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Abstract—Regression testing is performed during maintenance activities to assess whether the unchanged parts of a software behave
as intended. To reduce its cost, test case prioritization techniques can be used to schedule the execution of the available test cases to
increase their ability to reveal regression faults earlier. Optimal test ordering can be determined using various techniques, such as
greedy algorithms and meta-heuristics, and optimizing multiple fitness functions, such as the average percentage of statement and
branch coverage. These fitness functions condense the cumulative coverage scores achieved when incrementally running test cases in
a given ordering using Area Under Curve (AUC) metrics.
In this paper, we notice that AUC metrics represent a bi-dimensional (simplified) version of the hypervolume metric, which is widely
used in many-objective optimization. Thus, we propose a Hypervolume-based Genetic Algorithm, namely HGA, to solve the Test Case
Prioritization problem when using multiple test coverage criteria. An empirical study conducted with respect to five state-of-the-art
techniques shows that (i) HGA is more cost-effective, (ii) HGA improves the efficiency of Test Case Prioritization, (iii) HGA has a
stronger selective pressure when dealing with more than three criteria.

Index Terms—Test Case Prioritization, Genetic Algorithm, Hypervolume.
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1 INTRODUCTION

The goal of regression testing is to verify that software
changes do not affect the behavior of unchanged parts
[2]. Many approaches have been proposed in literature to
reduce the effort of regression testing [2], [3], which remains
a particular expensive post-maintenance activity [4]. One
of these approaches is test case prioritization (TCP) [5], [6],
whose goal is to execute the available test cases in a specific
order that increases the likelihood of revealing regression
faults earlier [7]. Since fault detection capability is unknown
before test execution, most of the proposed techniques for
TCP use coverage criteria [2] as surrogates with the idea
that test cases with higher code coverage will have a higher
probability to reveal faults. Once a coverage criterion is
chosen, search algorithms can be applied to find the order
maximizing the selected criterion.

Greedy Algorithms have been widely investigated in
literature for test case prioritization, such as simple greedy
algorithms [2], additional greedy algorithms [5], 2-optimal
greedy algorithms [3], or hybrid greedy algorithms [8].
Other than greedy algorithms, meta-heuristics have been
applied as alternative search algorithms to test case prior-
itization. To allow the application of meta-heuristics, proper
fitness functions have been developed [3], such as the Av-
erage Percentage Block Coverage (APBC) or the Average
Percentage Statement Coverage (APSC). Each fitness func-

This paper is an extension of “Hypervolume-based Search for Test Case
Prioritization” that appeared in the Proceedings of the Symposium on
Search-Based Software Engineering 2015 (SSBSE 2015), Bergamo, Italy,
pp. 157-172, 2015 [1].

tion measures the Area Under Curve (AUC) represented
by the cumulative coverage and cost scores achieved when
incrementally executing the test cases according to a specific
prioritization (or order). As such, multiple points in the
cost-coverage space are condensed into a single scalar value
that can be used as a fitness function for meta-heuristics,
such as single-objective genetic algorithms. Later work on
search-based TCP also employed multi-objective genetic
algorithms considering different AUC-based metrics as dif-
ferent objectives to optimize [9], [10], [11], [12].

We observed that the AUC metric used in the related
literature for TCP represents a simplified version of the well-
known hypervolume [13], which is a metric used in many-
objective optimization. Indeed, the problem of condensing
multiple points in the objective space (i.e., a Pareto front)
has been already investigated in many-objective optimiza-
tion using the more general concept of hypervolume under
manifold [13], which is a generalization of the AUC-based
metrics used in previous TCP studies but for the higher
dimensional objective space. We argue that the hypervolume
can be used to condense not only a single cumulative code
coverage criteria (as done by previous AUC metrics used
in TCP literature) but also multiple testing criteria, such as
the test case execution cost or further coverage criteria (e.g.,
branch, and past-fault coverage), in only one scalar value.

In our previous work [1], we introduced a Hypervolume-
based Genetic Algorithm (HGA) to solve the TCP problem
with multiple testing criteria. We conducted a preliminary
study on six open-source programs and we compared HGA
with the Additional Greedy algorithm [5], [14] when op-
timizing up to three testing criteria. Our preliminary results
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showed that HGA is not only much faster than the greedy
algorithm but that the generated test orderings reveal more
regression faults than the alternative algorithm for large
software programs. However, despite these encouraging
results, further studies are needed to answer the following
questions: (i) How does HGA perform compared to other state-of-
the-art techniques for the TCP problem? (ii) To what extent does
HGA scale when dealing with more than three testing criteria? (iii)
To what extent does HGA scale when dealing with large software
systems containing real faults?

To answer the aforementioned open questions, in this
paper we provide an extensive evaluation of Hypervolume-
based and state-of-the-art approaches for TCP when dealing
with up to five testing criteria (four objectives). In particular,
we carry out a first case study to assess the cost-effectiveness
and the efficiency of the various approaches. We compare
HGA with respect to three state-of-the-art techniques: a
cost cognizant Additional Greedy algorithm [5], [14], a
single objective Genetic Algorithm based on an AUC
metric (GA) [3], and Non-dominated Sorting Genetic
Algorithm II (NSGA-II), a multi-objective search-based
algorithm [9], [10], [11], [12].

A well-known limitation in many-objective optimiza-
tion is that traditional multi-objective evolutionary al-
gorithms (e.g., NSGA-II) do not scale when han-
dling more than three criteria. This happens because
the number of non-dominated solutions increases ex-
ponentially with the number of objectives [15], [16],
[17] (selection resistance). Therefore, we perform a sec-
ond case study to assess the selective pressure capabili-
ties of HGA when dealing with more than three crite-
ria, comparing it with two many-objective search algo-
rithms, namely Generalized Differential Evolution
3 (GDE3) [18] and Multi-objective Evolutionary
Algorithm Based on Decomposition (MOEA/D-DE) [19].
Finally, we conduct a third case study with the aim of
evaluating the performance of HGA when dealing with large
software systems containing real faults. The studies are
designed to answer the following research questions:
• RQ1: What is the cost-effectiveness and efficiency of HGA,

compared to state-of-the-art test case prioritization tech-
niques?

• RQ2: How does HGA perform with respect to many-objective
test case prioritization techniques?

• RQ3: How does HGA perform on a large software system
with real faults?

Our results suggest that the solution (test ordering) pro-
duced by HGA is more cost-effective than the solution
generated by Additional Greedy, GA, and NSGA-II.
In terms of efficiency, HGA is much faster than GA and
NSGA-II. Moreover, with respect to Additional Greedy,
its efficiency does not decrease as the size of the software
program and of the test suite increase. When comparing
HGA with many-objective search algorithms (e.g., GDE3 and
MOEA/D-DE), we observe that it is not only more or equally
effective, but it is also up to 3 times more efficient. Finally,
when dealing with large software systems such as MySQL,
we observe similar results to those achieved in the first case
study.

The contributions of this paper compared to the confer-
ence paper [1] can be summarized as follows:

1) We extend the empirical evaluation by conducting two
new case studies.

2) We partially replicate a previous study [12] on a large
real-world software system, namely MySQL.

3) We compare our algorithm with five state-of-the-
art algorithms for the Test Case Prioritization prob-
lem, namely Additional Greedy [5], [14], a
Genetic Algorithm based on an AUC metric [3],
Non-dominated Sorting Genetic Algorithm
II [20], Generalized Differential Evolution
3 [18], and Multi-objective Evolutionary
Algorithm Based on Decomposition [19].

4) We provide a comprehensive replication package [21]
including all the raw data and working data sets of our
studies.

In addition, we provide more details of the HGA algo-
rithm, expand the discussion of related work, and provide a
more qualitative discussion of the results. The remainder
of the paper is organized as follows. Section 2 discusses
the related literature, while Section 3 presents the proposed
algorithm. Sections 4, 5, and 6 describe our empirical studies
including the research questions and the results that we
obtained. Section 7 discusses the threats that could affect the
validity of the results achieved. Finally, Section 8 concludes
the paper.

2 BACKGROUND AND RELATED WORK

The Test Case Prioritization (TCP) problem consists of gen-
erating a test case ordering τ ′ ∈ PT that maximizes fault
detection rate f [7]:

Definition 1. — Given: a test suite T , the set of all permutations
PT of test cases in T , and a function f : PT → R.
Problem: find τ ′ ∈ PT such that (∀τ ′′)(τ ′′ ∈ PT )(τ ′′ 6=
τ ′)[f(τ ′) ≥ f(τ ′′)]

However, the fault detection capability case is not known
to the tester before test execution. Therefore, researchers
have proposed to use surrogate metrics, which are in some
way correlated with the fault detection rate [2], to determine
test case execution order. They can be divided into two main
categories [22]: white-box metrics and black-box metrics.

Code coverage is the most widely used metric among
white-box ones, e.g., branch coverage [5], statement cov-
erage [6], block coverage [23], and function or method
coverage [24]. Other prioritization criteria were also used
instead of structural coverage, such as interactions [25],
[26], requirement coverage [27], statement and branch di-
versity [28], [29], and additional spanning statement and
branches [30]. Other than white-box metrics also black-box
metrics have been proposed. For example, Bryce et al. pro-
posed the t-wise approach that considers the maximum
interactions between t model inputs [31], [32] [33]. Other
approaches considered the input diversity calculated using
NCD [34], the Jaccard distance [35], [36], and the Leven-
shtein distance [37], [38] between inputs. Finally, Henard et
al. considered also the number of killed model mutants [36],
[39]. Henard et al. [22] compared various white-box and black-
box criteria for TCP, showing that there is a “little difference
between black-box and white-box performance”.
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In all the aforementioned works, once a prioritization
criterion is chosen, a greedy algorithm is used to order
the test cases according to the chosen criterion. Two main
greedy strategies can be applied [8] [40]: the total strategy
selects test cases according to the number of code elements
they cover, whereas the additional strategy iteratively selects
the test case that yields the maximal coverage of code
elements not covered yet by previously selected test cases.
Recently, Hao et al. [8] and Zhang et al. [40] proposed a
hybrid approach that combines total and additional coverage
criteria showing that their combination can be more effective
than the individual components. Greedy algorithms have
also been used to combine multiple testing criteria such
as code coverage and cost. For example, Elbaum et al.
[41] and Malishevsky et al. [42] considered code coverage
and execution cost, where the additional greedy algorithm
was customized to condense the two objectives in only
one function (coverage per unit cost) to maximize. Three-
objective greedy algorithms have been also used to combine
statement coverage, historical fault coverage, and execution
cost [2], [43].

2.1 Search-Based Test Case Prioritization
Other than greedy algorithms, meta-heuristics have been
investigated as alternative search algorithms to test case
prioritization. Li et al. [3] compared additional greedy
algorithm, hill climbing, and genetic algorithms for code
coverage-based TCP. To enable the application of meta-
heuristics they developed proper fitness functions: APBC
(Average Percentage Block Coverage), APDC (Average Per-
centage Decision Coverage), or APSC (Average Percentage
Statement Coverage). For a generic coverage criterion (e.g.,
branch coverage), the corresponding fitness function is de-
fined as follows:

Definition 2. — Let E = {e1, . . . , em} be a set of target
elements to cover; let τ = 〈t1, t2, . . . , tn〉 be a given test case
ordering; let TEi be the position of the first test in τ that covers
the element ei ∈ E; the Average Percentage of Element Coverage,
i.e., the AUC metric, is defined as:

APEC = 1−
∑m
i=1 TEi
n×m

+
1

2× n
(1)

In the definition above, the target elements in E can be
branches (Equation 2 would correspond to APDC), state-
ments (APSC), basic blocks (APBC), etc. Equation 2 con-
denses the cumulative coverage scores (e.g., branch cover-
age) achieved when considering the test cases in the given
order τ using the Area Under Curve (AUC) metric. This area
is delimited by the cumulative points whose y-coordinates
are the cumulative coverage scores (e.g., statement coverage)
achieved when varying the number of executed test cases
(x-coordinates) according to a specified ordering [3].

Equation 1 relies on the assumption that all test cases
have equal cost. However, such an assumption is unrealistic
in practice and, as consequence, test orderings optimizing
Equation 1 may become sub-optimal when measuring the
test execution cost. In principle, the cost of each test could
be measured as its actual execution time. As argued by
previous studies [14], [43], such a measurement is not re-
liable because it depends on several external factors such as

different hardware, application software, operating system,
etc. Therefore, researchers used different metrics as proxy
for the actual execution time, such as counting the number
of executed statements [14], the number of executed basic
blocks in the control flow graph [43], or estimating the mon-
etary cost of each test case [44], or re-using the test execution
measurements from past regression testing activities [42].

Given a measurement of the test execution cost, the
“cost-cognizant” variant of Equation 1 has been defined in
the literature [12] as follows:

Definition 3. — Let E = {e1, . . . , em} be a set of target
elements to cover; let τ = 〈t1, t2, . . . , tn〉 be a given test case
ordering; let C = {c1, . . . , cm} be the cost of tests in τ ; let TEi
be the position of the first test in τ that covers the element ei ∈ E;
the “Cost-cognizant” Average Percentage of Element Coverage is
defined as:

APECc =

∑m
i=1

(∑n
j=TEi

cj − 1
2cTEi

)
∑n
i=1 ci ×m

(2)

When assuming that all tests have the same cost (i.e.,
∀ci ∈ C, ci = 1), Equation 2 becomes equivalent to Equa-
tion 1 [45]. This “cost-cognizant” variant measures the AUC
delimited by the cumulative points whose y-coordinates are
the cumulative coverage scores (e.g., statement coverage)
while their x-coordinates are the cumulative test execution
costs for a specified test ordering τ .

Since these metrics allow to condense multiple cumula-
tive points in only one scalar value, single-objective genetic
algorithms can be applied to find an ordering maximizing
the AUC. According to the empirical results achieved by Li
et al. [3], in most of the cases, the difference between the
effectiveness of permutation-based genetic algorithms and
additional greedy approaches is not significant.

2.2 Multi-objective Test Case Prioritization

Later works highlighted that given the multi-objective na-
ture of the TCP problem, permutation-based genetic algo-
rithms should consider more than one testing criterion. For
example, Li et al. [9] proposed a two-objective permutation-
based genetic algorithm to optimize APSC and execution
cost required to reach the maximum statement coverage (cu-
mulative cost). They use a multi-objective genetic algorithm,
namely NSGA-II, to find a set of Pareto optimal test case
orderings representing optimal compromises between the
two corresponding AUC-based criteria.

Based on the concept of Pareto optimality [46], in this
formulation of the problem, a test cases permutation τA is
better than another permutation τB , (and vice versa), if and
only if τA outperforms τB in at least one objective and it is
not worse in all other objectives. Formally:

Definition 4. — Given two permutations of test cases, τA and
τB , and a set of n functions (objectives) f : PT → R, τA
dominates τB (τA ≺ τB) if an only if:

fi(τA) ≥ fi(τB),∀i ∈ 1, 2, · · · , n
and

∃i ∈ 1, 2, · · · , n : fi(τA) > fi(τB)
(3)
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Definition 5. — Given the concept of Pareto dominance and a set
of feasible solutions Ω, a solution τ∗ is Pareto optimal if a solution
able to dominate it does not exist, namely:

@τA ∈ Ω : τA ≺ τ∗ (4)

Definition 6. — A Pareto Front is a set composed of Pareto
optimal solutions.

P ∗ = {τ∗ ∈ Ω} (5)

It is worth considering that multi-objective approaches
for test case prioritization return a Pareto front of permuta-
tions, that is a set of Pareto optimal test orderings.

Islam et al. [10] and Marchetto et al. [11] used NSGA-II
to find Pareto optimal test case orderings representing trade-
offs between three different AUC-based criteria: (i) cumula-
tive code coverage, (ii) cumulative requirement coverage,
and (iii) cumulative execution cost. Similarly, Epitropakis et
al. [12] compared greedy algorithms, MOEAs (NSGA-II e
TAEA), and hybrid algorithms. As already done by Islam
et al. [10] and Marchetto et al. [11], they considered different
AUC-based fault surrogates: statement coverage (APSC), ∆-
coverage (APDC), and past fault coverage (APPFD). They
showed that three-objective MOEAs and hybrid algorithms
are able to produce more effective solutions with respect to
those produced by additional greedy algorithms based on a
single AUC metric.

In this paper, we notice that these approaches [9], [10],
[11], [12] to test case prioritization have important draw-
backs. First of all, these measures are computed considering
the Area Under Curve obtained plotting the value of the
metric with respect to the test cases position in a Carte-
sian plan [11] and then computing a numerical approxi-
mation of the Area Under Curve, using the Trapezoidal
rule [47]. These values are projections of a manifold of
cumulative points (e.g., a projection of a volume into two
areas). Therefore, despite the AUC metrics being strictly
dependent on each other, the different AUC metrics are
calculated independently (we will show an example in
Section 3). Moving to this multi-objective paradigm where
AUC metrics are treated as independent objectives has an
additional overhead compared to a single-objective search.
In multi-objective search, the computational complexity of
computing the dominance relation for all pairs of candidate
test permutations isO(n2×m), where n is the number of test
permutations and m is the number of AUC metrics. Instead,
in single-objective search, the cost of sorting the individuals
to select the best ones is O(n× log n) for stochastic selection
or O(n) with tournament selection. In general, the selection
in single-objective search is less expensive than the selection
in a multi-objective paradigm.

Moreover, the tester has to inspect the Pareto front in
order to find the most suitable solution with respect to the
testing criteria but no guidelines are provided for selecting
the ordering (Pareto optimal solution) to use. The Pareto
efficient solutions generated by a multi-objective search
are trade-offs in the space of the AUC metrics and not
in the space of the original testing criteria, which are the
actual aspects that decision-makers (a.k.a. testers) look at
for regression testing purpose. Furthermore, each solution
in the Pareto front represents a permutation of tests and

selecting a different permutation requires re-evaluating all
the test cases in that permutation.

Another important limitation of these classical multi-
objective approaches is that they lose their effectiveness as
the problem dimensionality increases, as demonstrated by
previous work in numerical optimization [48]. Therefore,
other non-classical many-objective solvers must be inves-
tigated when dealing with multiple (many) testing criteria.
Finally, in [3], [9], [10], [12] there is a lack of strong empirical
evidence of the effectiveness of MOEAs with respect to
simple heuristics, such as greedy algorithms, in terms of
cost-effectiveness.

In this paper, we notice that the most natural way to
deal with the multi-objective TCP problem is represented
by the hypervolume-based solvers since the AUC metrics
used in the related literature for TCP represent a specific
simplified version of the hypervolume metric [13]. Indeed,
in many-objective optimization, the hypervolume metric is
widely used to condense points from a higher dimensional
objective space in only one scalar value. For these reasons, in
this paper, we propose to use a hypervolume metric to solve
the multi-objective TCP problem. Moreover, because of the
monotonicity properties of the coverage criteria, the compu-
tation of the hypervolume for TCP requires polynomial time
versus the exponential time required for traditional many-
objective problems.

2.2.1 Hypervolume-based many-objective optimization
Multi-objective meta-heuristics have been successfully ap-
plied in the literature to solve a number of software en-
gineering problems, such as software refactoring [49], test
data generation [50], defect prediction [51], [52], and re-
gression testing [53], [43]. These problems have often been
solved with algorithms like the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [20] or the im-
proved Strength Pareto Evolutionary Algorithm
(SPEA2) [54], which are very effective for problems with
two or three objectives. However, handling more than four
objectives is particularly challenging as the number of non-
dominated solutions may exponentially increase with the
number of objectives to optimize. In this scenario, the classi-
cal non-dominated sorting algorithms or other classical en-
vironmental selection mechanisms are not able to promote
some solutions over the others within a given population
(selection resistance [15], [16]) because all solutions are in-
comparable (i.e., they do not dominate each other).

To address this problem, researchers in the evolutionary
computation community developed a new class of meta-
heuristics, often referred to as many-objective algorithms, for
problems with more than three search objectives. Accord-
ing to a recent survey by Li et al. [15], strategies to ad-
dress the selective resistance include diversity-based, refer-
ence set based, and indicator-based algorithms. For example,
the Generalized Differential Evolution 3 (GDE3)
[18] relies on a diversity-based mechanism to improve the
selection pressure. GDE3 extends differential evolution (DE)
for constrained multi-objective and many-objective opti-
mization where the population for the next generation is
generated by combining the non-dominated sorting with
a pruning algorithm for the non-dominated set. The non-
dominated set is pruned according to the solution diversity,
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which is measured with a crowding estimation metric based
on the nearest neighbors. Solutions having the smallest dis-
tance to their neighbors are the most crowded ones in the
non-dominated set and can be pruned out. Kukkonen and
Deb [55] showed that GDE3 with crowding estimation is
effective and efficient in producing well-diversified trade-
offs for problems with more than two objectives.

MOEA/D is decomposition-based evolutionary algorithm
[19] which decomposed a multi- or a many-objective prob-
lem into multiple single-objective problems obtained via
sum-scalarization. Specifically, it specifies beforehand a set
of predefined search directions uniformly distributed over
the entire Pareto-optimal front. These directions are ob-
tained by normalizing the search objectives and combin-
ing them using a weighted sum approach, where different
weights are used to specify the different search directions
to consider. Then, the MOEA/D promotes solutions that are
closer to these directions, which therefore correspond to
well-distributed reference points the search aims to reach.
The idea of using predefined reference points has been
proved to be so effective that it has been reused and ex-
tended in more recent many-objective algorithms, such as
NSGA-III [56], the surface-based evolutionary algorithm
(SEA) [57], and other decomposition-based evolutionary
algorithms [58].

The closest many-objective algorithms to HGA are the
indicator-based evolutionary algorithms. The first algorithm
proposed in the literature and falling in this category is
IBEA [59], an evolutionary algorithm that selects solutions
based on a binary hypervolume indicator that compares
the portion of hypervolume they dominate. Emmerich et
al. [60] proposed SMS-EMOA, which is a steady-state evo-
lutionary algorithm that combines non-dominated sorting
with an hypervolume-based selection. It first uses the non-
dominated sorting to determine the set of non-dominated
solutions in each generation. Then, solutions with the least
hypervolume contribution are discarded if the number of
non-dominated solutions is larger than the fixed population
size. Recently, Jiang et al. [61] proposed a more-efficient
algorithm for the exact computation of the hypervolume.
However, no analysis or proof is given about its worst-case
computational complexity.

While the aforementioned hypervolume-based evolu-
tionary algorithms help to generate better solutions than
classical multi-objective algorithms (e.g., NSGA-II, SPEA2),
they are particularly expensive due to the algorithms used
to compute the hypervolume, whose complexity is expo-
nential in the number of objectives [62], [63]. Indeed, previ-
ous studies showed that there is no polynomial algorithm
available for the exact computation of the hypervolume
dominated by a generic set of non-dominated solutions
[62]. To cope with the computation cost of the exact hy-
pervolume computation, researchers have proposed various
approximating strategy. Bader and Zitzler [63] used Monte
Carlo simulation to approximate the exact hypervolume
values. Ishibuchi et al. [64] used a scalarizing function-based
method to approximate the hypervolume metric.

Our approach follows the line of research defined by
the aforementioned hypervolume-based evolutionary algo-
rithms. However, we introduce a novel polynomial-time
algorithm for the exact computation of the hypervolume but

that is applicable when the functions used in the hypervol-
ume computation are monotonic, such as in case of the TCP
problem. Therefore, defining a polynomial-time algorithm
for the exact computation of the hypervolume indicator
for any set of solutions (i.e., for any problem) still remain
an open challenge. Since our algorithm provides an exact
computation of the hypervolume for TCP, there is no need
for the usage of approximation strategies in our context.

3 HYPERVOLUME GENETIC ALGORITHM FOR
TEST CASE PRIORITIZATION

This section describes the proposed hypervolume metric for
the multi-objective test case prioritization problem. It also
highlights connections and differences with the AUC-based
metrics used in previous work on search-based test case
prioritization [3], [9], [10], [11], [12].

3.1 Hypervolume indicator
In many-objective optimization, there is a growing trend to
solve many-objective problems using quality scalar indicators
to condense multiple objectives into a single objective [13].
Therefore, instead of optimizing the objective functions
directly, indicator-based algorithms are aimed at finding
a set of solutions that maximize the underlying quality
indicator [13]. One of the most popular indicators is the
hypervolume, which measures the quality of a set of solutions
as the total size of the objective space that is dominated by
one (or more) of such solutions (combinatorial union [13]).
For two-objective problems, the hypervolume corresponds to
the area under the curve, i.e., the portion of the area that is
dominated by a given set of candidate solutions, while for
three-objective problems it is represented by the volume.

Hypervolume in two-objective TCP. To illustrate intu-
itively the proposed hypervolume metric, let us consider for
simplicity only two testing criteria: (i) maximizing the state-
ment coverage and (ii) minimizing the execution cost of a
test suite. When considering the test cases in a specific order,
the cumulative coverage and the cumulative execution cost
reached by each test case draw a set of points within the
objective space.

For example, let us consider the test suite T =
{t1, t2, . . . , tn} with the following statement coverage
Cov = {covS(t1), covS(t2), . . . , covS(tn)} and execution
cost Cost = {cost(t1), cost(t2), . . . , cost(tn)}. As de-
picted in Figure 1-(a), if we consider the ordering τ =
〈t1, t2, . . . , tn〉 we can measure the cumulative scores as
follows: the first test case t1 covers a specific set of
code statements covS(p1) = covS(t1) with cost equal to
cost(p1) = cost(t1) (first cumulative point p1); the sec-
ond test case in the ordering t2 reaches a new cumula-
tive statement coverage covS(p2) = covS(p1) ∪ covS(t2)
with cost(p2) = cost(p1) + cost(t2) (second cumulative
point p2). In general, covS(pi) = covS(pi−1) ∪ covS(ti) and
cost(pi) = cost(pi−1) + cost(ti). Thus, each test case prior-
itization corresponds to a set of points in the two-objective
space denoted by the two testing criteria, i.e., statement
coverage and execution cost in our example (see Figure 1-
(a)). These points are weakly monotonically increasing since cu-
mulative cost increases, while cumulative coverage is stable
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Fig. 1. Cumulative points in two- and three-objective test case prioritization. The gray area (or volume) denotes the portion of objective space
dominated by the cumulative points P (τ).

or increases when adding a new test case from the ordering,
i.e., covS(pi) ⊆ covS(pi+1) and cost(pi) 6 cost(pi+1). Note
that in Figure 1-(a) |covS(pi)| denotes the cardinality of the
set covS(pi).

Given this set of points, we can measure how quickly the
given ordering τ optimizes the two objectives by measuring
the proportion of the area dominated by the correspond-
ing cumulative points P (τ), denoted by the gray area in
Figure 1-(a). The dominated area is represented by all points
in the objective space that are worse than the cumulative
points according to the concept of dominance in the multi-
objective paradigm in Definition 4. Notice that by defini-
tion [65], the area dominated by a given point A = (xa, ya)
within the bi-dimensional objective space F = {cost, |cov|}
(i.e., cumulative cost and cumulative coverage) is the rect-
angle (area) delimited by all points in F such that cost ≥ xa
and |cov| ≤ ya. For example, the area dominated by a
cumulative point pi in Figure 1-(a) is the rectangle (area)
delimited by cost ≥ cost(pi) and |cov| ≤ |covS(pi)|. Given a
set of non-dominated points P (τ) within the bi-dimensional
objective space F = {cost, |cov|}, the overall dominated
area is given by the union of the area (rectangle) dominated
by each single point pi ∈ P (τ) [65].

Two different orderings correspond to two different sets
of cumulative points and then two different dominated
areas. Therefore, we can compare the corresponding fraction
of dominated areas to decide whether one candidate test
case ordering is better or not than another one (fitness
function): larger dominated areas imply faster statement
coverage rate. In this two-objective space, the dominated
area can easily be computed as the sum of the rectangles
of width [cost(pi+1) − cost(pi)] and height |covS(pi)| as
reported in Figure 1-(a).

Hypervolume in three-objective TCP. Similarly, if we
consider a third testing criterion (such as past faults cover-
age |covPF (pi)|) each candidate prioritization corresponds
to a set of points in a three-dimensional space and, in this
case, the dominated proportion of the objective space is
represented by a volume instead of an area, as depicted
in Figure 1-(b). Since even in this three-objective space the

cumulative points are always weakly monotonically increasing,
the dominated volume can be computed as the sum of
the parallelepipeds of width [cost(pi+1) − cost(pi)], height
|covS(pi)|, and depth |covPF (pi)|.

Hypervolume in N-objective TCP. For more than three
testing criteria the objective space dominated by a set of
cumulative points is called a hypervolume and represents a
generalization of the area for a higher dimensional space.
Without loss of generality, let T = {t1, t2, t3, . . . , tn} be
a test suite of size n and F = {cost, Cov1, . . . , Covm} a
set of testing criteria used to prioritize the test cases in
T , where cost denotes the execution cost of each test case
while Cov1, . . . , Covm are the remaining m testing criteria
to maximize. Given a permutation τ of test cases in T we
can compute the corresponding set of cumulative points
P (τ) = {p1, . . . , pn} obtained by cumulating the scores
cost, Cov1, . . . , Covm achieved by each test case in τ .

Definition 7. — The hypervolume dominated by a permutation
P (τ) of test cases can be computed as follows:

IH(τ) =
n−1∑
i=1

[
[cost(pi+1)− cost(pi)]× |Cov1(pi)| × · · · × |Covm(pi)|

]
(6)

where [cost(pi+1) − cost(pi)] × |Cov1(pi)| × · · · ×
|Covm(pi)| measures the hypervolume dominated by a
generic cumulative point pi, but non-dominated by the next
point pi+1 in the ordering τ . Since in test case prioriti-
zation the maximum values of all the testing criteria are
known (e.g., the maximum execution cost or the maximum
statement coverage are already known), we can express the
hypervolume as a fraction of the whole objective space as
follows:

Definition 8. — The fraction of the hypervolume dominated by a
permutation P (τ) of test cases is:

IHP (τ) =

(n−1)∑
i=1

[
[cost(pi+1)− cost(pi)]× |Cov1(pi)| × · · · × |Covm(pi)|

]
cost(pn)× |Covmax1 | × . . . |Covmaxm |

(7)
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Algorithm 1: Hypervolume Computation
Input: Permutation of test cases τ = 〈t1, . . . , tn〉
Execution cost vector Cost = {c1, . . . , cn}
Testing criteria to maximize F = {Cov1, . . . , Covm}
Result: Hypervolume score for τ

1 begin
/* Initialization */

2 IHP (τ) = 0
3 cumCost = 0, cumCov1 = ∅, . . . , cumCovn = ∅
4 for each i=1...(m-1) do
5 cumCost = cumCost + ci
6 for each fi ∈ F do
7 cumCovi = cumCovi ∪ Covi(ti)

8 slice = ci+1 × |cumCov1| × · · · × |cumCovm|
9 IHP (τ) = IHP (τ) + slice

/* The loop ends when the maximum coverage is
reached */

10 if ∀Covi ∈ F , cumCovi == Covmax
i then

11 break

/* Adding the remaining portion of hypervolume */
12 slice = (costmax - cumCost) ×|Covmax

1 | × · · · × |Covmax
m |

13 IHP (τ) = IHP (τ) + slice
/* Normalizing the hypervolume */

14 for each fi ∈ F do
15 IHP (τ) = IHP (τ) / |Covmax

i |

16 IHP (τ) = IH(τ) / costmax

where cost(pn) is the execution cost of the whole test suite
T and |Covmaxi | denotes the maximum values for the i-
th coverage criterion. Such a metric ranges in the interval
[0; 1]. It is equal to +1 in the ideal case where the test case
ordering allows to reach the maximum test criteria scores
independently from the execution cost value cost(pi). A
higher IHP (τ) mirrors a higher ability of the prioritization
τ in maximizing the testing criteria with lower cost.

3.1.1 Hypervolume complexity
As pointed out by Auger et al. [13], the computation of the
hypervolume indicator is usually not a trivial task and it is
strongly impacted by the choice of the reference points and
the distribution of solutions on the Pareto front. Despite this,
it is worth noting that in the case of Test Case Prioritization
a candidate test case ordering corresponds to a set of mono-
tonically increasing cumulative scores. For this reason, we
can use Equation 7 to compute the dominated hypervolume
instead of the more expensive algorithm proposed by Auger
et al. [13]. Indeed, the IHP (τ) metric sums up the slices
of dominated hypervolume delimited by two subsequent
cumulative points. Thus, let m be the number of the test-
ing criteria and let n be the number of cumulative points
(corresponding to the size of the test suite), IHP (τ) requires
to sum the n hypervolume slices, each one computed as
the multiplication of m test criteria scores. Thus, the overall
computational time is O(n ×m). Conversely, in traditional
many-objective optimization the points delimiting the non-
dominated hypervolume are non-monotonically increasing
and thus, the computation of the hypervolume metric re-
quires a more complex algorithm which is exponential with
respect to the number of objectives m [13], or testing criteria
for TCP.

3.1.2 Efficient hypervolume computation
To speed up the computation of the hypervolume metric,
we use Algorithm 1. Given a permutation of test cases τ ,

the corresponding execution cost array cost, and a set of
testing criteria to maximize Cov1, . . . , Covm; the algorithm
initializes the cumulative coverage scores (line 3 of Algo-
rithm 1). Such scores are then incrementally updated for
each test case in the given order τ (main loop in lines 4-11).
In particular, for each test t in τ , the algorithm computes
the cumulative cost (line 5) and cumulative coverage scores
(lines 6-7), one cumulative coverage score for each testing
criterion Covi ∈ F . Then, the cumulative scores are used
to compute the actual IHP (τ) (lines 8-9). If the maximum
coverage is reached earlier for all Covi ∈ F (i.e., before
iterating over all t ∈ τ ), the loop is terminated (lines 10-11).
The remaining portion of the IHP (τ) metric is added in lines
12-13 of Algorithm 1: it corresponds to the hypervolume of
size (costmax − cumCost) × |Covmax1 | × · · · × |Covmaxm |.
Finally, IHP (τ) is normalized in lines 14-16. The core idea
of Algorithm 1 is to reduce the number of iterations needed
to compute IHP (τ) given the fact that the remaining portion
of the hypervolume is known a priori when the maximum
cumulative coverage is reached for all testing criteria in F .

To better understand how Algorithm 1 works, let us
consider the example of the test suite shown in Table 1. The
test suite contains five test cases, whose execution time and
coverage information are also shown in the table. Table 2
shows how the hypervolume is computed in each step of
Algorithm 1 for the prioritization τ = 〈t5, t3, t4, t2, t1〉. First,
the hypervolume and the cumulative scores are initialized
as specified in line 3 of Algorithm 1. In the first iteration
of the algorithm, the cumulative scores are updated based
on t5, which is the first test case in the permutation. t5
covers four branches, five statements, and its cost is 14s.
Therefore, the hypervolume score is updated according to
Equation 7 as IHP (τ) = (61s-14s) × 4 (branches) × 5
(statements) = 940. In the second iteration, the coverage
scores are updated by considering the second test in the
permutation τ , i.e., t3. Such a test covers two additional
branches and six additional statements compared to t5.
Therefore, the new hypervolume is IHP (τ) = 940 (previous
value) + (105s-61s) × 6 (branches) × 11 (statements) =
3,844. The third test case in the permutation is t4, which
covers two additional branches and two additional state-
ments with an additional cost of 44s. Thus, in the third
iteration of Algorithm 1, the new hypervolume value is
computed as IHP (τ) = 3,844 (previous value) + (124s-105s)
× 8 (branches) × 13 (statements) = 5,820. The first three
test cases already allow to reach 100% of branch and 100%
of statement coverage; thus, the main loop in lines 4-11
of Algorithm 1 is terminated without iterating over the
remaining two test cases t1 and t2. In the second last row of
Table 2, the hypervolume is updated according to lines 12-13
of Algorithm 1. Specifically, IHP (τ) = 5,820 (previous value)
+ (165s-124s) × 8 (branches) × 13 (statements) = 10,084.
Finally, the hypervolume is normalized by diving IHP (τ)
by the hypervolume of the hyper-rectangle whose sides are
equal to the overall cost and coverage achievable by running
all tests in τ . Specifically, the final hypervolume score for the
permutation τ is IHP (τ) = 10,084 / (165s× 8× 13)≈ 0.5876.

3.2 Hypervolume-based Genetic Algorithm
In this paper, we consider the IHP (τ) metric as a suitable
fitness function to guide search algorithms in finding the
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TABLE 1
An example of test suite T = {t1, t2, t3, t4, t5} for a small program with eight branches, 13 statements. For every test t, we specify which

branches and statement are covered by t as well as its execution cost (time in s).

Tests Branches Statements Cost
b1 b2 b3 b4 b5 b6 b7 b8 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

t1 X X X X X X 41
t2 X X X X X X X X 19
t3 X X X X X X X X X 47
t4 X X X X X X X X X 44
t5 X X X X X X X X X 14

TABLE 2
Walkthrough of Algorithm 1 for the test suite in Table 1 and the

prioritization τ = 〈t5, t3, t4, t2, t1〉.

Steps Selected Cumulative scores
IHPTests Cost Branch Cov. Stmt Cov.

Initialization - 0 0 0 0
Iteration 1 t5 14 4 5 940
Iteration 2 t3 61 6 11 3,844
Iteration 3 t4 105 8 13 5,820

Adding the last
t1, t2 165 8 13 10,084part of the volume

Normalization - - - - 0.5876

Algorithm 2: Hypervolume Genetic Algorithm
Input:
Solution representation: permutation of test cases
Fitness function: IHP (τ)
Result: the best permutation of test cases according to IHP (τ)

1 begin
2 initialize population with random candidate solutions
3 evaluate each candidate solution
4 while max # of generations has not been reached do
5 select best individuals based on IHP (τ) using binary

tournament selection
6 recombine pairs of individuals using PMX-Crossover
7 mutate individuals using SWAP-Mutation
8 evaluate each candidate solution

optimal ordering τ in multi-objective test case prioritization.
In particular, we applied the Genetic Algorithm (GA) [66],
a stochastic search technique based on the mechanism of
natural selection and natural genetics. We selected this
algorithm because it has been used to solve a wide range of
optimization problems that are not solvable in polynomial
time. Moreover, with respect to other search algorithms, it is
highly parallelizable [67].

GA starts with a random population of solutions. Each
individual (i.e., chromosome) represents a solution of the
optimization problem. The population evolves through sub-
sequent generations where individuals are evaluated based
on a fitness function to be optimized. At each generation,
new individuals (i.e., offsprings) are created by applying
three operators: (i) a selection operator, based on the fitness
function, (ii) a crossover operator, that recombines two indi-
viduals from the current generation with a given probability,
and (iii) a mutation operator, which modifies the individuals
with a given probability.

We propose a new genetic algorithm named HGA
(Hypervolume-based Genetic Algorithm), depicted in Al-
gorithm 2. Despite, GAs are commonly used for solving
single-objective problems, using the hypervolume indicator as
fitness function, it is possible to combine multiple objectives
in a single one. Each solution is a permutation of integers in

which each element represents a test case to be executed
and the population is represented by a set of different
test case permutations. The selection operator is the binary
tournament selection (line 5), which randomly picks two
individuals for the tournament and selects the one with the
better fitness function. The crossover operator is the PMX-
Crossover (line 6), which swaps the permutation elements
at a given random crossover point. The mutation operator
is the SWAP-Mutation (line 7) that randomly swaps two
chosen permutation elements within each offspring. More
details on the parameter settings are reported in Section
4.1.4. The fitness function that drives the GA evolution is
the hypervolume indicator described in Section 3.1. HGA can
be briefly summarized as (i) generating test cases orderings,
(ii) evaluating the permutations using the IHP (τ) metric,
and (iii) using this value to drive the GA evolution.

3.3 The Relationship between Hypervolume and AUC-
based Metrics
The IHP (τ) metric proposed in this paper can be viewed as
a generalization of the AUC-based metrics (e.g., APSC) used
in prior work on search-based test case prioritization. For
example, the APSC metric measures the average cumulative
fraction of statements coverage as the Area Under Curve
delimited by the test case ordering with respect to the
cumulative statement coverage scores [3]. In light of the
proposed hypervolume metric, APSC can be viewed as a
simplified version of IHP (τ) where all test cases have exe-
cution cost equal to one and only the statement coverage is
considered as a testing criterion. A similar consideration can
be made for all the other cumulative fitness functions used
in previous work on search-based test case prioritization [3],
[9], [10].

Finally, as explained in Section 2, despite the AUC
metrics being strictly dependent on each other, they are
calculated independently in test case prioritization based
on multi-objective Genetic Algorithms. Indeed, these values
are projections of a manifold of cumulative points (e.g., a
projection of a volume into two areas). For example, let
us consider again the example of the test suite in Table
1. Figure 2-(a) depicts the cumulative coverage and cost
scores for the prioritization τ = 〈t5, t3, t4, t2, t1〉. Applying
AUC-based metrics to assess the fitness of τ require us to
compute two metrics, i.e., APBCc and APSCc. These metrics
correspond to the grey areas in Figure 2, which correspond
to the projections of the hypervolume on the geometric
plane Statement-Cost and Branch-Cost. An important dif-
ference between the AUC-based metrics (e.g., APSC) and
IHP (τ) lies in how they measure the area dominated by a
given test case permutation/ordering P (τ). The AUC-based
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(b) Statement Coverage

Fig. 2. Cumulative points in three-objective test case prioritization. The
gray areas denote the Area Under Curve for the two projections of the
cumulative score for the permutation in Table 2 onto planes [Cost ×
Branch Cov.] and [Cost × Statement Cov.].

metrics provide an over-estimation of the area dominated by
P (τ) using the trapezoidal rule [3] (see Figure 2). Instead,
IHP (τ) uses the rectangular rule, thus, strictly satisfying
the definition of dominance in multi- and many-objective
optimization (see Definition 4 and Figure 1).

3.3.1 Supporting the decision making
Prior studies focused on AUC-based metrics in a multi-
objective paradigm with the theoretical motivation that hav-
ing multiple Pareto optimal solutions helps to accommodate
for different views from decision-makers that may profit
of the variants to refine their views during the solution
evaluation process. In the following, we show, through an
example, that choosing trade-offs in the space of the AUC-
based metrics is different from choosing trade-offs among
the original testing criteria being condensed in these metrics.
To this aim, let us consider again the example of test suite
shown in Table 1. Let us suppose we are interested in finding
a test case prioritization that optimizes three testing criteria:
execution time, branch, and statement coverage. Let us also
assume we used the AUC-based metrics and multi-objective
optimization as suggested in prior studies. First, we notice
that the three original testing criteria correspond to only

two objectives: the cost-cognizant average percentage of
branch coverage (APBCc) and the cost-cognizant average
percentage of statement coverage (APSCc).

Remark 1: in general, n testing criteria for the test case
prioritization problem correspond to n− 1 search objectives when
using the cost-cognizant AUC-based metrics.

In our example, there are 120 possible permutations and
we can use an exhaustive search to find the Pareto optimal
ones. Among these possible test permutations, there are
only three permutations that are Pareto optimal. The first
two optimal solutions are τB = {T5, T3, T4, T2, T1} and
τS = {T5, T2, T1, T3, T4}. The former is the best permutation
for APBCc while the latter is the best solution for APSCc.
Graphically, the two permutations τB and τS correspond to
the two corners of the Pareto front as shown in Figure 3-
(a). The third Pareto optimal solution is the permutation
τH = {T5, T2, T3, T1, T4}, which corresponds to the solu-
tions with the largest hypervolume score.

Let us assume that the decision-maker wants to give
higher priority to statement coverage over branch coverage
and therefore he/she chooses the solution τS with the
largest statement coverage rate. In theory, we may conclude
that τS is indeed the best test prioritization for statement
coverage. To refute this hypothesis, let us now look at the
solution τS projected in the space of the original coverage
criteria (for simplicity we consider only cost and statement
coverage) rather than in the objective space (i.e., the space
of the AUC-metrics). Figure 3-(b) depicts the statement
coverage over execution cost achieved by τS compared
to the solution with τH . As we can observe, τS achieves
the maximum statement coverage earlier than τH (105s for
the former compared to 121s for the latter). However, τH
achieves better statement coverage than τS during the first
60s of test execution time. Similarly, the best permutation is
τH if our goal is to reach higher statement coverage in 100s
of test execution time.

Remark 2: when not enough resources are available to run the
entire test suite, choosing a solution among the trade-offs produced
with AUC-based metrics can lead to suboptimal results.

Furthermore, we notice that any test case permutation is
by itself a set of trade-offs in the space of the original testing
criteria. Indeed, τS corresponds to six points/trade-offs
between execution cost and statement coverage as already
shown in Figure 3. Similarly, τH corresponds to six trade-
offs in the space of the testing criteria. Decision-makers can,
in theory, choose not only which permutation to select but
also whether stopping the execution of the test suite earlier
(if he/she has not enough resources and time to run the
entire suite). In our example, analyzing the trade-offs in
the space of execution cost and statement coverage depicted
in Figure 3 provides better insights about the pros and the
cons of the two permutations τS and τH when varying the
amount of resources (time) we want to spend on regression
testing.

Remark 3: each test permutation is by definition a set of
trade-offs in the space of the testing criteria.
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Fig. 3. Comparison of the Pareto optimal solutions (test prioritizations) for the test suite in Table 1 and the solution with the best IHP score.

4 EVALUATING THE HYPERVOLUME GENETIC AL-
GORITHM WITH LESS THAN THREE CRITERIA

We conduct a first empirical study to assess the perfor-
mances of HGA. In particular, we investigate the following
high-level research question:

RQ1: What is the cost-effectiveness and efficiency of HGA,
compared to state-of-the-art test case prioritization techniques?

To better clarify it, we detailed it in two research questions:
• RQ1.1: What is the cost-effectiveness of HGA, compared

to state-of-the-art test case prioritization techniques? This
research question aims at evaluating to what extent
the test case ordering obtained by HGA is able to de-
tect faults (effectiveness) earlier (lower execution cost)
in comparison with three state-of-the-art techniques: a
cost cognizant additional greedy algorithm [5], [41], a
single objective genetic algorithm based on an AUC
metric (GA) [3], and a multi-objective search based al-
gorithm namely NSGA-II [20] used in prior test case
prioritization [14], [12]. This reflects the developers’
needs to discover regression faults with minimum cost.

• RQ1.2: What is the efficiency of HGA, compared to state-of-
the-art test case prioritization techniques? With this second
research question, we are interested in comparing the
running time (efficiency) required by HGA to find an
optimal test ordering, in comparison with the three
experimented test case prioritization techniques.

4.1 Study Design

This subsection describes the design of the study.

4.1.1 Context of the Study
The context consists of five GNU utilities —namely Bash,
Flex, Grep, GZip, Sed— from the Software-artifact Infras-
tructure Repository (SIR) [68]. The characteristics of these
five programs are reported in Table 3, including their size
(in terms of lines of code), test suite size, and type of faults.

In total, the selected programs have a size ranging between
5, 680 and 59, 846 LOC, while the number of test cases varies
between 214 and 1, 061. We selected these programs since
they have been used in previous work on regression testing
[3], [12], [14], [69], [70], [71]. Moreover, they have different
size, number of tests, and context applications. As faults,
we consider the seeded faults that are available in SIR.
Please consider that, when seeding the faults, the authors
of the repository assumed that the programmer that made
the changes inserted the faults. Thus, the seeded faults can
be located only within the changes between versions (calcu-
lated with the assistance of a diff tool)1. More specifically,
SIR provides a list of seeded faults with the corresponding
test-fault coverage information. In our study, we considered
the non-trivial faults, i.e., faults that can be exposed by a
very few test cases, as suggested in the SIR guidelines [68].
For the sake of this analysis, we always selected the largest
hard matrices (i.e., matrices of faults that are killable by few
tests) in case of multiple fault matrices available in the SIR
repository.

4.1.2 Testing Criteria
To answer our research questions, we considered different
testing criteria widely used in previous test case prioritiza-
tion work [3], [12], [72]:
• Statement coverage criterion. We measured statement

coverage achieved by each test case using gcov, a
profiling tool that is part of the GNU C compiler (gcc).

• Execution cost criterion. To compute the execution cost,
we could just measure the test case execution time.
However, this measure depends on several external fac-
tors such as different hardware, application software,
operating system, etc. In this paper, we addressed this
issue by counting the number of executed instructions
in the production code, instead of measuring the ac-
tual execution time. To this aim, we used gcov to
measure the execution frequency of each source code
instruction for the programs from the GNU. Notice
that approximating the execution cost as the number

1. https://sir.unl.edu/content/c-fault-seeding.php
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TABLE 3
Programs used in the study.

Program Description Version LOC # Tests # Faults Language Fault Type
Bash Shell Language Interpreter V2 59,846 1,061 5 C Seeded
Flex Fast Lexical Analyzer V2 10,459 567 15 C Seeded
Grep Regular Expression Utility V2 10,068 809 10 C Seeded
GZip Compression Tool V2 5,680 214 11 C Seeded
Sed Non Interactive Text Editor V2 14,427 360 5 C Seeded

of executed instructions is a standard procedure in the
related literature [2], [43].

• Past faults coverage criterion. We considered the pre-
vious versions of the programs with seeded faults
available in the SIR repository [68]. SIR also specifies
whether or not each test case is able to reveal these
faults. Such information can be used to assign a past
faults coverage value to each test case, computed as the
number of known past faults that each test is able to
reveal in the previous version.

Notice that the goal of our analysis is not to deter-
mine which coverage criteria have the higher likelihood
of revealing regression faults. Therefore, we selected those
that have been widely used in prior studies (e.g., [3], [12],
[43], [72]). Nevertheless, it is possible to formulate other
criteria by just providing a clear mapping between tests and
coverage-based requirements. The criteria used in this study
serve to illustrate how the Hypervolume-based metric can
be applied to any number and kind of testing criteria to
be satisfied, where further criteria just represent additional
axes to be considered when computing IHP (τ). Using the
testing criteria described above, we examined two different
formulations of the TCP problem:
• Two-criteria (Single-objective). The goal is to find an

optimal ordering of test cases which (i) minimizes the
execution cost and (ii) maximizes the statement coverage.

• Three-criteria (Two-objective). For this formulation,
we considered the past faults coverage as a third criterion
to be maximized.

4.1.3 Evaluated Algorithms
We compared HGA with three state-of-the-art algorithms,
namely (i) Additional Greedy [5], [14], [41], (ii) GA [3],
and (iii) NSGA-II [14], [20]. In particular, we compared HGA
with Additional Greedy and GA in the single objective
formulation (two criteria) and with Additional Greedy
and NSGA-II in the two-objective formulation (three crite-
ria).

Additional Greedy. This algorithm instantiated for the
TCP problem [5], [14] considers coverage and cost at the
same time by maximizing the coverage per unit of time of
the selected test cases (cost cognizant additional greedy).
Similarly, for what concerns the three-criteria formulation
of the problem, we used the algorithm proposed by Yoo
and Harman [?], [?], [?], which conflates code coverage,
execution cost and past coverage in one objective function
to minimize.

Additional Greedy is an iterative deterministic
search algorithm that starts with an empty order of test cases
τ0 = 〈〉; then, it selects the test case tmax having the highest
value of code coverage per time unit (greedy step), i.e.,

τ1 = 〈tmax〉. In each of the subsequent iterations, it selects
the test case yielding the largest (additional) increment of
code coverage per time unit compared to the order τi built
in the last previous iteration of the algorithm. The loop
ends when the highest coverage per time unit is reached,
i.e., when adding any un-selected test does not lead to an
increment in coverage. To complete the test order, the un-
prioritized test cases that do not contribute to the additional
coverage could be ordered using any strategy (e.g., using a
random order). In this work, we recursively re-applied the
Additional Greedy algorithm to the un-prioritized tests
until all are ordered, as done in previous work [3].

When multiple coverage criteria are used (as for the
three-criteria formulation), the additional coverage per unit
time of each test t is computed using the following equation:

g(t) =
1

m
× 1

cost(t)
×
i=m∑
i=1

fi(t) (8)

where F = {f1, . . . , fm} is the set of coverage criteria to
consider and cost(t) denotes the execution cost of the test t.

Genetic Algorithm. Genetic Algorithms (GAs) rep-
resent a class of search techniques based on the natural
selection processes defined by Darwin’s theory of biological
evolution. A typical GA procedure starts with an initial
population P of individuals. Selected pairs of individuals
are combined and mutated to generate new individuals that
will be part of the population of the next generation. A GA
is an approximated algorithm that does not guarantee to
converge. For this reason, the search continues for a number
of generations until a stop condition is reached. Individuals
of the population are represented by their chromosome (e.g.,
the sequences of their variables/parameters). We selected a
GA because it is one of the best single-objective algorithms
for the test case prioritization problem [3].

NSGA-II. The Non-dominated Sorting Genetic
Algorithm II [12] is a computationally fast and elitist
multi-objective evolutionary algorithm based on a non-
dominated sorting approach. As any population-based evo-
lutionary algorithms, NSGA-II starts with a set of solu-
tions (test case orderings in our case) randomly generated
within the solution space. At each generation, offsprings are
generated by combining pairs of fittest individuals through
three genetic operators: selection, crossover and mutation. To
form the population for the next generation, parents and
offsprings are ordered using the non-dominated sorting
algorithm, which assigns to each candidate solution a fitness
score that combines the non-dominance relation (see Equa-
tion 3) and the crowding distance. The individuals are sorted
and the fittest ones are selected to form the new popula-
tion. The process is repeated until a maximum number of
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iterations (also called generations) is reached. We selected
NSGA-II because it has been widely used in literature and
for regression testing in particular [12], [14], [70]. Moreover,
our choice was guided by the fact that NSGA-II has been
proven to be particularly suited for prioritization problems
[11], [73], [74].

When applying Genetic Algorithm and NSGA-II to
the TCP problem [14], the objective functions to optimize
are AUC-based metrics. Therefore, each coverage criterion
is condensed with execution cost information by applying
Equation 2. This results in a single AUC-based metric per
each coverage (+cost) criterion. For example, the AUC-
based metric to optimize for statement coverage is the
cost cognizant variant of Average Percentage of Statements
Coverage (APSCc):

APSCc =

∑m
i=1

(∑n
j=TSi cj −

1
2cTSi

)
∑n
i=1 ci ×m

(9)

where T = {t1, t2, . . . , tn} is the test suite to be optimized,
with cost C = {c1, c2, . . . , cn}, TSi is the first test case in an
ordering T ′ of T that is able to cover the statement i.

4.1.4 Implementation Details and Parameter Setting

All the algorithms have been implemented using JMetal [75],
a Java-based framework for multi-objective optimization
with meta-heuristics. To reduce the execution time needed
to perform the experiments, we pre-processed the coverage
data using the lossless coverage compaction algorithm pro-
posed by Epitropakis et al. [12]. This technique improves
the performance of all the algorithms reducing the size of
the coverage matrices by a factor between 7 and 488 [12].

We used the default parameters values used in previ-
ous studies on TCP [12], [14]. This is because previous
studies [76], [77] demonstrated that default values are a
reasonable choice, even considering that parameter tuning
is a long and expensive process that in the context of
search-based software engineering does not assure better
performances. In particular, we use the following (default)
parameter values:

• Population size: 250 individuals.
• Selection: binary tournament selection. It randomly picks

two individuals for the tournament and selects the
fittest one. The winner of each tournament is the so-
lution with the best IHP (τ) (Equation 7) in HGA or
the permutation with the best AUC-based metric for
GA. For NSGA-II, the winner of the tournament is the
test case with the best non-dominance rank, or with
the highest crowding distance at the same level of non-
dominance rank.

• Crossover: PMX-Crossover with crossover probability of
pc = 0.90. This operator swaps elements at a given
random crossover point.

• Mutation: SWAP-Mutation that randomly swaps two
chosen permutation elements within each offspring
with a mutation probability of pm = 1/n, where n is
the number of test cases.

• Stopping criterion: 100 generations, corresponding to
25, 000 fitness evaluations.

To account for the inherently random nature of search-
based algorithms [78], we performed 30 independent runs
for each program and for each search algorithm in our study.

4.1.5 Evaluation Metrics
To address RQ1.1 we used the cost-cognizant Average Percent-
age of Faults Detected metric (APFDc) proposed by Elbaum et
al. [41]. This metric measures the ability of a test permuta-
tion to reveal faults earlier [41]. The larger the APFDc, the
lower the average cost needed to detect the same number of
faults. Since we performed 30 independent runs, we report
the mean and the standard deviation of the APFDc scores
achieved for each program and for each formulation. It is
worth noting that for NSGA-II we report the mean and the
standard deviation of all the solutions in the Pareto set. The
cost-cognizant Average Percentage of Faults Detected per unit
cost can be computed as follows:

APFDc =

∑m
i=1

(∑n
j=TFi

cj − 1
2cTFi

)
∑n
i=1 ci ×m

(10)

where T = {t1, t2, . . . , tn} is the test suite to be optimized,
with cost C = {c1, c2, . . . , cn} and TFi is the first test case
in an ordering T ′ of T that reveals fault i.

To address RQ1.2, we compared the average running
time required by each algorithm to converge. The execution
time was measured using a machine with Intel Core i7
processor running at 2.40GHz with 12GB RAM.

We statistically analyzed the results, to check whether
the differences between the APFDc scores (or the running
time) are statistically significant or not. To this aim, we
used two different statistical tests: (i) Welch’s t-test, and (ii)
Wilcoxon t-test [79]. In particular, we used the Welch’s t-
test to compare HGA with Additional Greedy because
the distributions of the two groups have unequal variance.
Instead, we applied the Wilcoxon t-test when comparing HGA
with GA and NSGA-II. In both cases, we considered a p-
value threshold of 0.05. Significant p-values indicate that
the corresponding null hypothesis can be rejected in favor of
the alternative ones. Other than testing the null hypothesis,
we used the Vargha-Delaney (Â12) statistical test [80] to
measure the effect size. Â12 > 0.5 indicates the distribution
by HGA is larger than the distribution by a state-of-the-art
algorithm; Â12 < 0.5 means the opposite; and Â12 = 0.5
means they are equal. For RQ1, Â12 > 0.5 is in favor of HGA
while Â12 < 0.5 are preferable for RQ2.

4.2 Results of the empirical study

This subsection discusses the results of our first study, thus,
answering the research questions.

4.2.1 Results for Two-criteria (Single objective) formulation
Table 4 reports the APFDc values and the running time
obtained by HGA and the state-of-the-art algorithms on
the five programs from the Software-artifact Infrastructure
Repository (SIR) [68].

Results for RQ1.1. From the comparison between HGA
and Additional Greedy, we observe that the former
achieves statistically higher APFDc scores than the latter
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TABLE 4
Results for two-criteria (single objective) formulation: APFDc and running time achieved by Additional Greedy, GA, and HGA. For each baseline, in

parenthesis is shown the median difference with respect to HGA. Results are highlighted with ↓ when one algorithm is statistically worse than
HGA; ↑ when the opposite is true.

Program Add. Greedy GA HGA HGA 6= Add. Greedy HGA 6= GA
Median St. Dev. Median St. Dev. p-value Â12 Effect Size p-value Â12 Effect Size

Bash 0.948 (+0.021) ↑ 0.920 (-0.007) 0.040 0.927 0.036 < 0.01 0.23 Large 0.51 0.55 Negligible
Flex 0.453 (-0.245) ↓ 0.699 (+0.001) 0.001 0.698 0.001 < 0.01 1.00 Large 0.45 0.44 Negligible
Grep 0.476 (-0.010) ↓ 0.485 (-0.004) 0.011 0.489 0.009 < 0.01 0.93 Large 0.11 0.62 Small
GZip 0.119 (-0.416) ↓ 0.602 (-) 0.116 0.602 0.108 < 0.01 1.00 Large 0.20 0.43 Negligible
Sed 0.989 (-0.006) ↓ 0.994 (-0.001) 0.001 0.995 0.001 < 0.01 1.00 Large 0.26 0.58 Small

Program Add. Greedy GA HGA HGA 6= Add. Greedy HGA 6= GA
Mean St. Dev. Mean St. Dev. p-value Â12 Magnitude p-value Â12 Magnitude

Bash 2s ↑ 25s ↓ 1s 17s 2s <0.01 1.00 Large <0.01 0.00 Large
Flex 1s ↑ 10s ↓ <1s 5s 1s <0.01 1.00 Large <0.01 0.00 Large
Grep 1s ↑ 16s ↓ 1s 5s <1s <0.01 1.00 Large <0.01 0.00 Large
GZip <1s ↑ 1s ↓ <1s <1s <1s <0.01 1.00 Large <0.01 0.00 Large
Sed <1s ↑ 3s ↓ <1s 1s <1s <0.01 1.00 Large <0.01 0.00 Large

in four out of five programs (i.e., Â12 > 0.5 and p-
value < 0.05). Moreover, the Â12 statistics reveal that
in all these cases the effect size is large. The improve-
ments range between a minimum of +0.60% and a maxi-
mum of +41.10% achieved for Sed and GZip, respectively.
Instead, Additional Greedy produced a significantly
higher APFDc score for Bash although the difference is
quite small: -2.10% on average. Bash is a particular pro-
gram since all algorithms almost achieve an optimal APFDc,
which is very close to one. This is due to the fact that the
fault-revealing tests are always run early by the solutions
generated by the search algorithms despite the very large
size of the test suite. Regression faults in this program
can be detected by only few test cases (1.5% of tests on
average), which have, however, very large statement cov-
erage and therefore are selected very early. Therefore, while
the difference between Additional Greedy and HGA are
statistically significant, they are negligible in practice as
APFDc are very close to being optimal for both the two
algorithms.

When comparing HGA with GA, we notice that in none
of the programs we can reject the null hypothesis for the
Wilcoxon test. However, the Vargha-Delaney (Â12) tests re-
veal that, although not significant, HGA is better than GAwith
a small effect size in two programs. This means that HGA is
able to produce test permutations that are competitive with
those generated by GA. These results are expected since, as
explained in Section 3.3, the hypervolume and the AUC-
based metric are equivalent. Their difference lies in how the
area under the curve is computed: using the rectangular rule
for HGA and the trapezoidal rule for GA.

Results for RQ1.2. The comparison between HGA and
Additional Greedy, shows that on in all the pro-
grams considered from the SIR repository the Additional
Greedy algorithm is statistically faster (i.e., Â12 > 0.5 and
p-value< 0.05) than HGA, despite being less cost-effective as
demonstrated in RQ1.1. In all these cases, according to the
Â12 statistics the effect size is large. The improvements
range between a minimum of 2 times and a maximum of 8.5
times achieved for GZip and Bash, respectively. It is worth
noting that the performance of Additional Greedy is
strongly influenced by the number of test cases. Indeed, in
these programs, the number of test cases ranges between

214 for GZip and 1, 061 for Bash.
To verify whether the (positive and negative) differences

between the execution time of the two algorithms signif-
icantly interact with the test suite size, we applied the per-
mutation test [81]. It corresponds to a non-parametric version
of the Analysis of Variance (ANOVA) test and, thus, it does
not require that the distributions under analysis are nor-
mally distributed. For the test, we used the implementation
available in R, and its package lmPerm in particular, with a
large number of iterations (108) to have stable results [16].
The permutation test revealed that there is a statistically
significant interaction between the execution time of the two
algorithms and the number of the test cases to prioritize
(p-value=4.14 × 10−4). In other words, the larger the test
suite, the more time Additional Greedy needs in terms
of execution time.

From the comparison between GA and HGA, we can
notice that for all the programs we can reject the null
hypothesis of the Wilcoxon t-test. Looking at the Vargha-
Delaney (Â12) statistics, in all programs, HGA outperforms
(is more efficient than) GA with large effect size. Indeed,
GA requires between 2.00 (e.g., GZip) to 3.20 times (e.g.,
Grep) the execution times required for HGA. On average
HGA is 1.89 times faster than GA. As we already noticed in
the comparison with Additional Greedy, the number of
test cases strongly influences the performance of GA. Indeed,
as the number of test cases increases the ratio between the
time required by GA and HGA increases. These observations
are also confirmed by the permutation test: the differences
(improvements/worsening) between the execution time of
HGA and GA significantly interacts with the test suite size
(p-value=2.90× 10−5).

4.2.2 Results for Three-criteria (Two-objective) formulation
Table 5 reports the APFDc values and the running time
obtained by HGA, Additional Greedy, and NSGA-II.

Results for RQ1.1. We observe that HGA outperforms
Additional Greedy in four out of five programs with
a large effect size. HGA improves APFDc values up to
+48.40% with respect to Additional Greedy, while in the
opposite case the difference is low (e.g., -2.00% on Bash).
Looking at the results obtained when comparing NSGA-II
with HGA, we notice that in four cases out of five we can
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TABLE 5
Results for three-criteria (two-objective) formulation: APFDc and running time achieved by Additional Greedy, NSGA-II, and HGA. For each

baseline, in parenthesis is shown the median difference with respect to HGA. Results are highlighted with ↓ when one algorithm is statistically
worse than HGA; ↑ when the opposite is true.

Program Add. Greedy NSGA-II HGA HGA 6= Add. Greedy HGA 6= NSGA-II
# Sol. Median St. Dev. Median St. Dev. p-value Â12 Effect Size p-value Â12 Effect Size

Bash 0.948 (+0.020) ↑ 12 0.921 (-0.007) 0.033 0.928 0.033 < 0.01 0.27 Medium 0.32 0.55 Negligible
Flex 0.453 (-0.246) ↓ 13 0.698 (-0.001) ↓ 0.004 0.699 0.001 < 0.01 1.00 Large < 0.01 0.69 Medium
Grep 0.476 (-0.014) ↓ 9 0.486 (-0.004) ↓ 0.009 0.490 0.008 < 0.01 0.87 Large 0.04 0.61 Small
GZip 0.118 (-0.484) ↓ 50 0.405 (-0.197) ↓ 0.131 0.602 0.081 < 0.01 1.00 Large 0.05 0.61 Small
Sed 0.989 (-0.004) ↓ 14 0.994 (+0.001) ↑ 0.001 0.993 0.001 < 0.01 1.00 Large < 0.01 0.22 Large

Program Add. Greedy NSGA-II HGA HGA 6= Add. Greedy HGA 6= NSGA-II
Mean St. Dev. Mean St. Dev. p-value Â12 Magnitude p-value Â12 Magnitude

Bash 2s ↑ 21s ↓ 2s 15s 1s <0.01 1.00 Large <0.01 0.00 Large
Flex <1s ↑ 9s ↓ <1s 4s <1s <0.01 1.00 Large <0.01 0.00 Large
Grep 1s ↑ 14s ↓ 1s 6s 1s <0.01 1.00 Large <0.01 0.00 Large
GZip <1s ↑ 1s ↓ <1s <1s <1s <0.01 1.00 Large <0.01 0.02 Large
Sed <1s ↑ 3s ↓ <1s 1s <1s <0.01 1.00 Large <0.01 0.00 Large
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Fig. 4. APFDc scores achieved by Additional Greedy (�), NSGA-II
(boxplots), and HGA (•) on the three-criteria (two-objective) formulation
of the TCP problem.

reject the null hypothesis. In three of those cases, HGA
outperforms NSGA-II: in two cases with a small effect size
and in another one with a medium effect size.

Only for Bash, Additional Greedy produces a better
test permutation with respect to HGA with a medium effect
size. Furthermore, there is also only one program (i.e., Sed),
in which NSGA-II is better than HGA with large effect size.
Both these two programs are characterized by very large
APFDc scores for all search algorithms (i.e., APFDc >0.90).
To shed light on these close-to-being-optimal results, we
manually investigated the permutations generated by the
algorithms. While the regression faults are non-trivial for
both the two programs —they are detectable by 1.5% of
tests on Bash and 16% of tests in case of Sed— all fault-
revealing test case have very high statement coverage and
are, therefore, always selected very early. The differences
in APFDc scores between the three algorithms are due to
very few test cases that differ in the corresponding test
permutations. Given the fact that all algorithms achieve
very high APFDc scores, these differences are negligible in
practice although statistical significant.

Notice that for the comparison above we considered all
Pareto-optimal solutions produced by NSGA-II (between

nine and 50 solutions). However, different solutions in the
Pareto fronts may provide different APFDc scores. Figure 4
compares the APFDc scores by HGA (single points) with the
boxplots of NSGA-II (i.e., the distributions of APFDc scores
of the entire Pareto front). The purpose of this comparison
is two-fold: (i) we want to measure whether the majority of
the solutions by NSGA-II are better than the single solution
by HGA; and (ii) we want to measure the variability of the
APFDc values by NSGA-II.

As we can observe, in four systems, the single solution
provided by HGA is better or equal to the median solution
of NSGA-II. For GZip, we observe a huge variation in the
APFDc distribution yielded by NSGA-II: it ranges between
0.40 and 1.00, with a median value of 0.400. For this project,
choosing a proper solution from the Pareto front is very
critical since not all its solutions have better APFDc scores
than HGA. In particular, only 26% of the Pareto front is more
cost-effective than the single solution achieved by HGA. Once
again, no guideline exists that helps the testers choosing
the most cost-effective solutions in the Pareto front as the
APFDc scores can be computed only by executing all test
permutations.

To better understand how the three algorithms optimize
the selected testing criteria, Figure 5 plots —for Grep and
Sed— the Pareto front produced by NSGA-II, and the
single solutions generated by Additional Greedy and
HGA with respect to the objectives optimized by NSGA-II
(APSCc and APPFDc). The complete set of plots for all the
programs in our study is available in our online appendix
[21]. This comparison allows understanding whether the so-
lutions generated by one algorithm dominate (i.e., are better
than) the solutions produced by an alternative algorithm in
the space of the AUC-metrics. It is possible to notice that in
all the cases the solutions generated by NSGA-II and HGA
always dominate the solutions produced by Additional
Greedy.

Furthermore, we observe that the single solution yielded
by HGA is never dominated by the Pareto front generated
by NSGA-II. Vice versa, for Grep, the single solution by
HGA dominates the majority of the Pareto fronts produced
by NSGA-II. These results are very unexpected consider-
ing that NSGA-II explicitly optimizes APSCc and APPFDc

as two contrasting objectives. Instead, HGA optimizes the
hypervolume indicator, which generalizes and combines
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Fig. 5. Pareto frontiers achieved for the three-criteria (two-objective) formulation of TCP.

APSCc and APPFDc as discussed in Section 3.1.

This program demonstrates that optimizing the AUC-
based metrics is not always directly related to having a
better hypervolume score and neither a better fault detection
capability. Considering that there are no guidelines to select
the best solution (permutation) from the Pareto front, this
result poses a question on whether it is worth at all to use
multi-objective algorithms for TCP.

Different observations can be made for Sed. More specif-
ically, the single solution by HGA is one corner point of
the Pareto front produced by NSGA-II. This means that
none of the two algorithms dominated the other for this
program. However, the solution by HGA corresponds to the
Pareto optimal solution with the best APPFDc value (i.e., the
one with the highest rate of past fault coverage). Since the
number of past faults is usually smaller than the number
of statements to cover, the hypervolume metric may prefer
solutions that overfit the past faults rather than optimizing
the overall structural coverage. This remark may explain
why the solutions by NSGA-II have higher fault detection
capability than HGA. Clearly, investigating different weight-
ing strategies for past-fault coverage in the computation of
the hypervolume is part of our future agenda.

Results for RQ1.2. For what regards the running time,
the results for the three-criteria formulation are in line with
those achieved for the two-criteria formulation. Indeed,
Additional Greedy is more efficient than HGA in all the
programs with a large effect size. Moreover, HGA is always
statistically more efficient than NSGA-II with a large
effect size. The differences between the two meta-heuristics
are due to: (i) the efficient algorithm for the hypervolume
computation in HGA and (ii) the different cost of their
selection procedures as explained in Section 2.2. Namely, the
non-dominated sorting in NSGA-II is more expensive than
the environmental selection implemented HGA for single-
objective algorithms.

Summary for RQ1. HGA outperforms Additional
Greedy in most of the cases in terms of cost-effectiveness
but it is less efficient. On the two-criteria formulation, as
expected from the theory, HGA and GA are equivalent in
terms of fault detection capability. However, the former
is more efficient than the latter thanks to our algorithm
for the fast computation of the hypervolume metric. On
the three-criteria formulation, HGA is often more effective
and always more efficient than NSGA-II.

5 EVALUATING THE HYPERVOLUME GENETIC AL-
GORITHM WITH UP TO FIVE CRITERIA

This section discusses the second empirical study we carried
out to assess the performances of HGA compared to state-
of-the-art many-objective algorithms when handling up to
five testing criteria. Thus, we formulated the additional
following high-level research questions:

RQ2: How does HGA perform with respect to many-objective
test case prioritization techniques?

To better clarify it, we detailed it in two research questions:
• RQ2.1: What is the cost-effectiveness of HGA, compared

to many-objective test case prioritization techniques? This
research question aims at evaluating the selective pres-
sure of HGA, that is “the degree to which the better
individuals are favored during the computation” [82].
In particular, similarly to RQ1.1, it analyses to what
extent the test case ordering obtained by HGA is able to
detect faults (effectiveness) earlier (lower execution cost)
in comparison to two state-of-the-art many-objective
algorithms, namely GDE3 and MOEA/D-DE.

• RQ2.2: What is the efficiency of HGA, compared to many-
objective test case prioritization techniques? Similarly to
RQ1.2, with this research question, we are interested,
in comparing the running time (efficiency) required by
HGA to find an optimal test ordering compared to the
alternative many-objective algorithms in cases that re-
quire a strong selective pressure.
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5.1 Study Design
5.1.1 Context of the Study and Testing Criteria
The context of the study is the same as that of the first
empirical study in Section 4. For the testing criteria, we
added two additional criteria with respect to the first study,
namely branch and function coverage criteria. In particular,
we considered the following criteria:
• Branch and function coverage criterion. Also, in this

case, we measured statement coverage achieved by
each test case using the gcov tool part of the GNU C
compiler (gcc).

With these additional testing criteria, we examined two
different many-objective formulations of the TCP problem:
• Four-criteria (Three-objective). The goal is to find an

optimal ordering of test cases which (i) minimizes the
execution cost, (ii) maximizes the statement coverage,
(iii) maximizes the past faults coverage, and (iv) maxi-
mizes the branch coverage. We applied this formulation
for the ten programs from SIR [68].

• Five-criteria (Four-objective). For this formulation, we
considered the function coverage as a fifth criterion to be
maximized. We applied this formulation on the same
programs already used for the four-objective formula-
tion.

5.1.2 Evaluated Algorithms and Parameter Setting
We compared the results of HGA with the those achieved by
two algorithms, namely (i) GDE3 [18] and (ii) MOEA/D-DE
[19]. The former implements a diversity-based mechanism
to address the problem of selective resistance, while the
latter is a reference-point based mechanism to guarantee
well distributed Pareto fronts for many-objective problems.
These two algorithms inspired many other many-objective
meta-heuristics and are representative for the two classes of
algorithms discussed in section 2.2.1. As already highlighted
in the first study in Section 4, it is worth noting that for
GDE3 and MOEA/D-DE the objective functions to optimize
are AUC-based metrics.

For GDE3 and MOEA/D-DE, we used their implementa-
tion available in JMetal [75] and preprocessed the coverage
data using the lossless coverage compaction algorithm pro-
posed by Epitropakis et al. [12]. For both algorithms, we
used their default parameters values [12], [14]:
• Population size: 250 individuals as for HGA.
• Selection: For GDE3 and MOEA-D/DE, the fittest in-

dividuals are selected using the differential evolution
selection operator.

• Crossover: we used the PMX-Crossover with crossover
probability pc = 0.90 GDE3 and MOEA-D/DE need also
to set another parameter, namely CR. This parameter
indicates how single sub-problems are separable (i.e.,
the lower the value, the more the problems are separa-
ble). We applied the default values (e.g., 0.50 for GDE3
and 1.00 MOEA-D/DE).

• Mutation: as mutation operator, we used the SWAP-
Mutation with permutation probability pm = 1/n,
where n is the number of test cases, i.e., the same
operator used with the same probability used in the
previous study. GDE3 and MOEA-D/DE need an ad-
ditional parameter F . This scaling factor controls the

speed and robustness of the search (i.e., with a lower
value the algorithm converges faster, but it has a higher
risk of stacking in a local optimum). Also, in this case,
we applied the default value (i.e., 0.50).

• Stopping criterion: the evolutionary algorithms end
when reaching 100 generations, corresponding to
25, 000 fitness evaluations.

We used default parameters considering that previous
studies [76], [77] demonstrated that they are a reasonable
choice, even considering that parameter tuning is a long
and expensive process that in the context of search-based
software engineering does not assure better performance.

To account for the inherently random nature of search-
based algorithms [78], we performed 30 independents runs
for each program and for each search algorithm in our study.

5.1.3 Evaluation Metrics
We used the same evaluation metrics used in Section 4.
In particular, for RQ2.1 we relied on the same evaluation
metrics used for RQ1.1, while for RQ2.2 we relied on the
same evaluation metrics used for RQ1.2.

5.2 Results of the empirical study

This section discusses the results of our second study, thus,
answering the research questions.

5.2.1 Results for Four-criteria (Three-objective) formulation
Table 6 reports the APFDc values and the running time
obtained by HGA and the state-of-the-art algorithms for
the five programs from the Software-artifact Infrastructure
Repository (SIR) [68].

Results for RQ2.1. We observe that HGA achieves
equal or better APFDc values with respect to GDE3 and
MOEA-D/DE. In particular, the Wilcoxon t-test revealed that in
three out of five programs the differences between HGA and
GDE3 are statistically significant (in two cases with large
effect size and in one case with large effect size). No-
tice that GDE3 returns many solutions (test permutations),
whose number ranges between 20 (e.g., GZip) and 38 (e.g.,
Flex). Figure 6 shows that the APFDc scores achieved by
GDE3 may vary across the solutions in the Pareto fronts. In
all the programs, the solution by HGA is more or equally cost-
effective than the median score yielded by all the solutions
by GDE3. For example, on Bash the APFDc scores by GDE3
vary between 0.65 and 0.98, with a median value of 0.875.
On this project, the solution by HGA outperforms 70% of the
Pareto optimal solutions obtained with GDE3.

When comparing HGA with MOEA-D/DE we notice that
in three out of five cases the null hypothesis cannot be
rejected according to the Wilcoxon t-test. For the remaining
programs, HGA is better than MOEA-D/DE (in one case with
large effect size and in the other one with small effect
size). Moreover, not all Pareto efficient solutions yielded by
MOEA-D/DE achieve the same APFDc scores as shown in
Figure 6. One exemplary case is observable for GZip: for this
project, the APFDc scores of the Pareto optimal solutions by
MOEA-D/DE range between 0.40 and 1.00, with a mean value
of 0.602. Instead, the single solution by HGA is better than
75% of Pareto optimal solutions generated by MOEA-D/DE.
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TABLE 6
Results for four-criteria (three-objective) formulation: APFDc and running time achieved by MOEA-D/DE, GDE3, and HGA. For each baseline, in

parenthesis is shown the median difference with respect to HGA. Results are highlighted with ↓ when one algorithm is statistically worse than
HGA; ↑ when the opposite is true.

Program GDE3 MOEA/D-DE HGA HGA 6= GDE3 HGA 6= MOEA-D/DE
# Sol. Median St. Dev. # Sol. Median St. Dev. Median St. Dev. p-value Â12 Effect Size p-value Â12 Effect Size

Bash 22 0.875 (-0.027) ↓ 0.057 250 0.913 (+0.011) 0.033 0.902 0.045 < 0.01 0.66 Small 0.14 0.42 Small
Flex 38 0.690 (-0.008) ↓ 0.017 250 0.698 (-) 0.003 0.698 0.001 < 0.01 0.96 Large 0.11 0.41 Small
Grep 25 0.486 (-0.001) 0.001 250 0.486 (-0.001) 0.009 0.487 0.011 0.86 0.49 Negligible 0.62 0.47 Negligible
GZip 20 0.602 (-) 0.129 250 0.602 (-) ↓ 0.100 0.602 0.122 0.25 0.56 Negligible 0.02 0.62 Small
Sed 32 0.984 (-0.009) ↓ 0.012 250 0.992 (-0.001) ↓ 0.002 0.993 0.001 < 0.01 0.95 Large < 0.01 0.78 Large

Program GDE3 MOEA-D/DE HGA HGA 6= GDE3 HGA 6= MOEA/D-DE
Mean St. Dev. Mean St.Dev Mean St. Dev. p-value Â12 Magnitude p-value Â12 Magnitude

Bash 1min 25s ↓ 6s 1min 7s ↓ 4s 51s 5s <0.01 0.00 Large <0.01 0.00 Large
Flex 16s ↓ 1s 13s ↓ 1s 7s 1s <0.01 0.00 Large <0.01 0.00 Large
Grep 37s ↓ 2s 32s ↓ 1s 19s 1s <0.01 0.00 Large <0.01 0.00 Large
GZip 1s ↓ <1s 1s ↓ <1s <1s <1s <0.01 0.00 Large <0.01 0.00 Large
Sed 6s ↓ <1s 6s ↓ <1s 2s <1s <0.01 0.00 Large <0.01 0.00 Large
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Fig. 6. APFDc scores achieved by GDE3 (boxplots), MOEA/D-DE (box-
plots), and HGA (•) on the four-criteria (three-objective) formulation of
the TCP problem.

Figure 7 plots —for Flex and Sed— the Pareto fronts
produced by GDE3 and MOEA-D/DE as well as the single
solutions generated by HGA with respect to the AUC-based
metrics. As we can observe, the solutions by GDE3 and
MOEA-D/DE do not dominate the solution generated by
HGA. Vice versa, the solution generated by HGA dominates
a large portion of the solutions by these algorithms. Using
the hypervolume indicator as fitness function, HGA is able
to optimize the AUC-based metrics even if the baselines use
such metrics as objectives to optimize. This further poses
the question of whether it is worth using multi-objective
or many-objective algorithms for the test case prioritiza-
tion problem, given the difficulty to discriminate the best
solution among those produced by these algorithms. The
complete set of plots of all the programs is available in our
online appendix. [21].

Results for RQ2.2. In all the programs, the HGA is sta-
tistically faster (i.e., Â12 < 0.5 and p-value < 0.05) than
the GDE3 with large effect size. The improvements range
between a minimum of 1.65 times and a maximum of 3.00
times, achieved on Bash and Sed, respectively. On average,
HGA is 1.81 times faster than GDE3. Similarly to the results

achieved for NSGA-II, the number of test cases strongly in-
fluences the performance of GDE3. Indeed, the ratio between
the execution time needed by GDE3 and the execution time
required by HGA increases as the number of test cases grows.
This insight is further confirmed by the permutation test: the
differences (improvements/worsening) between the execu-
tion time of HGA and GDE3 significantly interacts with the
test suite size (p-value=7.9× 10−5).

These results are confirmed when comparing HGA with
MOEA-D/DE. Indeed, for all the programs we can reject the
null hypothesis for the Wilcoxon t-test with large effect
size. MOEA-D/DE requires between 1.30 (e.g., Bash) to 3
times (e.g., Sed) the execution times required for HGA. On
average HGA is 1.49 times faster than MOEA-D/DE. To assess
the interaction between the number of test cases and the
performance gap between HGA and MOEA-D/DE, we per-
formed the permutation test achieving a p-value equal to
2.20× 10−16.

By comparing the running time of HGA across the dif-
ferent programs, we can notice that HGA took more time
to converge on Bash (51s) and Grep (19s) with respect to
the other programs in our study. The computation cost of
HGA is polynomial to (i) the number of criteria, (ii) to the
population size, (iii) the cost of computing the hypervolume
metric. While the number of criteria and the population size
is the same for all programs, the cost of computing the
hypervolume metric varies. Indeed, the cost of computing
such a metric depends on two factors: (1) the test suite size
(i.e., the total number of test cases) and (2) the percentage
of test cases in the test suite required to reach the maximum
coverage. Compared to the other programs, Bash and Grep
have the largest test suites in our study. Furthermore, reach-
ing the maximum coverage scores requires to run almost all
test cases in their suites. In such a scenario, the algorithm for
computing the hypervolume metric (Algorithm 1) performs
a large number of iterations (equal to the number of test
cases needed to reach the maximum coverage score.

5.2.2 Results for Five-criteria (Four-objective) formulation
Table 7 reports the APFDc values and the running time
obtained by HGA and the state-of-the-art algorithms for
the five programs from the Software-artifact Infrastructure
Repository (SIR) [68].

Results for RQ2.1. The results are very similar to those
achieved in the four-criteria formulation. Indeed, when
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TABLE 7
Results for five-criteria (four-objective) formulation: APFDc and running time achieved by MOEA-D/DE, GDE3, and HGA. For each baseline, in

parenthesis is shown the mean difference with respect to HGA. Results are highlighted with ↓ when one algorithm is statistically worse than HGA;
↑ when the opposite is true.

Program GDE3 MOEA/D-DE HGA HGA 6= GDE3 HGA 6= MOEA-D/DE
# Sol. Median St. Dev. # Sol. Median St. Dev. Median St. Dev. p-value Â12 Effect Size p-value Â12 Effect Size

Bash 61 0.849 (-0.048) ↓ 0.017 250 0.911 (+0.014) 0.044 0.897 0.045 < 0.01 0.83 Large 0.22 0.41 Small
Flex 73 0.684 (-0.014) ↓ 0.005 250 0.697 (-0.001) 0.002 0.698 0.001 < 0.01 1.00 Large 0.06 0.64 Small
Grep 98 0.484 (-) 0.003 250 0.482 (-0.002) 0.006 0.484 0.010 0.21 0.59 Small 0.11 0.62 Small
GZip 144 0.532 (-0.069) ↓ 0.084 250 0.591 (-0.010) 0.118 0.601 0.147 0.01 0.69 Medium 0.84 0.52 Negligible
Sed 114 0.981 (-0.011) ↓ 0.004 250 0.991 (-0.001) 0.001 0.992 0.002 < 0.01 1.00 Large 0.13 0.62 Small

Program GDE3 MOEA-D/DE HGA HGA 6= GDE3 HGA 6= MOEA/D-DE
Mean St. Dev. Mean St.Dev Mean St. Dev. p-value Â12 Magnitude p-value Â12 Magnitude

Bash 1min 7s ↓ 2s 1min 6s ↓ 2s 45s 1s <0.01 0.00 Large <0.01 0.00 Large
Flex 13s ↓ <1s 12s ↓ <1s 6s <1s <0.01 0.00 Large <0.01 0.00 Large
Grep 52s ↓ 5s 37s ↓ 3s 26s 3s <0.01 0.00 Large <0.01 0.00 Large
GZip 1s ↓ <1s 1s ↓ <1s <1s <1s <0.01 0.00 Large <0.01 0.00 Large
Sed 7s ↓ <1s 6s ↓ <1s 2s <1s <0.01 0.00 Large <0.01 0.00 Large

comparing HGA and GDE3, we notice that on 4 out of 5
programs the former algorithm achieves statistically better
scores than the latter (three times with large effect size and
one time with medium effect size). Analyzing the results for
MOEA-D/DE, we observe that in all cases, we cannot reject
the null hypothesis and, thus, the results achieved by HGA
and MOEA-D/DE are comparable in terms of APFDc.

It is important to highlight that Table 6 reports the
median APFDc achieved by all the solutions and across all
the independent runs. However, the table does not describe
the distributions of the scores. To this aim, Figure 8 com-
pares these distributions. We can notice that the solution by
HGA is more cost-effective than the solutions produced with
GDE3 and MOEA-D/DE. Moreover, the performance of these
algorithms has a large variation. For example, on GZip,
the scores for GDE3 vary between 0.20 and 1.00 while for
MOEA-D/DE they vary between 0.40 and 1.00. Choosing a
proper solution in these contexts is very hard. Indeed, for
GZip only four out of 144 solutions by MOEA-D/DE are more
cost-effective than the solution achieved by HGA. Moreover,
there is no guideline that helps in choosing the most cost-
effective solutions in the Pareto front as the fault detection
capability can be computed only a posteriori.

Results for RQ2.2. The comparison between HGA and
GDE3 shows that, in all the programs, the former algorithm
is statistically faster (i.e., Â12 < 0.5 and p-value < 0.05)
than the latter with large effect size. The improvements
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Fig. 8. APFDc scores achieved by GDE3 (boxplots), MOEA/D-DE (box-
plots), and HGA (•) on the five-criteria (four-objective) formulation of
TCP problem.

range between a minimum of 1.49 times and a maximum of
3.50 times, achieved on Bash and on Sed respectively. On
average, HGA is 1.75 times faster than GDE3.

When comparing HGA and MOEA-D/DE, we notice that
for all the programs we can reject the null hypothesis. Ac-
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cording to the Vargha-Delaney (Â12) statistics, in all cases,
HGA is more efficient than MOEA-D/DE with large effect
size. MOEA-D/DE requires between 1.42 (e.g., Grep) to 3
times (e.g., Sed) the execution times required for HGA. On
average HGA is 1.53 times faster than MOEA-D/DE.

Summary for RQ2. HGA often outperforms GDE3 and
MOEA-D/DE in terms of cost-effectiveness. The single
solution provided by HGA is not dominated in the ob-
jectives space by those generated by the many-objective
algorithms. Finally, HGA is more efficient than GDE3 (up
to 1.65 and 1.75 times for four and five criteria formula-
tions) and MOEA-D/DE (up to 3 and 3.50 times depending
on the formulation).

6 EVALUATING THE HYPERVOLUME GENETIC AL-
GORITHM ON A LARGE SOFTWARE SYSTEM

We conduct a third empirical study to assess the perfor-
mances of HGA, partially replicating a previous study [12]. In
particular, we investigate the following research questions:

RQ3: How does HGA perform on a large software system with
real faults?

To better clarify it, we detailed it in two research questions:
• RQ3.1: What is the cost-effectiveness of HGA on a large

software system with real faults? This research question
aims at evaluating to what extent the test case ordering
obtained by HGA is able to detect faults (effectiveness)
earlier (lower execution cost) in comparison with two
state-of-the-art techniques: a cost cognizant additional
greedy algorithm [5], [41], a single objective genetic al-
gorithm based on an AUC metric (GA) [3], and a multi-
objective search based algorithm namely NSGA-II [20]
used in prior test case prioritization [14], [12] on a large
software system, namely MySQL, containing real faults.

• RQ3.2: What is the efficiency of HGA on a large soft-
ware system with real faults? With this second research
question, we are interested in comparing the running
time (efficiency) required by HGA to find an optimal test
ordering, in comparison with the three experimented
test case prioritization techniques on a large software
system, namely MySQL, containing real faults.

6.1 Study Design
The context consists of MySQL, a large real-world system that
has been previously studied by Epitropakis et al. [12]. MySQL
is developed in Java. It comprises 1, 283, 433 LOC and has
2, 005 test cases. We used the same real faults from the
original study [12], where the authors collected 20 real faults
from issue tracker of the software system with “closed”
status and available fix patches.

We considered the same testing criteria used by
Epitropakis et al. [12]. In particular, we considered statement
coverage, ∆-coverage, past faults coverage, and execution cost.
We evaluated three formulations of the TCP problem:
• Two-criteria (Single-objective) that (i) minimizes the

execution cost and (ii) maximizes the statement coverage.

• Three-criteria (Two-objective) that considers the past
faults coverage as a third criterion to be maximized.

• Four-criteria (Three-objective) that considers ∆-
coverage as a fourth criterion to be maximized.

In particular, we used the statement coverage matrix and
the execution cost array provided by Epitropakis et al. [12]
and built using the software profiling tool Valgrind. The
∆-coverage criterion represents the difference of statement
coverage between two consecutive versions of a program.
The conjecture behind the use of this information is that
changed lines of code are more likely to introduce faults in
the system. It was calculated by applying the diff program
between two consecutive coverage matrices. It is worth to
notice that Epitropakis et al. [12] considered only the Four-
criteria formulation and that we added the Two- and Three-
criteria formulations for sake of completeness.

We compared the results of HGA with those achieved by
Additional Greedy [5], [14], [41], (ii) GA [3], and (iii)
NSGA-II [14], [20]. More details on these algorithms are
provided in Section 4.

As done for our previous studies, we implemented
these algorithms using JMetal [75]. Moreover, as in the
original study [12], we pre-processed the coverage data
using the lossless coverage compaction algorithm proposed by
Epitropakis et al. [12].

We set up the parameters of the algorithms using the
same values as the original study [12]. In particular, with
respect to our two previous studies, we ran the algorithm
for 200 generations (i.e., 50, 000 fitness evaluations). We
performed 30 independents runs for each program and for
each search algorithm. Finally, we used the same evaluation
metrics used in Section 4 and 5.

6.2 Results of the empirical study

This section discusses the results of our third study, thus,
answering the research question.

Results for RQ3.1. Table 8 reports the APFDc values and
the running time obtained by HGA and the state-of-the-art
algorithms on MySQL. In all the formulations, HGA achieves
a higher AFDPc with respect to Additional Greedy. This
difference is statistically significant (p-value< 0.05) with a
large effect size. Looking at the two-criteria formulation,
we can notice that there is no statistically significant differ-
ence between HGA and GA. This result is expected since, as
explained in Section 2 and empirically evaluated in Section
4, the hypervolume and the AUC-based metric are equiv-
alent. More interesting are the comparisons on the three-
and four-criteria formulations between HGA and NSGA-II.
Even in these cases there are no statistically significant
differences in terms of cost-effectiveness demonstrating that
even on a large software system, despite using only one
fitness function (i.e., the hypervolume indicator), HGA is
competitive with NSGA-II.

Since NSGA-II produces multiple solutions, Figure 9
compares the APFDc values of NSGA-II with those of HGA
and Additional Greedy for the three- and four-criteria
formulations. As we can observe, the single solution pro-
duced by Additional Greedy is worse than all solutions
generated by NSGA-II as well as the one produced by HGA.
In both the formulations, the distribution of APFDc scores
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TABLE 8
Results for two- (single objective), three- (two objectives), and four-criteria (three objectives) formulation on MySQL: APFDc and running time

achieved by Additional Greedy, NSGA-II, GA (for Two-Criteria), and HGA. For each baseline, in parenthesis is shown the median difference with
respect to HGA. Results are highlighted with ↓ when one algorithm is statistically worse than HGA; ↑ when the opposite is true.

Metric Add. Greedy NSGA-II (GA for Two-Criteria) HGA HGA 6= Add. Greedy HGA 6= NSGA-II (GA for Two-Criteria)
# Sol. Median St. Dev. Median St. Dev. p-value Â12 Effect Size p-value Â12 Effect Size

Two-Criteria AFDCc 0.462 (-0.205) ↓ - 0.646 (-0.021) 0.065 0.667 0.050 < 0.01 1.00 Large 0.06 0.64 Small
Three-Criteria AFDCc 0.475 (-0.181) ↓ 12 0.664 (-0.008) 0.053 0.656 0.055 < 0.01 1.00 Large 0.66 0.48 Negligible
Four-Criteria AFDCc 0.475 (-0.170) ↓ 47 0.652 (+0.007) 0.039 0.645 0.040 < 0.01 1.00 Large 0.23 0.44 Negligible

Mean St. Dev. Mean St. Dev. p-value Â12 Effect Size p-value Â12 Effect Size
Two-Criteria Execution Time 5s ↑ 2min 34s ↓ 5s 1min 17s 7s <0.01 1.00 Large <0.01 <0.01 Large
Three-Criteria Execution Time 5s ↑ 2min 47s ↓ 2min 22s 1min 37s 6s <0.01 1.00 Large <0.01 0.12 Large
Four-Criteria Execution Time 7s ↑ 2min 43s ↓ 2min 12s 1min 27s 5s <0.01 1.00 Large <0.01 <0.01 Large
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by NSGA-II presents a large variation with a median value
that is very close to the value obtained by HGA.

Figure 10 plots, the Pareto front produced by NSGA-II
and the solutions generated by Additional Greedy
and HGA on the four-criteria formulation with respect to
APSCc, APDCc and APPFDc, (i.e., the objectives optimized
by NSGA-II). The solution by HGA is able to dominate
the whole Pareto front of NSGA-II and the solution of
Additional Greedy. Even on this large systems, we can

notice that the better results produced by NSGA-II in terms
of cost-effectiveness (Figure 9) are not always related to the
AUC metrics that are optimized.

Results for RQ3.2. Table 8 reports the results in terms
of efficiency. More specifically, for all the formulations, the
comparison between HGA and Additional Greedy shows
that Additional Greedy algorithm is statistically faster
(i.e., Â12 > 0.5 and p-value < 0.05) with large effect size
than HGA, despite being less cost-effective as already shown.
Even when comparing HGA with GA and NSGA-II, we can
reject the null hypothesis of the Wilcoxon t-test. In particular,
on the four-criteria formulation, NSGA-II requires 87%
more execution time than HGA.

Summary for RQ3. HGA is more cost-effective than
Additional Greedy. The solution provided by HGA
is not dominated by those generated by NSGA-II.
Additional Greedy is statistically more efficient than
NSGA-II and HGA, while HGA is faster than GA and
NSGA-II.

7 THREATS TO VALIDITY

This section discusses the threats to the validity of our em-
pirical evaluation, classifying them into construct, internal,
external, and conclusion validity.

Construct Validity. In this study, they are mainly re-
lated to the choice of the metrics used to evaluate the
characteristics of the different test case prioritization al-
gorithms. To evaluate the optimality of the experimented
algorithms (e.g., HGA, Additional Greedy, GA, NSGA-II,
GDE3, and MOEA-D/DE) we used the APFDc [41], a well-
known metric used in previous work on multi-objective
test case prioritization [24], [83]. Another construct validity
threat involves the correctness of the measures used as test
criteria: statement coverage, fault coverage and execution
cost. To mitigate such a threat, the code coverage informa-
tion was collected using two open-source profiler/compiler
tools (GNU gcc and gcov). The execution cost has been
measured by counting the number of source code blocks
expected to be executed by the test cases [2], [43], while the
original fault coverage information has been extracted from
the SIR repository [68].

Internal Validity. To address the random nature of the
GAs themselves [78], we run HGA, GA, NSGA-II, GDE3, and
MOEA-D/DE 30 times for each subject program (as done in
previous work [3], [14], [69]), and considered the median
APFDc scores. The tuning of the EA’s parameters is another
factor that can affect the internal validity of this work. In
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this study, we use the same genetic operators and the same
parameters used in previous work on test case prioritization
[3], [10]. It is worth remarking that previous studies [76], [77]
demonstrated that default values are a reasonable choice,
even considering that parameter tuning is a long and ex-
pensive process that in the context of search-based software
engineering does not assure better performances.

External Validity. We consider six open source and
proprietary programs, that were used in previous work on
regression testing [3], [12], [69], [70], [71], [84]. In details,
we firstly compared HGA on two different formulations of
the test case prioritization problem, with respect to three
state-of-the-art algorithms for test case prioritization (e.g.,
Additional Greedy, GA, and NSGA-II). Secondly, we
look at two new formulations of the problem considering
more criteria and comparing with two many-objective meta-
heuristic algorithms (i.e., GDE3 and MOEA/D-DE). Finally, we
partially replicated the study by Epitropakis et al. [12] on a
large software system (e.g., MySQL), comparing HGA with
Additional Greedy and NSGA-II

Conclusion Validity. We interpret our findings using
appropriate statistical tests. In particular, to test the sig-
nificance of the differences we used (i) Welch’s t-test [79]
and (ii) Wilcoxon t-test [79], while to estimate the magnitude
and the effect size of the observed differences we used the
Vargha-Delaney statistic [80]. Conclusions are based only on
statistically significant results.

8 CONCLUSION AND FUTURE WORK

This paper proposed a hypervolume-based genetic algo-
rithm (HGA) to improve multi-criteria test case prioritization.
Specifically, we use the concept of hypervolume [13], which
is widely investigated in many-objective optimization, to
generalize the traditional Area Under Curve (AUC) metrics
used in previous work on test case prioritization [3], [9], [10],
[11], [12]. Indeed, the hypervolume metric condenses multiple
testing criteria through the proportion of the objective space,
while AUC based metrics can manage only one cumulative
code coverage criterion per time [3].

We performed three empirical studies with three main
goals. First of all, we aimed at evaluating the cost-
effectiveness and efficiency of HGA, compared to three
state-of-the-art algorithms for the Test Case Prioritization
problem, namely Additional Greedy [5], GA [3], and
NSGA-II [14], [20]. Secondly, we intended to analyze the de-
gree to which they handle the selective pressure as the num-
ber of objectives grows. Thus we compared HGA with two
many-objective evolutionary algorithms, i.e., GDE3 [18] and
MOEA/D-DE [19]. Finally, we aimed at analyzing the perfor-
mance of HGA in terms of cost-effectiveness and efficiency
when dealing with large software systems with respect
to two state-of-the-art algorithms such as Additional
Greedy [5] and NSGA-II [14], [20].

Our results show that HGA is more or equally cost-
effective than the state-of-the-art approaches in most cases.
The single solution provided by the algorithm is able to
dominate most of the solutions provided by NSGA-II in
terms of cost-effectiveness. Moreover, the performance of
HGA does not decrease when larger programs and more
objectives are considered. Looking at the execution time we

note that the efficiency of Additional Greedy is strictly
related to the number of test cases, while HGA is faster
than GA and NSGA-II in all the considered programs and
formulations. Moreover, we show that, in terms of cost-
effectiveness, HGA is equivalent or better than GDE3 and
MOEA/D-DE, while being much more efficient in terms of
execution time.

As future work, we plan to incorporate diversity mea-
sures proposed in previous studies on multi-objective test
case selection [43], [69] to improve the performance of HGA
for software systems with highly redundant test suites,
where greedy algorithms are particularly competitive. We
plan to apply the proposed HGA also for other test case
optimization problems, such as Test Suite Minimization and
Test Case Selection. Finally, starting from the considerations
made in the empirical studies, we plan to perform a new
empirical study to investigate which testing criteria are
more able to discover new faults.
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