

Delft University of Technology

PIVODL
Privacy-Preserving Vertical Federated Learning Over Distributed Labels
Zhu, Hangyu; Wang, Rui; Jin, Yaochu; Liang, Kaitai

DOI
10.1109/TAI.2021.3139055
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Artificial Intelligence

Citation (APA)
Zhu, H., Wang, R., Jin, Y., & Liang, K. (2023). PIVODL: Privacy-Preserving Vertical Federated Learning
Over Distributed Labels. IEEE Transactions on Artificial Intelligence, 4(5), 988-1001.
https://doi.org/10.1109/TAI.2021.3139055

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TAI.2021.3139055
https://doi.org/10.1109/TAI.2021.3139055

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

988 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 5, OCTOBER 2023

PIVODL: Privacy-Preserving Vertical Federated
Learning Over Distributed Labels

Hangyu Zhu , Rui Wang , Yaochu Jin , Fellow, IEEE, and Kaitai Liang , Member, IEEE

Abstract—Federated learning (FL) is an emerging privacy pre-
serving machine learning protocol that allows multiple devices to
collaboratively train a shared global model without revealing their
private local data. Nonparametric models like gradient boosting
decision trees (GBDTs) have been commonly used in FL for verti-
cally partitioned data. However, all these studies assume that all the
data labels are stored on only one client, which may be unrealistic
for real-world applications. Therefore, in this article, we propose a
secure vertical FL framework, named privacy-preserving vertical
federated learning system over distributed labels (PIVODL), to
train GBDTs with data labels distributed on multiple devices. Both
homomorphic encryption and differential privacy are adopted to
prevent label information from being leaked through transmitted
gradients and leaf values. Our experimental results show that both
information leakage and model performance degradation of the
proposed PIVODL are negligible.

Impact Statement—Federated learning is a distributed machine
learning framework proposed for privacy preservation. Most fed-
erated learning algorithms work on horizontally partitioned data,
with only a few exceptions considering vertically partitioned data
that is widely seen in the real world. However, existing vertical
federated learning makes an unrealistic assumption that data la-
bels are distributed on only one device and no research has been
reported so far that considers data labels distributed on multiple
client devices. The PIVODL framework reported in this article
allows us to build a secure vertical federated XGBoost system, in
which the labels may distributed either on one device or on multiple
devices, making it possible to apply federated learning to a wider
range of real-world problems.

Index Terms—Encryption, gradient boosting decision tree
(GBDT), privacy preservation, vertical federated learning (VFL).

I. INTRODUCTION

DATA privacy has become the main focus of attention in
modern societies and the recently enacted General Data

Manuscript received 2 August 2021; revised 16 October 2021 and 21 Decem-
ber 2021; accepted 25 December 2021. Date of publication 28 December 2021;
date of current version 22 September 2023. This work was supported in part by
an Alexander von Humboldt Professorship endowed by the Federal Ministry of
Education and Research, Germany, and in part by a European Unions Horizon
2020 Research and Innovation Programme under Grant 952697 (ASSURED)
and Grant 101021727 (IRIS). This paper was recommended for publication by
Associate Editor C. L. Philip Chen upon evaluation of the reviewers’ comments.
(Corresponding author: Yaochu Jin.)

Hangyu Zhu is with the Department of Computer Science, University of
Surrey, GU27XH Guildford, U.K. (e-mail: hangyu.zhu@surrey.ac.uk).

Rui Wang and Kaitai Liang are with the Department of Intelligent Sys-
tems, Delft University of Technology, 2628XE Delft, The Netherlands (e-mail:
R.Wang-8@tudelft.nl; Kaitai.Liang@tudelft.nl).

Yaochu Jin is with Nature Inspired Computing and Engineering Group,
Faculty of Technology, Bielefeld University, D-33619 Bielefeld, Germany, and
also with the Department of Computer Science, University of Surrey, GU27XH
Guildford, U.K. (e-mail: yaochu.jin@surrey.ac.uk).

Digital Object Identifier 10.1109/TAI.2021.3139055

Protection Regulation prohibits users from wantonly sharing
and exchanging their personal data. This may be a big barrier
to model training, since standard centralized machine learning
algorithms require to collect and store training data on one single
cloud server. To tackle this issue, federated learning (FL) [1] is
proposed to enable multiple edge devices to collaboratively train
a shared global model while keeping all the users’ data on local
devices.

FL can be categorized into horizontal federated learning
(HFL) and vertical federated learning (VFL) based on how
data are partitioned [2]. HFL or instance-based FL represents
the scenarios in which the users’ training data share the same
feature space but have different samples. A large amount of
research work [3]–[7] are dedicated on enhancing the security
level of HFL, since recent studies [8]–[11] have shown that the
HFL protocol still suffer from potential risks of leaking local
private data information. Secure multiparty computation [12],
[13], homomorphic encryption (HE) [14], and differential pri-
vacy (DP) [15] are three most common privacy preserving
mechanisms that are theoretically and empirically proved to be
effective for HFL.

Compared with HFL, VFL is more likely to appear in the
real-world applications. And the training data of participating
clients in VFL have the same sample identity (ID) space but
with different feature space. Privacy preservation is also a critical
concern in VFL. Hardy et al. [16] introduce a secure ID align-
ment framework to protect the data ID information in vertical
federated logistic regression. Meanwhile, Nock et al. [17] give a
comprehensive discussion of the impact of ID entity resolution
in VFL. In addition, Liu et al. [18] point out the privacy concern
of the ID alignment in asymmetrical VFL. Yang et al. introduce
a simplified two-party vertical FL framework [19] by removing
the third party coordinator. Different from the aforementioned
work for training parametric models in VFL, Cheng et al. [20]
first propose a secure XGBoost [21] decision tree system named
SecureBoost in a setting of vertically partitioned data with the
help of HE. Based on this article, Wu et al. introduce a novel
approach called Pivot [22] to ensure that the intermediate infor-
mation is not disclosed during training. Tian et al. [23] design
a Federboost scheme to train a GBDT over both HFL and VFL
and vertical Federboost can satisfy the security requirements
without any encryption operations.

However, the current privacy preserving VFL systems are
built under the assumption that all the data labels are stored
only on one guest or active party, which is not realistic in
many real-world applications. For instance, in real-life medical

2691-4581 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2023 at 06:39:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0352-2069
https://orcid.org/0000-0001-8495-3631
https://orcid.org/0000-0003-1100-0631
https://orcid.org/0000-0003-0262-7678
mailto:hangyu.zhu@surrey.ac.uk
mailto:R.Wang-8@tudelft.nl
mailto:Kaitai.Liang@tudelft.nl
mailto:yaochu.jin@surrey.ac.uk

ZHU et al.: PIVODL: PRIVACY-PRESERVING VERTICAL FEDERATED LEARNING OVER DISTRIBUTED LABELS 989

systems, different hospitals in the same region may have the
same group of patients but provide different modalities of disease
tests. Therefore, it is very likely that each hospital just owns parts
of patients’ diagnosis results.

As a result, we consider a more realistic setting of training
XGBoost decision tree models in VFL in which each participat-
ing client holds parts of data labels that cannot be shared and
exchanged with others during the training process. Compared to
the standard vertical boosting tree system, constructing a secure
vertical federated XGBoost system over distributed labels has
the following challenges.

1) There is no single guest client for gradient and Hessian
computation.

2) If each client is responsible for both feature splits and
impurity calculations, the raw gradients can still be tracked
even if HE is adopted in the learning system.

3) Leaf weight values used for label predictions are required
to be sent to multiple clients, which increases the potential
risk of label leakage. Any client may track and guess the
real labels from other clients through the received leaf
weights.

To tackle the aforementioned challenges, we propose a novel
privacy-preserving vertical federated learning system over dis-
tributed labels (PIVODL). PIVODL allows multiple clients to
jointly construct a XGBoost tree model without disclosing fea-
ture or label information of the training data, given that the data
labels are distributed across each of the participating clients in
VFL. The contributions of this article can be summarized as
follows.

1) We are the first to consider training XGBoost decision
trees in VFL, in which the data labels are distributed over
multiple data owners. The potential risk of privacy leakage
under this condition is discussed in detail.

2) A novel secure node split protocol is proposed by setting
source clients and split clients for node split. By combining
the source clients with the split clients during tree node
split in VFL, we can effectively defend differential attacks
and prevent intermediate gradients and Hessian values
from being leaked.

3) The calculated leaf node weights need to be sent to other
clients for label prediction updates. Therefore, an extra
partial DP scheme is introduced by adding Gaussian noise
to the leaf weights before sending them to the source
clients.

4) Empirical experiments are performed to demonstrate that
the proposed PIVODL system can effectively protect
users’ data privacy with a negligible model performance
degradation.

II. PRELIMINARIES

A. Vertical Federated Learning (VFL)

Different from HFL [2], where each client owns all features of
the training set, VFL [24] mainly focuses on the scenario where
features are distributed across different clients. We denote X as
the feature space, Y as the label space and I as the data IDs, the
standard VFL can be defined as follows.

Algorithm 1: VFL for Logistic Regression.

1: Training data X = {X 1,X 2, . . .Xn} on n clients
2: Initialize the local model θc0, c ∈ {1, . . . n}
4: for each communication round t = 1, 2, . . ., T do
5: for batch data X c

b ∈ (X c
1 ,X c

2 , . . .,X c
B) do

6: for each Client c = 1, 2, . . ., n in parallel do
7: Compute zcb = X c

b θ
c
t and send it to guest client

8: end for
9: Compute ŷb = a(

∑n
c=1 z

c
b) and L(yb, ŷb) on guest

client
10: Compute each ∂L

∂zb
on the guest client and send it

to the corresponding host client
11: for each Client c = 1, . . ., n in parallel do
12: θct ← θct − η ∂L

∂zc
b

∂zc
b

∂θc
t

13: end for
14: end for
15: end for

Definition 1: VFL: Given a training set with m data points
distributed across n clients, each client c has parts of data fea-
turesX c = {Xc

1 , . . . , X
c
m} and sample IDs Ic = {I1, . . . , Im},

where c ∈ {1, . . . , n}. Only one client l ∈ {1, . . . , n} contains
all the labels Y = {y1, . . . , ym}. For any two different clients
c, c′, they satisfy

X c �= X c′ ,Yc = Yc′ , Ic = Ic′ , c �= c′. (1)

It indicates each connected client c in VFL shares the same
data sample IDs Ic with the same corresponding labels Yc, but
different clients may holdX c sampled from different data feature
space. Note that Yc is an imaginary data label that is not held
by client c, if c �= l. And there are two kinds of clients in the
standard VFL: one is the guest or active client, the other is the
host or passive client.

Definition 2: Guest Client: It holds both data features X and
labels Y and is responsible for calculating the loss function,
gradients, Hessians, and leaf values for the corresponding data
samples.

Definition 3: Host Client: It only holds data features X and
is responsible for aggregating the encrypted gradients and Hes-
sians in one bucket.

In general, the guest client and host client can be seen
as parameter server and node worker defined in distributed
data parallelism [25]–[27]. A typical vertical federated training
paradigm for logistic regression [28] is shown in Algorithm 1.
Since the loss function L(yb, ŷb) is derived on the guest client,
the data labels ŷb will not be revealed to other host clients.

B. VFL With XGBoost

In this article, we consider training XGBoost for classification
and regression tasks. XGBoost [21] is a widely used boosting
tree model in tabular data training because of its better inter-
pretation, easier parameters tuning and faster training process
compared with deep learning [29], [30]. Suppose that a training
set with m data entries consisting of the feature space X =

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2023 at 06:39:01 UTC from IEEE Xplore. Restrictions apply.

990 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 5, OCTOBER 2023

Fig. 1. Secureboost system.

{x1, . . . , xm} and label spaceY = {y1, . . . , ym}. Gradients and
Hessian can be calculated from (2) and (3) for each data entry,
where y(t−1)i denotes prediction of the previous booster tree for
the ith data point

gi =
1

1 + e−y
(t−1)
i

− yi = ŷi − yi (2)

hi =
e−y

(t−1)
i

(1 + e−y
(t−1)
i)2

. (3)

Before training starts, the threshold value for each feature split
should be defined. For building trees, the XGBoost algorithm
splits each node based on whether the current depth and the
number of trees have reached the predefined maximum depth
and maximum tree number. If neither of the aforementioned
conditions is satisfied, a new split is selected from all possible
splits based on the maximum impurity score Lsplit defined in (4),
where λ and γ are regularization parameters

Lsplit

=
1

2

[
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
− (

∑
i∈I gi)

2∑
i∈I hi + λ

]
− γ.

(4)

The current node is leaf if one of the aforementioned condi-
tions is satisfied and the leaf value can be calculated according
to

w = −
∑

i∈I gi∑
i∈I hi + λ

. (5)

Cheng et al. [20] first propose a solution to privately train the
XGBoost model in VFL. As a simple example shown in Fig. 1,
the guest client is responsible for calculating the corresponding
gradients and Hessians for all data points and sends them to
other host clients in ciphertexts under Paillier encryption. Each
host client sorts features and makes splits according to the
predefined feature thresholds (buckets). After that, each host
client aggregates all the encrypted gradients and Hessians in one
bucket and returns them back to the guest client for decryption
and impurity calculations [see (4)]. The split corresponding to
the maximum Lsplit is regarded as the best split for the current
node. The aforementioned steps will be done recursively until
the trees reach the maximum depth or the number of trees, or
when Lsplit is smaller than the predefined boundary. Compared
with [20], Tian et al. [23] propose a more efficient scheme in

which the host clients sort their features first, and send the order
of different features to the guest client with noise satisfying DP.
Once the guest client receives all orders of the features, all the
training steps can be processed on the guest client. During the
training, the labels never leave from the guest client that only
knows the order of different features. Therefore, the privacy of
the training set is guaranteed.

C. Additively HE

Homomorphic encryption (HE) [31], [32] is widely used for
secure outsourced computation. It enables multiple encrypted
messages to compute directly in ciphertexts, whose results, when
decrypted, are equal to the produced output of math operations
on unencrypted messages.

Paillier [32] is a very popular additive homomorphic cryp-
tosystem widely used in FL. And our proposed PIVODL applies
Paillier to prevent label leakages during node splits. It works as
follows.

1) Key generation: Randomly select two large prime numbers
p and q s.t. gcd(pq, (p− 1)(q − 1)) = 1. Let n = pq and
λ = lcm(p− 1, q − 1). After that, randomly choose an
integer g ∈ Z∗n2 and compute μ = (L(gλ mod n2))−1

mod n, where L is a function defined as L(x) = x−1
n .

The public key pk and secret key sk are (n, g) and (λ, μ),
respectively.

2) Encryption: To encrypt a message m ∈ Z∗n, choose a ran-
dom number r ∈ Z∗n as an ephemeral key, the ciphertext
is calculated as c = gm · rn mod n2.

3) Decryption: The plaintext message m can only be de-
crypted if the secret key (λ, μ) is available by computing
m = L(cλ mod n2) · μ mod n.

The Paillier satisfies the additive homomorphic property:
Enc(m1) ∗ Enc(m2) = Enc(m1 +m2) = gm1rn1 · gm2rn2
mod n2.

D. Differential Privacy (DP)

Differential privacy (DP) [33], [34] is a data privacy protection
scheme. It can publish statistical information while keeping
individual data private. If a substitution of an arbitrary single
data entity does not cause statistically distinguishable changes,
the algorithm used to run dataset satisfies DP. The definition of
DP is presented as follows:

Definition 4: (ε-DP [33]). Given a real positive number ε and
a randomized algorithm A: Dn → Y . Algorithm A provides
ε-DP, if for all datasets D, D′ ∈ Dn differs on only one entity,
and all S ⊆ Y satisfy

Pr[A(D) ∈ S] ≤ exp(ε) · Pr[A(D′) ∈ S]. (6)

To achieve ε-DP, some mechanisms are proposed to add
designed noise to queries. In this article, we apply a relaxation
of ε, δ-DP, called approximate DP [34]. The formal definition is
as follows.

Definition 5: ((ε, δ)-DP). Given two real positive numbers
(ε, δ) and a randomized algorithm A: Dn → Y . An algorithm

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2023 at 06:39:01 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: PIVODL: PRIVACY-PRESERVING VERTICAL FEDERATED LEARNING OVER DISTRIBUTED LABELS 991

A provides (ε, δ)-DP if it satisfies

Pr[A(D) ∈ S] ≤ exp(ε) · Pr[A(D′) ∈ S] + δ. (7)

Gaussian mechanism [35]–[37] is usually applied in DP by
adding Gaussian noise N ∼ N(0,Δ2σ2) to the output of the
algorithm, where Δ is l2 - norm sensitivity of D and σ ≥√
2 ln(1.25/δ). According to [35], this noise can only achieve

(O(qε), qδ)-DP, where q is the sampling rate per lot. To make
the noise small while satisfying DP, we follow the definition

in [35] and set σ ≥ c
q
√

T log(1/δ)
ε , c is a constant, and T refers

to the number of steps, to achieve (O(qε
√
T), δ)-DP.

III. PROBLEM FORMULATION

A. System Model

All the participants use the private set intersection [38], [39]
to align data IDs before the training starts. And the complete
training set with m data entries consists of a feature space
X = {x1, . . . , xm}, each containingd features, and a label space
Y = {y1, . . . , ym}. Besides, n clients possessing at least one
feature {Xc

j | j ∈ {1, . . . , d}} with all data points and part of
labels {yci | i ∈ {1, . . . ,m}} choose to train a model collabo-
ratively, where Xc

j and yci represent the jth feature and the ith
label owned by the cth client, respectively.

Since the assumption that all labels are held by only one guest
client is not realistic, we consider a variant of VFL called VFL
over distributed labels (VFL-DL), where labels are distributed on
multiple clients. The formal definition of VFL-DL is as follows.

Definition 6: (VFL-DL). Given a training set with m data
points, each participating client c consists of data featuresX c =
{Xc

1 , . . . , X
c
m | c ∈ {1, . . . , n}} and parts of labels Yc = {yci |

i ∈ {1, . . . ,m}, c ∈ {1, . . . , n}}. For any two clients c, c′ ∈
{1, . . . , n}

Xc �= Xc′ , yc �= yc
′
, Ic = Ic′∀c �= c′. (8)

The frequently used notations are summarized in Table I.

B. Threat Model

In this article, we mainly consider potential threats from par-
ticipating clients. We assume that all participating clients during
training are honest-but-curious, which means they strictly follow
the designed algorithm but try to infer extra data information of
other clients from the received information. The main goal of
this work is to prevent the leakage of private data, and other
attacks like data poisoning and backdoor attacks, which may
deteriorate the model performance, are not considered here.

C. Privacy Concerns

Since the data labels are distributed across multiple clients
in our framework, each client becomes “guest” client, which is
responsible for both aggregating

∑
gi and

∑
hi and updating

label predictions. This would further lead to potential node
split and prediction update leakage during the execution of the
vertical federated XGBoost protocol.

TABLE I
NOTATIONS SUMMARY

Fig. 2. Simple example of split leakage.

1) Split Leakage: In order to find the best split with the
largest Lsplit value for the current tree node, each client needs
to ask other clients for the corresponding summation Gc

j,v and
Hc

j,v of all possible splits. This may result in a risk of privacy
leakage from two sources: one is the summation differences
among all feature splits of the same node, and the other is the
summation differences between parent node and child node.
Moreover, the privacy issue still exists even when the summation
of the gradients and Hessians are encrypted. This is because
the aggregated summations should be decrypted for impurity
calculation, and therefore, the raw gradients and Hessians can
still be deduced via summation differences of multiple feature
splits.

A simple example is shown in Fig. 2, where client u1 wants
to compute Lsplit values from Split1 to Split4 with the help of
u2 and u3. The label information about u2 or u3 can be easily
deduced by differential attacks, even if the message is encrypted.
For instance,u1 requires aggregated summationG1,split2 = g2 +
g1 and G1,split3 = g2 + g1 + g5 to calculate Lsplit2 and Lsplit3 ,
respectively. For privacy concerns, both g1 and g5 are encrypted
before aggregation andu1 only achieves aggregated summations
and has no knowledge of these two gradient values. However,

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2023 at 06:39:01 UTC from IEEE Xplore. Restrictions apply.

992 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 5, OCTOBER 2023

Fig. 3. Label prediction update in VFL with the true data labels distributed
across multiple clients.

g5 from u2 can still be derived based on the difference (subtract
here) between G1,split3 and G1,split2 . Similarly, g1 can be easily
obtained by G1,split2 − g2.

2) Prediction Update Leakage: Except for split leakages,
private label information may also be disclosed in updating
the predictions. As introduced in Section II-B, XGBoost is
an ensemble boosting algorithm that requires to sequentially
construct multiple decision trees for regression or classification
tasks. And the label prediction ŷ for each data sample should be
updated based on the leaf value of the current tree, whenever a
new decision tree is being built. Unlike in the conventional VFL
where the guest client performs all leaf weights calculations
and label prediction updates; in PIVODL, labels are stored
on multiple clients based on their split features of the parent
nodes. As a result, it is very likely that some clients will receive
predicted labels of other clients.

An example is shown in Fig. 3, where three leaf nodes are
stored on three clients u1, u2, and u3, respectively. It is clear to
see that u1 knows the leaf weight of data 1, 2, 6, and 9, thus,
the label prediction of the current decision tree for data 1 on
u2 and data 6 on u3 are leaked to u1. There is no doubt that
the predicted values will be closer to the true labels with a high
probability over the training process. Therefore, a more accurate
guess can be made for specific data samples along with the model
convergence, if the clients can get some of their leaf weights.

IV. PROPOSED SYSTEM

Our proposed PIVODL system is introduced in this section.
PIVODL adopts a novel secure node split protocol to construct
an ensemble of boosting trees without revealing intermediate
gradients and Hessian information. And it also applies a partial
DP strategy to protect the predicted labels with an acceptable
drop on the model performance. Finally, attack inferences are

also imposed to our system to verify that no client inside the
system is able to receive or deduce label information from other
clients.

A. Secure Node Split Protocol

As discussed in Section III, private label information may be
disclosed during the calculation of Lsplit and the branch splits.
This is because the client used for node split also acquire all
the data ID information for all possible feature splits of the
current tree node. Therefore, as long as the client knows the
intermediate aggregation results of Gc

j,v and Hc
j,v from other

clients, gci and hc
i can be easily deduced through the differences

between two adjacent summation results, regardless of whether
any cryptographic operations are used.

In order to fix the aforementioned issue, feature splits and
summation aggregations during node split should be performed
on two separate clients. One is called the source client and the
other is called the split client. In the following, we define the
roles of the source and split clients.

Definition 7: The source client is the split owner that contains
all data IDs of the local features. However, it does not have any
information of the corresponding summation values Gj,v and
Hj,v , and thus, is not able to calculate the impurity scores in (4)
and leaf weights in (5).

Definition 8: The split client, on the other hand, is used to
compute both the impurity scores in (4) and leaf weights in (5),
however, it has no idea of their corresponding data IDs on other
clients.

By making use of the source and split clients, the tree nodes
can be split without leaking the data privacy in the following
steps.

1) Each client locally generates its unique Paillier key pairs
and exchanges the public key with each other. Meanwhile,
the data IDs of the samples with labels Ic are also ex-
changed with each other for privacy concern, which will
be discussed in the next section.

2) Each client c computes locally Gc =
∑

i g
c
i and Hc =∑

i h
c
i for the current tree node according to the available

data labels yci . Two random clients are selected to be
the aggregation client and encryption client, respectively.
Each client uses the public key of the encryption client to
encrypt Gc and Hc and sends the encrypted 〈Gc〉 and
〈Hc〉 to the aggregation client for summation: 〈G〉 =∏

c〈Gc〉 = 〈∑c G
c〉, 〈H〉 = ∏

c〈Hc〉 = 〈∑c H
c〉. After

that, the aggregation client sends 〈G〉 and 〈H〉 to the
encryption client for decryption: G = Dec〈G〉 and H =
Dec〈H〉. Finally, the encryption client can broadcast the
decrypted G and H for calculating the information gain
of the current node by 1

2
G2

H+λ
.

3) All client are regarded as the source clients and sort
their data samples according to the split buckets (fea-
ture thresholds) of all the local features. In addition,
each source client randomly selects one client from other
clients to be its unique split client. And then, each
source client c computes local left branch sum Gc

j,v =∑
i∈{i|xi,j<v} g

c
i andHc

j,v =
∑

i∈{i|xi,j<v} h
c
i based on its

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2023 at 06:39:01 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: PIVODL: PRIVACY-PRESERVING VERTICAL FEDERATED LEARNING OVER DISTRIBUTED LABELS 993

Fig. 4. Secure node split for the left branch, where we assume the feature j
and threshold v will give the best split with the largest impurity score Lsplit.

owned labels yci,j , and sends the intersected missing data
IDs Ic

′
j,v = Icj,v

⋂
Ic
′
, c′ ∈ [1, n], c′ �= c together with its

split client ID and temporary record number Rj,v to other
clients.

4) Each client c calculates Gc
j,v =

∑
i∈{i|i∈Ic

j,v} g
c
i and

Hc
j,v =

∑
i∈{i|i∈Ic

j,v} h
c
i , and uses the public key of its

corresponding split client to encrypt the summation val-
ues, after receiving intersected data IDs and corresponding
split client ID from source clients. And then, each client
returns the encrypted 〈Gc

j,v〉 and 〈Hc
j,v〉 back to the cor-

responding source client.
5) After the source client receives all 〈Gc

j,v〉 and 〈Hc
j,v〉 from

other clients, it will aggregate (sum) all received encrypted
summation with the local gradient and Hessian sum-
mation to get the final encrypted 〈Gj,v〉 =

∏
c〈Gc

j,v〉 =
〈∑c G

c
j,v〉 and 〈Hj,v〉 =

∏
c〈Hc

j,v〉 = 〈
∑

c H
c
j,v〉 for all

bucket splits.
6) Each source client sends 〈Gj,v〉 and 〈Hj,v〉 to its corre-

sponding split client for decryption and the split clients

can compute the impurity scores byLsplitj,v = 1
2 [

Gj,v2

Hj,v+λ
+

G−Gj,v2

H−Hj,v+λ
− G2

H+λ
]− γ. All the selected split clients get

the largest local impurity score at first, and then, broadcast
these values for further comparison to achieve the largest
global impurity score Lsplitmax

j,v
. The split client that owns

Lsplitmax
j,v

would send the temporary record number Rj,v

back to the source client. The source can get the best
split feature j and threshold v according to received Rj,v

and privately build a lookup table [20] to record j and v
with a unique record ID. And then, the tree node can be
constructed by the source client ID and the record ID as
shown in Fig. 4.

7) If the current tree node is not the leaf node, either the
left or right child node will continue splitting. If the left
node becomes the current node for splitting, the split client
sets G = Gj,v and H = Hj,v , and sends them to all other
clients. Otherwise, the split client sets G = G−Gj,v and
H = H −Hj,v , and sends them to all other clients. In
addition, the source client sends the left split node data IDs
ILj,v or the right split node data IDs IRj,v to other clients.

Then, each client computes the current information gain
1
2

G2

H+λ
. Go to step (3) and repeat the process.

It is clear to see that the proposed secure node split protocol
encrypts the intermediate summation values Gj,v and Hj,v for
the privacy concern and is able to effectively defend differential
attacks. The source client contains all the split node IDs and their
corresponding split features and thresholds. However, as shown
in Fig. 4, the source client 1 can only get the encrypted sum
〈Gj,v〉 and 〈Hj,v〉 for feature j and threshold v. Thus, differential
attack does not work in this scenarios since only the split client
2 has the secret key to get the plaintext of G and H . On the
other hand, the split client 2 only knows local intersected data
IDs I2j,v and the final summation values G and H , but it has no
idea of the corresponding data IDs. In addition, the split client
2 only receives the temporary record number Rj,v (this is just
an arbitrary number defined by the source client, “temporary”
means this number would be reset for the next tree node split)
of the split and has no knowledge of the corresponding real split
feature and threshold on the source client.

After all the split clients decryptGj,v andHj,v for all available
features j and thresholds v, they can calculate Lsplit according
to (4). In order to reduce both potential privacy leakage and
communication costs, each split client compares and gets the
largest Lsplit value locally at first. The advantage of doing this is
that each split client just needs to broadcast only one impurity
score Lsplit for comparison. If the current tree node continues
splitting to the left branch as shown in Fig. 4, the split client
needs to transmit the decrypted Gj,v and Hj,v to all other clients
as G and H of the next tree node. In addition, the source client
needs to send the data IDs ILj,v of the left split to other clients.
Therefore, each client can deduce the gradient and Hessian
values from other clients through the received Gj,v , Hj,v , and
ILj,v as discussed in Section III-C1.

In order to alleviate this privacy leakage issue, we adopt a
simple data instance threshold strategy. For example, if the num-
ber of received intersected data IDs is less than the predefined
instance threshold, this client will reject to compute the local
Gc

j,v and this split will be removed. It should be mentioned that
continue splitting is robust to differential attacks since only one
Gj,v and Hj,v are broadcast to each client. The overall secure
node split protocol is also shown in Algorithm 2.

B. Construction of Private Tree Nodes

After the split client c′ with the largest impurity score is
determined, c′ will send the temporary record number Rc,best

j,v

to the corresponding source client c. And then, the source client
c can add the feature j and threshold v with a unique record ID
into the local lookup table [20], as shown in Fig. 4. After that,
c broadcasts the unique record ID to any other client that can
annotate the split of current tree node with client c’s ID and the
record ID.

Meanwhile, the source client c can check and tell the split
client c′ whether the split child nodes are leaf or not based on the
condition shown in lines 5 and 15 of Algorithm 3, respectively.
If the child node is not leaf, the source client c broadcasts the
split data IDs and the split client c′ broadcasts the corresponding

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2023 at 06:39:01 UTC from IEEE Xplore. Restrictions apply.

994 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 5, OCTOBER 2023

Algorithm 2: Secure node split protocol.
1: Input: I , data IDs of the current tree node
2: Input: G, gradient sum of the current tree node
3: Input: H , Hessian sum of the current tree node
4: Input: T , instance threshold of the current tree node
6: Split client sets C ′ = ∅

7: for each source client c = 1, 2, . . ., n do
8: Randomly select a split client c′, c′ ∈ [1, n], c′ �= c
9: Lc′

split ← 0, C ′ ← C ′ ∪ c′

10: end for
12: for each source client c = 1, 2, . . ., n do
13: Rc

j,v ← 0
14: for each feature j = 1, 2, . . ., dc do
15: for each threshold v = 1, 2, . . ., bj do
16: pk ← pk of client c′

17: Gc
j,v ←

∑
i∈{i|xi,j<v} g

c
i ,

〈Gc
j,v〉 ← Encpk(Gc

j,v)
18: Hc

j,v ←
∑

i∈{i|xi,j<v} h
c
i ,

〈Hc
j,v〉 ← Encpk(Hc

j,v)
19: Rc

j,v ← Rc
j,v + 1

20: for each client c′′ = 1, 2, . . ., n, c′′ �= c do
21: Ic

′′
j,v ← Icj,v

⋂
Ic
′′

22: Send Ic
′′

j,v , Rc
j,v to client c′′:

23: pk ← pk of client c′

24: if |Ic′′j,v| ≥ T then
25: Gc′′

j,v ←
∑

i∈Ic′′
j,v

gc
′′

i , 〈Gc′′
j,v〉 ← Encpk(Gc′′

j,v)

26: Hc′′
j,v ←

∑
i∈Ic′′

j,v
hc′′
i , 〈Hc′′

j,v〉 ← Encpk(Hc′′
j,v)

27: Return 〈Gc′′
j,v〉 and 〈Hc′′

j,v〉 to source client c
28: end if
29: end for
30: if Source client c receives n− 1 〈Gc′′

j,v〉 and
〈Hc′′

j,v〉 then
31: 〈Gj,v〉 =

∏
c〈Gc

j,v〉 = 〈
∑

c G
c
j,v〉

32: 〈Hj,v〉 =
∏

c〈Hc
j,v〉 = 〈

∑
c H

c
j,v〉

33: Send 〈Gj,v〉 and 〈Hj,v〉 to split client c′:
34: Gj,v ← Dec〈Gj,v〉
35: Hj,v ← Dec〈Hj,v〉
36: Lsplitj,v = 1

2 [
Gj,v2

Hj,v+λ
+

G−Gj,v2

H−Hj,v+λ
− G2

H+λ
]− γ

37: if Lsplitj,v > Lc′
split then

38: Lc′
split ← Lsplitj,v , Rc,best

j,v ← Rc
j,v

39: end if
40: end if
41: end for
42: end for
43: end for
45: Output: the split client c′ with the largest impurity

score Lc′
split

summation of gradients and Hessian for continuing splitting the
child node. If the child node is determined to be a leaf node, the
split client c′ computes the local leaf weight and stores it in a
received lookup table with source client c ID and record ID.

As a result, no client except the source client knows the feature
j and threshold v of the tree node split, since the lookup table

Algorithm 3: Construction of private tree nodes, where c′ is
the split client with the largest impurity score, c is the source
client of c′, Rc,best

j,v is the temporary record number of the
best split on c, and Tsample is the minimum data samples for
each decision node.

1: c′ sends Rc,best
j,v and split branch to c

2: c adds feature j and threshold v with a unique record
ID into the local lookup table

3: c broadcasts the record ID and each client can annotate
the split of current tree node with client c ID and
record ID

4: if Split branch is left then
5: if Reach the maximum depth or |Ij,v| < Tsample then
6: c tells c′ left split node is the leaf node and stops

splitting
7: wL

j,v = − Gj,v

Hj,v+λ

8: c′ records left leaf value wL
j,v into received lookup

table with record ID and client c ID
9: else

10: Continue splitting left child node:
11: c broadcasts Ij,v to all other clients
12: c′ broadcasts Gj,v and Hj,v to all other clients
13: end if
14: else if Split branch is right then
15: if Reach the maximum depth or |I − Ij,v| < Tsample

then
16: c tells c′ right split node is the leaf node and stops

splitting
17: wR

j,v = − G−Gj,v

H−Hj,v+λ

18: c′ records right leaf value wR
j,v into received

lookup table with record ID and client c ID
19: else
20: Continue splitting right child node:
21: c broadcasts I − Ij,v to all other clients
22: c′ broadcasts G−Gj,v and H −Hj,v to all other

clients
23: end if
24: end if

is stored locally without sharing it with any other client. And
when it turns to new instance prediction, the source client needs
to combine with the split client to get the leaf value. For instance,
as shown in Fig. 5, client 1 is the source client of the root client
and client 2 is its corresponding split client. If a new data sample
with age 30 and weight 150 comes for prediction, it will be
sent to client 1 for judgement. And then, client 1 uses its own
lookup table to determine that this instance should go to the left
branch (30 < 35). After that, these data are sent to client 2 to
get its label prediction 0.41 (150 > 120, go to right leaf). Also
considering potential label leakage during data prediction for
ensemble decision trees, we adopt a secure aggregation scheme
proposed in [13] for secure multiparty computation. Therefore,
the final prediction for the data instance can be derived without
revealing any leaf values.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2023 at 06:39:01 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: PIVODL: PRIVACY-PRESERVING VERTICAL FEDERATED LEARNING OVER DISTRIBUTED LABELS 995

Fig. 5. Each split node is recorded with the source client ID and a unique
record ID. Both the lookup table and received lookup table are stored locally
without sharing with any other client. The received lookup table needs to contain
the source client ID and the corresponding record ID.

C. Partial DP

Each split client needs to send the leaf weights w to other
clients for prediction updates before building the next boosting
tree. There is no doubt that as the training proceeds, the accu-
mulated label prediction ŷi will be closer to the true data label
yi, and since the source client knows all the split data IDs, as
long as it receives the leaf weights, “parts of”1 the true labels
of the corresponding data samples may have the risk of being
revealed.

In order to deal with this prediction update leakage issue,
we propose a partial DP mechanism, where the leaf value is
perturbed with Gaussian noiseN before being sent to the source
client. Since the calculation of the leaf value w is based on the
summation of g and h (the number of g and h is not fixed,
thus, its range is unpredictable), the sensitivity to noise cannot
be achieved directly from the definition. In order to satisfy (ε,
δ)-DP (see Section II-D), we use a clipping method here to let
the sensitivity equals to the clipping boundary. As a result, our
proposed algorithm naturally satisfies (ε, δ)-DP by clipping the
leaf value before adding the Gaussian noise. The sensitivity Δw

is calculated according to (9), where C refers to the predefined
clip value and {G,H}, {G′, H ′} are two sets, differing in one
pair of g and h.

Δw = max
{G,H},{G′,H ′}

‖w{G,H} − w{G
′,H ′}‖

= 2C ∀‖w{G,H}‖, ‖w{G′,H ′}‖ ≤ C. (9)

By partial DP, we mean that DP is applied on w sent to
the source client only, since any other client just knows its
intersected local data IDs. The advantage of using this strategy
is that the correct distributed label predictions can be achieved
to the greatest extent, while preventing the source client from
guessing the true labels. The details of the partial DP mechanism
are presented in Algorithm 4.

D. Security Analysis

Our proposed PIVODL framework avoids revealing both data
features and labels on each participating client, and in this
section, we will make a detailed security analysis of the leakage
sources and protection strategies.

1Here, we call it “parts of,” because XGboost is an ensemble tree algorithm.
A client can get the real label predictions only if the leaf weights of all boosting
trees of data samples are revealed to the client.

Algorithm 4 Partial DP. c′ is the split client and c is the
corresponding source client

1: Input: wj,v , computed leaf weight on split client c′

3: for each c′′ = 1, 2, . . ., n, c′′ �= c′ do
4: if c′′ = c then
5: ˆwj,v ← wj,v/max(1, ||wj,v ||

C)

6: ˆwj,v ← ˆwj,v +N ∼ N(0, 4C2σ2)
7: Send perturbed ˆwj,v to c
8: else
9: Send wj,v to c′′

10: end if
11: end for

During the training process, each client sorts the data instances
based on the features and their corresponding bucket thresholds,
which are stored privately on the local devices. In order to find
the maximum impurity score Lsplit, the source clients require
the corresponding g and h from other clients, since labels are
distributed on multiple clients. The true data labels can be
deduced from the computed gradients g.

Theorem 1: Given a gradient g, the true label of correspond-
ing data point could be inferred.

Proof: According to (2), adversarial attackers are able to infer
the true labels of the ith data sample by yi = ŷi − gi if gi is
known. �

To tackle this privacy issue, Paillier encryption is adopted
in this work to encrypt all

∑
g and

∑
h for each bucket before

sending them for summation aggregation. However, it is possible
that the specific gradient information gi can still be inferred by
a differential attack, if the clients have data ID information of
its adjacent bucket splits.

Theorem 2: There is still a high risk that the gradient gi of
the ith data sample may be deduced with a differential attack,
even if the intermediate

∑
g and

∑
h are encrypted.

Proof: Assume Ln and Ln′ are two adjacent data sample sets
for two possible splits that only differs in one data sample i (or
a few data samples). Although the client only knows the aggre-
gated summation

∑
i∈Ln

gi and
∑

i∈Ln′
gi, gi can be easily de-

rived with a differential attack as gi =
∑

i∈Ln
gi −

∑
i∈Ln′

gi.�
Therefore, it is critical to ensure that the source client and split

client perform the bucket split and aggregation separately. And
then, the source client only knows the data IDs of each feature
split but has no knowledge of their corresponding summation
values, the split client holds the summation values but does not
know their data IDs.

Before building the next boosting tree, the predictions of all
data samples need to be updated based on the corresponding leaf
weights. It will not be surprising that the predicted labels are
the same as the true labels as the training proceeds. Therefore,
attackers can guess the correct labels with a high confidence
level through the received leaf weights.

Theorem 3: Given multiple boosting trees’ leaf values, it is
possible to deduce the true labels of the corresponding data
points.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2023 at 06:39:01 UTC from IEEE Xplore. Restrictions apply.

996 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 5, OCTOBER 2023

TABLE II
EXPERIMENTAL SETTINGS OF THE PIVODL SYSTEM

Proof: The label predictions ŷ in a classification problem
can be calculated with equation ŷ = σ(ŷ0 + η ·W1 + · · ·+ η ·
Wt), where η refers to the learning rate, Wt is the leaf weight
of tth decision tree, and σ is the activation function. Therefore,
once the source client knows parts of or even all the leaf values
W , the true labels have a high risk of being inferred. �

In order to address this issue, the split client applies the
aforementioned partial DP mechanism before sending the leaf
values to the source client. In this way, we can reduce the risk
for the source client to correctly guess the true labels from other
clients.

V. EXPERIMENTAL RESULTS

In this section, we first provide the experimental settings, and
then, present the experimental results, followed by a discussion
of the learning performance. After that, we evaluate the training
time when implementing our privacy-preservation method. At
the end, the communication cost and label prediction inference
of PIVODL would be described.

A. Experimental Settings

Three common public dataset are used in the experimental
studies, where the first two are classification tasks and the third
is a regression task.

1) Credit card [40]: It is a credit scoring dataset that aims to
predict if a person will make payment on time. It contains
in total 30 000 data samples with 23 features.

2) Bank marketing [41]: The data are related to direct mar-
keting campaigns of a Portuguese banking institution.
The prediction goal is to evaluate whether the client will
subscribe a term deposit. It consists of 45 211 instances
and 17 features.

3) Appliances energy prediction [42]: It is a regression
dataset of energy consumption in a low energy building,
which has 19 735 data instances and 29 attributes.

We partition each dataset into training data and test data. The
training and test dataset occupies 80% and 20% of the entire
data samples, respectively. Other experimental settings like the
number of clients and the number of the maximum depth of the
boosting tree are presented in Table II. Besides, each experiment
is repeated for five times independently and the results of the
mean values together with their standard deviations are plotted
in the corresponding figures.

Fig. 6. Test accuracy and RMSE with and without applying DP over different
numbers of participating clients, where (a) is the test accuracy on Credit card
and Bank marketing datasets, and (b) is the test RMSE on the regression dataset.
(a) Credit card and Bank marketing. (b) Appliances energy prediction.

Fig. 7. Test accuracy and RMSE with and without applying DP over different
maximum depths of a boosting tree, where (a) is the test accuracy on the Credit
card and Bank marketing datasets, and (b) is the test RMSE on the regression
dataset. (a) Credit card and Bank marketing. (b) Appliances energy prediction.

Fig. 8. Test accuracy and RMSE with and without applying DP over different
numbers of boosting trees, where (a) is the test accuracy on the Credit card and
Bank marketing datasets, and (b) is the test RMSE of the Appliances energy
prediction dataset. (a) Credit card and Bank marketing. (b) Appliances energy
prediction.

B. Sensitivity Analysis

Here, we empirically analyze the change of the learning per-
formances as the number of participating clients, the maximum
depth of the tree structure, the number of trees, and ε in the
partial DP change. The results in terms of the mean, the best,
and the worst performance over five independent runs are plotted
in Figs. 6–9, respectively.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2023 at 06:39:01 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: PIVODL: PRIVACY-PRESERVING VERTICAL FEDERATED LEARNING OVER DISTRIBUTED LABELS 997

Fig. 9. Test performance over different ε values, where (a) is the test accuracy
on the Credit card and Bank marketing datasets, and (b) is the test RMSE on
Appliances energy prediction dataset. (a) Test accuracy with different ε. (b) Test
RMSE with different ε.

From the results, we can see that varying the number of clients
does not affect the training performance very much, especially
in the experiments without applying the partial DP. As shown in
Fig. 6, it is clear to see that the test performances on these three
datasets are relatively insensitive to different numbers of clients.
These results make sense since nonparametric models trained
in the VFL setting have nearly the same performance as those
trained in the standard centralized learning [43]. By contrast,
however, the average test accuracy on the Credit dataset drops
from 0.82 to 0.8 when the number of clients is reduced to 2. And
it is surprising to see that the root-mean-squared error (RMSE)
on the test data of the Energy dataset with DP is slightly higher
than those without DP over different number of clients. The
reason for this is that the model may have overfit the training data
without applying DP. For instance, when the number of clients
is 4 (the default value), the training RMSE with DP is about
70.9, which is higher than that without DP (66.6). By contrast,
the test RMSE with DP is approximately 0.8% lower than that
without DP. Overall, the performances with DP and without
DP are almost the same and the test performance degradation
resulting from the DP is negligible. Besides, the performance
of the proposed PIVODL algorithm is rather stable in different
runs.

Fig. 7 shows the performance when varying the number of
maximum depth of the boosting tree. For classification tasks,
the accuracy is about 82% and 90% for Credit card and Bank
marketing datasets, respectively. And test accuracy of these two
datasets remains almost constant as the number of maximum
depth increases, except that the results on the Credit dataset with
DP have slight fluctuations when the number of maximum depth
is 5. Moreover, it is easy to find that the performances with DP
and without DP are almost the same, which shows that the impact
of the partial DP on the model performance is negligible. On the
regression task, the average RMSE decreases as the maximum
depth increases, since more complex tree structures may have
better model performance. Similar to the previous cases, the test
performance with DP is better than that without DP because of
overfitting.

The performance change with the number of boosting trees
is shown in Fig. 8. The results imply that only slight per-
formance changes are observed when the number of boosting

Fig. 10. Total training time over different numbers of participating clients,
where (a) is the training time with Paillier encryption and (b) is the training time
without encryption. (a) Training time with Paillier encryption. (b) Training time
without encryption.

trees changes. On the Appliances energy prediction dataset, the
RMSE slightly decreases with the increase in the number of
boosting trees and the RMSE values with and without DP are
nearly the same.

The test results on the three datasets over different ε values
are shown in Fig. 9. And it is surprising to see that the test
performances on all three datasets have no clear changes with
the decrease of the ε value. This is because the partial DP is
applied only on part of predicted labels in the source client,
which makes it very unlikely to influence the node split at the
next level of the node split. In addition, the split clients use
denoised leaf values for prediction during the test, which further
reduce the performance biases caused by the proposed partial
DP method.

C. Evaluation on Training Time

In this section, we empirically analyze the training time
affected by the number of participating clients, the number
of maximum depth, and the number of boosting trees. All the
experiments are run on Intel Core i7-8700 CPU and the Paillier
encryption system is implemented with the package in [44]. Just
like what we did in the previous set of experiments, the mean
values together with the best and worst performances out of
five independent runs are included in the results of the ablation
studies.

Fig. 10 shows the training time when varying the number of
clients with and without encryption. In general, it consumes the
least training time on the Bank marketing dataset since it has
the smallest amount of data. When no parameter encryption is
adopted, the training time of the three datasets almost keeps
constant over different numbers of clients, which is consistent
with the results reported in [20] and [23]. The reason is that the
data samples are partitioned across data features in VFL and set-
ting different numbers of clients does not change the entire data
entries. On the contrary, the training time with Paillier encryption
increases linearly with the increase in the client numbers, since
the amount of the encryption times is proportional to the number
of clients in our proposed PIVODL algorithm.

The training times over different maximum depths of a boost-
ing tree are shown in Fig. 11, and similarly, the cases with and

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2023 at 06:39:01 UTC from IEEE Xplore. Restrictions apply.

998 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 5, OCTOBER 2023

Fig. 11. Total training time over different maximum depths of a boosting tree,
where (a) is the training time with Paillier encryption and (b) is the training time
without encryption. (a) Training time with Paillier encryption. (b) Training time
without encryption.

Fig. 12. Total training time over different number of boosting trees, where (a)
is the training time with Paillier encryption and (b) is the training time without
encryption. (a) Training time with Paillier encryption. (b) Training time without
encryption.

without Paillier encryption are presented for comparison. The
training time grows exponentially with the increasing maximum
depth, and this phenomenon becomes more obvious with Pailler
encryption adopted. This makes sense since the computational
complexity of one decision is O(2n), where n is the maximum
depth of the tree. More specifically, the training time on the
Appliance energy prediction dataset for six different depths is
about 2 and 5 min without and with encryption, respectively.

Fig. 12 indicates the training time consumption over different
numbers of boosting trees. The training time increases linearly
on the three datasets with increase in the number of boosting
trees. Similar to the previous results, the time consumption when
using the Paillier encryption is much larger than that without
encryption. For example, the runtime on the energy dataset for
six boosting trees is approximately 800 s with encryption, while
it takes only about 350 s without encryption.

D. Evaluation on the Communication Cost

In this section, we empirically analyze the communication
costs (in MB) affected by the number of participating clients,
the number of the maximum depth and the number of boosting
trees.

Communication costs are measured by varying the number
of clients for both cases with and without using the Paillier
encryption. As shown in Fig. 13, the total communication costs

Fig. 13. Total communication costs over different number of clients (a) with
Paillier encryption and (b) without encryption. (a) Communication costs with
Paillier encryption. (b) Communication costs without encryption.

Fig. 14. Total communication costs over different maximum depths of a
boosting tree, where (a) is the communication costs with Paillier encryption and
(b) is the communication costs without encryption. (a) Communication costs
with Paillier encryption. (b) Communication costs without encryption.

for the three datasets increase with the number of clients. More
specifically, the communication costs go up dramatically from
two clients to four clients, and then, increase relatively slightly
from four clients to ten clients. Different from the results on the
training time, the communication costs with Paillier encryption
increase but not as much as the computation time compared with
the cases without encryption. This can be attributed to the fact
that it is unnecessary to transmit the ciphertexts of the gradients
and Hessian values of each data sample for all possible node
splits, and only the ciphertexts of the intermediate summation
values are required for transmission (see line 27 in Algorithm 2).

Fig. 14 shows the communication costs over different maxi-
mum depths with and without Paillier encryption. It is apparent
to see that the communication costs are proportional to the
maximum depth in both encryption and nonencryption scenar-
ios. The communication costs are similar for the three datasets
when the maximum depth is two, and they grow almost linearly
with increase in the tree depth. The communication costs of
the Appliances energy prediction dataset are 290 MB without
encryption and 425 MB with encryption for a depth of six, which
is the largest among all the three datasets.

The communication costs related to the number of boosting
trees are shown in Fig. 15. Similar to the previous results, the
communication costs increase linearly with the number of trees,
since the model size of XGBoost is proportional to the number
of trees. And it is clear to see that the impact of encryption

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2023 at 06:39:01 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: PIVODL: PRIVACY-PRESERVING VERTICAL FEDERATED LEARNING OVER DISTRIBUTED LABELS 999

Fig. 15. Total communication costs over different numbers of boosting trees,
where (a) is the communication costs with Paillier encryption, and (b) is the
communication costs without encryption.(a) Communication costs with Paillier
encryption. (b) Communication costs without encryption.

TABLE III
GUESS ACCURACY ON DIFFERENT DATASETS

on communication costs is not as significant as that on the
training time. The encryption brings a maximum of 25 MB extra
communication costs for the model with six boosting trees on
the Appliance energy prediction dataset.

E. Inference of Predicted Labels

In this section, we assume that each client is curious but honest
and attempts to deduce the true label information of other clients
through the available leaf weights. The attack strategy is, for
instance, to ensemble all the leaf values and guess a label if
one client knows several leaf values of one specific data sample.
Since the received leaf values of each client are intrinsically
determined by the local training data and the learning algorithm,
we cannot manually determine the amount of leaf values the
attacker uses to infer labels.

To characterize the protection impact of the partial DP, we
define the following guess accuracy.

Definition 9 (Guess Accuracy): The accuracy of the attackers
guessing the correct labels based on received leaf values.

Note that for a binary classification problem, the data labels
are either 0 or 1 and the probability of a correct random guess
is 50%. Therefore, if the guess accuracy is equal to or less than
50%, the label privacy is not revealed.

For the sake of brevity, we calculate the expected guess accu-
racy of all participating clients with and without partial DP using
different ε values. As shown in Table III, the guess accuracy is
more than 60% for both two datasets without using partial DP,
which is more accurate than a random guess. After applying the
proposed partial DP algorithm, however, the guess accuracies
drop dramatically and are all less than 50%. Specifically on the
Credit card dataset, the guess accuracy decreases to around 27%
for ε = 10 and 45% for ε = 4. On the Bank marketing dataset,

Fig. 16. Training time comparisons with SecureBoost and FederBoost, where
(a) is the training time comparison with SecureBoost over different maximum
tree depth, and (b) is the training time comparison with FederBoost over different
number of clients. (a) Time comparison with Secure-Boost. (b) Time comparison
with FederBoost.

the guess accuracy drops to 14.45%when ε = 10. Since the noise
in the DP follows the Gaussian distribution, it is normal that a
smaller ε values will give a higher guess accuracy. And some
previous wrong guesses may be changed to correct guesses over
different noise levels. Overall, as long as the guess accuracy is
less than 50%, the label privacy is considered to be not revealed
and the absolute accuracy does not really indicate the privacy
preservation performance.

F. Ablation Study

In order to sensibly compare the proposed PIVODL algorithm
with some related work described in the introduction section,
some modifications are needed to adapt PIVODL to the con-
ventional VFL. The “split” and “source” client scheme used for
distributed labels is no longer necessary for the scenarios of
centralized labels. And HE can also be removed without privacy
leakage risk because all the impurity calculations and prediction
updates can be performed on the guest client.

SecureBoost [20], FederBoost [23], and Pivot [22] are com-
pared on the credit card dataset. The training time with respect to
the different maximum depths of booster trees between PIVODL
and SecureBoost is shown in Fig. 16(a). It is clear to find that
PIVODL runs much faster than SecureBoost for all different
maximum tree depths. The reason for this is that PIVODL for
centralized labels does not require any encryption operations
during training, because all the summation computations of
gradients and Hessians are performed on the guest client only.
By contrast, SecureBoost computes the summations in terms
of ciphertexts for every node split on each host client, and
consequently, the gradients must be encrypted to prevent the
leakage of raw gradients.

The training time comparison related to different numbers
of total clients between PIVODL and FederBoost is shown in
Fig. 16(b). We can find that the training time of all three cases
remain nearly the same over different numbers of clients. The
time consumption of FederBoost trained by LAN and WAN
networks are approximately 0.5 and 25 s, respectively. And the
training time of PIVODL is around 9.6 s, which is smaller than
the WAN network but larger than the LAN network.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2023 at 06:39:01 UTC from IEEE Xplore. Restrictions apply.

1000 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 5, OCTOBER 2023

TABLE IV
SYSTEM PERFORMANCE COMPARISON

All results of model performance comparisons, except for the
training time, are listed in Table IV. Both test accuracy and area
under the curve (AUC) are provided. From these results, we can
find that all these systems share a similar final test performance.

VI. CONCLUSION

In this article, we propose a secure learning system, called
PIVODL, for privately training XGBoost decision tree mod-
els in a VFL environment with labels distributed on multiple
clients. A secure node split protocol and a privacy-preserving
tree training algorithm are proposed by requiring the source and
split clients to separately split the data samples and calculate
the corresponding impurity scores, effectively defending against
differential attacks that may be encountered during the boosting
tree node splits. In addition, a partial DP mechanism is adopted
to deal with label privacy so that no client is able to guess the
correct data labels through the revealed leaf weights.

Our experimental results empirically indicate that the pro-
posed PIVODL framework is able to securely construct en-
semble trees with a negligible performance degradation. We
show that the test performance of the resulting decision trees
is relatively insensitive to different ε values of the introduced
DP, since the proposed algorithm adds Gaussian noise only to
the leaf weights that are sent to the source clients. Moreover, the
partial DP can effectively prevent labels of the data from being
revealed through the received leaf weights.

Although the proposed PIVODL system shows promising per-
formance in VFL, improving training efficiency remains chal-
lenging. The encryption in PIVODL still takes a large proportion
of both learning time and communication costs. Therefore, our
future work will be dedicated to developing a light weighted and
efficient secure XGBoost system for VFL with labels distributed
on multiple devices.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Artif. Intell. Statist., 2017, pp. 1273–1282.

[2] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 2,
pp. 1–19, Jan. 2019.

[3] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning via additively homomorphic encryption,” IEEE
Trans. Inf. Forensics Secur., vol. 13, no. 5, pp. 1333–1345, May 2018.

[4] S. Truex et al., “A hybrid approach to privacy-preserving federated learn-
ing,” in Proc. 12th ACM Workshop Artif. Intell. Secur., New York, NY,
USA, 2019, pp. 1–11.

[5] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, and H. Ludwig, “Hybridalpha: An
efficient approach for privacy-preserving federated learning,” in Proc. 12th
ACM Workshop Artif. Intell. Secur., New York, NY, USA, 2019, pp. 13–23.

[6] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learning,” in
Proc. USENIX Annu. Tech. Conf., Jul. 2020, pp. 493–506.

[7] H. Zhu, R. Wang, Y. Jin, K. Liang, and J. Ning, “Distributed additive en-
cryption and quantization for privacy preserving federated deep learning,”
Neurocomputing, vol. 463, pp. 309–327, 2021.

[8] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proc.
22nd ACM SIGSAC Conf. Comput. Commun. Secur., New York, NY, USA,
2015, pp. 1310–1321.

[9] T. Orekondy, S. J. Oh, Y. Zhang, B. Schiele, and M. Fritz, “Gradient-leaks:
Understanding and controlling deanonymization in federated learning,” in
Proc. NeurIPS Workshop Federated Learn. Data Privacy Confidentiality,
2019.

[10] J. Geiping, H. H. B. Dröge, and M. Moeller, “Inverting gradients—How
easy is it to break privacy in federated learning?,” in Proc. Adv. Neural Inf.
Process. Syst., 2020, vol. 33, pp. 16937–16947.

[11] H. Li and T. Han, “An end-to-end encrypted neural network for gradient
updates transmission in federated learning,” in Proc. Data Compression
Conf. (DCC), 2019, pp. 589–589, 2019, doi: 10.1109/DCC.2019.00101.

[12] O. Goldreich, “Secure multi-party computation,” Manuscript Preliminary
Version, vol. 78, 1998.

[13] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
New York, NY, USA, 2017, pp. 1175–1191.

[14] C. Gentry et al., A Fully Homomorphic Encryption Scheme, vol. 20.
Stanford, CA, USA: Stanford Univ., 2009.

[15] C. Dwork, “Differential privacy: A survey of results,” in Theory and
Applications of Models of Computation, M. Agrawal, D. Du, Z. Duan,
and A. Li, Eds. Berlin, Germany: Springer, 2008, pp. 1–19.

[16] S. Hardy et al., “Private federated learning on vertically partitioned data
via entity resolution and additively homomorphic encryption,” 2017,
arXiv:1711.10677.

[17] R. Nock et al., “Entity resolution and federated learning get a federated
resolution,” 2018, arXiv:1803.04035.

[18] Y. Liu, X. Zhang, and L. Wang, “Asymmetrical vertical federated learning,”
2020, arXiv:2004.07427.

[19] S. Yang, B. Ren, X. Zhou, and L. Liu, “Parallel distributed logistic
regression for vertical federated learning without third-party coordinator,”
2019, arXiv:1911.09824.

[20] K. Cheng et al., “SecureBoost: A lossless federated learning framework,”
IEEE Intell. Syst., vol. 36, no. 6, pp. 87–98, Nov./Dec. 2021.

[21] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in
Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, New
York, NY, USA, 2016, pp. 785–794.

[22] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserving
vertical federated learning for tree-based models,” Proc. VLDB Endow.,
vol. 13, pp. 2090–2103, Jul. 2020.

[23] Z. Tian, R. Zhang, X. Hou, J. Liu, and K. Ren, “Federboost: Private
federated learning for GBDT,” 2020, arXiv:2011.02796.

[24] Y. Liu et al., “A communication efficient vertical federated learning
framework,” 2019, arXiv:1912.11187.

[25] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed
data-parallel programs from sequential building blocks,” in Proc. 2nd ACM
SIGOPS/Eur. Conf. Comput. Syst., 2007, pp. 59–72.

[26] M. Isard and Y. Yu, “Distributed data-parallel computing using a high-level
programming language,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2009, pp. 987–994.

[27] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J.
Currey, “Dryadlinq: A system for general-purpose distributed data-parallel
computing using a high-level language,” in Proc. 8th USENIX Conf. Oper.
Syst. Des. Implementation, 2008, vol. 8, pp. 1–14.

[28] D. W. Hosmer Jr., S. Lemeshow, and R. X. Sturdivant, Applied Logistic
Regression, vol. 398. Hoboken, NJ, USA: Wiley, 2013.

[29] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning,
vol. 1. Cambridge, MA, USA: MIT Press, 2016.

[30] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[31] T. ElGamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE Trans. Inf. Theory, vol. 31, no. 4, pp. 469–472,
Jul. 1985.

[32] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in Proc. Adv. Cryptol. EUROCRYPT, (J. Stern, ed.), Berlin,
Germany, 1999, pp. 223–238.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2023 at 06:39:01 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/DCC.2019.00101

ZHU et al.: PIVODL: PRIVACY-PRESERVING VERTICAL FEDERATED LEARNING OVER DISTRIBUTED LABELS 1001

[33] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Proc. Theory Cryptogr. Conf., 2006,
pp. 265–284.

[34] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our
data, ourselves: Privacy via distributed noise generation,” in Proc. Annu.
Int. Conf. Theory Appl. Cryptogr. Techn., 2006, pp. 486–503.

[35] M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 308–318.

[36] K. Wei et al., “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Trans. Inf. Forensics Secur., vol. 15,
pp. 3454–3469, Apr. 2020.

[37] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” 2017, arXiv:1712.07557.

[38] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu, “Practical
multi-party private set intersection from symmetric-key techniques,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2017, pp. 1257–1272.

[39] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection
based on {OT} extension,” in Proc. 23rd USENIX Secur. Symp., 2014,
pp. 797–812.

[40] I.-C. Yeh and C.-H. Lien, “The comparisons of data mining techniques
for the predictive accuracy of probability of default of credit card clients,”
Expert Syst. Appl., vol. 36, no. 2, pp. 2473–2480, 2009.

[41] S. Moro, P. Cortez, and P. Rita, “A data-driven approach to predict the
success of bank telemarketing,” Decis. Support Syst., vol. 62, pp. 22–31,
2014.

[42] L. M. Candanedo, V. Feldheim, and D. Deramaix, “Data driven prediction
models of energy use of appliances in a low-energy house,” Energy Build.,
vol. 140, pp. 81–97, 2017.

[43] H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-IID data: A
survey,” Neurocomputing, vol. 465, pp. 371–390, 2021.

[44] Python Paillier Library, CSIRO Data61, 2013. [Online]. Available: https:
//github.com/data61/python-paillier

Hangyu Zhu received the B.Sc. degree in architec-
ture electrical and intelligence from Yangzhou Uni-
versity, Yangzhou, China, in 2015, the M.Sc. degree
in electrical and electronics from RMIT University,
Melbourne, VIC, Australia, in 2017, and the Ph.D.
degree in computer science from the University of
Surrey, Guildford, U.K., in 2021.

His main research interests include federated learn-
ing, privacy-preserving machine learning, and evolu-
tionary federated neural architecture search.

Rui Wang received the B.Sc. degree in applied
physics from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2017, and the
M.Sc. degree in cyber security from the University
of Southampton, Southampton, U.K., in 2018. He is
currently working toward the Ph.D. degree, focusing
on privacy-preserving machine learning, with the De-
partment of Intelligent Systems, Delft University of
Technology, Delft, The Netherlands.

Yaochu Jin (Fellow, IEEE) received the B.Sc., M.Sc.,
and Ph.D. degrees, all in automatic control from Zhe-
jiang University, Hangzhou, China, in 1988, 1990,
and 1996, respectively, and the Dr.-Ing. degree in
neuroinformatics from Ruhr University Bochum,
Bochum, Germany, in 2001.

He is an Alexander von Humboldt Professor of
artificial intelligence with the Faculty of Technology,
Bielefeld University, Bielefeld, Germany. He is also
a Distinguished Chair Professor of computational in-
telligence with the Department of Computer Science,

University of Surrey, Guildford, U.K. He was a Finland Distinguished Professor
in Finland, and Changjiang Distinguished Visiting Professor, in China. His
research interests include evolutionary optimization, evolutionary and multi-
objective machine learning, secure and privacy-preserving machine learning,
and evolutionary developmental approaches to artificial intelligence.

Prof. Jin is currently the Editor-in-Chief for the IEEE TRANSACTIONS ON

COGNITIVE AND DEVELOPMENTAL SYSTEMS and Complex and Intelligent Sys-
tems. He was an IEEE Distinguished Lecturer (during 2013, 2015, and 2017–
2019) and was the Vice President for Technical Activities of the IEEE Computa-
tional Intelligence Society (during 2014–2015). He was the recipient of the 2015,
2017, and 2020 IEEE Computational Intelligence Magazine Outstanding Paper
Award, and the 2018 and 2021 IEEE Transactions on Evolutionary Computation
Outstanding Paper Award. He was named a Highly Cited Researcher by the Web
of Science Group for 2019-2021. He is a Member of Academia Europaea.

Kaitai Liang (Member, IEEE) received the Ph.D.
degree from the Department of Computer Science,
City University of Hong Kong, Hong Kong.

He joined the Delft University of Technology, The
Netherlands, in 2020. Before that he was an Assistant
Professor of secure systems with the Department of
Computer Science, University of Surrey, U.K. His
research interests include applied cryptography and
information security; in particular, data encryption,
blockchain security, post-quantum crypto, privacy en-
hancing technology, and privacy-preserving machine

learning.

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2023 at 06:39:01 UTC from IEEE Xplore. Restrictions apply.

https://github.com/data61/python-paillier
https://github.com/data61/python-paillier

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

