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Abstract

Globalization and subsequent increase in seaborne trade have necessitated efficient planning

and management of world’s anchorage areas. These areas serve as a temporary stay area for

commercial vessels for various reasons such as waiting for passage or port, fuel services, and

bad weather conditions. The research question we consider in this study is how to place these

vessels inside a polygon-shaped anchorage area in a dynamic fashion as they arrive and depart,

which seems to be the first of its kind in the literature. We specifically take into account the

objectives of (1) anchorage area utilization, (2) risk of vessel collisions, and (3) fuel consumption

performance. These three objectives define our objective function in a weighted sum scheme.

We present a spatio-temporal methodology for this multi-objective anchorage planning problem

where we use Monte Carlo simulations to measure the effect of any particular combination of

planning metrics (measured in real time for an incoming vessel) on the objective function (mea-

sured in steady state). We resort to the Simultaneous Perturbation Stochastic Approximation

(SPSA) algorithm for identifying the linear combination of the planning metrics that optimizes

the objective function. We present computational experiments on a major Istanbul Straight

anchorage, which is one of the busiest in the world, as well as synthetic anchorages. Our results

indicate that our methodology significantly outperforms comparable algorithms in the literature

for daily anchorage planning. For the Istanbul Straight anchorage, for instance, reduction in

risk was 42% whereas reduction in fuel costs was 45% when compared the best of the current
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state-of-the-art methods. Our methodology can be utilized within a planning expert system that

intelligently places incoming vessels inside the anchorage so as to optimize multiple strategic

goals. Given the flexibility of our approach in terms of the planning objectives, it can easily be

adapted to more general variants of multi-objective spatio-temporal planning problems where

certain objects need to be dynamically placed inside two or even-three dimensional spaces in an

intelligent manner.

Keywords— Anchorage planning; spatio-temporal planning; planning expert system; stochastic ap-

proximation; multi-objective optimization

1 Introduction

With ever-advancing globalization and burgeoning international trade, seaborne shipping has be-

come an economical and environmentally friendly means of transportation, comprising 90% of the

world’s commerce. Despite its advantages, expanding seaborne transportation brings about its

own specific set of issues. In particular, escalating sea traffic congestion is as serious a problem in

maritime traffic as it is on land. One of the efficient measures in dealing with maritime traffic is

making use of anchorages, which tremendously contribute to alleviating traffic congestion just as

parking lots do for land. Furthermore, anchorages provide vital services to vessels such as serving as

a shelter from extreme weather conditions and loading/unloading of cargo. Anchorages also facili-

tate land services including fueling, legal issues, and repair (Oz et al., 2015). Taking into account

the significance of anchorages along with the widespread popularity of maritime transportation,

effective management of the anchorage areas has come to be a pressing concern.

In light of the fact that management and planning of anchorages with different characteristics

may call for different considerations, it is appropriate to closely examine a challenging case in order

to gain some insight into the issues that may be encountered when dealing with anchorages. One of

the busiest and most congested waterways around the world is the Istanbul Strait, which requires

constant and careful attention. Among the anchorages on this sea route, the Ahırkapı Anchorage

located at the southern entrance of the Strait is a major geopolitical and critical anchorage area

that can potentially effect world shipping in case of a serious accident and a subsequent shutdown.

As an inevitable consequence of heavy maritime traffic, high ship density in anchorages has

recently raised significant safety concerns among maritime authorities. For instance, statistics indi-

cate that more than half of maritime accidents in the City of Istanbul take place inside the Ahırkapı
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anchorage alone (Aydogdu et al., 2012). Such accidents do not only cause physical damage to ves-

sels and result in human casualties, but they also make some parts of the anchorage inaccessible

for a period of time, which severely impedes maritime traffic. Furthermore, collusion of vessels

inside anchorages can result in massive damage to the environment via spilling of oil and other

environmentally dangerous cargo in extreme quantities.

An essential part of anchorage planning is determining the optimal berth location of vessels

inside the anchorage. So far, the main focus in academic research has been on maximizing utiliza-

tion, i.e., accommodating the maximum number of vessels inside the anchorage. Yet, risk, a critical

issue in maritime traffic, has not received proper attention in the literature. Specifically, packing

ships as dense as possible for the purpose of maximizing utilization can potentially increase the risk

of accidents. Thus, risk and utilization need to be considered simultaneously when determining

the optimal arrangement of vessels inside anchorage areas. Moreover, minimizing carbon emissions

as well as the vessels’ detrimental environmental impact on the anchorage ecology should also be

incorporated into the anchorage planning problem, which has the additional benefit of reducing

fuel costs.

Previous research on anchorage planning has traditionally approached the problem as a static

disk packing problem without accounting for the time dimension. Such approaches typically start

with an empty anchorage and terminate once the anchorage becomes full. Ignoring temporal aspects

of the problem, however, is clearly not realistic due to the fact that vessels arrive and depart on a

regular basis inside any given anchorage. In addition, the starting point is not an empty anchorage

area and the problem is quite not solved when the anchorage area becomes full.

Our goal in this study is to transform the hitherto static problem of anchorage planning into

a dynamic one by incorporating the time dimension. In particular, our study takes into account

both vessel arrivals and departures in real time and our treatment of the problem does not end

even if the anchorage reaches its full capacity. An appropriate approach for modeling the anchorage

planning problem needs to entail a steady-state analysis and the optimal course of action should be

defined only after observing the events in real time. Therefore, we conduct a steady-state analysis

to identify an appropriate warm-up period and a reasonable simulation duration. We resort to

Monte Carlo simulations for assessing relative performance of anchorage planning strategies where

vessel arrival and anchorage duration times are sampled from probability distributions derived from

empirical data. For an incoming vessel, we assume that its length as well as its anchor duration
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are known at the time of the arrival for planning purposes. At least for the Ahırkapı Anchorage,

anchoring is a service provided free-of-charge by the Strait authorities, so we do not consider any

cost or revenue aspects in anchorage planning in this study.

In this work, we consider a multi-objective optimization model with three objectives: maximiz-

ing area utilization, minimizing risk of accidents and, distance traveled by the vessels, which is in

lieu of environmental impact and fuel consumption. In order to measure these three objectives,

we introduce four performance metrics that are measured in steady-state of a Monte Carlo simula-

tion: (1) dynamic area utilization, (2) average distance traveled by the vessels, (3) average arrival

intersection length (AIL), and (4) average departure intersection length (DIL). The first metric

measures anchorage area utilization, the second metric measures vessels’ fuel consumption, and

the average of the last two metrics is intended to measure how safe vessels anchor over time. The

objective function in our model is a linear combination of these performance metrics in a weighted

sum scheme and it is constructed to define a minimization problem. Weight of each metric is as-

sumed to reflect the relative priorities of anchorage planning authorities for each one of the three

objectives.

Regarding potential berth locations for an incoming vessel, we consider a finite number of

possibilities among the so-called corner points. In order to evaluate relative efficiency of a corner

point for an incoming vessel, we introduce static as well as time-sensitive planning metrics that are

computed in real time. In total, we consider three static and four dynamic planning metrics, which

are described in detail in subsequent sections. For an incoming vessel, these metrics are computed

in real time for each possible corner point. The corner point for which a linear combination of

these seven planning metrics is the smallest is declared to be the berth location of this incoming

vessel. The decision variables in our anchorage planning problem are precisely the seven real-valued

coefficients corresponding to each one of these seven planning metrics.

It is critical to note the distinction between the three performance metrics (risk, utilization,

and distance traveled) and the seven planning metrics. The performance metrics are measured in

steady-state for the entire anchorage within a simulation environment whereas the planning metrics

are computed in real-time for each candidate corner point for each incoming vessel. In addition,

the weights of the performance metrics reflect relative priorities of anchorage planners whereas the

coefficients of the planning metrics are the decision variables whose values need to be optimized.

Furthermore, the performance metric weights are nonnegative real numbers whereas the planning
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metric coefficients are real numbers with no sign restrictions.

Clearly, there is a need for a methodology to determine the optimal coefficients of each planning

metric (for picking the best corner point for an incoming vessel) that minimizes the objective

function, i.e., the weighted sum of the performance metrics. On the other hand, the impact of

a particular planning metric on the objective function is not explicitly known. In addition, the

objectives of risk, utilization, and environmental impact are conflicting in nature, which is further

complicated by incorporation of the time dimension. For instance, berthing a vessel at the entrance

of the anchorage might be a good choice from an environmental impact point of view. If the vessel’s

anchorage duration is short, this would probably not pose a safety issue, but if the anchorage

duration is long, this choice might pose significant safety risks and it might be a better choice to

berth this vessel further away from the entrance. Moreover, implications of these decisions from a

utilization point of view can only be assessed at the end of the simulation. Thus, identification of

the best corner point, hence the best planning metric coefficients, is a rather challenging problem.

Since the performance metrics are measured via (noisy) Monte Carlo simulations, an explicit

mathematical form for the objective function is not available, suggesting traditional optimization

methods are not readily applicable. Therefore, we turn to stochastic optimization techniques that do

not require explicit objective function nor gradient information. The specific method we resort to is

the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm. SPSA is a stochastic

pseudo-gradient descent algorithm that approximates the gradient from noisy objective function

measurements. In SPSA, there is no need for explicit modeling information between the objective

function and the decision variables and, the noise in function measurements is formally accounted

for. Under mild conditions, SPSA converges to a locally optimal solution almost surely (Spall,

1992). Thus, it is critical to observe that SPSA is a stochastic pseudo-gradient descent algorithm

and not a heuristic method in the traditional sense. Nonetheless, solutions obtained by SPSA are

not guaranteed to be globally optimal in general.

To our knowledge, there are currently no studies in the open literature treating the anchorage

planning problem as a dynamic one with a time dimension. In particular, explicitly accounting

for vessel departures as well as new arrivals in a dynamic fashion fundamentally changes the prob-

lem structure—thereby calling for utilization of a stochastic optimization algorithm for optimal

vessel placement in real-time—and places it far away from the traditional disk packing problem.

We remark that incorporation of a time dimension and utilization of an appropriate stochastic
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optimization method for identification of the most appropriate berth locations in a multi-objective

setting are the first of their kind in the anchorage planning literature, which we believe to be major

contributions to this field. Given the flexibility of our methodology in terms of the planning objec-

tives, we believe that our work is also a major contribution to spatio-temporal planning in general

where certain objects need to be placed inside two- or even-three dimensional spaces in a dynamic

fashion in the presence of multiple planning objectives.

We now provide a brief review of our work from an expert systems’ point of view. Expert

systems are computer programs that exhibit high levels of intelligent performance as human ex-

perts. These systems solve difficult problems of the real world by utilizing inference processes on

explicitly stated knowledge (Schmalhofer, 2001). A planning expert system, on the other hand,

intelligently solves real-world planning problems via expert knowledge supported by optimization

and/ or artificial intelligence. In the case of a multi-objective spatio-temporal planning problem

such as the one considered in this work, our novel optimization-based methodology provides the

much needed machinery to tackle these challenging problems where expert knowledge alone would

not always be sufficient due to the dynamic and multi-objective nature of the problem. In regards

to our theoretical contribution to the planning expert systems literature, we show in this work (1)

how long-term performance metrics can be measured by the help of proxy planning metrics that

can be calculated in real-time and, (2) how these long-term metrics can be optimized via Monte

Carlo simulations and state-of-the-art stochastic optimization methods.

Subsequent sections of this article are as follows: Section 2 presents the problem environment

and discusses relevant previous work. Section 3 introduces the performance metrics designated to

measure the objectives of risk, utilization, and environmental impact. Sections 4, 5, and 6 respec-

tively describe the planning metrics, the SPSA algorithm, and the simulation system developed for

benchmarking our strategy. Section 7 presents computational results and comparisons against the

current state-of-the-art approaches. Section 8 presents a summary and our conclusions.

2 Problem Environment and Previous Work

Anchorages operate year around with vessels arriving and departing around the clock. From a

modeling stand point, they can be considered as polygon-shaped sea spaces next to land. There

are open sea edges in anchorages from which vessels enter, called the entry side of the anchorage.

As mandated by Istanbul Straight authorities, for instance, while entering and leaving anchorages,
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vessels are obligated to cross the entry side from the nearest point to their berth locations per-

pendicularly, and they are just allowed to move around inside the anchorage only for mandatory

reasons such as avoiding collisions with other vessels.

Despite the fact that a vessel’s anchor is dropped at a particular location, the precise position

of the vessel during its stay is dictated by natural conditions such as winds, waves, and currents.

Based on the anchor position, a safe anchor circle can be considered as the zone the vessel shall

reside, which is demonstrated in Figure 1. Excluding extreme environmental conditions resulting in

anchor displacement, the vessel is guaranteed to be inside the associated anchor circle throughout

its stay.

Figure 1: Illustration of anchor circle associated with an anchored vessel.

The size of the safe anchor circle depends on the length of the vessel and its anchor chain as

well as the sea depth at the anchor position. Danton (1996) suggests an appropriate length for the

anchor chain is 25
√
Z where Z is the sea depth. Per the Pythagorean theorem, the anchor circle

radius can be calculated as below where ` is the vessel length:

r = `+

√
(25
√
Z)2 − Z2. (1)

A formal definition of the dynamic anchorage planning problem is given in Section 4.3 subsequent

to definitions of the performance metrics and corner points.

Anchor circles of different vessels should not overlap due to safety reasons. Therefore, previous

research on anchorage planning has traditionally approached the problem as variations of the disk

packing problem. Of particular interest is the intractable circular open dimension problem (CODP)

wherein the goal is to minimize the area of a rectangular region that contains a given number of

disks with known diameters (Akeb and Hifi, 2008). It appears that the first study of its kind on

practical anchorage planning and management was conducted by Huang et al. (2011). In this study,
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the authors introduced two different algorithms for anchorage planning based on disk packing and

they proposed an anchorage simulation tool in order to assess empirical performance their anchorage

planning algorithms. This simulation tool was later used in a real-world vessel traffic simulation

system (Huang et al., 2013).

We now discuss previous studies in the maritime transportation literature that pertains to our

work. A river terminal system for bulk cargo operations was considered by Bugaric and Petrovic

(2007) wherein the anchorage region was modeled as a first-in first-out queue with a fixed capacity.

Fan and Cao (2000) modeled sea space as a directional network and presented capacity models

for berthing and anchorage areas as well as fairways and their intersections. The authors also

developed a corresponding software system that has been deployed in Singapore. A simulation-

based approach was presented by Shyshou et al. (2010) where, in the presence of weather and

equipment-related constraints, the goal was to determine the optimal number of anchor handling

tug vessels needed to relocate an oil rig. The problem of anchorage capacity planning in non-

uniform depth anchorages was investigated by Malekipirbazari et al. (2015) whereas the problem of

network capacity estimation of vessel traffic for port planning was addressed by Olba et al. (2017).

Disser et al. (2015) considered the problem of scheduling bidirectional traffic along a path

composed of multiple segments. Zhang et al. (2016) studied the vessel transportation scheduling

optimization problem based on coordination of channels and berth. In this work, the authors

formulated a mathematical model for minimizing total wait time by taking into account travel

direction and distance of the berth and they utilized simulated annealing together with multiple

population genetic algorithm for solution of the model. Lalla-Ruiz et al. (2018), on the other

hand, studied the waterway ship scheduling problem wherein the goal was to schedule incoming

and outgoing vessels via restricted waterways for entering or leaving the port so that the vessels’

waiting time is minimized. The authors proposed mathematical models and heuristics for the

problem and presented a case study involving the Yangtze Delta in Shanghai, China. Jajac et al.

(2018) analyzed applications of multi-criteria decision making methods for spatial planning in

anchorages that take into account various aspects of the problem including sociological, cultural

heritage, economic, technical, and environmental issues and presented a case study for the Island

of Solta in Croatia. Li et al. (2019) investigated the ship routing and scheduling problem for a steel

plants cluster wherein they took into account the multi-layer structure of the shipping network,

raw material prices, transportation costs, and market demand over multiple periods.
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In a closely related study, Oz et al. (2015) proposed a dual-objective optimization strategy with

safety and utilization considerations and achieved improvement in safety while maintaining similar

utilization levels as competing methods. Both in Huang et al. (2011) and Oz et al. (2015), the

simulations start with an empty anchorage and terminate as soon as the anchorage reaches its full

capacity with no vessels departing the anchorage during the simulation. If one were to establish a

practical analogy for comparing anchorage capacity planning as in Oz et al. (2015) and Huang et al.

(2011) versus dynamic anchorage planning as in this study, an appropriate one would perhaps be

as follows: Consider an unmarked vehicle parking lot with a certain topology. Capacity planning

would be determining the maximum number of cars, trucks, and other land vehicles that can be

safely parked inside the parking lot. The planners might post this number at the entrance of the

parking lot as the maximum capacity. Daily planning, on the other hand, would be telling the

drivers of these vehicles the exact location to park in real-time as they arrive and other vehicles

leave, where it is also assumed that the arriving vehicle’s park duration is known in advance. Clearly,

these two problems are fundamentally different problems that call for different solution approaches.

Incidentally, the three objectives of maximizing utilization and minimizing accident risk as well as

carbon emissions would also be applicable in this analogy. In practice, dynamic anchorage planning

would be even more challenging than the hypothetical dynamic parking lot planning, because once

parked, vehicles stay put inside parking lots whereas vessels tend to move constantly inside the

anchorage due to winds, currents, and waves. In addition, navigation dynamics of vessels, some

of which can be longer than 250 meters and weigh more than 100,000 tonnes, are much more

sophisticated compared to land vehicles.

In this study, we investigate the three-objective dynamic anchorage planning problem and

present computational experiments that compare our strategy against the algorithms introduced

by Oz et al. (2015) and Huang et al. (2011), which we consider to be state-of-the-art to date in

anchorage planning, static or otherwise. While our approach is more suitable for daily anchorage

planning tasks, we believe both Oz et al. (2015) and Huang et al. (2011) have their place in the

literature for anchorage capacity planning where the goal is to assess maximum safe capacity of an

anchorage and a static approach is more appropriate than a dynamic one.
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3 Performance Metrics

In this section, we present the performance metrics intended to measure the objectives of risk,

utilization, and distance traveled (in lieu of environmental impact). The first performance metric,

dynamic area utilization, is aimed at assessing utilization from the start of steady-state until the

end of the simulation. The next metric, distance to entry, relates to distance and the last two

metrics of arrival intersection length and departure intersection length are intended to assess risk.

Performance metrics and other related parameters are described below and listed in Table 1.

Table 1: Performance metrics and related parameters

Performance Metric/ Parameter Unit Notation

Risk meters R
Dynamic area utilization % U
Average distance traveled meters D
Total number of arrivals # N
Total number of departures # E
Total anchorage area meters squared A
Total simulation time days T
Sea depth meters Z
Length of vessel i meters `i
Anchor duration for vessel i hours ti
Distance to entry for vessel i meters di
Anchor circle area for vessel i meters squared ci
Anchor circle radius for vessel i meters ri
Average intersection length (AIL) for vessel i meters αi
Average departure length (DIL) for vessel i meters βi

3.1 Dynamic Area Utilization

The dynamic area utilization performance metric U aims to measure anchorage area utilization

efficiency throughout the simulation. This metric is defined as the ratio of summation of anchorage

circle areas weighted by the corresponding anchor duration to the total anchorage area weighted

by the total simulation time:

U :=

∑N
i=1 citi
AT

(2)

where N denotes the total number of arrivals in the simulation, ci is the area of the i-th anchor

circle associated with the i-th vessel, ti is the anchor duration (i.e., dwell time) of the i-th vessel
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and, A and T denote the anchorage area and total simulation time respectively.

In case the anchorage becomes full at any point in the sense that the length of an incoming

vessel is too long to place it safely inside the anchorage due to currently anchored vessels, such

incoming vessels are put in a queue. The queued vessels are allocated anchor circles with sufficiently

large radii on a first-come first-serve basis as currently anchored vessels leave the anchorage.

3.2 Average Distance to Entry

The second performance metric, average distance to entry, measures the distance vessels travel

inside the anchorage while arriving to and departing from their berth locations as a proxy for

measuring distance traveled and impact on the environment. Distance to entry is defined as the

distance between the entry point of the ship to anchorage area and its berth location, which

is illustrated in Figure 2. In general, port authorities prohibit vessels from maneuvering inside

anchorages due to safety reasons. That is, vessels are required to follow a direct path inside the

anchorage upon arrival and departure, so two times distance to entry will yield the total distance

traveled by each ship. Subsequently, average distance traveled is defined as the total distance

traveled by all vessels divided by the total number of vessels. Distance to entry for the i-th vessel

is denoted by di and average distance traveled is denoted by D. That is,

D :=

∑N
i=1 2di
N

. (3)

Entry and Exit Side of Anchorage Area

D
is

ta
n
ce

to
E

n
tr

y

A
n
ch

o
ra

ge
D

ep
th

Figure 2: Distance to entry for an incoming vessel.
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3.3 Arrival Intersection Length (AIL)

The next performance metric is devoted to assessing the safety risks for vessels upon their arrival.

For each vessel, its arrival intersection length (AIL), denoted by αi, is defined as the summation of

distances it travels inside other vessels’ anchor circles until it arrives at its berth location. Average

anchorage AIL, denoted by α, is defined as the sum of arrival intersection lengths for all vessels

divided by the total number of vessels in the simulation, i.e.,

α =
N∑
i=1

αi/N. (4)

Although vessels can, in fact, navigate through other vessels’ anchor circles, there is a certain

level of risk associated with this passage, especially since the exact location of vessels inside the

anchor circle is uncertain. Clearly, the danger the vessels incur is likely to be greater with longer

intersections. In our interview with the Istanbul Vessel Traffic Services (VTS) Authority officials,

the feedback provided to us was in favor of the argument that the distance traveled inside other

vessels’ anchor circles is a more plausible criterion compared to the number of intersecting circles

on the arrival path. As an illustration, Figure 3 shows five different arrival paths indicated with

dotted lines. Arrival intersection number for both path C and path D is 3, but it is fairly discernible

that undertaking path D, which has a greater total intersection length, carries greater risk than

undertaking the alternative path. Moreover, in comparing paths B and E, although path B has

a greater intersection number, path E requires crossing a large vessel, thereby potentially more

steering and more risk.

3.4 Departure Intersection Length (DIL)

Vessels undertake fairly identical paths upon arrival and departure. However, this does not nec-

essarily mean they are exposed to the same level of risk since the arrangement of vessels inside

the anchorage is likely to change upon their departure. We define a vessel’s departure intersection

length (DIL), denoted by βi, analogous to its AIL. In our simulations, in some cases, the differ-

ence between AIL and DIL was so significant it could clearly reflect some algorithms’ inability to

provide a proper look-ahead approach. The following equation shows how departure intersection

length is calculated where β denotes average DIL and E denotes total number of departures in the

simulation:
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Entry and Exit Side of Anchorage Area

Figure 3: Different anchor paths with different arrival intersection values.

β =
N∑
i=1

βi/E. (5)

3.5 The Multi-Objective Model

The performance metrics defined above are measured inside Monte Carlo simulations within a

particular simulation time window. With respect to these metrics, the objective function to be

minimized is defined as

L(W ) := WRR+WU (1− U) +WDD. (6)

In this equation, R measures risk that we aim to minimize and it denotes the mean of average

anchorage AIL and DIL, i.e., R := (α + β)/2. Our model also attempts to minimize the average

distance to entry D in lieu of minimizing distance traveled and environmental impact. As for

utilization, we aim to maximize the dynamic area utilization rate U . Weights of the risk, utilization,

and distance objectives are denoted by WR, WU , and WD respectively with 0 ≤ WR,WU ,WD. It

is assumed that these weights are specified as seen appropriate by the anchorage planners per

their priorities with respect to each objective. These three weights are denoted by the vector

W := (WR,WU ,WD). While constructing the objective function, all three performance metrics

are normalized to assume values between zero and one and, since we are minimizing R and D, the

term 1− U is used to define a multi-objective minimization problem.
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4 Berth Location

There are three steps involved in choosing an appropriate berth location for an incoming vessel: (1)

identifying candidate berth locations, (2) scoring these candidates, and (3) finding the best berth

location. In what follows, we explain these steps in detail and discuss the planning metrics used

in the berth location process, which is illustrated in Figure 4. In this figure, it is assumed that

optimal coefficients of the seven planning metrics have already been computed using SPSA.

Vessel Arrival

Corner Point Identification

Corner Point Scoring SPSA Optimizer

Berth Location

Figure 4: The berth location process.

4.1 Corner Point Identification

The anchorage planning problem is inherently a continuous space problem, yet, treating the prob-

lem as such makes it extremely challenging. Following previous work, for any given anchorage

configuration, we consider a finite number of candidate berth locations called corner points. Specif-

ically, for a given particular layout of anchor circles inside an anchorage, corner points are defined

as the points where a circle centered at those points would be tangent to at least two items among

the sides of the anchorage area and currently existing anchor circles (Huang et al., 2005). Corner

points are classified into three types according to the items they are tangent to, which are explained

below and depicted in Figure 5.

Side-and-Side (SS): These are the centers of the circles whose sides contact two sides of the
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anchorage area.

Side-and-Circle (SC): These corner points are the centers of the circles contacting (but not

overlapping) an existing anchor circle and a side of the anchorage area.

Circle-and-Circle (CC): These are the centers of the circles contacting exactly two anchor circles

(without overlapping).

SS

CC

SC

Entry and Exit Side of Anchorage Area

Figure 5: Three types of corner points in an anchorage.

Corner points perform the task of limiting the infinite number of possible anchor locations

inside the anchorage to a finite set of candidate anchor points to place the center of new anchor

circles. Specifically, for an incoming vessel, the first order business is to iterate over all sides of the

anchorage and all existing anchor circles in order to identify all possible corner points for which an

appropriately sized anchor circle can be fit in that is (1) fully inside the anchorage and, (2) does

not overlap with any other anchor circles. In particular, the radius of the circle associated with

a corner point is computed in real time using the incoming vessel’s length and sea depth using

Equation 1. For instance, for a 100−meter incoming vessel anchoring at a depth of 35 meters, the

radius of the anchor circle would be 100 +
√

(25
√

35)2 − 352 = 244 meters. Once all the feasible

corner points are identified, the next task is to score these corner points and pick the one that

optimizes the objective function at hand.

For an empty anchorage, only Side-and-Side corner points are calculated. For an incoming vessel

in a non-empty anchorage, on the other hand, calculation of corner points only depends on the sides

of the anchorage and currently anchored vessels. In other words, the corner point calculation process
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is independent of the particular anchorage planning algorithm being used. However, different

algorithms are likely to place incoming vessels at different corner points, resulting in different

anchorage configurations, which in turn results in different corner points for future incoming vessels.

4.2 Corner Point Scoring

Previous work on anchorage planning typically defines planning metrics for scoring of corner points

in such a way that they are closely related to each objective considered and minimizing or maximiz-

ing that metric will be the touchstone for berth location optimization. Huang et al. (2011) suggests

hole degree, denoted by H, as the criterion for determining the optimal berth location (illustrated

in Figure 6). For an anchor circle i, its hole degree is defined as

Hi := 1− yi
ri

(7)

where ri is the radius of the circle and yi is the minimum distance from this circle to the closest item

excluding the contacting items. The Maximum Hole-Degree (MHDF) Algorithm of Huang et al.

(2011) starts with placing two circles at two corners of the anchorage and places each subsequent

anchor circle by selecting the corner point with the highest hole degree. On the other hand, Oz et al.

(2015) uses maximum normalized distance to entry (NDE) in order to choose the optimal berth

location (please see Figure 2 for an illustration of the distance to entry concept). Normalization

of this distance to entry happens via dividing it by the anchorage depth. Both algorithms start

with an empty anchorage and terminate when the anchorage becomes full, yet they do not account

for any departing vessels in the meantime. Simply put, the idea in Huang et al. (2011) is to pack

circles as densely as possible whereas the idea in Oz et al. (2015) is to pack circles as further away

from the entrance as possible. Oz et al. (2015) argues that while both algorithms achieve similar

utilization levels, the latter results in safer anchorage planning. In comparison, our approach entails

a much more sophisticated scheme that considers multiple planning metrics within a Monte Carlo

simulation framework in order to determine the optimal berth locations of incoming vessels.

4.3 The Dynamic Anchorage Planning Problem

This section formally defines the dynamic anchorage planning problem. As we attempt to simulta-

neously optimize the objectives of risk, utilization, and distance, we define a total of seven planning
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Figure 6: Illustration of two different cases for minimum hole degree.

metrics in order to score a given corner point j associated with incoming vessel i, which are denoted

by mp
i,j for p = 1, . . . , 7. Three of these metrics are static and the remaining ones are time-sensitive,

all of which are intended to capture the characteristics of these three objectives from different per-

spectives. It is important to note that these metrics are computed in real time for each corner point

once an incoming vessel’s candidate corner points have been calculated. These planning metrics

are described in detail in the next section.

The interactions between the seven planning metrics along with the fact that some metrics

may have opposing effects on unintended objectives necessitate a weighting system for determining

the appropriate contribution of each planning metric to the score of a candidate corner point. In

this study, we work with a linear combination of the planning metrics for scoring of corner points

that also includes certain interaction terms. In order to find the best coefficient for each term in

this combination, we resort to the Simultaneous Perturbation Stochastic Approximation (SPSA)

algorithm whose details are discussed in Section 5.

In our anchorage planning model, the decision variables to be optimized via SPSA are the

coefficients of the seven planning metrics, which we denote by xp for p = 1, . . . , 7. For a given x :=

(x1, . . . , x7), candidate corner points are identified for each incoming vessel i and each associated

candidate corner point j is scored based on the following formula

si,j :=
7∑
p=1

xpm
p
i,j . (8)
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The corner point with the lowest score with respect to the optimal coefficients obtained by SPSA is

then declared to be the berth location for this incoming vessel. We note that we do not impose any

sign restrictions on the components of the x vector. Thus, contribution of some planning metrics to

the score s could be positive whereas those of some other metrics could be negative. As mentioned

earlier, the relationship of the individual objectives to the decision variables in the multi-objective

function L is measured via Monte Carlo simulations, which can be stated as follows:

L(x|W ) = WRR(x) +WU (1− U(x)) +WDD(x). (9)

A typical instance of the dynamic anchorage planning problem consists of the following com-

ponents:

• Sea depth and topology of the anchorage.

• Performance metrics weight vector W = (WR,WU ,WD) as specified per the needs of the

anchorage planners.

• The probability distribution for vessel inter-arrival times (in hours). This distribution specifies

the frequency of vessel arrivals at the anchorage.

• The probability distribution for vessel dwell times (in hours). Dwell time for an incoming

vessel is sampled from this distribution at the time of its arrival.

• The probability distribution for vessel lengths (in meters). Vessel lengths are used to deter-

mine the radius of the associated anchor circle.

The dynamic anchorage planning problem is then defined as finding the optimal planning metrics

coefficient vector x∗ that minimizes the multi-objective function L:

x∗ := arg min
x∈R7

L(x|W ) = {x∗ ∈ R7 : L(x∗) ≤ L(x) ∀x ∈ R7}. (10)

4.4 Planning Metrics

This section describes the seven planning metrics used for scoring of candidate corner points for an

incoming vessel.
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4.4.1 Realized AIL (RAIL)

The metric we present as AIL in Section 3 can perform the task of an effective planning metric as

well. Since our measure for risk is the mean value of average AIL and average DIL, the AIL value

for each arrival, which we call realized AIL (RAIL), provides valuable information concerning the

contribution of this particular arrival to overall risk. The mere difference is that in planning we

calculate the RAIL score for each individual candidate corner point while the average AIL used in

performance measuring is the total AIL for all vessels arrived divided by the number of arrivals.

4.4.2 Expected DIL (EDIL)

Analogous to RAIL for arrivals, a DIL value can be measured for each departure, thereby allowing

calculation of the contribution of each vessel departure to risk. In practice, future vessel arrivals

and/ or their dwell times may not be fully known, though they can be predicted using historical

data. On the other hand, in our Monte Carlo simulations, future vessel arrivals and their dwell times

are readily available in the simulation’s event queue, which we make use of in order to compute an

expected DIL (EDIL) for vessels that depart with the simulation window.

4.4.3 Normalized Distance to Entry (NDE)

The concept of distance to entry was introduced in Section 3. Normalized distance to entry (NDE)

is calculated by dividing distance to entry with the anchorage depth, which is the distance between

the entry side of the anchorage and the land. We use NDE as another planning metric for scoring

of candidate corner points.

4.4.4 Dynamic NDE (DNDE)

The next four metrics include a time dimension. This notion is inspired by the simple fact that if a

vessel is going to dwell for long, it seems appropriate to berth it closer to land in order to keep the

anchorage’s entrance and middle space clear for passage. On the other hand, if the vessel’s dwell

time is relatively short, berthing the vessel close to land would increase total distance traveled

as well as the risk of accidents. Multiplying NDE by the dwell time culminates in a metric we

call Dynamic NDE (DNDE). This planning metric is a useful measure of risk that maintains a

reasonable trade-off with distance.
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4.4.5 Dynamic RAIL, Dynamic EDIL and Dynamic Fused Risk

Following the same idea, we multiply RAIL, EDIL, and RAIL times EDIL by the dwell time to

obtain three new metrics respectively called Dynamic RAIL (DRAIL), Dynamic EDIL (DEDIL)

and Dynamic Fused Risk (DFR). Intuitively, for a relatively idle anchorage, vessel dwell time is less

important for small values of RAIL and EDIL. On the other hand, for a busy anchorage with large

values of RAIL and EDIL, the dwell time becomes a pressing matter. This impact is recognized by

multiplying the dwell time by RAIL, EDIL, and Fused Risk, i.e., RAIL times EDIL. In short, when

our risk metrics have large values, dwell time will be weighted by larger numbers leading to larger

values for dynamic risk metrics and more contribution to corner points’ score. Our experimental

results provide more evidence for effectiveness of our time-sensitive metrics. The following equations

show the calculation of the dynamic planning metrics:

m4
i,j = m1

i,j × ti (11)

m5
i,j = m2

i,j × ti (12)

m6
i,j = m3

i,j × ti (13)

m7
i,j = m1

i,j ×m2
i,j × ti (14)

where ti is the dwell time for the i-th vessel and m1
i,j through m7

i,j respectively stand for RAIL,

EDIL, NDE, DRAIL, DEDIL, DNDE, and DFR planning metrics as summarized in Table 2.

Table 2: Planning metrics used in scoring of candidate corner point j for an incoming vessel i.

Planning Metric Abbreviation Notation

Realized arrival intersection length RAIL m1
i,j

Expected departure intersection length EDIL m2
i,j

Normalized distance to entry NDE m3
i,j

Dynamic realized arrival intersection length DRAIL m4
i,j

Dynamic expected departure intersection length DEDIL m5
i,j

Dynamic normalized distance to entry DNDE m6
i,j

Dynamic fused risk DFR m7
i,j
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5 The SPSA Algorithm

This section describes how the planning metric coefficients in the dynamic anchorage planning

problem can be optimized via the SPSA algorithm. For a given vector of planning metric coefficients

x and performance metric weights W , the objective function L(x|W ) is a random variable with

an unknown explicit form that can only be observed at the end of a noisy Monte Carlo simulation

with a certain margin of error. The inputs to a Monte Carlo simulation are as follows:

• Sea depth and topology of the anchorage.

• Planning metrics coefficient vector x = (x1, . . . , x7).

• Performance metrics weight vector W = (WR,WU ,WD).

• The probability distributions for vessel inter-arrival times, dwell times, and vessel lengths.

The outputs of one simulation run are the risk, utilization, and distance performance metric

values measured over a certain amount of time once the run reaches steady-state.

In order to find a local minimum of a real-valued deterministic function L : Rp → R, a wide-

spread practice is the gradient descent approach. In conventional gradient descent algorithms, it

is presumed that the objective function (usually called loss function in minimization problems)

and its derivatives are known. However, when the loss function assumes the form of a random

variable and information regarding its realized values can only be observed through sampling, such

an approach would be of no use. This is particularly pertinent to the cases when the information

regarding the loss function is available only through simulations which are inherently noisy. In such

cases, stochastic pseudo-gradient descent algorithms can be convenient choices since they estimate

the loss function from noisy measurements that are simulation runs. Additionally, such algorithms

formally account for noise and they do not require explicit information regarding the loss function

nor its derivatives.

Let L(x) : Rp → R denote the loss function that is not explicitly known, yet we can make noisy

measurements y(x) := L(x) + ε(x) where ε denotes noise. The gradient of L is defined as:

g(x) :=
∂L

∂x
. (15)

Similar to traditional gradient descent based algorithms, SPSA starts with an initial estimate
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x̂0 and iterates with respect to the recursion below in order to find a locally minimum vector x∗:

x̂k+1 := x̂k − akĝk(x̂k). (16)

In the equation above, ak is an iteration gain sequence and ĝk(x̂k) stands for the approximate

gradient at x̂k. Since it is assumed that L is not known explicitly, the gradient g(x) is not readily

available and thus it needs to be approximated. The perturbation amount is taken as ck∆k where

∆k is a p−dimensional simultaneous perturbation vector and ck is a gradient gain sequence. Per

regularity conditions (Spall, 1992), each component of ∆k needs to be independently sampled from a

symmetric probability distribution with a zero mean, such as the symmetric Bernoulli distribution

with +1 or −1 with equal probability. Simultaneous perturbations around the current solution

vector x̂k are defined as:

x̂±k := x̂k ± ck∆k. (17)

In the rest of this manuscript, the terms decision variables, solution vector, and planning metrics

coefficient vector shall be used interchangeably. Once y(x̂+
k ) and y(x̂−k ) are computed, the estimate

of gradient ĝk is calculated as:

ĝk(x̂k) :=
y(x̂+

k )− y(x̂−k )

2ck


∆−1k1

∆−1k2
...

∆−1kp

 . (18)

SPSA requires three loss function measurements in each iteration: y(x̂+
k ), y(x̂−k ), and y(x̂k+1).

The first two are needed to approximate the gradient and the third is required for measuring the

quality of the subsequent solution vector, i.e., x̂k+1 (Aksakalli and Malekipirbazari, 2016).

The gradient gain sequence is defined as ck := c/kγ and the iteration gain sequence is defined

as ak := a/(A + k)α where A > 0 is a stability constant. SPSA’s pre-defined parameters are thus

a, c, A, α, and γ, whose careful fine-tuning is critical to ensure superior algorithm performance. A

common stopping rule for SPSA is reaching a pre-defined number of iterations due to the fact that

automatic stopping criteria do not exist for stochastic approximation algorithms in general.

Even though SPSA has been widely used in a variety of stochastic optimization problems, few

studies exist on its parameter calibration. Spall (1998) provides certain guidelines for identifying
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suitable values for the algorithm parameters. In particular, the asymptotically optimal values of

α and γ are 0.602 and 0.101 respectively. The parameter c is suggested to be set to the standard

deviation of the measurement noise, the stability constant A to one-tenth of the number of intended

iterations and, a to a small value close to 0.05. Moreover, a common choice for the elements of ∆k is

independent ±1-valued Bernoulli-distributed random variables with a 0.5 probability. Nonetheless,

optimal SPSA parameters are case-dependent in practice and can vary significantly under different

circumstances. More details on our SPSA parameter fine-tuning process are provided in Section 7.

6 Anchorage Simulation System

Optimization of the planning metrics coefficients for a given problem instance as well as comparison

of our approach against existing state-of-the-art algorithms necessitate Monte Carlo simulations,

which in turn, call for an anchorage simulation system. This system facilitates empirical perfor-

mance assessment of anchorage planning algorithms under a wide variety of conditions as detailed

in Section 7. Our implementation of the simulation system is similar to that of Oz et al. (2015)

whose logical flow is shown in Figure 7 and main components are described below.

Arrivals and
Departures

Anchorage Manager

Anchorage Area

System Evaluator

Vessel Locator

SPSA Optimizer

Figure 7: Flowchart of the anchorage simulation system.

6.1 Anchorage Area

Following common practice, the anchorage area is modeled as a two-dimensional polygonal region

containing anchor circles with various radii associated with anchored vessels. It is assumed that
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(1) per regulations, vessel entry and exits occur through the entry side of the anchorage with

the vessels following a straight path to their berth locations and, (2) the anchorage has uniform

depth. The uniform depth assumption is not always realistic, yet relaxation of this assumption is

relatively straightforward with the non-uniform depth corner point calculation algorithm discussed

in Malekipirbazari et al. (2015).

6.2 Vessel Arrival and Departure Generator

The Vessel Arrival and Departure Generator component is in charge of generating vessel traffic

with an associated arrival time, an anchor duration (i.e., dwell time), and a vessel length for

calculating the vessels’ anchor circle radii. These quantities are sampled from respective probability

distributions as discussed in Section 7. This component also initiates a departure event at the end

of the vessel’s anchor duration.

6.3 Vessel Locator

The Vessel Locator component is responsible for calculating scoring the candidate berth locations

and determining the berth location of incoming vessels with respect to these scores. The scoring is

based on a linear combination of the planning metrics as described in Section 5 and coefficients of

each planning metric as computed by the SPSA Optimizer component.

6.4 SPSA Optimizer

The SPSA Optimizer iteratively improves upon the coefficients of the planning metrics x using the

SPSA algorithm. The system starts with an arbitrary x0, forms a gradient estimate by averaging

multiple Monte Carlo simulations (for loss function evaluation) in each iteration and computes the

next solution vector x until termination.

6.5 Anchorage Manager

The Anchorage Manager component oversees the entire simulation system and manages the con-

nection between the system’s components. When an event takes place in any component, this

component receives a notification and determines the appropriate course of action, including send-

ing the information to the component responsible for an appropriate action.

24



6.6 System Evaluator

The System Evaluator component is responsible for computing and maintaining all relevant statis-

tics related to performance and planning metrics including averages and standard deviations.

7 Computational Experiments

This section presents computational experiments for empirical performance assessment of our

SPSA-based optimization strategy. Our goal in this section is two-fold: (1) benchmark our strat-

egy against the current state-of-the-art anchorage planning algorithms and, (2) briefly investigate

the effect of different performance metric weight combinations on the individual objectives. Our

experiments comprise of the following variations:

• Two different anchorage topologies: The Ahırkapı Anchorage in the southern entrance of the

Istanbul Strait and a rectangular-shaped synthetic anchorage. The Ahırkapı Anchorage has

a bounding box of 2.5 by 4 kilometers and the synthetic anchorage’s dimensions are 2.5 by

4 kilometers. The depth of both anchorages is taken as 35 meters. Figure 8 shows Ahırkapı

and the synthetic anchorage topology used in the simulations. To our knowledge, anchorage

traffic data is not readily available for any other anchorage in the open literature, which

consequently restricts our work to the Ahırkapı Anchorage for a real-world case study.

• For the synthetic anchorage, three different vessel inter-arrival distributions representing busy,

average, and idle anchorage traffic respectively. Combined with the Ahırkapı Anchorage, this

results in a total of four different anchorage settings.

• Five different performance metrics weight vectors for assessing impact of this vector on the

respective objectives of risk, utilization, and distance. The weight vectors we consider are

(1,0,0), (0,0,1), (1,0,1), (5,0,1), and (1,0,5).
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Ahırkapı Anchorage

Entry Side

Synthetic Anchorage

Entry Side

Figure 8: Anchorage topologies used in the computational experiments.

Our Monte Carlo simulations require probability distributions for sampling vessel inter-arrival

time, dwell time, and vessel length quantities. For this purpose, we make use of Ahırkapı Anchorage

historical data information for the month of July 2015. We determine the best fitting probability

distribution for each one of these three quantities via Kolmogorov-Smirnov goodness of fit tests,

which are then used for sampling in the simulations. The probability distributions fitted to the

Ahırkapı historical data are as follows:

• Inter-arrival times (hours): Exponential(µ = 0.45)

• Dwell times (hours): Log-normal(µ = 2.4, σ = 1.3)

• Vessel lengths (scaled between 30 and 300 meters): Beta(α = 2.4, β = 2.4).

It should be noted that our general methodology is not tied to any particular distribution

and these probability distributions are merely used for illustration purposes. In order to simulate

synthetic anchorage settings with busy and idle anchorage traffic, we use a multiplier k for dwell

times to manipulate departure to arrival ratio. The multiplier values used in the four different

anchorage settings are as follows:

• Ahırkapı anchorage: k = 1.

• Average synthetic anchorage: k = 1.

• Busy synthetic anchorage: k = 2.2.
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• Idle synthetic anchorage: k = 0.5.

As an example, suppose sampling from the Log-normal(2.4, 1.3) distribution yields a dwell time of

2.5 hours. For the busy setting, the dwell time would be set to 5.5 hours whereas the dwell time

for the idle setting would be set to 1.25 hours.

7.1 Steady State Analysis

Transcending the static anchorage planning problem into a dynamic one with a time dimension

necessitates rather significant changes in the simulation approach, one of which is a steady-state

analysis. In planning stages of any Monte Carlo simulation, an important decision is whether to use

terminating conditions or steady-state. Since anchorages serve around-the-clock, there is really no

terminating condition for their operation. Also, it is hard to imagine an empty anchorage waiting

for vessels to arrive. Thus, as we are interested in estimating a set of performance metrics in the

long run, it is favorable to eliminate any improbable factors that would potentially cause a deviation

in the trend of the parameters of interest such as initial and terminating conditions.

Figure 9 shows the trend of our performance metrics throughout the first fifteen days of simula-

tion for all the competing algorithms for the Ahırkapı Anchorage starting with an empty anchorage.

This figure, as well as similar analyses we conducted with various simulation settings suggested there

is no considerable increase or decrease due to initial settings after the seventh day and all metrics

seem to stabilize by this point. Therefore, we regard the first seven days as the warm-up period

and we consider the second seven days of simulation to be the window of study during which we

monitor the system’s behavior in order to compare the planning algorithms.

7.2 SPSA Implementation

As mentioned earlier, careful fine-tuning of SPSA parameter values is of utmost importance for

convergence to a good solution. In our implementation, we use the symmetric Bernoulli distribution

with ±1 outcomes for the perturbation vector ∆k, which is a simple and commonly used distribution

in the SPSA literature. Regarding α and γ, we use the theoretically optimal values of 0.602 and

0.101 respectively. For the parameters of a, c, and A, subsequent to a comprehensive fine-tuning

process involving various simulation settings, we use the values of 0.17, 0.019 and 0, respectively.

The number of SPSA iterations is taken as 500, which we observed to be sufficient for conver-
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Figure 9: Performance metrics over time for the Ahırkapı Anchorage during fifteen days of simula-
tion time.

gence in general. SPSA is inherently a probabilistic algorithm due to two factors: (1) the sampling

process while generating the simultaneous perturbation vectors and, (2) noise in the loss function

measurements. For this reason, its performance tends to vary slightly from one particular run to

another. A common way of reducing the effect of noise as well as randomness in SPSA implemen-

tations is averaging simulation runs, see, e.g., Aksakalli and Malekipirbazari (2016). Thus, for each

instance of the dynamic anchorage planning problem we consider in this study, the loss function

measurement for SPSA is taken as the average of 10 independent Monte Carlo simulations with
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a different sequence of symmetric Bernoulli samples. In particular, for each SPSA iteration, 10

independent simulations are performed for each one of the following loss function measurements:

y(x̂+
k ), y(x̂−k ), and y(x̂k+1). This results in a total of 30×500 = 15000 simulations for each planning

metrics coefficient vector optimization.

Consider, for instance, the case when WR = 0, WU = 0 and WD = 1. Figure 10 shows

the normalized values of objective function for this performance metrics weight vector over 500

iterations for Ahırkapı Anchorage. The solution vector with the lowest objective function value

over the entire range of SPSA iterations is declared to be the optimal solution vector x∗.
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Figure 10: Normalized objective function value vs. iteration count for SPSA for the Ahırkapı
Anchorage.

7.3 Performance Comparison of Algorithms

Once we identify the optimal coefficients vector for the planning metrics using SPSA, we are

ready to benchmark our algorithm against the alternatives. For a fair comparison, we use the

average over 100 simulation replications for each algorithm for each anchorage setting by using the

method of common random numbers (CRN) to reduce variance. Each one of the 100 Monte Carlo

simulation runs require sampling of the following three quantities from their respective probability

distributions over a period of fourteen days: (1) vessel arrival times, (2) vessel departure times,

and (3) vessel lengths. Per CRN, each planning algorithm is fed in the same sequence of vessel

arrival and departures together with the same vessel lengths, thereby eliminating the variability in

these three quantities between the algorithms in a particular Monte Carlo simulation. We remark
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that, for a particular anchorage setting, these Monte Carlo simulations are conducted only after

the optimal planning metrics coefficients have been found using SPSA.

Competing algorithms are the Normalized Distance to Entry (NDE) method of Oz et al. (2015)

and the Maximum Hole Degree (MHD) method of Huang et al. (2011), which are named based on

the metric they use for choosing the best candidate corner point for an incoming vessel. The idea

in the NDE method is to place incoming vessels so as to maximize its distance to the entry line,

whereas the idea in the MHD method is to place the vessel in the tightest available space in the

current anchorage configuration. In addition to NDE and MHD, we consider random candidate

corner point selection in order to provide a baseline for comparisons, which we call the Random

Method.

For each one of the four anchorage settings, we use SPSA with five different sets of WR, WU and

WD weights in order to demonstrate the performance of SPSA as a robust multi-objective optimizer

with various anchorage planning priorities. Tables 3, 4, 5, and 6 show the comparison results for all

four methods for each anchorage setting. The tables show the average for each performance metric

over the 100 simulations along with the margin of errors for a 95% confidence interval. Optimal

planning metric coefficients for the Ahırkapı Anchorage are shown in Table 7 to illustrate how these

coefficients relate to each other for one particular anchorage setting.

Table 3: Comparison of algorithms for the Ahırkapı Anchorage averaged over 100 simulations. The
plus/minus values denote the margins of error for a 95% confidence interval.

Algorithm Risk (m) Utilization (%) Distance (m)

MHD 480.4±13.5 0.19±0.0079 4031.6±57.5
NDE 389.3±8.7 0.19±0.0079 4289.8±19.9
RANDOM 488.0±8.9 0.19±0.0079 4046.2±26.1
SPSA: WR/WU/WD

1/0/0 223.7±6.3 0.19±0.0079 3620.4±43.2
5/0/1 231.7±7.4 0.19±0.0079 2395.1±20.3
1/0/1 244.2±7.4 0.19±0.0079 2313.8±23.5
1/0/5 245.9±7.8 0.19±0.0079 2288.7±22.1
0/0/1 315.6±8.8 0.19±0.0079 2199.1±21.4
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Table 4: Comparison of algorithms for average synthetic anchorage.

Algorithm Risk (m) Utilization (%) Distance (m)

MHD 685.6±23.6 0.19±0.083 4801.8±213.5
NDE 612.1±15.2 0.19±0.083 5948.1±36.0
RANDOM 958.4±13.9 0.19±0.083 4546.3±42.1
SPSA: WR/WU/WD

1/0/0 413.5±11.6 0.19±0.0083 3944.5±82.0
5/0/1 489.2±13.1 0.19±0.0083 2170.9±37.2
1/0/1 500.8±12.9 0.19±0.0083 2139.7±36.4
1/0/5 502.1±12.5 0.19±0.0083 2135.4±36.8
0/0/1 523.3±13.4 0.19±0.0083 2092.1±35.4

Table 5: Comparison of algorithms for busy synthetic anchorage.

Algorithm Risk (m) Utilization (%) Distance (m)

MHD 1190.2±15.0 0.48±0.0147 4093.4±28.7
NDE 1200.1±15.6 0.47±0.0147 4505.9±32.9
RANDOM 1231.2±15.0 0.48±0.0157 4134.8±25.3
SPSA: WR/WU/WD

1/0/0 931.6±14.8 0.46±0.0134 3780.0±32.9
5/0/1 938.9±15.9 0.46±0.0141 3606.4±34.5
1/0/1 968.2±16.5 0.47±0.0147 3555.5±35.4
1/0/5 973.7±14.4 0.47±0.0143 3552.3±33.7
0/0/1 998.1±16.4 0.47±0.0147 3518.8±35.4

Table 6: Comparison of algorithms for idle synthetic anchorage.

Algorithm Risk (m) Utilization (%) Distance (m)

MHD 385.6±23.1 0.03±0.0029 6391.3±68.3
NDE 252.1±9.2 0.03±0.0029 6881.4±19.6
RANDOM 884.8±18.9 0.03±0.0029 5092.5±38.5
SPSA: WR/WU/WD

1/0/0 152.3±5.8 0.03±0.0029 6017.7±50.0
5/0/1 202.6±7.6 0.03±0.0029 1215.9±20.0
1/0/1 210.1±7.7 0.03±0.0029 1187.7±20.1
1/0/5 222.1±7.9 0.03±0.0029 1181.4±19.2
0/0/1 244.4±9.0 0.03±0.0029 1174.6±19.5
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Table 7: Optimal planning metric coefficients for the Ahırkapı Anchorage.

W x∗

WR/WU/WD x∗1 x∗2 x∗3 x∗4 x∗5 x∗6 x∗7
1/0/0 0.053 0.325 0.117 -0.287 0.087 -0.121 -0.219
5/0/1 0.019 0.525 0.150 -0.729 -0.559 0.733 -0.389
1/0/1 -0.100 0.614 -0.020 -0.134 -0.406 -0.274 -0.304
1/0/5 -0.066 0.580 -0.002 -0.372 0.240 0.712 -0.882
0/0/1 -0.185 0.155 -0.393 0.189 -0.219 -0.291 -0.559

From the comparison tables, we observe that when the priority is risk or distance, SPSA out-

performs all the other algorithms. Even when WR = WD = 1, SPSA outperforms all competing

algorithms in both risk and distance. On the other hand, the numbers for utilization are indicative

of an interesting notion; when the anchorage does not reach its full capacity, utilization, as it is

defined in this work, would be the same regardless of any criteria for choosing among corner points

and, since we use CRN for sampling, the numbers in the utilization columns are exactly the same

in this case. That is why we only present results when WU = 0. As expected, setting different

values for WU does not make any difference in the optimal solution; even considerably large values

for WU will yield the same results as zero in this case. However, there is one case where utilization

could differ among algorithms. As indicated in Table 5, the numbers in the utilization column

slightly vary, but there are two key issues that need to be taken into account while pondering on

the results. First, with a trivial margin, the highest utilization in the busy anchorage case belongs

to MHD that only focuses on utilization, and yet, the Random method has the same performance.

This gives rise to the claim that the notion of corner points may suffice for optimizing utilization.

In order to make a definitive judgment, we need to determine whether the differences between the

scenarios are statistically significant or not. There are sizable overlaps between utilization intervals

for all the algorithms, meaning the differences in utilization are not statistically significant (per

paired t-tests conducted at a 95% significance level). On the other hand, the differences in risk

and distance are significant in most cases. Considering these results, a crucial observation is that

our algorithm is commendably sensitive to changes in weights in objective function, making it a

reliable multi-objective optimization algorithm.

Although in some cases the differences are not statistically significant, SPSA algorithm almost

entirely dominates competing algorithms. Specifically, in the objective that it is aimed to optimize,
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it statistically dominates all other algorithms in all cases and instances. For instance, for the

Ahırkapı Anchorage, regarding the risk objective, SPSA yields an average value of 223.7 meters

whereas NDE, the closest of the other three algorithms, yields an average of 389 meters, which

is a 42% reduction. Likewise, regarding the distance metric, SPSA results in an average of 2199

meters while the closest MHD method yields an average of 4031 meters, which corresponds to a

45% reduction in fuel costs. In addition, regarding the distance performance metric for the idle

synthetic anchorage, SPSA gives an average of 1174 meters whereas the closest Random method

yields an average of 5092 meters. Such results underline the superior performance of our SPSA-

based approach against the current state-of-the art methods for anchorage planning in general.

8 Summary and Conclusions

As maritime transportation gains momentum, anchorage planning and related problems call for

closer attention and dealing with them demand appropriate strategies. So far, the research in

this area mostly have been case studies focusing on one or two objectives while ignoring the time

dimension. In this research, we embark on developing a more general methodology that can be of

assistance for decision makers when facing dynamic multi-objective optimization problems in this

particular field.

For this purpose, we introduce performance metrics aimed at assessing anchorage planning

performance. Next, we present effective planning metrics associated with one or more of the

objectives that can be employed for optimization. Then, we use the SPSA stochastic optimization

algorithm to identify the best planning metric coefficients for a given instance of the problem. With

the aid of a custom simulation tool, we benchmark our algorithm against current best practices

and we showcase the power of our approach in four different settings we generate using historical

data gathered from Ahırkapı Anchorage. It is worth mentioning our study is the first in this field

that (1) accounts for the time dimension of the anchorage planning problem and (2) attempts to

simultaneously optimize the triple objectives of risk, utilization, and average distance traveled (in

lieu of fuel consumption and environmental impacts).

Our results indicate that our SPSA-based methodology predominantly outperforms competing

algorithms in risk and distance. For Istanbul’s Ahırkapı Anchorage, for instance, which is one

of the busiest anchorages in the world, reduction in risk of an accident alone was 42% whereas

reduction in distance alone (in lieu of fuel costs) was 45% when compared the best of the current
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state-of-the-art methods. As far as utilization is concerned, we argue the concept of corner point

placement seems to be sufficient for optimizing utilization and further considerations would not

lead to statistically significant differences, at least under the conditions and assumptions in our

study. Should there be any possibility for significantly different results under different conditions in

the future, our approach, with appropriate alterations, could be employed to optimize utilization as

well due to its flexible design for accounting for any number of desired performance and planning

metrics.

Our methodology has a number of strengths and desirable features. In terms of technical

aspects, our research method accounts for the time dimension in daily anchorage planning by

simultaneously modeling vessel arrivals and departures. Our methodology also allows for any

number of performance metrics as part of the objective function together with any number of

real-time planning metrics. In terms of practical aspects, our methodology facilitates a trade-off

analysis for anchorage planners via specification of weights for each one of the performance metrics

comprising the objective function.

Regarding limitations of our methodology, we would like to point out that we do not consider

any environmental conditions in our work such as waves, winds, or sea currents. In addition, we

model vessel arrivals and departures as straight lines, which is not quite realistic. Furthermore,

our methodology assumes that probability distributions of vessel inter-arrival and dwell times are

known in advance, which is not unreasonable, yet an assumption nonetheless. One other limitation

is that we assume the anchorage area is of uniform-depth, which is also not very realistic. On

the other hand, the methodology presented in Malekipirbazari et al. (2015) for safe anchor circle

calculations in non-uniform depth anchorages can be incorporated into our approach in a relatively

straightforward manner.

As for future research, one direction is to incorporate environmental conditions such as waves,

winds, and sea currents into the problem and modify the methodology presented herein to account

for these conditions. Moreover, considering more realistic arrival and departure paths instead of

straight lines can potentially make a difference in increasing the accuracy and effectiveness of the

current model, thereby bringing the anchorage planning model one step closer to reality. In this

work, we experimented with a limited number of planning metric weight combinations, which do

not fully reveal the interactions and trade-offs between the risk, utilization, and environmental

impact/ fuel cost objectives. Future research might investigate these relationships in detail for a
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pareto-optimal approach to the multi-objective optimization problem at hand.
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