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ABSTRACT 

Under the support vector machine framework, the support value analysis-based image fusion has been studied, where the 
salient features of the original images are represented by their support values. The support value transform (SVT)-based 
image fusion approach have demonstrated some advantages over the existing methods in multisource image fusion. In 
this paper, the directional support value transform (DSVT) is applied to the denoising of some standard images 
embedded in white noise and the X-ray images. This directional transform is not norm-preserving and, therefore, the 
variance of the noisy support values will depend on the scales. And then we use the hard-thresholding rule for estimating 
the unknown support values in different scales and the thresholding is scale-dependent. The peak signal noise ratio 
(PSNR) is used as an “objective” measure of performance, and our own visual capabilities are used to identify artifacts 
whose effects may not be well-quantified by the PSNR value. The experimental results demonstrate that simple 
thresholding of the support values in the proposed method is very competitive with techniques based on wavelets, 
including thresholding of decimated or undecimated wavelet transforms. 
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1.  INTRODUCTION 
Endovascular repair (EVAR) of an abdominal aortic aneurysm is a widely used therapeutic alternative to open repair. 
Analysis of X-ray image pairs from fluoroscopic roentgenographic stereophoto-grammetric analysis (FRSA), which is 
based on the combination of digital biplane fluoroscopy and roentgenographic stereophotogrammetric analysis, is one of 
the basic methods to measure three-dimensional motion of stent-graft markers with a very high accuracy and precision 
[1, 2]. To effectively detect and extract the markers from these X-ray images, we apply image denoising technique on 
these images. Over the last decade, a wide range of wavelet-based tools and ideas have been studied. From the very 
simple ideas like thresholding of the orthogonal wavelet coefficients of the noisy data, followed by reconstruction, to the 
substantial improvements in perceptual quality obtained by translation invariant methods based on thresholding of an 
undecimated wavelet transform [3], all kinds of approaches have been proposed. More recently, dual tree wavelet 
denoising methods were developed in the context of image denoising [4]. Also, variations on the basic schemes have 
been experimented, which include modifications of thresholding functions, level-dependent thresholding, and so on. And 
also, the ridgelet and curvelet transforms—which have been proposed as alternatives to wavelet representation of image 
data is also introduced to the image denoising [5]. 

In recent years, within context of the statistical learning theory and the structural risk minimization, the support vector 
machine (SVM) has been developed [6]. SVM is a powerful tool for data classification and function estimation, and has 
been applied to a wide variety of domains such as pattern recognition, and function estimation, etc. Especially, the 
development of the least square SVM (LS-SVM) [7], which resulted in a set of linear equations instead of a quadratic 
programming problem, extended the application of SVM to on-line applications. The introduction of mapping technique 
extends further the application of SVM to image processing areas [8], including edge detection [9], interpolation [10], 
object detection [11], etc. One important point in the SVM is that the data with larger support values can most possibly 
become the support vectors in the sparse SVM, since the sparse process exploits the fact that the support values have a 
physical meaning in the sense that they reveal the relative importance of the data points for contributing to the SVM 
model [12]. Under the SVM framework, the support value analysis-based image fusion method is developed [13], where 
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the salient features of the original images are represented by their support values. The support value transform (SVT)-
based image fusion method have demonstrated some advantages over the existing methods in multisource image fusion 
[13] and MS Pan-sharpening of remote sensing images [14]. To represent edges more efficiently, several approaches 
have been proposed including the steerable pyramids, curvelets [5], and directional wavelet transforms based on complex 
filter banks [15] etc. These transform methods separate edges with different orientations in each image, and can give 
superior results in the fused images comparing to the standard discrete wavelet transform [5]. Based on this consideration, 
the directional information is introduced to improve the performance of standard SVT by the use of the weighted 
mapping LS-SVM [16]. In this paper, we apply this digital transforms to the denoising of some standard images 
embedded in white noise and the X-ray images from the FRSA system. 

The rest of this paper is organized as follows. Sec. 2 illustrates the directional support value analysis method. Sec. 3 
presents the support value analysis-based image denoising technique. The experimental results are provided in Sec. 4 and 
the conclusions are drawn in Sec. 5. 

2.  DIRECTIONAL SUPPORT VALUE ANALYSIS 
In order to incorporate the prior information into the estimation based upon the mapping LS-SVM solution, one can 
weight the error variables γα kke =  by weighting factors vk [17]. This leads to the optimization problem: 
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where the diagonal matrix Vγ is given by 

⎭
⎬
⎫

⎩
⎨
⎧

=
Nvv

diag
γγγ
1,...,1

1

V                                                                                    (3) 

and the corresponding solution of the weighted mapping LS-SVM is finally given by [17] 

YOYBIAYAαBY ••• =−=−== )1()1(   ,
rr

bb                                                      (4) 

with 111, 1T1T1 −−− == γγγγγ ΩΩBΩA , and γγ VxxΩ += ),( jiK . 

The choice of the weights vk is determined based upon the error variables γα kke =  from the (unweighted) LS-SVM 
case. The weighted factor vk is some prior information in estimation of the unknown variables. Here the prior 
information is modeled in the form of a discrete diagonal matrix which associates a weight value vk to each image pixel 
in the neighborhood of pixel (r0, c0). The weight of a pixel reflects the importance the pixel has in the estimation of the 
underlying surface with the mapping LS-SVM. In order to enhance the definition of edges underlying image surface 
along the direction of the local edge, the solution is to adapt the shape of the neighborhood by weighting differently the 
importance of each pixel. One kind of weight function is given by 
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with θθθθ θθ sincos,sincos crcrcr −=+= .where θ is the local edge orientation, and σr >> σc. The value of σc is 
chosen at least three times smaller than the average inter-edge distance. 
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Similar to the orthogonal wavelet transform, we set θ to be 0 and 90 degree, horizontal and vertical direction orientation, 
and then we can deduce the horizontal and vertical support value filters fh and fv from the Eq. (4). From this the original 
image P can be decomposed into subbands in horizontal, vertical and diagonal orientations in the following method 

H = imfilter(P, fh ,'replicate');       L=P-H; 

LH = imfilter(P, fv ,'replicate');     LL=L-LH; 

HH = imfilter(P, fv ,'replicate');    HL=H-HH; 

Based on these directional sub-bands of image, the directional support value transform (DSVT) can be developed by 
filling zeros in the basic directional support value filters and obtaining a series of multi-scale support value filters. 
Similar to the standard SVT, the DSVT is a multi-resolution transform with frame elements indexed by scale and 
location parameters. For the DSVT, many parameters of the weighted mapping LS-SVM need to be defined and refined, 
such as kernel function K and parameter γ  and the σr and σc. These parameters for the different focuses image fusion 
can be optimized. The parameter σ in RBF kernel is set to be 0.6 and γ  is set to be 1, the size of the vector space is set 
to be 5×5 pixels, and the σr and σc is set to be 40 and 0.5 respectively. The optimal horizontal support value filter is 
finally given as follow [16]. 
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3.  IMAGE DENOISING 
We now apply our digital transforms for removing noise from image data. Suppose that one is given noisy data of the 
form 

 
Figure 1 Profiles of support value images of synthetic image 

jiji zjifx ,, ),( σ+=                                                                                (7) 

where f is the image to be recovered and z is white noise, i.e., )1,0(~...
, Nz dii
ji . Figure 1 shows the profiles of the 

support value images from the results of support value transform on a synthetic image. As shown in Figure 1, unlike 
FFTs or FWTs, the support value transform is not norm-preserving and, therefore, the variance of the noisy support 
values will depend on the support value index λ . For instance, letting F denote the discrete support value transform 
matrix, we have ),0(~ T...

, FFF Nz dii
ji . Because the computation of FFT is prohibitively expensive, we calculated an 
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approximate value 2~
λσ of the individual variances using Monte-Carlo simulations where the diagonal elements of FFT 

are simply estimated by evaluating the support value transforms of a few standard white noise images. 

Let λy  be the noisy support value coefficients (y=Fx). We use the following hard-thresholding rule for estimating the 
unknown support values 

 σkσyyy λλ
~ if   ,ˆ ≥= λλ                                                                      (8) 

 σkσyy λλ
~ if     ,0ˆ ≥=λ                                                                      (9) 

In our experiments, we actually chose a scale-dependent value for k; we have k=0.9 for the first scale and k=0.1 for the 
second scale while k=0.01 for the others. 

4.  IMAGE DENOISING EXPERIMENTS 

In our first example, a Gaussian noise with a standard deviation equal to 20 was added to the classical Lenna image (512
×512). Several methods were used to filter the noisy image. 

1) Thresholding of the proposed directional support value transform (DSVT). 

2) Hard thresholding of decimated wavelet transform. 

3) Thresholding of curvelet transform [10]. 

5) Hard thresholding of dual tree wavelet transform, only the real part is used here. 

We use the peak signal noise ratio (PSNR) as an objective measure of performance. In addition, we used our own visual 
capabilities to identify artifacts whose effects may not be well-quantified by the PSNR value. The sort of artifacts we are 
particularly concerned about may be seen on display in the upper right panel of Figure 2, which displays a wavelet 
reconstruction. This image has a number of problems near edges. In reconstructing some edges which should follow 
smooth curves one gets edges which are poorly defined and very choppy in reconstruction (for example in the crown of 
the hat); also some edges which are accurately reconstructed exhibit oscillatory structure along the edge which is not 
present in the underlying image (for example in the shoulder and the hat brim). We refer to all such effects as artifacts. 

Our experiments are reported on Figure 2 and Figure 3. The latter figure represents a detail of the original image and 
helps the reader observe the qualitative differences between the different methods. We observe the following. 

The support value reconstruction does not contain the quantity of disturbing artifacts along edges that one sees in wavelet 
reconstructions. An examination of the details of the restored images (Figure 3) is instructive. One notices that the 
decimated wavelet transform exhibits distortions of the boundaries and suffers substantial loss of important detail. 

The curvelet transform enjoys superior performance over local ridgelet transforms, but it exhibits numerous small-scale 
embedded ridge-like blemishes. 

The support value reconstructions display higher sensitivity than the wavelet-based reconstructions. But it exhibits 
numerous small-scale embedded point-like blemishes. 

To study the dependency of the support value denoising procedure on the noise level, we generated a set of noisy images 
(the noise standard deviation varies from one to 100) from both Lenna and Barbara. We then compared the four 
different filtering procedures based, respectively, on the directional support value transform (DSVT), curvelet transform 
(Curvelet) and on the decimated (standard DWT) and dual tree complex (real DTWT) wavelet transforms. This series of 
experiments is summarized in Figure 4 which displays the PSNR versus the noise standard deviation. These 
experimental results show that the DSVT outperforms wavelets for removing noise from those images, as the DSVT 
PSNR is systematically higher than the wavelet PSNRs—and this, across a broad range of noise levels. 

To measure three-dimensional motion of stent-graft markers with a very high accuracy and precision, we also apply the 
proposed method on the X-ray image obtained form the FRSA system. The Figure 5 shows the filtered results. As shown 
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in Figure 5, the proposed support value reconstruction method provides more clear and more fidelity locations of the 
markers. 

 

 
Figure 2 (Top left) Noisy image and (top right) filtered images using the decimated wavelet transform, (bottom left) the 

curvelet transform and the (bottom right) support value transform. 

5.  CONCLUSIONS 
In this paper, we presented a strategy for digitally implementing the directional support value transform. And also apply 
the proposed transform on the image denoising. The work presented here is an initial attempt to address the problem of 
image denoising using digital analogs of some new mathematical transforms. Our experiments show that support value 
thresholding is encouraging, particularly as there seem to be numerous opportunities for further improvement. 
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Figure 3 (Top left) Noisy image and (top right) filtered images using the decimated wavelet transform, (bottom left) the 

curvelet transform and the (bottom right) support value transform. The edges of the hat have been recovered with much 
greater fidelity in the support value transform approach. 
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Figure 4 PSNR versus noise standard deviation for different denoising methods. The four methods based on the directional 

support value transform, curvelet, decimated and dual tree wavelet transforms are represented with different color lines, 
respectively. The left panel corresponds to Lenna, and the right to Barbara. 
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Figure 5 (Top left) X-ray image and (top right) filtered images using the decimated wavelet transform, (bottom left) the 

curvelet transform and the (bottom right) support value transform. 
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