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ABSTRACT: We use Faraday waves to measure interfacial tension σ between two
immiscible fluids, with an interest in (ultra)low values of σ. The waves are excited by vertically
oscillating the container in which the fluids reside. Using linear stability theory, we map out
the accessible range of interfacial tensions. The smallest value (σmin ≈ 5 × 10−4 N/m) is
limited by the joint influence of gravity and viscous dissipation. A further limitation is posed
by the greatest accelerations that can be realized in a laboratory. We perform experiments on
a water−dodecane interface with an increasing concentration of a surfactant in the water layer
that decreases the interfacial tension into the ultralow domain [σ = (10−6 N/m)].
Surprisingly, the smallest measured wavelength is larger by a factor of 2 than that predicted
for vanishing σ. We hypothesize the effect of transport of the surfactant in the fluid flow
associated with the waves.

■ INTRODUCTION

It is a challenge to measure ultralow interface tensions between
two fluids [σ = (10−6 N/m)]. A standard method used to
measure interfacial tensions is the pendant drop method in
which the shape of a drop of immiscible heavier fluid 1 inside
lighter fluid 2 depends on the mass densities ρ1 > ρ2 and on the
interfacial tension.1 When the interfacial tension is small, the
performance of the experiment is delicate. Smaller interfacial
tensions (σ ≳ 10−6 N/m) can be reached via the spinning drop
method.2,3 There, the shape of the drop is determined by the
balance between inertial (centrifugal) forces and interface
tension. It is a static technique in which the interface remains
stationary in the rotating frame. With a decrease in interfacial
tension, the relaxation of the interface becomes increasingly
slow.
As rapid measurements of interfacial tension may help in the

design of fluids for chemically enhanced oil recovery, several
designs for microfluidic tensiometers have been reported.4,5 An
interesting recent paper infers the interfacial tension from the
phase diagram of pattern formation of immiscible co-flowing
fluids.6 Then, the challenge is to parametrize the phase
diagram, including its dependence on other fluid parameters,
such as viscosity and density. In this experiment, the lowest σ
detected was ≈10−5 N/m.
In this paper, we will explore waves on the interface between

water and dodecane to determine the interfacial tension. These
waves are excited mechanically, by vertically oscillating the
container in which the two fluids are placed. The waves arise
through a parametric instability and are known as Faraday
waves. The linear stability theory by Kumar and Tuckerman,7

which is applied in this paper, makes use of the periodic nature
of the excitation and involves linearized boundary conditions

on the interface and on the top and bottom surfaces. Waves
offer the tantalizing prospect of a measuring device for
interfacial tension: they are driven through oscillation, and
their wavelength, telltale of σ, can simply be measured from an
image.
A completely different range of wavelengths can be probed

by observing the thermal fluctuations of the interface.4,8−10

This can be done by scattering (coherent) light,8 where the
thermal wavelength follows from the scattering angle, or
directly in real space by microscopic observation.9 Very small
interfacial tensions σ = (10−7) N/m can be observed in this
way.4,9,10 However, the amplitude of the interfacial waves (or
the intensity of scattered light) rapidly decreases with an
increase in interfacial tension, so that only ultralow interfacial
tensions are accessible with this method.
Waves on a fluid with an insoluble surfactant layer were

discussed in a seminal paper by Lucassen-Reynders and
Lucassen.11 Their viscoelastic properties can be inferred from a
measurement of the wavelength and damping.12 The relation
between wave height and the dynamics of an insoluble
surfactant layer was measured by Strickland et al.13 Faraday
waves on the liquid−vapor interface of CO2 near the critical
point were observed by Fauve et al.14 Much as in this paper
they also found saturation of the wavelength at vanishing σ and
emphasize the importance of viscous dissipation. The other
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extreme is formed by Faraday waves on an unextensible surface
layer arising in a freezing transition.15

The behavior of a soluble surfactant in a dynamic
experiment, such as that presented here, is extremely complex.
Its local concentration is governed by fluid motion, which, in
turn, is influenced by the resulting interfacial tension. There is
a strong two-way coupling in this problem, even to the point
that the notion of “interfacial tension” may become ambiguous.
Gradients of surfactant concentration induced by fluid flow

or diffusion lead to gradients of interfacial tension: Marangoni
stresses. It has been suggested that these stresses increase the
onset the driving amplitude of Faraday waves and influence the
onset wavenumber.16 A theoretical study was performed by
Kumar and Matar,17 using Floquet techniques similar to those
applied to the two-layer case.7 Surprisingly, only a small effect
was found on the onset amplitude, and an even smaller effect
on the onset wavenumber. In their approach, a linear stability
analysis, the equation of surfactant transport was linearized,
with the concentration along the surface assumed to be
constant. This restriction was overcome in a treatment of thin
liquid layers.18−20

The concentration Γint of the surfactant at the interface
determines the interfacial tension σ through the equation of
state. As adhesion and desorption of surfactant molecules at
the interface play a key role, Γint is not the same as the bulk
concentration Γ taken at the interface. These absorption and
desorption rates are not known very well. All of these
phenomena were considered in a novel numerical method for
three-dimensional multiphase flows that was recently published
by Shin et al.21 Two-dimensional Faraday waves covered by an
insoluble surfactant were investigated numerically by Ubal et
al.22

In our experiments, we dissolve a surfactant at increasing
concentrations in the water layer, and we infer the interfacial
tension σ between water and dodecane from the measured
wavelengths of Faraday waves. As a consistency check, we
predict the onset excitation amplitude from σ and compare it
to the experimental one. In the next section, we will present
model calculations of linear Floquet theory by Kumar and
Tuckerman7 and explore the accessible parameter space. In the
following sections, we describe the experimental techniques
and present results. It will turn out that Faraday waves can be
used to measure interfacial tensions (σ ≳ 5 × 10−4 N/m). We
discuss our surprising finding that measured wavelengths in the
ultralow interfacial tension domain are larger by a factor of
approximately 2 than the expected values. We hypothesize a
key role of the fluid flow associated with the surface waves.

■ BACKGROUND
Faraday waves are waves excited by vertically oscillating
gravity. The interface spawns waves through a parametric
instability. In our experiment, the two fluid layers are contained
in a closed cell. Its lateral dimension is so large that the
sidewalls do not influence the wave pattern, while the layers are
so thick that damping of the flow at the top and bottom walls
does not influence the onset wavenumber and acceleration
amplitude. The absence of boundary effects is a great
advantage of this technique for measuring interfacial tension.
The insertion of a probe or wavemaker, which could
contaminate the interface, is not needed.
For capillary−gravity waves on the interface between two

inviscid fluids, the relation between frequency ω0(k) and
wavenumber k (the dispersion relation) is

ω
ρ ρ σ

ρ ρ
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− +
+
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gk k

( )
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where ρ1 and ρ2 are the mass densities of the heavy and lighter
fluid, respectively, g is the acceleration of gravity, and σ is the
interfacial tension. The derivation of eq 1 assumes irrotational
flow, so that the effect of viscous damping is ignored. Via
computation of the total dissipation of the potential flow field,
a crude approximation of the wavenumber-dependent damping
γ(k) can be made
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however, it must be realized that most of the damping arises
from the rotational flow near the interface.
Short waves are dominated by the effect of interfacial

tension, while long waves are dominated by gravity. In our
application, wavenumber k must be large enough such that
waves are significantly influenced by interfacial tension. A
critical wavenumber follows from equating the terms involving
gravity and interfacial tension in eq 1
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Short waves are increasingly damped. Once the wavenumber
becomes larger than kd, with

ω γ=k k( ) ( )0 d d (4)

waves are critically damped with the pattern wavelength
dominated by damping.
The linear dispersion relation (eq 1) is only approximate.

However, it illustrates the finite dynamical range of interfacial
tensions that is accessible in experiments using parametric
waves. At small interfacial tensions, the pattern wavelength is
dominated by the joint effect of gravity and viscous friction,
unless the wavenumber is made large. Patterns with large
wavenumbers, which are increasingly sensitive to interfacial
tension, can be made using high driving frequencies; however,
large wavenumbers are more strongly damped, requiring
acceleration amplitudes that quickly become unfeasible (a/g
∼ 6).
In the case of parametric excitation, the elevation amplitude

of the interface ζk at wavenumber k satisfies the Mathieu
equation

ζ γ ζ ω ζ̈ + ̇ + − ̃ Ω =k k a t( ) ( )(1 cos ) 0k k k0
2

(5)

with reduced amplitude

ρ ρ
ρ ρ ω
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−
+

a
k
k

a
( )

1 2

1 2 0
2

(6)

and a the amplitude of the vertical oscillation a cos(Ωt).
Through the factor cos(Ωt), which multiplies the surface
elevation ζk(t), higher frequencies with their companion
wavenumbers are mixed in. The solution of the resulting
coupled equations gives rise to a critical amplitude ac such that
for a > ac waves with critical wavenumber kc start to grow.
In the case of infinitely deep fluid layers, the waves that

emerge first are the ones where kc corresponds to waves with a
frequency Ω/2 (subharmonic waves).7 When friction with
bottom or top boundaries becomes important, harmonic waves
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may emerge first at threshold. Throughout, we assume that the
waves selected are not influenced by a quantization condition
imposed by the lateral walls of the container. The key
parameter is correlation length, which is related to the
curvature of the neutral stability curve at k = kc (see Figure 1a).
The amplitude of the waves is determined by nonlinearity.

The linear description predicts unlimited growth for a > ac.
Crudely, parametrically excited waves spawn waves with larger
wavenumbers through nonlinearities, which, in turn, spawn
waves with larger wavenumbers, etc. The proper analysis of
weakly nonlinear waves is extremely challenging. A beautiful
consequence of nonlinearity is that the threshold amplitude
depends on the planar symmetry of the waves. In this way,
square, hexagonal, and even quasi-periodic surface wave
patterns can be observed at onset.23−27 Experiments on
patterns formed from interfacial waves were reported by
Kityk et al.,28 with results that were reproduced by a direct
numerical simulation by Peŕinet et al.29

We have computed neutral stability curves for the fluids used
in our experiment using the linear Floquet theory from Kumar
and Tuckerman.7 Briefly, surface deformations are represented
by h(x, t) = sin(kx) × ζk(t), with ζk(t) expanded in
(sub)harmonics of the time-dependent driving force. At each
value of interfacial tension σ, we computed the neutral stability
curve using 20 Floquet modes.

An example of a neutral stability curve of the subharmonic
and harmonic modes that oscillate with frequencies of Ω/2 and
Ω, respectively, is shown in Figure 1a. Figure 1b shows the
critical amplitude at driving frequencies Ω/2π of 20, 30, and 50
Hz as a function of interfacial tension σ. Due to the small
density contrast ρ1 − ρ2 between the two fluids, the driving is
much less efficient than for the single-layer liquid−air system.
At small σ values of ≲10−3 N/m, large driving amplitudes are
needed to excite waves with an increase in driving frequency.
These driving amplitudes quickly become unfeasible.
In all of our experiments, we observe a square wave pattern,

although our container is circular. Clearly, the symmetry of the
wave pattern does not depend on the shape of the container.
This independence holds only at excitation amplitudes that are
set at a finite distance above onset. Whether the container is so
small that the symmetry of the surface wave pattern adapts to
that of the sidewalls depends on correlation length ξ. It is
defined in terms of the band of wavenumbers Δk that is excited
(ξ = 2π/Δk). Because the neutral stability curve is quadratic
near onset, a = ac + A(k − kc)

2, the correlation length is ξ =
πA1/2/(a − ac)

1/2, which diverges at onset. Waves on a very
viscous fluid have a small ξ, and their planform is independent
of the shape of the container.30 In the case of Figure 1a, ξ ≈ 70
cm for excitation amplitudes 10% above onset. This is larger
than the size of the container; however, arguments involving ξ

Figure 1. Faraday waves on the interface between water (1) and dodecane (2). The mass densities and viscosities are as follows: ρ1 = 1000 kg m−3,
ρ2 = 749.5 kg m−3, η1 = 1.0 × 10−3 kg m−1 s−1, and η2 = 1.34 × 10−3 kg m−1 s−1. (a) Neutral stability curve for the subharmonic (SH) and harmonic
(H) response of an interfacial layer at driving frequency Ω = 20 Hz and interfacial tension σ = 5.287 × 10−2 N/m (corresponding to the clean
interface). The onset wavenumber kc and driving amplitude ac/g where waves first appear on the surface correspond to the minimum of the neutral
stability curve. (b) Critical acceleration amplitude ac/g for Ω values of 20, 30, and 50 Hz. (c) Dependence of the wavenumber kc of the fastest-
growing mode on the interfacial tension σ for driving frequencies Ω of 20 and 50 Hz. For large values of σ, the curves follow the dependence k ∼
σ−1/3 from eq 1. The dashed−dotted line indicates the wavenumber kd above which waves are critically damped using γkd = ω0kd (eqs 1 and 2). The
arrows indicate the wavenumber kB where gravity and surface tension forces balance, i.e., where the Bond number, Bo = g(ρ1 − ρ2)/(σkB

2), equals
1. At 50 Hz, this occurs when the dependence of k on σ has already flattened due to viscous damping. The results of this figure were computed
using the linear Floquet theory of Kumar and Tuckerman.7
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assume pinned boundary conditions, which are incompatible
with the presence of sidewall meniscii in our experiment.
For very small values of the interfacial tension (σ ≲ 10−4 N/

m), Figure 1c shows that the pattern wavenumber kc no longer
depends on the interfacial tension. The flattening of the curve
kc(σ) is due to the joint effect of gravity and viscous damping.
At the density contrast Δρ = ρ1 − ρ2 of our experiment, the
smallest σ that can be detected is determined by gravity. Only
for a significantly decreased density contrast does wave
damping become the limiting factor. Conversely, for vanishing
interfacial tension there is a smallest wavelength λth, which for
small Δρ is determined by viscous damping. Throughout, we
will indicate this limiting wavelength. The appearance of a
limiting wavelength also poses a limitation on the smallest
interfacial tension that can be measured using Faraday waves.
The emergence of viscous friction with its influence on the
range of measurable σ is owed to the dynamic character of this
measurement technique. No such limit exists, in theory, for the
pendant drop or the spinning drop technique, which measures
the interfacial tension of a static interface.

■ EXPERIMENTAL SECTION
Our experiment consists of a closed, circular container with an L = 13
cm diameter that is mounted on an electromagnetic exciter. The
maximum attainable acceleration is approximately 6 g, which limits
the smallest wavelength accessible, and thus limits the smallest
detectable interfacial tension. The lower part of the container is filled
with deionized water (thickness of 1.1 cm), and the upper part
(thickness of 0.9 cm) is filled with dodecane. The surfactant (Internal
Olefin Sulfonate, Shell Global Solutions International BV) is
introduced in the lower water layer, where it is allowed to spread
through diffusion over 24 h. Prior to being filled, the container is
cleaned with acetone. Next the container is vertically oscillated at
frequencies Ω/2π ranging from 10 to 50 Hz. As the driving waveforms
were from a frequency synthesizer, the frequency is very accurate. The
vertical acceleration of the container was measured with an
accelerometer. The interfacial waves were visualized in diffuse
lighting, and images were registered stroboscopically at half the
driving frequency.
The onset amplitude ac is determined as the one at which waves

first appear after waiting a time τ, τ being on the order of minutes.
This measurement of ac is only approximate; a proper measurement
should involve the divergence of τ as τ−1 ∝ (a − ac) when the
excitation amplitude approaches ac. Consequently, our reported onset
amplitudes are slightly overestimated.
The wavelength λ of the patterns is determined from Fourier

transforming images I(x , y) of the surface, ̃ =I k k( , )x y

∫ ∫ − − I x y x ye ( , ) d dk x k yi ix y , averaging I(̃kx, ky) over 300 images, taking
an azimuthal average and measuring the location of the first
maximum. This procedure is illustrated in Figure 2. In all cases,
parametric waves had a square symmetry. As explained in the previous
section, this is a consequence of the finite distance of the acceleration
amplitude to onset, combined with the soft lateral boundary
conditions.
We have also estimated the amplitude of interfacial waves using the

method of Moisy et al.,31 which is designed for the measurement of
the topography of a free surface. Figure 3a illustrates its adaptation for
interfacial waves. The method is based on the refraction of light at the
interface. The refraction depends on the gradient of the interface
elevation and is observed through the displacement δ of a dot pattern
below the two fluid layers. The displacement field, and thus the
interface gradient field ∇h, is measured through spatial correlation of
the images of the flat interface and those of the curved interface.
Because the contrast of the refractive indices of our two fluids (n1 =
1.33, and n2 = 1.42) is small, the pattern displacements are small, and
we can provide elevations only at the lowest driving frequencies.

We briefly sketch the relation between δ and ∇h, referring to
Figure 3a. When the thickness of the glass top and bottom covers is
ignored, elementary geometry in the paraxial approximation gives the
relationships n1β = n2α2, α3 = β − α2, α4 = n2α3, and δ = 2h̅α4 − hα3,
leading to the result

δ β= − ̅ −n n h n(1 / ) (2 1)1 2 2 (7)

where β is the component of ∇h in the direction of δ, h̅ is the average
layer thickness, and where we also assume that the pattern is observed
from a large height, a condition satisfied in our experiment. Allowing
for the relatively thick glass covers of our setup (thicknes d of 4 mm),
we obtain

δ β= − ̅[ − + − ̅]n n h n n n n d h(1 / ) (2 1) (2 / ) /g1 2 2 2 2 (8)

where ng is the refractive index of the glass covers. From Figure 3c, we
conclude that a typical wave amplitude at Ω/2π = 20 Hz is ≈0.3 mm.
With a wavelength λ ≈ 4 mm, we conclude a wave steepness of ≈0.1.
This result will be used for an estimate of the flow-induced surfactant
transport in eq 9.

The interaction of surfactant molecules at the interface can be
influenced by introducing polar molecules,32 and in one experiment,
NaCl at increasing concentrations was introduced in a mixture of
water and 200 ppm surfactant. Upon large additions of salt (≈4 wt %
NaCl), we observed the formation of emulsion patches at the
interface. The emulsion phase is known to exhibit very small
interfacial tensions.32

For increasing concentrations Γ, the interfacial tension is expected
to drop to ultralow values. A σ reference value of 2.2 × 10−6 N/m was
measured for Γ = 200 ppm using a spinning drop tensiometer.

■ RESULTS AND DISCUSSION
We have measured the wavelength λ of interfacial waves and
the onset excitation amplitude ac for a clean interface between
water and dodecane, and for increasing surfactant concen-
trations Γ. The excitation frequencies ranged from 20 to 50
Hz. From the measured λ, we have inferred the interfacial
tension σ using the Floquet theory of Kumar and Tuckerman.7

From the measured λ, we can also predict the onset amplitude
and compare its value to the one that is actually measured.
Images of the interface for increasing driving frequencies are

shown in Figure 4. The wavelength decreases with an
increasing frequency Ω; however, all of these wave patterns
lead to a consistent estimate of the interfacial tension. The
water−dodecane interfacial tension for the clean interface (no
surfactant) was measured at four different frequencies, with the
result σ = (5.41 ± 0.05) × 10−2 N/m, and no systematic
dependence on the frequency. It agrees very well with the
literature value of (5.287 ± 0.004) × 10−2 N/m that was
measured by Zeppieri et al.33 using the pendant drop method.

Figure 2. (a) Image of waves at driving frequency Ω/2π = 50 Hz and
acceleration amplitude a/g = 4.3. (b) Azimuthally averaged energy
spectrum, indicating a pattern wavelength λ = 1.8 mm.

Langmuir pubs.acs.org/Langmuir Article

https://dx.doi.org/10.1021/acs.langmuir.0c00622
Langmuir 2020, 36, 5872−5879

5875

https://pubs.acs.org/doi/10.1021/acs.langmuir.0c00622?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c00622?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c00622?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.langmuir.0c00622?fig=fig2&ref=pdf
pubs.acs.org/Langmuir?ref=pdf
https://dx.doi.org/10.1021/acs.langmuir.0c00622?ref=pdf


Figure 5a shows the pattern wavelength for three different
excitation frequencies as a function of the surfactant
concentration. The interfacial tensions, inferred from these
wavelengths, are shown in Figure 5b; the results for the three
driving frequencies are consistent. The apparent interfacial
tension drops steeply when the surfactant concentration is
increased to 10 ppm and then stays approximately constant at
σ ≈ 6 × 10−4 N/m. This value is >2 orders of magnitude larger
than a reference measurement of σ at Γ = 200 ppm using a
spinning drop tensiometer. The limiting wavelengths λth are
also shown in Figure 5a. In all cases, they are smaller by a
factor of 2 than the smallest measured wavelengths.

A series of experiments at Γ = 200 ppm and varying NaCl
concentrations are shown in Figure 6. At the highest NaCl
concentrations (≈4%), the formation of patches of a
microemulsion was observed on the interface. These patches
are free of waves, possibly because of their stronger damping.
Wavelengths are measured outside these patches.
The observed wavelengths are larger by a factor of ∼2 than

the theoretical limiting wavelengths λth at vanishing interfacial
tension. The interfacial tensions computed from these
wavelenghts are consistent for the three frequencies.
The consistency of our experiments is further demonstrated

in Figure 7 where we compare the measured onset excitation

Figure 3. Estimating the amplitude of interfacial waves. (a) The apparent displacement δ of a dot pattern reflects the gradient ∇h = β of the
interface. The relation between δ and β follows the derivation by Moisy et al.,31 but now we also have to account for refraction between the upper
fluid layer and air. The refraction at the glass top cover is not shown, but the relation between the gradient ∇h and the apparent displacement δ in
eq 9 does allow for these covers. (b) Image of a dot pattern that is deformed by the interfacial waves. (c) Wave amplitude A at driving frequency Ω/
2π = 20 Hz as a function of time after the start of the excitation. After an exponential rise, the wave amplitude is saturated when A = 0.3 mm. It will
be used to estimate flow velocities in eq 9.

Figure 4. Images of waves at increasing driving frequencies and surfactant concentration Γ = 6 ppm. For frequencies Ω/2π > 20 Hz, the square
interface pattern can be recognized clearly.

Figure 5. (a) Measured wavelengths of Faraday waves driven at Ω/2π = 20, 30, and 40 Hz, for filled circles, filled squares, and empty circles,
respectively, as a function of surfactant concentration Γ. The three horizontal lines indicate the minimum wavelength λth of waves in the limit of
vanishing interfacial tension σ. This limiting wavelength decreases monotonically with an increase in frequency. (b) Interfacial tension computed
from the wavelengths in panel a. The red triangle indicates a reference measurement of the interfacial tension using a spinning drop tensiometer.
The error bars, obscured by the symbols, were computed from the uncertainty in the measured wavelength.
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amplitude ac with that inferred from the measured pattern
wavelength and the Floquet calculation. For surfactant
concentrations Γ that are increasing from the clean solvent
case Γ = 0 to Γ ≈ 6 ppm, the onset amplitude sharply
increases. This is due to the increase in the level of viscous
damping as the interfacial tension σ drops and the wavelength
decreases. At a surfactant concentration Γ = 200 ppm, the
onset amplitudes (ac/g) corresponding to the static reference
measurement of the interfacial tension (σ = 2.2 × 10−6 N/m)
would have been 1.1, 2.5, and 4.4 for driving frequencies of 20,
30, and 40 Hz, respectively. This is much larger than the
measured onset amplitudes.
As a function of increasing surfactant concentration, and

thus vanishing interfacial tension, the measured wavelengths

and onset accelerations reach asymptotic values. The two
measured quantities are perfectly consistent with linear Floquet
theory. However, the measured limiting wavelengths are larger
by a factor of 2 than the predicted ones, while the observed
asymptotic acceleration is much smaller than the prediction.
This striking discrepancy is illustrated in Figure 8. When we

assume that the interfacial tension is measured correctly for
concentrations Γ ≲ 10 ppm, we can draw the crude model
equation of state in Figure 8a. The wavelength that follows
from this EOS is shown in Figure 8b. At large Γ values, it is
smaller by a factor of 2 than the measured wavelength.
There are several ways to escape from this conundrum:

either the linear theory fails, or the concentration of surfactant
at the interface is much lower than the bulk concentration, and

Figure 6. (a) Measured wavelength of Faraday waves driven at Ω/2π = 20 and 50 Hz at a surfactant concentration Γ = 200 ppm and varying salt
concentrations. The two horizontal lines indicate the theoretical minimum wavelength λth of waves in the limit of vanishing interfacial tension σ at
driving frequencies of 50 Hz (bottom line) and 20 Hz (top line). (b) Interfacial tension computed from the wavelengths in panel a. The error bars
are computed from an uncertainty of 0.2 mm in the measurement of the wavelengths.

Figure 7. Comparison of computed and measured onset acceleration as a function of surfactant concentration. The computed ac values were
inferred from a measurement of the pattern wavelength, combined with the linear Floquet theory. Filled circles are the direct measurements, and
empty circles are computations. The error bars of the computed ac are derived from the uncertainty in the measured wavelength.

Figure 8. (a) Model equation of state (line), based on our experiments (circles) at low (Γ ≲ 10 ppm) and high (Γ = 200 ppm) surfactant
concentrations. (b) The black line indicates the wavelength computed from the model EOS in panel a at Ω/2π = 20 Hz; it asymptotes to λth ≈ 2
mm. The gray line indicates the measured asymptotic wavelength. The circles are the measured wavelengths. (c) Variation of surfactant
concentration along the interface due to its bending and stretching. The model velocity field u(x, z; t) used is for a surface wavelength λ of 4 mm, a
driving frequency of 20 Hz, and a wave amplitude of 0.3 mm. The initial concentration is Γ0.
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the interfacial tension is much larger than the reference σ
measured using the spinning drop technique.
We have no indication that the linear theory fails for

interfacial waves. We obtained good agreement with the
experiment for the clean interface (Γ = 0), while the theory has
been compared favorably with direct numerical simulations.29

Also, the predicted onset excitation amplitude agreed with the
measured one for all surfactant concentrations.
What we miss is the transport of the surfactant by the flow

induced by the waves The surfactant is concentrated at the
wave crests and diluted at the troughs. Using our measured
wave amplitude, it is possible to crudely estimate the variation
of the surfactant concentration Γ(s, t) at the interface. It
satisfies

Γ + ∇· Γ = ∇ Γu D( )t s s s
2

(9)

where ∇s is the gradient along the interface, Ds is the
coefficient for diffusion along the interface, and u(x, y; t) is the
fluid velocity field. Approximating u(x, z; t) with the analytic
second-order potential flow solution of Miche34 (documented
by Wright and Saylor35), we can easily solve for Γ(s, t). The
only ingredient needed is a value for the wave amplitude. The
influence of diffusion along the surface is negligible because the
Peclet number λ= =u DPe / (10 )s

2 .
The variation of Γ for a surface wave amplitude of 0.3 mm

(see Figure 3) is shown in Figure 8. The figure illustrates that
there is a large variation in Γ over the interface, implying a
varying normal stress, and a contribution of tangential stresses
(the Marangoni effect). While these concentration variations
are relevant around Γ ≈ 10 ppm where the measured
wavelength starts to deviate from that predicted, they cannot
explain the behavior at ultralow σ. What we still miss is the
exchange of the surfactant between the bulk and the interface,
the formation of an ultra-low-σ interface in the presence of
flow, the surfactant transport in the bulk flow, and, most
importantly, the feedback of the interfacial tension modulation
on the flow.

■ CONCLUSION
Interfacial tensions can be measured using Faraday waves. The
measurement is quick, is insensitive to boundaries, and needs
only analysis of images. However, the dynamic range of σ is
limited from below to ≳5 × 10−4 N/m. At very small interfacial
tensions, we hypothesize the influence of surfactant dynamics
that causes larger effective interfacial tensions than what is
expected on the basis of the bulk surfactant concentration.
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D., Miller, R., Eds.; Elsevier, 1989; pp 187−238.
(4) Bolognesi, G.; Saito, Y.; Tyler, A. I. I.; Ward, A. D.; Bain, C. D.;
Ces, O. Mechanical characterization of ultralow interfacial tension oil-
in-water droplets by thermal capillary wave analysis in a microfluidic
device. Langmuir 2016, 32, 3580−3586.
(5) Muijlwijk, K.; Hinderink, E.; Ershov, D.; Berton-Carabin, C.;
Schroen̈, K. Interfacial tension measured at high expansion rates and
within milliseconds using microfluidics. J. Colloid Interface Sci. 2016,
470, 71−79.
(6) Moire,́ M.; Peysson, Y.; Herzhaft, B.; Pannacci, N.; Gallaire, F.;
Augello, L.; Dalmazzone, C.; Colin, A. Ultralow interfacial tension
measurement through jetting/dripping transition. Langmuir 2017, 33,
2531−2540.
(7) Kumar, K.; Tuckerman, L. Parametric instability of the interface
between two fluids. J. Fluid Mech. 1994, 279, 49−68.
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(24) Chen, P.; Viñals, J. Amplitude equations and pattern selection
in Faraday waves. Phys. Rev. E 1999, 60, 559−70.
(25) Binks, D.; van de Water, W. Nonlinear pattern formation of
Faraday waves. Phys. Rev. Lett. 1997, 78, 4043−6.
(26) Binks, D.; Westra, M.; van de Water, W. Effect of depth on the
pattern formation of Faraday waves. Phys. Rev. Lett. 1997, 79, 5010−3.
(27) Westra, M.; Binks, D. J.; van de Water, W. Patterns of Faraday
waves. J. Fluid Mech. 2003, 496, 1−32.
(28) Kityk, A. V.; Embs, J.; Mekhonoshin, V. V.; Wagner, C.
Spatiotemporal characterization of interfacial Faraday waves by means
of light absorption technique. Phys. Rev. E 2005, 72, 036209.
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constante ou d’ećroissante. Ann. Ponts Chaussees 1944, 144, 25.
(35) Wright, P. H.; Saylor, J. R. Patterning of particulate films using
Faraday waves. Rev. Sci. Instrum. 2003, 74, 4063.

Langmuir pubs.acs.org/Langmuir Article

https://dx.doi.org/10.1021/acs.langmuir.0c00622
Langmuir 2020, 36, 5872−5879

5879

https://dx.doi.org/10.1017/S0022112004001600
https://dx.doi.org/10.1017/S0022112004001600
https://dx.doi.org/10.1016/j.jcp.2018.01.010
https://dx.doi.org/10.1016/j.jcp.2018.01.010
https://dx.doi.org/10.1017/S0022112004002459
https://dx.doi.org/10.1017/S0022112004002459
https://dx.doi.org/10.1017/S0022112004002459
https://dx.doi.org/10.1103/PhysRevLett.79.2670
https://dx.doi.org/10.1103/PhysRevE.60.559
https://dx.doi.org/10.1103/PhysRevE.60.559
https://dx.doi.org/10.1103/PhysRevLett.78.4043
https://dx.doi.org/10.1103/PhysRevLett.78.4043
https://dx.doi.org/10.1103/PhysRevLett.79.5010
https://dx.doi.org/10.1103/PhysRevLett.79.5010
https://dx.doi.org/10.1017/S0022112003005895
https://dx.doi.org/10.1017/S0022112003005895
https://dx.doi.org/10.1103/PhysRevE.72.036209
https://dx.doi.org/10.1103/PhysRevE.72.036209
https://dx.doi.org/10.1017/S0022112009007551
https://dx.doi.org/10.1017/S0022112009007551
https://dx.doi.org/10.1017/S0022112094003642
https://dx.doi.org/10.1017/S0022112094003642
https://dx.doi.org/10.1007/s00348-008-0608-z
https://dx.doi.org/10.1007/s00348-008-0608-z
https://dx.doi.org/10.1021/acs.langmuir.6b00821
https://dx.doi.org/10.1021/acs.langmuir.6b00821
https://dx.doi.org/10.1021/je000245r
https://dx.doi.org/10.1021/je000245r
https://dx.doi.org/10.1063/1.1602936
https://dx.doi.org/10.1063/1.1602936
pubs.acs.org/Langmuir?ref=pdf
https://dx.doi.org/10.1021/acs.langmuir.0c00622?ref=pdf

