
Deep
Q-Network
Memory
Sharing

Inter-Agent Prioritised Experience Replay
by

Deniz Hofmeister
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Wednesday February 20, 2019 at 13:30.

Student number: 4084799
Project duration: June, 2018 – February, 2019
Thesis committee: Dr. Frans A. Oliehoek, TU Delft, supervisor

Prof. dr. Catholijn M. Jonker, TU Delft
Dr. Matthijs T. J. Spaan, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This master thesis report has been written to fulfil the graduation requirements of a Master of Science in Elec-
trical Engineering at the Technical University of Delft and was done under the supervision of the department
of Intelligent Systems, Delft University of Technology.

All the work done in this report was done by M.D. Hofmeister starting summer 2018 onward. All the code
was writting using python and OpenAI was used to write a custom gym environment in python along with
tensorflow as the backbone of the agents.

Deniz Hofmeister
Delft, February 2019

1

Abstract

Humans teach each other by recollecting one’s own experiences and sharing them with others. The intention
being that the person being taught, does not need to experience those things first-hand to be able to learn
from them. A large portion of human learning is in some form derived from this concept. This has inspired
this report.

Recent developments in Deep Q-Networks applied a so-called replay memory. This replay memory stores
experiences in a buffer for it to learn from later. It is this replay memory that is now used as a source of infor-
mation for other agents. The core principle being attempting to find important entries in the replay memory
and sharing those memories with other agents could improve the learning process of an agent. This memory
selection process is done by use of prioritised sampling. The desired result being an agent able to learn faster.

A memory entry consists of the tuple [st , at ,rt , st+1] and one can calculate its temporal difference error by:

δ j = r j +γ Q̂(s j ,argmax
a

Q(s j , a))−Q(s j−1, a j−1) (1)

This is used to determine the importance of memory samples by influencing how likely those memories are
to be sampled for teaching one another:

P (i) = pα
i∑

k pα
k

pi = |δi |+ε
(2)

Temporal difference is chosen as a metric for importance as it represents a surprise value. This method is
then compared to a baseline DQN-agent who does not communicate, a randomly messaging DQN-agent
and some other variations. The benchmark tasks describe a simple gridworld with objectives with varying
levels of difficulty.

The results of the experiments show that, initially, prioritisation results in rapid learning. This is due to the
fact that agents are able to converge to identical policies without it having detrimental effects on the return of
rewards. This converging, however, has proven to hamstring the learning process as a whole that prioritised
messaging agents have. Very similar policies in benchmark tasks which stand to benefit from heterogeneous
policies lead to agents not being able to find their personal optimal policy. The non-communicating agent
was able to diverge in policies and therefore ultimately solve the problems more efficiently and with a higher
return in rewards.

2

Acknowledgements

I would like to thank my supervisor Frans A. Oliehoek of the Technical University of Delft for giving me a lot
of freedom in asking my own questions in this report and for allowing me to build this thesis around my own
curiosity. Thank you for always thinking with me and asking critical questions.

I would also like to thank Miguel Suau de Castro for the discussions surrounding the topics of this report
and sharing his views on all things related to artificial intelligence. These discussions have helped me to keep
the report focused and precise.

I would also like to thank my friends, Ashish Sachdeva, Gerard Baquer and Guillermo Ortas for being there
for me. I can truly say that my years spent as a master student have been the best years of my life, thank you
for everything.

I am truly grateful for the support and flexibility that was offered by everyone involved, both professionally
and personally. This is especially true for the moments where I have personally not lived up to expectations.
Thank you for being understanding and accommodating.

3

Contents

1 Introduction 1
1.1 Problem Statement . 2

2 Background 3
2.1 Markov Decision Process . 3

2.1.1 Partially Observable Markov Decision Process . 4
2.2 Reinforcement Learning . 4

2.2.1 Discounted Future Rewards . 4
2.2.2 Value-Function . 5
2.2.3 Model-Free Learning. 5
2.2.4 Q-Function . 6
2.2.5 ε-greedy Policy . 6
2.2.6 Q-Learning. 6

2.3 Fully-Connected Neural Networks . 7
2.3.1 Loss Function . 8
2.3.2 Backpropagation & Gradient Descent . 8

2.4 Deep Q-Network . 8
2.4.1 Target Network. 8
2.4.2 Replay Memory . 9
2.4.3 Loss-Function . 9
2.4.4 Full Algorithm . 9

2.5 Prioritised Experience Replay . 10
2.5.1 TD-Error . 10
2.5.2 Full Algorithm . 10

3 RelatedWork 11
4 Methodology 12

4.1 Simulation Environment . 14
4.1.1 Method . 14
4.1.2 Environment Parameters . 17

4.2 Agent . 18
4.2.1 Method . 18
4.2.2 Agent Parameters . 19

4.3 Performance Metrics . 20
4.4 Expectations . 21

5 Results 22
5.1 Benchmark Task 1. 22

5.1.1 Average Performance . 23
5.1.2 Inter-Agent Performance. 24
5.1.3 Agent Routing . 25

5.2 Benchmark Task 2. 26
5.2.1 Average Performance . 26
5.2.2 Inter-Agent Performance. 27
5.2.3 Agent Routing . 28

5.3 Benchmark Task 3. 29
5.3.1 Average Performance . 29
5.3.2 Inter-Agent Performance. 30
5.3.3 Agent Routing . 31

4

Contents 5

6 Discussion 32
6.1 Performance Gap . 32
6.2 PS-PUS vs PUS-PS Differences . 33
6.3 Computational Load . 33

7 FutureWork 34
7.1 Prioritise Only Common Policies . 34
7.2 Limiting Communication . 34
7.3 Master - Student Hierarchy . 35

8 Conclusion 36
Bibliography 37

.1 Challenge 1 . 38

.2 Challenge 2 . 40

.3 Challenge 3 . 42

1
Introduction

Artificial neural networks have been a focus of research for decades. The idea of being able to simulate neu-
rons and, in the grander scheme, brains have always been one of the ultimate goals of this field of research.
Being able to recreate human or animal intelligence artificially or having computers being able to solve com-
plex and abstract tasks better than humans is something that has fascinated and motivated many. Going
beyond simulating a single brain, tasks which require cooperation or competition, requires teamwork or ri-
valry, is another direction this research can go into and will be the focus of this report.

The first publication that sparked the research on artificial neural networks came from the biological per-
spective. Hebb [3] published a book on the workings of biological neural networks and it was theorized in
the book that neurons would improve their connections with neighbouring neurons if they would activate
together. He suggested that neurons might work by strengthening pathways in the brain each time they are
used. A while later, the first artificial neural network was simulated by Rosenblatt [9] in 1957 with his research
on perceptrons. In 1969, Minsky and Papert [7] published a book called Perceptrons. This book marked the
center of Artificial Intelligence discussions for the coming years. This is largely due to the fact that Minsky and
Papert [7] expressed heavy criticism on the topic and numerous attempts failed at refuting the criticism. After
this research artificially recreating the behaviour of neurons was put on hold. Events in this period made this
direction of research seem to be a dead end. Fast forwarding to recent decades, there have been a number
of important breakthroughs. Back-propagation became the norm in solving the weights for neural networks
and later on the paper by Mnih et al. [8] showed neural networks with a Deep Q-Network (DQN) architecture
were able to play a select set of computer games better than humans and therefore making DQNs a proper
basis on which the proposed information sharing method will be built on.

DQN’s are used in this report as a platform on which a communication system is built. This report
searches for ways on how multiple agents in the same environment can stand to benefit from each others’
information and experiences. From a human perspective, an import method of learning is by being taught
something from someone else. The person shares his/her experiences with the intention of having you learn
from that information such that you don’t need to experience those moments first hand. Sharing information
should, intuitively speaking, lead to an improvement in learning speed.

This report explores through simulations different possibilities of information sharing with local agents.
Limitations are applied to be more representative to what an agent would encounter as a physical robot,
therefore steps out of the simulation realm : Agents cannot communicate over an infinite amount of distance
and therefore a limit will be applied in the simulations. The second limitation that is applied is local observ-
ability. Each agent will only be able to observe its direct surroundings and not the entire map. An agent will
need to solve simple tasks in a grid-world type of environment. The communicating agents will be compared
to a baseline which consists of a single agent without any communication abilities.

1

1.1. Problem Statement 2

1.1. Problem Statement
In a system where multiple agents are active, learning happens in parallel between all the agents. Each agent
is learning on its own and therefore, possibly gaining knowledge which other agents might already have
learned. In a system where all the agents have the same goal, they will possibly learn from similar experi-
ences. This is redundant. Ideally there exists a collective pool of information that all the agents drop their
experiences in and then agents can draw from this pool to learn. This would render every observation and
action made by any agent in the system a potential source of information for any other agent in the system.
This allows collective and symbiotic learning.

A caveat regarding learning the same task and therefore implying that all agents learn the same policy
is that it might be possible that having heterogeneous policies will prove to be more effective than identical
policies for every agent. As an example: If Agent 1 and Agent 2 both need to reach the same goal, but two
routes are available, then it could be possible that it’s better that the agents choose different routes to not get
in each other’s way. This means that the agents need to learn a different policy. These effects are also to be
considered.

Limitations
The shared learning idea, however, could potentially require a large communication channel since this pool
needs to be available to be read by every agent and this is not a reasonable assumption for robots working
in the real-world like warehouse distribution systems. In such a system, all agents run around collecting
packages and delivering such packages at the desired locations, infinite communication is not possible. One
can also not assume that every agent is able to communicate with every other agent, potentially an agent can
communicate with other agents within proximity.

Another limitation given to agents is limited vision. An agent in the real world cannot possibly see beyond
a the range of its sensors. It is limited by the information giving by the sensors it has access to. This limitation
is simulated in this report and thus each agent can only view its local surroundings. More details on this can
be found in section 4: Methodology. These fundamental limitations are imposed in this report and these
simulations to conform more to the limitations an actual robot in the real world would have.

The third limitation applied is complete independence and decentralisation. On the same principles of
making agents only locally aware, no form of centralisation is applied. Agents do not get fed any form of infor-
mation that would allow agents to know more than locally available information with respect to themselves.

Limitations are also applied to define the scope of this report. Since this report is based on existing agents
learning in an environment it is a direct comparison between non-communicating agents versus agents using
a limited communication channel. This will therefore show the effect of what there is to gain by sharing infor-
mation. Any form of communication which could potentially require large packages of data to be transferred
are unrealistic and therefore not considered. The exact type of information transfer chosen is discussed in
section 4: Methodology.

Research Question
As to be shown in section 4: Methodology, DQN will lend itself well to expanding its algorithms to the multi-
agent domain, leading to the following questions to be discussed and answered in this report:

• How do DQN agents that share information directly compare against agents that don’t?

• How can an agent select what is important information to share?

• Which method of information sharing yields the best performance in terms of maximum average re-
wards?

2
Background

Firstly in section 2.1, a way of modelling some real world systems as an MDP is discussed. This will provide
the basis of the learning algorithms. Then the concept of reinforcement learning and in particular Q-learning
is discussed in 2.2.

One can interpret Q-learning as an estimator of the value of an action given a certain state. This estimator
can also be built with neural networks at the base. This is done using Deep Q-Networks, which is explained
in section 2.4. Finally, this deep Q-network is tweaked and modified by use of prioritised experience replay.
This is discussed in 2.5.1.

2.1. Markov Decision Process
A Markov decision process (MDP) is the mathematical model of the full set of possible states, actions and
rewards a closed system has. It also describes their relationship between the states, actions and rewards. An
MDP will dictate which state transitions are able to occur given the available actions, how likely this transition
is and how rewarding this transition is. It formally consists of the 4-tuple: (S, A,Pa ,Ra) with the following
properties:

• S: The set of states possible in the system

• A: The set of possible actions given the states

• P (s′|s, a): The probability of transitioning to a next state given the current state and chosen action

• R(s, s′): The reward associated with transitioning from the current state:s to a new state:s′ given a cer-
tain action

S 0
a1

a0

S 2

S 1

a1

a0

a0

a1

Figure 2.1: Markov Decision Process. This system contains 3 states: s0, s1 and s2. 2 actions: a0 and a1 for each state, and two rewarding
transitions, shown as curly arrows.

3

2.2. Reinforcement Learning 4

It provides a framework for an agent’s decision making. An agent who is in a certain state (s) of this
process, will have a set of actions (As) available to it. From there the agent chooses an action and observes the
new state (s′) and a potential reward (r (s, s′)). In this report the transition probability component of a Markov
Decision Process is removed by assuming that the probability of transitioning to a next state is guaranteed.
Implying that for every action, there is a fixed, single next state.

2.1.1. Partially Observable Markov Decision Process
This report focuses on local observability. This implies that feeding the state information S directly to the
agent is not allowed. Instead, this report feeds the agent local observations only. This creates possible am-
biguity as there is now a split between underlying true state S and observations Ω. An agent cannot directly
infer that it’s observations directly correlate with a true hidden state. The formal definition of a Partially Ob-
servable MDP (POMDP) is given by a 6-tuple (S, A,Pa ,Ra ,Ω,O) and is an expansion on the first 4-tuple of an
MDP by:

• Ω: The set of observations

• O: set of conditional observation probabilities

The set of conditional observation probabilities O describe the chances of receiving an observation from
Ω given the states S and actions A. In this report these probabilities are fixed with the same logic as above.
Every state only has one possible observation, thereby eliminating the conditional probabilities. This obser-
vation will be related to the underlying true state and will not have any form of noise or other perturbations.
By describing the system as a POMDP, one can build an agent using this framework. This is described in the
next section.

2.2. Reinforcement Learning
Reinforcement learning methods aim to learn the ’best’ action given a certain state or observation. The defi-
nition of best may vary based on the application, however in general one aims to in some way maximise the
amount of rewards the agent receives. For example, given the MDP in figure 2.1, one can see that to maximise
the sum of discounted future rewards one would want to trigger the +5 reward associated with state s1 by tak-
ing action a0 as often as possible. Implying that maximisation would be taking action a0 at state s1 or taking
the actions necessary to reach state s1 as soon as possible. Reinforcement learning tries to algorithmically
find such actions.

2.2.1. Discounted Future Rewards
For every step, an agent could receive a reward. Looking forward, one can sum all the future rewards an agent
would receive. The goal of an agent is to find a set of actions that maximise the this sum. Formally:

T∑
t=1

γt−1Rt = R1 +γR2 +γ2R3... (2.1)

This function describes the sum of total discounted rewards, given that t = 0 refers to the current step of
the agent, t > 0 referring to future steps. The discount factor γ is added to scale down the value of rewards
which are a large amount of time-steps away. γ is picked as γ ∈ [0,1], with γ = 0 leading to no value being
added for rewards that are not immediate, and γ = 1 leading to the simple sum of all rewards regardless of
distance. γ ∈ (0,1) leads to a natural decay in value the larger t becomes and acts as a method of balancing
the value of immediate versus (potentially higher) future rewards. the upper limit T of the sum signifies the
look-ahead horizon.

2.2. Reinforcement Learning 5

2.2.2. Value-Function

Figure 2.2: Value estimation example for lo-
cations of this map. Brighter colours indicate
states of higher estimated value. One can see
that locations closer to [X ,Y] = [5, 5] return
higher values. This is due to the map only con-
taining a reward at that location. The decay in
value is visible as a gradient the more steps the
location is away from the reward. Dark patches
indicate untraversable terrain.

The value-function is a representation of the value of a given state.
The value of a given state is inferred by the discounted sum of future
rewards. Which future rewards the agent will receive will be depen-
dent on the choice of actions determined by a policy π. This results
in the value function, given policy π:

Vπ(s) = Eπ
[T∑

t=1
γt−1Rt | St = s

]
(2.2)

For any MDP, there exists an optimal value function which has
higher values than other functions for all states. This is directly de-
pendent on the optimal policy.

V∗(s) = max
π

Vπ(s) (2.3)

Equation 2.3 shows that there has to exist a certain policy π such
that the value-function V (s) is maximised. It is however not initially
known which policy will lead to this maximisation. An example of a
value-function applied to a system where states are represented by
X and Y coordinates is shown in figure 2.2.

Initially, this optimal value-function is unknown. To iteratively solve the value-function one needs to ap-
ply value iterations. These are given by:

initialise V (s) arbitrarily
Repeat
for s ∈ S do

for a ∈ A do
Q(s,a) ← E [r |s, a]+γ∑

s′∈S P (s′|s, a)V (s′)
end
V(s) ← max

a
Q(s, a)

end
until V(s) converged
With:

• Q(s, a): state-action value-function, described in subsection 2.2.4.

• r : immediate reward

• γ: discount factor

• P (s′|s, a): state transition probabilities

Algorithm 1 shows that to determine V(s) one needs to know the state transition probabilities P (s′|s, a).
This is known as a model-based learning algorithm. There exists however, value approximators that do not
require such knowledge, such as Q-learning. This is discussed in the following subsections.

2.2.3. Model-Free Learning
In most systems where agents need to solve a given task, the internal dynamics of the system are not known
to the agent. The agent will not be able to predict which actions leads to which state transitions nor does it
know which actions trigger rewards. This means that in the MDP above, P (s′|s, a) and R(s, a) are unknown
for the agent. Therefore, a direct solution cannot be computed in the form of solving an equation. Yet, such
systems are still solvable using model-free value functions that iteratively learn the value of the states in the
system. The Q-Function is an example of model-free learning.

2.2. Reinforcement Learning 6

2.2.4. Q-Function
This value-function can be expanded to also be a function of actions. As said earlier, different policies can
lead to different future rewards. To disambiguate the fact that the same state can lead to different future
rewards given different actions, the Q-function is introduced and builds on the value function by adding the
action space as a dimension to the value-function.

Q(s, a) = Eπ
[T∑

t=1
γt−1Rt | St = s , At = a

]
(2.4)

This function is able to return values for each given state-action pair. After the action has been chosen, it
assumes that the agent will continue following policy π.

2.2.5. ε-greedy Policy
A policy is a function which takes current state or observations as an input and gives an action as an output.
Although there are numerous different methods available, this report uses the ε-greedy policy. This policy,
can be described as follows:

π(a|s) =
b if p < ε,

argmax
a

Q(s, a) otherwise

With:

• p: a uniformly randomly drawn value ∈ [0,1]

• b: a random action drawn from the available action space.

• ε: usually set close to 1 initially. Over time, this is reduced to a value approaching zero.

Exploration vs. Exploitation The variable ε determines the chance of occurrence that a random action b
is picked. This random walk is described as exploration. The usefulness of exploration is that it explores
the (PO)MDP graph. Possibly encountering shorter paths or more rewarding paths. The usefulness of this
exploration will be clear in the next subsection.

When the agent picks the action related to the highest Q(s, a)-value, then this is known as exploitation. As
the agent uses already known information to maximise its discounted future sum of rewards.

2.2.6. Q-Learning
The Q-Function has to be iteratively found. Initially, the Q-function can be set with random values, zeros or
even starting off in any other arbitrary way. The intention is to iterative update this Q-function such that it
convergences to the true Q-function.

Starting from this, the Q-function updates its entries based on the following:

Q̂t+1(s, a) ← (1−α)Q̂t (s, a)+α
[

r +γmax
a′ Q̂t (s′, a′)−Q̂t (s, a)

]
(2.5)

where:

• Q̂(s, a): is the current estimation of the true, unknown Q-values: Q(s, a)

• α: Learning rate. Determines how much of the previous estimated Q̂-value carries over to the new
estimation. Usually fixed at α= 0.1 ∼ 0.3

• r : immediate reward of current state-action.

• γ: discount factor. Determines the influence of the next state-action value of Q on the current state-
action value. High values lead to high importance given to future state-action values. Usually fixed at
γ= 0.8 ∼ 0.95.

• s′, s: next state and current state, respectively.

• a′, a: next action and current action, respectively.

2.3. Fully-Connected Neural Networks 7

this method of iteratively updating the Q-function is called Q-learning.
Combining this with the previously discussed ε-greedy policy, gives an agent the ability to choose actions

based on state-action estimations. These estimations will over time convergence to the true Q-function as
the agent is iterating and learning. An agent will, once converged, be able to consistently make the optimal
choice. Optimal is defined here as choosing the action which returns the highest discounted future rewards.

2.3. Fully-Connected Neural Networks
The previously discussed Q-function tries to tag a value to states and actions. This can be seen as a look-up
table. This look-up table can also be estimated by a neural network. Why this is a useful thing will be clear
later. There are many variations to neural networks and in this report only the fully connected neural network
will be discussed and used.

Figure 2.3: Basic layout of a fully connected neural network consisting of two hidden layers.

A fully connected neural network connects an input layer to an output layer with possible layers in be-
tween, see figure 2.3. All nodes on a lower layer are connected to all the nodes of the following layer. A neural
network’s task is to fit some form of function such that given inputs will produce the desired output. To do so,
every node is able to perform mathematical operations on its own respective inputs.

(a) Exploded view of a single node.

(b) Nonlinear functions to use in the activation function.

Figure 2.4a shows one of the nodes in exploded view. The outputs of the previous layer are first weighted
then summed, with a possible bias added to the summation. This result is now passed through a nonlinear
function to generate the output. The most commonly used nonlinear functions are shown in figure 2.4b. The
nonlinear function is an important part of the neural network as it allows a nonlinear relationship between
the input and the output. This allows neural networks to estimate many real world relationships between two
metrics, which are very often nonlinear in nature.

2.4. Deep Q-Network 8

2.3.1. Loss Function
One can assign a metric as to how correct a neural network is. Given that the input and the output is known,
one can calculate the difference between the neural network’s output and the desired output. Given desired
output vector y′ (also named training samples) and network output vector y, one can formulate a squared
euclidean distance loss function as:

L(y,y′) = 1

2
||y − y ′||2 (2.6)

The repeated minimisation of this loss function by tuning the weights and biases will hopefully lead to a
properly fitted neural network able establish a (nonlinear) relation between the input and output.

2.3.2. Backpropagation & Gradient Descent
The minimisation is done through back propagation and gradient descent techniques. Backpropogation is
the method of using the loss function L(y, y′) and finding the partial derivatives of y with respect to every
weight and bias in the network. This derivative can then be used to increment the value of each individual
weight or bias such that the loss function’s output is reduced. Performing the partial derivative leads to:

∇L(y,y′) =∇1

2
||y − y ′||2 =

[
∂L

∂w1
, ...,

∂L

∂wn
,
∂L

∂b1
, ...,

∂L

∂bn

]
(2.7)

To take the partial derivative of ∂L
∂w1

one first needs to write L as a function of w1. Using a simple neural
network node as an example and taking t anh(x) as an activation function, like figure 2.4a:

L = 1

2
e2

e = y − y ′

y = tanh(b +∑
i

wi xi)

(2.8)

Now using the chain rule the partial derivative reads:

∂L

∂w1
= ∂L

∂e

∂e

∂y

∂y

∂w1
= (e)(−1)(1− tanh(w1)) =−e +e tanh(w1) (2.9)

This defines the gradient of the loss function with respect to w1.
One can now use this gradient to update the weights and biases of y such that the resulting loss is lower.

This is what is called a gradient descent. For the example of w1 this follows:

w1,k+1 = w1,k −α
∂L

∂w1,k
(2.10)

with the k-index signifying the difference between old and new weights and α being the step size. This
process can be done for all weights and biases to reduce loss.

2.4. Deep Q-Network
In the paper by Mnih et al. [8] the deep Q-network uses a neural network as a Q-value approximator but
retains most of the Q-learning methods to solve an (PO)MDP problem. In this report, a fully connected neural
network is used instead of a convolution neural network.

The main differences between the Q-function explained before and the Deep Q-Network will be explained
in the following subsections.

2.4.1. Target Network
A neural network based function approximator has shown to be unstable in its learning process. To combat
this, the paper uses a target network θ−. This target network fully copies the currently active neural network
to its own. This copying happens every C -steps. This target network is now used when the loss function is
computed and a gradient is calculated instead of the current neural network’s weights and biases.

2.4. Deep Q-Network 9

2.4.2. Replay Memory
A second addition involves not immediately training the network on the current transition. Instead, all the
required information to perform a training step is stored in the replay memory. Equation 2.5 shows the re-
quired variables to compute the update step: [s, a,r, s′]. These tuples are stored in the replay memory by
FIFO-principle. Starting Empty and then increasing in size until max size N . This replay memory allows
the training to happen without subsequent updates being heavily correlated, since one can now randomly
sample this replay memory in any order desired. Correlated samples used in training have proven to have
detrimental effects on the DQN’s performance.

2.4.3. Loss-Function
The loss function as described in the paper is written as:

Li (θi) = E(s,a,r,s′)∼U (D)

[
(r +γmax

a′ Q(s′, a′;θ−i)−Q(s, a;θi))2
]

(2.11)

with

• (s, a,r, s′) ∼U (D): uniformly distributed random batch sampling from the replay buffer.

• θ−i : target network.

• θi : current network.

Now applying the sample principles of partial derivatives with respect to the weights on this loss function
leads to:

∇θi Li (θi) = Es,a,r,s′

[(
r +γmax

a′ Q(s′, a′;θ−i)−Q(s, a;θi)
)
∇θi Q(s, a;θi)

]
(2.12)

The same method of updating the neural network weights is used as discussed previously in the section
regarding backpropagation, namely the gradient descend iterations, shown in equation 2.13.

θi+1 = θi −α∇Li (θi) (2.13)

2.4.4. Full Algorithm
Combining the additions described above into the full method of training a DQN leads to the following algo-
rithm:

initialise replay memory D to capacity N
Initialise action-value function Q with random weights θ
initialise target action-value function Q̂ with weights θ− = θ
for episode 1,M do

Observe s1

for t = 1,T do
Pick action at using the ε-greedy policy π(a|st)
Execute at and observe reward rt and next state st+1

Store transition (st , at ,rt , st+1) in D
Sample random mini-batch (s j , a j ,r j , s j+1) from D

Set y j =

{
r j if episode terminates at j +1

r j +γmax
a′ Q̂(st+1, a′;θ−) otherwise

Perform a gradient descent step on
(

y j −Q(s j , a j ;θ)
)2

with respect to θ

Every C steps, set Q̂ =Q
end

end

2.5. Prioritised Experience Replay 10

2.5. Prioritised Experience Replay
Schaul et al. [10] builds on this Q-network by arguing that the replay memory could potentially be used to
distinguish important entries from unimportant memories with the intention to assist the training speed of
a DQN-based agent. Prioritised experience replay modifies the DQN algorithm by considering non-uniform
methods of sampling the replay memory. Instead, it determines which memories are more important than
others by computing the temporal difference error(TD-Error).

2.5.1. TD-Error
A replay memory sample j contains [s j−1, a j−1,r j−1, s j]. The temporal difference error δ for this memory
sample is defined in Schaul et al. [10] as:

TD-error: δ j = r j +γ Q̂(s j ,argmax
a

Q(s j , a))−Q(s j−1, a j−1) (2.14)

Using this definition one can now link the sample priority p j to the TD-error δ. Next the sample proba-
bility can be calculated for every transition i in the replay memory and is defined as:

P (i) = pα
i∑

k pα
k

pi = |δi |+ε
(2.15)

with α a scalar to determine the prioritisation amount and if α= 0, this reduces to the uniform sampling
case and ε to provide a priority floor for samples with very low TD-error, to still allow them to be trained on
from time to time. By default, α= 1.

2.5.2. Full Algorithm
This leads to the full algorithm of prioritised DQN:

initialise replay memory D to capacity N
Initialise action-value function Q with random weights θ
initialise target action-value function Q̂ with weights θ− = θ
for episode 1,M do

Observe s1

for t = 1,T do
Pick action at using the ε-greedy policy π(a|st)
Execute at and observe reward rt and next state st+1

Store transition (st , at ,rt , st+1) in D
Sample mini-batch (s j , a j ,r j , s j+1) from D ∼ P (j) = p j∑

i pi

Compute TD-error: δ j = r j +γ Q̂(s j ,argmax
a

Q(s j , a))−Q(s j−1, a j−1)

Update transition priority p j ←|δ j |+ε

Set y j =

{
r j if episode terminates at j +1

r j +γmax
a′ Q̂(st+1, a′;θ−) otherwise

Perform a gradient descent step on
(

y j −Q(s j , a j ;θ)
)2

with respect to θ

Every C steps, set Q̂ =Q
end

end

This is the final algorithm that will be used in this report. The priority sampling of equation 2.15 will also
be used to send out memory samples to other agents. The method of picking a sample is identical. More on
this in 4: Methodology.

3
Related Work

In the paper by Sukhbaatar et al. [11] they expand the neural network to also control the communication
channel. In this paper, they introduce a network called CommNet Φ(s). It describes modules f 1, .., f i which
form a multilayer fully connected neural network. Every agent carries the same identical neural networks.
The performance for a similar testing environment simulating a discrete traffic junction shows that Comm-
net consistently outperforms independent, fully connected and discrete agents. Fully connected implying
that the connections between agents does not follow the layout given by CommNet and discrete that agents
do not communicate gradients but symbols from a small set. CommNet relies on training in a centralised
fashion. Even though, it shows robustness for adding and removing agents (the modules are identical for
every agent, therefore agents can be added and removed at will), it does require pre-training. This report at-
tempts to train decentralised.

Foerster et al. [1] train two independent Q-networks, one who handles the actions and one who han-
dles the communication. The messages are discrete symbols. The Q-networks are interconnected where
an agent’s communication output is another agent’s state input. They achieved remarkable performance
through this method. Melo and Veloso [6] Attempted similar methods, but instead of training the second
Q-network on messages, it was set as a coordination critic, trying to balance the personal optimal policy over
the value of not following one’s own optimal policy. This proved to not provide the desired results.

another attempt at symbolic messaging was from Kasai et al. [4]. There the message type was hardcoded.
In the hunter-prey simulation, each communication message would consist of observed other agent, ob-
served goal, observed walls and an auxilliary signal. It showed that limited communication immediately
performed better over no communication.

A big concern in multi-agent systems is non-stationarity. Foerster et al. [2] apply a sampling technique to
estimate the priority of the sample based on policy differences between the time of receiving a replay mem-
ory entry and the time of sampling. An samples naturally become obsolete because old samples describe a
system in which agents behave according to a different policy, this sampling technique assigns a lower weight
to the sample.

Leibo et al. [5] Simply disabled replay memory for their DQN agents to prevent problems regarding non-
stationarity.

11

4
Methodology

A way to address these questions posed in section 1.1 regarding the usefulness of information sharing com-
pared to no sharing of information at all, one needs to create both a simulation environment and an agent that
together are capable of answering those questions. These will provide a measurable and repeatable method
of answering the questions. These are the two core components of the system. The environment supplies
agents with information (observations or directly the state), the agent uses this information to choose an ac-
tion and then the environment computes the consequences of the action the agent chose. The consequences
consist of new observations (or a new state) and possibly a reward, these are then fed again to the agent. This
is one loop of the environment-agent simulation cycle. This back and forth exchange of observations and
decisions is the core method of training an agent. The agent’s task is to find a way of choosing the actions
which correspond to the highest return of average rewards as described by the Bellman equations. Basically
attempting to find a set of rules to transform the input information (observations/state and rewards) to an
action to return the maximum rewards. More details on the functioning of this decision process is discussed
in 2.2.6: Q-Learning and 2.2.5: ε-greedy Policy. The high-level information flow is shown in figure 4.1.

Figure 4.1: Interaction between the environment and agent

Multiple variations of the environment and multiple agent types are considered. This is done to test the
different agents in different types of tasks to find out under which conditions communication could be useful.
So each task will be tested with a baseline DQN agent without communication versus a number of different
type of agents that communicate differently. Each task will be based on a similar grid world environment but
will vary in terms of the task given to the agent, either it’s a single-agent task or a competitive task. Three
different tasks will be considered. As one should not assume that communication will have the same perfor-
mance advantage/disadvantage for every benchmark task posed.

Firstly, let’s discuss the information flow in greater detail. Figure 4.2 shows an information flow diagram
with the intend to dig deeper into the figure shown in 4.1. The agent and simulation blocks are opened to
show the exchange of information on a lower level. Regardless of task or chosen agent type, they all follow
the same principles of information flow. Therefore, this is discussed first. The choice of this lower level layout
comes from the basic requirements which will now be discussed further. The default system only has an ac-
tion input scheme to the environment which does not allow any form of messages to be sent by an agent. It
also does not allow agents to receive messages as the default environments don’t support such a concept. To
support communication another input in added to the default layout of a training system. The full informa-
tion flow of the system used in this report is shown in figure 4.2. There the flow is discussed in detail.

12

13

Figure 4.2: Information Flow. Starting at the environment’s output. The output contains multiple collections, each containing a message,
a new observation and the reward. The number of collections is equal to the number of agents. There it is processed and split by an
auxiliary script to make sure the correct agents receive their respective collection. The information now enters the agent. There the
observations are used to compute the next action. This choice is determined by the trained model then the action is sent out to be made
into a collection again, this collection containing all other agents’ actions and messages too. The entire input collection is also stored in
the replay buffer where it is sorted by TD-error and used to train the model. Once in the replay buffer, no distinction is made between
own observations versus observations contained in the messages. The output collections There the messages are shuffled (randomly
re-assigned to other agents), new observations and rewards are computed and the environment’s internal state is updated.

Now that the basics of the interactions between the agent and environment have been discussed it is time
to go into detail with each in the following sections. Firstly, the buildup of the environment is discussed in
section 4.1: Simulation Environment, followed by the agent’s design in section 4.2: Agent. In these sections
also the specific type of information that is exchanged is explained.

4.1. Simulation Environment 14

4.1. Simulation Environment
4.1.1. Method

Figure 4.3: grid-world. Yellow: Walls, Blue:
Traversable terrain

Even though three different tasks will be considered, they share the
same base layout of a grid-world. Figure 4.3 shows the layout. This
is chosen to provide a reasonable simple environment which would
still be capable of having the intended functionality as limited vision
and limited communication. This environment contains walls and
traversable terrain and is built with OpenAI compatibility in mind.

The design of this map is based on a few principles. Firstly, the
grid world should not be unnecessarily complex. Any form of redun-
dant complexity should be avoided, as it would not help answering
the research questions. Secondly, the map should contain a unique
layout. Every location of the map should in some sense have a recog-
nisable footprint. This stems from the fact that agents with limited
vision are used. If one would imagine a map with a layout which
contain multiple identical sections and an agent is only able to view
within the boundaries of this section of the map, then an agent will
not be able to localise itself in the greater map due to the fact that
multiple locations are identically observed by the agent. This is to support the side-question as to how much
communication is able to help to solve this local observability problem, or how much communication is
detrimental to an agent’s ability to perform localisation. Figure 4.3 shows that the map is relatively small, as
it’s only an 8x8 grid, but does try to keep uniqueness for every location on the map. This uniqueness only
breaks down when very small ranges of vision are used.

More on this vision system will be described in in paragraph Vision System. However, firstly the inter-
nal agent tracking system and movement system of the environment is discussed in States and Movement
System.

Figure 4.4: 4 agents, in green, reward in yel-
low, walls in dark blue, the rest of the map are
traversable tiles and also legal spawning loca-
tions.

States and Movement System Initially, every agent is spawned on
the map on a free location. Meaning that agents cannot spawn on
top of each other and cannot spawn inside walls. All locations which
comply to this requirement are from now on called legal spawn-
ing locations. This location corresponds to the internal state of the
agent. This state is not shown to the agent, rather, an observation
which is derived from this hidden state is fed to the agent, more on
this in 4.1.1: Vision System. The environment keeps track of these
agents’ locations across iteration cycles. The internal states hid-
den in the environment are based on the X-Y coordinates of each
agent active on the map. From there each agent has the ability to
choose 1 out of 4 actions (the action space): (1)Up, (2)Down, (3)Left
or (4)Right. Note that an agent cannot choose to stand still. After
an agent chooses an action, its location is updated by increments of
1 in either the X or Y direction, with [0,0] being top left of the map.
Each agent has to choose 1 action at each cycle of the loop in fig-
ure 4.1. This is the most common state transition in the system and

this transition is applied after the agents have chosen their move. For example: Agent 2 currently located
at [x, y] = [4,2] chooses action (2)Down which corresponds to a translation of [0,+1], thus its new location
is [4,3]. Movement costs energy in this environment. It is implemented in the form of a (small) penalty per
action. This is an unavoidable penalty.

There are a few exceptions to this movement system. These exceptions come from either a trigger coming
from the collision system or the reward system. In those cases a different state transition is applied after an
agent has chosen an action. They are discussed in their respective paragraphs.

Collision System There are two types of collisions possible in this system. Either an agent collides with a
wall or an agent collides with another agent. The internal algorithm which does this check is different, but
the results are the same. After such a collision is detected, the agent(s) receive(s) a negative reward (a penalty)

4.1. Simulation Environment 15

and they are reset. The reset implies that the agent is removed from its collision location and respawned on a
random legal spawning location. The intent of this system is to train agents not to hit walls or each other.

Figure 4.5: Collisions in red, ideal path in green.

This collision system takes precedent over the reward system.
Meaning that two or more agents choosing to move onto the reward
location at the same time will be penalised instead of rewarded, due
to the collision trigger happening before the reward trigger.

Reward System Every task will have a goal. this goal can be differ-
ent for every task, but every task has a goal nonetheless. This goal
on the map corresponds with reaching a certain location. When an
agent is located directly next to the goal and that agent picks the
action which results in it’s new location being the same as the re-
ward location, then it is rewarded and reset. A reset meaning that
it is respawned in a legal location and its (historic) observations are
cleared.

Figure 4.6: Agent’s vision: in a 3 × 3 vision grid, the agent sees three layers. Top yellow layer shows walls, middle blue layer shows rewards,
bottom red layer shows other agents. The agent itself is always centred in this observation grid.

Vision System To make the limited vision system concrete on this
map context agents are fed observations derived from their own re-
spective locations. Firstly, every agent receives three layers of obser-
vations. Each containing different information. Layer 1 contains observations regarding the presence of walls
in its local field of view. Layer 2 contains possible rewards in view and layer 3 contains other agents. Based
on the principle of having only local vision, the vision is created by returning every layer as a square, of for
example a 3×3 pixel size, and centre this square around the agent, then this would imply that a 3×3 observa-
tion size would yield a view range of 1 pixel in either direction, since the agent itself is located in the middle
pixel. A 5×5 Observation size would yield a 2-pixel view range is either direction, and so on. Naturally, one
cannot have an even number for the observation shape as an agent can then not occupy the centre pixel. This
therefore creates a local vision system for each agent respectively.

Another aspect of the vision system is that it is capable of returning observations of past steps, showing
the historic observations. This is done to allow agents to act based on a simple form of memory. The full
observation input is therefore of size: observation space = L × N × N × H . With L being the amount of layers,

4.1. Simulation Environment 16

which remains fixed at 3, N being the local observability window size and H the history depth, how many
historic observations are fed back to the agent. N and H are hyper-parameters which will be tuned during the
simulations. To be specific, an agent sees objects in their respective layers as an array containing 1’s and 0’s.
1’s to signify objects and 0’s for traversable and free terrain. The outer perimeter of the map is an ’infinitely’
thick wall. For example: an agent located at the edge that has a view range of 4 pixels, will see a 4 pixel thick
wall in that direction. This preserves the input dimension size such that it can remain constant, regardless of
location.

Figure 4.7

Messaging System The environment supports any input into this messaging channel. It can be a piece
of text, a number or anything. Its sole requirement is that the amount of messages received is equal to the
amount of agents active in the system. Once the system received the list of messages, it will shuffle the order
of these messages and send them back. This implies that agents have no control over who receives their
messages and that an agent may receive its own message back. This system is designed based on the principle
of simplicity. One message per agent to send and one message per agent to receive. Which message is received
is fully random.

The content of the messages is therefore chosen by the agents that use them. It is discussed in 4.2: Agent.

Benchmark Tasks

Figure 4.8: from left to right: Task 1, 2 and 3. Yellow box indicates the reward location. Off-colour boxes indicate previous or future
reward locations. Arrows are drawn to signify a predictable rotating pattern of reward locations in task 2. Task 3’s flashes indicate that
the reward can disappear and reappear anywhere on the map. Note that for Task 2 and 3, the reward only changes location once an agent
has reached it and triggered the reward sub system.

Benchmark Task 1 The first assignment will consist of simply reaching a goal. All agent have the same goal.
the only interaction between the agents will be that the agents are potentially within vision of each other and
that these agents can possibly collide. This is to see if the proposed algorithm in section 2.5 has any positive
effect in the simple case.

4.1. Simulation Environment 17

Benchmark Task 2 The second task involves all agent in the field trying to reach a goal. The initial position
of the goal is the same as task 1, however once any agent reaches the goal, the goal changes location. There are
three locations where the goal can spawn. This change of location happens in a rotating, predictable fashion.
This creates a situation where agent have to race against each other and the task becomes competitive.

Benchmark Task 3 The third and final option considered is random spawn locations of the goal where
agents compete to reach the location first. This is a similar situation to environment 2, however it is different
in that the rewards’ change of location is unpredictable. It may be located anywhere and does not follow a set
pattern.

4.1.2. Environment Parameters
An overview of all the values used on the map. This is to centralise all the values used in the environment and
provide a clear overview of all the parameters. These tables are explained in their respective paragraphs.

Rewards and Penalties

Type Value Trigger
Reward +10 Reward System
Collision -1 Collision System
Movement -0.1 Every Iteration

Table 4.1: Tables are described in their respective
paragraphs: 1) 4.1.1: Collision System & Reward
System and 2) Vision System.

Rewards and Penalties The chosen values are based on the
same principles as most of this the report: simplicity. Each
type of feedback is an order of magnitude higher or lower
than the next. This is done to allow a good differentia-
tion between reward types, making a TD-error prioritisation
based approach able to distinguish learning different types of
rewards and more easily prioritise learning rewarding transi-
tions.

Rewards Locations
Benchmark Task Coordinates
1 [5,5]
2 [5,5], [2,6], [2,3]
3 Random

Table 4.2: Chosen locations for reward place-
ment.

Reward Locations The location of the reward for Task 1 was cho-
sen to be near the centre, but no more thought was put into this pro-
cess. Task 2’s reward locations were chosen to be within vision of a
9×9 agent if the agent would be at the location of one of the other
possible reward locations. Thereby allowing agents to know here to
go. Table 4.2 shows reward locations on the [X ,Y]-coordinate sys-
tem starting top left of map 4.3, starting at 0’s.

Layers View Range Memory Observation Action
Space Space

3 3 × 3 1 27 4
3 3 × 3 5 135 4
3 9 × 9 1 243 4
3 9 × 9 5 1215 4

Table 4.3: Resulting Observation and Action Spaces of the environment.

Vision Given the definitions by 4.1.1: Vision
System, the considered observation space and
therefore the DQN input layer size is shown in
table 4.3.

4.2. Agent 18

4.2. Agent
4.2.1. Method

Figure 4.9

The basic flow of information in shown in
figure 4.9. At the very centre of the agent lies a
Deep Q-Network(DQN). The functioning of an
DQN agent is described in 2.4: Deep Q-Network. On top of this a prioritised queue is established to provide
a sense of sorting important replay memory entries from others. This sorting is described in 2.5: Prioritised
Experience Replay. It is this concept of sorting that is now used for the communication channel and to create
variations of the baseline prioritised DQN agent. In this section, previously discussed algorithms are com-
bined to form a complete agent. As shown in figure 4.9, there are 4 main parts in an agent. The central pro-
cessor (A neural network in this case), a learning algorithm, an action selector and for this report’s purpose: a
message selector.

Figure 4.10 shows the chosen algorithms for each part of the agent. Firstly, information is directly fed into
the DQN. Based on the output of the network, an action is selected through the ε-greedy policy. The message
selection happens through prioritisation. All of which is described in 2: Background.

Figure 4.10

DQN As stated in 4.1.1: Vision System the observation space is determined by the chosen vision size, which
are in turn determined by the hyper-parameters N and H. The size of this observation space directly fixes the
size of the DQN’s input and is therefor always the same size as the observation space. The internal layout of
the Deep Q-network has 2 fully connected hidden layers, which are fixed in table 4.5, and an output dimen-
sion equal to the action space of the environment, which in this system is 4, see 4.1.1: States and Movement
System. The output layer does not use biases.

Message Sampling Agents that communicate will do so by selecting transitions stored in the replay buffer.
a [st ate, acti on, next_st ate, r ew ar d]-set is transmitted through a selection procedure. The difference
between each type of agent is discussed in the following paragraph.

4.2. Agent 19

Type Method of Learning Method of Communication Acronym
0 Prioritised Sampling None PS-None
1 Prioritised Sampling Uniform Sampling PS-US
2 Prioritised Sampling Prioritised Sampling PS-PS
3 Prioritised Sampling Prioritised to Uniform Sampling over time PS-PUS
4 Prioritised to Uniform Sampling over time Prioritised Sampling PUS-PS

Agent Variations There are 5 different types of agents tested in this report. Firstly a baseline agent which
has no messaging functionality. After this, 4 other messaging agents are considered.

Type 3 and 4 modify type 2 by linearly reducing the chance of prioritised sampling of either messaging
or learning, respectively, as shown in figure 4.11b. This is with respect to amount of steps made during a
simulation.

4.2.2. Agent Parameters
To centralise all the values used in this report, they are all put in this subsection.

Deep Q-Network Initialisation
Layer nodes Weights Biases Activation Function

µ σ µ σ

Input Observation Space
Hidden 1 64 0 0.0001 0 0.0001 Leaky relu (α= 0.2)
Hidden 2 12 0 0.0001 0 0.0001 Leaky relu (α= 0.2)
Output Action Space 0 0.0001 None None

Truncated Normal Distribution

Table 4.4: Deep Q-Network Connections and initialisation. All based on fully-connected layers.

The initialisation of the weights and biases is based on a zero-mean(µ) truncated normal distribution
with a very small standard deviation(σ). The standard deviation is chosen as such to be able to create unique
agents but not predetermine agents too much by their initialisation.

Hyper-parameter -
Replay Buffer 50
Learning Rate 0.0003
Discount Factor (γ) 0.9
Temporal Difference (ε) 0.1

Rewards Locations
Benchmark Task Coordinates
1 [5,5]
2 [5,5], [2,6], [2,3]
3 Random

Table 4.5: Agent hyper-parameters. For an explanation of what these parameters affect, see 2: Background.

A small replay buffer to allow for the prioritisation sampling to take place, but not too big for information
to become outdated. In a small gridworld with a size of 8×8, 50 will be plenty. The learning rate and other
values of this table were chosen empirically while conducting this research. The ε-greedy policy starts at an ε
of 1, which linearly decays to 0.05 within 200 steps and then stays constant at 0.05. The prioritised sampling
chances decay linearly from 1 to 0 over 10.000 steps. The decay function is shown in figure 4.11b, along with
the ε-greedy policy’s decay in figure 4.11a.

4.3. Performance Metrics 20

(a) decay of ε in the ε-greedy policy. (b) decay of prioritisation

4.3. Performance Metrics
To judge the performance of the proposed communication system, there needs to be some criteria set. The
chosen metrics are based on two core principles.

Firstly, the average performance of the group will be measured. This will be done after 50 simulation runs
each containing 50.000 steps with each simulation. These numbers were based on maximising both values
but had to stay within computational constraints. There is no other reason not to increase either number.

The average performance will be defined as the average reward of across all agents for the last 200 steps.
Please note that to avoid boundary effects, the moving average only starts being calculated once an agent has
made at least 200 steps.

Secondly, the inter-agent variability will also be measured. This is defined as the difference between the
best and the worst performing agents. Best and worst are chosen as the first of the active agents to achieve an
average reward that’s higher than a threshold, worst being the last agent of the group to reach that threshold.
This is defined as the reward threshold. Another way of measuring inter-agent variability is to look into possi-
ble differences in behaviour of agents. A possibility is that due to the divergent nature of non-communicating
agents, that these will exhibit different behaviour if compared with each other internally, as communicating
agents might convergence to the same policy as they share the same memories. 5000 steps were chosen with
the same argument as other metrics: The more the better, but one has to constrain it due to limited computa-
tional power. Given that the average distance an agent can be from the reward is around 8, giving 5000 steps
would allow sufficient averaging of behaviour.

All hyper-parameters regarding performance metrics are shown in table 4.6.

Metrics
simulations 50
agents per simulation 4
steps per simulation 50000
Reward Threshold 0.1
Moving Average Window size 200
Heatmap steps 5000

Table 4.6: Measurement method

To be able to explain the performance differences between agents with little vision versus agents with a
lot of vision, heatmaps are generated from fully trained agents. After the set of 4 agents have been trained
for the full duration of the simulation, they are then tasked with solving the tasks with the learning part of
the algorithm turned off. This will then show if agents tend to get stuck in the event that they are provided
too little information to solve a problem, or if the agents are able to solve the task. A proper heatmap should
show higher values the closer the location is to the goal, as agents tend to funnel towards the goal, leading to
a higher prevalence at locations close to it.

4.4. Expectations 21

4.4. Expectations
It is expected that the average performance metric shows that communication helps the learning by a signif-
icant, measurable amount. As important information gets passed around, agents will be able to learn from
more valuable information. The average reward would attain higher values along the course of learning.

The inter-agent differences should show a more homogeneous set of agents if they share information.
Since agents that communicate learn from similar experiences, it is assumed that they will tend to converge
to each other in terms of behaviour. The non-communicating agents should not have such behaviour and
might diverge, leading to noticeable differences in behaviour with respect to each other.

5
Results

The results of each individual challenge are shown in their separate sections. In each section the differences in
performance between the agent types are discussed along with other relevant metrics as discussed previously.

5.1. Benchmark Task 1
Challenge 1 was the static challenge with a mutual non-competing goal with only collisions
making it a multi-agent problem. The results of all the options of hyper-parameters are now
discussed in the following subsections. For more on the challenge itself see 4.1.1: Benchmark
Tasks.

To keep the description and the figure in the same page for convenience, it is moved to the next page.

22

5.1. Benchmark Task 1 23

5.1.1. Average Performance
The average rewards over all 4 agents over the course of training is shown in figure 5.1. Let’s break the figure
down into it’s sub-components and discuss each graph individually when needed. Firstly, figure 5.1a. This
can be further broken down into the transient phase and the steady-state phase.

In the transient phases of figure 5.1a one can see that agents who share messages in a prioritised fash-
ion quickly reach an average return of 0.25, but then flattens out. The non-communicating agent and the
randomly communicating agent (type-0 and 1 respectively) are slower in this transient phase.

Some iterations later these slower types catch up and overtake the prioritising agents. Ultimately reaching
a higher average return than prioritising at the end of the learning cycle. Also an observation that can be
made is that the double prioritisation agent (both learning as messaging) tends to perform worse than any
other agent for large observation spaces. Figure 5.1c and 5.1d show this. Otherwise the double prioritisation
agent performs similarly as the annealing agents. These trends hold true for all graphs in figure 5.1 but are the
most clear in figure 5.1a, however figure 5.1c and 5.1d show that even a randomly messaging agent (type-1)
ends with a lower average return of reward than an agent who does not communicate at all.

(a) Performance comparison with limited view range. (b) Performance comparison with limited view range and
historic observations.

(c) Performance comparison with nearly full view range. (d) Performance comparison with nearly full view range and
historic observations.

Figure 5.1

5.1. Benchmark Task 1 24

5.1.2. Inter-Agent Performance
To compare the performance between agents, the threshold criterion is used, as described in 4.6: Measure-
ment method. Not all the graphs are shown in this subsection due to the fact of there being too many, leading
to clutter. Every vision option tests 5 different agents. This means that with 4 vision options there are 4×5 = 20
graphs to be shown for Challenge 1. The remarkable ones are shown here and the rest can be found in 8: Ap-
pendix. In the appendix one can see that the behaviour of the discussed graphs are similar to the ones shown
in the appendix. The chosen graphs to be shown here are concerning the 3×3×1-case as an example.

In figure 5.2 one can see that there is a difference in learning speeds for the non-communicating and
the randomly communicating agents (type-0 and 1) compared with the agents that communicate important
messages. For those agents, they learn at approximately equal speed, leading to a more uniform learning
rate across the board for all agents. For the other graphs, the difference becomes marginal. However, only
differences at the start can be seen. After some learning has been done, the two agents converge and learn
at approximately equal rate leading to no distinguishable difference using this proposed metric, perhaps if
other metrics were used could behavioural differences be detected.

Please note that these graphs show the best and worst agent of a set of 4 agents that were active in a simu-
lation. Information regarding the two agents who performed average, according to the criterion, is discarded.
After this filter, the average of 50 best and 50 worst agents is computed, leading to the two lines.

(a) (b)

(c) (d)

Figure 5.2

5.1. Benchmark Task 1 25

5.1.3. Agent Routing
The heatmaps are shown in figure 5.3. The chosen heatmaps are based on PS-None heatmaps for the same
reason as the paragraph before. PS-None was selected as it was consistently the best performing agent. Other
heatmaps are shown in the appendix.

Except for small artefacts of location pairs where agents could get stuck, one can clearly see that agents
focus around the location of the reward. Even small vision agents produced heatmaps which shows that they
managed to find their way to the location of the goal. One can attribute a higher return for the higher view
range agents based on the fact that these high vision agents can more easily find shortest paths.

(a) (b)

(c) (d)

Figure 5.3

5.2. Benchmark Task 2 26

5.2. Benchmark Task 2
Challenge 2 was the rotating reward challenge where agents race to reach the goal. This chal-
lenge is competitive. For more information see 4.1.1: Benchmark Tasks.

5.2.1. Average Performance
The discrepancy between on one side non-communicating or randomly communicating agents

and prioritised communicating agents became larger in this challenge for the transient phase. One can clearly
see that for a very limited view range, 3×3×1 and 3×3×5, prioritisation of communication helps speed up the
learning up to a plateau. This effect is also visible for the larger observation space agents, but is less profound.

For the final phase of the learning curve one can again see that an agent that does not communicate at all
will out-perform all other agents, but to a lesser extend.

(a) Performance comparison with limited view range. (b) Performance comparison with limited view range and
historic observations.

(c) Performance comparison with nearly full view range. (d) Performance comparison with nearly full view range and
historic observations.

Figure 5.4

5.2. Benchmark Task 2 27

5.2.2. Inter-Agent Performance
A marginal difference can be seen when applying the threshold criterion to separate slow and fast learners.
Figure 5.5a shows that difference in the transient phase. To provide consistency, again only a 3×3×1 view
range agent is shown and for the other 4 sets of 4 graphs one can see 8: Appendix. Other observations are not
different from challenge 1’s observations.

(a) Performance comparison with limited view range. (b) Performance comparison with limited view range and
historic observations.

(c) Performance comparison with nearly full view range. (d) Performance comparison with nearly full view range and
historic observations.

Figure 5.5

5.2. Benchmark Task 2 28

5.2.3. Agent Routing
Figure 5.6 shows heatmaps generated for a PS-None agent. PS-None agents was chosen to be represented
here as it has proven consistently to out-perform other algorithms. The other heatmaps are shown in 8:
Appendix. For figure 5.6a one can clearly see that the agents get stuck. Since agents are not allowed to stand
still in this environment, a signature of agents getting stuck is isolated pairs of pixels. In those pairs, agents
oscillate back and forth and never manage to leave the area. This can be due to under-training or due to not
having enough information to make an optimal decision, with optimal being defined as the decision which
is part of the shortest path to the goal.

This observation does not hold for the other three figures. There one can see relatively smooth maps that
tend to be more focused on the centre. Figure 5.6b shows that although agents get stuck less, it does not
seem to converge toward goal locations. It seems to wander around without a sense of understanding which
locations are more important. This is on the other hand clearly visible in figure 5.6c and figure 5.6d. There it
clearly shows that agents move towards the centre, spend as little time possible in the outskirts of the map,
since the rewards never spawn there, and focus on locations close to the rewards.

(a) (b)

(c) (d)

Figure 5.6

5.3. Benchmark Task 3 29

5.3. Benchmark Task 3
Challenge 3 was the randomly spawning rewards. This challenge is competitive. For more in-
formation see 4.1.1: Benchmark Tasks.

5.3.1. Average Performance
it is immediately clear that the performance of all the agents in this challenge is remarkably

lower than in other challenges. The average performance across all agents for every option of vision is shown
in figure 5.7. The transient phase of these agents show a clear distinction visible, again, for prioritising agents
to learn faster initially. This advantage is lost halfway and by the end of the learning communication-less
agents outperform the other agents by a small margin. This trend holds true for all observation space sizes.

(a) Performance comparison with limited view range. (b) Performance comparison with limited view range and
historic observations.

(c) Performance comparison with nearly full view range. (d) Performance comparison with nearly full view range and
historic observations.

Figure 5.7

5.3. Benchmark Task 3 30

5.3.2. Inter-Agent Performance
The same observations also hold true for challenge 3 as with challenge 1 and 2. The differences between
learning rates of the defined "best" and "worst" agents are visible in the transient phase of the learning curve,
after which, it converges and the agents’ performances become indistinguishable from one another.

(a) Performance comparison with limited view range. (b) Performance comparison with limited view range and
historic observations.

(c) Performance comparison with nearly full view range. (d) Performance comparison with nearly full view range and
historic observations.

Figure 5.8

5.3. Benchmark Task 3 31

5.3.3. Agent Routing
One would expect a smooth heatmap without any peaks if agents were able to solve randomly located reward
locations. This due to the fact that agents would trigger a reward, then the reward would move to a new place
and an agent would then in turn trigger that reward. If this happens sufficiently often, it would lead to a
smooth heatmap. It may have a slight focus on the centre as that would either be a corridor towards the goal
or the goal itself. Side lines are less likely to be a corridor for the shortest path towards the reward.

It does not seem to be the case that such a predicted heatmap was generated. The heatmaps for the best
performing agents (type-0) are shown in sub-figures of figure 5.9. The agents seem to desire to stay in certain
locations. Figure 5.9d seems to do decently smooth, relatively speaking to the other sub-figures, however a
glance at figure 5.7b shows that this agent still did not receive a high return rate of rewards.

(a) (b)

(c) (d)

Figure 5.9

6
Discussion

6.1. Performance Gap
The average performance difference between the agents in figure 5.1 shows a clear distinction between the
non-communicating type and other types of agents. This could indicate an intrinsic problem to sharing
information. An important issue with sharing information is that it promotes convergence. Agents will have
less chance to diversify due to the fact that communicating agents will learn from each other and thus learn
from similar memories. In the case of a simple non-competitive goal, there is still a multi-agent element that
could lead to a higher average return if agents work on different policies. Since collisions are possible, one
can imagine that agents with different policies regarding routing and collision avoidance (taking priority or
backing off) could work better together.

(a) Agent 0 (b) Agent 1 (c) Agent 2 (d) Agent 3

Figure 6.1: Separate heatmaps for each agent that was active in the environment.
These sub-figures concern Non-communicating (PS-None) agents

(a) Agent 0 (b) Agent 1 (c) Agent 2 (d) Agent 3

Figure 6.2: These sub-figures concern prioritised communicating (PS-PS) agents

Figure 6.1 and figure 6.2 show the differences in behaviour for each individual agent in the first benchmark
for the 3×3×5-vision case between non-communicating(PS-None) and prioritised communicating(PS-PS)
agents. One can see that the PS-None-agents have diversified more than the PS-PS agents. The difference
in policy is visible in the shown heatmaps. The agents who prioritise their messages end up converging to
the same policy. One can see that in figure 6.2, the heatmaps are more similar. One can now argue that this

32

6.2. PS-PUS vs PUS-PS Differences 33

convergence now inhibits the learning speed of the agents, since the agents will get in each other’s way and
due to the fact that they share their experiences, will not diverge in their policies.

As regarding the early learning of prioritised messaging agents, one can argue that prioritisation leads
to agents quickly learning every transition which leads to a penalty, since unexpected penalties lead to high
priority in learning. These surprising transitions will get transmitted, received and transmitted again, leading
to an echo chamber of the same memories going back and forth between agents until those memories have
successfully been learned by the agents and no longer produce a high TD-Error. At which point it will slide out
of the collective memory buffer since other memories which have now become more important will occupy
the space. This is a useful effect initially, however proves detrimental to the final performance.

The convergence of policies shows that the do-not-hit-wall part of the policy, which is the most abun-
dantly triggered reward initially, can be identically learned for all agents. This can be a single-agent based
policy. Prioritised learning seems to greatly assist this part of the learning process.

However, once diverging policies are needed for better performance, prioritisation of communication
leads to agents not being allowed to diverge in policies since such agents tend to learn from similar transi-
tions.

This performance gap is not so prevalent in other challenges as one can see in figure 5.4 and 5.7. The
heatmaps also do not differ in such a clear way as in the first benchmark, these are shown in the appendix.
From this one can say that policy heterogeneity is not as important of a feature to solve the other benchmarks.

6.2. PS-PUS vs PUS-PS Differences
In no benchmark does linearly reducing either the learning sampling or the messaging sampling make a
difference with respect to each other. This implies that prioritised-to-uniform sampling can be applied in
either case, weather it is selecting samples to learn or to transmit, the performance will be the same.

Its performance with respect to the other agent types lies in between complete random sampling of mes-
sages and fully prioritised sampling of messages. This is expected as these two form some concession of the
two.

6.3. Computational Load
These agents run on different algorithms, therefore their computational load are different for the same num-
ber of iterations. There have not been a proper research conducted on this specifically, however, empirically
I observed that the non-communicating agent is on average around 20% faster than other algorithms. Given
this notion, not only does the PS-None offer a better learning pattern, it also does so faster. If one would allow
this agent to train for the same amount of time as the others, then there would have been no contest in which
agents perform better.

7
Future Work

7.1. Prioritise Only Common Policies
As described in the conclusion, training each other to converge to common policy is only detrimental if iden-
tical policies are not optimal. In the case where there exists sub-policies which can be shared along agents
without obstructing the development of the main heterogeneous policy, then there could possibly be a ben-
efit of prioritised memory sharing. As shown in the report, prioritised learning will very rapidly learn the
homogeneous sub-policy of not colliding with a wall. This motivates a limit on communication.

7.2. Limiting Communication
One can argue that there exists a certain optimum that merges the best of both worlds. The initial rapid
learning of prioritising agents combined with the higher average reward at the final phase of learning of non-
communicating agents. This however leads to problem in terms of resulting behaviour of the agents. The
initial rapid learning seems to coincide with convergence of agent policies, this exact convergence is detri-
mental in the long run where divergence is proven to be more successful at attaining higher rewards.

A possible solution to this is to limit the communication such that agents still do share important mem-
ories, but limit it in such a way that they do not end up cloning each other’s policy. Some options to be
considered:

Threshold Apply a TD-Error screening for every received message. Only store messages when they are
sufficiently surprising, otherwise do not store the message. For a well chosen threshold this would imply that
initially there will be communication since newly initialised neural networks will produce transitions with
high TD-Errors, but over time this will decay and ultimately lead to a complete silence in communication
as no transition becomes surprising anymore, therefore providing room for divergence in the later phase
of the learning process. A suggested threshold function could be based on interpreting the replay buffer
as a stochastic process and thereby fitting a continuous probability distribution to an agent’s own buffer’s
TD-Errors. Then one can interpret an incoming message based on how unlikely this message is given the
distribution fitted. This will lead to an agent screening the incoming messages before it decides to learn from
them, thereby reducing the convergence rate, but hopefully still learn from important messages if they get
received. The downside of this method is an increase in computational complexity.

34

7.3. Master - Student Hierarchy 35

Message Critic Since there seems to be a positive correlation between communication and convergence,
one can limit the communication based on a metric that indirectly would reflect convergence. For example,
assuming that the currently active agents apply prioritised messaging, this implies that the received message
was likely to be surprising from the sender, however this says nothing about the surprise factor for the receiver
(a high relative TD-Error value is defined as surprising). Since the receiver will calculate the message’s TD-
error himself, it can judge the value of the received message in relation to the average value of his buffer.
This comparison can now be used to judge the value of receiving messages. For example, one can tune the
ratio between received messages and own experiences to learn from based on the ratio of average TD-errors
produced by messages versus the average TD-errors of own experiences. The choice between the two is then a
chance of selection based on the ratio. This creates a natural filter if other agents continuously send messages
which are of no value to you.

On/Off-Switch The simplest approach would be to simply switch off the possibility of communication after
the initial phase of learning. This is a more direct approach of the same concept of applying threshold, with
the same intentions.

7.3. Master - Student Hierarchy
This report has been based on randomly initialised neural networks (DQNs specifically) who learn simulta-
neously. However, this communication system that was discussed in this report could also prove to be helpful
in training a new neural network if there already exists another neural network. Since trained DQNs will have
mostly memory samples closely resembling the optimal policy and also contain more memory samples which
are rewarding, it can be fed to the student DQN-agent. Again care has to be taken not to create a clone of the
master agent. This could lead to methods allowing hot-swapping agents in an already active environment.
For example, in systems where there are already agents active, such as a warehouse distribution system, one
could then have the possibility to simply add more agents in the system. Since copying the neural network
of an existing agent proved to be non-optimal, one would desire divergence in policies and the new agents
"fill the gaps" for the other agents. By implementing a master - student system, the student could learn faster
and, if proper care is taken to prevent convergence, could learn policies which are adapted to other agents.

8
Conclusion

Prioritised replay memory sharing has detrimental effects for multi-agent systems where inter-agent policy het-
erogeneity is beneficial.

The positive effects of prioritised replay memory sharing shown in the initial phases of the learning curves
will seem good, better performance than the regular DQN-Algorithm is to be expected, however they only
show due to the fact that identical policies in the case of obstacle avoidance work. The only thing the agent
learns at the start of the learning phase is to not hit a wall. The policy needed to not hit walls can perfectly
be identical across the agents without large detrimental effects on the optimal policy. Starting from here,
it becomes beneficial to diverge in policies. Prioritised learning’s problem is not allowing agents to diverge
and find a better agent-specific optimal policies. This report has shown that prioritisation of messages forces
agents to converge to the same final policy. Even though, due to the competing conventions problem, might
still have entirely different neural network weights. This convergence to the same behaviour is detrimental
for the final goal of training an agent, namely achieving the best performing agent at the end of the training.

The rapid initial learning of agents using prioritised experience replay sharing is a bonus that one would
not easily want to discard, a method should be possible to allow inter-agent teaching and yet preserve policy
differences.

Final Thoughts
The core idea of sharing important information sounds good. Similar to how humans share information by
teaching, one would like to find a mathematical analogy. It is with this motivation that we should keep going
with finding mathematical methods of implementing this idea, as the method attempted in this report has
proven to not be fruitful. However, let’s make conclusions in the opposite direction. Let’s try to understand
our own behaviour after having seen the results of information sharing in this report. These local optimums
and convergence ’problems’ discussed in this report do find an analogy in the human world, namely through
culture. In this society we tend to learn from each other in case there is no other source of information. We
will copy each other’s behaviour when we are unable to find our own ways. This is most noticeable in the way
we treat each other. In a world where cultures can differ greatly from each other, we learn from the people
directly around us, we imitate their behaviour and converge to a similar mindset, much like the agents in this
report.

36

Bibliography

[1] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson. Learning to communicate
with deep multi-agent reinforcement learning. CoRR, abs/1605.06676, 2016. URL http://arxiv.org/
abs/1605.06676.

[2] Jakob N. Foerster, Nantas Nardelli, Gregory Farquhar, Philip H. S. Torr, Pushmeet Kohli, and Shi-
mon Whiteson. Stabilising experience replay for deep multi-agent reinforcement learning. CoRR,
abs/1702.08887, 2017. URL http://arxiv.org/abs/1702.08887.

[3] Donald Olding. Hebb. The Organization of Behavior. A neuropsychological theory. John Wiley Sons,
1949.

[4] Tatsuya Kasai, Hiroshi Tenmoto, and Akimoto Kamiya. Learning of communication codes in multi-agent
reinforcement learning problem. 2008 IEEE Conference on Soft Computing in Industrial Applications,
pages 1–6, 2008.

[5] Joel Z. Leibo, Vinícius Flores Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. Multi-
agent reinforcement learning in sequential social dilemmas. CoRR, abs/1702.03037, 2017. URL http:
//arxiv.org/abs/1702.03037.

[6] Francisco S. Melo and Manuela Veloso. Learning of coordination: Exploiting sparse interactions in
multiagent systems. pages 773–780, 2009. URL http://dl.acm.org/citation.cfm?id=1558109.
1558118.

[7] Marvin L. Minsky and Seymour Papert. Perceptrons and pattern recognition. Jan 1967. doi: 10.21236/
ada078863.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, and et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015. doi: 10.1038/nature14236.

[9] Frank Rosenblatt. The perceptron: A perceiving and recognizing automaton (project para). report
no. 85-460-1 by rosenblatt, frank - january, 1957, Jan 1957. URL https://www.biblio.com/book/
perceptron-perceiving-recognizing-automaton-project-para/d/308182718.

[10] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. CoRR,
abs/1511.05952, 2015. URL http://arxiv.org/abs/1511.05952.

[11] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent communication with back-
propagation. CoRR, abs/1605.07736, 2016. URL http://arxiv.org/abs/1605.07736.

37

http://arxiv.org/abs/1605.06676
http://arxiv.org/abs/1605.06676
http://arxiv.org/abs/1702.08887
http://arxiv.org/abs/1702.03037
http://arxiv.org/abs/1702.03037
http://dl.acm.org/citation.cfm?id=1558109.1558118
http://dl.acm.org/citation.cfm?id=1558109.1558118
https://www.biblio.com/book/perceptron-perceiving-recognizing-automaton-project-para/d/308182718
https://www.biblio.com/book/perceptron-perceiving-recognizing-automaton-project-para/d/308182718
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1605.07736

Appendix

.1. Challenge 1

Figure 1: 3×3×1 Vision

Figure 2: 3×3×5 Vision

Figure 3: 9×9×1 Vision

Figure 4: 9×9×5 Vision

38

.1. Challenge 1 39

Figure 5: 3×3×1 Vision

Figure 6: 3×3×5 Vision

Figure 7: 9×9×1 Vision

Figure 8: 9×9×5 Vision

.2. Challenge 2 40

.2. Challenge 2

Figure 9: 3×3×1 Vision

Figure 10: 3×3×5 Vision

Figure 11: 9×9×1 Vision

Figure 12: 9×9×5 Vision

.2. Challenge 2 41

Figure 13: 3×3×1 Vision

Figure 14: 3×3×5 Vision

(a) Type 3

Figure 15: 9×9×5 Vision

Figure 16: 9×9×5 Vision

.3. Challenge 3 42

.3. Challenge 3

Figure 17: 3×3×1 Vision

Figure 18: 3×3×5 Vision

Figure 19: 9×9×1 Vision

Figure 20: 9×9×5 Vision

.3. Challenge 3 43

Figure 21: 3×3×1 Vision

Figure 22: 3×3×5 Vision

Figure 23: 9×9×5 Vision

Figure 24: 9×9×5 Vision

	Introduction
	Problem Statement

	Background
	Markov Decision Process
	Partially Observable Markov Decision Process

	Reinforcement Learning
	Discounted Future Rewards
	Value-Function
	Model-Free Learning
	Q-Function
	-greedy Policy
	Q-Learning

	Fully-Connected Neural Networks
	Loss Function
	Backpropagation & Gradient Descent

	Deep Q-Network
	Target Network
	Replay Memory
	Loss-Function
	Full Algorithm

	Prioritised Experience Replay
	TD-Error
	Full Algorithm

	Related Work
	Methodology
	Simulation Environment
	Method
	Environment Parameters

	Agent
	Method
	Agent Parameters

	Performance Metrics
	Expectations

	Results
	Benchmark Task 1
	Average Performance
	Inter-Agent Performance
	Agent Routing

	Benchmark Task 2
	Average Performance
	Inter-Agent Performance
	Agent Routing

	Benchmark Task 3
	Average Performance
	Inter-Agent Performance
	Agent Routing

	Discussion
	Performance Gap
	PS-PUS vs PUS-PS Differences
	Computational Load

	Future Work
	Prioritise Only Common Policies
	Limiting Communication
	Master - Student Hierarchy

	Conclusion
	Bibliography
	Challenge 1
	Challenge 2
	Challenge 3

