017). This CNN was
claimed to be highly reliable, as it demonstrated a predictive accuracy of approxi-
mately 95%, even after undergoing retraining on every layer and modifications to its
architecture (Wu & Zhang, 2017, 3). The epistemic confidence in the algorithm was
set so high that the authors claimed to have discovered the “law of normality for faces
of non-criminals” (Wu & Zhang, 2016, 8). However, the accuracy of the algorithm was
almost exclusively derived from matching facial traits between the training and testing
databases. No additional factors contributed to it. No model or concept of criminality
was implemented in the algorithm, nor did scientific debates follow these findings.
Lacking any connection to a body of scientific knowledge or practices, it is difficult to
sustain claims about the algorithm’s reliability. Yet, its predictive accuracy remained
surprisingly high. Under this heading, it should not be difficult to see that algorithms
of this kind are highly prone to SIS-Errors. The reason is that their reliability is con-
ferred by an incorrect reliability indicator—namely, type;-RI— which only supports
high accuracy and a low margin of error, rather than type;-RI, which involves the
interpretation and implementation of concepts, models, theories that track the sources
of criminality (e.g., social, economic, political, psychological).

Finally, SIS-Errors might also occur when key RI are missing. This was the case of
NarxCare (Bamboo Health, 2023), where a patient (Kathryn) was incorrectly flagged
as adrug user and shopper (Pozzi, 2023). The SIS-Error occurred because, in assessing
the reliability of the algorithm, no consideration was given to the fact that prescription
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drugs for the patient’s pets were also listed under the owner’s name. To restate the
point counterfactually, and thus clarify the sense in which a reliability indicator was
missing: had the algorithm’s reliability been conferred by an indicator sensitive to
the nuances of drug assignment across individuals,'” no such SIS-Error would have
arisen.

5 Epistemic scaffolding

With these ideas in mind, let me now demonstrate how CR, as areliabilist epistemology,
can maintain its status as an adequate epistemology of algorithms even in the presence
of SIS-Errors. To this end, it is useful to distinguish between random SIS-Errors and
systematic SIS-Errors. While this distinction does not alter anything discussed thus
far, it allows me to exclude arbitrary cases of SIS-Errors and better safeguard CR. The
real challenge, as we shall see, arises when the algorithm produces systematic errors.

Before I start, let me point out the obvious: the epistemic conditions outlined here are
neither exclusive nor exhaustive, as additional epistemic constraints may be identified,
and those proposed here may also apply to different cases. It is the urgency of this
issue that requires an approach of comparable complexity—and inevitable flaws—as
the one presented here.

5.1 SIS-Errors and random errors

Random errors are arbitrary, unpredictable, unreproducible, and typically rare faulty
executions of the algorithm, its instantiations (input variables, parameters, data
choices, procedures, metaparameters, etc.), or its data processing. These errors are
neither systematic nor consistent; they occur sporadically and are often difficult to
reproduce or find its source. Random error could result from selecting a row of data
with missing entries, encountering race conditions in a multi-threaded algorithm, or
experiencing floating-point miscalculations that yield different outputs across runs.

Random SIS-Errors are arbitrary, egregious misrepresentations generated by an
otherwise reliable algorithm. They simply occur. Yet whether such errors undermine
the reliability of the algorithm remains an open epistemic question. Does the mere
randomness of an error warrant revoking our assessment of the system’s reliability?
To address this, I introduce the notion of epistemic bad luck, a novel member of the
epistemic luck family. The central idea is that we have been unfortunate in encoun-
tering an SIS-Error when, in fact, there is nothing wrong with the reliability of the
algorithm. Thus, we can maintain the reliability assessment of the algorithm if a given
instance of SIS-Error can be reasonably identified as the product of a random, anoma-
lous execution—ultimately, an instance of epistemic misfortune, rather than epistemic
failure.

10 por instance, design provenance (i.e., information about how, why, and for whom the algorithm was
constructed), epistemic stratification (e.g., monitoring whether the algorithm preserves relevant epistemic
distinctions, such as different individuals taking different drugs), or domain-specific validity checks.
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As we know, cases of epistemic luck occur when one’s beliefs are true not because
they were formed through a reliable or justified process, but rather due to mere chance
(Zagzebski, 1994; Pritchard, 2005). Gettier cases are examples of this: they involve
belief-forming processes that are ultimately unreliable, resulting in beliefs that are
true by sheer luck. A simple example of epistemic luck is a student who guesses the
correct answer to a math problem without understanding its underlying principles or
operations.

To frame epistemic luck in the context of algorithms, it corresponds to an output
that accurately represents F despite being generated by a randomly faulty computation
(e.g., aone-time integer overflow). Understood this way, cases of epistemic luck are not
problematic for assessing the reliability of an algorithm, since they still yield outputs
that represent. Whether or not the output was produced by a faulty process is, from
the standpoint of reliabilism, largely irrelevant. An output that represents a fact in the
world accurately—even if by sheer luck—is, by definition, not an error, and therefore
does not qualify as an SIS-Error.

In contrast to traditional epistemic luck, which concerns accidentally true beliefs,
epistemic bad luck refers to cases where false beliefs are formed by processes that tem-
porarily lack justificatory force. To reinterpret the earlier example in this new context:
the student guesses the wrong answer on a math exam, despite generally understand-
ing the underlying principles and operations. For that particular instance, however,
their guess fails to track the truth. This is not a case of knowledge gone wrong—it is
simply a temporary justificatory disruption. Understandably, epistemic bad luck holds
little interest for traditional analytic epistemology, in which no claims to knowledge
arise from unjustified false beliefs. But it becomes a central issue in computational
reliabilism, where the reliability of an algorithm must account for randomly occurring
errors that generate (temporary) misrepresentations.

Epistemic bad luck, then, involves a misrepresentation generated by a randomly
faulty algorithm. If the misrepresentation is particularly egregious, it qualifies as an
SIS-Error and thus warrants revoking our assessment of the algorithm’s reliability.
However, the reliability of the algorithm crucially depends on whether such an error
is the result of a random failure or a systematic flaw—for it could very well be a case
of epistemic bad luck.

To address such cases, I propose an anti-epistemic bad luck conditioning to sup-
plement computational reliabilism and maintain the reliability of the algorithm. This
condition holds that a belief formed on the basis of an algorithmic output is epis-
temically warranted only if the probability that an SIS-Error recurs independently is
negligible relative to the prior probability that the output is correct due to non-random,
calculation-preserving processes. By discounting reliability assessments grounded in
coincidental error agreement, this condition helps filter out outputs that misrepre-
sent due to bad luck rather than genuine epistemic reliability. Consider the following
formulation:

Anti-epistemic bad luck condition: Let an algorithm be executed at least
twice under similar conditions (i.e., similar input variables, parameters, data
configurations, metaparameters, etc.). If the algorithm produces identical SIS-
Errors across independent executions, then the probability that these outputs are
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instances of epistemic bad luck is negligibly small. Therefore, such recurrence
provides strong evidence that the error is systematic rather than random.!!

The anti-epistemic bad luck clause intends to shift the focus from SIS-Errors to
evaluating whether an algorithm’s output has been legitimately generated within a
reliabilist framework. If the output qualifies as an SIS-Error in two or more identical
yet independent executions of the algorithm, we can reasonably conjecture that the
same egregious misrepresentation has been reproduced. Such aresult strongly suggests
that the likelihood of encountering cases of epistemic bad luck twice under identical
conditions is no longer astronomically small but instead points to a more systematic
issue. Consequently, the anti-epistemic bad luck clause indicates that the SIS-Error in
question may not be a mere anomaly but rather a symptom of a faulty algorithm, thus
necessitating a distinct approach to diagnosis and resolution.

5.2 SIS-Errors and systematic errors

Systematic errors are non-arbitrary and potentially reproducible faulty executions of
the algorithm, its instantiations (input variables, parameters, data choices, procedures,
metaparameters, etc.), or its data processing. These errors are not random and, with
the right tools, they can be identified and quantified. In this context, the occurrence
of an SIS-Error resulting from a systematic failure could stem from a number of
sources: invalid assumptions (e.g., misconfigured parameters), flawed logic, or biases
inherent in the algorithm or data, just to mention a few. For instance, if an algorithm
utilizes a programming language that truncates numbers larger than 256 bits, the total
number of possible representations is, therefore, 22°°. Any representation beyond this
value will be truncated or rounded-off. Occasionally, these truncation and rounding-
off errors might be harmless. However, if high accuracy is required, these errors will
consistently affect the outputs. Another example stems from assumptions made during
an algorithm’s specification and coding. If the algorithm misses that sex distinction is
relevant for medical diagnosis, for instance, female-specific cancers and autoimmune
diseases will not be represented properly.

Systematic errors are pervasive in algorithmic applications, and a great deal of
effort is geared towards minimizing them. We briefly saw in Section 2 that this is the
preferred tactic of both advocates and critics of reliabilism. Recall also from Pearl the
range of errors that can occur: from the computation of the algorithm (class; errors)
to poor programming skills (class> errors) to changes in the context of applicability of
the algorithm (class3 errors). Individually or jointly, systematic errors of these kinds
can lead to SIS-Errors in Humphrey’s sense. Indeed, as I have presented it thus far,

I An anonymous reviewer correctly observes that it is not always possible—or rational—to rerun an
algorithm under similar conditions. The example is the Ariane 5 failure on page 7, where the reliability of
the system was compromised by a single instance of misrepresentation. As the reviewer notes: “Even if this
were to be considered an instance of epistemic bad luck, it seems inappropriate to dismiss the case solely on
the basis that the error was random.” I take it that such situations are better understood as cases of incorrect
reliability indicators and should therefore invoke the anti-defeat clause, which requires the identification
of a defeater RI that accounts for an Inertial Reference System capable of handling 64-bit floating-point
numbers. I thank the reviewer for this insightful observation.
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when an egregious misrepresentation of an otherwise reliable algorithm occurs, we
have an SIS-Error. According to Humphreys, the occurrence of SIS-Errors warrants
revoking our assessment: where we once had a reliable algorithm, we now no longer
have justification. How can a reliabilist epistemology of algorithms, such as CR, deal
with systematic SIS-Errors? Earlier, I argued that our epistemic attitude regarding
SIS-Errors is contingent on having inadequate, incorrect, or missing reliability indi-
cators. In what follows, I advance epistemic conditions vis-a-vis these failing reliability
indicators.

As presented earlier, an inadequate reliability indicator is one that fails to accu-
rately represent a fact in the world under changing conditions. The example used
was a reliable facial detection algorithm that implements standard bio-facial markers.
However, when used in contexts where facial occlusion occurs, the algorithm might
misidentify individuals.

A counteracting measure to avoid shifts in the reliability of an algorithm is to set
up a conditionally reliable RI clause that tracks its reliability across varying contexts
(Goldman, 1986; Alston, 1995). In this way, it is possible to protect CR against failures
due to changing conditions.!? To present this idea more formally,

Conditionally reliable token-RI is one that confers reliability [to the new con-
text] if the methods, standards, and breath of application is based on are also
reliable [for the new context]

Conditional reliability hinges on the dependability of a token-RI within a specific
context of operation of the algorithm. It tracks representation by assessing how likely
it is that the token-RI maintains reliability across contexts. Suppose the algorithm
implements method M, a biometric procedure that extracts facial features to create a
unique facial signature. This process includes measuring distances between key facial
landmarks, such as the eyes, nose, mouth, and jawline. Say further that M is based
on the Viola-Jones algorithm for object detection, a widely accepted approach in the
relevant communities (Viola & Jones, 2001). Thus, the token;-RI = {the detection of
faces occurs using method M, and no facial occlusion is permissible} is conditionally
reliable with respect to the metrics, standards, and breadth of application recognized
by the relevant community.

Now, suppose the algorithm is employed in scenarios involving facial occlusion.
In such cases, misrepresentations are to be expected. If the algorithm is applied in
sensitive contexts—such as border security—this increases the likelihood of SIS-
Errors. Conditional reliability, then, permits us to uphold our beliefs insofar as the
initial conditions that conferred reliability to the algorithm still apply in the new
context. That is, method M that tracks output representation in the absence of facial
occlusion must remain operational. When these conditions are not met—such as in
changing circumstances where individuals wear face masks while attempting to cross
border security—we are advised to revoke our assessment toward the algorithm’s
reliability.

12 Changing circumstances cover a broad range of cases. The example above covers Pearl’s class3 errors.
Additionally, we can consider class; errors—for instance, when a concept implemented in the algorithm is
later reinterpreted, potentially expanding its scope. In such cases, the initial interpretation becomes invalid.
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What conditional reliability allows us to do is to suspend, rather than revoke, our
assessment until the initial conditions under which the algorithm is reliable are reestab-
lished, or until the algorithm is modified in a way that restores justification. In other
words, we do not simply discard a reliable algorithm because it performs inadequately
under altered conditions.

Let us note that conditional reliability aligns well with our intuitions about what it
means to be reliable: our visual perception of a barn might be reliable on a clear day, but
not necessarily so on a foggy one. We are, indeed, entitled to suspend our assessment
until the initial conditions for the reliability of our visual perception are restored—that
is, the day clears. Interestingly, CR also acknowledges that an algorithm’s reliability
is context-dependent (Durén, forthcoming).

As suggested, conditional reliability offers a way forward for the methodologist, too.
When the RI adapts to new conditions, the reliability of the algorithm can, so to speak,
be resumed. This occurs when an extended version, say tokeny-RI* = {the detection
of faces occurs through method N, which covers all cases addressed by method M
plus facial occlusion}, is implemented. Token,-RI* is resistant to contexts of facial
occlusion, and is therefore a net positive contributor to the reliability of the algorithm.

An inadequate RI typically emerges within a temporary and limited context. But as
Humphreys rightly observed, algorithms produce SIS-errors irrespective of contextual
variation, and these errors tend to persist over extended periods. Pearl typified these
errors as those where a flawed method is implemented (classy error); under CR,
these are interpreted as instances of an incorrect token-RI. To addressed such cases, I
propose an anti-defeat clause, where the justificational status of a belief is preserved
as long as the RI remains resilient against new, potentially undermining alternatives.
This translates into testing whether CR is conferring reliability through an incorrect
reliability indicator, and if that were the case, enforcing an epistemic obligation to
accept the alternative (i.e., the defeater). More formally,

Anti-defeat clause: S is epistemically warranted in maintaining token-RI as a
suitable reliability indicator unless there is a defeater token-RI* epistemically
available to S such that, if S were to use token-RI*, § would no longer hold the
belief that the output represents a fact F.

In epistemology, an anti-defeat clause plays various roles, such as preserving coher-
ence within a justified belief system and guiding the integration of new knowledge
(e.g., Lehrer and Paxson, 1969; Dretske, 1981; Sosa, 2007). In the context of computa-
tional reliabilism, I use it to preserve the epistemic status of token-RIs against potential
defeaters. This clause ensures that a belief based on an algorithmic output remains
epistemically warranted as long as the relevant token-RI remains resilient in the face
of conflicting evidence, reasons, or challenges. If a defeater token-RI* becomes epis-
temically available to S, and if S’s evaluation shows that token-RI* better accounts for
reliability than the original token-RI, then S is no longer epistemically warranted in
maintaining the belief. In such cases, S is epistemically obliged to revise—and possi-
bly accept—the defeater reliability indicator. In this sense, the anti-defeat clause thus
functions to regulate when beliefs formed on the basis of computational reliabilism
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retain their epistemic standing, conditional on the undefeated status of their underlying
reliability indicators.

To grasp the anti-defeat clause, consider an agent S who relies on a tokeny-RI =
{ The metrics utilized for identifying a photo as {criminal, non-criminal} are: the dis-
tance between the eyes is «, the curvature of the mouth is 8, and the curvature of the
nose is §} as a basis for conferring reliability on a facial-detection algorithm (e.g.,
Wu and Zhang, 2016; Wu and Zhang, 2017). Suppose further that the algorithm mis-
classifies the fifth photo of a suspect as belonging to a criminal (i.e., SIS-Error). The
anti-defeat clause stipulates that S is epistemically warranted in maintaining token,-RI
unless an epistemically available defeater—token,-RI*—undermines that warrant by
offering a more robust reliability indicator. For instance, such a defeater might take
the form: tokeny-RI* = {The metrics utilized for identifying a photo as {criminal,
non-criminal } must exclude facial traits and include metrics that align with social,
psychological, economic, or other theories of criminality } Akers and Sellers 2012. As
per the hypothesis, tokeny-RI* provides a more epistemically robust basis for main-
taining the reliability of the algorithm by aligning better with independently justified
theories of criminal behavior and avoiding biases inherent in facial trait analysis. S
is then epistemically obligated to revise their epistemic attitude towards maintaining
token,-RI and, if token;-RI is defeated, adopt tokeny-RI* as the new reliability indi-
cator for the algorithm. The anti-defeat clause thus ensures, to the extent possible, that
epistemic warrant for beliefs formed on the basis of algorithmic outputs is preserved,
conditional on the undefeated status of the token-RIs used to justify them.

It is crucial to recognize that replacing token-RI with the defeater tokeny-RI* is
likely to have cascading effects on the overall reliability assessment of the algorithm.
That is, accepting the defeater may influence previously justified beliefs, potentially
shifting our assessment of the algorithm’s reliability again. For example, adopting
the defeater token,-RI* to avoid revoking reliability in response to SIS-Error; might
inadvertently give rise to a new SIS-Error,. While such a scenario is plausible, the
anti-defeat clause does not require that the adoption of token,-RI* extend beyond
addressing the original SIS-Error;. Nor does it mandate revision of past beliefs justified
under the original reliability indicator. Potential issues arising from cascading defeaters
can be addressed by introducing a further defeater-defeater clause, which stipulates
that token-RI* must not itself be undermined by a further reliability indicator (say,
tokeny-RI**). This latter condition also helps prevent an infinite regress of defeaters
and stabilizes the structure of reliability assessments.

The superstructure of CR consists of three types-RI that fairly cover the performance
of the algorithm, the implementation of scientific methods and concepts, and the social
debates that follow the generation of outputs. As discussed thus far, inadequate and
incorrect reliability indicators are largely addressed by type;-RI and type,-RI. This
means that SIS-errors are treated as technical errors: errors in performance or errors
in implementation, as typified by Pearl’s class; and class, errors, respectively.

However, it is conceivable that SIS-Errors also occur when there are missing RI
altogether. To illustrate what I mean by this, recall the case of NarxCare (Bamboo
Health, 2023), where Kathryn, the patient, was wrongly flagged as a drug user and
shopper (Pozzi, 2023). The reason was that the algorithm did not cover cases where
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the pet’s drug prescriptions were under the owner’s name. Surely, it was reliable for
all other cases, but not for Kathryn. This is the reason why I treat such situations as
cases of missing reliability indicators. To be clear, it was the absence of an RI that
enabled the occurrence of an SIS-Error, not the presence of an inadequate or incorrect
one.

Missing reliability indicators are difficult to address from a technical perspec-
tive, mainly because they entail some form of epistemic ignorance. This is why
the social construction of reliabilism, as advanced by types-RlI, is crucial. As I have
argued elsewhere, this indicator “focuses on broader goals related to accepting—or
rejecting—algorithms and their outputs by diverse communities (e.g., scientific, aca-
demic, the general public), the realization of intended values and goals, and the overall
assessment of the algorithm’s scientific merits. This occurs through debate, experi-
menting and testing, replicability of results, and other forms of intellectual exchange”
(Durén, forthcoming). The suggestion on how to deal with cases of missing RI, then,
is to ‘supercharge’ this indicator with the epistemic responsibility of detecting and
dealing with SIS-Errors at a social level. A somewhat formal description would be:

Supercharging types-RI: Maintaining algorithmic reliability depends on sub-
jecting their outputs to debate and other forms of scientific engagement. In this
sense, the social construction of belief plays a crucial role in determining relia-
bility and can, at times, take precedence over other indicators

At its core, supercharging types-RI functions as an ‘epistemic precautionary prin-
ciple, where the relevant community evaluates the merits of an algorithm’s output
and may override any prior epistemic stance on its reliability. In the case of NarxCare,
the SIS-Error also stemmed from physicians failing to cross-check a patient’s med-
ical history, and possibly debate on the algorithm scientific merits.!> Supercharging
types-RI enables the retention of the reliability of NarxCare when social and scientific
debates challenge SIS-Errors—again, by cross-checking Kathryn’s medical history,
for instance. In other words, revoking our epistemic assessment of NarxCare can be
overridden if the relevant community confirms the algorithm’s reliability.

While we may have identified a viable approach to addressing SIS-Errors arising
from missing RI, we inevitably inherit the complexities inherent in any social and sci-
entific debate—ranging from conflicts to partial solutions. For this reason, enhancing
types-RI represents a partial return to a human-centric epistemology. This approach
remains consistent with Humphreys’ “hybrid scenario,” which envisions humans and
machines interacting in a way that challenges reliabilist epistemologies (Humphreys,
2009, 2021).

13 Indeed, according to Szalavitz (2020), this was the primary reason for the algorithm’s failure. Of course,
there is a legitimate concern that cross-checking every output would undermine the very purpose of using
algorithms. Supercharging type3-RI should not be interpreted as advocating for a similar approach, but
rather as a strategy applicable to critical cases. For instance, if Kathryn is flagged as a drug shopper, that
specific output warrants further scrutiny.
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6 Final thoughts

Humphreys argues that SIS-errors pose a fundamental challenge to any reliabilist
epistemology of algorithms. I believe this to be correct. But it also strikes me as a gen-
eral challenge to any epistemology of algorithms, not just reliabilism. In this article, I
defend computational reliabilism (CR) by outlining conditions designed to preserve an
algorithm’s reliability. Will these conditions cover every real or hypothetical instance
of SIS-errors? Probably not. Additional refinements to CR—or alternative epistemo-
logical frameworks—may be necessary. No epistemology is flawless, and much of
this article navigates uncharted territory.

Let me offer a final thought. Humphreys appears to suggest that the occurrence of
a single SIS-Error is sufficient to justify revoking our assessment of an algorithm’s
reliability. I worry that this line of thinking may do more harm than good. Algorith-
mic errors are inevitable, and some will qualify as SIS-Errors. Does Humphreys seek
complete epistemic warrants? Is he demanding absolute certainty in the algorithm’s
reliability? In principle, this does not appear to be the case. Yet there is an expecta-
tion that extends beyond what any epistemology can reasonably provide. Moreover,
in some well-defined contexts, the occurrence of one or more SIS-Errors does not
necessarily warrant revoking our assessments of the reliability of the algorithm. This
is a point I did not address in the article, but it is worth considering briefly. Take
the case of BenevolentAl, which identified baricitinib—a rheumatoid arthritis drug—
as a potential treatment for COVID-19 by inhibiting JAK-STAT signaling pathways,
thereby reducing interferon-mediated antiviral responses (Favalli et al., 2020, 1013).
This discovery proved highly effective in alleviating COVID-19 symptoms, making
it a timely breakthrough during the pandemic. However, inhibiting interferon also
increases susceptibility to other viruses, such as herpes zoster and herpes simplex,
which can be particularly harmful to immunodeficient patients (Favalli et al., 2020).
Should we revoke our epistemic assessment of BenevolentAl’s reliability in light of
these adverse effects? I do not believe so. If an algorithm’s reliability depends on both
the quality and quantity of its outputs, then an SIS-Error in one context may not qualify
as one in another. Indeed, not all SIS-Errors are qualitatively equivalent. The reliabil-
ity of BenevolentAl appears to remain intact for all cases excluding immunodeficient
patients. In fact, it remains reliable across the full range of baricitinib’s known side
effects, including for patients with cardiovascular disease, infections, or a history of
clotting disorders (Taylor et al., 2017; Agency, 2021). How do we preserve the reli-
ability of algorithms? As suggested at the end of the previous section, this requires a
return to an algorithm/human-centric epistemology—one capable of discerning com-
plex cases such as these. This article defends computational reliabilism as exactly such
an epistemology.
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