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Notation 

The system of aerodynamic derivatives used in this paper is that 

defined in Ref. 5- All other symbols are defined in the text. 
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1. Introduction 

The linear theory of airframe dynamic stability is based on the 

assumption that, during a disturbance of the steady motion, terms of 

second or higher degree in the dynamic variables u, v, etc. may be 

neglected. See Ref. 1. The resulting equations of motion are linear 

differential equations with constant coefficients, and all the powerful, 

elegant, methods used for determining the stability of linear systems stem 

directly from the fact that the form of the general solution to these 

equations is known. These linear equations may always be put in the 

vector foim 

X = Ax + Q(t), (l.l) 

where x i s an n - v e c t o r whose components a re the dynamic v a r i a b l e s and 

t h e i r time d e r i v a t i v e s . A i s a cons tan t n X n m a t r i x , Q i s an n -vec tor 

known e x p l i c i t l y i n terms of t and x = d x / d t . Provided | Q ( t ) j has a f i n i t e 

bound, then a l l ques t ions of s t a b i l i t y of the s o l u t i o n s of ( l . l ) may be 

answered by c o n s i d e r a t i o n of the degenera te autonomous equa t ion 

X = Ax ( 1 . 2 ) 

If all the characteristic roots of A have negative real parts then the 

solutions of (1.2) and (l.l) are asymptotically stable. See Ref. 2, p. 31U. 

Much of airframe stability theory is concerned with linlcing this simple 

criterion with changes in geometric and flight parameters, which alter the 

coefficients of A, and seeking simple ways of predicting the changes in 

dynamic stability arising therefrom. 

If the above assumption, used to simplify the equations of motion, is 

not made then the resulting equations are nonlinear. Explicit general 

solutions are known for only a very restricted class of nonlinear equations 

(see Refs. 5 and it-) and the present equations are of a more complicated 

type. This lack of explicit solutions results in an almost complete absence 

of elegant techniques for determining the stability and response and certainly 

none with the simplicity of those existing for linear systems e.g. Routh's 

discriminant, Nyquist criterion. 
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Nonlinearity arises from both aerodynamic and inertial terms. 

In order to make the discussion of nonlinearity more explicit, consider 

the following example of airframe longitudinal motion influenced by 

aerodynamic nonlinearity associated with the velocity W. It is assumed 

that the aerodynamic configuration is symmetric and is, therefore, likely 

to have characteristics for the normal force Z, pitching moment M and 

longitudinal force X similar to those shown in Fig. 1. Of these Z(W) 

and M(W) are taken to be of 'odd' form and X(W) of 'even' forai. In 

many cases these curves may be taken to be analytic in W and can, therefore, 

be represented by power series 

X(W)/m a (x ) + XaW^ + X4W* + 

Z(W)/m = ẑ W + Z3W^ + Z5W5 + I (1.5) 

M(W)/B = m W + msW^ + mgW^ + 

The justification for and mutual consistency of the series representing 

X(W)/m and Z(W)/m may be eschibited in the following way. By definition 

X = L Sin a - D Cos a (l.^) 

and 

Z = - L Cos a - D Sina (I.5) 

For symmetric configurations experimental evidence indicates an ' odd' 

form for the L, a characteristic and an 'even' form for the D, cu characteristic. 

Also Sin a and Cos a are odd and even power series in a, respectively. 

Thus if L and D are analytic 

X = (odd series)(Odd series) - (Even series)(Even series) 

a Even series 

a X + X^2 + X4a'* + .., say, (I.6) 

and 

Z a - (odd series)(Even series) - (Even series)(Odd series) 

= Odd series 

a Zi + ZsoP + Zga^ + ..., say (l.?) 
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Now Sin a = w/u , where U is the flight vector velocity, or 

a = Sin'^(w/U^) = Odd series in W (1.8) 

S u b s t i t u t i n g for oc i n ( 1 . 6 ) and ( I . 7 ) then produces s e r i e s fo r X 

and Z of the form assumed i n ( l . 5 ) « For f u r t h e r s i m p l i c i t y i n the 

subsequent a n a l y s i s i t w i l l be assumed t h a t adequate r e p r e s e n t a t i o n i s 

ob ta ined by r e t a i n i n g only t h e f i r s t two terms i n each s e r i e s . 

I n the example the a i r f rame i s assumed to be d i s t u r b e d by an 

incrementa l e l e v a t o r d e f l e c t i o n , T], from a trimmed, s t r a i ^ t l i n e , climb 

a t an single 7 to the h o r i z o n t a l and. having a trimmed inc idence QJ . The 

l inee i r i sed equa t ions of motion for t h i s problem a re 

u - x u - x w + ( ¥ + x ) 0 + g Cos e .6 = 0 (1 -9 ) 
u w ^ o q o \ y 

- z u + w - z w - ( U + z ) 0 + g Sin 6 ,6 = z T ( l - l O ) 
u w ^ o q o T) 

• •• • 
- m u - m'w - m w + 0 - m 9 = m i l ( l . l l ) 

u w w q T] 

whf»re 

0 = 7 + a , U = U + u , W = W + w , 
o o ' o ' o ' 

6 = 0 + e and Sin a = W /U . o o cy 00 

I f now the non l inea r d e s c r i p t i o n of X(W), Z(W) and M(W) i s used the l i n e a r 

increments x w, z w and m w w i l l be rep laced by increments 
W W w 

AX(W)/m = [X(W) - X(W )]/m 

AZ(W)/m = [Z(W) - Z(W )]/m 

and 

/M(V)/B = [M(W) - M(W ) ] / B , 

r e s p e c t i v e l y . Upon s u b s t i t u t i o n from ( l . j ) ^ expansion, and r e t e n t i o n of 

terms i n w, w^ and w"̂  on ly , the equa t ions of motion become 
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u - x^u - (2X2W0W + xaw^) + (W^ + X )0+ g Cos 0 . 0 = 0 ( I . I 2 ) 

- Z U + W - [(z + 5Z3W ̂ )w + 3Z3W .Ŵ  + Z3Ŵ ] 
U W O o 

- (U^ + ẑ )0 + g Sin 0̂ .0 = ẑTi (1.13) 

- m, u - m'w - [(m + JmsW ^)v + JmsW .w^ + m3W-'] + 0 - m 0 = m̂ Tj 

u w ^ w o ' o q T]' 

(1-lî ) 

Elimination of u and 0 between these equations then gives 

f4W + f3(w);w + f2(w,w).W + fi(w,w).W + f (w) = F(T1 ) (l-15) 

where 

f4 t= z , 

f3(w) = - z^Ki + Kio - K6(U^+z^) - 6z^Z3W^.w - 5z^Z3.w2 

f2(v,w) = z^Ka - KiKio - K7(U^+z^) + K4IC6 - m^g Sin 0 ^ . 

+ 2[z^K3 - 3KioZ3W^ - Ko(U^+z^)]w 

+ 3[Z,̂ X̂ Z3 - K10Z3 - Kg(U^+Z^)]w^ - l8z^Z3.WW - l8z^Z3W^.W, 

fi(w,w) = KaKio + K4K7 + K5K6 + Kim g Sin 0 

+ 2[K3KIO + K4KS + 3z3ni„g Sin 0„.W^] 
o o w 

+ 3[K4Kg + KioX^Z3 + Z3m^g Sin©^.W^]w2 

+ 6[z^x^Z3 - K10Z3 - K9(U^+z )]ww 

+ 2[z^K3 - K8(UQ+Z^) - 3KioZ3.W^]v - 6z^Z3(v)2, 

f (w) = (K5K7 - Kam^g Sin 0 )w +(K5Ka - Ksm^g Sin 0^)w2 

+ (K5K9 - x^zsm^g Sin 0^)w^, 
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F(TI) = (z„z D^ + [Z„(KIO - Z X ) - Kii(U + z )]D^ 
^ Tl u Tî  •̂'̂  u u ' ^-^^ O q 

+ [K4K11 - Z„(KIOX + m g Sin 0 )]D + K5K11 + z„x m g Sin 0 }TI, 

Ki = X + Z + 3Z3W ^ , 
•̂  U W O ' 

Ka = X z - 2z XaWf, + 3x Z3W ^ , 
'̂  u w u ' ^ o - ^ u ^ o ' 

K3 = - z X2 + 3x ZsW^, 

K 4 = x ( U + z ) + z ( W + x ) + g S i n 0 , 
* u^ o q u^ o q o ' 

Ke = g ( z Cos 0 - X S i n 0 ) , 
^ ^ u O U o" 

Kfi = m + z m» , 
" u u w ' 

K7 = z (m + 3m3W 2) - m ( z + 3Z3W ^ ) , 
' u ^ w ^ o ' u ^ w ^ -^ o '' 

Ka = 5(z^m3 - m^Z3)W^, 

Kg = z^m3 - m^Z3, 

m Kio = (U^ + z^)m^ - z j _ 

and 

K i l = m z - z m 

I n o rder t o o b t a i n the u sua l l i n e a r equat ion from ( 1 . I 5 ) , only the 

cons tan t terms i n t h e c o e f f i c i e n t s are r e t a i n e d and 2X.^Q must be i d e n t i f i e d 

wi th X . Other important s p e c i a l cases a r i s e when m = 0 , which i s o f t en 

a good approximation; when S in 0 = 0 , corresponding to h o r i z o n t a l f l i g h t ; 

and when W , i . e . the i n i t i a l trimmed inc idence , i s s u f f i c i e n t l y small 

compared t o w to be ab le to n e g l e c t terms con ta in ing W or W ^ . 

Unl ike the l i n e a r problem, the g e n e r a l s o l u t i o n to ( l . l 5 ) i s not known 

and i t may reasonably be assumed t h a t the form of s o l u t i o n i s dependent on 

the foim of F[Ti( t )3 . For t h i s reason i t i s convenient to r e s t r i c t the 

range of p o s s i b l e forms by cons ider ing only the s t anda rd response t e s t 

f u n c t i o n s : 
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Step function: Ti(t) « 0, t « 0; Ti(t) = TI, t > 0, (l.l6) 

Sinusoid: Ti(t) = T] Sin cot (l.l7) 

The step function may also include the special case TJ = o, i.e. the 

stability of equilibrium. 

Consider first the response to a step function. Although the solution 

is not known, the points of equilibrium of the system may be obtained from 

the steady state equation 

f (w ) = (K5K11 + z X m g Sin 0 )TI, 
o s T u u o 

which may be written as the cubic 

(K5K9 - x^Z3m^g Sin 0Q)W^^ + (KgKa - K3m^g Sin ®^)y^^ 

+ (K5K7 - Kam^g Sin 0^)Wg - (K5K11 + ẑ x̂ m̂ g Sin @^)r\ = 0 

(1.18) 

In the linear case this reduces to 

Wg = (KsKii + z^x^m^g Sin 0^)/(K5K7 - Kam^g Sin ®Q).T], 

(1.19) 

and if, addi t ional ly , m = 0 then ( I . I 9 ) becomes 

Wg = Kii/K7.ri = - m^/m^.^, ( l . 2 0 ) 

a well known result. 

With all the other airframe and flight parameters fixed there will be, 

in the linear case, only one value of w corresponding to each value of 
s 

incremental elevator angle, TI, and this will be finite provided the 

denominator in (l.l9) is not zero. This means, approximately, that the 

centre of gravity margin shall not be zero. In the nonlinear case there 

will be, at most, three equilibrivmi values for which w is real. Typical 
s 

w, 1] trim curves, which are the solution curves of (I.I8), are shown in 

Fig. 2. Now the essential problem in the step function response analysis 

is to determine which of the equilibrium, or singular, points the solution 

curves of (1.15) are going to arrive at after a sufficiently long time. 

To do this it is necessary to know which of the singular points are 
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asymptotically stable, i.e. solution curves lying within a certain 

neighbourhood of the singular point all tend to the point as t -><», 

and which of the points are unstable. If there is more than one stable 

singular point it is then necessary to determine which one of these tne 

solution curves finally move into. In the case of equation (I.I5) 

the answers to these questions are far from complete; however, in the 

degenerate second order problem, where only the nonlinear short-period 

motion is considered, the technique is well developed (see Ref. 5) and 

will be discussed in Section 2. 

The other main problem is the influence of nonlinearity on the 

frequency response, i.e. when Ti(t) has the form of (l.l7). When the 

nonlinearity is small it may be shown that in the appropriate circumstances, 

governed essentially by Theorem 1.1 and 3.I, Chapter ik of Ref. 2, there 

exists a periodic solution of (I.I5) of greatest period 2Jt/cu. Also, in 

the analytic case, the coefficients of the Fourier series used to describe 

this solution, may be readily evaluated. Using a variant on this technique 

the author, in Ref. 6, has demonstrated how the approximate nonlinear 

frequency response may be obtained for the degenerate short-period problem. 

Having obtained these periodic solutions, it is necessary to 

distinguish the physically realizable solutions, which are those having 

asymptotic stability, from the others. In order to do this, use is made 

of the equation of first variation of (I.I5), which will be a linear 

differential equation with periodic coefficients. The stability is then 

governed by the characteristic exponents (see Theorem 2.1, Chapter 13 of 

Ref. 2) which may be evaluated by Cesari' s method given in Ref. J, Chapter 

8 and employed by the present author in Refs. 8 and 9-

When the nonlinearity is not small there are no generally applicable 

existence theorems guaranteeing periodic solutions as there were above. 

Nevertheless, in many cases, if the solution is taken to be a Fourier series 

and the coefficients evaluated by a direct substitution and comparison of 

coefficients procedure, periodic solutions are obtained which agree well 

with analogue and digital computer solutions. This process has been put 

on a sound basis by Cesari in Ref, 10, using a functional analytic technique. 
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There is no doubt that this method offers considerable possibilities, but 

it has not yet been employed on equations of the complexity of (I.15). 

The problem of periodic solutions will be considered in Section 3. 

A very powerful method for determining the stability of the singular 

points of systems of any finite dimension is that known as Lyapunov* s 

direct method. Its application to a system of second order will be 

described in Section k and the extension to systems of higher order will 

be discussed. 

2. The response of second-order systems to a step function 

The principal method to be used in this section is that known as 

Poincaré' s theory of singular points in the phase-plane, which will nca7 be 

described. Consider the real equation 

X + B(X).X + C(x) = 0, (2.1) 

which, Mpon taking x H xi, may be written as the equivalent pair of first 

order equations 

xi = Xa 

Xa = - C(xi) - B(xi).X2 

The solution curves of this equation in the Xi, Xa plane, known by engineers 

as the phase plane, are referred to as 'integral curves' and, provided B 

and C are analytic in Xi, through each ordinary point in the plane there 

passes only one such curve. The stationary positions of equilibrium of 

(2.2), defined by C(xi) = 0, xa = 0, correspond with the singularities of 

the equivalent equation 

dxa/dxi = (- C(xi) - B(XI).XaJ/xg, (2.3) 

and analysis of the character of these singularities gives considerable 

insight into the nature of the integral curves near these points and, thereby, 

information on whether the equilibrium points are asymptotically stable or 

othen^ise. 

More generally, consider the singularities of the equation 

dxa/dxi = P(XI, X2)/Q(XI, xa), (2.1̂ ) 

(2.2) 
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defined by P = Q = O, where P and Q are analyt ic in Xi and Xg. Since 

the or igin can always be changed to the singular point , then analysis 

can be r e s t r i c t e d to s ingu la r i t i e s at the or ig in . When {2.k) has a 

s ingular i ty at the or igin then i t was shown by Poincaré that in the 

nei^bourhood of the or igin the in tegra l curves of (2.4) may be accurately 

represented by the in tegra l curves of 

dxa/dxi = (axi + bx2)/(cxi + dxa), (2-5) 

provided ad-bc f 0, and where a, b, c, d are the coefficients of the 

leading terms of power series representations made possible by the analytic 

nature of P and Q. The nature of the integral curves of (2.5) fall into 

four cfitegories (see Ref. 2, Chapter 15) which may be detemiined from the 

roots of the characteristic equation 

\^ - X(b + c) - (ad - be) = 0 (2.6) 

In 'c'/o particular case of equation ^.3)^ taking 

B ( X ) = b + bix + bax^ + 

and y (2.7) 
C(x) = cix + cax^ + C3X^ + J 

then the equation corresponding to (2.5) is 

dxa/dxi = (- CiXi - 1D^X2)/X2 (2.8) 

and the types of singularity may be classified by means of the diagram 

shown in Fig. 3. 

If, in the linearized equations of motion (I.9) to (l.ll), the 

longitudinal velocity is assumed to be constant, then these equations 

degenerate to two equations in w and 0 which approximately describe the 

'short-period' motion, i.e. the phugoid motion has been eliminated from the 

equations. The same assumption reduces equations (1.12) to (l.l4) to two 

equations in w and 0 describing, what may be called, the ' nonlinear short-

period' motion. Eliminating 0 between these equations then gives 
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w - U z ^ + 3z3Wp^ + m + m«(U + z )] + 6Z3W .w + 3z3W^}w 

+ [m^(z + 3Z3W 2) - (U +z )(m + 3m3W 2)]w + 3W [m Z3 - m3(U +z )]\}^ q^ w o ' ^ o q w o o q o q 

+ [m^Z3 - m3(U +z )]w^ = [z„D - z m + m.„(U +z )]r\ ( 2 . 9 ) 
q o q T) T) q T^^ o q \ ^/ 

F u r t h e r s i m p l i f i c a t i o n i s p o s s i b l e i f W i s small compared wi th w and 

may be n e g l e c t e d , and i t was i n t h i s form t h a t the equa t ion was taken in 

Ref. 3' The r e s u l t s of t h a t s tudy w i l l now be d i s c u s s e d . 

I t i s convenient to r e f e r the w c o - o r d i n a t e to the f i n a l eqTiilibrium 

value w . Thus s 

w = w + 1 
s 

(2 .10 ) 

and the equa t ion desc r ib ing the ^ motion becomes 

Ï - [ B I + B3(w +ê^)3ê - [ A I ( W +e) + A3(w + 0 ^ 3 

= [z D + m (U +z ) - z_m 3n 
n o q' n q 

(2 .11 ) 

where 

At = (U +z )m - m z 
•• ^ o q ' w q w 

A3 = (U +z )m3 - m Z3 
o q 1 

Bi = (U +z )n ' + m + z •̂  ^ o q w q w 

B3 = 3Z3 

Now w i s def ined by 
s 

- AlW - A3W -̂  = [m (U +z ) - z m 3TI, 
•̂  s s n 0 q T) q 

which, upon subtraction from (2.11), gives 

(2.22) 

(2 .13) 

Ï - [ B I + B3(w + ê ) ^ 3 | - [(A1+3A3W 2)1 + 3^3^J^ + A35^3 = zA 

(2.1U) 

The importance of the terra z TJ i n ( 2 . l 4 ) ( t h i s i s t h e term which, 

fo r r e a r - c o n t r o l c o n f i g u r a t i o n s , produces the ' n e g a t i v e k i ck ' on the 

response curve) w i l l depend on the airframe con f igu ra t i on , and i t s in f luence 
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on the stability has been deteimined in Ref. 5- In the present discussion 

only the case z = 0 will be considered. 

n 
As a resvilt of the previous assumption (2 . l4 ) reduces to the same 

form as (2.1) with (2.7) and the equation corresponding to (2.8) is 
d W ^ e i = C(Ai+3A3w/)ai + ( B I + B 3 W 2 ) S 23/^2 (2.15) 

A canparison between (2.15) and (2.8) then shows that the types of 

singularity in the i^f ^s plane may be classified by the use of Fig. k. 

Two cases are relevant to the aeroplane stability and response problem. 

Case 1. Ai < 0^ A3 < 0, BI < 0. 

This corresponds to an airframe which is statically stable at low 

incidence and for which dC^do; becomes more negative as oc increases. 

See Fig. l(b). Curve 2. The associated incremental trim curve is shown 

in Fig. 5(a). This is typical of tail controlled configurations whose 

tail efficiency increases with incidence. B3 may be either sign, positive 

and negative B3 corresponding to Fig. l(a). Curves 2 and J), respectively. 

Negative B3 often arises with very low aspect-ratio configurations, whilst 

positive B3 indicates a conventional lift curve containing a stall. 

With w zero, the corresponding point on Fig. h is A, implying that 
s 

the initial trimmed condition is one of asymptotic stability and that the 

settling down motion near this point is normally oscillatory. The curves 

AB and AC represent the variation with w . Only one value of w exists 

for a given T̂ ^ and the nature of the equilibrium point would normally be 

a stable spiral, as shown in Fig. 5(b). If, however, B3 or w^ were veiy 

large the equilibrium point could move into the region of unstable spirals 

beyond the point B. With B3 < 0 no instability is possible, but the 

settling down motion becomes non-oscillatory at C. The instability 

boundary at B is determined by 

Bi + B3(wJ2 ^ 0 
- B 

or 

(wj = (- B I / B 3 ) S BI < 0, B3 > 0, (2.16) 
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which from (I.3) and (2.12) must correspond to an incidence above the 

stall. 

Graphical constructions, such as those of Lienard (See Ref. 11, 

pp. 217-220) can be used to deteimine the solution curves of (2.l4) in the 

phase-plane, Fig. 5(h). From these may be obtained the normalized 

response curves. Fig. 5(c) shows a sketch of typical results. With 

r\ small the response curve differs little from the linear case, whilst 

with Tî  large the 'rise time' is reduced and the settling down frequency 

increased. The interesting practical result here is that in many 

situations the linear normalized response curve gives a good approximation 

to the exact result. 

Case 2. Ai < 0, A3 > 0, Bi < 0. 

The condition A3 > 0 might well be typical of a canard configuration 

whose nonlinear body lift is forward of the centre of gravity. Starting 

with the same value of Ai and the same initial conditions as the previous 

case, then curves AE and AD of Fig. k represent the variation in the nattrre 

of the equilibrium points with w . Three equilibrium points exist for 
s 

values of f] lying between the maximum and minimum of Fig. 5(d). Only 
s 

(w )i is stable, the points (w )2 and (w )3 lying in the region of saddle 
s s s 

points on Fig. k. The corresponding phase-plane diagram is shown in Fig. 

5(e). With T] sufficiently large points 1 and 2 merge leaving only two 

saddle points, implying that the airframe is unstable for this and larger 

valaes of r\ . The stability boundary is given by 

Ai + 3A3(w^)^ = 0 
^ E,D 

or 

(w) = [- Ai/(3A3)3S (2.17) 
^ E,D 

corresponding with the minimum on Fig. 5(d). 

The normalized response curves may be constructed in a similar manner 

to Case 1, typical curves being shown in Fig. 5(f). With ^ small 

the curve is nearly that of the linear case, whilst with increase 
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of Tl the curve becomes more damped and the se t t l ing down frequency 
s 

becomes less. When TI is sufficiently large for the corresponding point 

on Fig. k to lie between E or D eind the = 0 curve, then the response 

is non-oscillatory in the region of w/w = 1 as t -»». Finally, when 
TI corresponds to w > (w ) the response curves are unstable. 
's ^ s ^ S'E,D 

3. Periodic response of nonlinear systems 

Writing w = Wi, Wi = Wa, •••• etc. then (I.15) may be expressed in 

the vector form 

w = Aw + G(w) + f(t), (5.1) 

where w is the column vector col.(wi, Wa, W3, W4), A is the constant 

matrix 

A = 

0 

0 

0 

1 

0 

0 

0 

1 

0 

-hjhi -hi/h4 -ha/h4 

G(W) is the column vector function 

0 

0 

1 

- h 3 / h 4 

(5.2) 

c o l . { 0 , 0 , 0 , - ^ [ g ^ ( w i ) + gi(wi,W2).W2 + ga(vi,W2).W3 + g3(Wi).W433, 

(5.3) 

(3.4) 

• 4 * 

f ( t ) i s the colimin vector function 

c o l . { 0 , 0 , 0 , - ^F[Ti( t )33 , 

where h , hi, ...., h4 are the constant parts of f , fi, .... 

respectively and go(wi) = fo(wi) - h^, , g3(wi) = f3(wi) - h^. 

When T)(t) = Ti Sin cut and | G(w)| is sufficiently small, then it may be 

shown that (3.I) has a unique periodic solution of period 2K/CO. This is 

proved in Ref. 2, Chapter l4. Theorems 1.1 and 3'1> but requires the prior 

reduction of (3-1) to the form 

u = CÜ + q(ü,t) (3.5) 

by the substitution 

w » u + u, 
o ' (5.6) 
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where ü is any periodic solution of the linear equation 

Ü = AÜ + f(t) (3.7) 

An alternative proof is given in Ref. 2, pp. 64-70. 

If it is assumed that the non-constant tenns in f^, ...., f4 are 

sufficiently small, then from the above theorem it follows that there 

exists a periodic solution of 

^4 w + f3(w)w + fa(w,w)w + fi(w,w)w + fQ(w) = F(TI Sin cut) 

(5.8) 

which may be wr i t t en as the Fourier se r ies 
eo 

y = / (a^^Sin nuit + b^ Cos ODt) (3-9) 

The approximate values of the coefficients a , b may be obtained by 

truncating the series, substituting into (3.8) and comparing coefficients. 

For n > 3 the labour of trigonometric manipulation is considerable. 

It is, therefore fortunate that in most practical cases the amplitude of 

the higher harmonics decrease rapidly with n and permits truncation at 

quite small values of n. 

The full periodic solution of (5«8) has not yet been published, 

although the author hopes soon to do this. The degenerate problem of the 

sinusoidally forced, short-period motion has, however, been discussed in 

Ref. 6. In this paper an airframe was considered whose incremental trim 

curve was of the same type as Curve 2 of Fig. 2, i.e. initially statically 

stable and having a 'hard' pitching moment characteristic. It was shown 

in Ref. 6 that the resixlting equation was closely similar to Duff ing's 

equation and the respective solutions also exhibited great similarity. 

If attention is restricted to the fundanental i.e. n » 1 in (3.9)> then the 

graph of the amplitude versus frequency may be looked upon as an approximate 

nonlinear frequency response diagram, a crude generalization of the well 

known diagram used in association with linear systems. Curves of this 

sort have been taken from Ref. 6 and are re-produced in Fig. 6. In Fig. 

6(a) it will first be obsemred that the shape of the curves are dependent 
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on the amplitude of the elevator sinusoid and cannot, as with a linear 

system, be reduced to one curve by normalization. The vertical arrows 

indicate ' Jumps' of amplitude which occur at the points of vertical 

tangency of the response curves. Being a dissipative system the 

fundamental will be out of phase with the forcing sinusoid and the 

associated phase angle curves shown in Fig. 6(b) also indicate Jumps 

in phase angle. 

It has been seen that provided the nonlinear terms in (5.8) or its 

degenerate forms eire relatively small the periodic solution may be readily, 

if somewhat laboriously, obtained. From Fig. 6(a) it is clear that at 

some frequencies more than one solution is possible and there arises the 

problem of determining which of the three amplitudes correspond to solutions 

which are asymptotically stable; it is these which are physically realizable. 

To do this use is made of the equation of first variation defined by 

I = J-(t, P(t)3.e, (3.10) 
w 

where 

J(w, t) = Aw + G(w) + f(t), (3.11) 

J- is Jacobian matrix of j(w,t) with respect to w, and p(t) is the periodic 

solution whose stability is being investigated. In the present case 

j(w,t) will be a 4 X 4 matrix. Equation (3-10) will be a linear 

differential equation with periodic coefficients and the form of its solution 

is known fran Floquet's theorem (see Ref. 2, p. 78) to be 

$[5(t)3 = £(t)e^^ (3.12) 

where $[|(t)3 is a 4 x 4 matrix formed by the 4 linearly independent 

solution vectors I, JB(t) is a periodic matrix and R is a constant matrix. 

The stability of this solution is determined by the characteristic roots 

of R, known as the ' characteristic exponents' and these are not readily 

determined. One method of evaluating the characteristic exponents, to an 

accuracy consistent with the assumption of small nonlinearity made at the 

outset, has been developed by Cesari in Ref. 7^ Chapter 8 and has proved 

to be of considerable utility. The details will not be entered into here, 

but see for example Refs. 8 and 9. Having evaluated the characteristic 
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exponents, then the solutions (5.12) will be asymptotically stable 

if all the characteristic exponents are negative. If this is so then 

it follows from Ref. 2, Chapter 13, Theorem 2.1, that the associated 

periodic solution, p(t), of (3.8) is asymptotically stable. 

In Ref. 6 another method, due to Minorsky, has been used to obtain 

the region, bounded by the locus of vertical tangents, on Fig. 6(a) 

which corresponds to asymptotically unstable solutions. This result 

may readily be obtained by the method described in the above paragraph, 

as may be seen by comparing the results of Ref. 8 with those of Ref. 6. 

4. The use of Lyapunov functions 

Poincaré' s theory for determining the stability of equilibrium is 

effectively restricted to systems of second order. A more general 

technique for determining the stability of equilibrium of systems of any 

finite order is that known as Lyapunov" s Direct Method. Consider the 

autonomous resil vector system 

X = X(x), (4.1) 

where X is Lipschitzian or otherwise satisfies a uniqueness condition. 

Let there exist in a neighbourhood of the origin a scalar function of 

the solution vector V(x) which is positive definite, i.e. V(x) > 0, 

V(o) = 0, and for which the total time derivative V(x) is negative 

definite, i.e. V(x) < 0, V(0) = 0. It then follows that all the solution 

curves in this neighbourhood move into the origin as t -><» and the origin 

is said to be asymptoticeilly stable. Proofs of this theorem are given in 

Ref. 13, pp. 37-58 and Ref. 14, p. 15. The existence of V(x), known as 

a Lyapunov function, is a sufficient, but not necessary, condition for 

asymptotic stability of the origin. 

A principal shortcoming of this method is that there are, in existence, 

no generally applicable techniques for constructing V(x). In the case 

of linear systems with constant coefficients a very elegant method exists 

(see Ref. l4, pp. 26-29) for constructing V(x) as a positive definite 

quadratic fonn. The resulting stability criteria are precisely those of 
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Routh. In the case of nonlinear systems the form of V(x) is based 

largely on inspired guesswork and a fund of appropriate forms for V(x) 

has been established. Consider for example the equation 

X + B(x).x + C(x) = 0, (4.2) 

which may be expressed as the equivalent system 

(̂ .5) 

ih.3) 

and assume that there ex i s t s a Lyapunov function of the form 

V(x,y) = G(x) + y2/2. (4.6) 

If (4.2) were representative of a nonlinear mechanical system, then V(x,y) 

would describe the contours of total energy in the x,y plane. Differentiating 

V(x,y) totally with respect to t gives 

V(x,y) = C(x).i + y^ 

= C(x)[y - F(x)3 - yg(x) 

or 

V(x,y) = - C(x).F(x). (4.7) 

In order that V(x,y) be positive definite and V(x,y) sign definite, certain 

restrictions have to be placed on the form of B(X) and C(x). For this 

purpose it is assumed that 

(a) F(0) = C(0) = 0 , 

(b) C(x)/x > 0, F(x)/x > 0, X ŷ  0, I (4.8) 

(c) G(X) -•00 as I (X( I -»<» 

With these conditions it is clear that V(x,y) is positive definite and V(x,y) 

X = y - F(X) 

y = - c(x) y 

where 

F(X) = / B(x)dx 

Write 
r 

G(X) = / C(x)dx 

o 
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is negative definite for all x,y, and it follows that the origin is 

asymptotically stable for arbitrary initial x,y. 

It is of interest to apply these results to the equation 

Ï + B(|).| + C(|) = 0, (4.9) 

B(0 = - Bi 

C ( 0 = - [(Ai + 5A3w/) | + 5A3W 1^ + A3?33, 
s s 

a s l i gh t l y simplified form of (2 . l4 ) with z and B3 both zero. 

F ( 0 = - Bil 

G ( 0 = - [è(Ai + 5A3w/)S^ + A3W ê̂̂  + ^A3l*3. 

The conditions (4.8) (a) and (c) are clearly satisfied and so is the 

condition F{i)/i > 0 of (4.8) (b) provided Bi < 0, which it is, normally. 

The breakdown in meeting the conditions of (4.8) arises in the condition 

C(|)/5 > 0 and as a result gives rise to certain asymptotic stability 

boundaries. Two cases arise. 

The I V C(ê) curves for this case are shown in Fig. 7(a). The zeros 

of C(§) correspond to the roots of equation 

e(A352 + 3A3W^| + (Ai + 3A3V^2)3 = 0 (4.10) 

s s 

which are 

i = 0, i{- 5v^ ± (- 4A1/A3 - 3 w / ) ^ (4.11) 

Since Ai and A3 have the same sign then the discriminant is negative and 

the only real root is ê = 0. The curves of Fig. 7(a), therefore, cut the 

I - axis once only. Clearly C(0/5 > 0 for all w and I, and, thereby, the 
s 

equilibrium point is always asymptotically stable. This agrees with the 

conclusion in Section 2 and corresponds to the response curves of Fig. 5 

(h), (c). 

where 

which is 

Thus 

and 
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Case 2. Ai < O, A3 > 0. 

Here three real roots of (4.10) are possible, as shown in Fig. 7(b). 

When w = 0, the roots are 
s ' 

5 = 0, ± (- Ai/A3)^. 

In the open interval 

- (- A I / A 3 ) ^ < 5 < + (- Ai/A3)^ (4.12) 

the condition C ( 0 / 5 > 0 is s a t i s f i ed and the or ig in i s asymptotically 

s t ab l e . This means that i f the i n i t i a l value of I l i e s in the open 

in te rva l (4.12) then the solut ion curves w i l l sp i r a l into the o r ig in , i . e . 

the equilibrium point w = w = 0. 

When w j^ 0 the picture changes, the posi t ive rea l root becoming 
s 

smaller and the negative r e a l root becoming more negative, as in F ig . 7(b) . 

Again i f the I n i t i a l value of 5 = - w l i e s in the open in terva l between 
s 

these roots then the solution curves will spiral into the origin. For 
modest w the situation corresponds to that of Fig. 5(e), the point 1 

s 
now being the origin of Fig. 7(b) and the origin of Fig. 5(e) being a 

point Ê = - w on Fig. 7(b). With increasing w a situation is finally 
s s 

reached where the positive root of (4.11) beccmes zero. Thus 

- 3v + (- 4A1/A3 - 3w 2)2 = 0 
s s 

or 
w^ = + [- Ai/(3A3)32 (4.13) 

This corresponds to the merging of the points 1 and 2 on Fig. 5(e) and 

represents the upper limit to the stability boundaiy. 

Systems of higher order 

The previous example has shown that if it is manifest that there exists 

about a final equilibriian point an interval of asymptotic stability on the 

w axis which contains the initial point w = 0 (or | = - w ), then the 
s 

response curve will move into w = w as t -*«. This idea can be extended 

to systems of higher order and the conditions, similar to equation (4.8), 

which ensure sign-definiteness of the appropriate V and V will, in general, 
* (n) 

define a region of asymptotic stability in the space of w, w, ....,^w . 
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It is unfortunate that appropriate Lyapunov functions for equation (1.15) 

have not, as yet, been discovered and much more work needs to be done before 

the application of the technique to equations of this type is possible. 

5. Conclusion 

The preceding sections have demonstrated three of the principal 

techniques available for determining the solutions, or their stability, of 

nonlinear ordinary differential equations. By considering the application 

of these techniques to a particular type of equation, describing the response 

of an airframe to certain elevator motions, it is dear that these methods 

are far from complete. This situation arises as a result of the very 

limited existing knowledge of the natuare of the solutions of nonlinear 

equations, a problem which is proving to be very formidable indeed. However, 

some progress is being made. In particular, the method proposed by Cesari 

in Ref. 10, and the development of methods for constructing Lyapunov 

functions do offer reasonable prospects for the future. 
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