
MSc Thesis in Applied Mathematics

Yihan Hu, 2024

Towards Arbitrage-free

Implied Volatility Surfaces

with Diffusion Probabilistic Models

MSc thesis in Applied Mathematics

Towards Arbitrage-free Implied Volatility
Surfaces with Diffusion Probabilistic Models

Yihan Hu

October 2024

Student number: 5704979

Project duration: January 2024 – October 2024

Thesis committee: Dr. Cornelis Vuik, TU Delft, supervisor

Dr. Shuaiqiang Liu, TU Delft, ING Bank, daily supervisor

Dr. Antonis Papapantoleon, TU Delft, committee

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master of

Science in Applied Mathematics

Abstract

Implied volatility surfaces (IVS) are essential for option pricing and risk management. Re-
cently, generative deep learning models, such as the Denoising Diffusion Probabilistic Model
(DDPM), have gained popularity for generating IVS. However, these machine-generated sur-
faces do not necessarily meet arbitrage-free constraints, e.g., calendar spread and butterfly
arbitrage. This thesis addresses this limitation by integrating arbitrage-free constraints into the
DDPM generation process. We introduce a classifier specifically designed to detect violations
of arbitrage-free conditions. During the DDPM’s iterative generation process, the classifier
guides the formation of the IVS at each step, effectively minimizing potential arbitrage op-
portunities. To evaluate the effectiveness of our approach, we compare the extent of arbitrage
violations in IVS generated by the standard DDPM with those produced by our enhanced
DDPM-Classifier model. The results demonstrate that the DDPM-Classifier significantly re-
duces arbitrage opportunities and improves the quality of IVS.

iv

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Dr. Shuaiqiang
Liu, for his support throughout the entire process of my thesis writing. He took great respon-
sibility for overseeing my thesis work, consistently answering my questions, and providing
guidance through weekly meetings. With his help, I have gained substantial knowledge about
the forefront of machine learning. Moreover, his feedback and advice on academic writing
have greatly contributed to the improvement of my writing skills. I would also like to extend
my thanks to Prof. Kees Vuik and Prof. Antonis Papapantoleon, members of my thesis defense
committee, for their suggestions and feedback on my thesis, which will further motivate me
to keep improving.

During these past two years living abroad, I am deeply grateful for the companionship and
help from my friends. First, I want to thank Gu Yingxing. I am especially thankful for the bowl
of noodles she made for me when I had a high fever. I miss our late-night hangouts, drinking
and chatting, and the New Year’s Eve we spent watching fireworks together. I also want to
thank my friend, Ji Zhonghui. Despite the time difference, she has always been there to offer
me support and encouragement during my difficult times. I am equally grateful to my friend
Abby Peng, and I hope we will still have chances to play co-op games together in the future.
In addition, I would also like to thank some of my classmates for their help and inspiration in
my studies. Last but not least, I want to thank my favorite band, Mayday. Their concerts and
songs have provided me with much emotional strength.

And of course, I would also like to extend my heartfelt thanks to my parents, Mr. Hu and
Ms. Wang. I am grateful that they have supported my choices and accompanied me through
many important moments in my life. I cannot forget to thank my beloved cat, Mr. Xiaomi, for
the endless joy and comfort he has brought me. I have already missed your second and third
birthday, and I can not wait to return to Beijing to see you soon.

Reflecting on the past two years, I have certainly faced moments of pain and stress, but I have
also experienced breathtaking sights and created unforgettable memories. I always feel that
life is full of wonderful encounters. For example, I never considered myself good at maths,
but I chose to study it as an undergraduate and now I am about to get a master’s degree in it.
I have to thank myself for my hard work. Perhaps sometimes hard work can compensate for
some talent.

“I leave no trace of wings in the air, but I am glad I have had my flight.”

Yihan Hu
October 2024

v

Contents

1 Introduction 1
1.1 Background . 1
1.2 Research Objectives . 2
1.3 Contributions . 3
1.4 Thesis Outline . 3

2 Literature Review 5
2.1 Mathematical Method for IVS . 5
2.2 Machine Learning Methods for IVS . 6
2.3 Incorporate Arbitrage-free Conditions into Machine Learning Models 8

2.3.1 Hard Constraints . 8
2.3.2 Soft Constraints . 9

2.4 Diffusion Models to Generate Data . 11
2.5 Advantages Compared to GAN, VAEs . 12

2.5.1 Problem of GAN . 12
2.5.2 Problem of VAE . 13
2.5.3 Advantages of DDPM . 14

2.6 Incorporate Arbitrage-free Conditions with DDPM 14
2.6.1 Classifier Guidance in DDPM . 15
2.6.2 Classifier-Free Guidance in DDPM . 15

3 Financial Options and Implied Volatility Surfaces 17
3.1 Mathematics on Financial options . 17
3.2 Arbitrage-free Conditions for Option Price Surface 20

3.2.1 Option Price Surfaces from the Market and Abirtrage-free Conditions . . 20
3.2.2 Condition: Monotonicity in T(Calendar Arbitrage Condition) 22
3.2.3 Condition: Convexity in K(Butterfly Arbitrage Condition) 22
3.2.4 Other Constraints . 23

3.3 Transformation from Option Price Surface to Implied Volatility Surface 24
3.4 Arbitrage-free Conditions for Implied volatility surface 24

3.4.1 Conditions . 24
3.4.2 Explanations about the Conditions . 26

4 The Generative Diffusion Models 29
4.1 Mathematics of Diffusion Models . 29

4.1.1 Stochastic Differential Equations (Score SDEs) 29
4.1.2 DDPM . 30

4.2 Deep Learning Framework . 34
4.2.1 Fully Connected Networks(FC) . 35
4.2.2 Convolutional Neural Network(CNN) . 35
4.2.3 Relationships between DDPM and Neural Networks 36

vii

Contents

4.3 Conditional Diffusion Models . 36
4.3.1 Classifier-DDPM . 36
4.3.2 Classifier-free DDPM . 38

5 Methodology to Generate Arbitrary-free IVS 41
5.1 Implementation of the Arbitrage-free Conditions of IVS 41

5.1.1 Define Loss Term . 41
5.1.2 Modify the Classifier . 42

5.2 Impact of the Loss Terms on IVS . 46

6 Results 47
6.1 Test the Classifier . 47

6.1.1 Classifier Conditions . 47
6.1.2 Treatment of Derivatives and Boundary Points 47
6.1.3 Validation of Heston Model-Generated IVS 49

6.2 Experiment Setup . 51
6.2.1 Data Description . 52
6.2.2 Model Setup . 52
6.2.3 Incorporation of Classifier Gradients with Generation Process 52
6.2.4 Influence of Weight Parameter in Arbitrage Loss Function 53

6.3 Comparison between with and without Arbitrary-free Conditions 55
6.3.1 Evaluation Metrics . 55
6.3.2 Arbitrage Analysis . 60

7 Conclusion and Future Work 61
7.1 Conclusion . 61
7.2 Future Work . 62

viii

1 Introduction

1.1 Background

An option is a type of financial derivative that grants the buyer the right, but not the duty, to
purchase or sell the underlying asset at a predefined price on or before a certain expiration
date. The price of an option is influenced by several key elements, including the underlying
asset’s price, the striking price, the maturity date (also known as the expiry date), the interest
rate, and the volatility of the underlying asset. Out of all these impacts, our main focus will
be on volatility, specifically implied volatility. Historical volatility is determined by analyz-
ing past variations in market prices. Conversely, implied volatility (IV) is derived from the
present market value of the option. Implied volatility holds significant value in option pric-
ing models like the Black-Scholes model as it accurately represents the market’s anticipation
of future volatility. Although it cannot be directly observed, it can be determined using the
Black-Scholes model. Typically, an increase in implied volatility indicates more expectation of
fluctuations in asset prices, which leads to a rise in the option premium. Conversely, a decrease
in implied volatility suggests that the expected price movement will reduce and the premium
will decrease.

An Implied Volatility Surface(IVS) is a graphical representation in three dimensions of the
implied volatility for various options, considering strike prices and expiry dates. The con-
ventional approach for generating the Black-Scholes implied volatility surfaces involves the
utilization of mathematical methodologies such as the Heston model. Nevertheless, the Black-
Scholes model regards volatility as a constant and employs some other simplifications to min-
imize complexity, which may fail to describe real financial market conditions.

In recent times, researchers have started employing machine learning approaches to generate
IVS. These strategies often produce surfaces by training on a dataset of real IVS and subse-
quently leveraging deep learning methods to generate new surfaces. Deep learning methods,
for instance, generative adversarial networks (GANs) [1, 2], variational autoencoder models
(VAE) [3, 4, 5], and diffusion models have demonstrated excellent performance in creating and
enhancing IVS. By applying these data-driven methods, it is possible to obtain financial data
from real financial markets and generate plenty of realistic and accurate surfaces. Another im-
portant advantage is that these methods effectively preserve some of the shape characteristics
of IVS.

In our research, the Denoising Diffusion Probabilistic Model(DDPM) will be used as the main
deep-learning model. Compared to VAE and GAN, DDPM has higher image generation
quality[6], which is why it is more widely used in image generation tasks in various fields,
such as medical image synthesis[7], remote sensing change detection[8], etc. DDPM also has
a more stable training process compared to the other two deep learning models. The train-
ing process of the GAN model is susceptible to the game process between the generator and
the discriminator, and sometimes mode collapse occurs. DDPM generates images through a

1

1 Introduction

reverse process based on the Markov chain, which is supported by strict mathematical princi-
ples. At the same time, DDPM also has better interpretability as its image generation process
is generated by a step-by-step denoising process.

As these deep learning models become more mature in generating IVS, more attention is be-
ginning to be paid to the quality of the generated IVS. One of the most common requirements
for IVS is the arbitrage-free condition. As showed by the Efficient Market Hypothesis (EMH)
proposed by Fama [9], markets are efficient, leaving no room to make excess profits by invest-
ing since everything is already fairly and accurately priced. This means there is no arbitrage
strategy in efficient markets. If there are arbitrage opportunities in IVS, it implies that trading
strategies can be devised to profit without risk, which is not reasonable in an efficient market.
Considering some common application scenarios for IVS, for example, traders often rely on
IVS to develop hedging strategies and price derivatives. If there are arbitrage opportunities
in IVS, wrong decisions of trading strategies may occur, leading to potential losses. Addi-
tionally, as we mentioned before, option prices can be affected by implied volatility, and an
arbitrage-free IVS can help improve accuracy when computing option prices.

With such financial requirements, researchers have also proposed many kinds of methods for
adding financial constraints to the generated models. For VAE and GAN, a common approach
is to modify their loss function by adding penalty terms according to financial constraints so
that the model can meet the corresponding requirements during training. The feasibility of
this approach lies in the fact that both these two model‘s loss functions are all directly related
to the generated samples. However, when we consider using the DDPM to generate samples
with constraints, modifying the loss function becomes less realistic and more complex. Since
the loss function of DDPM measures the gap between the predicted noise and the real noise
added rather than measures the features of the generated image, modifying the loss function
during the training process does not bring about a change in the generation of the image.

Recently, some conditional DDPMs have been proposed by researchers. These conditional
DDPMs may achieve the purpose of imposing conditions on the generated samples by adding
restrictions to the generation process. Another way is to use both conditional and uncondi-
tional models jointly during the training process. Such models have produced some great
results in the conditional generation of images. At present, however, there is still a lack of
research on adding relevant financial constraints during IVS generation.

1.2 Research Objectives

One of the main difficulties in generating implied volatility surfaces is the requirement to guar-
antee that the surfaces do not contain any arbitrage opportunities, particularly those related to
calendar spread and butterfly arbitrage conditions.

Although machine learning methods exhibit superior efficiency and generation capabilities,
they also face challenges in this aspect. If the no-arbitrage restrictions are not enforced in the
generated IVS, it can result in a decrease in the reliability of IVS.

The main focus of our study is how to modify or adapt the DDPM to generate IVS that satisfy
the no-arbitrage requirement. The no-arbitrage requirement considers two key scenarios: the
calendar spread and the butterfly arbitrage strategy. In the third chapter, we will describe in
detail the form of these two arbitrage strategies and the reasons for them. Our objective is

2

1.3 Contributions

to determine how to integrate these no-arbitrage requirements into the training or generation
process of the diffusion model.

Furthermore, it is essential to consider methods for guaranteeing the fulfillment of the no-
arbitrage requirements while keeping the quality of the model generation. A key factor that
needs to be investigated is how to effectively balance the no-arbitrage requirement with high-
quality surface generation. For instance, it is also important to assess if implementing these
arbitrage conditions will have negative impacts on the generation of implied volatility sur-
faces.

1.3 Contributions

As mentioned above, the main contribution of this work focuses on the generation of arbitrage-
free implied volatility surfaces using machine learning techniques (in particular, Denoising
Diffusion Probabilistic Model) as follows:

1. Integration of Diffusion Models with Arbitrage-free Conditions:

We present an innovative strategy that combines the generation process of diffusion mod-
els with a Classifier capable of determining if a surface meets the no-arbitrage condition.
Additionally, we utilize a gradient descent algorithm to ensure that the generated im-
plied volatility surfaces (IVS) satisfy the no-arbitrage requirements.

2. Methods that Integrate Smoothness Constraints into the Generation Process:

To enhance the quality of the generated IVS, we also integrate smoothness constraints
into the generation process of the diffusion model jointly. This constraint guarantees
the avoidance of excessive fluctuations in the generation of surfaces, resulting in a more
accurate representation of real market behavior in implied volatility surfaces.

3. Empirical Analysis and Validation:

We conclude with comprehensive data experiments and results to show the efficacy of
our approach. This includes a comprehensive analysis of the IVS produced by mathe-
matical techniques, the DDPM without the Classifier, and our DDPM that incorporates
the Classifier and smoothness requirements. The results indicate that the newly created
surfaces have a better performance in avoiding arbitrage opportunities.

1.4 Thesis Outline

This thesis focuses on how to add financial constraints(i.e.,arbitrage-free conditions) on the
generated implied volatility surfaces using a conditional denoising diffusion probabilistic
model(DDPM). Firstly, the thesis introduces the background of the problem, and some of
the proposed methods for adding constraints to IVS. In Chapter 2, the literature review is
aimed to review the recent literature related to the topic. Chapter 3 introduces some financial
mathematics knowledge, including the arbitrage-free conditions for the option price surface
and implied volatility surface. Chapter 4 introduces the concept of the generative model and
details two common conditional DDPMs, classifier and classifier-free DDPM. Chapter 5 de-
scribes the detailed implementation of adding financial constraints to the implied volatility

3

1 Introduction

surface. Chapter 6 discusses the experimental process and results, including the validation
for the no-arbitrage condition, and the effect of adding the no-arbitrage condition on IVS, and
compares the difference in results between the DDPM model and the DDPM-Classifier model.
Chapter 7 summarises the research and makes recommendations for further research in the
future.

4

2 Literature Review

This literature review aims to provide an overview of the significant advancements in generat-
ing Implied volatility surfaces using different machine learning methods, particularly focusing
on the deep diffusion model.

Traditional mathematical approaches in generating IVS have relied on models like the Black-
Scholes formula and stochastic volatility models like the Heston model. However, both these
models often have difficulty in capturing the behavior of data in real financial markets. In real
financial markets, the direction of the data may be affected by market sentiment, macroeco-
nomic events, and other factors, leading to sudden changes in implied volatility. The volatility
behavior during extreme market conditions (e.g. financial crises) is difficult to model from
historical market data alone[10]. All these reasons have led to attempts to apply machine
learning models to constructing implied volatility to learn the complex patterns in implied
volatility surfaces from large-scale historical data.

In past research, the common machine learning methods for generating IVS are VAE, GAN,
and DDPM. In the discussion of these methods, we intend to talk about their advantages, dis-
advantages, and differences. Another important problem is how the financial requirements(in
particular, the no-arbitrage requirement) for IVS can be reasonably integrated.

In addition, through these discussions, we also aim to identify research gaps between the cur-
rent research literature and our research objectives. This research gap will effectively contribute
to our exploration process.

2.1 Mathematical Method for IVS

The Black-Sholes model is one of the most famous mathematical models for dynamic finan-
cial markets and is widely used in option pricing[11]. In the B-S model, the volatility of an
asset is set as a constant. In constructing the implied volatility surface, we must obtain the
implied volatility under different strike prices and maturities. Therefore, in the traditional
mathematical approach, people always use the Heston model to generate a series of strike
prices and maturities and their corresponding option prices[12]. Then solve the inverse of the
Black-Scholes equation to obtain enough implied volatility data to construct the surface. The
Heston model is a stochastic volatility model, which assumes that volatility follows a stochas-
tic process rather than being a constant, thus making the calculations more consistent with
real-world patterns.

But the drawbacks of the mathematical approach are also obvious, implied volatility surface
has many shape features, widely known as volatility skew and volatility smile.

The volatility skew describes how implied volatility changes with different strike prices of
options. It shows that the option with strike prices further from the current market price

5

2 Literature Review

has higher implied volatility, reflecting the market’s concern about large price decreases or
increases.

The volatility smile is another common feature in that the options with strike prices signifi-
cantly above or below the current market price have higher implied volatility. This results in a
smile curve when plotting implied volatility against strike prices, meaning a higher possibility
of extreme price movements in either direction.

In addition to these two common and famous features, real financial markets often exhibit
other complex characteristics on implied volatility surfaces that are difficult to capture in
math models. These include sudden jumps due to some policy uncertainty and investor’s
sentiment[13], short-term underreaction or long-term overreaction caused by financial crises[14].
In addition, extreme market conditions may also lead to unusual tailing behavior in volatility[15].

Such shape features often reflect the direction of real financial markets, and it is difficult to
mimic them using only mathematical models (e.g., Heston models).

Therefore, when machine learning techniques are developed, in particular some models for
generating images, such as VAE, GAN, and DDPM, have been applied to the field of IVS
generation. They can acquire the shape features of the images from the training set and retain
these learned features in the newly generated images.

2.2 Machine Learning Methods for IVS

The VAE(Variational Autoencoder) model generates new images by learning the latent distri-
bution of the data[16]. It mainly consists of an encoder and a decoder. The encoder transforms
the input data into probability distribution parameters of latent space, and through the repa-
rameterization, the sampling process can be backpropagated. Finally, the latent variables are
converted back to the original data space by the decoder. During the training process of VAE,
the KL divergence is used as part of the loss function and minimized to force the encoder to
learn the latent distribution as close as possible to the standard normal distribution. When
generating a new image, the model samples the latent variables from the standard normal
distribution and then feeds them into the decoder to generate new data.

The GAN(Generative Adversarial Network) model consists of two neural networks, a Genera-
tor, and a Discriminator, and is improved by training the two networks against each other[17].
Firstly, the parameters of the Generator and Discriminator are initialized, and the Generator is
used to sample from the standard normal distribution and generate the fake data. Afterward,
the real data (obtained from the training set) and the fake data generated by the Generator
are jointly fed into the Discriminator, and the Discriminator’s classification results for both
data are obtained. The loss function is first applied in the process of using the discriminator,
to make the discriminator discriminate between real and fake data as accurately as possible.
The Discriminator and Generator of GAN have different loss functions. For the Discriminator,
we aim to raise the output of the classification result for real data close to 1, while for the
Generator, we aim to maximize the probability that the Discriminator considers the generated
data as real data. When training is complete, generating new data will only require the use of
a Generator. New data can be generated by first sampling the noise from a standard normal
distribution and then feeding it into the Generator.

The structure of VAE and GAN can be found in Fig 2.1 and Fig 2.2.

6

2.2 Machine Learning Methods for IVS

Figure 2.1: Structure of VAE

Figure 2.2: Structure of GAN

7

2 Literature Review

2.3 Incorporate Arbitrage-free Conditions into Machine
Learning Models

In past research, several methods have been proposed on how to integrate arbitrage-free con-
ditions with neural networks, and they fall into two main categories. One is to fundamentally
change the structure of the neural network to control the generated results and it can be called
adding hard constraints, and the other one is to impose soft constraints by adding penalty
terms to the loss functions during training.

2.3.1 Hard Constraints

The first method to guarantee arbitrage-free conditions is adding hard constraints to the archi-
tecture of neural network[18].

Typically, we use fully connected neural networks. However, when considering adding hard
constraints, it’s necessary to modify the neural network’s structure. In a sparse neural network,
each neuron is connected to only a few neurons in the subsequent layer, rather than all of
them.

As shown in Fig 2.3, the first input variable, T, is only connected to the five left-most hidden
nodes, and the second input variable k is only connected to the five right-most hidden nodes.
Such design enables separate sub-networks within a single layer, each focusing on one input
variable, allowing for the imposing of distinct shape constraints relevant to each variable, such
as non-negativity and convexity.

In the real case, we consider parameterized maps: p = pW,b

(T, k) ∋ R2
+

p−→ pW,b(T, k) ∈ R+, (2.1)

given as deep neural networks with two hidden layers. We use the following form to show the
composition of this neural network:

pW,b(x) = f (3)
W(3),b(3)

◦ f (2)
W(2),b(2)

◦ f (1)
W(1),b(1)

(x), (2.2)

where
W =

(
W(1), W(2), W(3)

)
and b =

(
b(1), b(2), b(3)

)
are weight matrices and bias vectors. And f (l) := ς(l)

(
W(l)x + b(l)

)
are semi-affine transfor-

mations for each layer, where non-decreasing activation functions ς(l) applied to their argu-
ment componentwise.

As we mentioned before, the neural network is sparsely connected with two inputs T and k.
The transformation function then can be written in the following form:

f (1)
W(1),b(1)

(x) =
[

f (1,T)
W(1,T),b(1,T)(T), f (1,k)

W(1,k),b(1,k)(k)
]

(2.3)

8

2.3 Incorporate Arbitrage-free Conditions into Machine Learning Models

Figure 2.3: A Sparse Neural Network with One Hidden Layer.

where W(1,T), b(1,T) and W(1,k), b(1,k) correspond to parameters of sub-graphs for each input,
and

f (1,T)(T) := ς(1,T)
(

W(1,T)T + b(1,T)
)

, f (1,k)(k) := ς(1,k)
(

W(1,k)k + b(1,k)
)

(2.4)

Then what we can do is to impose the shape constraints on the non-negative weights and
activation functions.

2.3.2 Soft Constraints

In existing research on adding conditions to neural networks, many researchers focus on the
loss function of deep learning models. One of the most common ideas is to modify the loss
function of the neural network during the training process by adding the conditions as loss
terms to the loss function.

For example, for the GAN model mentioned above, the Generator aims to generate samples
that are similar to real data, while the Discriminator’s goal is to distinguish between real and
generated data. The adversarial game between the Generator(G) and the Discriminator(D) is
formulated as the following minimax problem[17]:

min
G

max
D

L(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))], (2.5)

where:

9

2 Literature Review

• x: Real data sample.

• z: Noise vector from the latent space, sampled from a simple distribution such as uniform
or Gaussian distribution.

• pdata(x): Distribution of real data.

• pz(z): Distribution of noise vectors.

• G(z): Data sample generated by the generator.

• D(x): Discriminator’s output for input data x, representing the probability that x is a
real data sample.

• D(G(z)): Discriminator’s output for the generated data sample G(z).

During the training process, the Discriminator D tries to maximize this value function while
the Generator G aims to minimize this value function to maximize the probability that the
Discriminator classifies generated data as real.

The standard form of the loss function is as follows:

1. Discriminator Loss Function:

LD = −Ex∼pdata [log D(x)]−Ez∼pz(z)[log(1− D(G(z)))] (2.6)

2. Generator Loss Function:

LG = −Ez∼pz(z)[log D(G(z))] (2.7)

To generate an arbitrage-free implied volatility surface, we can incorporate penalty terms into
the Generator’s loss function. These penalty terms include constraints on calendar spread
arbitrage, butterfly arbitrage, and large-moneyness behavior. In the subsequent sections, we
will explain these conditions in detail. Additionally, a negative log-likelihood loss term is
included to ensure that the generated data distribution is similar to the target data distribution.
The improved generator loss function can be found in [1]:

LG = MSE(y, G(X)) + λ1Lc + λ2Lb f + λ3L∞ + λ4LDG , (2.8)

where:

• MSE(y, G(X)) = 1
b ∑b

i=1 (yi − G (Xi))
2: Mean Squared Error, used to minimize the error

between the generated data and the real data.

• Lc: Calendar spread arbitrage penalty term.

• Lb f : Butterfly arbitrage penalty term.

• L∞: Large-moneyness behavior penalty term.

• LDG = − 1
b ∑b

i=1 log D(G(z)): Negative log-likelihood loss, used to ensure the generated
data distribution is similar to the target data distribution.

10

2.4 Diffusion Models to Generate Data

In the improved loss function, the adversarial training is maintained through the negative log-
likelihood loss LDG , which ensures that the distribution of the generated data is similar to the
target data distribution. The numerical accuracy optimization is achieved through the MSE
loss, which minimizes the error between the generated data and the real data. The arbitrage-
free conditions are imposed through the penalty terms Lc, Lb f , and L∞, ensuring that the
generated data meets the arbitrage-free conditions of the financial market.

The weights λ1, λ2, λ3, λ4 are used to adjust the importance of the different constraint condi-
tions.

Then the generator not only can produce realistic data but also ensure that the generated data
meets the arbitrage-free conditions.

2.4 Diffusion Models to Generate Data

Diffusion models are a class of generative models that generate data by gradually adding and
removing noise. The model has a good performance in generating high-quality image samples
and also has a good generative efficiency.

The diffusion model contains two main processes, the forward process and the reverse pro-
cess. The forward process (diffusion process) gradually adds Gaussian noise to the data. This
process is usually defined by stochastic differential equations(SDEs). At the same time, the re-
verse process removes the noise and generates data from the noise, described by the backward
time SDE. Researchers have developed different methods to optimize these models, producing
variants such as DDPMs and SGMs.

DDPMs (Denoising Diffusion Probabilistic Models) reverse the forward diffusion process by
learning denoising step by step. Training objectives include minimizing the lower bound of
evidence (ELBO) of the data likelihood. This approach allows the model to improve its pre-
dictions incrementally, starting with pure noise and removing it step by step to generate real
data[19].

SGMs(Score-Based Generative Models) generate data by estimating the score (i.e., the gradient
of the log probability density) of the noisy data at various noise levels and using this score to
gradually denoise. It is shown that this method provides a powerful framework for generative
modeling, particularly when combined with neural networks to approximate the score func-
tion. By using the score function, SGMs can effectively guide the denoising process, resulting
in high-fidelity samples[20].

DDPMs have demonstrated significant versatility and effectiveness in various domains[21].
In computer vision, DDPMs have succeeded in tasks such as image generation, inpainting,
restoration, translation, and editing. These models enhance image quality by increasing res-
olution, filling in missing parts, and translating or editing images, with methods like SR3
and CDM using DDPMs for high-quality image generation[22]. Additionally, DDPMs have
been applied to semantic segmentation, enhancing the utilization of labels by using high-level
semantic information[23]. In video generation, DDPMs improve the quality and temporal con-
sistency of generated frames[24]. They also solve challenges in 3D representation by inferring
missing parts of point clouds, which is crucial for tasks like 3D reconstruction and augmented
reality[25]. In the field of natural language processing (NLP), DDPMs are employed in text
generation tasks, including character-level text generation and controlling complex sentence

11

2 Literature Review

attributes. Models like Diffusion-LM utilize DDPMs for hierarchical and continuous latent
representations, enabling complex control over text generation[26]. Interdisciplinary appli-
cations of DDPMs include generating synthetic financial data and modeling stock prices in
finance, assisting in medical image reconstruction and drug design in healthcare by generat-
ing realistic synthetic data, and supporting scientific research in molecular and material design
by helping to create new molecular structures and predict their properties.

2.5 Advantages Compared to GAN, VAEs

Compared with GAN (Generative Adversarial Networks) and VAE (Variational Autoencoders),
DDPM(Denoising Diffusion Probabilistic Models) is currently seen as a model that generates
more stable and high-quality results, especially in generating images. Both GAN and VAE face
several challenges during the training process, including mode collapse, convergence prob-
lems, and KL(Kullback-Leibler divergence) vanishing. Here is a detailed explanation of these
issues and their causes.

2.5.1 Problem of GAN

Mode Collapse:
Mode collapse for the GAN model happens when the generator learns a mapping of many
input values to only a few outputs within the data space[27]. When facing this problem, the
Generator mostly produces samples without diversity, focusing on just a few modes of the
training data distribution.

There are several reasons causing mode collapse:

• Instability in Adversarial Training: The training of a GAN is considered to be an ad-
versarial process between the Generator and the Discriminator. Simply, within this ad-
versarial process, the Generator attempts to produce realistic samples that it could use
to deceive the Discriminator, while the Discriminator aims to distinguish between real
data and generated samples. In this process, the Generator might find an easy way of
generating a very limited number of samples that are enough to fool the Discriminator.

• Strong or Weak Discriminator: A well-fit Discriminator is very important. If the Dis-
criminator is too strong, the Generator will have a hard time learning an effective strategy
for generating samples and might end up focusing on generating simple samples. In this
way, the adversarial process is meaningless. If the Discriminator is too weak, it will allow
the Generator to use samples to fool it quite efficiently, which causes the latter to stop
learning and further results in mode collapse.

Convergence Problem:
Another problem that arises during GAN training is the convergence problem. This problem
comes from the fact that, during the training process, a proper equilibrium point is not set, i.e.,
the losses of the Generator and the Discriminator do not continuously decrease or eventually
reach an equilibrium state. Under this circumstance, when the Discriminator finally reaches
the optimal state, the gradient of the Generator will disappear, which means it will affect the
training performance of the Generator and model convergence performance[28].

The following are the specific reasons:

12

2.5 Advantages Compared to GAN, VAEs

• Unbalanced Adversarial Process: GAN training is a min-max problem. If one of the
Generator and Discriminator learns too fast or too slow, then it may cause the gradient
of another one to vanish or explode, preventing convergence.

• Local Optima and Saddle Points: The loss functions of the Generator and Discriminator
are non-convex, which makes it possible for the training process to fall into local optima
or saddle points, leading to convergence problems.

2.5.2 Problem of VAE

In a VAE, we always aim to maximize the log-likelihood of the data ln p(x). Since directly
computing this log-likelihood is difficult, we introduce a variational posterior qϕ(z | x) to
approximate the true posterior p(z | x). Here, the parameter ϕ represents the weights and
biases of this neural network. Then, through the following decomposition, we obtain the
ELBO(Evidence Lower Bound) form of VAE:

ln p(x) = Ez∼qϕ(z|x)[ln p(x)]

= Ez∼qϕ(z|x)

[
ln

p(x, z)
p(z | x)

]
= Ez∼qϕ(z|x)

[
ln

p(x | z)p(z)
p(z | x)

]
= Ez∼qϕ(z|x)

[
ln p(x | z)− ln

qϕ(z | x)
p(z)

+ ln
qϕ(z | x)
p(z | x)

]
(2.9)

Through decomposition, we obtain:

ln p(x) = Ez∼qϕ(z|x)[ln p(x | z)]−KL[qϕ(z | x)∥p(z)] + KL[qϕ(z | x)∥p(z | x)], (2.10)

where KL[qϕ(z | x)∥p(z | x)] ≥ 0(from its definition).The last component of the expression of
ln p(x), KL[qϕ(z | x)∥p(z | x)],is a gap between ELBO and the true log-likelihood. Then we get
the ELBO:

ELBO = Ez∼qϕ(z|x)[ln p(x | z)]−KL[qϕ(z | x)∥p(z)], (2.11)

During VAE training, we maximize the ELBO to approximately maximize the log-likelihood
ln p(x).

The second term of ELBO, the KL divergence KL[qϕ(z | x)∥p(z)] represents the difference
between the variational posterior qϕ(z | x) and the prior p(z). There exists a potential problem
with VAE in this term.

Posterior collapse may happen when the decoder is so powerful that it can generate samples
directly from the observed data x without relying on the latent variable z[29]. This causes
qϕ(z | x) to become very similar to the prior p(z), resulting in the KL divergence term becom-
ing very small, even approaching zero.

The posterior collapse in VAE leads to several negative impacts on the model’s performance:

13

2 Literature Review

1. Loss of Information in Latent Variable z: When posterior collapse occurs, the variational
posterior qϕ(z | x) converges to the prior p(z), which means that the information in the
latent variable z is almost lost. As a result, the latent variable distribution no longer
carries important information about the data x itself, losing the representation capability
of the latent space.

2. Decrease in Reconstruction Quality: Due to the ignored information of the latent vari-
able z, the model’s reconstruction quality of the input data x may decrease. Although
a powerful decoder in VAE can compensate for this loss of information to a certain ex-
tent, the decoder is also unable to fully capture the complex structure of the data in this
case due to the loss of some information, which leads to a decrease in the quality of the
generated samples.

2.5.3 Advantages of DDPM

Compared with the two models mentioned above, since DDPM uses ELBO as an explicit target
for training, it rarely suffers from sudden crashes(such as mode collapse) during the training
process. It also has better performance in terms of generating efficiency and sample quality.

• High-quality Image Generation:

The diffusion model gradually generates images from noise by denoising. Since its de-
noising process is not a one-time process, but a multi-step step-by-step denoising pro-
cess, the granularity of the generation process can be controlled during the noise decrease
process. By controlling the gradual reduction of noise and maintaining the details of the
image, finally, it can generate high-quality images. The performance of DDPM is usually
superior to VAE, and in some cases can even be comparable to the quality of the image
generated by the GAN.

• Scalability and Parallelizability:

The framework design of the diffusion model allows it to adapt to datasets of different
sizes and resolutions, from common MNIST datasets to complex color images, all of
which can be generated at different quality by adjusting the denoising steps. Although
the denoising process requires multiple steps, the computation of each step is not quite
complex and can be parallelized(i.e., set different batch sizes during generation) to im-
prove efficiency.

2.6 Incorporate Arbitrage-free Conditions with DDPM

DDPM generates data by gradually denoising random noise. Conditional DDPM extends this
by incorporating additional information during both the training and generation process to
guide the generated samples toward the required conditions:

• Training Process: During the training process, the model will accept the noisy data. Un-
der different conditional DDPMs, the training process of DDPM is different. In general,
the loss function needs to be adjusted to minimize the difference between the prediction
noise and real added noise.

14

2.6 Incorporate Arbitrage-free Conditions with DDPM

• Generation Process: During the generation process, the model generates data condi-
tioned on the provided information or constraints, ensuring that the generated results
meet the requirements.

In our study, incorporating arbitrage-free conditions within DDPM is important for generat-
ing realistic implied volatility surfaces. Recent research in classifier guidance and classifier-free
guidance DDPM methods provide workable frameworks for adding these arbitrage-free con-
ditions into diffusion models.

2.6.1 Classifier Guidance in DDPM

Classifier-guided DDPM uses a pre-trained classifier to guide a pre-trained diffusion model
to a specified result. This methodology has been investigated in various scenarios, such as
generating images with different labels, and has been verified to yield outcomes that beat those
of GAN models in multiple situations, particularly in terms of the outstanding performance
and effectiveness of the generated images[6]. To integrate a trained classifier with a DDPM
model, follow these steps:

1. Prepare: First train a diffusion model and a Classifier on the dataset. To satisfy our
requirements in this research, the Classifier should be able to determine if a surface is
arbitrage-free and output the corresponding penalty term.

2. Classifier Function: The Classifier evaluates each generated surface to determine whether
it is free of arbitrage and produces penalties for any violations, such as butterfly arbitrage
and calendar arbitrage conditions.

3. Guiding the Generation Process: Calculate the penalty term for arbitrage violations for
image xt throughout the generation process of the DDPM. This should be done at each
denoising step. Use the gradient algorithm to compute the gradient of the penalty term.

4. Modify Generation Process: Modify the generation process by incorporating the calcu-
lated gradient into the noise distribution, guaranteeing that the resulting surface mini-
mizes arbitrage violations.

2.6.2 Classifier-Free Guidance in DDPM

Classifier-free guidance is another approach to conditional DDPM methods. In this approach,
there is no requirement for an additional classifier to guide the DDPM to generate results in
the desired direction. This method integrates conditions directly into the training process of
the diffusion model[30].

1. Joint Training Process: When using classifier-free DDPM, the models are trained using
a joint training method that includes desired conditions, such as specific image labels or
financial constraints, as part of the training objective in this case. This involves teaching
the model through a combination of condition and un-condition processes. The condition
process will incorporate additional information, whereas the un-condition process does
not.

15

2 Literature Review

2. Conditional Generating: The model is trained to provide predictions of denoised data
based on noisy inputs. This is achieved by incorporating a desirable condition into the
loss function. To satisfy the no-arbitrage requirements during the generation process,
one approach is to use a parameter to adjust the output between conditional and uncon-
ditional.

16

3 Financial Options and Implied Volatility
Surfaces

3.1 Mathematics on Financial options

Mathematical knowledge of financial options is fundamental to quantitative finance and fi-
nancial engineering. Mathematics will be applied to model and predict the behavior of option
prices and other derivatives under various market conditions. In this section, we will intro-
duce some knowledge about basic financial mathematics to provide a basis for the no-arbitrage
theory.

European Call/Put Options
A European option is a type of financial derivative that provides the holder with the exclusive
right, but not the duty, to purchase or sell a specific amount of an underlying asset S(t) at
a predetermined price K on a specified future date T(i.e., maturity). European options differ
from American options in that they can only be exercised on the expiration date.

Black-Scholes Option Pricing Model

The Black-Scholes model is a mathematical equation, specifically a partial differential equation,
that governs the price of an option [11]. The model assumes that the price of the underlying
asset follows a geometric Brownian motion, with a fixed risk-free rate of r and a constant
volatility of σ.

In the Black-Scholes model, the value V of an option is expressed as:

V = BS(σ, St, K, T − t, r), (3.1)

where:

• St is the current price of the underlying asset.

• K is the strike price of the option.

• T − t is the time remaining until expiration.

• r is the risk-free interest rate.

• σ is the volatility of the underlying asset’s returns.

Because of its simplicity, the Black-Scholes model is widely used around the world. The
original model makes assumptions about four different aspects, including risky assets, risk-
free assets, options, and financial markets[31].

1. Assumptions about the Risk Asset

• Random Walk: Asset prices follow a random walk with no predictable pattern.

17

3 Financial Options and Implied Volatility Surfaces

• Constant Volatility: The volatility of an asset’s return remains constant over time.

• Normal Distribution of Returns: Asset returns are normally distributed.

• No Dividends: The underlying asset does not pay any dividends during the life of
the option.

2. Assumptions about the Risk-free Asset

• Fixed risk-free rate:The risk-free rate remains constant and is known in advance.

3. Assumptions about the Option

• European Options: The model only applies to European options that can only be
exercised at maturity.

4. Assumptions about the Market

• No Transaction Costs: There are no costs associated with the purchase or sale of an
asset or option.

• Excellent liquidity: The market is extremely liquid, allowing any size of transaction
without affecting the price.

• No Short Selling Restrictions: There are no restrictions on short selling of the asset
in question.

• No Arbitrage Possibilities: There are no risk-free arbitrage opportunities in the mar-
ket.

The Definition of Black-Scholes Implied Volatility
While the Black-Scholes model assumes a constant volatility, actually in a real financial market,
the volatility of an asset is not constant and varies over time. Implied volatility σ∗ is the
estimation of the asset’s future volatility derived from the market price of its options. It can be
calculated by inverting the Black-Scholes model:

σ∗ = BS−1(Vmkt, St, K, T − t, r), (3.2)

where:

• Vmkt is the observed market price of the option.

This process involves using a numerical method such as the Newton-Raphson or other root-
finding algorithms to solve for σ∗, equating the Black-Scholes model price to the observed
market price of the option.

Black-Sholes Implied Volatility Surfaces
Implied volatility varies with different strike prices and maturities of the options. Then we can
derive a three-dimensional graph from this variation, for example:

• The x-axis represents different strike prices K.

• The y-axis represents different times to maturity T − t.

• The z-axis represents the implied volatilities σ∗.

18

3.1 Mathematics on Financial options

Figure 3.1: Volatility Smile

The shape of the implied volatility surface can provide important information about market
conditions, such as the prediction of future economic events. Analysts and traders can study
the implied volatility surface to estimate areas of high and low expected volatility, to assist in
risk management.

There exist two typical features of implied volatility surface:

• Volatility Smile: For a call option, ”In the Money” means when its strike price is below
the current market price of the underlying asset. ”Out of the money” means that the
strike price is above the current market price, which means the option is worthless now.
Both in-the-money and out-of-the-money options exhibit higher implied volatilities than
at-the-money options as shown in Fig 3.1.

• Volatility Skew: At the same time of expiration, if the market is more worried about
a certain direction (usually downside risk), the lower strike price may exhibit higher
implied volatility, which means it will create a downward trend as shown in Fig 3.2.

The Stochastic Volatility Model
The Heston model, as proposed by Heston[32], is an important tool in financial mathemat-
ics. Unlike the traditional Black-Scholes model, which assumes constant volatility, the Heston
model supposes that the volatility of the underlying asset follows a stochastic process. The
Heston model is characterized by the following two stochastic differential equations:

1. Underlying Asset Price Process:

dSt = µStdt +
√

vtStdWS
t (3.3)

2. Variance Process:

dvt = κ(θ̂ − vt)dt + σ̂
√

vtdWv
t (3.4)

19

3 Financial Options and Implied Volatility Surfaces

Figure 3.2: Volatility Skew

Where:

• St is the price of the underlying asset at time t.

• vt is the instantaneous variance at time t.

• µ is the expected return of the asset.

• κ is the rate at which the variance reverts to its long-term mean θ̂.

• θ̂ is the long-term mean of the variance.

• σ̂ is the volatility of the variance, also known as the ”vol of vol.”

• dWS
t and dWv

t are two Wiener processes with a correlation coefficient of ρ.

The output of the Heston model is the theoretical prices of call and put options, which reflect
the value of the options given the set of input parameters mentioned before. Since the core
of the Heston model is stochastic volatility, its analytical solution can be represented through
a characteristic function. We can use Monte-Carlo or COS(Fourier-Cosine) methods to solve
such a problem, see in [33].

3.2 Arbitrage-free Conditions for Option Price Surface

3.2.1 Option Price Surfaces from the Market and Abirtrage-free Conditions

When considering the arbitrage-free conditions, let us first define the price surface of a call
option. The conditions of building an arbitrage-free call price surface are introduced in [34].

20

3.2 Arbitrage-free Conditions for Option Price Surface

Definition 3.2.1. A call price surface parameterised by S(stock price) is a function:

C : [0, ∞)× [0, ∞)→ R

(K, T) 7→ C(K, T)

along with a real number S > 0.

Arbitrage refers to positive probabilities of earning risk-free profits with a costless trading
strategy. Arbitrage opportunity always happens when the market is not efficient. If there
is a mispricing of options, there could be an arbitrage opportunity. Before generating the
implied volatility surface, we begin with the arbitrage-free conditions for the call option price
surface.

Definition 3.2.2. There is no static arbitrage in such a call price surface if there exists a
non-negative martingale X on some stochastic basis

(
Ω,F , F = (Ft)t≥0 , P

)
with C(K, T) =

E
(
(XT − K)+ | F0

)
for each (K, T) ∈ [0, ∞)× [0, ∞), X0 = S. If such a martingale and proba-

bility space exists, then we say that the call price surface is free of static arbitrage.

The following are the necessary and sufficient conditions for a call price surface to be free of
static arbitrage:

Theorem 3.2.3. Let S > 0 be a constant. Let C : (0, ∞)× [0, ∞)→ R satisfy the following conditions:

1. (Monotonicity in T)
C(K, ·) is non-decreasing, ∀K > 0;

2. (Convexity in K)
C(·, T) is a convex function, ∀T ≥ 0

3. (Large strike limit)
lim

K→∞
C(K, T) = 0, ∀T ≥ 0

4. (Bounds)
(S− K)+ ≤ C(K, T) ≤ S, ∀K > 0, T ≥ 0; and

5. (Expiry Value)
C(K, 0) = (S− K)+, ∀K > 0.

Then:
(i) the function

Ĉ : [0, ∞)× [0, ∞)→ R

(K, T) 7→
{

S, if K = 0
C(K, T), if K > 0

satisfies assumptions (1)-(5) but with K ≥ 0 instead of K > 0; and
(ii) there exists a non-negative Markov martingale X with the property that

21

3 Financial Options and Implied Volatility Surfaces

Ĉ(K, T) = E
(
(XT − K)+ | X0 = S

)
for all K, T ≥ 0.

3.2.2 Condition: Monotonicity in T(Calendar Arbitrage Condition)

There are two common types of arbitrage strategy, calendar arbitrage and butterfly arbitrage.

For call options, calendar spread arbitrage is an options trading strategy that involves buying
a long-term call option and selling a short-term call option at the same strike price. This
strategy aims to profit from the difference in maturities between these two options. Due to the
additional time value, the long-term call option always has a higher value than the short-term
call option.

When the underlying asset price is at the strike price of the options at the expiration of the
short-term option, traders can make maximum profits. Under this circumstance, the value of
the long-term option will be higher due to its longer expiration time, while the short-term
option’s value will be near zero. From the necessary and sufficient conditions above, if a call
price surface satisfies this condition, i.e. Monotonicity in T, we can say there exists no calendar
spread arbitrage violations on this surface.

Here, we use Vc(t0, S0, K, T) to denote the price of a call option with an underlying price S0 at
the current time t0.

Then:

Vc (t0, S0; K, T + ∆T)−Vc (t0, S0; K, T) > 0, (3.5)

If we divide both sides of the equation by ∆T and we let ∆T → 0, then:

lim
∆T→0

1
∆T

[Vc (t0, S0; K, T + ∆T)−Vc (t0, S0; K, T)]

=
∂

∂T
Vc (t0, S0; K, T) .

(3.6)

For options with the same strike price K and underlying price S0 at the current time t0, the
value of an option should increase as the time to maturity T increases, assuming all other
factors remain constant.

3.2.3 Condition: Convexity in K(Butterfly Arbitrage Condition)

Here is another important arbitrage-free condition for option prices called the butterfly condi-
tion:

Vc (t0, S0; K + ∆K, T)− 2Vc (t0, S0; K, T) + Vc (t0, S0; K− ∆K, T) ≥ 0, (3.7)

22

3.2 Arbitrage-free Conditions for Option Price Surface

This condition is based on the construction of a butterfly arbitrage strategy that consists of
purchasing a call option with a strike of K + ∆K, selling two call options with a strike of K,
and purchasing a call option with a strike of K− ∆K, all with expiry dates of T.

This requirement ensures that the overall return on these positions does not fall below zero,
regardless of transaction costs. This is because the loss on calls sold at strike K is limited by
the gain on calls purchased at strike K + ∆K and K− ∆K.

3.2.4 Other Constraints

Condition: Large Strike Limit

lim
K→∞

C(K, T) = 0, ∀T ≥ 0

This condition states that as the strike price K approaches infinity, the option price C(K, T)
should approach zero. This requirement comes from the requirement of the intrinsic value of
the option. In practice, as the strike price increases, the intrinsic value of the option (the asset
price minus the strike price) becomes smaller, finally resulting in the option being worthless.

If this condition is not satisfied, the investor can sell an option at a positive price, but the
option will never be exercised due to the high strike price.

Condition: Bounds

(S− K)+ ≤ C(K, T) ≤ S, ∀K > 0, T ≥ 0

(S − K)+ represents the intrinsic value of the option when exercised at maturity and S is
the underlying asset’s current price. This condition comes from the requirement of the no-
arbitrage condition, ensuring that the option price must be reasonably distributed between its
intrinsic value and the current price of the underlying asset.

Firstly, the option price can not be lower than its intrinsic value. Under this circumstance, an
investor can purchase an option at a price below its intrinsic value and exercise the option
immediately, making a risk-free profit.

Same, the option price can not be higher than the current price of the underlying asset. Under
this circumstance, there will still exist an arbitrage opportunity. The investor can sell the option
and use the proceeds to purchase the underlying asset, also making a risk-free profit.

Condition: Expiry Value

C(K, 0) = (S− K)+, ∀K > 0

At maturity, the value of the option is entirely determined by its intrinsic value. If this require-
ment is not satisfied at the expiration, an arbitrage opportunity will arise. For example, if the
option price is higher than its intrinsic value, investors could sell the option and buy the asset
in the market for a risk-free profit.

23

3 Financial Options and Implied Volatility Surfaces

3.3 Transformation from Option Price Surface to Implied
Volatility Surface

After calculating the option price using the Heston model or obtaining the option price from
the actual financial market, the next step for calculating implied volatility is to invert the
Black-Scholes formula to obtain the implied volatility for different strike prices and maturities.
The Black-Scholes formula provides a solution for pricing European call options with the
assumption of constant volatility, which means we can calculate a series of corresponding
implied volatility values.

In the Black-Scholes formula, C represents the price of a European call option. Φ represents
the cumulative distribution function (CDF) of the standard normal distribution. This function
Φ(x) gives the probability that a standard normal random variable (with a mean of 0 and a
standard deviation of 1) is less than or equal to x.

C(S, K, T, r, σ) = S0Φ(d1)− Ke−rTΦ(d2), (3.8)

where d1 and d2 are defined as:

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√

T

d2 = d1 − σ
√

T,

Implied volatility σ is the volatility that matches the price of the Black-Scholes formula to the
market option price. When solving for the Black-Scholes implied volatility, we need to use
some numerical root-finding method to find the value of implied volatility that minimizes the
difference between the Black-Scholes formula price and the market option price.

Finally, using the series of implied volatility values calculated by the B-S formula, we can
construct the implied volatility surface. This is a three-dimensional image including implied
volatility values, maturities, and strike prices.

3.4 Arbitrage-free Conditions for Implied volatility surface

3.4.1 Conditions

Then, we will turn to arbitrage-free conditions of the implied volatility surface. Also, let us
define the implied volatility surface first:

24

3.4 Arbitrage-free Conditions for Implied volatility surface

Definition 3.4.1. Time-scaled implied volatility (in log-moneyness form) parameterized by S
is a function defined by

ω : R× [0, ∞)→ [0, ∞]

(k, τ) 7→
√

τσ(S exp(k), τ),

where σ is implied volatility and S > 0 is the stock price. k is the log-moneyness, i.e., k =
ln(K/S).

Here, w is the total variance of σ(k, τ):

ω(k, τ) = σ2(k, τ)τ.

Then, we have the theorem:

Theorem 3.4.2. Let S > 0 and ω : R× [0, ∞)→ R. Let ω satisfy the following conditions:

1. (Positivity) For every k ∈ R and τ > 0,

w(k, τ) > 0.

2. (Value at Maturity) For every k ∈ R,

w(k, 0) = 0.

3. (Smoothness) For every τ > 0, w(·, τ) is twice differentiable.

4. (Monotonicity in τ) For every k ∈ R, w(k, ·) is non-decreasing.

5. (Durrleman’s Condition) For every τ > 0 and k ∈ R,

0 ≤
(

1− k∂kω

ω

)2
− 1

4
ω2 (∂kω)2 + ω∂2

kkω

, where w is shorthand for w(k, τ).

6. (Large Moneyness Behavior) For every τ > 0, σ2(k, τ) is linear for k→ ±∞.

Then the call price surface parameterized by s,

C̃ : [0, ∞)× [0, ∞)→ R, (K, τ) 7→ C(K, τ)

is free of static arbitrage. In particular, there exists a non-negative Markov martingale X with the
property that

C̃(K, τ) = E
[
(Xτ − K)+ | X0 = S

]
for all K, τ ≥ 0.

25

3 Financial Options and Implied Volatility Surfaces

3.4.2 Explanations about the Conditions

In Theorem 3.4.2, Positivity (1) and Value at Maturity (2) conditions are necessary conditions
that any sensible model must satisfy, as shown in [35]. Smoothness (3) is merely sufficient to
prove an absence of arbitrage when conditions (4) to (6) are also satisfied. We will explain each
condition in detail and find the connection between the price surface and volatility surface:

1. Positivity: This condition requires that for all k (log moneyness, ln(K/S)) and all positive
times τ (maturities), the volatility function ω(k, τ) must be positive. In financial markets,
volatility represents the uncertainty when the price of the underlying asset moves. This
condition shows a common sense in option pricing strategy that volatility should be
non-negative.

When connecting this condition to arbitrage-free conditions of call price surface, we
will find that it corresponds to the lower bound(4) requirement of an option price. The
positivity of implied volatility ensures that the price of an option will not fall below
zero. Even if the volatility is very low(close to zero), which means there is almost no
fluctuation in the price of the underlying asset, the option still has a certain time value
due to the potential for price changes before expiration. Therefore, the market price of
an option will at least reflect this time value.

2. Value at Maturity: This condition states that when τ = 0 (at expiration), the volatility
function ω(k, 0) is equal to 0. This requirement indicates that the uncertainty about the
movement of the option price disappears at expiration time because the value of the
option will be equal to its intrinsic value.

This condition also arises from the constraint on the option price imposed by the no-
arbitrage requirement, and we can find a similar condition in 3.2.3. The expiration value
of an option indicates that its value is entirely determined by its intrinsic value, which
also reflects the fact that uncertainty disappears at expiration. This similarity for both
option price and implied volatility illustrates that the transformation from price-surface
to implied volatility-surface still maintains the same requirement for the value of the
option at expiration.

3. Smoothness: The volatility function needs to satisfy second-order differentiability with
respect to k to ensure the smoothness requirement for the volatility surface. The smooth-
ness requirement is also found to be implicit in the previously mentioned no-arbitrage
requirement for the price surface. According to the convexity condition for price sur-
faces (2), the convexity of K (strike price) requires that the option price as a function of
the strike price K is convex. This means that for any two strike prices K1 and K2, and
any λ ∈ [0, 1], the following inequality holds.

C (λK1 + (1− λ)K2, T) ≤ λC(K1, T) + (1− λ)C(K2, T), (3.9)

where C(K, T) denotes the option price at expiration time T and strike price K.

According to the definition of a convex function, if the function is convex, it is at least
second-order derivable in its domain of definition. Also, this implies that the second-
order derivative of the option price with respect to K is non-negative:

∂2C
∂K2 ≥ 0, (3.10)

26

3.4 Arbitrage-free Conditions for Implied volatility surface

This property ensures the smoothness and continuity of the price surface with respect to
the strike price.

4. Monotonicity in τ: The non-decreasing property of the volatility function ω(k, ·) over
time reflects the fact that the uncertainty of the underlying asset’s price fluctuation does
not diminish as the expiry date approaches. Volatility is a measure of the magnitude
of the underlying asset’s price fluctuations, while time value is the excess of the option
price over its intrinsic value, reflecting the potential profit from changes in the underlying
asset’s price before expiration.

This requirement can still be traced back to the no-arbitrage requirement on the price
surface. Compared with the monotonicity condition for T in 1, when the volatility func-
tion acts as a non-decreasing function, it implies that the uncertainty about the price
movement faced by the option does not decrease as the time to expiration increases. This
needs to be considered in conjunction with the nature of time value, where the longer
the time to expire for an option the greater the chance of the underlying asset generating
a favorable price movement. It also implies that the time value of the option will increase
or at least not decrease.

This condition also helps to prevent calendar spread arbitrage opportunities mentioned
in 3.2.2 due to unnatural variations in volatility. also essentially uses the time value of
options. This strategy involves buying and selling options with the same strike price
but different expiration dates at the same time. The profitability of calendar spread
arbitrage depends in part on the difference in volatility between options with different
expiry dates. If volatility increases over time, rather than monotonically (i.e., violating
the monotonicity in the τ condition), then by choosing the right combination of expiry
dates, a trader may create an arbitrage opportunity due to the mispricing of options with
irregular volatility behavior.

5. Durrleman’s Condition: This is a condition related to the curvature of the implied
volatility surface that ensures that the shape of the volatility surface does not lead to
arbitrage opportunities(corresponding to the butterfly arbitrage opportunity). The con-
dition involves the first and second-order derivatives of the volatility function ω(k, τ)
with respect to k, as well as the volatility function itself. We will explain each part of this
condition separately.

•
(

1− k∂kω
ω

)2
and − 1

4 ω2 (∂kω)2: This part represents the rate of change of volatility
with respect to the log strike price. This component ensures that the volatility does
not increase or decrease too quickly in response to changes in the log strike price,
maintaining a certain degree of stability in the volatility change.

• ω∂2
kkω: This part represents the second-order derivative of volatility with respect to

the log strike price, which reflects the curvature of the volatility curve with respect
to the log strike price. This condition requires that the volatility surface has non-
negative curvature (i.e., non-negative second-order derivatives) at each point of the
log strike price k, which means that the volatility surface is required to be convex.

The Durrleman condition ensures that the volatility surface is generally smooth and
convex by combining the above conditions and requiring them to be greater than zero.
This shape of the volatility surface helps to satisfy the no-arbitrage requirement in the
options market because it eliminates the possibility of arbitrage through market price
inconsistencies.

27

3 Financial Options and Implied Volatility Surfaces

Returning to the previously mentioned condition on the price surface, the convexity of
the price surface requires that the second-order derivative of the option price with respect
to the strike price be non-negative for any two strike prices. As we mentioned earlier, if
the price surface is not convex, it is possible to profit from a butterfly arbitrage strategy.

For the implied volatility surface, the Durrleman condition ensures the necessary con-
vexity of the price surface derived from the volatility surface, eliminating arbitrage op-
portunities constructed through the butterfly arbitrage strategy.

6. Large Moneyness Behavior: Implied volatility exhibits asymptotic behavior when values
are extreme. This means that in these areas (very high or very low strike prices), the mar-
ket does not expect volatility to rise or fall suddenly, but to change in a predictable linear
pattern. If implied volatility is very non-linear, it is easy to profit from the inconsistency
of the price of out-of-the-money options and other extreme strike prices.

28

4 The Generative Diffusion Models

4.1 Mathematics of Diffusion Models

In this section, we will introduce the mathematical basis of DDPM, that is, how DDPM is
guaranteed to be correct in its operation through SDEs.

4.1.1 Stochastic Differential Equations (Score SDEs)

We always describe the form of the diffusion model through stochastic differential equa-
tions(SDEs). They represent processes where data is gradually perturbed to noise through
an SDE, and then this process is reversed to generate data from noise. We call this formulation
Score SDE, and the key idea is to use the score function to guide the denoising process[21].

A Score SDE is determined by the following general form of an SDE:

dx = f(x, t)dt + g(t)dw, (4.1)

where f(x, t) and g(t) are the drift and diffusion functions of the SDE, and w is a standard
Wiener process.

Forward and Reverse SDEs of DDPM and SGM

In the generative models, the forward process adds noise to the data and is represented by an
SDE, while the reverse process removes noise and is also represented by an SDE.

Under specific conditions, Score SDEs can be transformed into the specific forms used in
Denoising Diffusion Probabilistic Models(DDPM) and Score-Based Generative Models(SGM).
These models can be viewed as different approaches to Score SDEs, depending on the different
choices of the drift and diffusion functions.

For Score SDE to become an SGM, different drift and diffusion functions must be chosen. The
forward SDE of SGM is:

dx =

√
d[σ(t)2]

dt
dw, (4.2)

where σ(t) is a time-dependent standard deviation. The reverse SDE is:

dx = −σ(t)∇x log qt(x)dt +

√
d[σ(t)2]

dt
dw, (4.3)

Here,w denotes another independent standard Wiener process in the reverse process.

29

4 The Generative Diffusion Models

The forward SDE for DDPM is:

dx = −1
2

β(t)x dt +
√

β(t)dw, (4.4)

where β(t) is a time-dependent noise schedule. And the reverse SDE for DDPM is:

dx =

[
−1

2
β(t)x− β(t)∇x log qt(x)

]
dt +

√
β(t)dw, (4.5)

The continuous SDEs can be discretized into finite steps to form the DDPM framework. Here,
the noise addition process is determined by the forward SDE and is discretized into a series of
steps q(xt | xt−1). Each step adds Gaussian noise with a specific variance βt.

Similarly, the reverse process is approximated by a learned Gaussian distribution pϑ(xt−1 | xt)
in DDPM.

4.1.2 DDPM

In this section, we will mainly focus on DDPM. Generative diffusion models always repre-
sent a class of latent variable models characterized by the form pϑ(x0) :=

∫
pϑ(x0:T)dx1:T ,

where x1, . . . , xT are latent variables sharing the same dimensionality as the observed data[36].
The combined distribution pϑ(x0:T), referred to as the reverse process, is modeled as a Markov
chain with Gaussian transitions that are learned from data, beginning with p(xT) = N (xT ; 0, I):

pϑ(x0:T) := p(xT)
T

∏
t=1

pϑ(xt−1 | xt), pϑ(xt−1 | xt) := N (xt−1; µϑ(xt, t), Σϑ(xt, t)), (4.6)

The forward process q(x1:T | x0), also called the diffusion process of the diffusion model is
fixed as a Markov chain that gradually adds Gaussian noise into the data following a prede-
termined variance schedule β1, . . . , βT :

q(x1:T | x0) :=
T

∏
t=1

q(xt | xt−1), q(xt | xt−1) := N (xt;
√

1− βtxt−1, βtI), (4.7)

We will introduce the forward process and reverse the process in the following, as well as the
structure of DDPM, see in Fig 4.1.

Forward Process

• Definition: q(x1:T | x0) is a fixed Markov chain that gradually adds Gaussian noise to
the data.

30

4.1 Mathematics of Diffusion Models

Figure 4.1: Structure of DDPM

• Formula:

q(x1:T | x0) :=
T

∏
t=1

q(xt | xt−1), q(xt | xt−1) := N (xt;
√

1− βtxt−1, βtI) (4.8)

• Single Step in Forward Process: Each step of this forward process can be written as:

xi =
√

1− βixi−1 +
√

βizi−1, zi−1 ∼ N (0, I), (4.9)

This equation indicates that at each step i, the new state xi is a linear combination of the
previous state xi−1 and Gaussian noise zi−1.

We aim to demonstrate that this equation can be seen as a discretization of the Score
SDE:

Let ∆t = 1
N and introduce an auxiliary noise level {β̄i}N

i=1 where βi =
β̄i
N . Then:

βi = β

(
i
N

)
︸ ︷︷ ︸

β̄i

· 1
N

= β(t + ∆t)∆t, (4.10)

where we assume β̄i → β(t) as N → ∞.

Also, define

xi = x
(

i
N

)
= x(t + ∆t), zi = z

(
i
N

)
= z(t + ∆t), (4.11)

31

4 The Generative Diffusion Models

Then we have

xi =
√

1− βixi−1 +
√

βizi−1

=

√
1− β̄i

N
xi−1 +

√
β̄i
N

zi−1

=
√

1− β(t + ∆t)∆tx(t) +
√

β(t + ∆t)∆tz(t),

(4.12)

For small ∆t, we approximate:

√
1− β(t + ∆t)∆t ≈ 1− 1

2
β(t + ∆t)∆t, (4.13)

giving:

x(t + ∆t) ≈
(

1− 1
2

β(t + ∆t)∆t
)

x(t) +
√

β(t + ∆t)∆tz(t)

≈ x(t)− 1
2

β(t)∆tx(t) +
√

β(t)∆tz(t),
(4.14)

as ∆t→ 0, we have

dx = −1
2

β(t)xdt +
√

β(t)dw, (4.15)

• Properties: In the forward process, it is possible to sample xt at any timestep t in closed
form. Using the notation αt := 1− βt and ᾱt := ∏t

s=1 αs, we have:

q(xt | x0) = N (xt;
√

ᾱtx0, (1− ᾱt)I), (4.16)

Reverse Process

• Definition:pϑ(x0:T) is a Markov chain that starts from noise and gradually denoises it to
recover the data.

• Formula:

pϑ(x0:T) := p(xT)
T

∏
t=1

pϑ(xt−1 | xt), pϑ(xt−1 | xt) := N (xt−1; µϑ(xt, t), Σϑ(xt, t)) (4.17)

For the reverse process, it can also be proved to be seen as a discretization of Score SDE.

Training Objective:

In the training process of DDPM, we aim to maximize the log-likelihood log pϑ (x0). Due
to the computational difficulty of the posterior distribution and the non-negligibility of the
log-likelihood, Variational Inference (VI) is finally used as an approximation method.

The Variational Inference approximates the posterior distribution of the latent variable by intro-
ducing a computable approximation distribution and indirectly maximizes the log-likelihood

32

4.1 Mathematics of Diffusion Models

by optimizing the Evidence Lower Bound (ELBO). By maximizing the ELBO, the log-likelihood
can be maximized and the problem of computing high-dimensional integrals can be avoided.

In DDPM, the ELBO can be expanded by the KL divergence(Kullback-Leibler Divergence)
terms.

KL divergence measures the difference between two probability distributions[37]. For two
probability distributions P and Q, it is defined as:

DKL(P∥Q) = EP

[
log

P(x)
Q(x)

]
=

∫
P(x) log

P(x)
Q(x)

dx (4.18)

The smaller the KL divergence, the more similar the two distributions are. When P and Q are
identical, the KL divergence is zero.

The ELBO provides a lower bound on the log-likelihood, and by maximizing this bound, we
indirectly maximize the log-likelihood:

E[− log pϑ(x0)] ≤ Eq

[
− log

pϑ(x0:T)

q(x1:T | x0)

]
, (4.19)

Expanding this, we get:

Eq

[
− log p(xT)−

T

∑
t=1

log
pϑ(xt−1 | xt)

q(xt | xt−1)

]
, (4.20)

This can be further decomposed into KL divergence terms:

Eq[DKL (q (xT | x0) ∥p (xT))︸ ︷︷ ︸
LT

+ ∑
t>1

DKL (q (xt−1 | xt, x0) ∥pϑ (xt−1 | xt))︸ ︷︷ ︸
Lt−1

− log pϑ (x0 | x1)︸ ︷︷ ︸
L0

] (4.21)

1. KL Divergence at the Initial Step:

DKL (q (xT | x0) ∥p (xT))

2. KL Divergence at Each Time Step:

DKL (q (xt−1 | xt, x0) ∥pϑ (xt−1 | xt))

Here, the conditional distribution q(xt−1 | xt, x0) is a Gaussian distribution that can be
computed based on the parameters of the forward process:

q(xt−1 | xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI) (4.22)

33

4 The Generative Diffusion Models

where,

µ̃t(xt, x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (4.23)

and

β̃t =
1− ᾱt−1

1− ᾱt
βt (4.24)

3. Final Reconstruction Error Term:

− log pϑ (x0 | x1)

From the above derivation, we can see that the ELBO of DDPM can be decomposed into a series
of KL divergence terms and a final reconstruction term, which together form the theoretical
training objective. However, in practice, the direct computation and optimization of these
terms lead to excessive computational effort and complex implementation, especially because
detailed computation of the Gaussian distribution is required at each time step.

To simplify the training process in real experiments, we introduce a simplified version of the
loss function. This simplified loss function retains the principles of ELBO but represents it as
a more efficient optimization objective. This simplification focuses on the mean square error
(MSE) between the noise added to the data and the noise predicted by the neural network.
Thus, we employ the following simplified loss function in place of the original ELBO for
training the model:

Lsimple (ϑ) := Et,x0,ϵ

[∥∥∥ϵ− ϵϑ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)∥∥∥2
]

, (4.25)

Where:

• Lsimple (ϑ) is the simplified loss function. ϑ represents the set of network parameters.

• ϵ is the Gaussian noise sampled from N (0, I) added to x0 during the diffusion process.

• ϵϑ(xt, t) is the noise predicted by the neural network.

The formula calculates the simplified loss function Lsimple(ϑ), which is used to train the net-
work by minimizing the mean squared error (MSE) between the noise predicted by the network
ϵϑ(xt, t) and the actual noise ϵ added to the data.

4.2 Deep Learning Framework

Deep learning is a common approach to machine learning that uses neural networks to model
complex relationships in data. And the core of deep learning is several neural network archi-
tectures. They are the base for advanced models, including those that will be used later in our
research such as DDPM. We will provide a brief introduction to the underlying neural network
architectures in this subsection, highlighting the CNN networks that will be used in DDPM.

34

4.2 Deep Learning Framework

Figure 4.2: Structure of Fully Connected Networks

4.2.1 Fully Connected Networks(FC)

Fully connected networks (FC) are the simplest and most common type of neural network.
These networks consist of multiple layers, where each neuron is connected to every neuron
in the previous and subsequent layers as shown in Fig 4.2. FC can be applied to a wide
range of tasks, from basic classification to more complex regression problems. A Multilayer
Perceptron(MLP), which is often used in deep learning, is essentially a network consisting
of multiple fully connected layers (FC layers). In other words, an MLP is a specific network
structure.

However, the computational cost of FC can easily increase as the neuron or layer grows. The
dense connection structure causes higher storage space and can result in FC not being able to
have good efficiency and performance when dealing with complex tasks.

4.2.2 Convolutional Neural Network(CNN)

Convolutional neural networks(CNNs) differ from MLPs in that the neurons between the up-
per and lower layers are not all directly connected. CNNs use convolutional kernels as inter-
mediate connections, and the core of this neural network is also a convolutional layer. Convolu-
tional layers are used to extract features from images, which makes them particularly effective
in visual tasks such as image classification, image segmentation, and image generation.

Its key components are:

• Convolutional Layer: The convolutional layer uses convolutional kernels to analyze the
input data and extract features such as edges, texture, and color variations.

35

4 The Generative Diffusion Models

• Pooling Layer: The pooling layer reduces the amount of computation by reducing the
resolution of the data and keeping the most important features.

• Fully Connected Layer: After convolution and pooling, features are usually classified or
regressed through the fully connected layer.

• Activation Functions: Non-linear activation functions such as ReLU (Rectified Linear
Unit) are often used after the convolution layer to increase the expressive power of the
network.

4.2.3 Relationships between DDPM and Neural Networks

The Denoising Diffusion Probabilistic Model creates new data samples based on these under-
lying neural networks and mimics the distribution of the training data. As we mentioned
before, there are two main processes in DDPM, the forward diffusion process and the reverse
denoising process. The reverse process aims to remove the noise step by step with the help of
a neural network that predicts how to subtract the noise from the image at each step.

To achieve the denoising process, DDPM relies on the U-Net architecture, which consists
mainly of convolutional layers, as proposed in [38].

U-Net is a convolutional neural network architecture used in image processing tasks. It has
an encoder-decoder structure with skip connections. In the encoding stage, CNNs extract
multi-scale features and retain important feature information. In the decoding stage, CNNs
reconstruct the image with learned features. Due to U-Net introduces skip connections that
directly link each layer in the encoder to its corresponding layer in the decoder, it helps the
network retain high-resolution information from earlier layers, improving the quality of image
reconstruction.

4.3 Conditional Diffusion Models

4.3.1 Classifier-DDPM

The traditional DDPM mentioned before has been widely used in image generation. When
returning to our topic, which is the generation of an arbitrage-free implied volatility surface,
an improved DDPM method will be applied.

To solve some conditionally required generation problems, adding a classifier to DDPM is one
of the improved methods, as mentioned in [6]. By pre-training the Classifier individually and
then adding the Classifier to the already trained DDPM to guide the generation process, this
process can adjust the result of generating samples.

The whole process of adding a Classifier to a trained DDPM can be summarized as follows
and can also be found in the algorithm 1:

1. Training the Classifier:

Considering the classifier first, the user needs to train a Classifier pφ(y | xt), where xt
represents the surface and y indicates the label of the surface(e.g., in our research, it
can indicate whether the surface is arbitrage-free or not). The Classifier is trained by

36

4.3 Conditional Diffusion Models

Algorithm 1 Classifier of DDPM
Input: Trained Classifier model pφ (y | xt), class label y, gradient scale s
Output: Generated sample x0

1 xT ← sample from N (0, I)
2 for t← T to 1 do
3 µ, Σ← µϑ (xt) , Σϑ (xt)
4 xt−1 ← sample from N

(
µ + sΣ∇xt log pφ (y | xt) , Σ

)
5 return x0

minimizing a loss function, which helps it to distinguish between surfaces or images
with different labels.

2. Using the Classifier to Guide the Diffusion Process:

After training the Classifier, the next step is to condition the original DDPM’s reverse
noising process on the label y. This is done by modifying the generation process. The
unconditional reverse process is given by:

pϑ(xt | xt+1) = N (µ, Σ), (4.26)

where µ and Σ are the mean and covariance parameters predicted by the model.

Then, combining the Classifier into this process, the conditional transition probability
will be defined as:

pϑ,φ(xt | xt+1, y) = Z · pϑ(xt | xt+1) · pφ(y | xt), (4.27)

where Z is a normalizing constant, this modification encourages the generation of sam-
ples consistent with the label y.

Now we will focus on the sampling process from pϑ,φ(xt | xt+1, y). First assuming that the term
log pφ(y | xt) has low curvature compared to Σ−1. Then, we can obtain a Taylor expansion for
log pφ(y | xt) at xt = µ:

log pφ (y | xt) ≈ log pφ (y | xt)
∣∣
xt=µ

+ (xt − µ)∇xt log pφ (y | xt)
∣∣
xt=µ

= (xt − µ) g + C1
(4.28)

Here, g = ∇xt log pφ(y | xt)
∣∣
xt=µ

and C1 is a constant. Using this, the combined log-probability
can be represented by approximation as:

log
(

pϑ (xt | xt+1) pφ (y | xt)
)
≈ −1

2
(xt − µ)T Σ−1 (xt − µ) + (xt − µ) g + C2

= −1
2
(xt − µ− Σg)T Σ−1 (xt − µ− Σg) +

1
2

gTΣg + C2

= −1
2
(xt − µ− Σg)T Σ−1 (xt − µ− Σg) + C3

= log p(z) + C4, z ∼ N (µ + Σg, Σ)

(4.29)

37

4 The Generative Diffusion Models

Here, C2,C3 and C4 are constants. These results show that the new mean is shifted by Σg,
leading to:

xt ∼ N (µ + Σg, Σ). (4.30)

This adjustment regulates the diffusion process on the label y by shifting the mean of the
distribution.

How does this adjustment work in the application? During the generation process of DDPM,
for each timestep t, the model will first predict the mean µ using the original trained DDPM.
Then, this prediction can be adjusted by adding the Classifier, using the drift Σg, where g is
the gradient of the Classifier’s output with respect to the sample:

xt ∼ N (µ + s · Σg, Σ), (4.31)

where s is a scaling factor that controls the influence of the Classifier’s guidance.

After adding the classifier to DDPM, the gradient result of the Classifier is used to adjust the
samples in each step of the generation process, and xt−1 generated in the new step is sampled
from the normal distribution after the gradient is added.

During the whole generation process, this adjustment will be repeated at each step. Finally,
the DDPM will be guided gradually by the drift Σg, towards conditional generated samples.

4.3.2 Classifier-free DDPM

Another conditional DDPM method is Classifier-free DDPM. Classifier-free guidance DDPM
centers on conditioning the DDPM without the need for a separate trained Classifier. This
approach jointly trains a diffusion model that can deal with both unconditional and conditional
requirements in a single model[30]. That is, for this model, it is the training part rather than
the generation part that mainly distinguishes it from the original DDPM.

The training process of Classifier-free DDPM includes training an unconditional denoising
model pϑ(z) parameterized by a score estimator ϵϑ(zλ) together with a conditional model
pϑ(z | c) parameterized by ϵϑ (zλ, c). Here, zλ represents the noisy data with a noise level λ,
and c is the conditional information.

Then jointly train the unconditional and conditional models by randomly deciding whether
to include the conditional information during the training process. With some probability
puncond, the conditional information c is set to a null value ∅, which means:

ϵϑ(zλ, c) = ϵϑ(zλ) when c = ∅ (4.32)

Then, during the generation process, a linear combination of both the conditional and uncon-
ditional score estimates arises:

ϵ̃ϑ(zλ, c) = (1 + w)ϵϑ(zλ, c)− wϵϑ(zλ) (4.33)

Here, w is a hyperparameter that controls the strength of the conditional information.

38

4.3 Conditional Diffusion Models

This equation combines the scores from the conditional and unconditional models. There is
no classifier gradient in this expression, which means the generation process requires less
computation. The algorithm of both the joint training process and generation process can be
found in Algorithm 2 and Algorithm 3.

Algorithm 2 Joint training of a diffusion model with classifier-free guidance
Input: Probability of unconditional training puncond
Output: Trained diffusion model with classifier-free guidance

6 while model not converged do
7 (x, c) ∼ p(x, c)
8 c← ∅ with probability puncond
9 λ ∼ p(λ)

10 ϵ ∼ N (0, I)
11 zλ = αλx + σλϵ

12 Take gradient step on ∇ϑ ∥ϵϑ(zλ, c)− ϵ∥2

Algorithm 3 Conditional sampling with classifier-free guidance
Input: Guidance strength w, conditioning information c, log SNR sequence λ1, . . . , λT with

λ1 = λmin and λT = λmax
Output: Generated sample zT+1

13 z1 ∼ N (0, I)
14 for t← 1 to T do
15 ϵ̃t = (1 + w)ϵϑ(zt, c)− wϵϑ(zt)
16 x̃t = (zt − σλt ϵ̃t) /αλt
17 if t < T then

18 zt+1 ∼ N
(

µ̃λt+1|λt
(x̃t, zt),

(
σ̃2

λt+1|λt

)1−v
(σ2

λt |λt+1
)v
)

19 else
20 zt+1 = x̃t

21 return zT+1

39

5 Methodology to Generate Arbitrary-free
IVS

5.1 Implementation of the Arbitrage-free Conditions of IVS

Research now focuses more on how to generate implied volatility surface with the constraints
of arbitrage-free to fit the real financial market. In this section, we would like to introduce
methods guaranteeing arbitrage-free as soft constraints.

5.1.1 Define Loss Term

Adding penalty terms to the loss function to handle the arbitrage-free conditions in Theorem
3.4.2 is a common idea[35].

As we mentioned before, Positivity and Value at Maturity are satisfied by the design of the
neural network. For smoothness, mapping ω is twice differentiable as long as the activation
functions are twice differentiable. And Large Moneyness Behavior only needs to be considered
when k approaches infinity. Hence, we only consider the last two conditions, Monotonicity in
τ and Durrleman’s condition as penalty terms. They correspond to the calendar condition and
butterfly condition separately.

Let’s recall the detailed description of these two requirements first. As mentioned in 3.4.2,
to satisfy the calendar arbitrage-free condition, w(k, ·) should be non-decreasing for every k.
Then it can be transformed into a mathematical expression, that is:

0 ≤ ∂Tω(k, τ), k ∈ R (5.1)

Now we can define the violation value of this term. The violation value for Calendar condition
at point (ki, τi) on any implied volatility surface is defined as:

Lcal(ki, τi) = max (0,−∂Tω(k, τ)) , (5.2)

Similarly, for the Butterfly condition, we need to consider Durrleman’s condition, that is:

0 ≤
(

1− k∂kω(k, τ)

ω(k, τ)

)2

− 1
4

ω(k, τ)2 (∂kω(k, τ))2 + ω(k, τ)∂2
kkω(k, τ) (5.3)

41

5 Methodology to Generate Arbitrary-free IVS

By transformation of this condition, it can be represented as[39]:

0 ≤
(

1− k∂kω(k, τ)

2ω(k, τ))

)2

− ∂kω(k, τ)

4

(
1

ω(k, τ)
+

1
4

)
+

∂2
kkω(k, τ)

2
(5.4)

Here, we will use Lbut(ki, τi) to denote the right hand side of the expression (5.4).

The violation value at point (ki, τi) is defined as:

Lbf(ki, τi) = max (0,−Lbut(ki, τi)) , (5.5)

To evaluate the whole implied volatility surface rather than a single point, we need to evaluate
the average violation value of all the points on the surface. The average violation values for
both Calendar spread arbitrage and Butterfly arbitrage conditions are:

Lcal = 1/M
M

∑
i=1

Lcal(ki, τi), (5.6)

Lbf = 1/M
M

∑
i=1

Lbf(ki, τi), (5.7)

where M is the total number of points on the surface.

Here, for all ki and τi(i.e, all log strike prices and maturities in implied volatility surface),
we will calculate the sum of the maximum of (0,−Lcal (ki, τi)) and sum of the maximum of
(0,−Lbut (ki, τi)). If there is no arbitrage violation at the selected point (ki, τi), Lcal and Lbut
should be both equal to 0, which means there is no penalty for calendar spread and butterfly
arbitrage existing at this point.

5.1.2 Modify the Classifier

As we mentioned in 4.3, to guide the DDPM to generate images that meet requirements, a
possible method is to add a Classifier to the trained DDPM. The purpose of this Classifier
in our approach is to distinguish whether an implied volatility surface is arbitrage or not.
After distinguishing it, the Classifier should be able to make guidance during the DDPM’s
generating process step by step. And the loss term of arbitrage condition we defined before
will both apply in the distinguish process and guidance process.

Before the statements of our detailed design for the Classifier, we would like to define our
Classifier. In the original paper on the Classifier-Guidance DDPM, the classifier was applied
to classify images. Since the original literature aimed to generate different types of images,
the output of the classifier is a probability distribution of the samples belonging to a certain
class. However, in our experiments, the output of the Classifier is exact since whether an IVS
is arbitrage-free or not can be discriminated by strict mathematical definition. We will treat

42

5.1 Implementation of the Arbitrage-free Conditions of IVS

the Classifier’s output as the degree of arbitrage violation of an IVS, as guidance in the DDPM
generation process.

The core of DDPM with a Classifier is to modify the mean value of the surface in the generation
process. For some color images or images with detailed labels, the function of the Classifier is
related to adding a label and making the mean value affected by that label when generating
new images from this mean value. For our task, it is desired to generate the implied volatility
surface from a mean value that includes a no-arbitrage condition. So during each step of the
generation process, we would like to be able to give the mean value a quantity that is relevant
to the arbitrage violation value calculated as mentioned in the previous section, so that the
next generation step can be guided in the desired direction.

A common and possible approach is the gradient descent method. It is often used in deep
learning to minimize an objective function (usually a loss function). However, in DDPM,
the loss function is included in the training process and measures the difference between the
predicted noise and the actual noise added. The term associated with it is noise but not the
property of the surface itself, so it is difficult to add the no-arbitrage condition (i.e., concerns
the property of the surface itself) to that loss function.

However, in DDPM’s generation process, we can combine the gradient descent method with
the function of arbitrage violation value.

Next, we will present a detailed implementation of this gradient approach, in which we will
use some penalty terms and scaling parameters. To make it clearer how each of these terms
affects the result of the generated surfaces, we will divide them into two main categories.

The first category is about the adjustment of the surface itself, including two loss functions.

Adjustment of the Surface itself:

• Arbitrage-Free Loss Function

Here we use Larb to denote the combination of both the calendar violation term in (5.6)
and butterfly violation term in (5.7). The combined loss function is expressed as:

Larb = α · Lcal + β · Lbf, (5.8)

where α, and β are weights of calendar loss term and butterfly loss term.

The gradient of the arbitrage-free loss with respect to the generated surface, xt, denoted
as ∇Larb(xt), is computed at each step during the generation process. This gradient is
then used to adjust the model’s predicted mean, guiding the generated surface toward
an arbitrage-free direction at each step.

• Smoothness Constraints

During the generation process, the addition of the Classifier’s gradients increases the
complexity of the whole model, and in some of the generated results we observe some
surfaces that are not smooth.

To further ensure the realism of the generated surfaces, smoothness constraints are also
applied during the generation process. This involves adding a smoothness loss term
based on the first derivatives with respect to strike price and maturity.

43

5 Methodology to Generate Arbitrary-free IVS

We use Lsmooth to denote the smoothness loss term, and it is calculated as a weighted
combination of the first derivatives of the surface with respect to strike price k and ma-
turity τ:

Lsmooth = c ·∑
∣∣∣∣∂ω

∂τ

∣∣∣∣+ d ·∑
∣∣∣∣∂ω

∂k

∣∣∣∣ , (5.9)

where c and d are weights for the derivatives with respect to τ and k.

Then, similar to the arbitrage-free loss function, the gradient of smoothness with respect
to the generated surface, xt, denoted as ∇Lsmooth(xt), is used to adjust the model’s pre-
dicted mean, ensuring smooth transitions on the generated surface.

In addition to the adjustment of the property for IVS, we also add some scaling parameters
for the generation process. The second category is about control of the DDPM generation
process.

Control of the DDPM Generation Process:

• Time-Dependent Scaling Parameters

In a general gradient descent method, the learning rate is an important value to control
the speed of convergence. In our research, we also use a similar method to control the
whole generation process.

To control the influence of these gradient-based adjustments, a time-dependent scaling
function is applied when calculating the adjusted mean. This ensures that model adjust-
ments can be human-controlled during the generation process. For example, we want the
arbitrage violation calculating gradient to grow exponentially. This is because the surface
is more like noise in most of the earlier steps of the generation process, and only in the
last few steps does the surface have a clear shape features, as shown in Fig 5.1. The same
happens for smoothness adjustments, where the condition of imposing smoothness on
the surface in the early steps of generation may not affect the smoothness of the surface,
but rather bring some negative impacts on the generation performance, which means the
adjustment of the smoothness may happen at the last steps of generation process.

The scaling factor s(t) for arbitrage-loss function is computed using an exponential decay
function:

s(t) = s0 · exp(−λ · t) (5.10)

where s0 is the initial scaling coefficient, λ is the decay rate, and t represents the current
timestep. Fig 5.2 describes the process of change in s(t).

Another scaling factor stm is introduced to describe the impact of smoothness gradients in
the generation process. As we show in Fig 5.1, usually, in most of the previous generation
steps, we do not need to consider adding the smoothness constraint to the image because
of the large amount of noise in the image. Therefore, in the experiments, this parameter
will be zero in most of the generation steps, and we will pick a suitable time step within
that time step that will make this parameter non-zero.

44

5.1 Implementation of the Arbitrage-free Conditions of IVS

Figure 5.1: The 500 Timesteps of Implied Volatility Surface during Generation

• Adjusted Mean Calculation

Then, the adjusted mean for the generation step is calculated by subtracting the scaled
gradients from the model’s predicted mean. This adjusted mean is used to generate the
next step in the diffusion process:

µadjusted = µoriginal − s(t) · ∇Larb(xt)− stm · ∇Lsmooth(xt), (5.11)

These adjustments help to improve the overall quality and reality of the surfaces gener-
ated, ensuring that they fulfill the expectations and theoretical conditions of the financial
markets.

We can now add these terms together to the algorithm of DDPM. In our research, the algorithm
of DDPM with a Classifier can be written as follows:

Algorithm 4 Classifier of DDPM (For Arbitrage-Free Condition)
Input: Trained Classifier model, gradient scale s(t), and stm
Output: Generated sample x0 under arbitrage-free condition

22 xT ← sample from N (0, I)
23 for t← T to 1 do
24 µ, Σ← µθ (xt) , Σθ (xt)
25 xt−1 ← sample from N (µ− s(t) · ∇Larb(xt)− stm · ∇Lsmooth(xt), Σ)

26 return x0

From the flow of this algorithm, we can find the most significant modification part of our
method, that is, for the denoising part of the DDPM generation process.

45

5 Methodology to Generate Arbitrary-free IVS

Figure 5.2: Scale Parameter of Arbitrage Calculating Gradient

5.2 Impact of the Loss Terms on IVS

In this section, we will discuss the impact of the loss terms(calendar arbitrage loss term, but-
terfly arbitrage loss term, and smoothness constraints) on the implied volatility surface.

Impact of Lcal , Lb f and Smoothness Constraint:

By penalizing violations of these two conditions, Lcal and Lb f , decrease the arbitrage violation
of the IVS in both the strike price and maturity dimensions, preventing local discontinuities or
hard variations in the volatility dimension. As for the smoothness constraints, a no-arbitrage
IVS should be smooth and continuous. This constraint also helps decrease sharp points and
irregular fluctuations on the IVS, ensuring a more realistic surface is generated.

Balancing Convergence and Loss Terms:

However, the introduction of these penalty terms also impacts the original generation process.
The introduction of these penalty terms complicates the generation process. This is because the
model needs to satisfy the no-arbitrage conditions while learning the features of the training
dataset at the same time. Sometimes it is hard to keep the balance between the constraints
and the performance of generated surfaces. In practice, proper adjustment of the loss weights
is necessary to balance the degree of fulfillment of no-arbitrage conditions with the quality of
the final generated surfaces.

46

6 Results

In this section, we will first validate the effectiveness of the proposed classifier in detecting
arbitrage behavior in 6.1. Here, the validity will be verified using the IVS generated by the
Heston model. In 6.2, we will provide detailed settings about our experiments and the in-
fluence of different weights of loss terms. Then, we will discuss the improved effect of the
Classifier in 6.3. The discussion will include several parts: the effect of different parameters
on the experimental results, the effect of the presence or absence of smoothness constraints on
the generated results, and whether the arbitrage phenomenon of the DDPM is improved with
the addition of the Classifier. After that, we will discuss the above results in the last section.

6.1 Test the Classifier

In this part, we aim to validate the reasonableness of the classifier by examining the implied
volatility surfaces (IVS) generated under the Heston model. The classifier test includes two key
conditions: calendar condition and butterfly condition. We will validate the IVS generated by
the Heston model to ensure that the classifier works well and provide a detailed description of
the methodology for calculating boundary points that arise during the calculation process.

6.1.1 Classifier Conditions

The classifier includes the following two conditions:

• Calendar Condition: For every k ∈ R, w(k, ·) is non-decreasing.

• Butterfly Condition: For every τ > 0 and k ∈ R,

0 ≤
(

1− k∂kω

ω

)2
− 1

4
ω2 (∂kω)2 + ω∂2

kkω,

where w is shorthand for w(k, τ).

6.1.2 Treatment of Derivatives and Boundary Points

During the calculation process of the classifier, several important treatments of derivatives are
influencing the results heavily.

47

6 Results

1. First and Second derivatives:

We used the central difference form when calculating the derivatives in 5.6 and 5.7. The
first-order derivative using the central difference method is approximated by:

f̃ ′(x) =≈ f̃ (x + h)− f̃ (x− h)
2h

, (6.1)

where h is the step size.

The second-order derivative using the central difference method is approximated by:

f̃ ′′(x) ≈ f̃ (x + h)− 2 f̃ (x) + f̃ (x− h)
h2 , (6.2)

where h is the step size.

2. Calculation of Boundary Points:

Another important treatment is the calculation method of boundary points. When com-
puting derivatives near the boundaries of the surfaces, we need to pay attention to main-
tain the accuracy of the calculation. For these boundary points, where the central differ-
ence method can not be directly applied due to the lack of neighboring points on one
side, we need to use finite difference formulas that achieve second-order accuracy.

For the first-order derivative at the boundary point x0, the forward difference formula is:

f̃ ′(x0) ≈
−3 f̃ (x0) + 4 f̃ (x1)− f̃ (x2)

2h
, (6.3)

For the last point xn in the domain, the backward difference formula is:

f̃ ′(xn) ≈
3 f̃ (xn)− 4 f̃ (xn−1) + f̃ (xn−2)

2h
, (6.4)

For the second-order derivative at the boundary points, the forward difference at x0 is
given by:

f̃ ′′(x0) ≈
2 f̃ (x0)− 5 f̃ (x1) + 4 f̃ (x2)− f̃ (x3)

h2 , (6.5)

And for the last point xn, the backward difference is:

f̃ ′′(xn) ≈
2 f̃ (xn)− 5 f̃ (xn−1) + 4 f̃ (xn−2)− f̃ (xn−3)

h2 , (6.6)

These formulas aim to ensure that at the boundaries, the derivatives are approximated
with second-order accuracy, to keep the overall accuracy of the calculation across the
whole implied volatility surface.

48

6.1 Test the Classifier

6.1.3 Validation of Heston Model-Generated IVS

To test the validity of the classifier, we first apply it to the implied volatility surfaces generated
by the Heston model. Due to the price surfaces generated by the Heston model being arbitrage-
free[12], the implied volatility surfaces transformed by Black-Scholes are still arbitrage-free.

The Heston model used in this validation involves the following parameters:

• ρ: Correlation between the asset price and its variance

• κ: Rate of mean reversion

• v0: Initial variance

• σ: Volatility of variance

• θ: Long-term variance

• r: Risk-free rate

The specific ranges for these parameters used in our tests are summarized in Table 6.1.

Parameter Description Range
ρ Correlation coefficient [-0.9, -0.1]
κ Rate of mean reversion [1.0, 2.0]
v0 Starting volatility [0.1, 0.3]
σ Volatility of variance (Vol of Vol) [0.1, 0.9]
θ Long-term mean-variance [0.1, 0.3]
r Risk-free rate [0, 0]

Table 6.1: Parameter ranges used in the Heston model for generating IVS.

The COS method is a numerical method applied in the calculation of the Heston model. We
need to calculate the analytical solution of the characteristic function for the Heston model.
First, select the convergence interval of the Fourier series expansion and represent the option
price as the Fourier series expansion of the characteristic function. Then use the Fast Fourier
Transform to calculate the sum of the Fourier series, and finally convert the Fourier series back
to the option price.

Also, when using the COS method, we need to set parameters. Here, L represents the length
of the truncation interval, which determines the accuracy of the Fourier series expansion. N
denotes the number of terms in the series, which affects the resolution and precision of the
resulting price calculation. The specific settings of these parameters are summarized in Table
6.2.

Parameter Value
L 12
N 512

Table 6.2: The parameters of the COS method used for pricing in the Heston model

When generating the grids of implied volatility surfaces, we set up the maturity times T and
strike prices K as shown in Table 6.3. The maturity times T range from 0.1 to 0.6, while the

49

6 Results

strike prices K range from 0.7 to 1.3. Both are uniformly distributed across 28 points along
corresponding dimensions.

Parameter Description Range
T Maturity (years) [0.1, 0.6]
K Strike Price [0.7, 1.3]

Table 6.3: Settings for Maturity Times and Strike Prices in the Simulations.

We can then get the implied volatility surface based on the above setup, as shown in Fig. 6.1.

Figure 6.1: Implied volatility surface generated by Heston model

The size of our surface dataset generated by the Heston model is 10,000. To check our classifier,
we will randomly choose 1,000 surfaces in the dataset as a test set.

In the testing process, we evaluate the surfaces based on two key arbitrage conditions as
mentioned in 6.1.1: the Calendar Condition and the Butterfly Condition. These conditions are
applied to every point on the surface, along the strike price and maturity dimensions.

The results of the test will be presented in two parts. On the one hand, it is the statistics of
whether there is a violation in a single surface in the test set. On the other hand, it will be for
whether there is a violation in the points on each single surface.

Violation Surfaces Assessment:

• Calendar Condition:

For each point on the surface, we compute the condition w(k, ·) for every strike k and
ensure it is non-decreasing. Any violation (i.e., where the condition resulted in a value
less than zero) will be recorded, and the absolute value of these violations will be taken.

50

6.2 Experiment Setup

• Butterfly Condition:

We compute the butterfly condition for every strike k and maturity τ at each point on
the surface. Any violation where the calculated value is less than zero will be recorded
and its absolute value taken.

We then calculate the sum of violations for the entire surface and divide this violation value
by the number of all points, treating it as the violation value for this surface.

The violation value for the Calendar condition at point (ki, τi) is defined as we mentioned in
(5.2).

Similarly, for the Butterfly condition, the violation value at point (ki, τi) is defined as we men-
tioned in (5.5).

As we use M to denote the number of points on a single surface, here in our experiment,
M = 28× 28.

Violation Points Assessment: In addition to calculating the average arbitrage violation value,
we also assess whether each point on the single surface violated the conditions.

• Boundary Violation: We checked for violations at the boundaries of the surface grid (i.e.,
at the minimum and maximum strikes and maturities).

• Central Violation: Similarly, violations were checked within the central region of the
grid (excluding the boundaries).

The number of points that violated each condition will be recorded in this experiment.

The result of the two tests is listed as shown in Table 6.4:

Violation Type Surfaces with Violations Surfaces without Violations Total Surfaces Tested
Calendar Arbitrage 0 (0%) 1000 (100%) 1000
Butterfly Arbitrage 0 (0%) 1000 (100%) 1000
Boundary Violation 0 1000 1000

Central Violation 0 1000 1000

Table 6.4: Arbitrage and Point Violations for 1000 Tested Surfaces.

From the result, we can find that there is no arbitrage violation in the implied volatility surfaces
generated by the Heston model, which means our classifier works well.

6.2 Experiment Setup

In this section, we will introduce the basic setting of the DDPM. Also, we will introduce the
specific parameters used in our Classifier. Then we will provide the performance of DDPM
with a Classifier under different parameter settings to find the most proper combination of
parameters.

51

6 Results

6.2.1 Data Description

First, we will select a trained DDPM. In this experiment, we use a dataset generated from the
Heston model, containing implied volatility surfaces with various maturities and strike prices.
The dataset consists of 50,000 implied volatility surfaces, each representing different market
conditions. This dataset will be used as the training set for this DDPM.

6.2.2 Model Setup

The core model used in this experiment is a DDPM built with a U-Net architecture. The U-
Net model consists of multiple convolutional layers, with channel multipliers that double the
number of channels at each downsampling step[38].

The model was trained using a Gaussian diffusion process with 500 timesteps, and was pro-
posed in [40]. The model will gradually denoise the input data and generate implied volatility
surfaces during the whole process. The diffusion model was trained on a GPU-enabled device.
Detailed model settings can be found in Table 6.5.

Content Setup
Model Architecture U-Net

Channels 96
Time steps 500
Optimizer Adam

Learning Rate 0.0005
Device GPU

Table 6.5: Model Configuration and Training Parameters

6.2.3 Incorporation of Classifier Gradients with Generation Process

In addition to the model base settings mentioned above, we also adjust the guidance DDPM
with several loss terms. These adjustments include the integration of a Classifier to apply
arbitrage-free conditions, the weight of the loss term, the guidance of smoothness, and the use
of a time-dependent scaling function to adjust the influence of these gradients over time.

As we mentioned in the Methodology part, we will use the loss function (5.8) to evaluate the
arbitrage-free loss value for both the calendar loss term and butterfly loss term for the implied
volatility surface.

In our experiment, α = 1, β = 1, which means we assign the same weight to Lcal and Lbf in
the overall gradient calculation.

Also, for the smoothness loss function as shown in (5.9), we will set the weight parameters
c = 0.1 and d = 0.05 in this experiment.

As for the scale function for the arbitrage loss function, s(t) mentioned in (5.10) will gradually
increase from 0.005(the initial scaling coefficient) to 0.02 for the whole generation process.
Meanwhile, the scale parameter for smoothness will be equal to zero when the step is larger
than 30 and equal to 0.001 at the last 30 steps.

52

6.2 Experiment Setup

Finally, our function for the adjusted mean in this experiment is:

µadjusted = µmodel− 0.005 · exp(−λ · t) · ∇Larb(xt)−
{

0.001 · ∇Lsmooth(xt), if t ≤ 30,
0 · ∇Lsmooth(xt), if t > 30. (6.7)

6.2.4 Influence of Weight Parameter in Arbitrage Loss Function

Before we make the comparison about the effectiveness of the classifier, we will go through the
results of some parameter adjustments to illustrate why we have chosen the above parameter
settings. In the following experiments, we will use DDPM to denote the Denoising Diffusion
Probabilistic Model without a Classifier and use DDPM-Classifier to denote the model with
the Classifier.

Let’s recall the loss function first:

Larb = α · Lcal + β · Lbf, (6.8)

where α, and β are weights of calendar loss term and butterfly loss term.

To illustrate the influence of these two loss terms, we first fix the weight for the calendar
arbitrage loss term, setting α = 1 and letting β gradually increase. Also, the smoothness
constraint was included in this experiment to decrease the fluctuation on the implied volatility
surface.

Here, we will use the average arbitrage loss value for both calendar arbitrage condition and
butterfly arbitrage condition as evaluation metrics. The formulas (5.6) and (5.7) will be used in
the calculations here. We generated 100 implied volatility surfaces under different parameter
settings and listed the average for the loss value of all the surfaces as follows.

Parameter α = 1

β
Calendar
Arbitrage

loss

Butterfly
Arbitrage

loss
0.1 9.84E-06 1.08E-01
0.3 2.15E-05 2.42E-01
1.0 4.99E-05 1.28E-02
1.5 8.50E-03 2.08E-01
3.0 1.76E-02 6.55E-01

DDPM(without classifier) 1.42E-06 3.91E-02

Table 6.6: Average Loss Value of IVS for Different β

From Table 6.6, we can find that when we fix the value of α and gradually increase the value of
β, the average loss value gradually increases and is higher than the DDPM without a classifier,
which means it brings negative impact to the model when the value of beta is less than 1.
However, an excellent result occurs when the value of β is equal to 1. In addition, when
the value of β is too much higher than 1, it also introduces a lot of noise into the surfaces
that cannot be eliminated, resulting in a very high average loss value, and making the final

53

6 Results

Figure 6.2: α=1, β=1.5 Figure 6.3: α=1, β=3.0

Figure 6.4: Different Performance of Generated IVS under Different β

generated surfaces non-smooth. We can find that in Fig 6.4 there exists peaks and non-smooth
points on the IVS.

Another test of parameters occurs in smooth constraints, for which we also set two parameters,
c and d:

Lsmooth = c ·∑
∣∣∣∣∂ω

∂τ

∣∣∣∣+ d ·∑
∣∣∣∣∂ω

∂k

∣∣∣∣ , (6.9)

Similarly, to choose a proper balance between these two parameters, we also fix the parameter
c at 0.1 at first, and gradually increase the value of d during the experiment. We also fix the
values of a and b in order to reduce errors.

Parameter c = 0.1

d
Calendar
Arbitrage

loss

Butterfly
Arbitrage

loss
0.01 1.50E-03 4.20E-02
0.03 6.00E-04 4.60E-02
0.05 4.99E-05 1.28E-02
0.1 1.50E-03 9.64E-02
0.5 1.01E-02 1.0282

DDPM(without classifier) 1.42E-06 3.91E-02

Table 6.7: Average Loss Value of IVS for Different d

From Table 6.7, we can find that the value of d can not be too large, otherwise, it will influence
the generation performance. When d = 0.05, the average loss is smaller than other results.
When d = 0.1 or much higher, the smoothness constraints will lose effectiveness and negatively
affect the performance of generated surfaces.

54

6.3 Comparison between with and without Arbitrary-free Conditions

6.3 Comparison between with and without Arbitrary-free
Conditions

The main purpose of our experiment is to verify the effect of the Classifier. For a trained
DDPM, we aim to evaluate whether it will decrease the arbitrage violation of the implied
volatility surface after adding the Classifier.

6.3.1 Evaluation Metrics

First, we would like to compare the performance of the DDPM-Classifier with or without the
smoothness penalty to illustrate why we need to add the smoothness penalty terms to the
adjusted mean.

Comparison of Classifier with and without Smoothness Constraints:

During the test process, we initially used the DDPM-Classifier without adding smoothness
penalties and sometimes observed implied volatility surfaces with peak or sharp points in the
generated surfaces. Such unsmooth surfaces can generate significant arbitrage violations, see
in Fig 6.5. Therefore, we would like to explore the impact of adding smoothness constraints
to the Classifier during the generating process. The comparison is performed in terms of both
arbitrage loss value and point violation count, similar to the metrics we used when checking
IVS generated by the Heston model.

Figure 6.5: Implied Volatility Surface with Peak

• With Smoothness Constraints: Surfaces generated with a classifier that includes smooth-
ness constraints are evaluated to determine whether these additional constraints reduce

55

6 Results

arbitrage violations while maintaining the quality of the surface. We expect that smooth-
ness constraints will lead to fewer fluctuations in volatility, thereby reducing the overall
arbitrage violation and point violations.

• Without Smoothness Constraints: The performance of surfaces generated without smooth-
ness constraints is also evaluated. This comparison will highlight the trade-offs between
enforcing strict no-arbitrage conditions and preserving surface smoothness.

Table 6.8 shows the results of the comparison of average loss value and point violation between
DDPM with and without the constraints of smoothness. When there are no smoothness con-
straints during the generation process, the average violation loss and the number of violation
points on IVS will increase.

Metric DDPM-Classifier
with Smoothness

DDPM-Classifier
without Smoothness Total number of surfaces

Average Calendar
Violation Value 4.99E-05 1.40E-03 100

Average Butterfly
Violation Value 1.28E-02 5.47E-02 100

Average Point
Violation Count (Center) 9.9 9.6 100

Average Point
Violation Count (Boundary) 10.7 20.5 100

Table 6.8: Comparison of Arbitrage Loss Values and Point Violation Counts with and without
Smoothness Constraints

Comparison Between DDPM and DDPM-Classifier

In this section, we would like to evaluate the arbitrage performance of surfaces generated by
the DDPM and the DDPM incorporating a classifier. The evaluation will include two main
aspects:

• Arbitrage Loss Value:

The arbitrage loss value is calculated for each generated surface, evaluating the degree
to which the surface violates the arbitrage-free conditions. The formulas (5.6) and (5.7)
will be used for checking calendar arbitrage and butterfly arbitrage in the calculations
here, respectively. To confirm the evaluation’s reliability and consistency, we will create
multiple datasets to demonstrate the classifier’s results for the data. Each individual
dataset will include data for 20 implied volatility surfaces. We will compute the mean
arbitrage loss for each dataset individually. To demonstrate that the results are not due to
random chance, we will increase the number of datasets and incorporate additional data
into the original dataset. Subsequently, we will calculate the average arbitrage loss by
considering the newly added data. The procedure will persist until the average arbitrage
loss value reaches a stable state with the addition of new datasets. This indicates that
the inclusion of more surfaces does not have a substantial impact on the results, which
means we obtain a pretty steady outcome. The stabilized value is thereafter considered
as the result.

• Point Violation Count:

56

6.3 Comparison between with and without Arbitrary-free Conditions

Count Model Name
DDPM DDPM-Classifier

Number of
Dataset

Number of
Surface

Calendar Average
Loss Value

Butterfly Average
Loss Value

Calendar Average
Loss Value

Butterfly Average
Loss Value

1 20 0 4.36E-02 9.75E-05 2.52E-02
2 40 1.11E-06 3.95E-02 4.88E-05 2.24E-02
3 60 7.44E-07 4.01E-02 3.98E-05 1.62E-02
4 80 5.58E-07 3.90E-02 5.37E-05 1.39E-02
5 100 4.46E-07 4.00E-02 4.99E-05 1.28E-02
6 120 3.72E-07 3.80E-02 4.48E-05 1.17E-02
7 140 3.19E-07 3.90E-02 4.29E-05 1.11E-02
8 160 2.79E-07 3.80E-02 4.96E-05 1.10E-02
9 180 1.58E-06 3.90E-02 5.27E-05 1.00E-02
10 200 1.42E-06 3.90E-02 4.77E-05 9.78E-03
Stable Average

Loss Value 1.42E-06 3.90E-02 4.77E-05 9.78E-03

Table 6.9: Comparison of Stabilized Average Arbitrage Loss Values of Multiple Datasets

This indicator will show the number of points that violate the no-arbitrage requirements
on every implied volatility surface. Our focus will be on identifying breaches relating
to calendar arbitrage and butterfly arbitrage, namely on a single point per surface. In
a method similar to the computation of Arbitrage Loss Value, we will produce numer-
ous sets of data, each comprising 20 surfaces, and determine the mean count of point
violations for each dataset. We shall systematically increase the number of datasets and
continue in this procedure until the mean point violation count reaches a steady state.
The stabilized value will serve as the ultimate comparison metric. Furthermore, the vi-
olated points will be categorized into two groups: center point violations and boundary
point violations. This distinction is made because boundary points are more sensitive to
being violated during the process of generating the image. We expect that the inclusion
of the classifier will have a positive effect on the violation values of the boundary points.

The results of the above metrics are as follows, see in Table 6.9 for the average arbitrage
violation loss value and in Table 6.10 for the average number of point violations. Fig 6.6 shows
the comparison for the butterfly loss value of the DDPM and DDPM-Classifier.

From the results, we can observe that the addition of the Classifier effectively reduces the
butterfly arbitrage on the IVS. For calendar arbitrage, whether a Classifier is added to the
DDPM or not, the calendar arbitrage loss value on IVS is very small, not only in terms of the
value but also in terms of the number of surfaces where calendar arbitrage occurs. Therefore,
adding a soft constraint may not be a good solution to this problem of a very small order of
magnitude.

According to the statistics of the distribution of violation points on IVS generated by DDPM
without a Classifier, arbitrage is more likely to occur at the boundary points of the surface rel-
ative to arbitrage in the central part of the surface. Therefore, we hope that our improvements
to DDPM can effectively act on these boundary violation points.

We selected some implied volatility surfaces generated by DDPM with the Classifier and with-
out the classifier and detected their boundary violations. As can be seen in Fig 6.7, we marked
the violation points that appear on the boundary with red dots. When the classifier is not

57

6 Results

Count Model Name
DDPM DDPM-Classifier

Number of
Dataset

Number of
Surface

Average Point
Violation(Center)

Average Point
Violation(Boundary)

Average Point
Violation(Center)

Average Point
Violation(Boundary)

1 20 9.2 20.9 13.9 13.9
2 40 8.9 18.3 11.7 14.8
3 60 9.0 18.0 9.2 12.2
4 80 8.8 17.8 8.9 11.3
5 100 8.9 18.5 10.6 9.9
6 120 8.7 18.2 10.5 9.4
7 140 8.7 18.3 10.5 9.3
8 160 8.5 17.9 10.1 9.2
9 180 8.7 18.1 9.9 9.1
10 200 8.7 18.1 9.7 9.2
Stable Average
Violation Point 8.7 18.1 9.7 9.2

Table 6.10: Comparison of Stabilized Average Point Violation Number of Multiple Datasets

Figure 6.6: Comparison of Butterfly Loss Value between DDPM and DDPM-Classifier

58

6.3 Comparison between with and without Arbitrary-free Conditions

(a) Violations on Boundary for IVS Generated by Standard DDPM

(b) Violations on Boundary for IVS Generated by DDPM-Classifier

Figure 6.7: Effect of the Classifier in Reducing the Number of Boundary Violations

added, arbitrage often occurs when the maturity(T) is large. However, this situation is effec-
tively reduced in the IVS generated by the model with the classifier.

Comparison of Butterfly Arbitrage Violation Value:

A notable observation during the evaluation is that in all surfaces generated by the DDPM,
none achieved the requirement of butterfly arbitrage condition, which means the butterfly
violation value is non-zero for all surfaces. This indicates that every surface generated without
the Classifier violated the butterfly arbitrage condition.

However, when generating surfaces with the DDPM-Classifier, some of the surfaces achieved
the requirement of the butterfly arbitrage violation value of zero. This suggests that the Classi-
fier effectively enforces the butterfly arbitrage condition, indicating the improvements brought
by the Classifier in compliance with no-arbitrage conditions.

The following Table 6.11 summarizes the comparison between the DDPM and the DDPM-
Classifier in terms of the number of surfaces with both calendar and butterfly Arbitrage Vio-
lations equal to zero.

Model Number of Surfaces with
Arbitrage Violation equal to 0 Total Number of Surfaces

DDPM 0 200
DDPM-Classifier 21 200

Table 6.11: Comparison of Surfaces with Arbitrage Violation Value Equal to 0

59

6 Results

6.3.2 Arbitrage Analysis

In the results listed above, we can observe that adding the Classifier effectively reduces the
average butterfly loss value, not only reducing the occurrence of arbitrage behavior on the
surface but also reducing the number of arbitrage points, especially for the arbitrage boundary
points on the surface.

Another important conclusion is that there are parts of the surfaces that are completely arbitrage-
free. In the generation results of the DDPM, the number of completely arbitrage-free surfaces
is 0. In the case where we added the classifier, there appear some surfaces on which no arbi-
trage behavior is generated at all. This suggests that the classifier guidance we added is having
a positive effect.

The issue that deserves our attention is the calendar arbitrage phenomenon that still appears in
the IVS. After the addition of the classifier, calendar arbitrage does not decrease significantly,
but maintains a value almost similar to the DDPM. There are several possible reasons for this
problem:

Firstly, among the implied volatility surfaces generated by the DDPM, most surfaces have no
calendar arbitrage violations, as can be seen from the average loss value we have calculated,
which is a quite small number, 1.42E−06. Therefore, when we use the DDPM-Classifier model,
this tiny value is susceptible to fluctuations due to the new loss terms that we have added to
the generation process.

On the other hand, the constraints we add are merely a soft guide to the generation process
and not strictly hard constraints. Therefore, it is likely that the tiny calendar loss value will
be ignored by this soft constraint, or the effect of the soft constraint will be canceled out
by the negative effect of introducing a new loss term. As shown in our previous study of
smoothness, if we do not add a constraint on smoothness, the Classifier sometimes tends to
make the generated surfaces unsmooth or with a peak. Even though this negative effect is
mostly eliminated after adding the smoothness constraint, the calendar arbitrage loss value is
so small that still sensitive to this negative effect.

60

7 Conclusion and Future Work

7.1 Conclusion

Our research aims to ensure that the no-arbitrage conditions can be successfully applied to
the Implied Volatility Surface (IVS) by using a guidance denoising diffusion probability model
(DDPM) with an additional classifier. During the process of our research, we achieved this
goal by adding restrictions to the generation process of DDPM.

Our work began with a study of the condition of no-arbitrage. The two most important no-
arbitrage conditions are the calendar arbitrage condition and the butterfly arbitrage condition.
After establishing the specific form and confirming the validity of these two conditions, we
used these conditions to determine the degree to which an implied volatility surface satisfies
the no-arbitrage requirements. Some data-driven methods have shown that generating IVS
without arbitrage violation is possible. When it comes to the DDPM we used in our research,
we mainly considered the DDPM-Classifier to impose financial constraints. In our experimen-
tal results, we focused on comparing the impact of the performance of the presence or absence
of the classifier on the DDPM to generate IVS. Based on the calendar and butterfly conditions,
we used the average loss value as a measure of the degree of arbitrage and also calculated the
number of arbitrage points on the IVS as another metric in both cases (with and without the
Classifier).

Finally, we found that the addition of our classifier effectively reduces the degree of arbitrage
on the IVS. The reduction in the degree of arbitrage on the implied volatility surface is mainly
in two areas. The first is the reduction of the average loss value, especially in the reduction of
the butterfly arbitrage loss value. For DDPM without the Classifier, all the generated surfaces
have a certain degree of butterfly arbitrage. After the addition of the Classifier, not only the
average loss value of butterfly arbitrage violation is reduced, but at the same time, a part of
the surface completely eliminates butterfly arbitrage. In addition, when counting the number
of points with arbitrage violations on the implied volatility surface, it can also be found that
after the addition of the Classifier, the number of violation points appearing in the boundary
of IVS decreases significantly, which indicates that the classifier has a positive influence on
improving the quality of surface generation.

In addition, we also focused on the balance between this newly added impact item and the
quality of the generated surfaces. Then, by adding a restriction on the smoothness of the sur-
faces, we greatly reduced the negative impact that the introduction of the adding of classifier
would have had on the DDPM.

However, it can be found in our results that the arbitrage opportunities of IVS generated by
DDPM are sometimes not eliminated. Even in the case where a Classifier is used to guide the
generation process, not all surfaces are completely arbitrage-free. Since the added constraints
are soft rather than strict, these violations may not be completely resolved and may even be
affected by the addition of the Classifier. In addition, without smoothing constraints, the

61

7 Conclusion and Future Work

model sometimes generates IVS with peaks and fluctuations. Although smoothing constraints
can reduce this effect, the tiny arbitrage loss value is still susceptible to these disturbances.

7.2 Future Work

Although the DDPM-Classifier has made some progress in complementing arbitrage-free con-
ditions for IVS, as mentioned before, it sometimes does not completely eliminate the arbitrage
opportunities that may exist on an implied volatility surface. Therefore, for further work in
the future, it may be a possible approach to focus on how to add strict financial restrictions to
IVS generated by DDPM. As we mentioned in the literature review section, another possible
way to add hard constraints might start by modifying the structure of the neural network used
in the deep learning method. By making the neural network sparsely connected, it may be
possible to increase the strength of the constraints imposed on the model.

Moreover, the conditional DDPM used in our research is dependent on the effect of the classi-
fier. For example, in our experiments, the no-arbitrage and smoothness conditions are added
through the classifier to the generation process of DDPM. In the experimental results, it can
also be observed that when the hyperparameters of the factors used in the classifier are mod-
ified, there is a significant impact on the performance of generated surfaces. The other con-
ditional DDPM method mentioned in the previous section, i.e., classifier-free DDPM, does
not require the additional classifier to be added during the generation process, but rather the
conditional constraints are directly added to the DDPM during the training process.

When using classifier-free DDPM as a solution, researchers can mainly focus on its training
process. such as the joint training method mentioned in [30]. This joint training process does
not mean training two different models at the same time, but rather combining conditional
and unconditional constraints when training a single model to avoid dependency on the ad-
ditional classifier. For example, conditions can be ignored with a specific probability during
the training process so that the model learns unconditional generation in some cases and con-
ditional generation in others (e.g., the condition here could be the no-arbitrage requirements).
Then, in the generation process, the conditional and unconditional outputs can be balanced
by a parameter w. This parameter is adjusted until the model finally produces the required
output.

62

Bibliography

[1] A. Na, M. Zhang, and J. Wan, “Computing volatility surfaces using generative
adversarial networks with minimal arbitrage violations,” 2023. [Online]. Available:
https://arxiv.org/abs/2304.13128

[2] M. Vuletić and R. Cont, “Volgan: a generative model for arbitrage-free implied volatility
surfaces,” SSRN Electronic Journal, 01 2023.

[3] B. Ning, S. Jaimungal, X. Zhang, and M. Bergeron, “Arbitrage-free implied volatility sur-
face generation with variational autoencoders,” SIAM Journal on Financial Mathematics,
vol. 14, no. 4, pp. 1004–1027, 2023.

[4] Z. Gong, W. Frys, R. Tiranti, C. Ventre, J. O’Hara, and Y. Bai, “A new encoding
of implied volatility surfaces for their synthetic generation,” 2023. [Online]. Available:
https://arxiv.org/abs/2211.12892

[5] M. Bergeron, N. Fung, J. Hull, and Z. Poulos, “Variational autoencoders: A hands-off
approach to volatility,” 2021. [Online]. Available: https://arxiv.org/abs/2102.03945

[6] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” 2021.
[Online]. Available: https://arxiv.org/abs/2105.05233

[7] G. Müller-Franzes, J. M. Niehues, F. Khader, S. T. Arasteh, C. Haarburger, C. Kuhl,
T. Wang, T. Han, T. Nolte, S. Nebelung et al., “A multimodal comparison of latent de-
noising diffusion probabilistic models and generative adversarial networks for medical
image synthesis,” Scientific Reports, vol. 13, no. 1, p. 12098, 2023.

[8] W. G. C. Bandara, N. G. Nair, and V. M. Patel, “Ddpm-cd: Denoising diffusion
probabilistic models as feature extractors for change detection,” 2024. [Online]. Available:
https://arxiv.org/abs/2206.11892

[9] E. F. Fama, “Efficient capital markets: A review of theory and empirical work,”
The Journal of Finance, vol. 25, no. 2, pp. 383–417, 1970. [Online]. Available:
http://www.jstor.org/stable/2325486

[10] D. Sornette, P. Cauwels, and G. Smilyanov, “Can we use volatility to diagnose financial
bubbles? lessons from 40 historical bubbles,” Quantitative Finance and Economics, vol. 2,
no. 1, pp. 486–594, 2018.

[11] F. Black and M. Scholes, “The pricing of options and corporate liabilities,” Journal of
political economy, vol. 81, no. 3, pp. 637–654, 1973.

[12] S. L. Heston, “A closed-form solution for options with stochastic volatility with appli-
cations to bond and currency options,” The review of financial studies, vol. 6, no. 2, pp.
327–343, 1993.

[13] D. Amengual and D. Xiu, “Resolution of policy uncertainty and sudden declines in volatil-
ity,” Journal of Econometrics, vol. 203, no. 2, pp. 297–315, 2018.

63

https://arxiv.org/abs/2304.13128
https://arxiv.org/abs/2211.12892
https://arxiv.org/abs/2102.03945
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2206.11892
http://www.jstor.org/stable/2325486

Bibliography

[14] X. Guo, M. McAleer, W.-K. Wong, and L. Zhu, “A bayesian approach to excess volatility,
short-term underreaction and long-term overreaction during financial crises,” The North
American Journal of Economics and Finance, vol. 42, pp. 346–358, 2017.

[15] E. Rossi and P. S. De Magistris, “Long memory and tail dependence in trading volume
and volatility,” Journal of Empirical Finance, vol. 22, pp. 94–112, 2013.

[16] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2022. [Online].
Available: https://arxiv.org/abs/1312.6114

[17] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” 2014. [Online]. Available:
https://arxiv.org/abs/1406.2661

[18] M. Chataigner, S. Crépey, and M. Dixon, “Deep local volatility,” p. 82, 2020.

[19] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” 2020. [Online].
Available: https://arxiv.org/abs/2006.11239

[20] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based
generative modeling through stochastic differential equations,” 2021. [Online]. Available:
https://arxiv.org/abs/2011.13456

[21] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H.
Yang, “Diffusion models: A comprehensive survey of methods and applications,” 2024.
[Online]. Available: https://arxiv.org/abs/2209.00796

[22] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans, “Cascaded
diffusion models for high fidelity image generation,” 2021. [Online]. Available:
https://arxiv.org/abs/2106.15282

[23] E. B. Asiedu, S. Kornblith, T. Chen, N. Parmar, M. Minderer, and M. Norouzi,
“Decoder denoising pretraining for semantic segmentation,” 2022. [Online]. Available:
https://arxiv.org/abs/2205.11423

[24] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet, “Video diffusion
models,” 2022. [Online]. Available: https://arxiv.org/abs/2204.03458

[25] Z. Lyu, Z. Kong, X. Xu, L. Pan, and D. Lin, “A conditional point diffusion-
refinement paradigm for 3d point cloud completion,” 2022. [Online]. Available:
https://arxiv.org/abs/2112.03530

[26] X. L. Li, J. Thickstun, I. Gulrajani, P. Liang, and T. B. Hashimoto, “Diffusion-lm improves
controllable text generation,” 2022. [Online]. Available: https://arxiv.org/abs/2205.14217

[27] Y. Kossale, M. Airaj, and A. Darouichi, “Mode collapse in generative adversarial networks:
An overview,” in 2022 8th International Conference on Optimization and Applications (ICOA).
IEEE, 2022, pp. 1–6.

[28] M. Arjovsky and L. Bottou, “Towards principled methods for training generative
adversarial networks,” 2017. [Online]. Available: https://arxiv.org/abs/1701.04862

[29] J. M. Tomczak, Deep Generative Modeling, 1st ed. Springer Cham, 2022. [Online].
Available: https://doi.org/10.1007/978-3-030-93158-2

[30] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” 2022. [Online]. Available:
https://arxiv.org/abs/2207.12598

64

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2209.00796
https://arxiv.org/abs/2106.15282
https://arxiv.org/abs/2205.11423
https://arxiv.org/abs/2204.03458
https://arxiv.org/abs/2112.03530
https://arxiv.org/abs/2205.14217
https://arxiv.org/abs/1701.04862
https://doi.org/10.1007/978-3-030-93158-2
https://arxiv.org/abs/2207.12598

Bibliography

[31] Black-Scholes Model Assumptions. [Online]. Available: https://www.macroption.com/
black-scholes-assumptions/

[32] S. L. Heston, “A closed-form solution for options with stochastic volatility with
applications to bond and currency options,” The Review of Financial Studies, vol. 6, no. 2,
pp. 327–343, 1993. [Online]. Available: http://www.jstor.org/stable/2962057

[33] F. Fang, “The cos methodan efficient fourier method for pricing financial derivatives,”
Ph.D. dissertation, Delft University of Technology, 2010, phD Thesis. [Online]. Available:
https://resolver.tudelft.nl/uuid:9aa17357-af21-4c09-86a2-3904ced4b873

[34] M. Roper, “Arbitrage free implied volatility surfaces,” preprint, 2010.

[35] D. Ackerer, N. Tagasovska, and T. Vatter, “Deep smoothing of the implied volatility sur-
face,” Advances in Neural Information Processing Systems, vol. 33, pp. 11 552–11 563, 2020.

[36] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” CoRR, vol.
abs/2006.11239, 2020. [Online]. Available: https://arxiv.org/abs/2006.11239

[37] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of mathematical
statistics, vol. 22, no. 1, pp. 79–86, 1951.

[38] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomed-
ical image segmentation,” in Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings,
part III 18. Springer, 2015, pp. 234–241.

[39] J. Gatheral and A. Jacquier, “Arbitrage-free svi volatility surfaces,” pp. 59–71, 2014.

[40] X. Ma, “Diffusion probabilistic model for implied volatility surface generation and com-
pletion,” Master’s Thesis, Delft University of Technology, 2023.

65

https://www.macroption.com/black-scholes-assumptions/
https://www.macroption.com/black-scholes-assumptions/
http://www.jstor.org/stable/2962057
https://resolver.tudelft.nl/uuid:9aa17357-af21-4c09-86a2-3904ced4b873
https://arxiv.org/abs/2006.11239

	Introduction
	Background
	Research Objectives
	Contributions
	Thesis Outline

	Literature Review
	Mathematical Method for IVS
	Machine Learning Methods for IVS
	Incorporate Arbitrage-free Conditions into Machine Learning Models
	Hard Constraints
	Soft Constraints

	Diffusion Models to Generate Data
	Advantages Compared to GAN, VAEs
	Problem of GAN
	Problem of VAE
	Advantages of DDPM

	Incorporate Arbitrage-free Conditions with DDPM
	Classifier Guidance in DDPM
	Classifier-Free Guidance in DDPM

	Financial Options and Implied Volatility Surfaces
	Mathematics on Financial options
	Arbitrage-free Conditions for Option Price Surface
	Option Price Surfaces from the Market and Abirtrage-free Conditions
	Condition: Monotonicity in T(Calendar Arbitrage Condition)
	Condition: Convexity in K(Butterfly Arbitrage Condition)
	Other Constraints

	Transformation from Option Price Surface to Implied Volatility Surface
	Arbitrage-free Conditions for Implied volatility surface
	Conditions
	Explanations about the Conditions

	The Generative Diffusion Models
	Mathematics of Diffusion Models
	Stochastic Differential Equations (Score SDEs)
	DDPM

	Deep Learning Framework
	Fully Connected Networks(FC)
	Convolutional Neural Network(CNN)
	Relationships between DDPM and Neural Networks

	Conditional Diffusion Models
	Classifier-DDPM
	Classifier-free DDPM

	Methodology to Generate Arbitrary-free IVS
	Implementation of the Arbitrage-free Conditions of IVS
	Define Loss Term
	Modify the Classifier

	Impact of the Loss Terms on IVS

	Results
	Test the Classifier
	Classifier Conditions
	Treatment of Derivatives and Boundary Points
	Validation of Heston Model-Generated IVS

	Experiment Setup
	Data Description
	Model Setup
	Incorporation of Classifier Gradients with Generation Process
	Influence of Weight Parameter in Arbitrage Loss Function

	Comparison between with and without Arbitrary-free Conditions
	Evaluation Metrics
	Arbitrage Analysis

	Conclusion and Future Work
	Conclusion
	Future Work

