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SUMMARY

The problem of longitudinal stability and control of an airframe,
having nonlinearity in its principal aerodynamic characteristics, is
congidered. It is shown that the equation describing the response in
w, and thus the incidence, is a nonlinear differential equation of the
fourth order. This equation, and its degenerate forms, is used as an

example to demonstrate various nonlinear techniques and their shortcomings.

This paper is to be presented at the AGARD Flight Mechanice Panel Specialists’
Meeting, Churchill College, Cambridge, England, in September, 1966.
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Notation

The system of aerodynamic derivatives used in this paper is that
defined in Ref. 5. All other symbols are defined in the text.




i Introduction

The linear theory of airframe dynamic stability is based on the
assumption that, during a disturbance of the steady motion, terms of
second or higher degree in the dynamic variables u, v, etc. may be
neglected. See Ref. 1. The resulting equations of motion are linear
differential equations with constant coefficients, and all the powerful, .
elegant, methods used for determining the stability of linear systems stem
directly from the fact that the form of the general solution to these
equations is known. These linear equations may always be put in the

vector form
x = Ax + Q(t), (1.1)

where x is an n-vector whose components are the dynamic varisbles and

their time derivatives. A is a constant n X n matrix, Q is an n-vector
known explicitly in terms of t and x = dx/dt. Provided |Q(t)] has a finite
bound, then all questions of stability of the solutions of (1.1) may be

answered by consideration of the degenerate autonomous eguation
x = Ax (1.2)

If all the characteristic roots of A have negative real parts then the
solutions of (1.2) and (1.1) are asymptotically stable. See Ref. 2, p. 31k4.
Much of airframe stability theory is concerned with linking this simple
criterion with changes in geometric and flight parameters, which alter the
coefficients of A, and seeking simple ways of predicting the changes in
dynamic stability arising therefrom.

If the above assumption, used to simplify the equations of motion, is
not made then the resulting equations are nonlinear. Explicit general
solutions are known for only a very restricted class of nonlinear equations
(see Refs. 3 and 4) and the present equations are of a more complicated
type. This lack of explicit solutions results in an almost complete absence
of elegant techniques for determining the stability and response and certainly
none with the simplicity of those existing for linear systems e.g. Routh's

discriminant, Nyquist criterion.




Nonlinearity arises from both aerodynamic and inertial terms.
In order to make the discussion of nonlinearity more explicit, consider
the following example of airframe longitudinal motion influenced by
aerodynamic nonlinearity associated with the velocity W. It is assumed
that the aerodynamic configuration is symmetric and is, therefore, likely
to have characteristics for the normal force Z, pitching moment M and
longitudinal force X similar to those shown in Fig. 1. Of these Z(W)
and M(W) are taken to be of 'odd' form and X(W) of 'even' form. 1In
many cases these curves may be taken to be analytic in W and can, therefore,

be represented by power series
X(W)/m = (xo)w + X W2 + xgWE + ...,
Z(W)/m = z W + zW> + zgWo + ... } _ (1.3)
M(W)/B = m W + maW> + mgWs + ...
The justification for and mutual consistency of the series representing
X(W)/m and Z(W)/m may be exhibited in the following way. By definition

X=LSina ~ D Cos (1.4)
and )
7 = -1 Cos @ - D Sin a - (1.5)

For symmetric configurations experimental evidence indicates an 'odd'

form for the L, & characteristic and an 'even' form for the D, O characteristic.
Also Sin @ and Cos @ are odd and even power series in G, respectively.

Thus if L and D are analytic

X = (0odd series)(0dd series) - (Even series)(Even series)
= Even geries
=X+ X2 + X0 + .., say, (1.6)

and
Z = - (0dd series)(Even series) - (Even series)(0dd series)

= 0dd series

=2, + Zs0° + Zg0® + ..., say (1.7)




Now SinC = W/qm, where U 1is the flight vector velocity, or

@ = Sin"*(W/U_) = 0dd series in W (1.8)

Substituting for @ in (1.6) and (1.7) then produces series for X
and Z of the form assumed in (1.3). For further simplicity in the
subsequent analysis it will be assumed that adequate representation is
obtained by retaining only the first two terms in each series.

In the example the airframe is assumed to be disturbed by an
incremental elevator deflection, 7, from a trimmed, straight line, climb
at an angle 7 to the horizontal and having a trimmed incidence ao‘ The

linearised equations of motion for this problem are

U - XU - X W (Wo + xq)@ +gCos® 6 =0 (1.9)
- . - - é i .6 = -
z U+ W =z (Uo + zq) + g Sin @o znn {1.10)
. m ~ . - N .. _ é o X
U =MW - mow + 6 m m N (Y. 1)
where

@O=7+ao, U=Uo+u, W=WO+W,
® =0 +6 and Sina =WO/U.
(o] 0 0

If now the nonlinear description of X(W), Z(W) and M(W) is used the linear

increments xww, wa and mww will be replaced by increments

AX(W)/m = [X(W) = X(W_)]/m
AZ(W)/m = [2(W) - z(wo)]/m
and
M(W)/B = [M(W) - M(Wo)]/B,
respectively. Upon substitution from (1.3), expansion, and retention of

terms in w, w® and w° only, the equations of motion become
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- xu = (2xMgw + x2w?) + (W_ + xq)é+ g Cos ®_.6 = 0 (1.12)

L
-z U+ W - [(zw + 3z3woz)w + 3z;«,Wo.w2 + z3w>)

- 6 i 0 = 5
(U0 + Zq) + g 8in® ZpN (1.13)
9 = .. ~ 2 2 3 L . . 0
mu = mew [(mw + 3m3Wo W+ 3m3wo.w + maw>] + 6 mqe = mnn
(1.14)
Elimination of u and © between these equations then gives
(ll-) 5 L] .. - .
faw + F3(w)W + fo(w,w).w + £1(w,w).w + fo(w) = F(n) (1.15)
where
fao=12z,

u
fx(w) = = z K1 + Kio - Ks(Uo+zq) - 6zuZ3Wo.w - 52u23.w2

£o(w,w) = 2Kz = KiKio = Kr(Utz ) + KeKe - mg Sin @ .
o 2[zuK3 - 3K10z3wo - KB(U0+zq)]w
+ 3[zuxuz3 - K1023 = Kg(U°+zq)]w2 - l8zu23 W - 18zuz;r,Wo.w,

fl(w’;’)

KEKlO + K4.K7 + KSKG + Klmug Sin @o

+ .

2[KsK1o + KeKg + 3z3m 8 Sin @O.WO]w

+

3[K4Kg + K1oX,Z3 + z3m g Sin @o.wo]w‘2

+ 6[zuxu23 - Ki023 - Kg(Uo+z_q)]w;v

+ 2lz X5 - Ka(Uo+zq) - 3K10z3.wo]€w . 6zuz3(§:)2,
fo(w) = (KsK7 = Kom g Sin @o)w +(KsKg = K3m g Sin @O)w2

_ . .
+ (KsKg = x,z3m & Sin @O)w .




" 3 _ _ 2
F(n) = {znZuD - [zn(Klo zuxu) Kll(Uo + zq)]D

+ [KgKyq - zn(Kloxu +m g Sin @o)]D + KsKqq + Z, X, € Sin @o}n,

=~
'—l
I

X + 2 + 3zaW 2
u w T I

Ko = x - 2% XMW~ + 3% z=W 2
2 aSy = 2B XaMo + Ox A 5,

Kz = = z X2 + 3xuz3Wo,

Ky = xu(UO + zq) + zu(wo + xq) + g Sin @0,
Kg = g(zu Cos ®_ - x_ Sin @o)’

Kg = m = z s,

K; = Zu(mw + 3m3W02) - mu(zw + 3z3W02),
Kg = 3(zum3 - muzs)Wo;

Kg =2zms - m 2z
9 u3 u:’u

el
=
O

I

= (Uo + zq)mu - 2By

= muzn - zumn

In order to obtain the usual linear equation from (1.15), only the
constant terms in the coefficients are retained and 2x W, must be identified
with X . Other important special cases arise when W = O,.which is often
a good approximation; when Sin @0 = 0, corresponding to horizontal flight;
and when Wo’ i.e. the initial trimmed incidence, is sufficiently amall
compared to w to be able to neglect terms containing WO or Woe. '

Unlike the linear prdblem, the general solution to (1.15) is not known
and it may reasonably be assumed that the form of solution is dependent on
the form of F[n(t)]. For this reason it is convenient to restrict the
range of possible forms by considering only the standard response test

functions:




Step function: n(t) = 0, t € 0; n(t) =1, t > 0, (1.16)
Sinusoid: n(t) = n, Sin ot (1.17)

The step function may also include the special case n = 0, i.e. the
gtability of equilibrium.

Consider first the response to a step function. Al though the solution
is not known, the points of equilibrium of the system may be obtained from

the steady state equation
= +
fo(ws) (KsK11 2 %0 8 Sin @O)n,
which may be written as the cubic

- 3 - 2
(KsKo x,z3m g Sin @O)wS + (KsKa Ksm g Sin @o)ws
+ (KsK7 = Kzm g Sin ®°)wS - (KgKyp + Z %, 0,8 Sin @o)n =0

(1.18)
In the linear case this reduces to
v, = (KsKyq + Zp X, 08 Sin @o)/(K5K7 - Kzm g Sin @o).n,
| (1.19)
and if, additionally, m = O then (1.19) vecomes
Vg = K1/K7.n = - m /m_.n, (1.20)

a well known result.

With all the other airframe and flight parameters fixed there will be,
in the linear case, only one value of ¥ corresponding to each value of
incremental elevator angle, 7m, and this will be finite provided the
denominator in (1.19) is not zero. This means, approximately, that the
centre of gravity margin shall not be zero. In the nonlinear case there
will be, at most, three equilibrium values for which LA is real. Typical
W, N trim curves, which are the solution curves of (1.18), are shown in
Fig. 2. Now the essential problem in the step function response analysis
is to determine which of the equilibrium, or singular, points the solution
curves of (1.15) are going to arrive at after a sufficiently long time.

To do this it is necessary to know which of the singular points are
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asymptotically stable, i.e. solution curves lying within a certain
neighbourhood of the singular point all tend to the point as t J o,

and which of the points are unstable. If there is more than one stable
gingular point it is then necessary to determine which one of these the
solution curves finally move into. In the case of equation (1.15)

the answers to these questions are far from complete; however, in the
degenerate second order problem, where only the nonlinear short-period
motion is considered, the technique is well developed (see Ref. 5) and
will be discussed in Section 2.

The other main problem is the influence of nonlinearity on the
frequency response, i.e. when n(t) has the form of (1.17). When the
nonlinearity is small it may be shown that in the appropriate circumstances,
governed essentially by Theorem 1.1 and 3.1, Chapter 14 of Ref. 2, there
exists a periodic solution of (1.15) of greatest period 2t/w. Also, in
the analytic case, the coefficients of the Fourier series used to describe
this solution, may be readily evaluated. Using a variant on this technique
the author, in Ref. 6, has demonstrated how the approximate nonlinear
frequency response may be obtained for the degenerate short-period problem.

Having obtained these periodic solutions, it is necessary to
distinguish the physically realizable solutions, which are those having
asymptotic stability, from the others. In order to do this, use is made
of the equation of first variation of (1.15), which will be a linear
differential equation with periodic coefficients. The stability is then
governed by the characteristic exponents (see Theorem 2.1, Chapter 13 of
Ref. 2) which may be evaluated by Cesari's method given in Ref. T, Chapter
8 and employed by the present author in Refs. 8 and 9.

When the nonlinearity is not small there are no generally applicable
existence theorems guaranteeing periodic solutions as there were above.
Nevertheless, in many cases, if the solution is taken to be a Fourier series
and the coefficients evaluated by a direct substitution and comparison of
coefficients procedure, periodic solutions are obtained which agree well
with analogue and digital computer solutions. This process has been put

on a sound basis by Cesari in Ref, 10, using a functional analytic technique.




There is no doubt that this method offers considerable possibilities, but
it has not yet been employed on equations of the complexity of (1.15).
The problem of periodic solutions will be considered in Section 3.

A very powerful method for determining the stability of the singular
points of systems of any finite dimension is that known as Lyapunov'e
direct method. Its application to a system of second order will be
described in Section 4 and the extension to systems of higher order will

be discussed.

2. The response of second-order systems to a step function

The principal method to be used in this section is that known as
Poincaré's theory of singular points in the phase~plane, which will now be
described. Consider the real equation

x + B(x).x + ¢(x) = 0, (2.1)

which, ypon taking x £ x;, may be written as the equivalent pair of first

order egquations

S } (2.2)
Xz = = C(x1) = B(xy).x2
The solution éurves of this equation in the x;, xo plane, known by engineers
as the phase plane, are referred to as 'integral curves' and, provided B
and C are analytic in x;, through each ordinary roint in the plane there
passes only one such curve. The stationary positions of equilibrium of
(2.2), defined by C(x;) = 0, xo = 0, correspond with the singularities of
the equivalent equation )

dxofdx; = {~ C(xy) - B(x1).x2}/x2, {2.:3)

and analysis of the character of these singularities gives considerable
insight into the nature of the integral curves near these points and, thereby,
information on whether the equilibrium points are asymptotically stable or
otherwise.

More generally, consider the singularities of the equation

dxpf/dxy = P(xy, x2)/Q(x1, x2), (2.4)
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defined by P = Q = 0, where P and Q are analytic in x; and x,. Since

the origin can always be changed to the singular point, then analysis

can be restricted to singularities at the origin. When (2.4) has a
singularity at the origin then it was shown by Poincaré that in the
neighbourhoad of the origin the integral curves of (2.4) may be accurately

represented by the integral curves of

dxp/dxy = (axy + bxp)/(cxy + dxz), (2.5)

provided ad-bc # 0, and where a, b, c, d are the coefficients of the
leading terms of power series representations made possible by the analytic
nature of P and Q. The nature of the integral curves of (2.5) fall into
four categories (see Ref. 2, Chapter 15) which may be determined from the

roots of the characteristic equation
A2 oAb +c) -@d -be) =0 (2.6)

Ir the particular case of equation @.3), taking

I}

B(x)

| 1
and (2.7)
c(x) s j

bO + le + b2X2 e le el

2
c1X + coX FERCxX TRttt

I

then the equation corresponding to (2.5) is

dxp/dx; = (= c1% - boxa)/xz (2.8)

and the types of singularity may be classified by means of the diagram
shown in Fig. 3.

If, in the linearized equations of motion (1.9) to (1.11), the
longitudinal velocity is assumed to be constant, then these equations
degenerate to two equations in w and 6 which approximately describe the
! short-period' motion, i.e. the phugoid motion has been eliminated from the
equations. The same assumption reduces equations (1.12) to (1.14) to two
equations in w and € describing, what may be called, the 'nonlinear short-

period' motion. Eliminating 6 between these equations then gives



W - ([zw + 320 2 + m, * m;’(UO + zq)] + 6z3wo.w + 3zsw2}w
+ [mq(zw + 323W02) - (U0+zq)(mw + 5m3w02)]w + BWO[qu3 - m3(Uo+zq)]w2

+ [qu; - m3(U0+zq)]w3 = [an - zm + mn(Uo+zq)]n (2.9)

Further simplification is possible if Wo is small compared with w and
may be neglected, and it was in this form that the equation was taken in
Ref. 5. The results of that study will now be discussed.
It is convenient to refer the w co-ordinate to the final equilibrium
value LA Thus
W=+ E (2.10)

and the equation describing the £ motion becomes

.§' = [Bl e B3(WS+§2)]é - [Al(ws+§) s A3(Ws+§ )3]

=[zD+m(U+z ) - ] oty
LoD+ my (Ughzg) - 2yl i
where
Ay = (U+z )n ~m 2
o q’w QW
Az = (Uo+zq)m3 - mqZ3
By = (U+z Jms +m_ + 2 (2.12)
Yo Tgtw q W
Bs = 323
Now L is defined by
3 = -
- M - Asv ® = [Qn(Uo+zq) znmq]n, (2.13)

which, upon subtraction from (2.11), gives

£ - [By + B3(w8+§)2]é - [(A1+3A3ws2)g + 3A3ws§2 + Ast3] = znﬁ

(2.14)

The importance of the term znﬁ in (2.14) (this ie the term which,
for rear-control configurations, produces the 'negative kick' on the
- response curve) will depend on the airframe configuration, and its influence
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on the stability has been determined in Ref. 5. In the present discussion
only the case zn = 0 will be considered.
As a result of the previous assumption (2.14) reduces to the same

form as (2.1) with (2.7) and the equation corresponding to (2.8) is

dEo/dky = {(A1+3A3W82)§1 + (Bl+33W82)§2)/§2 (2.15) |

A comparison between (2.15) and (2.8) then shows that the types of
singularity in the £,, £, plane may be classified by the use of Fig. k.
Two cases are relevant to the aeroplane stability and response problem.

Case 1. A; <0, As< 0, B; <_0.

This corresponds to an airframe which is statically stable at low
incidence and for which dCy/d* becomes more negative as @ increases.

See Fig. l(b), Curve 2. The associated incremental trim curve is shown
in Fig. 5(a). This is typical of tail controlled configurations whose
tail efficiency increases with incidence. B3 may be either sign, positive
and negative Bs corresponding to Fig. 1(a), Curves 2 and 3, respectively.
Negative B3z often arises with very low aspect-ratio configurations, whilst
positive Bz indicates a conventional 1ift curve containing a stall.

With w_ zero, the corresponding point on Fig. 4 is A, implying that
the initial trimmed condition is one of asymptotic stability and that the
settling down motion near this point is normally oscillatory. The curves
AB and AC represent the variation with LA Only one value of vy exists
for a glven n_ and the nature of the equilibrium point would normally be
a stable spirgl, as shown in Fig. S(b). If, however, Bz or w_ were very
large the equilibrium point could move into the region of unst;ble spirals
beyond the point B. With Bs < 0 no instability is possible, but the
settling down motion becomes non-oscillatory at C. The instability

boundary ‘at B is determined by

By + Bx(w )® = 0O
° B

or

i
(v )p = (- B1/B3)?, B1 < 0, B5 >0, (2.16)
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which from (1.3) and (2.12) must correspond to an incidence above the
stall.

Graphical constructions, such as those of Lienard (See Ref. 11,
Pp. 217-220) can be used to determine the solution curves of (2.14) in the
phase-plane, Fig. 5(b). From these may be obtained the normalized
response curves. Fig. 5(c) ehows a sketch of typical results. With
ns small the response curve differs little from the linear case, whilst
with n_ large the 'rise time' is reduced and the settling down frequency
increa;ed. The interesting practical result here is that in many
situations the linear normalized response curve gives a good approximation
to the exact result.

Case 2. A; < 0, As > 0, By < O.

The condition Az > O might well be typical of a canard configuration
whose nonlinear body 1lift is forward of the centre of gravity. Starting
with the same value of A; and the same initial conditions as the previous
case, then curves AE and AD of Fig. 4 represent the variation in the nature
of the equilibrium points with LA Three equilibrium points exist for
values of n_ lying between the maximum and minimum of Fig. 5(d). Only
(ws)l is stable, the points (Ws)g and (ws)3 lying in the region of saddle
points on Fig. 4. The corresponding phase-plane diagram is shown in Fig.
5(e). With n sufficiently large points 1 and 2 merge leaving only two
saddle points, implying that the airframe is unstable for this and larger
values of ns. The stability boundary is given by

Ay + 3A3(ws)2 = 0
E,D

or

(w)) =1[- A/ (385)12, (2.17)
E,D

corresponding with the minimum on Fig. 5(d).
The normalized response curves may be constructed in a similar manner
to Case 1, typical curves being shown in Fig. 5(f). With ng smell

the curve is nearly that of the linear case, whilst with increase
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of Mg the curve becomes more damped and the settling down frequency
becomes less. When n_ is sufficiently large for the corresponding point
on Fig. 4 to lie betwe;n E or D and the = O curve, then the response

is non-oscillatory in the region of w/ws =1las t 7, Finally, when

Mg corresponds to . 2 (ws) the response curves are unstable.

E,D

% Periodic response of nonlinear systems

Writing w = Wi, Wy = Wz, .... etc. then (1.15) may be expressed in

the vector form
v = Aw + G(w) + £(t), (3.1)

where w is the column vector col.(wy, Wz, Wi, Ws), A is the constant
matrix

F- -
0 1 0 0
0 0 1k 0
0 0 it

0
_fho/h4 <hi/hgy  =hp/hg -h3/h4w

G(w) is the column vector function

co1.{0,0,0,~ %:[SO(Wl) + gu(vy,v2) vz + ga(wy,vwz2).ws + gs(wy).well,

(3.3)
f(t) is the column vector function

col.{0,0,0,- %—F[n(t)]], (3.4)
4

where h_, hy, «..., hy are the constant parts of fo, Ty ooy Tigy
respectively and g (wy) = £ (w1) = hg, -..., g3(wi) = £3(w1) - hs.

When n/t) = n, Sin ot and |G(w)| is sufficiently small, then it may be
shown that (3.1) has a unique periodic solution of period 2r/w. This is
proved in Ref. 2, Chapter 14, Theorems 1.1 and 3.1, but requires the prior

reduction of (3.1) to the form
U = Co + q(3,t) . (3.5)
by the substitution

W o= ﬁo + ﬁ: (3-6)
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where ﬂo is any periodic solution of the linear equation

4= AG + £(t) (3.7)

An alternatife proof is given in Ref. 2, pp. 64=70.

If it is assumed that the non-constant terms in f,, ...., f, are
sufficiently small, then from the above theorem it follows that there
exists a periodic solution of

fq,(ﬁ) + £3(w)ii + £o(w,w)w + L1(w,w)w + £,(w) = F(n, Sin wt)
(3.8)
which may be written as the Fourier series
(-]
W= 2: (anSin,nwt + b Cos nwt ) (3.9)

" n=0

The approximate values of the coefficients 8> bn may be obtained by
truncating the series, substituting into (3.8) and comparing coefficients.
For n > 3 the labour of trigonometric manipulation is considerable.

It is, therefore fortunate that in most practical cases the amplitude of
the higher harmonics decrease rapidly with n and permits truncation at
quite small vealues of n.

The full periodic solution of (3.8) has not yet been published,
although the author hopes soon to do this. The degenerate problem of the
sinusoidally forced, short-period motion has, however, been discussed in
Ref. 6. In this paper an airframe was considered whose incremental trim
curve was of the same type as Curve 2 of Fig. 2, i.e. initially statically
stable and having a 'hard' pitching moment characteristic. It was shown
in Ref. 6 that the resulting equation was closely similar to Duffing's
equation and the respective solutions also exhibited great similarity.

If attention is restricted to the fundamental i.e. n =1 in (3.9), then the
graph of the amplitude versus frequency may be looked upon as an approximate
nonlinear frequency response diagram, a crude generalization of the well
known diagrem used in association with linear systems. Curves of this

sort have been taken from Ref. 6 and are re-produced in Fig. 6. In Fig.
6(a) it will first be observed that the shape of the curves are dependent
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on the amplitude of the elevator sinusoid and cennot, as with a linear
system, be reduced to one curve by normalization. The vertical arrows
indicate ! jumps' of amplitude which occur at the points of vertical
tangency of the response curves. Being a dissipative system the
fundamental will be out of phase with the forcing sinusoid and the
associated phase angle curves shown in Fig. 6(b) also indicate jumps

in phase angle.

It has been seen that provided the nonlinear terms in (3.8) or its
degenerate forms are relatively small the periodic solution may be readily,
if somewhat laboriously, obtained. From Fig. 6(a) it is clear that at
some frequencies more than one solution is possible and there arises the
problem of determining which of the three amplitudes correspond to solutions
which are asymptotically stable; it is these which are physically realizable.

To do this use is made of the equation of first variation defined by

E = 3=(t, p(t)).t, (3.10)
where

J(w, t) = Aw + G(w) + £(t), (3.11)

J- is Jacobian matrix of J(W,t) with respect to w, and p(t) is the periodic
solution whose stability is being investigated. In the present case

J(w,t) will be a 4 x 4 matrix. Equation (3.10) will be a linear
differential equation with periodic coefficients and the form of its solution
is known from Floquet's theorem (see Ref. 2, p. 78) to be

ole(t)] = p(t)eF, (3.12)

where ®[&(t)] is a b x b matrix formed by the 4 linearly independent
solution vectorsé, p(t) is a periodic matrix and R is a constant matrix.
The stability of this solution is determined by the characteristic roots
of R, known as the 'characteristic exponents' and these are not readily
determined. One method of evaluating the characteristic exponents, to an
accuracy consistent with the assumption of small nonlinearity made at the
outset; has been developed by Cesari in Ref. 7, Chapter 8 and has proved
to be of considerable utility. The details will not be entered into here,
but see for example Refs. 8 and 9. Having evaluated the characteristic
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exponents, then the solutions (3.12) will be asymptotically stable
if all the characteristic exponents are negative. If this is so then
it follows from Ref. 2, Chapter 13, Theorem 2.1, that the associated
periodic solution, p(t), of (3.8) is asymptotically stable.

In Ref. 6 another method, due to Minorsky, has been used to obtain
the region, bounded by the locus of vertical tangents, on Fig. 6(a)
which corresponds to asymptotically unstable solutions. This result
may readily be obtained by the method described in the above paragraph,
as may be seen by comparing the results of Ref. 8 with those of Ref. 6.

4. The use of Lyapunov functions

Poincare's theory for determining the stability of equilibrium is
effectively restricted to systems of second order. A more general
technique for determining the stability of equilibrium of systems of any
finite order is that known as Lyapunov’'s Direct Method. Consider the

autonomous real vector system
x = X(x), (4.1)

where X is Lipschitzian or otherwise satisfies a uniqueness condition.
Let there exist in a neighbourhood of the origin a scalar function of
the solution vector V(x) which is positive definite, i.e. V(x) > 0,
V(0) = 0, and for which the total time derivative V(x) is negative
definite, i.e. V(x) < 0, V(0) = 0. It then follows that all the solution
curves in this neighbourhood move into the origin as t = and the origin
is said to be asymptotically stable. Proofs of this theorem are given in
Ref. 13, pp. 37-38 and Ref. 14, p. 15. The existence of V(x), known as
a Lyapunov function, is a sufficient, but not necessary, condition for
asymptotic stability of the origin.

A principal shortcoming of this method is that there are, in existence,
no generally applicable techniques for constructing V(x). In the case
of linear systems with constant coefficients a very elegant method exists
(see Ref. 1k, pp. 26~29) for constructing V(x) as a positive definite
quadratic form. The resulting stability criteria are precisely those of
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Routh. 1In the case of nonlinear systems the form of V(x) is based
largely on inspired guesswork and a fund of appropriate forms for V(x)
has been established. Consider for example the equation

x + B(x).x + ¢(x) = 0, (4.2)

which may be expressed as the equivalent system

x =y - F(x) ) (4.3)
y = = C(x)
where . .
7(x) = [ B(oax (1.4)
0
Write rx
G(x) =] Clx)ax (%.5)

and assume that there exists a Lyapunov function of the form

V(x,y) = 6(x) + y®/e. (L.6)

If (4.2) were representative of a nonlinear mechenical system, then V(x,y)
would describe the contours of total energy in the x,y plane. Differentiating
V(x,y) totally with respect to t gives

V(x,y) = ¢(x).x + yy
= C(x)ly - P(x)] - yg(x)
or '
V(x,y) = = C(x).F(x). (4.7)

In order that V(x,y) be positive definite and V(x,y) sign definite, certain
restrictions have to be placed on the form of B(x) and C(x). TFor this

purpose it is assumed that

(a) F(0) =c(0) = 0,
() c(x)/%>0, Fx)x>0, xho, | (1.8)

(¢) G(x) 2w as |[x]]| me

With these conditions it is clear that V(x,y) is positive definite and \'r(x,y)
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is negative definite for all x,y, and it follows that the origin is
asymptotically stable for arbitrary initial x,y.
It is of interest to apply these results to the equation

€ +B(£).E +0C(e) =0, (4.9)
where

B(t) = - By

(&) = - [(Ay + 3A5w_2)E + 3A3ws§2 + Ast>],

which is a slightly simplified form of (2.14) with Z and Bx both zero.
Thus

F(t) = = Bt

and

c(e)

The conditions (4.8) (a) and (c¢) are clearly satisfied and so is the
condition F(£)/& > 0 of (4.8) (b) provided By < 0, which it is, normally.

The breakdown in meeting the conditions of (4.8) arises in the condition

= [%(Al + 3A3W52)§2 Sy A3WS§3 + %A3§4] o

C(¢)/& > 0 and as a result gives rise to certain asymptotic stability

boundaries. Two cases arise.

Case 1. Ay < 0, As S 9

The & v C(&) curves for this case are shown in Fig. 7(e). The zeros

of C(&) correspond to the roots of equation
e(AsE2 + 3Asw t + (A + 385w %)} = 0 (4.10)

which are "
¢ =0, 3-3v_ = (- 4A; /A5 - 5ws2)?3 (4.11)

Since A; and A3 héve the same sign thén the discriminant is negative and
the only real root is & = 0. The curves of Fig. 7(a), therefore, cut the

¢ - axis once only. Clearly C(£)/¢ > 0 for all w_ and ¢, and, thereby, the
equilibrium point is always asymptotically stable. This agrees with the

conclusion in Section 2 and corresponds to the response curves of Fig. 5

(0), (e).
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Here three real roots of (4.10) are possible, as shown in Fig. 7(b).

When w_ = O, the roots are

L
£E=0,1% (' Al/A3)2-
In the open interval ‘
- (= A1/A5)2 < & <+ (= Ay/As3)

i
2

(4.12)

the condition C(£)/& > 0 is satisfied and the origin is asymptotically
stable. This means that if the initial value of £ lies in the open
interval (4.12) then the solution curves will spiral into the origin, i.e.
the equilibrium point w = v = 0.

When LA % O the picture changes, the positive real root becoming
smaller and the negative real root becoming more negative, as in Fig. 7(b).
Again if the initial value of § = - L lies in the open interval between
these roots then the solution curves will spiral into the origin. For
modest L the situation corresponds to that of Fig. 5(e), the point 1
now being the origin of Fig. 7(b) and the origin of Fig. 5(e) being a
point £ = - w_ on Fig. 7(b). With increasing v, & situation is finally
reached where the positive root of (4.11) becomes zero. Thus

i
- v, + (= bAy/As - 3w B)Z = 0
or

W=+ [- Al/(EAz)]% (4.13)

This corresponds to the merging of the points 1 and 2 on Fig. 5(e) and
represents the upper limit to the stability boundary.

Systems of higher order

The previous example has shown that if it is manifest that there exists
about a final equilibrium point an interval of asymptotic stability on the
w axis which contains the initial point w = 0 (or ¢ = - ws), then the
response curve will move into w = W, as t 2o, This idea can be extended
to systems of higher order and the conditions, similar to equation (4.8),
which ensure sign-definiteness of the appropriate V and ﬁ will, in general,

define a region of asymptotic stability in the space of w, %, ....,(9).
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It is unfortunate that appropriate Lyapunov functions for equation (1.15)
have not, as yet, been discovered and much more work needs to be done before

the application of the technique to equations of this type is possible.

St Conclgsiog

The preceding sections have demonstrated three of the principal
techniques available for determining the solutions, or their stabilitj, of
nonlinear ordinary differential equations. By considering the application
of these techniques to a particular type of equation, describing the response
of an airframe to certain elevator motions, it is clear that these.methods
are far from complete. This situation arises as a result of the very
limited existing knowledge of the nature of the solutions of nonlinear
equations, a problem which is proving to be very formidable indeed. However,
some progress is being made. In particular, the method proposed by Cesari
in Ref. 10, and the development of methods for constructing Lyapunov

functions do offer reasonable prospects for the future.
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