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Abstract: Advances in near real-time rainstorm prediction using remote sensing have offered
important opportunities for effective disaster management. However, this information is subject to
several sources of systematic errors that need to be corrected. Temporal and spatial characteristics of
both satellite and in-situ data can be combined to enhance the quality of storm estimates. In this study,
we present a spatiotemporal object-based method to bias correct two sources of systematic error
in satellites: displacement and volume. The method, Spatiotemporal Contiguous Object-based
Rainfall Analysis for Bias Correction (ST-CORAbico), uses the spatiotemporal rainfall analysis
ST-CORA incorporated with a multivariate kernel density storm segmentation for describing the
main storm event characteristics (duration, spatial extension, volume, maximum intensity, centroid).
Displacement and volume are corrected by adjusting the spatiotemporal structure and the intensity
distribution, respectively. ST-CORAbico was applied to correct the early version of the Integrated
Multi-satellite Retrievals for the Global Precipitation Mission (GPM-IMERG) over the Lower Mekong
basin in Thailand during the monsoon season from 2014 to 2017. The performance of ST-CORABico
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is compared against the Distribution Transformation (DT) and Gamma Quantile Mapping (GQM)
probabilistic methods. A total of 120 storm events identified over the study area were classified into
short and long-lived storms by using a k-means cluster analysis method. Examples for both storm
event types describe the error reduction due to location and magnitude by ST-CORAbico. The results
showed that the displacement and magnitude correction made by ST-CORAbico considerably reduced
RMSE and bias of GPM-IMERG. In both storm event types, this method showed a lower impact on
the spatial correlation of the storm event. In comparison with DT and GQM, ST-CORAbico showed a
superior performance, outperforming both approaches. This spatiotemporal bias correction method
offers a new approach to enhance the accuracy of satellite-derived information for near real-time
estimation of storm events.

Keywords: bias correction; satellite-based precipitation; spatiotemporal analysis; object-based
method; storm events

1. Introduction

Rainfall is a key component in the hydrological cycle and the primary source of freshwater in
many regions. However, climatic extremes, such as floods and landslides that are caused by heavy
rainfall events, pose a great threat to communities causing loss of life and damage to properties [1,2].
Flood monitoring and water management applications require a high accuracy representation of
rainfall in extreme conditions [3]. This is of particular importance in tropical monsoonal climates,
such as the Mekong basin region, where convective storm events are localised in space and time.

Traditionally, rain gauges and ground-based weather radar networks have provided the most
reliable precipitation data at the catchment scale [4]. However, in many areas around the world,
these data are either scarce or not available. An irregular distribution of these ground-based observation
stations makes it difficult to discern spatiotemporal features of convective storms and their associated
rainfall fields. Therefore, satellite-based remote sensing measurements have become an important
source of rainfall data e.g., [5–7]. These satellite-based measurements enable monitoring of storm
events at a quasi-global scale in near real-time. In comparison to other remote systems, such as
ground-based weather radar, satellite sensor observations provide a wider coverage, being able to
acquire data on storm systems in regions where topographic variations limit or obstruct weather
radars [8].

Satellite-based precipitation estimates are derived by combining visible to long-wave infrared
(VIS/IR) sensors from the Geosynchronous Earth Orbit (GEO) satellite with Passive Microwave (PMW)
sensors from the Low Earth Orbit (LEO) satellites. VIS/IR sensors are relevant to measure albedo
and cloud top temperature with a high temporal and spatial resolution [9,10]. On the other hand,
PMW sensors can penetrate clouds for measuring thermal emissions, which are attenuated by raindrops
with a 3-h interval [11,12]. Currently available and commonly used Satellite-based Precipitation
Products (SPP) include the Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks (PERSIANN) [13], the NOAA Climate Prediction Center MORPHing technique
(CMORPH [14]), the Multi-satellite Precipitation Analysis from the Tropical Rainfall Measurement
Mission (TMPA) [15,16], and the Integrated Multi-satellitE Retrievals from the Global Precipitation
Measurement (GPM-IMERG) [17]. Sun et al. [18] details a comprehensive review of the main global
available satellite-based precipitation datasets.

Despite advances in the field of remote sensing, SPP information is subject to several
systematic and random errors that require correction e.g., [19–21]. A wide range of bias correction
methodologies has been developed to improve the performance of SPP, leveraging ground-based
observations. Several examples include linear scaling, local intensity scaling, the power and
distribution transformation methods, and Gamma Quantile mapping e.g., [8,22,23]. These methods all
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adjust SPP as function of rainfall intensity values, ignoring important systematic errors, such as those
that are caused by displacement and timing.

In the field of weather forecasting, displacement error in storm prediction has been taken using
spatial verification methods into account [24–26]. These “nontraditional” methods do not rely on
point-to-point matches between the observed and estimated fields for avoiding double penalties
(e.g., rainfall estimated but not observed and vice versa) that are commonly found in traditional
approaches. Methods can be broadly grouped into neighbour or fuzzy [27,28], scale separation [29–31],
object-based e.g., [24–26], and field transformation [32,33]. The first two categories can be described
as spatial filtering methods, in which the verification statistics are evaluated at coarser resolutions to
provide information about the scale of the performance. Object-based and field transformation are
considered as displacement verification methods when estimated rainfall fields, defined as an object,
are spatially manipulated (displacement, rotation, scaling, etc.) to try to fit the observed value.

Several studies have used spatial verification methods to analyse and correct systematic error
of SPP based on the characteristics of matched storm objects, such as location, rotation, intensity,
and shape [34–36]. For instance, Demaria et al. [37] used the object-based method, Contiguous
Rainfall Analysis (CRA, Ebert and McBride [24]), to correct the location error of CMORPH, PERSIANN,
and the TMPA datasets over the Plata basin. Recently, Le Coz et al. [38] used the field transformation
method, called Feature Calibration and Alignment technique (FCA), to correct the error due to location
in the GPM-IMERG late version over Sub-Saharan Africa. These methods have been useful for
correcting the displacement errors when the grid resolution is high and the storm event is small, while
preserving the higher spatial variability of SPP storm. However, these methodologies are constrained
by the two-dimensional analysis of the storm event.

The spatiotemporal analysis can provide a much deeper analysis on aspects of the entire life-cycle
of the storm event, including time span, speed, evolution, among others. In the literature, error
analysis using spatiotemporal approaches has been useful to evaluate the performance of several
spatial rainfall products. For example, Ref. [39,40] used the Object-Based Diagnostic Evaluation
time-domain (MODE-TD) that was proposed by Bullock [41] to evaluate the convection-allowing
forecast from the Weather Forecast Model over the United States. Recently, Laverde-Barajas et al. [42]
used the Spatiotemporal Contiguous Rainfall Analysis (ST-CORA; Laverde-Barajas et al. [43]) in the
Southeast region of Brazil for analysing the error composition of the CMORPH SPP and evaluated the
individual hydrological response of two systematic error sources: location and magnitude. This study
demonstrated the importance of spatial and temporal storm characteristics to analyse the main
systematic error sources in SPP.

Spatiotemporal storm analysis incorporated into bias correction methods is key to reduce
several sources of systematic error in SPP. In this study, we present a spatiotemporal object-based
bias correction method to reduce several systematic errors in storm events estimated by satellite.
The method, called Spatiotemporal Contiguous Object-based Rainfall Analysis for Bias Correction
(ST-CORAbico), uses the main storm characteristics of satellite and observed events detected by the
ST-CORA method to remove errors due to displacement in space and time and volume. This method
is evaluated over the lower Mekong Basin in Thailand to correct several storm event types in the
Integrated Multi-satellitE Retrievals for GPM (GPM-IMERG) early version during the monsoon season
from 2014 to 2017. The performance of ST-CORAbico is compared against two widely used probabilistic
methods—Distribution Transformation and Gamma Quantile Mapping. This manuscript is organised,
as follows: Section 2 describes the study and the rainfall data-sets; Section 3 details the methodology
of ST-CORAbico; Sections 4 and 5 contain the results and associated discussion; and finally, Section 6
presents the conclusions and future work.
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2. Study Area and Data

2.1. Study Area and Period

The study was conducted in Isan, in the northeastern region of Thailand (Figure 1). This region is
part of the Mekong-river basin, with an average discharge of 475 km3/year. The Mekong river basin
covers a total drainage area of 795.000 km2 and it is characteristically divided into the upper and lower
basins. The Lower Mekong river in Thailand is located in the Lower Mekong basin, covering 23% of
the total drainage area (184.000 km2) and representing 36% of the country (Figure 1).

Figure 1. Digital elevation of the Lower Mekong Basin in Thailand. Red rectangle corresponds to the
study area in the Isan region. Red dots represent the hourly rain gauge stations from www.thaiwater.net.
Blue line represents the Lower Mekong river network.

Heavy rainfall often occurs in the Lower Mekong river basin during the Asian monsoon period
between June to October. In this period, the covariability of the Indian summer monsoon and East
Asian summer monsoon impacts the Lower Mekong basin, causing high convective storm events that
are the main trigger for flash floods and landslides [44,45]. We focused on the wet months for the years
2014 to 2017, as these disasters are mostly occurring during the wet season.

2.2. Satellite-based Precipitation Data

ST-CORAbico was used to correct storm events detected by the Integrated Multi-satellitE
Retrievals for GPM (GPM-IMERG). GPM-IMERG is a high-resolution global precipitation product
produced by [17] from the NASA/JAXA Global Precipitation Measurement (GPM) mission.
The product combines information from multiple infrared, passive-microwave, and satellite-radar
sensors to provide rainfall estimations at 0.1-degree spatial resolution every half-hour. GPM-IMERG
computes Early, Late, and Final runs. The first two runs are near real-time versions of IMERG
and are available at six hours and 18 hours latency, respectively. In the Early version, rainfall
estimations are propagated forward while the Late has both forward and backward propagation
allowing the incorporation of climatological gauge data. The final version is obtained three months
after the measurements. In this run GPM-IMERG ingests the monthly rainfall analysis from the Global
Precipitation Climatology Centre (GPCC; Schneider et al. [46]). This version is used for scientific

www.thaiwater.net
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purposes, as it is considered to be the most reliable version [17]. In this study, we evaluated the early
run of GPM-IMERG at a half-hourly temporal resolution. This version was selected, given it is the
lowest latency data product available, a crucial aspect for operational applications.

2.3. In-Situ Ground-Based Rainfall Observations

Hourly rainfall data during the monsoon season from 2014 to 2017 were obtained from a dense
network of 138 rain gauge stations from the Thailand Integrated Water Resource Management System,
operated by the Hydro-Informatics Institute (HII) in Thailand (Figure 1). Data were quality controlled
by mirroring the density distribution functions of neighbouring stations to remove outlier values
considered as noise. These observations were then further interpolated using the Ordinary Kriging
interpolator from Golden Software [47] at 0.1 degrees for each hour to match the spatial and temporal
resolution of the GPM-IMERG data. This method was selected due to the moderated topographic
conditions of the study area and density of the rain gauge measurements. Raingauge data were
interpolated using an exponential variogram with a sill of 1.14 (mm2/h2), a range of 4.4 km and a
nugget of 0.66 (mm2/h2). It must be noted that interpolation methods for rainfall data are subject to
uncertainty e.g., [48,49]; however, in our case, a dense and optimal rain gauge distribution can reduce
the level of uncertainty from the interpolation method [50].

3. Methodology

ST-CORAbico was developed in order to analyse the spatiotemporal characteristics of storm events
and bias correct the main sources of systematic error in satellites. Figure 2 shows the methodology
of ST-CORAbico. In this section, we describe the elements for storm analysis and bias correction
in ST-CORAbico.

Figure 2. Diagram of the Spatiotemporal Contiguous Object-based Rainfall Analysis for bias correction
(ST-CORAbico) method. Grey boxes represent the input and output products while white boxes
describe the methodological process for storm analysis and bias correction components.
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3.1. Storm Analysis

In the storm analysis, ST-CORAbico uses ST-CORA to analyse the spatiotemporal characteristics
of the storm events observed and detected by satellites. This process requires the definition of the
spatial and temporal domain in order to reduce the computational time of ST-CORA. We applied a
spatiotemporal searching algorithm to predetermine the region of analysis in ST-CORA. This algorithm
uses the spatial searching algorithm concept that was proposed by Guttman [51] to index areas with
rainfall information in both datasets. The indexing is made in a two-dimensional space compressing
the latitude and longitude dimensions using a maximum intensity value as a reference. Once the
spatiotemporal domain is defined, we use ST-CORA in the observed and SPP dataset to identify storms
in the rainfall data. In this study, ST-CORA incorporates a multivariate kernel density function for
storm segmentation.

3.1.1. Storm Segmentation Using the Spatiotemporal Object-Based Rainfall Analysis with Multivariate
Kernel Density Segmentation

ST-CORA was applied to analyse the spatiotemporal characteristics of storm events at the
catchment scale (duration, spatial extent, magnitude, and centroid). This method enables the feature
extraction of different storm event types, classified based on hydrometeorological criteria. ST-CORA
uses a multidimensional connected labelling component algorithm to associate connected voxels in
space and time (a volume generalisation of pixels) into a disjoint object labelled with a unique classifier.
This operation is built upon binary information that was created by voxels, considered to be ‘effective
rainfall’. Effective rainfall voxels S[x,y,t] are defined according to rainfall voxels Rx,y,t above the rainfall
intensity threshold IT, as:

S[x,y,t] :=

{
1, if Rx,y,t ≥ IT.

0, otherwise.
(1)

where, IT is defined by the user and S[x,y,t] is defined in terms of 1 = “true” or 0 =”false”. In this study,
we used IT = 1mm/h to define effective rainfall [52]. Once binary voxels are created, the connected
labelling component algorithm scans all voxels in a neighbour system (from top to bottom and left to
right), assigning preliminary labels to S[x,y,t], as follows:

c(S[x,y,t]) =
{

N[x,y,t] ∈ αs : SCR = SN
}

(2)

where, c(S[x,y,t]) is a preliminary label, SCR, SN are properties of the voxel S[x,y,t] and its neighbours
N[x,y,t], respectively, while αs is the neighbour system in space and time. The labelling process c(S[x,y,t])

is repeated to resolve equivalence classes of the spatiotemporal object.
Bethel et al. [53] found that object segmentation, while using image thresholding, such as the

connected component labelling method, has limitations for edge detection in data with unknown
topology. In the original ST-CORA, a size-filtering algorithm and morphological closing method are
incorporated in order to remove both small noisy objects and a false merging effect, respectively.
However, this process is based on a binary object not taking into account the intensity value of voxels.
To overcome this limitation, we have incorporated a Multivariate Kernel Density Estimation (KDE)
approach to segment rainfall objects when considering their four dimensions. This method assumes a
non-parametric probability density distribution technique for d-dimensional data. Notably, KDE has
been widely used in many fields for image detection and object tracking, e.g., [54–58]. Multivariate
kernel density is estimated at point x from a random sample X1, X2, ...Xn from a density function, f ,

f̂K(x) =
1
n

n

∑
i=1

Kh (x− xi) (3)

where K corresponds to the kernel function and h is the bandwidth matrix. Choosing the bandwidth
matrix can be restricted to a class of positive diagonal matrices [59]. In the literature, there are several
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bandwidth selection methods for kernel density estimation [59,60]. For this approach, we use the
normal reference rule-of-thumb proposed by Henderson and Parmeter [61]. This method estimates the
bandwidth while assuming that the density distribution function follows a Gaussian distribution.

The process of edge detection using KDE is based on the Edge Detection by Density method that
was developed by Pereira et al. [55]. This process evaluates the multivariate density distribution of
the density of a four-dimensional (4D) rainfall object (Figure 3), and segments the object based on
the density threshold, u. This threshold identifies the storm edges that are lower than a probability
percentage. This parameter is calculated by analysing the relationship between threshold delineation
and the connected intensity value. We found that the 25th distribution percentile for u threshold
showed good results for storm segmentation over the Lower Mekong Basin, especially for intense
storm events, which are characteristic of monsoon environments.

Rainfall Objects are considered to be storm based on the Critical Mass Threshold (CMT), which is
defined as the minimum volume of rainfall (km3) necessary to be considered as an extreme event [62].
The value of CMT is calculated locally based on the sensitivity between the spatial extent and the total
object volume [37,63]. In this analysis, we also incorporated the sensitivity of CMT to the maximum
intensity of the storm in order to evaluate the response of intense storm events in the study area.
Based on the sensitivity analysis of those parameters, we selected a CMT of 0.01 km3 for storm events
with a maximum intensity greater than 10 mm/h. In the study area, these events correspond to rainfall
objects bigger than 2000 km2.

Figure 3. Multivariable kernel density of a storm object in space and time. Example for the storm
event 2014-07.

3.1.2. Matching Process

As a result of ST-CORA, multiple storm events are identified in both observed and satellite data
sets. However, it is necessary to determine the observed and estimated storm matches. We used the
Intersection-over-Union measure (IoU) in order to evaluate the level of similarity between predicted
and observed data. IoU is defined as the ratio between the size of the intersection and the union of
both objects. This is represented by the following equation:

IoU =
TP

FP + TP + FN
(4)
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where, TP represents true positives and FP and FN are false positives and negatives, respectively.
The selection of the intersection rate value determines the level of matching between objects. If the
values are too low, multiple objects will be indexed with the same object. On the other hand, high
values indicate that the object does not have any match. We found the IoU value to be 30 percent in
the selected study area, which is a good balance for matching the observed and satellite storm events.

3.1.3. Storm Classification

Once all of the storm events are identified, ST-CORA classifies storm events into two types: small
convective systems with a short duration (short-lived) and long duration systems extended over large
areas (long-lived) [64,65]. We used an unsupervised K-means cluster analysis method to classify short-
and long-lived storm events based on the four main storm characteristics (duration, spatial extent,
maximum intensity, and total volume). This method divides n observations into k clusters in which
each observation is a member of the cluster that minimises the objective function J, as follows:

J =
k

∑
j=1

n

∑
i=1
‖X(x,y,z,c)

j
i
− Cj‖2 (5)

where, X is the storm with dimensions x, y, z, c corresponding to the storm characteristics duration,
spatial extent, maximum intensity and total volume, respectively. C is the centroid of the cluster k and
the absolute number represents the minimum Euclidean distance to C.

3.2. Bias Correction

Bias correction is the second component of the ST-CORAbico method. This component is based
on the systematic error source extraction for SPP that was proposed by Laverde-Barajas et al. [42].
Based on the error decomposition for storm estimation defined by Ebert and McBride [24], satellite
error is composed of systematic and aleatory errors due to displacement, volume, and pattern, as:

Etotal = Edisplacement + Evolume + Epattern (6)

where displacement and volume represent the systematic errors and pattern is the aleatory error
calculated as follows:

Edisplacement = Etotal − Eshi f ted (7)

Evolume = Etotal − Emagnitude (8)

Epattern = Eshi f ted − Evolume (9)

In Equations (7) and (8), location is the main source of error due to displacement, while the
magnitude is the corresponding source of error for volume. Using the error subtraction from
Laverde-Barajas et al. [42], ST-CORAbico corrects displacement and volume error using the
following process:

Displacement Correction

Displacement correction corresponds to removing the shifting effect of the estimated storm.
In this step, the Principal Component Analysis method (PCA, Johnson and Hebert [66]) is used in
order to obtain the weighted centroid and orthogonal variables (eigenvectors, eigenspace) of the
SPP storm and reference data (Figure 4a). Once the geometric properties of the objects are obtained,
the weighted centroid is matched and the object is rotated accordingly to fit the eigenvectors of the
reference storm data.
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Figure 4. ST-CORAbico systematic error subtraction. (a) In error correction, storm centroid and
eigenvectors derived from principal component of GPM-IMERG are fitted to the observed event;
and, (b) magnitude subtraction using both satellite and observed empirical distribution functions,
with respect to intensity.

Volume Correction

Volume correction corresponds to the subtraction of the magnitude source of error of the SPP.
Using the statistical Empirical Quantile Method (EQM) [67], magnitude error is subtracted by adjusting
all moments of the empirical cumulative distribution functions (ecd f s) of the SPP in terms of intensity,
with respect to the reference data (Figure 4b). EQM builds the ecd f for the observed (ecd fobs) and the
satellite (ecd fsat) while using the intensity storm distribution Is, as:

EQM = ecd f−1
obs (ecd fsat(Is)) (10)

3.3. Evaluation of ST-CORAbico

The evaluation was done by comparing the bias-corrected results with two widely used
probabilistic bias correction methods— the Distribution Transformation (DT) method and the Gamma
Quantile Mapping (GQM). The DT method was originally developed for the statistical downscaling
of climate model data [68]. The method corrects the mean and difference in variation of the SPP by
matching the satellite and the observed distribution based on Equation (11):

DT = (SAT(t)− µsat)DTτ + τsat × DTµ (11)

where, µ and τ are the mean and standard deviation of the observed and satellite, respectively. DTµ

and DTτ are the mean and standard deviation ratio between the observed and satellite data at time t.
The Gamma Quantile Mapping method uses the same methodology as the Empirical Quantile

mapping method (10), based on the assumption that both observed OBS and satellite SAT intensity
follows a gamma distribution [69]. DT and GQM are implemented for each time-step in order to
correct the storm event. The bias correction performance is evaluated based on three widely used error
metrics: the Root Mean Square Error (Equation (12)) for evaluating the magnitude error, the bias level
(Equation (13)) to evaluate the systematic bias, and the correlation coefficient (Equation (14)) in order
to analyse the linear correlation between the observed and the bias-corrected storm event.

RMSE =

√√√√ 1
N

N

∑
i=1

(OBSi − SATi)2 (12)
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Bias =

N
∑

i=1
(SATi −OBSi)

N
∑

i=1
(OBSi)

(13)

r =

N
∑

i=1
(SATi − SAT)(OBSi −OBS)√

N
∑

i=1
(SATi − SAT)2

√
N
∑

i=1
(OBSi −OBS)2

(14)

where, OBS represents the rainfall values of the reference rain gauge data and SAT are the satellite
and the bias-corrected storm obtained with each method.

4. Results

4.1. Storm Analysis

We identified 120 storm events observed and estimated by GPM-IMERG at an hourly scale for
the 2014–2017 monsoon seasons. Figure 5 shows the scatter plot of the main storm characteristics
(total volume, duration, spatial extent, and maximum intensity) and classification between short-
and long-lived storm events using the k-means cluster analysis. For all events, 68 storms (56%)
were classified as short-lived storms while 52 (44%) of storms were classified as long-lived events.
Short-lived events had a duration that ranged between three and 17 h, with a maximum spatial extent
of 42 thousand km2. Long-lived events had a duration ranging between 18 and 31 h and covered
between 54 and 110 thousand km2. In terms of total volume and maximum intensity, short-lived
events have a total volume of up to 0.15 km3 with low and intense storms ranging from 3 to 82 mm/h.
On the other hand, long-lived storms are comprised of medium and high-intensity events with a total
volume ranging from 0.27 to 0.65 km3. Table 1 describes the observed storm characteristics for short
and long-lived event types.

Figure 5. Short- and long-lived cluster analysis classification for observed events during monsoon
season 2014–2017.
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Table 1. Storm characteristics for short- and long-lived event types.

Storm Type Statistics Duration (h) Spatial Extent (km2) Maximum Intensity (mm/h) Total Volume (km3)

mean 9 15,097 33.0 0.04
Short-lived storm min 3 1900 3.6 0.01

max 17 42,300 82.0 0.15

mean 18 54,400 71.4 0.27
long-lived storm min 10 24,300 31.6 0.07

max 31 110,600 100.0 0.64

4.2. Results for Bias Correction

We selected a short-lived and a long-lived storm in order to describe the workflow for
displacement and volume correction made by ST-CORAbico. Figures 6 and 7 present the bias correction
steps for each storm event type. Panel (a) shows the spatial distribution of the observed and satellite
events as well as the bias-corrected satellite storm events that were obtained from the correction of
location and magnitude errors in ST-CORAbico. Panel (b) describes the displacement and volume
corrections. Panel (c) presents the four-dimensional (4D) spatiotemporal evolution of the observed and
satellite as well as the bias-corrected storm (time in the z-axis). Panel (d) shows the bias and RMSE
statistics as well the scatter and correlation between the observed storm and original and bias-corrected
satellite events.

Both examples (Figures 6 and 7) show the importance of bias correction. In both the short and
long-lived event scenarios, GPM-IMERG had a longer duration with a larger footprint. However,
the long-lived event presented a better spatial agreement than the short-lived event. In terms of
magnitude, GPM-IMERG considerably overestimated the total volume and rainfall intensity of the
storm. Overall, the performance of GPM-IMERG shows a positive bias and high RMSE, mostly being
caused by an excess of rainfall. The correlation coefficients for short- and long-lived event scenarios
were 0.7 and 0.5, respectively.

Figure 6. Performance of ST-CORAbico for a short-lived storm event (2014-08-27). (a) total events for
observed, satellite and ST-CORAbico; (b) volume, displacement correction maps; (c) four-dimensional
(4D) spatiotemporal evolution (lat, lon, time, intensity); and, (d) bias, RMSE statistics, and scatter and
correlation between observed and estimated rainfall values.

The corrections in displacement and volume made by ST-CORAbico displayed notable changes in
the satellite storm structure. In both scenarios, RMSE and bias were mostly reduced by correction due
to volume, contributing 40 to 60% of the RMSE reduction and around 70% of the total bias reduction
for both events. Displacement correction had an important impact on the reorientation of the satellite
storm. The individual correction contributed to 5% of the RMSE correction and 10% reduction of the
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total bias for the short-lived event. In the case of the long-lived scenario, displacement correction
contributed almost 15% of the RMSE reduction and 20% of the total bias reduction. In terms of the
correlation coefficient, displacement and volume correction that were made by ST-CORAbico showed
a marginal impact on the spatial correlation for the short-lived events. For the long-lived scenario,
this did not impact the spatial correlation.

Figure 7. Performance of ST-CORAbico for a long-lived storm event (2014-07-21). (a) total events for
observed, satellite and ST-CORAbico; (b) volume, displacement correction maps; (c) 4D spatiotemporal
evolution (lat, long, time, intensity); and, (d) bias, RMSE statistics and scatter and correlation between
observed and estimated rainfall values.

Figure 8 presents the performance of ST-CORAbico for short- and long-lived storm events.
This figure describes the density distribution of RMSE (a–b), bias (c–d), and correlation coefficient
(e–f) of the short- and long-lived storms estimated by GPM-IMERG, ST-CORAbico, and the individual
corrections due to displacement and volume. It was found that ST-CORAbico has a smaller error
distribution in RMSE and bias for short- and long-lived storm events when compared with the original
GPM-IMERG. This error reduction is mostly caused by the correction due to volume. Displacement
correction was an important factor in reducing the bias, especially for long-lived storm events.
The results from the correlation coefficient showed that ST-CORAbico had a marginal effect on the
spatial correlation of the storm event. Overall, it was found that ST-CORAbico considerably reduced
the systematic error of GPM-IMERG.

4.3. Model Comparison

ST-CORAbico was compared with the Distribution Transformation method (DT) and the Gamma
Quantile Mapping (GQM) method. Using the short- and long-lived storm scenarios that are presented
above, Figure 9 presents the spatial differences and linear correlation between the total observed storms
and the bias-corrected events obtained by ST-CORAbico, DT, and GQM. The results for both storm
event scenarios showed that ST-CORAbico had the lowest spatial difference among the evaluated
methods. For the short-lived storm scenario, ST-CORAbico displayed the highest correlation coefficient
(r: 0.41) and the lowest RMSE and bias (RMSE: 4.05 mm; bias: 0.74) when compared with DT (r: 0.40;
RMSE: 5.4 mm; bias: 1.17); and, GQM (r: 0.39 RMSE: 6.09mm and bias: 1.5). In the case of the long-lived
storm, ST-CORAbico and DT showed a notable error reduction in contrast to the GQM method that
showed the biggest differences. For this storm scenario, ST-CORAbico had the best performance (r: 0.71
RMSE: 18.02 mm; bias: 0.09), followed by DT (r: 0.68, RMSE: 23.0 mm; bias: 0.32), and finally GQM
(r: 0.62, RMSE: 43.77 mm; bias: 0.97).



Remote Sens. 2020, 12, 3538 13 of 19

Figure 8. Satellite and bias corrected error distribution for short and long-lived events during monsoon
seasons 2014–2017: (a,b) RMSE; (c,d) bias; and, (e,f) correlation coefficient.

Figure 9. Comparison between ST-CORAbico vs Distribution Transformation (DT) and Gamma
Quantile Mapping (GQM).
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Figure 10 presents the comparison between ST-CORAbico, DT, and GQM for short- and long-lived
storm events. The boxplots show the distributions of the RMSE (Figure 10a,b), the bias (Figure 10c,d),
and the correlation coefficient (Figure 10d,f) between the 25% and 75% percentiles for the original
GPM-IMERG and the different bias correction methods. The dots represent the individual error for
each storm event. In comparison with the two probabilistic methods, we found that ST-CORAbico
consistently had the lowest RMSE as well as the lowest bias for both short- and long-lived storm
events. ST-CORAbico and DT had a lower impact on the correlation coefficient, especially for
short-lived events.

Figure 10. Comparison between the satellite GPM-IMERG (red), ST-CORAbico (blue), Distribution
Transformation (green) and Gamma Quantile Mapping (grey) error dispersion during monsoon seasons
2014–2017. (a,b) RMSE; (c,d) bias; and, (e,f) correlation coefficient.

5. Discussion

ST-CORAbico is a spatiotemporal object-based bias correction method that was designed to
reduce the displacement and volume systematic errors of storm events detected by SPP. In comparison
to spatial object-based bias correction methods e.g., [37,38], the inclusion of the temporal component of
the storm event reduced additional error effects due to timing and orientation, improving the efficiency
of the bias correction.

This research incorporated a multivariate kernel distribution algorithm into ST-CORA to segment
the storm event using the four dimensions of the storm event. In comparison to binary segmentation in
the previous version, ST-CORA with KDE segmentation was able to delineate intense storm events by
removing unreal storm configurations as a consequence of false merging and false separation of storms
due to the multidimensional connected labelling component algorithm. Based on the analysis of KDE
threshold delineation and the connected intensity, we found that storm events that were segmented by
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the 25th percentile of the distribution showed a good result for segmenting intense storms with strong
connection. However, further improvement is required.

The implementation of ST-CORAbico described the individual error correction due to
displacement and volume. Results in the Lower Mekong basin indicated that volume errors
were the main error correction, primarily resulting from the high overestimation of GPM-IMERG.
These results agreed with multiple findings regarding hourly GPM-IMERG in monsoonal areas [70,71].
Overall, volume and displacement errors effectively contributed to the reduction of bias and RMSE,
demonstrating the importance of reducing both of these systematic errors in satellite correction.

We acknowledge certain limitations of the study. Firstly, the uncertainty arising from the spatial
interpolation method that was used for rain gauge values was not fully addressed in this research.
Volume and especially displacement corrections in ST-CORAbico can be affected by the type of
interpolation methods used to represent the spatiotemporal distribution of the observed storm. A dense
rain gauge network can reduce the level of uncertainty; however, it is important to evaluate the impact
of the type of interpolation method on the performance of ST-CORAbico, as mentioned above. Another
limitation arises from the sensitivity of IoU percentage to match observed and estimated storm events.
Higher levels do not always correspond to similar events, which affects the bias correction. This process
required an in-depth sensitivity analysis of IoU in order to reduce the automatic storm matching.
Additional analysis is required in order to identify why there is a strong correlation between observed
and predicted storms in a spatiotemporal environment. In this study, we validated the performance of
ST-CORAbico by comparing its performance against two widely used probabilistic methods. However,
error metrics were calculated using the observed values, as there is no independent validation dataset
available. Further implementations should consider an independent dataset to validate the error
correction of the ST-CORAbico method.

This study was conducted in collaboration with the SERVIR-Mekong project and the Mekong
River Commissions (MRC). SERVIR-Mekong is harnessing space and geospatial technologies to
help decision-makers and key civil society groups to integrate geospatial information into their
decision-making, planning, and communication. The application of this methodology can be used
for various scientific purposes, including flood risk and water management. More specifically,
the methodology enhances the input rainfall data, which are a crucial component of flood and drought
early warning systems, landslide monitoring, as well as other water-related decision support systems.
Future work will include the integration of machine learning technologies for near real-time bias
correction of rainfall data when field data are scarce. In this regard, machine learning models will be
trained and optimised using legacy field data and deployed on a near real-time basis.

6. Conclusions

We proposed a new spatiotemporal bias correction method for storm prediction detected
by satellites. The method, called Spatiotemporal Contiguous Object-based Rainfall Analysis for
bias correction (ST-CORAbico), analyses the main spatiotemporal characteristics of the observed
and estimated storm events to correct systematic error sources due to displacement and volume.
This methodology has two main elements: storm analysis for the segmentation and classification of
storm event; and bias correction for correcting error due displacement and volume. In the storm
analysis, we applied the ST-CORA method with a multivariate kernel segmentation in order to identify
the spatiotemporal structure of the storm event. This method was applied over the Lower Mekong
basin in Thailand to correct the GPM-IMERG Early version during the monsoon seasons from 2014
to 2017. The performance of ST-CORAbico was evaluated against the Distribution Transformation
and the Gamma Quantile Mapping methods based on the reduction of RMSE, bias, and correlation
coefficient. The results were divided by classifying the storm events into short- and long-lived storm
events while using the k-means cluster analysis method.

We classified 68 storms (56%) as short-lived storms and 52 (44%) as long-lived events. The results
of both storm event types showed that ST-CORAbico reduced the RMSE and bias of GPM-IMERG.
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Volume correction was the major error source due to the overestimation present in GPM-IMERG.
Location error was most important in the reduction of the bias. ST-CORAbico displayed a marginal
impact on the spatial structure of the satellite-derived rainfall, showing the original structure of the
rainfall data.

The comparison of ST-CORAbico with the Distribution Transformation and the Gamma Quantile
Mapping methods showed that ST-CORAbico had the lowest RMSE as well as the lowest bias in both
short and long-lived events. In terms of the correlation coefficient, ST-CORAbico and DT had a lower
impact on the correlation coefficient, especially for short-lived events.

ST-CORAbico improves the accuracy of satellite-derived near real-time information on storm
events. It can be used in various flood monitoring and water management applications. Our future
studies will also incorporate machine learning methods and related technologies in order to correct
storm events in real-time, in situations where field observation data are scarce.
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