
TOWARDS A SYSTEMATIC EXPLORATION OF
THE OPTIMIZATION SPACE FOR

MANY-CORE PROCESSORS

TOWARDS A SYSTEMATIC EXPLORATION OF
THE OPTIMIZATION SPACE FOR

MANY-CORE PROCESSORS

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K. C. A. M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 21 oktober 2014 om 12:30 uur

door

Jianbin FANG

Master of Engineering in Computer Science and Technology,
National University of Defense Technology, China

geboren te Qingdao, China.

Dit proefschrift is goedgekeurd door de promotor:

Prof.dr.ir. H.J. Sips

Copromotor: Dr.ir. A.L. Varbanescu

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir. H.J. Sips, Technische Universiteit Delft, promotor
Dr.ir. A.L. Varbanescu, Universiteit van Amsterdam, copromotor
Prof.dr. K.L.M. Bertels, Technische Universiteit Delft
Prof.dr. H. Corporaal, Eindhoven University of Technology, the Netherlands
Prof.dr. P.H.J. Kelly, Imperial College London, United Kingdom
Prof.dr. C.W. Kessler, Linköping University, Sweden
Prof.dr. W. Zhang, National University of Defense Technology, China
Prof.dr. C. Witteveen, Technische Universiteit Delft, reservelid

Advanced School for Computing and Imaging

The work described in this thesis has been carried out in the ASCI graduate school.
ASCI dissertation series number 314.

The work was supported by China Scholarship Council (CSC).

Keywords: Multi-/Many-core Processors, Performance, Portability, Vectorization,
Memory Hierarchy, Local Memory, OpenCL

Printed by: Wöhrmann Print Service in the Netherlands

Front & Back: The cover image (designed by Kun Sun) is entitled “Magic Cube”. The
connection to the thesis is that improved performance of parallel pro-
grams can be achieved by using “patterns” and code “transformations”
– much like what happens when we play with a Rubik’s Cube.

Published and distributed by: Jianbin Fang
Email: j.fang.cn@gmail.com

Copyright © 2014 by J. Fang

ISBN 978-94-6186-378-2

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

ACKNOWLEDGEMENTS

The past four years will definitely be one of the most memorable times in my life. During
this time, I have been helped by many people around me. This thesis could not have
been achieved without their help. Here I would like to thank them one by one.

I would like to express my thanks to China Scholarship Council, for making my over-
seas study in the Netherlands possible. Also, I would like to thank Koen Bertels, Henk
Corporaal, Paul Kelly, Christoph Kessler, Weimin Zhang, and Cees Witteveen for accept-
ing to be part of my committee, and for their valuable comments on the thesis draft.

I want to thank my supervisors Henk Sips and Ana Lucia Varbanescu. Henk, you are
a supervisor with great wisdom and humour. Thank you for your consistent support and
encouragement. I appreciate your broad vision and valuable suggestions during my re-
search. Thank you for calling me Mr. Phi. Actually, I really appreciate this “title”, and it
gives me some confidence. Thank you also for being a pointer to the international work-
shops/seminars which were beneficial for me. Besides, the chats with you influenced
me more than I can describe.

Ana, I am honoured to be your first PhD student. I would like to say “thank you”,
although words cannot express my gratitude. The emails between you and me tell the
stories. You are always kind and tolerant. You have taught and trained me a lot on my
way of conducting research. I will never forget the effort you made for each of my papers
(from beginning to the last minutes). When I was off the track, you were always the
person to “drag” me back. Both the professional knowledge and the code of practice as a
computer scientist, I learned from you, will continuously guide me in my future career.

In ancient China, one learned from a master who was living in the mountains or
forests. Today, we can learn from experts who are working on the other side of the
Internet. In my world, these guys are Pekka Jääskeläinen from TUT, Finland, Evghenii
Gaburov from SURFsara, the Netherlands, Georg Hager from FAU, Germany. Pekka, my
one-week visit to you got me into the compilation world. Btw, your colleagues were re-
ally helpful and I thank all of them. Thank you, Evghenii, for the on-line discussions on
Xeon Phi and micro-benchmarking. Your neat and efficient code was impressive. Georg,
I was impressed by the way you optimize numeric code (just like an art) at the aiXceler-
ate workshop, and thank you for our on-line discussions. All these experiences will not
only be beneficial for my thesis, but, more importantly, for my whole life.

I want to thank my collaborators: Gorkem Saygili and Laurens van der Maaten on
stereo matching, Lilun Zhang and Chuanfu Xu on Tianhe-2. Gorkem and Laurens, I have
learnt a lot from our collaboration, and, more importantly, this collaboration indicated
a path for my thesis. Gorkem, you are an enthusiastic guy, always pushing the work to
its next step. Lilun and Chuanfu, thank you for your invitation which provided me with
an opportunity to work on Tianhe-2. I really appreciated the working experience (in
particular, the intensive NEMO5 compilation) on the giant.

v

vi ACKNOWLEDGEMENTS

During these years, my officemates have created a pleasant working atmosphere.
Boudewijn, thanks for ordering the white board for me. Arno, thank you for helping
me with Latex when writing my first paper. Bogdan, I have enjoyed the music and the
tour experience you shared with me. Jie, thank you for including me in your work and
publications. I hope that our discussions were helpful to you. Marcin, you are one smart
guy and I believe you will make a great fortune from your genius ideas. Just stick to them!

I would also like to thank my colleagues. Alex, thank you for the suggestions you gave
for my posters and presentations. Alexander, thank you for your help at my PhD startup.
Boxun, I really enjoyed your Beijing-style jokes and our numerous casual chats. Siqi,
thank you for sharing your life experience in the Netherlands. Otto and Sietse, thank
you for translating my thesis summary and propositions in Dutch. Adele, Siqi, Yong, and
Jie, we have enjoyed a lot of Chinese dinners. Thank you, Tamás, Lucia, Niting, Rahim,
Niels, Mihai, Dimitra, Riccardo, Otto, Alex (small), Kefeng, Alexey, Paolo, Lipu ... for the
fun lunch time. I myself am a silent guy, but I really enjoyed what you bla bla during the
lunch time. I also enjoyed the sports time for badminton, volleyball, and basketball with
you. I wish you all have a bright future.

I started to play basketball when I was in primary school. In Delft, we have a small
basketball team: Tao, Ming, Wangwang, Linfeng, Mingxin, Jitang, Yongchang, Song, Da-
long, ... In the afternoon, I was delighted when one of us says "Hey, guys, basketball
time." During this time, I just enjoyed joking and playing, and left my worries behind.

I am lucky to have many friends (and roommates) in Delft: Meng, Chang, Shuhong,
Yihui, Lilan, Yong, Linfeng, Ping and Yan, and Wuyuan. We came to the Netherlands al-
most at the same time. From those very moments on, we started to live on ourselves, and
share the good/bad moments of our life. I will never forget those days in the Professor
Street. I would like to thank my roommates: Wangwang, Wenhao, Tiantian, Xi, and We-
ichen. Wangwang and Wenhao, I still remember the long-trip cycling to Lisse and Castle
De Haar. As we have discussed, only the sceneries along the roads can represent the real
Netherlands. Tiantian, Xi, and Weichen, we had a lot of discussions on music, movies,
food, and material science. I will never forget the memories from our daily life, and I
hope that you will have a large number of ACTAs and PRBs. I also want to express my
thanks to my friends from NUDT. It is my honour to have all your friendship.

I would like to thank our secretaries and the ICT colleagues: Ilse Oonk, Rina Abbriata,
Shemara van der Zwet, Stephen van der Laan, Paulo Anita, and Munire van der Kruyk.
You are always helpful when I have a problem. Thank you, Stephen, for the help on the
Internet/machine access. Thank you, Paulo and Munire, for the help when I worked as
TA for the IN4049 course. All your help saved me a lot of time.

Last but not least, I want to express my sincerest appreciation to my family. Papa and
Mama, thank you for bringing me to this world and teaching me to be a man. I am proud
of being your son. Confucius said, ‘when your parents are still living and ageing, avoid
working in a place far away from home.’ I am sorry for staying so far away from home
that I cared for you very little. I want to thank my sisters, Jianhong and Nini, who took
care of you when I was overseas. I want to thank my wife, Haiye Lu. Thank you for always
being there for me, and for your understanding and tolerance. I love you!

Jianbin Fang
Delft, September 2014

CONTENTS

1 Introduction 1
1.1 Multi-/Many-Core Processors. 2
1.2 Processing Cores . 2
1.3 Memory Hierarchy and Local Memory 3
1.4 Programming Models . 4
1.5 Portability and Performance . 4
1.6 Research Questions . 5
1.7 Thesis Contributions . 7
1.8 Thesis Outline . 8

2 OpenCL Against CUDA 11
2.1 Similarities of CUDA and OpenCL . 12
2.2 Methodology and Experimental Setup 13

2.2.1 Unifying Performance Metrics . 13
2.2.2 Selected Benchmarks . 14
2.2.3 Experimental Testbeds . 14

2.3 Performance Comparison and Analysis 14
2.3.1 Comparing Peak Performance . 14
2.3.2 Performance Comparison of Real-world Applications 16
2.3.3 A Fair Comparison . 21

2.4 A Brief Evaluation of OpenCL’s Portability 23
2.5 Related Work . 24
2.6 Summary . 26

3 Exploring Optimization Space: A Case Study 27
3.1 A First Trial . 28
3.2 Algorithms and the Representation . 29

3.2.1 Aggregation Strategies . 29
3.2.2 A Template for Cost Aggregation Kernels 30

3.3 Implementations and Optimizations . 32
3.3.1 OpenCL Implementations . 32
3.3.2 Optimization Steps for CA on GPUs 32

3.4 Overall Performance . 38
3.4.1 Accuracy . 38
3.4.2 Speed on the Quadro5000 . 39
3.4.3 Speed on the Low-end GPU . 40
3.4.4 Putting it all together. 40

vii

viii CONTENTS

3.5 Supplementary Results on a Multi-core CPU 41
3.5.1 Mapping Work-items to Data . 42
3.5.2 Using Local Memory . 42
3.5.3 Unrolling Loops . 43
3.5.4 Increasing Data Parallelism . 43

3.6 Related Work . 43
3.7 Summary . 44

4 Evaluating Vector Data Type Usage 47
4.1 Source-to-Source Translation . 48

4.1.1 OpenCL and VDT . 48
4.1.2 Using Vector Data Types . 49
4.1.3 Code Transformations . 50

4.2 Experimental Setup . 52
4.2.1 Selected Benchmarks . 52
4.2.2 Platforms and Devices . 53

4.3 VDT Execution Model . 53
4.3.1 Execution Model Analysis . 53
4.3.2 Compiler-level Analysis . 55
4.3.3 Lessons Learned . 55

4.4 Inter-vdt Performance Impact on Macro-Benchmarks 56
4.4.1 Matrix Multiplication . 58
4.4.2 Image Convolution . 58
4.4.3 Black Scholes . 59
4.4.4 SOR . 59
4.4.5 Lessons Learned . 61

4.5 Intra-vdt Performance Impact on Macro-Benchmarks 62
4.6 Performance Portability Discussion . 62
4.7 Related Work . 63
4.8 Summary . 64

5 Quantifying the Performance Impacts of Using Local Memory 67
5.1 Three Observations as Motivation . 69

5.1.1 Data Reuse 6= Performance Improvement 69
5.1.2 No Data Reuse 6= Performance Loss 69
5.1.3 Local Memory Use on CPUs 6= Performance Loss 70

5.2 The Design of Aristotle . 70
5.3 MAP Description . 71

5.3.1 The Notation. 71
5.3.2 eMAP . 72
5.3.3 iMAP . 73
5.3.4 MAP = eMAP+iMAP . 74

5.4 Design Space Exploration and Code Generation 75
5.4.1 Exploring Design Space . 75
5.4.2 Code Generator . 77

CONTENTS ix

5.5 Performance Database . 78

5.5.1 Performance Metric . 78

5.5.2 Experimental Setup . 78

5.5.3 Performance Optimization Considerations 79

5.5.4 Performance Database . 80

5.6 Composing MAP Impacts . 84

5.7 Composing Rules Validation . 86

5.7.1 A MAP Composer . 86

5.7.2 Rule Validation. 87

5.7.3 Using Aristotle . 87

5.8 Related Work . 88

5.9 Summary . 88

6 ELMO: An API to Enable Local Memory Usage 91

6.1 ELMO Requirements . 92

6.1.1 Challenge I: Geometry Mismatch 93

6.1.2 Challenge II: Work-items Masking and Binding Switches 93

6.1.3 Challenge III: Inefficient Local Memory Organization 93

6.2 ELMO Design . 95

6.3 ELMO Implementation . 96

6.3.1 BWR . 96

6.3.2 COM . 98

6.3.3 LMM . 98

6.4 Experimental Evaluation . 101

6.4.1 Experimental Setup . 101

6.4.2 Performance Comparison with Native Kernels 101

6.4.3 Performance Comparison with Hand-tuned Kernels 104

6.5 Discussion . 105

6.5.1 Productivity . 105

6.5.2 Usability . 106

6.5.3 Limitations. 106

6.6 Related Work . 107

6.7 Summary . 108

7 Grover: Reverse-Engineering Local Memory Usage 109

7.1 Motivation . 110

7.1.1 Disabling Local Memory Usage 110

7.1.2 Performance Impact . 111

7.2 Grover: Systematically Disabling Local Memory Usage 112

7.2.1 Overview. 112

7.2.2 The Method behind Grover . 113

7.2.3 An Example: Matrix Transpose . 115

x CONTENTS

7.3 Grover Implementation . 115
7.3.1 Selecting Candidates . 116
7.3.2 Building the Index Expression Trees 116
7.3.3 Determining the Data Index . 117
7.3.4 Creating and Solving the Linear System 117
7.3.5 Duplicating the New Load Instructions 118
7.3.6 Updating the New Expression Tree 119

7.4 Experimental Setup . 120
7.4.1 Incorporating Grover. 120
7.4.2 Selected Benchmarks . 120
7.4.3 Platforms and Devices . 121

7.5 Performance Evaluation and Discussion 122
7.5.1 Calculating the New Data Index 122
7.5.2 Results Summary . 122
7.5.3 Performance Analysis . 122
7.5.4 Limitations. 124

7.6 Related Work . 124
7.7 Summary . 126

8 Sesame: Towards a Portable Programming Framework 127
8.1 A Realistic Scenario . 127
8.2 The Framework . 128
8.3 Sesame Inputs . 129

8.3.1 Input Kernels . 129
8.3.2 Platform Models . 130

8.4 Sesame Implementation . 130
8.4.1 Vectorization. 130
8.4.2 Local Memory Usage. 131

8.5 Related Work . 131
8.6 Summary . 132

9 Conclusions and Future Work 133
9.1 Conclusions. 133
9.2 Future Research Directions . 135

A Test-Driving Intel Xeon Phi 137
A.1 Benchmarking Intel Xeon Phi . 139

A.1.1 The Architecture . 139
A.1.2 Programming . 140
A.1.3 MIC-Meter . 140

A.2 Empirical Evaluation . 141
A.2.1 Vector Processing Cores . 141
A.2.2 Memory Latency . 143
A.2.3 Memory Bandwidth . 145
A.2.4 Ring Interconnect . 148
A.2.5 PCIe Data Transfer . 150

CONTENTS xi

A.3 SCAT: An Xeon Phi Model . 151
A.4 Leukocyte Tracking . 153

A.4.1 Performance Analysis . 153
A.4.2 Performance Optimization. 154
A.4.3 Discussion . 156

A.5 Related Work . 158
A.6 Summary . 158

B Auto-tuning Clustering Data Streams 161
B.1 Hand-optimizing CDS in OpenCL. 162

B.1.1 A Memory-efficient Solution . 163
B.1.2 Further Optimizations . 164
B.1.3 Experimental Results. 165

B.2 Auto-tuning . 166
B.2.1 Case: when a < b . 168
B.2.2 Case: when a > b . 169
B.2.3 Experimental Results. 170

B.3 Related Work . 170
B.3.1 Clustering Data Streams on GPUs 170
B.3.2 Auto-tuning on GPUs . 171

B.4 Summary . 172

Bibliography 173

Summary 187

Samenvatting 189

Curriculum Vitæ 191

1
INTRODUCTION

At the beginning of the 2000s, high performance computing (HPC) was still a niche ac-
tivity, focused on scientific models for drug discovery or weather prediction, and done
almost exclusively in supercomputing labs. Since 2005, when multi-core processors have
started to emerge in machines other than the most exclusive supercomputers, the land-
scape has changed: more and more applications find interesting, new ways to make use
of compute power to gain more insight into their respective scientific fields. HPC is also
making way in daily life: HPC computer vision algorithms are used to analyze personal
photography collections, movies and games become more realistic than ever, and per-
sonal genome analysis is reaching the affordability threshold.

These exciting developments are made possible by the fast development of proces-
sors and computing in general: limited by the power-, memory-, and parallelism-walls,
computing architectures have become parallel, combining multiple cores on the same
die. Different solutions have emerged, from homogeneous multi-core CPUs to heteroge-
neous machines like the Cell/B.E. and massively parallel accelerators, like the GPUs. De-
spite their different designs, all these processors promise impressive performance and,
therefore, significant acceleration of various applications.

With the transition towards parallel hardware, a change in the software was also nec-
essary: sequential, single-threaded applications have suddenly observed low utilization
rates and even performance decay. Only parallel applications are able to use these multi-
core platforms at their real potential. New parallel applications must be designed and
implemented, and existing versions must be updated to this new generation of paral-
lelism. New algorithms, implementations, and optimization strategies are emerging,
and together with them arises the issue of productivity: there are not enough expert
parallel programmers to address the challenges of this “multi-core revolution”. A better-
scaling solution is needed to cope with the diversity of the platforms and the large num-
ber of applications that require acceleration.

We believe this problem can be tackled by offering more accessible programming
tools, featuring a tunable balance between control and transparency, and targeted at
non-expert programmers. This thesis shows how such tools can be built and used.

1

1

2 1. INTRODUCTION

1.1. MULTI-/MANY-CORE PROCESSORS
In 2001, IBM released the POWER4, the first general-purpose commercial multi-core
processor [156]. Since then, multi-cores have been replacing the traditional single-core
processors from personal computers to servers. Manufacturers such as AMD, IBM, Intel,
and Sun have developed various multi-core processors, which are built by integrating
multiple complex processing cores onto the same die. These cores are interconnected
by buses, rings, meshes, or crossbars, and share a memory with multiple levels of cache.

Many-core processors have significantly more cores than multi-core processors, but
each core is simpler. In addition, they feature scratch-pad memories, relatively simple
caches, and high-speed (graphics) memories. All these features enable many-core pro-
cessors to excel in data parallel applications and offer impressively high throughputs. A
typical example is a GPU (Graphics Processing Unit), which was originally targeted at
graphics processing but is now also widely used in general-purpose computing (known
as GPGPU) [124].

Multi-cores and many-cores are good at processing different workloads. Multi-cores
have been the main workhorse for traditional workloads with moderate parallelism and
irregular patterns [89]. Many-cores are particularly good at executing programs with
massive (data) parallelism, and regularity in their control flow and memory access pat-
terns. We foresee that multi-cores and many-cores will coexist and be complementary
to each other in the future.

1.2. PROCESSING CORES
The number of processing cores on a chip has been increasing over years. In Figure 1.1,
we show the number of (single-precision) cores varies over time for AMD Radeon HD
GPUs, Intel Xeon processors (and Intel Xeon Phi), and NVIDIA GTX GPUs. Multi-core
CPUs and many-core GPUs differ from each other in core structure: multi-cores gain
more parallelism by using vector units/SIMD, while many-cores have fine-grain cores
that can be further grouped for coarser-grain parallelism. Thus, we count the number of

10
0

10
1

10
2

10
3

10
4

 2007 2008 2009 2010 2011 2012 2013

P
ro

c
e
s
s
in

g
 C

o
re

s

End of Year

CPUs, Intel

Xeon X5482

Xeon X5492

Xeon W
5590

Xeon X5680

Xeon X5690

Xeon E5-2690
Xeon E5-2692

GPUs, NVIDIA

GPUs, AMD

MIC, Intel

GeForce 8800 G
TS

GeForce G
TX 280

GeForce G
TX 285

GeForce G
TX 580

GeForce G
TX 580

GeForce G
TX 680

Radeon HD 8970

Radeon HD 3870 Radeon HD 4870
Radeon HD 5870

Radeon HD 6970

Radeon HD 6970

Radeon HD 7970

GeForce G
TX Tita

n

Xeon Phi 5
110P

Figure 1.1: Number of processing cores for high-end hardware [78].

1.3. MEMORY HIERARCHY AND LOCAL MEMORY

1

3

cores in different ways: for multi-core CPUs (and Xeon Phi), we regard a vector-core (a
SIMD unit) as a single core, while for many-core GPUs, we regard a processing element
as a single core. In Figure 1.1, we see that the number of cores is up to a dozen on multi-
core processors while it can be hundreds or thousands on many-core processors.

Intel’s MIC (Many Integrated Cores), also known as Xeon Phi, integrates around 60
simplified vector cores (512-bit SIMD) on a die, and it is blurring the border between
multi-core and many-core processors. An empirical study of this processor is given in
Appendix A.

1.3. MEMORY HIERARCHY AND LOCAL MEMORY
As processing cores become faster and more, the performance of many programs is lim-
ited by memory accesses. To improve the performance of these memory accesses, a
deep(er) memory hierarchy has been introduced, where a small local memory has been
added, working as a buffer between registers and off-chip memories (Figure 1.2). Due
to its on-chip placement, accessing it is much faster than accessing off-chip memories;
using this local memory can bring significant performance enhancement [62]. In multi-
/many-core processors, there are two types of such memories: caches and scratch-pad
memories (SPM).

Figure 1.2: Memory Hierarchy.

When using caches, data movement between off-chip memories and caches is man-
aged automatically by hardware protocols (i.e., cache coherency protocols). Caches have
been widely implemented in modern multi-core processors. Typically, such processors
have up to three levels of cache. The major advantage of adopting caches is that pro-
grammers do not have to care about how to move data across memory levels. However,
programmers have no direct control of data movements between caches and off-chip
memories.

Different from a cache, a SPM has to be managed by software (also known as software-
managed cache) [11]. Compared to caches, using SPMs has many advantages. As shown
in [11], SPMs consume 40% less energy than caches because of no tag arrays and com-
parators. With regard to area, a SPM consumes 46% less than a cache of the same size.
This is because SPMs use simpler hardware design than caches. Therefore, using SPMs
has been very popular in DSPs, game consoles (IBM Cell/B.E.), and graphic processors
(GPUs from AMD and NVIDIA). Nevertheless, data movements between off-chip memo-
ries and SPMs have to be managed by programmers, which leads to a significant increase

1

4 1. INTRODUCTION

in coding efforts.
The recently released GPUs from both NVIDIA (such as K20) and AMD (such as HD7970)

adopt a hybrid solution, by providing both caches and SPMs. In particular, the SPMs
from NVIDIA’s GPUs are program-configurable, i.e., programmers can specify the ratio
of caches to SPMs.

1.4. PROGRAMMING MODELS
Programming models provide developers with an interface to access a machine. The
rise of multi-/many-core processors has lead to a plethora of new programming models.
According to their abstraction level, we roughly divide programming models into two
groups: low-level and high-level.

The low-level programming models such as OpenCL [151], CUDA [115], and Direct-
Compute [100], require explicit specification of parallelism and provide users with a lot
of control over the machine. OpenCL, a unified model managed by the Khronos Group,
is a portable framework that supports NVIDIA GPUs, AMD GPUs, multicore CPUs, Intel
Xeon Phi, DSPs, and FPGAs. By comparison, CUDA is an NVIDIA-specific programming
model for only NVIDIA’s GPUs and DirectCompute is only available in Windows. How-
ever, just like OpenCL, they require the software developer to explicitly orchestrate data
movement, select where variables live in the memory hierarchy, and manually express
parallelism in the code. On top of these low-level programming models, C++ Acceler-
ated Massive Parallelism (C++ AMP) [99] and SYCL [81] have been proposed to exploit
the flexibility of C++ and to ease programming by using a higher-level abstraction layer.

The high-level programming models such as OpenMP [121], OpenACC [119], and
OmpSs [22], use directives (annotations) and library routines to guide compilers to par-
allelize applications. OpenACC uses a collection of compiler directives to specify loops
and regions of code in standard C, C++ and Fortran to be offloaded from a host CPU to
an attached accelerator, providing portability across operating systems, host CPUs and
accelerators. The idea is similar to how OpenMP can be used to parallelize CPU pro-
grams. Likewise, OmpSs is an effort to integrate features from the StarSs programming
model into a single programming model, based on extending OpenMP with new direc-
tives to support asynchronous parallelism and heterogeneity. Therefore, the high-level
programming models hide many of the parallelization decisions, and the overall perfor-
mance heavily relies on dedicated compilers.

1.5. PORTABILITY AND PERFORMANCE

In the Cambridge Dictionary 1, ‘portability’ is defined as: (1) ‘the ability of be easily car-
ried’, and (2) ‘the ability to be used for a different purpose or on a different system’. In this
thesis, we focus on the latter definition, and emphasize ‘functional portability’. When
an application is functionally portable, it can be compiled, run, and verified in multi-
ple environments without any modification. Therefore, a portable implementation of
an application will save time and lower the development/debugging cost. Portability is
particularly desirable in the multi-/many-core era when we have a large number of plat-

1http://dictionary.cambridge.org/

http://dictionary.cambridge.org/

1.6. RESEARCH QUESTIONS

1

5

forms and (vendor-specific) programming models. For example, a code written in CUDA
for NVIDIA GPUs can neither run on AMD GPUs, nor run on multi-core CPUs.

Functional portability on multi-/many-core processors can be achieved by using a
unified programming model: programmers code the application once, and, with the
help of compilers, the code can run on various platforms without modifications.

Before discussing performance, we define the following terms:

• Domain experts and Programming experts
Domain experts master domain-specific knowledge, but have very basic knowledge
about programming. Programming experts master programming models and know
architectural details.

• Platform-agnostic implementation and Platform-specific implementation
We consider any input kernel, as given by users (typically domain experts), to be
platform-agnostic: users develop kernels for a virtual platform model (e.g., the OpenCL
platform model), and apply certain kernel optimizations (e.g., using vector data
types or enabling the use of local memory), without assuming prior knowledge of
the target platform. By contrast, a platform-specific kernel would be specialized, by
using the right mix of optimizations for the real hardware.

Figure 1.3 shows a typical scenario for achieving high performance with a unified
programming model. Domain experts write a functionally portable implementation which
is assumed to be platform-agnostic. Thereafter, programming experts perform a set of
optimizations to transform the basic platform-agnostic implementation into a highly
optimized, platform-specific version. This development mode heavily relies on pro-
gramming experts (shown in Figure 1.3 : Ê).

Figure 1.3: A scenario: towards achieving high performance.

1.6. RESEARCH QUESTIONS
Currently, unified programming models cannot systematically deal with platform-specific
optimizations: what works for one platform brings performance penalties on another,
severely limiting any hope for performance portability. The goal of this thesis is to ad-
dress this problem at the compiler/API level, by offering domain experts (semi-)automated
tools to include/exclude platform-specific optimizations when needed (shown in Fig-
ure 1.3 : Ë). Ultimately, we aim to enable unified programming models to cope with

1

6 1. INTRODUCTION

any optimizations/choices the domain experts make without performance penalties; ef-
fectively, this means we aim to provide tools to transform any platform-specific opti-
mization into a platform-agnostic one. Therefore, we focus on the following research
questions.

RQ1: Is OpenCL a suitable unified programming model for multi-/many-core proces-
sors regarding performance and portability?

We need to select a unified programming model as our research vehicle. Among
the aforementioned programming models, OpenCL is one proposed to program across
platforms. To verify whether OpenCL can achieve matching performance (to native pro-
gramming models) and ensure functional portability, we present an empirical evaluation
of OpenCL versus CUDA by using various benchmarks. Further, we make an extensive
analysis of the performance gaps between them (if any). We also give a brief validation
of OpenCL’s portability on different devices.

RQ2: Is there a platform-specific optimization space for a given kernel?

Given an OpenCL kernel, we explore the interactions between the kernel and the un-
derlying hardware, aiming to achieve optimal performance. Using a case study in com-
puter vision, we explore its optimizations and further analyze the interactions between
optimizations and architecture features for different platforms. Based on this analysis,
we define an optimization space for the given kernel and quantify how platform-specific
they are.

We further focus on two concrete platform-specific optimizations: vectorization and
local memory usage.

RQ3: Can vectorization be a platform-agnostic optimization?

Vector-core processors and scalar-core processors diverge in core organization, and
thus vectorization is a platform-specific optimization. To verify whether vectorization
can be platform-agnostic, we propose two approaches to vectorize OpenCL kernels, and
we measure the performance impact of vectorization on both vector-core processors
and scalar-core processors. Given the performance impact vectorization has, we further
present suitable options for integrating it in an unified programming model.

RQ4: Can using local memory be a platform-agnostic optimization?

Using local memory is yet another platform-dependent optimization. Because the
usage of local memory is a more complex, application-dependent optimization, we split
this question into three sub-questions.

RQ4a: When is using local memory beneficial?

Properly using local memory plays a key role in improving performance. However,
due to the mixed design of caches and SPMs, local memory is implemented in differ-
ent manners on different platforms, using local memory leads to unpredictable perfor-
mance. To investigate when using local memory gives a positive impact and when using
it gives a negative impact, we propose a micro-benchmark-based approach which gen-
erates a performance database. By querying the database, one can retrieve the benefits
of using local memory.

RQ4b: How can we enable local memory usage with high productivity?

1.7. THESIS CONTRIBUTIONS

1

7

Once getting a performance indicator of using local memory, we need to either en-
able local memory usage or disable local memory usage (i.e., code specialization). En-
abling local memory is time-consuming and error-prone. To show how we can facili-
tate this process, we propose an API-based approach to help programmers enable local
memory usage. We investigate how to design such an API to improve productivity while
preserving performance.

RQ4c: How can we disable local memory automatically?

Similarly, removing local memory usage is time-consuming and error-prone. This is
particularly true in a complex program context and/or when the code is written by a third
party. By automatically removing the negative effects of using local memory when it
would be detrimental to performance, using local memory becomes a platform-agnostic
feature in OpenCL.

RQ5: Can the optimization space for an application be explored systematically?

Beyond the usage of vector types and local memory, many other architectural fea-
tures must be considered. Therefore, we attempt a generalization of the work we did for
local memory and vectorization, and propose the Sesame framework, which compiles
and executes the best platform-specific form of a given kernel, aiming to achieve the
best performance for the given implementation.

1.7. THESIS CONTRIBUTIONS
In this thesis, we aim to tackle platform-specific optimizations by investigating (semi-)
automated methods and techniques. During this process, we make the following contri-
butions.

Contribution 1: We show that OpenCL, as a unified programming model, is a promis-
ing alternative to native programming models regarding performance and portability.

In Chapter 2, we see that OpenCL can achieve matching performance to CUDA on
NVIDIA GPUs with both synthetic benchmarks and real-world benchmarks. This is fur-
ther confirmed by our case study in Appendix B. We also see that functional portability
is largely achieved by OpenCL on various devices.

Contribution 2: We bring empirical evidence that non-algorithmic kernel optimiza-
tions are functionally portable, but have platform-specific performance impacts.

In Chapter 3, we implement, parallelize, and optimize stereo matching on GPUs and
CPUs. Our experience and analysis show that there is a platform-specific optimization
space (such as using local memory and coalescing memory accesses) for this application
and we need to investigate the interactions between platforms and the application for
improved performance. In Chapter 4, we observe that using vector types can lead to a
better or a worse performance.

Contribution 3: We show the impact of vectorization on different architectures and
demonstrate general approaches to achieve it.

In Chapter 4, we use micro-benchmarks and macro-benchmarks to evaluate the per-
formance impact of explicitly using vector data types. Our results show that explicit
vectorization plays a key role in achieving high performance on vector-core processors

1

8 1. INTRODUCTION

while it might degrade performance on scalar-core processors. We propose a solution to
preserve performance across platforms.

Contribution 4: We show that the benefits of using local memory vary over devices and
introducing caches leads to unpredictable performance.

In Chapter 5, we evaluate micro-benchmarks (with and without local memory) on
a large range of devices. We find that the benefits of using local memory vary over de-
vices, because the used devices have different memory hierarchies. We also find that
the overall performance of using local memory is often unpredictable in the presence of
caches.

Contribution 5: We propose a query-based approach to indicate performance gain/loss
of using local memory.

In Chapter 5, we develop a suite of micro-benchmarks to evaluate the performance
impact of using local memory. Our micro-benchmarks are based on memory access pat-
terns, which makes our approach application-agnostic. Evaluating these micro-benchmarks
gives us a performance database. A query in the database indicates whether it is benefi-
cial to use local memory.

Contribution 6: We propose an efficient approach to enable local memory usage.

In Chapter 6, we propose an API to use local memory. When designing the API, we
consider performance, productivity, and usability. This API summarizes three typical
patterns of using local memory. We implement them in a back-end specifically opti-
mized for GPUs. Our results and analysis show that we achieve improved productivity
while preserving high performance.

Contribution 7: We propose an automated compiler-based approach to disable local
memory usage.

In Chapter 7, we propose an approach to remove local memory usage. Starting from
kernels with local memory, our approach can remove the usage of local memory auto-
matically. This approach is based on building the correspondence between local mem-
ory accesses and global memory accesses. We have implemented our approach as a
compiling pass, which aims to fully free programmers from removing local memory us-
age by hand.

Contribution 8: We have designed a framework to tackle platform-specific optimiza-
tions systematically.

Beyond vectorization and local memory usage, there are other platform-specific op-
timizations. Therefore, we propose a portable programming framework, aiming to ad-
dress all the platform-specific optimizations in Chapter 8.

1.8. THESIS OUTLINE
The organization of this thesis is presented in Figure 1.4, and described in the following.

Chapter 2 presents a comprehensive performance comparison between CUDA and
OpenCL. We make an extensive analysis of the performance gaps taking into account
programming models, optimization strategies, architectural details, and underlying com-
pilers. Our results show that, for most applications, OpenCL can achieve matching per-

1.8. THESIS OUTLINE

1

9

Figure 1.4: Thesis organization.

formance to CUDA. We also investigate OpenCL’s functional portability. This chapter is
based on our work previously published in ICPP’11 [49].

Chapter 3 takes real-time stereo matching as an example, and presents a generic rep-
resentation and suitable implementations for three commonly used cost aggregators.
We show how to parallelize and optimize these kernels, which leads to a significant per-
formance improvement. Further, we evaluate the optimizations on a multi-core CPU,
and relate each optimization to architecture features. This chapter is based on our work
previously published in ICPADS’12 [45].

Chapter 4 investigates the usage of vector data types in a systematic way. First, we
propose two different approaches to enable vector data types in OpenCL kernels. Af-
ter obtaining vectorized code, we further evaluate the performance effects with bench-
marks. With microbenchmarks, we study the execution model of vector data types and
the role of the compiler-aided vectorizer, on a range of processors. With macro-benchmarks,
we explore the performance impact from application characteristics. Further, we dis-
cuss how to deal with performance portability in the presence of vector data types. This
chapter is based on our work published in Concurrency and Computation: Practice and
Experience [47].

Chapter 5 quantifies the performance impact of using local memory in multi/many-
core processors. To do so, we systematically describe memory access patterns (MAPs)
in an application-agnostic manner. Next, for each identified MAP, we generate two mi-
crobenchmarks: one without local memory and the other one with local memory. We
further evaluate both of them on typically used platforms, and we log their performance.
What we eventually obtain is a local memory performance database, indexed by various
MAPs and platforms. Given an application, its MAPs, and a platform, a query in the
database can indicate the performance impact of using local memory. This chapter is
based on our work previously published in MuCoCoS’13 [40] and in Scientific Program-
ming [42].

Chapter 6 introduces an easy-to-use API (ELMO) that improves productivity while
preserving the high performance of local memory operations. Specifically, ELMO is a
generic API that covers different local memory use-cases. We present prototype imple-
mentations for these APIs and perform multiple GPU-inspired optimizations. Experi-
mental results show that using ELMO we can achieve performance comparable with that

1

10 1. INTRODUCTION

of hand-tuned applications, while the code is shorter, clearer, and safer. This chapter is
based on our work previously published in PDP’13 [44].

Chapter 7 presents Grover, a method to automatically remove local memory usage
from OpenCL kernels. In particular, we create a correspondence between the global and
local memory spaces, which is used to replace local memory accesses by global mem-
ory accesses. We have validated Grover and found that it can successfully disable local
memory usage. We have observed performance improvements for more than a third of
the test cases after Grover disabled local memory usage. This chapter is based on our
work previously published in ICPP’14 [41].

Chapter 8 presents a portable programming framework for parallel applications run-
ning on many-core processors (Sesame). Taking a platform-agnostic code provided by a
domain expert as input, Sesame chooses and includes/excludes the most suitable architecture-
specific optimizations, aiming to improve the overall application performance in a user-
transparent way. This chapter is based on our work previously published in CCGrid’13 [46].

In Chapter 9, we summarize our key findings and present future directions.
Appendix A introduces our experience on Intel Xeon Phi at two different levels: the

micro-benchmark level, and the application level. At the micro-benchmarking level, we
show the high performance of five components of the architecture, focusing on their
maximum achieved performance and the prerequisites to achieve it. Next, we choose
a medical imaging application as a case study. We observed that it is rather easy to get
functional code and start benchmarking, but the first performance numbers are not sat-
isfying. This appendix is based on our work previously published in ICPE’14 [43].

Appendix B provides an OpenCL implementation for clustering data streams, and
then presents several optimizations for it, to make it more efficient in terms of memory
usage. To maximize performance for different problem sizes and architectures, we also
propose an auto-tuning solution. Experimental results show that our fully optimized im-
plementation can perform significantly faster than the native OpenCL implementation;
it can also achieve better performance than the original solution. This appendix is based
on our work previously published in CSE’11 [48].

2
OPENCL AGAINST CUDA

In this chapter, we investigate whether the performance of OpenCL is compromised due
to its cross-platform promise. We compare the performance of OpenCL against CUDA
on NVIDIA GPUs with diverse applications. Further, we briefly discuss OpenCL’s porta-
bility on a range of devices.

Today’s GPUs (Graphic Processing Units), greatly outperforming CPUs in arithmetic
throughput and memory bandwidth, can use hundreds of parallel processor cores to ex-
ecute tens of thousands of parallel threads [53, 107]. Researchers and developers are
becoming increasingly interested in harnessing this power for general-purpose com-
puting, an effort known collectively as GPGPU (for “General-Purpose computing on the
GPU”) [123], to rapidly solve large problems with substantial inherent parallelism.

Due to this large performance potential, GPU programming models have evolved
from shading languages such as Cg [116], HLSL [101], and GLSL [80] to modern program-
ming languages, alleviating programmers’ burden and thus enabling GPUs to gain more
popularity. Particularly, the release of CUDA (Compute Unified Device Architecture) by
NVIDIA in 2006 has eliminated the need of using the graphics APIs for computing appli-
cations, pushing GPU computing to more extensive use [115]. Likewise, APP (Advanced
Parallel Processing) is a programming framework which enables ATI/AMD GPUs, work-
ing together with the CPUs, to accelerate many applications beyond just graphics [4]. All
these programming frameworks allow programmers to develop a GPU application with-
out mastering graphic terms, and enables them to build large applications easier [124].

However, every programming framework has its unique method for application de-
velopment. This can be inconvenient, because software development and related ser-
vices must be rebuilt from scratch every time a new platform hits the market [153]. The
software developers were forced to learn new APIs and languages which quickly became
out-of-date. Naturally, this caused a rise in demand for a single language capable of
handling any architecture. Finally, an open standard was established, now known as
“OpenCL” (Open Computing Language). OpenCL can give software developers portable

This chapter is based on our work published in the Proceedings of ICPP 2011 [49].

11

2

12 2. OPENCL AGAINST CUDA

and efficient access to the power of diverse processing platforms. Nevertheless, this also
brings up the question of whether the performance is compromised, as it is often the
case for this type of common languages and middle-wares [153]. If the performance suf-
fers significantly when using OpenCL, its usability becomes debatable (users may not
want to sacrifice the performance for portability).

To investigate the performance-vs-portability trade-offs of OpenCL, we make exten-
sive investigations and experiments with diverse applications ranging from synthetic
ones to real-world ones, and we observe the performance differences between CUDA
and OpenCL. In particular, we give a detailed analysis of the performance differences
and then conclude that under a fair comparison, the two programming models are equiv-
alent, i.e., there is no fundamental reason for OpenCL to perform worse than CUDA.

We focus on exploring the performance comparison of CUDA and OpenCL on NVIDIA’s
GPUs because, in our view, this is the most relevant comparison. First, for alterna-
tive hardware platforms it is difficult to find comparable models: on ATI/AMD GPUs,
OpenCL has become the “native” programming model, so there is nothing to compare
against; on the Cell/B.E., OpenCL is still immature and a comparison against the 5-year
old IBM SDK would be unfair “by design”; on the general purpose multi-core proces-
sors, we did not find a similar model (i.e., a model with similar low level granularity) to
compare against. Second, CUDA and OpenCL, which are both gaining more and more
attention from both researchers and practitioners, are similar to each other in many as-
pects.

The rest of this chapter is organized as follows: Section 2.1 compares CUDA and
OpenCL at the conceptual level. Section 2.2 illustrates our methodology, the selected
benchmarks and the testbeds. Section 2.3 gives an overall performance comparison and
identifies the main reasons for the performance differences. Then we define a fair com-
parison for potential performance comparisons and analyses of CUDA and OpenCL.
Section 2.4 shows OpenCL’s ability in code-portability. Section 2.5 presents some related
work on performance comparison of parallel programming models on multi-/many-
cores. Section 2.6 summarizes this chapter.

2.1. SIMILARITIES OF CUDA AND OPENCL
CUDA is a parallel computing framework designed only for NVIDIA’s GPUs, while OpenCL
is a standard designed for diverse platforms including CUDA-enabled GPUs, some ATI/AMD
GPUs, multi-core CPUs from Intel and AMD, and other processors such as the Cell/B.E.

OpenCL shares a range of core ideas with CUDA: they have similar platform models,
memory models, execution models, and programming models [115, 151]. To a CUDA
(or an OpenCL) programmer, the computing system consists of a host (typically a tra-
ditional CPU), and one or more devices that are massively parallel processors equipped
with a large number of arithmetic execution units [82]. There also exists a mapping be-
tween CUDA and OpenCL in memory and execution terms, as is presented in Table 2.1.
Additionally, their syntax for various keywords and built-in functions are fairly similar
to each other. Therefore, it is relatively straightforward to translate CUDA programs to
OpenCL programs.

2.2. METHODOLOGY AND EXPERIMENTAL SETUP

2

13

Table 2.1: A comparison of general terms [5]

CUDA terminology OpenCL terminology

Global Memory Global Memory

Constant Memory Constant Memory

Shared Memory Local Memory

Local Memory Private Memory

Thread Work-item

Thread-block Work-group

Table 2.2: Selected benchmarks

App. Suite Dwarf/Class* Performance Metric Description

BFS Rodinia Graph Traversal sec Graph breadth first search

Sobel SELF Dense Linear Algebra sec Sobel operator on a gray image in X direction

TranP SELF Dense Linear Algebra GB/sec Matrix transposition with shared memory

Reduce SHOC Reduce* GB/sec Calculate a reduction of an array

FFT SHOC Spectral Methods GFlops/sec Fast Fourier Transform

MD SHOC N-Body Methods GFlops/sec Molecular dynamics

SPMV SHOC Sparse Linear Algebra GFlops/sec Multiplication of sparse matrix and vector (CSR)

St2D SHOC Structured Grids sec A two-dimensional nine point stencil calculation

DXTC NSDK Dense Linear Algebra MPixels/sec High quality DXT compression

RdxS NSDK Sort* MElements/sec Radix sort

Scan NSDK Scan* MElements/sec Get prefix sum of an array

STNW NSDK Sort* MElements/sec Use comparator networks to sort an array

MxM NSDK Dense Linear Algebra GFlops/sec Matrix multiplication

FDTD NSDK Structured Grids MPoints/sec Finite-difference time-domain method

2.2. METHODOLOGY AND EXPERIMENTAL SETUP
In this section, we explain the methodologies we adopt in this chapter. The used bench-
marks and experimental testbeds are also explained.

2.2.1. UNIFYING PERFORMANCE METRICS
In order to compare the performance of CUDA and OpenCL, we define a normalized
performance metric, called Performance Ratio(PR), as follows:

PR = Per f or manceOpenC L

Per f or manceCU D A
(2.1)

For PR < 1, the performance of OpenCL is worse than its counter-part; otherwise,
OpenCL will give a better or the same performance. In an intuitive way, if |1−PR| < 0.1,
we assume CUDA and OpenCL have similar performance.

When it comes to different domains, performance metrics have different meanings.
In memory systems, the bandwidth of memories can be seen as an important perfor-
mance metric. The higher the bandwidth is, the better the performance is. For sorting al-
gorithms, performance may refer to the number of elements a processor finishes sorting
in unit time. Floating-point operations per second (Flops/sec) is a typical performance
metric in scientific computing. Exceptionally, performance is inversely proportional to

2

14 2. OPENCL AGAINST CUDA

the time a benchmark that takes from start to end. Therefore, we have selected specific
performance metrics for different benchmarks, as illustrated in Table 2.2.

2.2.2. SELECTED BENCHMARKS
Benchmarks are selected from the SHOC benchmark suite, NVIDIA’s SDK, and the Ro-
dinia benchmark suite [1]. We also use some self-designed applications. These bench-
marks fall into two categories: synthetic applications and real-world applications.

SYNTHETIC APPLICATIONS

Synthetic applications are those which provide ideal instructions to make full use of
the underlying hardware. We select two synthetic applications from the SHOC bench-
mark suite: MaxFlops and DeviceMemory, which are used to measure peak performance
(floating-point operations and device-memory bandwidth) of GPUs in GFlops/sec and
GB/sec. In this chapter, peak performance includes theoretical peak performance and
achieved peak performance. Theoretical performance can be calculated using hardware
specifications, while achieved performance is measured by running synthetic applica-
tions on real hardware.

REAL-WORLD APPLICATIONS

Such applications include algorithms frequently used in real-world domains. The real-
world applications we select are listed in Table 2.2. Among them, Sobel, TranP in both
CUDA and OpenCL, and BFS in OpenCL are developed by ourselves (denoted by “SELF”);
others are selected from the SHOC benchmarks suite (“SHOC”), NVIDIA’s CUDA SDK
(“NSDK”) and the Rodinia benchmark suite (only BFS in CUDA, denoted by “Rodinia”).
Following the guidelines of the 7+ Dwarfs [8], different applications fall into different
categories. Their performance metrics and descriptions are also listed in the table.

2.2.3. EXPERIMENTAL TESTBEDS
We obtain all our measurement results on real hardware using three platforms, called
Dutijc, Saturn, and Jupiter. Each platform consists of two parts: the host machine (one
CPU) and its device part (one or more GPUs). Table 2.3 shows the detailed configurations
of these three platforms. A short comparison of the three GPUs we have used (NVIDIA
GTX280, NVIDIA GTX480, and ATI Radeon HD5870) is presented in Table 2.4 (MIW there
stands for Memory Interface Width). Intel(R) Core(TM) i7 CPU 920@2.67GHz (or In-
tel920) and Cell Broadband Engine (or Cell/BE) are also used as OpenCL devices. For
the Cell/B.E., we use the OpenCL implementation from IBM. For the Intel920, we use
the implementation from AMD (APP v2.2), because Intel’s implementation on Linux was
still unavailable at the moment of writing (March 2011).

2.3. PERFORMANCE COMPARISON AND ANALYSIS

2.3.1. COMPARING PEAK PERFORMANCE

BANDWIDTH OF DEVICE MEMORY

T PBW (Theoretical Peak Bandwidth) is given as follows:

T PBW = MC × (M IW /8)×2×10−9 (2.2)

2.3. PERFORMANCE COMPARISON AND ANALYSIS

2

15

Table 2.3: Details of underlying platforms

Saturn Dutijc Jupiter

Host CPU Intel(R) Core(TM) i7 CPU 920@2.67GHz

Attached GPUs GTX480 GTX280 Radeon HD5870

gcc version 4.4.1 4.4.3 4.4.1

CUDA version 3.2 3.2 —

APP version — — 2.2

Table 2.4: Specifications of GPUs

GTX480 GTX280 HD5870

Architecture Fermi GTX200s Cypress

#Compute Unit 60 30 20

#Cores 480 240 320

#Processing Elements — — 1600

Core Clock(MHz) 1401 1296 850

Memory Clock(MHz) 1848 1107 1200

MIW(bits) 384 512 256

Memory Capacity(GB) GDDR5 1.5 GDDR3 1 GDDR5 1

where MC is the abbreviation for Memory Clock, and M IW is short for Memory Inter-
face Width. Using Equation 2.2 we calculate T PBW of GTX280 and GTX480 to be 141.7
GB/sec and 177.4 GB/sec, respectively.

APBW (Achieved Peak Bandwidth) is measured by reading global-memory in a coa-
lesced manner. Moreover, our experimental results show that APBW depends on work-
group size (or block size), which we set to 256. The results of the experiments with
DeviceMemory on Saturn (GTX480) and Dutijc (GTX280) are shown in Figure 2.1a. We
see that OpenCL outperforms CUDA in APBW by 8.5% on GTX280 and 2.4% on GTX480.
Further, the OpenCL implementation achieves 68.6% and 87.7% of T PBW on GTX280
and GTX480, respectively.

FLOATING-POINT PERFORMANCE

T PF LOPS (Theoretical Peak Floating-Point Operations per Second) is calculated as fol-
lows:

T PF LOPS =CC ×#Cor es ×R ×10−9 (2.3)

where CC is short for Core Clock and R stands for maximum operations finished by a
scalar core in one cycle. R differs depending on the platforms: it is 3 for GTX280 and 2
for GTX480, due to the dual-issue design of the GT200 architecture. As a result, T PF LOPS

is equal to 933.12 GFlops/sec and 1344.96 GFlops/sec for these two GPUs, respectively.
APF LOPS (Achieved Peak FLOPS) in MaxFlops is measured in different ways on GTX280

and GTX480. For GTX280, a mul instruction and a mad instruction appear in an inter-
leaved way (in theory they can run on one scalar core simultaneously), while only mad
instructions are issued for GTX480. The experimental results are compared in Figure
2.1b. We see that OpenCL obtains almost the same APF LOPS as CUDA for GTX280 and
GTX480, accounting for approximately 71.5% and 97.7% of the corresponding T PF LOPS .

2

16 2. OPENCL AGAINST CUDA

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

GTX280 GTX480

B
a
n
d
w

id
th

:G
B

/s

TPBW
CUDA-APBW

OpenCL-APBW

(a) Bandwidth

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

GTX280 GTX480

G
F

L
O

P
S

TPFLOPS
CUDA-APFLOPS

OpenCL-APFLOPS

(b) Flops

Figure 2.1: A comparison of the peak bandwidth and FLOPS for GTX280 and GTX480.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

B
F
S

S
o
b
e
l

T
ra

n
P

R
e
d
u
ct

M
D

S
P
M

V

F
F
T

S
t2

D

D
X
T
C

R
d
xS

S
ca

n

S
T
N
W

M
xM

F
D
T
D

P
R

GTX280

GTX480

PR=0.9

PR=1.1

Figure 2.2: A performance comparison of selected benchmarks. When the top border of a rectangle lies in the
area between Line {PR = 0.9} and Line {PR = 1.1}, we assume CUDA and OpenCL have similar performance.

(Note that on GTX280, the PR for Sobel is 3.2)

Thus, CUDA and OpenCL are able to achieve similar peak performance (to be pre-
cise, OpenCL even performs slightly better), which shows that OpenCL has the same
potential to use the underlying hardware as CUDA.

2.3.2. PERFORMANCE COMPARISON OF REAL-WORLD APPLICATIONS

The real-world applications mentioned in Section 2.2.2 are selected to compare the per-
formance of CUDA and OpenCL. The PR of all the real-world applications without any
modifications is shown in Figure 2.2. As can be seen from the figure, PR varies a lot
when using different benchmarks and underlying GPUs. We analyze these performance
differences in the following.

2.3. PERFORMANCE COMPARISON AND ANALYSIS

2

17

PROGRAMMING MODEL DIFFERENCES

As is shown in Section 2.1, CUDA and OpenCL have many conceptual similarities. How-
ever, there are also several differences in programming models between CUDA and OpenCL.
For example, NDRange in OpenCL represents the number of work-items in the whole
problem domain, while GridDim in CUDA is the number of blocks.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

GTX280 GTX480

G
F

L
O

P
S

TMw
TMw/o

(a) MD Benchmark

 0

 3

 6

 9

 12

 15

GTX280 GTX480

G
F

L
O

P
S

TMw
TMw/o

(b) SPMV Benchmark

Figure 2.3: Performance impact of texture memory

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

MDw MDw/o SPMVw SPMVw/o

P
R

GTX280

GTX480

Figure 2.4: Performance ratio before and after removing texture memory

Additionally, they have different abstractions of device memory hierarchy, where
CUDA explicitly supports specific hardware features which OpenCL avoids for porta-
bility reasons. Through analyzing kernel codes, we find that texture memory is used in
the CUDA implementations of MD and SPMV. Both benchmarks have intensive and ir-
regular access to a read-only global vector, which is stored in the texture memory space.
Figure 2.3 shows the performance of the two applications when running with and with-
out the usage of texture memory. As can be seen from the figure, after the removal of the
texture memory, the performance drops to about 87.6%, 65.1% on GTX280 and 59.6%,
44.3% on GTX480 of the performance with texture memory for MD and SPMV, respec-
tively. We compare the performance of OpenCL and CUDA after removing the usage of
texture memory. The results of this comparison are presented in Figure 2.4, showing

2

18 2. OPENCL AGAINST CUDA

similar performance between CUDA and OpenCL 1. It is the special support of texture
cache that makes the irregular access look more regular. Consequently, texture memory
plays an important role in performance improvement of kernel programs.

DIFFERENT OPTIMIZATIONS ON NATIVE KERNELS

In [113], many optimization strategies are listed: (i) ensure global memory accesses are
coalesced whenever possible; (ii) prefer shared memory access wherever possible; (iii)
use shift operations to avoid expensive division and modulo calculations; (iv) make it
easy for the compiler to use branch prediction instead of loops, etc.

One of the important optimizations to be performed in kernel codes is to reduce the
number of dynamic instructions in the run-time execution. Loop unrolling is one of the
techniques that reduces loop overhead and increases the computation per loop itera-
tion [14]. NVIDIA’s CUDA provides an interface to unroll a loop fully or partially using
the pragma unroll. When analyzing the native kernel codes of FDTD (as is illustrated
in the following list), we find these two codes are the same except that the CUDA code
uses the pragma unroll at both unroll points a and b, while the OpenCL one unrolls the
loop only at point b.

1 // Code segment of FDTD kernel
2 // Step through the xy - planes
3 # pragma unroll 9 // unroll point : a
4 for (int iz =0; iz <dimz; iz ++){
5 // some work here
6 # pragma unroll RADIUS // unroll point : b
7 for (int i=1; i <= RADIUS ; i++){
8 // some work here
9 }

10 // some work here
11 }

Figure 2.5: FDTD code.

The performance of the application (in CUDA only) with and without the pragma
unroll at point a is shown in Figure 2.6a. We can see that the performance without the
pragma unroll drops to 85.1% and 82.6% of the performance with it for GTX280 and
GTX480. We then remove the pragma at point a from the CUDA version and present
a performance comparison between CUDA and OpenCL in Figure 2.6b. It can be seen
that they achieve similar performance on GTX480, while OpenCL outperforms CUDA by
15.1% on GTX280. Moreover, we observe that when adding the pragma unroll at un-
roll point a of the OpenCL implementation, the performance degrades sharply to 48.3%
and 66.1% of that of the CUDA implementation for GTX280 and GTX480, also shown in
Figure 2.6b.

ARCHITECTURE-RELATED DIFFERENCES

Since the birth of the original G80, the Fermi architecture can be seen as the most re-
markable leap forward for GPGPU computing. It differs from the previous generations

1Alternatively, we can use Image Objects to exploit texture memory in OpenCL.

2.3. PERFORMANCE COMPARISON AND ANALYSIS

2

19

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

GTX280 GTX480

M
P

o
in

ts
/s

URw
URw/o

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

CUDA
a,b /OpenCL

b

CUDA
b /OpenCL

b

CUDA
a,b /OpenCL

a,b

P
R

GTX280
GTX480

(b)

Figure 2.6: (a) Performance impact of loop-unrolling (CUDA only), (b) A performance comparison of FDTD
with/without loop-unrolling at different points (CU D Ax represents we execute loop-unrolling at point x, and
it is the same for OpenCL. For example, the third group CU D Aa,b /OpenC La,b represents we unroll the loop

at both points for CUDA and OpenCL).

by, e.g, (i) improved double precision performance; (ii) ECC support; (iii) true cache hi-
erarchy; (iv) faster context switching [112].

The introduction of the cache hierarchy has a significant impact on Fermi’s perfor-
mance. When looking at Figure 2.2, we see that the values diverge remarkably for Sobel
on GTX280 and GTX480. On GTX280, the OpenCL version runs three times faster than
the CUDA one, but it only obtains 83% of CUDA’s performance when the benchmark
runs on GTX480. These differences are caused by the constant memory and the cache.
In the implementation with OpenCL, constant memory is employed to store the “filter”
in Sobel, while it is not in the CUDA version.

After removing the usage of constant memory, we do the same experiments on these
two GPUs. The execution time is presented in Figure 2.7. On the one hand, we see the
kernel execution time drops to one quarter of that without using constant memory on
GTX280. On the other hand, there are few changes on GTX480 due to the availability of
the global-memory cache in the Fermi architecture. Overall, CUDA and OpenCL achieve
similar performance with/without constant memory on GTX480.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

GTX280 GTX480

K
e
rn

e
l
E

x
e
c
u
ti
o
n
 T

im
e
:
s

CUDA-CMw/o
OpenCL-CMw/o

CUDA-CMw
OpenCL-CMw

Figure 2.7: A performance comparison for Sobel with and without constant memory on GTX280 and GTX480

2

20 2. OPENCL AGAINST CUDA

Table 2.5: Statistic for PTX instructions

Instruction Count Instruction Count

Class Instructions CUDA OpenCL Class Instructions CUDA OpenCL

add 93 191 cvt 16 16

sub 83 95 mov 687 88

mul 33 138 ld.param 1 1

Arithmetic div 0 2 ld.local 97 64

fma 0 37 Data ld.shared 32 32

mad 2 22 Movement ld.const 0 24

neg 9 36 ld.global 8 8

and 1 291 st.local 250 78

Sub-total 220 521 st.shared 32 32

or 2 33 st.global 8 8

not 0 4 Sub-total 1131 351

Logic xor 0 4 setp 2 80

Shift shl 0 50 Flow Control selp 0 40

shr 1 43 bra 2 68

Sub-total 4 163 Sub-total 4 188

Synchronization bar 7 7 Total 1366 1230

COMPILER AND RUN-TIME DIFFERENCES

Among all the benchmarks, the performance gap between OpenCL and CUDA is the
biggest for the FFT. Their native kernel codes are exactly the same. However, when look-
ing into their PTX codes, we find notable differences between them. A quantitative com-
parison of these two PTX kernels is presented in Table 2.5. The statistics are gathered for
the “forward” kernel of the FFT implementation.

From Table 2.5, the differences between these two PTX codes become visible. The
OpenCL front-end compiler generates two times more arithmetic instructions than its
CUDA counter-part. There are rarely any logic-shift instructions in CUDA, while there
are 163 such instructions in the OpenCL kernel. A similar situation happens with the
flow-control instructions: there are many more for OpenCL than for CUDA. Although
there are many more data-movement instructions for CUDA, most of them are mov, sim-
ply moving data to or from registers or local memories. Finally, we note that all time-
consuming instructions such as ld.global and st.global are exactly the same.

We can explain this situation by assuming that the front-end compiler for CUDA has
been used and optimized more heavily, thus is more mature, than that of OpenCL. As
a result, when it comes to some kernels like “forward” in FFT, OpenCL performs worse
than CUDA.

BFS is also an interesting example here. It has to invoke the kernel functions several
times to solve the whole problem. Thus, the kernel launch time (the time that a kernel
takes from entering the command-queue until starting its execution) plays a significant
role in the overall performance. Our experimental results show that the kernel launch
time of OpenCL is longer than that of CUDA (the gap size depends on the problem size),
due to differences in the run-time environment. The longer kernel launch time may also

2.3. PERFORMANCE COMPARISON AND ANALYSIS

2

21

explain why OpenCL performs worse than CUDA for applications like BFS.

In the previous analysis, we only identify the most influential factor for each appli-
cation that shows an observable performance difference. It is important to note that
several factors may often affect the program performance together, leading to larger per-
formance discrepancies. An analysis of such combinations, as well as the investigation
of lower level factors (such as compiler optimizations), is left for future work.

2.3.3. A FAIR COMPARISON
So far, we have shown that the performance gaps between OpenCL and CUDA are due to
programming model differences, different optimizations on native kernels, architecture-
related differences, and compiler differences. It has been shown that performance can
be equalized by systematic code changes. Therefore, we present an eight-step fair com-
parison approach for CUDA and OpenCL applications from the original problem to its
final solution, which provides guidelines for investigating the performance gap between
CUDA and OpenCL (if any). A schematic view of this approach is shown in Figure 2.8.

(1) PROBLEM DESCRIPTION

This step describes what the problem is and what form the solutions could be.

(2) ALGORITHM TRANSLATION

How to address the problem is given using certain algorithms. The algorithms can be
described in pseudo-code which is environment-independent and easier for humans to
understand.

(3) IMPLEMENTATION

In this step, the algorithms mentioned above are implemented with different program-
ming models or languages. As for GPU programs, there are two parts: one is the host
program and the other is the kernel code running on GPUs. On NVIDIA GPUs, CUDA+C
and OpenCL+C are usually adopted to implement GPU programs. If two implementa-
tions use similar APIs to access the same type of hardware resources, we consider these
two implementations to be the same. Note that two implementations also have to use
the same type of timers to measure performance.

(4) NATIVE KERNEL OPTIMIZATIONS

After implementation, architecture-dependent optimizations on kernel programs are
executed. For example, whether to use the shared memory (or local memory in OpenCL),
whether to employ vectorization, whether to unroll loops, whether to reduce bank-conflicts,
whether to use texture memory in CUDA, and whether to access global memory in a coa-
lesced way, are decisions that should be taken into account. On the one hand, optimiza-
tions on native kernels is a time-consuming and error-prone job; on the other hand, it
can contribute to performance improvement significantly.

(5) FIRST-STAGE COMPILATION AND OPTIMIZATION

The first-stage compiler adopted in CUDA is called NVOPENCC. There is a similar front-
end compiler for OpenCL in this stage. This stage compiles kernel codes into PTX codes,

2

22 2. OPENCL AGAINST CUDA

a low-level parallel thread execution virtual machine and instruction set architecture
(ISA) developed by NVIDIA [114]. Some advanced optimizations are also executed in
this stage.

(6) SECOND-STAGE COMPILATION AND OPTIMIZATION

PTXAS (the back-end compiler) translates PTX codes into binary format in this step and
it may execute some additional optimizations.

(7) PROGRAM CONFIGURATION AND START-UP

Before executing the program prepared so far, we need to configure two kinds of pa-
rameters: (1) problem parameters (the parameters of the problem to be solved such as
the size of the matrix), and (2) algorithmic parameters (for example, block-size or work-
group size). Although these parameters do not change the correctness of final results,
they can have a significant impact on the performance of the application.

Problem

Describe

Problem Description

Translate

Algorithmic Pseudo-code

Implement in CUDA Implement with OpenCL

Kernel Program

in CUDA
Kernel Program

in OpenCL

Optimize Kernel Program

Optimized Kernel Program

in CUDA

Compile

with NVOPENCC

Compile

with LLVM

PTX Kernel Program

Compile

with PTXAS

Binary Codes

Underlying GPUs

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Development Flow

Provide

Run-time Configurations

Optimized Kernel Program

in OpenCL

Programmers

Users

Compilers

Figure 2.8: Development flow of GPU kernel programs (The ellipses represent entities such as a program or a
description and the rectangles represent actions on the entities. We categorize three types of roles

participating the whole process: programmers, compilers, and users.)

2.4. A BRIEF EVALUATION OF OPENCL’S PORTABILITY

2

23

(8) RUNNING ON GPUS

With the help of drivers, the binary codes are finally scheduled to run on the GPUs.
These eight steps make up the application development flow from an original prob-

lem to its final solution. Based on this, we define that a comparison for CUDA and
OpenCL is “fair” when configurations in all the eight steps of the comparison are the
same. According to the analysis in previous subsection, OpenCL can obtain similar per-
formance to CUDA in the case of “a fair comparison”. In the real world, programmers
are responsible for steps (1) - (4) and compilers take charge of steps (5), (6). Finally,
users will employ the application through steps (7) and (8), as is illustrated in Figure 2.8.
Each of the eight steps is probably executed by different programmers (they have differ-
ent programming habits, abilities and choices) or different compilers (they may execute
different optimizations) or different users (they have different requirements and invest-
ments). All those lead to the difficulty of making sure that a performance comparison is
fair for CUDA and OpenCL.

2.4. A BRIEF EVALUATION OF OPENCL’S PORTABILITY
We have seen so far that for a set of 16 benchmarks, OpenCL implementations differ from
the CUDA ones on performance. Given that OpenCL’s portability is typically invoked
as a good reason for performance drops, we investigate if the portability claim holds
by porting all the real-world benchmarks from NVIDIA’s GPUs to HD5870, Intel920 and
Cell/B.E. All performance data is listed in Table 2.6 (the performance units are the same
as those shown in Table 2.2).

Table 2.6: Performance data on prevailing Platforms

BFS Sobel TranP Reduct MD SPMV FFT St2D DXTC RdxS Scan STNW MxM FDTD

HD5870 0.0246 0.0048 5.951 114.4 28.60 4.665 36.10 1.666 14.50 FL 177.6 42.43 205.3 3352

Intel920 0.1455 0.1553 2.411 0.9936 2.597 3.805 1.424 238.4 14.48 FL 1.071 0.7605 0.8857 3787

Cell/BE 1.159 5.425 0.1993 0.0528 0.1264 0.0809 ABT 0.1178 ABT ABT 1.620 ABT 1.473 19.15

When comparing performance on NVIDIA’s GPUs, we find that most benchmarks,
without additional optimizations on HD5870, achieve comparable performance with
that on GTX280. An exceptional example is TranP on HD5870 which performs much
worse than it does on GTX280.

When benchmarks run on Intel920 and Cell/BE, we have to make some minor mod-
ifications of changing CL_DEVICE_TYPE_GPU to CL_DEVICE_TYPE_CPU or
to CL_DEVICE_TYPE_ACCELERATOR for benchmarks selected from the CUDA SDK. More-
over, there are more programming constraints on Cell/BE (e.g. get_local_id or cosine
functions are not allowed within inline definition of another function). When it comes
to performance on Intel920, we observe that the bandwidth of TranP drops from 2.411
GB/sec to 0.2150 GB/sec because of using local memory: all OpenCL memory objects for
CPU are cached implicitly by hardware and thus explicitly using local memory just intro-
duces unnecessary overhead [40–42]. Another interesting observation is that SPMV sees
a performance degradation from 3.805 GFlops/sec to 0.1247 GFlops/sec when employ-
ing warp-oriented optimization (using a warp of threads to work together on one matrix
row). We believe this happens because there are orders of magnitude fewer processing

2

24 2. OPENCL AGAINST CUDA

cores in CPUs than in GPUs.
In Table 2.6, “ABT” means the programs (FFT, DXTC, RdxS, and SNTW) exit, showing

“aborted”. It is mainly because there are not enough resources on the Cell/B.E. For ex-
ample, DXTC shows “CL_OUT_OF_RESOURCES” when invoking the kernel because of
insufficient registers or local memories. The possible solution we can imagine is to make
the input problem size smaller.

We also find that RdxS can end normally, but get wrong results (denoted by “FL” in
the Table 2.6) on HD5870 and Intel920. The benchmark uses the four-step radix sort in
each pass proposed in papers [135, 176]. However, the implementation of RdxS depends
on warp-size in CUDA, i.e., wavefront-size in APP. The warp-size is 32 in CUDA, while
it is 64 in APP. Therefore, only one half wavefront of threads are able to map keys into
buckets and the other half are not. This disparity leads to incorrectly sorted sequences.
This is a typical example of hiding platform specific details into programs, and can be
considered as a programmer’s mistake.

To sum up, all the benchmarks compile correctly and most of them run properly on
the other platforms, illustrating OpenCL’s cross-platforms portability. In order to make
OpenCL programs run on more platforms, programmers are encouraged to use vendor-
independent terms (for example, CL_DEVICE_TYPE_ALL) and provide users with op-
tional choices. After all, even minor modifications and additional debugging can be
time-consuming. When it comes to a specific architecture, an auto-tuner could be used
to boost performance [172]. Finally, we note that OpenCL is very useful as a prototyping
tool, enabling portability while still achieving good performance.

2.5. RELATED WORK
There has been a fair amount of work on performance comparison of programming
models for multi-core/many-core processors. Rick Weber et al. [166] presented a col-
lection of Quantum Monte Carlo algorithms implemented in CUDA, OpenCL, Brook+,
C++, and VHDL. They gave a systematic comparison of several application accelerators
on performance, design methodology, platform, and architectures. Their results show
that OpenCL provides application portability between multi-core processors and GPUs,
but may incur a loss in performance. Rob van Nieuwpoort et al. [157] explained how to
implement and optimize signal-processing applications on multi-core CPUs and many-
core architectures. They used correlation (a streaming, possibly real-time, and I/O inten-
sive application) as a running example, investigating the aspects of performance, power
efficiency, and programmability. This study includes an interesting analysis of OpenCL:
the problem of performance portability is not fully solved by OpenCL and thus program-
mers have to take more architectural details into consideration.

In [161], the authors compared programming features, platform, device portability,
and performance of GPU APIs for cloth modeling. Implementations in GLSL, CUDA and
OpenCL are given. They conclude that OpenCL and CUDA have more flexible program-
ming options for general computations than GLSL. However, GLSL remains better for
interoperability with a graphics API. In [7], a comparison between two GPGPU program-
ming approaches (CUDA and OpenGL) is given using a weighted Jacobi iterative solver
for the bidomain equations. The CUDA approach using texture memory is shown to be
faster than the OpenGL version. Kamran Karimi et al. [77] compared the performance of

2.5. RELATED WORK

2

25

CUDA and OpenCL using complex, near-identical kernels. They showed that there are
minimal modifications involved when converting a CUDA kernel to an OpenCL kernel.
Their performance experiments measure and compare data transfer time to and from
the GPU, kernel execution time, and end-to-end application execution time for both
CUDA and OpenCL. Only one application or algorithm is used in all the work mentioned
above.

Ping Du et al. [36] evaluated many aspects of adopting OpenCL as a performance-
portable method for GPGPU application development. The triangular solver (TRSM)
and matrix multiplication (GEMM) have been selected for implementation in OpenCL.
Their experimental results show that nearly 50% of peak performance could be obtained
in GEMM on both NVIDIA Tesla C2050 and ATI Radeon 5870 in OpenCL. Their results
also show that good performance can be achieved when architectural specifics are taken
into account in the algorithm design. In [83], the authors quantitatively evaluated the
performance of CUDA and OpenCL programs developed with almost the same compu-
tations. The main reasons leading to these performance differences are investigated for
applications including matrix multiplication from the CUDA SDK and CP, MRI-Q, MRI-
HD from the Parboil benchmark suite. Their results show that if the kernels are properly
optimized, the performance of OpenCL programs is comparable with their CUDA coun-
terparts. They also showed that the compiler options of the OpenCL C compiler and
the execution configuration parameters have to be tuned for each GPU to obtain its best
performance. These two papers inspired us to analyze the performance differences by
looking into intermediate codes.

Anthony Danalis et al. [30] presented a Scalable HeterOgeneous Computing (SHOC)
benchmark suite. Its initial focus was on systems containing GPUs and multi-core pro-
cessors, and on the new OpenCL programming standard. SHOC is a spectrum of pro-
grams that test the performance and stability of these scalable heterogeneous comput-
ing systems. At the lowest level, SHOC uses micro-benchmarks to assess architectural
features of the system. At higher levels, SHOC uses application kernels to determine
system-wide performance including many systems features. SHOC includes benchmark
implementations in both OpenCL and CUDA in order to provide a comparison of these
programming models. Some of the benchmarks used in this work are selected from
SHOC.

The majority of previous work has used very few applications to compare existing
programming models. In our work, we tackle the problem by observing a large set of di-
verse applications to show the performance differences of CUDA and OpenCL. We also
give a detailed analysis of the performance gap (if any) from all possible aspects. Finally,
we discuss an eight-step fair comparison strategy to judge the performance of any appli-
cations implemented in both programming models.

In addition to the comparison work of OpenCL versus CUDA on GPUs, we have com-
pared OpenCL versus OpenMP on multi-core CPUs [140–142]. We have selected multi-
ple Rodinia benchmarks, and compared their OpenCL performance with the OpenMP
performance. We have shown that, although there is a mismatch between the OpenCL
platform model and multi-cores, our systematic tuning tips enable OpenCL developers
to achieve a comparable performance. Hence, we claim that this work is a necessary step
for enabling inter-platform performance portability in OpenCL.

2

26 2. OPENCL AGAINST CUDA

2.6. SUMMARY
In this chapter, we have compared the performance of OpenCL versus CUDA on NVIDIA
GPUs. We have used both synthetic benchmarks and real-world benchmarks. OpenCL
performs as well as CUDA on synthetic benchmarks. A first comparison on the real-
world benchmarks has shown performance gaps between OpenCL and CUDA. We have
given a through investigation to the performance gaps, and analyzed that the perfor-
mance gaps are due to differences in user inputs and compilers. We have also shown that
how the performance gaps can be reduced by systematically changing code. Therefore,
OpenCL can be a good alternative to CUDA on NVIDIA GPUs in terms of performance.

Our recent measurements have shown that the updated compiler (CUDA v4.2) and
driver can further reduce the performance gaps between CUDA and OpenCL. We be-
lieve that, with the maturity of compilers, the performance gaps (from compilers) will be
eliminated ultimately. Besides, other techniques to reduce performance gaps (e.g., from
programmers’ misuse) are equally required.

In addition, we evaluate portability of OpenCL on Intel CPUs, Cell/B.E., and AMD
GPUs. We observe that the same OpenCL can run on these devices with no/minor code
changes, i.e., achieving code portability. In this thesis, what we are looking for is a unified
programming model that can provide functional portability. Given OpenCL’s ability in
functional portability and its potential in achieving matching performance with native
programming models, we will use OpenCL as our research vehicle to investigate cross-
platform performance in the following chapters.

3
EXPLORING OPTIMIZATION SPACE:

A CASE STUDY

In this chapter, we present our parallelization for an application (with different algo-
rithms) in computer vision. We implement it in OpenCL and explore its optimization
space on a mid-range GPU (Quadro 5000) and a low-end embedded GPU (Quadro NV140M).
Further, we try the same optimizations on a multi-core CPU (X5650) to investigate whether
the optimization steps are equally effective.

Stereo-matching algorithms aim to find an estimate of the depth inside a scene based
on rectified stereo pairs of images [136]. The input to the stereo matching consists of
two images of the same scene, a reference image and a target image, with each image
displaying the scene from a different perspective along the x-axis. The goal is to accu-
rately retrieve the disparity, i.e., the relative depth information for each pixel along the
x-axis. The results are often used to estimate distance to an object in the scene, as ob-
jects corresponding to pixels of greater disparity are closer to the camera(s) than objects
corresponding to pixels of lesser disparity.

Stereo algorithms can be divided into two main categories: (1) local algorithms and
(2) global algorithms. Local algorithms [102, 133, 174, 177] use aggregation of similar-
ity measures around a local support region, i.e., the energy minimization is performed
over local patches. By contrast, global algorithms [20, 21, 51] incorporate smoothness
constraints on the depth estimates, leading to an energy minimization problem that in-
volves all pixels in the images. In general, global algorithms outperform local algorithms
in terms of accuracy due to the smoothness constraints, especially in non-textured im-
age regions. However, global algorithms need to solve minimization problems that are
generally NP-hard [12], prompting the use of approximations based on variational meth-
ods, graph cuts, or Monte Carlo simulation. Unfortunately, these approximations are still
too slow for use in real-time algorithms, so local algorithms are preferred in this case.

This chapter is based on our work published in the Proceedings of ICPADS 2012 [45].

27

3

28 3. EXPLORING OPTIMIZATION SPACE: A CASE STUDY

Most consumer cameras operate at rates of 25 or 30 f ps (frames per second), which
may be sufficient for computer graphics due to human perception. However, many ap-
plications have even higher requirements, e.g., stereo algorithms used in automatically
driving cars have to operate at a minimum of 100 fps [98]. Otherwise, in a scene where
objects move at several dozen meters per second, those cameras will produce severe mo-
tion blur or temporal aliasing effects [98]. The high fps rates pose high demands for both
computational capability and memory bandwidth. For this, an alternative to algorithm
innovation is to use accelerators, e.g., GPUs, to speedup stereo matching without losing
accuracy.

In this chapter, we study the performance of local stereo-matching algorithms when
implemented in OpenCL and executed on GPUs. Our main contributions are as follows:

• We analyze three commonly used state-of-the-art cost aggregators (a key step in
stereo matching), and propose a unified representation that facilitates optimiza-
tions, performance prediction, and derivation of new algorithms (see Section 3.2).

• We provide implementations for GPUs in OpenCL, perform multiple incremental
optimizations for the three aggregators, and show that they are up to hundreds of
times faster than the single-core CPU code (see Section 3.3 and Section 3.4).

• We run our software on a multi-core CPU to check whether the optimization tech-
niques are equally applicable on the multi-core (see Section 3.5).

The rest of the chapter is organized as follows: Section 3.1 presents the execution-
time breakdown of the local stereo-matching algorithm. Section 3.2 introduces three
typically used algorithms of cost aggregation, and gives a unified representation. Sec-
tion 3.3 shows our stereo-matching framework implemented in OpenCL and five incre-
mental optimization steps. Section 3.4 demonstrates our performance results and anal-
ysis in accuracy and speed on GPUs. Section 3.5 investigates the optimization steps on
a multi-core CPU. Section 3.6 gives the related work in stereo matching, and Section 3.7
concludes this work.

3.1. A FIRST TRIAL
Local stereo-matching algorithms comprise four main steps: (1) matching cost com-
putation (CC), (2) cost aggregation (CA), (3) disparity estimation (DE), and (4) disparity
refinement (DR) [136]. The matching cost computations (CC) involve calculating pixel-
wise differences– based on the image intensities or gradients– between the two images
in the stereo pair. These costs are aggregated over a support region of interest in the cost
aggregation step (CA). In the disparity estimation step (DE), the disparity that minimizes
the aggregated cost at a location is selected as the disparity estimate for that location
(generally, using a winner-takes-all/WTA procedure). The disparity refinement step (DR)
fine-tunes the estimated disparities using a simple type of smoothing. Figure 3.1 shows
the amount of computation time spent in each of the aforementioned four components
for three different CA solvers. The CA step accounts for the most of the computation
time in stereo matching (83.88%, 93.96%, and 50.28%, respectively). Therefore, we focus
on accelerating CA in this chapter.

3.2. ALGORITHMS AND THE REPRESENTATION

3

29

 0

 20

 40

 60

 80

 100

CW AW CROSS

%
 o

f
to

ta
l

CC CA DE DR

Figure 3.1: The percentage of each component for three CA solvers (CW, AW, CROSS). The window radius for
CW and AW is 10, and L, Tao for CROSS are 17, 20, respectively. We use (AD+Census) cost similarity measures

to compute match cost (CC)[97], WTA (DE), and several optimizers in the refinement step (DR).

3.2. ALGORITHMS AND THE REPRESENTATION

3.2.1. AGGREGATION STRATEGIES
An aggregation strategy combines the image-matching costs over a (local) support re-
gion in order to obtain a reliable estimate of the costs of assigning a disparity d to im-
age location (x, y). We investigate three commonly used local aggregation strategies: (1)
constant window aggregation, (2) adaptive weight aggregation, and (3) cross-based ag-
gregation.

Constant Window Aggregation (CW) is a straightforward aggregation of any similar-
ity measure cost C over a constant-size neighborhood:

CCW (x, y,d) = ∑
∀(x′,y ′)∈N (x,y)

C (x ′, y ′,d), (3.1)

where N (x, y) represents the set of pixels that are neighbors of pixel (x, y). CW assumes
that every pixel in the window should share the same disparity. This assumption is vio-
lated in image regions in which the disparity is discontinuous (i.e., at object boundaries).

Adaptive Weight Aggregation (AW) [174] uses color similarity and proximity based
weights as aggregation coefficients for the similarity measures pixels around pixels of
interest. The dissimilarity between pixels p = (x, y) in the reference image and pd =
(x −d , y) in the target image is:

C AW (p, pd) =
∑

q∈N (p),qd∈N (pd) w(p, q)w ′(pd , qd)C (p,d)∑
q∈N (p),qd∈N (pd) w(p, q)w ′(pd , qd)

, (3.2)

where pd and qd are the corresponding pixels in the target image of p and q with dispar-
ity shift of d . The weights w(p, q) depend on the color similarity and Euclidean distance
between pixels p and q :

w(p, q) = exp

(
−

(‖I (p)− I (q)‖2

γc
+ ‖p −q‖2

γs

))
, (3.3)

where γc and γs are constant parameters that are set empirically. Calculation of target
image weights w ′(pd , qd) is the same for target image pixels pd and qd .

3

30 3. EXPLORING OPTIMIZATION SPACE: A CASE STUDY

Cross-Based Aggregation (CROSS) overcomes the problem of CW by constructing
variable support for aggregation that depends on color similarity [177]. The first step of
the algorithm is to construct a cross for each pixel inside the image. Four parameters
are stored for each pixel, h−

p , h+
p , v−

p , v+
p , which identify the lengths of the four arms of

the cross as shown for pixel p in Figure 3.2a (the light-shaded area). The decision on
whether or not a pixel p ′ is included is made on its color similarity with pixel p as given
in Equation 3.4.

(a) (b)

Figure 3.2: Cross-based aggregation: (a) Cross Construction, (b) Horizontal Aggregation, and Vertical
Aggregation.

δ((x, y), (x ′, y ′)) =
{

1, iff |I (x, y)− I (x ′, y ′)| ≤ τ
0, otherwise.

(3.4)

After calculating the arm lengths in four directions for each pixel, the final aggrega-
tion support region is constructed by integrating the horizontal arms of each neighbor-
ing pixel in vertical direction (e.g., the horizontal arms of pixel q in dark gray shown in
Figure 3.2a). The same steps are also performed for the pixels of the target image. At the
aggregation step, the intersection of the reference and the target support regions is ag-
gregated. Orthogonal Integral Images (OIIs) can be used to speed up aggregation [177].
The technique separates the 2D aggregation procedure into two 1D aggregation steps:
horizontal and vertical aggregation (see Figure 3.2b).

3.2.2. A TEMPLATE FOR COST AGGREGATION KERNELS
In order to give an overview of the three cost aggregation strategies, Figure 3.3 presents a
kernel template for all of them. We see that the basic operation is a convolution between
the input cost volume and the filter in the area determined by offsets(offset_t, offset_b,
offset_l, and offset_r). We calculate the cost value (ref_cost[], and tar_cost[]) at each Dis-
parity(D) level for each pixel(x, y). When the filter and offsets are specified, the kernel
template evolves into three different cost aggregation kernels (shown in Figure 3.4).

• Constant Window Aggregation (CW): as shown in Figure 3.4a, the filter is filled
with constant values, and the offset is constant for all the pixels (i.e., the window
size is the same for all the pixels in the image).

• Adaptive Weight Aggregation (AW): as illustrated in Section 3.2.1, each pixel has
its own filter, which is calculated according to the input images and is different be-

3.2. ALGORITHMS AND THE REPRESENTATION

3

31

1 __kernel void aggregate (cost [], filter [], \
2 out_ref [], out_tar []){
3
4 for each y in H
5 for each x in W
6 for each d in D{
7 res = 0;
8 for each y_ in <offset_t ... offset_b >{
9 for each x_ in <offset_l ... offset_r >{

10 res += cost [] OP filter [];
11 }
12 }
13 out_ref [] = res;
14 out_tar [] = res;
15 }
16 }

Figure 3.3: A unified kernel template for cost aggregation.

(a) CW Aggregation (b) AW Aggregation

(c) CROSS Aggregation

Figure 3.4: Three cost aggregators for pixel(i, j) and disparity 0. As for AW, each pixel has a unique filter, thus
forming a filter cube shown in (b).

tween pixels. However, the filter size is fixed for all the pixels (Figure 3.4b). Further,
two filters from the reference and target images are required for each pixel.

• Cross-Based Aggregation (CROSS): as shown in Figure 3.4c, there is no fixed filter
for CROSS, but, for the sake of this common representation, we can define it as an
irregular region filled with all ones. The offsets are calculated according to each
pixel.

Using this template, we can develop new algorithms for cost aggregation. For exam-
ple, the combination of AW and CROSS leads to a new cost aggregation solver with adap-
tive sized and weighted filters. Further, our template enables common optimizations at
both architecture-level (e.g., exploiting data sharing for CW and AW) and algorithm-level
(e.g., using the OI I technique when filters are all filled with ones).

3

32 3. EXPLORING OPTIMIZATION SPACE: A CASE STUDY

3.3. IMPLEMENTATIONS AND OPTIMIZATIONS
We discuss here implementations and optimizations of the three cost aggregation solvers
(CW, AW, and CROSS) on GPUs, and evaluate their performance impact 1.

3.3.1. OPENCL IMPLEMENTATIONS
Figure 3.5 shows our framework for implementing the local stereo matching algorithm in
OpenCL 2. Before porting kernels to the computing device, OpenCL has to set up a con-
text and allocate the required device memory. Thereafter, we upload images (or video
data) to the device (H2D), and compute disparity in four steps (CC, CA, DE and DR), as
mentioned in Section 3.1. We then transfer the disparity image back to the host after
these four steps (D2H). When finalizing the program, these contexts and device mem-
ory space are released. As stated in Section 3.1, we focus on the cost aggregations (CA,
shaded in Figure 3.5).

Figure 3.5: Stereo matching framework implemented in OpenCL.

According to the kernel template for cost aggregations in Figure 3.3, we let each work-
item process one pixel(x, y). Thus, a grid of W ×H work-items is created (with an excep-
tion to be illustrated in Section 3.3.2).

3.3.2. OPTIMIZATION STEPS FOR CA ON GPUS
We focus on five incremental optimization steps for cost aggregations: (1) mapping work-
items to data, (2) exploiting data sharing, (3) caching data for coalescing, (4) unrolling
loops, and (5) increasing parallelism.

MAPPING WORK-ITEMS TO DATA

The input into stereo cost aggregation is a 3-dimensional data matrix (the input cost
volume), and a 2-dimensional thread grid is commonly used for GPU implementations.
Then the question is how to efficiently map the work-items to the data matrix (i.e., the
iteration space)? To maximize memory bandwidth on GPUs, neighboring work-items

1The experiment setup is given in Section 3.4.
2The source code is on-line available: https://github.com/haibo031031/rtstereo.

https://github.com/haibo031031/rtstereo

3.3. IMPLEMENTATIONS AND OPTIMIZATIONS

3

33

prefer accessing the spatially close data elements in groups, i.e., coalesced memory ac-
cess [118]. For cost aggregation, we have A2

3 = 3×2 = 6 ways to map the work-item space
to the data space. Figures 3.6b and 3.6c show two ways for the work-items to iterate
through the data space, i.e., to force the work-items in the first dimension of a work-
group to access the data elements in the first dimension of the input cost volume.

(a) (b) (i , j) → (x, y) (c) (i , j) → (x,d)

Figure 3.6: Iteration space. (i, j) are the 2 dimensions of the work-items space, and (x, y, d) are the 3
dimensions of the input cost volume.

We design micro-benchmarks for the six ways (of mapping 2D work-items to 3D
data), and show how they perform on three data sets: 512×512, 1024×1024, 2048×2048
(when D = 16) in Table 3.1. We see that the (i , j) → (x, y) and (i , j) → (x,d) mappings
(shown in Figure 3.6b and 3.6c) perform much better than the other four (about 20x
speedup over the case (i , j) → (d , y)). Further, (i , j) → (x, y), which is our final prefer-
ence (except the case mentioned in 3.3.2), performs slightly better than (i , j) → (x,d),
due to more work-groups to hide latency.

Table 3.1: Performance comparison of six ways to map 2D work-items to 3D data (ms).

(i , j) → (x, y) (i , j) → (x,d) (i , j) → (y, x) (i , j) → (y,d) (i , j) → (d , x) (i , j) → (d , y)
512x512 0.42 0.50 1.06 6.33 2.58 7.08
1024x1024 1.50 1.72 4.19 24.48 12.15 28.70
2048x2048 5.80 7.01 16.76 93.92 64.00 117.31

We implement two mappings: (i , j) → (x, y) (our preference) and (i , j) → (d , x) (one
of the ‘bad’ mappings) in the three cost aggregation kernels, and compare their perfor-
mance (shown in Figure 3.7). We see that (i , j) → (x, y) shows a significant performance
gain over (i , j) → (d , x) (the average speedups for CW and AW are 9.4x and 11.1x, re-
spectively). Further, the CROSS kernel can be only accelerated by around 24%. This
is because the filter for each pixel is so adaptive that neighboring work-items may ac-
cess data elements far away from each other (depending on the input images). In other
words, coalesced access is not fully ensured for the CROSS kernel, which will be further
discussed in Section 3.3.2.

3

34 3. EXPLORING OPTIMIZATION SPACE: A CASE STUDY

 0

 100

 200

 300

 400

 500

 600

cones teddy tsukuba venus

C
o

s
t

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

(i,j)->(d,x) (i,j)->(x,y)

(a) CW

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

cones teddy tsukuba venus

C
o

s
t

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

(i,j)->(d,x) (i,j)->(x,y)

(b) AW

 0

 10

 20

 30

 40

 50

 60

 70

cones teddy tsukuba venus

C
o

s
t

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

(i,j)->(d,x) (i,j)->(x,y)

(c) CROSS

Figure 3.7: Aggregation time of three aggregation strategies (CW, AW, and CROSS) on four datasets (cones,
teddy, tsukuba, and venus) in Middlebury using two mappings ((i , j) → (x, y) and (i , j) → (d , x)). The window

radius for CW and AW is 10, and L, Tao for CROSS are 17, 20, respectively.

EXPLOITING DATA SHARING

For the window-based aggregation (CW and AW), each work-item requires a block of
data elements, and neighboring work-items share the overlapped data to aggregate cost.
For example, when the window radius is 1 (shown in Figure 3.8), work-item 6 requires to
load data elements at {1,2,3,5,6,7,9,10,11}, while work-item 7 needs data elements at
{2,3,4,6,7,8,10,11,12}. Thus, we can use the on-chip local memor y to share the data
elements at {2,3,6,7,10,11}. In general, suppose the window radius is R (shown in Figure
3.8b), and the work-group size is Sw ×Sh , we calculate the Shar ed Dat a Rati o (SR) for
a work-group using Equation 3.5. For the example shown in Figure 3.8a, SR = 2/3. In
theory, we expect to achieve 1/SR speedup for memory-bound applications.

SR = (Sw +2×R)× (Sh +2×R)

Sw ×Sh × (2×R +1)2 (3.5)

(a) An example. (b) A generic model.

Figure 3.8: Data sharing demonstration.

The difficulty of using local memory lies in dealing with halo data [15], the data
elements shaded in light-gray in Figure 3.8b. As stated in the CUDA SDK, we use an
extended work-group: the boundary work-items only participate in loading data from
global memory to local memory, and remain idle for the other time. Figure 3.9 shows
how the optimized CW performs when varying R. When the window is very small, we

3.3. IMPLEMENTATIONS AND OPTIMIZATIONS

3

35

see a performance gain. However, when the R is larger than 5, the performance gain
disappears because more and more work-items stay idle after loading data. Further, this
approach is not scalable with the window size, i.e., as the radius of the window increases,
the percentage of idle work-items increases and the size of a work-group may exceed its
maximum limit [151]. Given the expected poor performance for AW, we choose not to
implement AW with this approach.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5 6 7 8

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

Window Radius

LMw/o LMw

Figure 3.9: Performance comparison of CW when using local memory for different window-radius. LMw/o
represents the aggregation time without using local memory, and LMw represents the case with that.

To tackle the lack of scalability, an alternative approach is to keep the geometry and
the size of a work-group constant and load multiple data elements per work-item (the
exact number of data elements processed by one work-item depends on the filter radius
and the work-group size). From Figure 3.10, we see the performance improvement us-
ing this revised approach. The average speedup is 2.3 for CW and 1.2 for AW, respectively.
Using local memory can accelerate AW less significantly, because AW needs to load two
other elements (i.e., filter elements) from the global memory, which becomes the perfor-
mance bottleneck.

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

Window Radius

LMw/o LMw LMFig-O

(a) CW

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

Window Radius

LMw/o LMw

(b) AW

Figure 3.10: Performance comparison when using local memory for two aggregation methods (CW, AW) and
different window-radius. LMw/o represents the aggregation time without using local memory, and LMw
represents the case with that. LMF i g−O means that we use local memory in the way shown in Figure 3.9.

3

36 3. EXPLORING OPTIMIZATION SPACE: A CASE STUDY

CACHING DATA FOR COALESCED ACCESS

We see from Figure 3.4c that the CROSS cost aggregation requires an adaptive area of
data elements for each pixel. Thus, neighboring work-items will access the global mem-
ory possibly in an un-coalesced way. Local memory can be used to explicitly convert a
scattered access pattern to a regular (coalesced) pattern for global memory access [118].
To be specific, when using local memory, the coalesced access from global memory to
local memory is ensured and operating the local memory itself has no coalescing con-
straints. Thus, for CROSS, we first load data elements within the area of radius L (the
predefined maximum limit on radius) from global memory in a coalesced way, and then
use the required data elements from local memory.

In Figure 3.11, we see that using local memory for caching can improve the CROSS
performance by 1.5x on average. Although we load more data elements than what we
need in this situation, we have achieved better performance, due to the guarantee of
coalesced data access from global memory.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

cones teddy tsukuba venus
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

C
o

s
t

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

S
p

e
e

d
u

p
 (

x
)

Data Sets

Native OPT SP

Figure 3.11: CROSS performance on four data sets when caching data wiht local memory (L = 17, Tao = 20).
OPT represents the kernel with caching.

UNROLLING LOOPS

Loop unrolling is an optimization technique in which the body of a suitable loop is
replaced with multiple copies of itself, and the control logic of the loop is updated at
well [106]. In this way, we can reduce the number of branch instructions, thus improv-
ing performance. For-loops exist in cost aggregation kernels due to the heavy usage of
filters (shown in Figure 3.12). Thus, we generate the kernels in the fully loop-unrolled
fashion and then evaluate their performance.

Figure 3.13a shows that we can further improve the CW performance using local
memory plus loop unrolling (the average speedup 1.5x). Additionally, we see that us-
ing loop unrolling on AW decreases the performance (in Figure 3.13b). This slow-down
is due to register pressure (i.e., each work-item of AW needs to load two more filter el-
ements from global memory for each iteration). Thus, we choose not to perform loop
unrolling on AW. As for CROSS, the irregularity of filters hinders the loop-unrolling dur-
ing compiling time.

3.3. IMPLEMENTATIONS AND OPTIMIZATIONS

3

37

1 // ... head code ...
2 // cache [] represents the usage of local memory
3 // l_c and l_r is the local column and row index
4 if(l_c <16 && l_r <16){
5 float cost_aggr =0;
6 for(int y_ = 0; y_ < wnd_side ; y_ ++){
7 for(int x_ = 0; x_ < wnd_side ; x_ ++){
8 int x_start = l_c + x_;
9 int y_start = l_r + y_;

10 cost_aggr += \
11 cache [y_start * length + x_start]* filter [];
12 }
13 }
14 }
15 // ... tail code ...

Figure 3.12: Cost aggregation kernels with loops.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

Window Radius

LMw LMw+LU

(a) CW

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

Window Radius

LMw LMw+LU

(b) AW

Figure 3.13: Performance comparison between with and without loop unrolling for CW, AW and different
window-radius. LMw represents the aggregation time only using local memory (no loop unrolling), and

LMw +LU represents the case with both local memory and loop unrolling.

INCREASING PARALLELISM

When we parallelize aggregation kernels, letting each work-item process one pixel is a
natural choice. However, it becomes difficult to do so when using OII to pre-compute
prefix sum for the CROSS cost aggregation (see Section 3.2.1 and [177] on OII), because
of the data dependency in the x or y direction (e.g., data dependency in the x direction
shown in Figure 3.14).

In this case, we maximize parallelism by using a third dimension, namely D (repre-
senting Disparity). Specifically, we map the 2D work-items to the 2D elements in the
(x,d) or (y,d) plane, and iterate over the third dimension (y or x, respectively). Once
the third dimension is used, more work-groups can fully populate the compute unit to
hide latency, leading to high occupancy [118]. We show that the performance differs sig-
nificantly between using 1D and 2D parallelism in Table 3.2. The speedup ranges from
1.4x to 4.1x, depending on the size of the images. For the larger images, the gain is less
significant. In fact, for very large images, we expect that the performance gain using 2D
parallelism will disappear, as there will be enough work-groups to hide latency in one
dimension. However, in real-time stereo matching, the commonly used images, e.g., the
Middlebury dataset [28], are smaller than or close to 512×512, and they will benefit a lot

3

38 3. EXPLORING OPTIMIZATION SPACE: A CASE STUDY

Figure 3.14: Data dependency when calculating prefix sum in x direction: to calculate the cost value at (i , j),
we use Equation cost (i , j) =∑

i ′≤i , j ′= j cost (i ′, j ′). So the integrated cost value at (i , j) depends on all its
previous elements, namely the elements shaded in gray.

from this 2D parallelism model.

Table 3.2: Prefix sum execution time using 1D and 2D parallelism (D=16).

512x512 1024x1024 2048x2048 4096x4096
1D(ms) 24.03 49.28 122.73 421.58
2D(ms) 5.81 22.18 76.83 299.11
speedup(x) 4.14 2.22 1.60 1.41

3.4. OVERALL PERFORMANCE

In this section, we show and discuss the overall performance results. All the experiments
(except those in Section 3.4.3) are performed on a NVIDIA Quadro5000 Fermi GPU, con-
nected to the host (Intel Xeon X5650). The card has Compute Capability 2.0 and consists
of 352 cores divided among 11 multiprocessors. The amount of local memory available
per multiprocessor is 48KB. We compile all the programs with the OpenCL implemen-
tation from CUDA version 4.2 and GCC version 4.4.3. We use four image pairs from the
Middlebury dataset: cones, teddy, tsukuba, and venus. We perform initial experimental
analysis on accuracy (in Section 3.4.1), and focus on speed (in Section 3.4.2 and 3.4.3).
For the speed part, we use the average results of these four data sets.

3.4.1. ACCURACY

Figure 3.15 shows the disparity results for tsukuba. Compared with the ground truth
image, the error rates are 8.29%, 4.28% and 5.41% for CW, AW and CROSS, respectively,
i.e., AW > C ROSS > CW in terms of accuracy. As accuracy analysis or improvement is
not the focus of this paper (we focus on improving the speed of the three aggregation
solvers without a loss in accuracy), we will not dive into more details.

3.4. OVERALL PERFORMANCE

3

39

(a) tsukuba (reference) (b) CW disparity

(c) AW disparity (d) CROSS disparity

Figure 3.15: Accuracy comparison: (a) the tsukuba data set; (b)-(c) are the output disparity images for CW, AW,
and CROSS using AD+Census cost similarity measures[97], WTA, and several optimizers in the refinement

step.

3.4.2. SPEED ON THE QUADRO5000
We show the aggregation time (Sequential versus Optimized) for CW, AW, and CROSS in
Figure 3.16. Note that the sequential version is the single-core CPU code (with the de-
fault optimization level). From Figure 3.16a, we see that AW is the most time-consuming
aggregation solver (although it can achieve the most accurate disparity map shown in
Figure 3.15), and its aggregation time increases in a polynomial manner with the window-
radius. When using very small windows, CW runs faster than CROSS. However, as the
window becomes bigger, the time for CW increases, while it remains stable for CROSS
(that is because CROSS is window-independent).

As shown in Figures 3.16b, 3.16c and 3.16d, the optimization steps improve the ag-
gregation performance significantly. The speedups over the sequential code stay around
90 for AW, while we can achieve more performance improvement for CW (the average
speedup is 523) with the increasing of window sizes. This is due to more data sharing
within a work-group. Further, we can achieve relatively small speedup for the CROSS
solver (53x on average), due to loading extra data elements to local memory.

As can be seen from Figure 3.16d, when the window radius is 16, the performance
improves dramatically (compared with the case when the window radius is 15), because
all work-items in a work-group are active when loading data from global memory to lo-
cal memory. Further, we can verify that the achieved GFLOPs is below the theoretical
GFLOPs: the size of tsukuba is 384 × 288, the filter radius is 16, D = 16, and it takes
13.37 ms to perform the CW aggregation. The achieved computational throughput is

3

40 3. EXPLORING OPTIMIZATION SPACE: A CASE STUDY

144 GF LOPs (see Equation 3.6), which is lower than the theoretical peak of Quadro5000
- 359 GF LOPs for addition only operations.

384×288×16×33×33

13.37
×10−3 = 144 GF LOPs (3.6)

3.4.3. SPEED ON THE LOW-END GPU
We evaluate our parallel implementation on a low-end GPU: NVIDIA Quadro NV 140M
(2 multiprocessors, 16 cores each). Figure 3.17 shows the speedup of CW compared with
its sequential implementation. We see that the optimized CW can obtain impressive
speed-up factors, ranging from 5x to around 60x. One the other hand, the AW fails to
run, because it consumes a lot of device memory, which exceeds the maximum limits.
As for CROSS, it suffers a 25% performance loss, because the older generation NV 140M
imposes more severe constraints on effective memory accesses.

3.4.4. PUTTING IT ALL TOGETHER
As mentioned in Section 3.3.1, the local stereo-matching algorithm consists of six steps
when implementing it in OpenCL (apart from the context management). After perform-
ing all these optimization steps, the percentages of each component are shown in Figure

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

Window Radius

CW AW CROSS

(a) Sequential implementation

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

Window Radius

CW AW CROSS

(b) Optimized GPU implementation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4 5 6 7 8

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

Window Radius

CW AW CROSS

(c) Zoomed show of (b)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

e
e

d
u

p
 (

x
)

Window Radius

CW AW CROSS

(d) Speedup

Figure 3.16: Performance comparison of sequential implementation and the optimized GPU implementation.

3.5. SUPPLEMENTARY RESULTS ON A MULTI-CORE CPU

3

41

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
C

W
 S

p
e

e
d

u
p

 o
n

 N
V

1
4

0
M

 (
x
)

Window Radius

CW

Figure 3.17: Speedup of the optimized CW over its 1-thread implementation on the low-end NV140M.

3.18. We see that CC becomes the performance bottleneck, rather than CA (although we
perform the optimization on the other steps besides CA). Thus, we will study the local
stereo-matching algorithm as a whole to get better performance for further work.

 0

 20

 40

 60

 80

 100

CW AW CROSS

%
 o

f
to

ta
l

H2D

CC

CA

DE

DR

D2H

Figure 3.18: The percentage for each component using OpenCL. The window radius for CW and AW is 10, and
L, Tao for CROSS are 17, 20, respectively. We use (AD+Census) cost similarity measures to compute match

cost (CC)[97], WTA (DE), and several optimizers in the refinement step (DR).

To summarize, we have identified and performed five optimization steps on the ag-
gregation solvers (CW, AW, and CROSS). Compared with the sequential implementa-
tions, the experimental results show significant speedup on NVIDIA Quadro5000: CW
is around 500 times faster (50-700 fps), while AW and CROSS are tens of times faster (AW
reaches 1.5-170 fps and CROSS 45 fps). Thus, meeting real-time requirements is feasible.
Further, based on the standard template plus these key optimizations steps, a straight-
forward extension of this work is to build an auto-tuner for stereo matching.

3.5. SUPPLEMENTARY RESULTS ON A MULTI-CORE CPU
In this section 3, we investigate whether the optimization steps specialized for many-
core processors are equally effective on multi-core processors. To this end, we try the
same optimization steps on a dual hexa-core CPU (Intel Xeon X5650) with Intel OpenCL
SDK 2014.

3This section has been extended based on our work published in ICPADS 2012 [45]

3

42 3. EXPLORING OPTIMIZATION SPACE: A CASE STUDY

3.5.1. MAPPING WORK-ITEMS TO DATA

We compare the two mappings: (i , j) → (x, y) (our preference on GPUs) and (i , j) → (d , x)
(one of the ‘bad’ mappings for GPUs) in the three cost aggregation kernels in Figure 3.19.
We note that, different from GPUs, the preferred mapping (i , j) → (x, y) performs worse
than the bad mapping (i , j) → (d , x) for AW (Figure 3.19b) and CROSS (Figure 3.19c).
Using (i , j) → (x, y) runs faster for CW (Figure 3.19a) whereas the performance benefits
are much smaller (than that on GPUs). Therefore, applying coalesced memory access
may not apply to multi-core processors.

 0

 50

 100

 150

 200

 250

 300

cones teddy tsukuba venus

C
o

s
t

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

(i,j)->(d,x) (i,j)->(x,y)

(a) CW

 0

 200

 400

 600

 800

 1000

 1200

cones teddy tsukuba venus

C
o

s
t

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

(i,j)->(d,x) (i,j)->(x,y)

(b) AW

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

cones teddy tsukuba venus

C
o

s
t

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

(i,j)->(d,x) (i,j)->(x,y)

(c) CROSS

Figure 3.19: Aggregation time of three aggregation strategies (CW, AW, and CROSS) on four datasets (cones,
teddy, tsukuba, and venus) in Middlebury using two mappings ((i , j) → (x, y) and (i , j) → (d , x)). The window

radius for CW and AW is 10, and L, Tao for CROSS are 17, 20, respectively.

3.5.2. USING LOCAL MEMORY

In Section 3.3.2, we use local memory to exploit data sharing and cache data for coalesced
access. We use the same optimization step on X5650 and show results in Figure 3.20. We
see that using local memory on X5650 can reduce the aggregating time significantly for
CW (Figure 3.20a). Meanwhile, using local memory for AW (Figure 3.20b) and CROSS
(Figure 3.20c) runs slower than the naive version. We conclude that the benefits of using
local memory depend on both aggregators and platforms.

 0

 50

 100

 150

 200

 250

cones teddy tsukuba venus

C
o

s
t

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

Data Sets

Native OPT

(a) CW

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

cones teddy tsukuba venus

C
o

s
t

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

Data Sets

Native OPT

(b) AW

 0

 10

 20

 30

 40

 50

 60

 70

 80

cones teddy tsukuba venus

C
o

s
t

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

Data Sets

Native OPT

(c) CROSS

Figure 3.20: Aggregation time between without (N ai ve) and with (OPT) local memory.

3.6. RELATED WORK

3

43

3.5.3. UNROLLING LOOPS
Figure 3.21 shows that how unrolling loops impacts the overall execution time of CW and
AW. We see that unrolling loops decreases aggregation time when the window radius is
small. When using a large window (e.g., 8 for CW and 6 for AW), the run-time reports
‘CL_OUT_OF_RESOURCES’. Compared with many-core GPUs, multi-core CPUs have an
order of magnitude fewer registers. Therefore, the unrolled kernels consume too many
registers to launch the kernel execution.

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

Window Radius

LMw LMw+LU

(a) CW

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4 5

A
g

g
re

g
a

ti
o

n
 T

im
e

 (
m

s
)

Window Radius

LMw LMw+LU

(b) AW

Figure 3.21: Performance comparison between with and without loop unrolling for CW, AW and different
window-radius. LMw represents the aggregation time only using local memory (no loop unrolling), and

LMw +LU represents the case with both local memory and loop unrolling.

3.5.4. INCREASING DATA PARALLELISM
Table 3.3 shows the execution time when increasing parallelism. We see that using this
technique decreases performance significantly (by 2×–3×). This is because multi-core
processors have fewer cores, and a medium level of parallelism can meet the require-
ment.

Table 3.3: Prefix sum execution time on X5650 using 1D and 2D parallelism (D=16).

512x512 1024x1024 2048x2048 4096x4096
1D(ms) 2.44 5.00 21.18 76.85
2D(ms) 4.87 14.25 62.06 227.75
speedup 0.50 0.35 0.34 0.34

To summarize, an optimization step on NVIDIA Quadro 5000 often leads to a per-
formance drop on X5650 for the cost aggregators. Therefore, optimizations steps are
platform-dependent.

3.6. RELATED WORK
In this section, we present previous work on GPU-assisted stereo matching (we have
mentioned related work on stereo cost aggregation solvers in Section 3.2).

3

44 3. EXPLORING OPTIMIZATION SPACE: A CASE STUDY

In [165], Wang et al. introduce an adaptive aggregation step in a dynamic-programming
(DP) stereo framework, and utilize the vector processing capability and parallelism in
commodity graphics hardware, increasing the performance by over two orders of magni-
tude. Their performance improvements are mainly based on the usage of texture mem-
ory. Gong [54] gives an implementation of six aggregation approaches, two of which
(CW and AW) are also implemented in our work, and evaluates them on a real-time
stereo platform in terms of both accuracy and speed. The used platform includes pro-
grammable graphics hardware. Compared with our work, both these solutions use older
GPU programming methods and focus on different optimizations.

More recently (since 2006), GPUs have evolved into computing devices solving general-
purpose problems. At the same time, CUDA [115] and OpenCL [151] make programming
GPUs easier. As a result, more research effort is put in using GPUs for stereo matching.
In [175], the authors propose a GPU-based stereo system, consisting of hardware-aware
algorithms and code optimization techniques, which improves both the accuracy and
the speed of stereo-matching.

Scott Grauer-Gray et al. [56] explore methods to optimize a CUDA-implementation
of belief propagation (i.e., a global stereo matching method). They focus their investi-
gation on the optimization space of using local, shared, and register memory options
for data storage on the GPU. Mei et al. [97] present a near real-time stereo system with
accurate disparity results using multiple techniques, viz., AD-Census costs, cross-based
support regions (which is also evaluated in our work), scanline optimization, and a sys-
tematic refinement process. The results are achieved on NVIDIA GTX480 within 0.1 sec-
onds. By contrast, our work focuses larger sets of aggregators, and investigates the per-
formance benefits of a unified representation and optimizations on them.

There exists also some work in the literature on finding appropriate agglomeration
and tiling factors for such stencil-like computations with a given stencil radius, taking
local memory size into account. For instance, Werkhoven et al. present an adaptive
tiling to implement a highly efficient, yet flexible, library-based convolution operation
for modern GPUs [158]. In [32], Dastgeer et al. describe their work on providing a generic
yet optimized GPU implementation for the 2D MapOverlap skeleton, where they explain
their implementation with the help of a 2D convolution application, and the memory
(constant and shared memory) and adaptive tiling optimizations are applied. In our
work, we are not focusing on adaptive tiling, which will be explored as a next step.

In this still sparse space of GPGPU-enabled stereo-matching, our work proposes a
unified approach for multiple cost-aggregation kernels, in terms of both implementa-
tions and optimizations; furthermore, because of this unified approach, we are able to
propose the first (to the best of our knowledge) simple and effective performance model
to predict an upper bound for the GPU-based stereo-matching speed on a given plat-
form 4.

3.7. SUMMARY
In order to meet real-time requirements for cost aggregations, we have studied three
typical aggregation solvers in OpenCL on GPUs: CW, AW, and CROSS. For the three ag-

4Our performance model is not shown in the thesis, and can be seen in [45].

3.7. SUMMARY

3

45

Table 3.4: A summary of optimizations and the relevant architecture features
(↗: increase, ↘: decrease, −: not applicable, : varied).

Optimizations Architecture Features
Quadro5000 X5650

CW AW CROSS CW AW CROSS
1 Mapping work-items to data coalesced memory access ↗ ↗ ↗ ↗ ↘ ↘
2 Exploiting data sharing local memory ↗ ↗ − ↗ ↘ −
3 Caching data for coalesced access local memory − − ↗ − − ↘
4 Unrolling loops (less dynamic instructions) ↗ ↘ − ↗ −
5 Increasing parallelism many cores − − ↗ − − ↘

gregators, we devised a unified representation and implementation, and we performed
five incremental optimization steps: (1) mapping work-items to data, (2) exploiting data
sharing, (3) caching data for coalescing, (4) unrolling loops, and (5) increasing paral-
lelism (Table 3.4). Experimental results show that we can significantly boost the perfor-
mance of cost aggregations without a loss in accuracy on NVIDIA GPUs.

To verify whether the optimization steps proposed for GPUs are equally applicable in
a different context, we ran our software on a multi-core CPU. We have observed that us-
ing the optimizations leads to a performance decrease in most cases (Table 3.4). There-
fore, these optimization steps are not portable to multi-core CPUs, and each platform
has a specific optimization space.

Further, we relate the optimizations to the underlying architectural features. Opti-
mizations (1)–(3) relate closely to memory hierarchy and the use of on-chip memory.
Optimization (4) is generic in that it aims to reduce the number of dynamic instructions.
And optimization (5) exploits the many-core feature and uses more parallelism to hide
latency and achieve high throughput. Therefore, the architectural differences between
multi-cores and many-cores lead to differences in performance impact when enabling
the same optimization. This is further confirmed by our case study in Appendix B.

To achieve high performance across platforms, we need to customize this optimiza-
tion space, i.e., transforming a platform-agnostic implementation to a platform-specific
version. In this thesis, we investigate the platform-specific optimization space and its
enabling/disabling technologies for multi-cores and many-cores. In particular, we ex-
plore the optimization space from both processing cores (Chapter 5) and memory hier-
archies (Chapter 6– 8).

4
EVALUATING VECTOR DATA TYPE

USAGE

In this chapter, we investigate vectorization (i.e., explicitly using vector data types) for
OpenCL kernels on both scalar-core processors and vector-core processors. In particu-
lar, we present two approaches to use vector data types (VDT), and further evaluate the
performance impact of using VDT with micro-benchmarks and macro-benchmarks. In
addition, we discuss the balance between using vector data types and the performance-
portability requirement.

A vector of type vecn has n elements of type vec, i.e., a vector is a fixed-length col-
lection of scalar data elements. Using VDTs is regarded as explicit and high-level vector-
ization (different from using the low-level intrinsics [43]). This technique aims to enable
the mapping of vector data directly to the hardware vector registers. When the underly-
ing hardware has vector units, using VDTs may facilitate better utilization, thus bringing
new opportunities for improved performance.

Although vectorization itself is a well-studied topic, there are very few studies con-
ducted on the usage of vector data types [125]. Thus, many questions are still unan-
swered: (Q1) how should we use VDTs given a scalar kernel code, (Q2) what is the exe-
cution model of VDTs for different processors, and (Q3) what is the performance impact
of using VDTs? Further, the vector length (VL) differs for different processors and ap-
plications (see Section 4.4), making it challenging to achieve high performance without
tuning for each machine. So, another question is (Q4) how do we balance the VDT usage
and the performance-portability requirement?

To address these four questions, we first present a source-to-source approach (inter-
vdt and intra-vdt) to translate scalar kernels to vectorized ones. Next, to investigate the
performance effects of using VDTs, we apply the approach on two types of benchmarks1:
micro-benchmarks and macro-benchmarks. With micro-benchmarks, we investigate

This chapter is based on our work published in Concurrency and Computation: Practice and Experience [47].
1The benchmarks are on-line available: https://github.com/haibo031031/vdt

47

https://github.com/haibo031031/vdt

4

48 4. EVALUATING VECTOR DATA TYPE USAGE

how vector data types are mapped on five different devices. With macro-benchmarks,
we thoroughly evaluate the performance effects of using VDTs. In particular, we analyze
the changes in memory access patterns and bandwidth due to the usage of VDTs. We
have found that (1) VDTs are mapped in different manners onto different processors; (2)
using VDTs not only brings changes to computation, but also to memory access patterns.
Based on these observations, we discuss how to achieve more portable performance with
VDTs.

In summary, our main contributions are as follows:

• We propose two orthogonal source-to-source translation approaches to use VDTs,
and demonstrate their use on micro-benchmarks and macro-benchmarks.

• With the vectorized micro-benchmarks, we investigate the execution model(s) of
VDTs on different architectures, and obtain a decision tree on when to use VDTs.

• With the vectorized macro-benchmarks, we study the performance impact of us-
ing VDTs.

• We analyze the role of auto-vectorization modules, and discuss how to deal with
performance portability in the presence of VDTs.

The main goal of this chapter is to understand the usage of vector data types in a
systematic way. Most previous work has emphasized thread-coarsening [92, 172] and
OpenCL vectorization on CPUs [88]. To the best of our knowledge, ours is the first study
dedicated to vector data types in the context of performance and portability. We believe
that our work increases the understanding of VDT mappings on diverse processors and
its performance effects, and helps programmers write performance-portable code in the
presence of VDTs.

The remainder of the chapter is organized as follows. In Section 4.1, we briefly de-
scribe OpenCL and VDTs, and then present our source-to-source translation approaches.
Section 4.2 describes the experimental setups: benchmarks and devices. Section 4.3
presents the microbenchmark results and our analysis at both the architecture level and
compiler level. Section 4.4 and Section 4.5 discuss the performance results of using vec-
tor data types with macro-benchmarks. Section 4.7 introduces the vectorization back-
ground and related work. We discuss performance portability in the presence of VDTs in
Section 4.6 and conclude the chapter in Section 4.8.

4.1. SOURCE-TO-SOURCE TRANSLATION
In this section, we introduce vector data types, and show how to explicitly use VDTs in
OpenCL kernels. We propose two different approaches of using VDT in OpenCL kernels,
and present the transformations that have to be applied to enable them.

4.1.1. OPENCL AND VDT
The secret of OpenCL’s portability is that it uses a unified platform model. The model
consists of a host with one or multiple OpenCL devices. An OpenCL device is divided
into one or more compute units (CUs) which are further divided into one or multiple

4.1. SOURCE-TO-SOURCE TRANSLATION

4

49

processing elements (PEs). Each component has its own memory space. When imple-
menting OpenCL, vendors map this model to physical machines.

OpenCL uses a special language (based on C99) for writing kernels and APIs that are
used to define and then control the devices. In OpenCL terms, applications are com-
posed of “host code” - i.e., the code that manages execution contexts and runs on the
hosts, and “kernel code” - i.e., the massively parallel code that runs on the devices. When
a kernel is submitted for execution by the host, an index space, named NDRange, is de-
fined. An instance of the kernel is known as a work-item. Work-items are organized into
work-groups, providing a more coarse-grained decomposition. Each work-item has its
own private memory space, and can share data via local memory with the other work-
items in the same work-group. All work-items can read/write global device memory.

To maximize hardware utilization, OpenCL provides vector data types and related
built-in functions. The vector data type is defined with the type name, i.e., char, uchar,
short, ushort, int, uint, float2, long, ulong, followed by a literal value n that defines
the number of elements in the vector. Manipulating vectors is performed in an element-
wise manner. Built-in vector data types are supported by the OpenCL implementation
even if the underlying compute device has no support for them in hardware. These are
to be converted by the device compiler to appropriate instructions that use underlying
built-in types supported natively by the compute device.

Starting with a scalar kernel, how can we transform the code into a vectorized format,
where each operand is represented in a vector? Taking OpenCL as both the input and
the output language, we provide, in the following sections, transformation recipes to
explicitly use VDTs.

4.1.2. USING VECTOR DATA TYPES
Most current vectorization optimization techniques are loop-based: once a loop is de-
termined to be vectorizable, the loop is strip-mined by vector length and each scalar
instruction is replaced by the corresponding vector instruction (i.e., the operands are
vectors, and the operation is element-wise) [3, 26, 170]. Additionally, a straight-line-
code vectorization technique called SLP (Superword-Level Parallelism), proposed in [86,
143, 145], targets basic blocks rather than loop nests. Thus, traditional vectorization is
an aggregation of consecutive loop iterations or instructions within a basic block. Because
explicitly using vector data types is a high-level vectorization, we can use a similar ap-
proach when enabling VDTs.

We explore two different ways of using VDT: inter-vdt, and intra-vdt. For inter-vdt, we
assemble multiple work-items (the basic unit of computation for OpenCL kernels) to fill
up a vector. In other words, inter-vdt is based on work-items merging, which is similar to
SLP. This technique merges multiple neighbouring work-items as a new work-item with
a (VL×) coarser granularity. This thread coarsening technique is used by Yi Yang et. al. to
enhance data sharing [92, 172]. In our work, we merge work-items, and store operands
using vector data. Thus, all the data elements are manipulated in the form of vectors.

As for intra-vdt, we focus on vectorizing the work performed a work-item. Intra-
vdt is based on loop unrolling (much like the traditional vectorization). Specifically, we
unroll the loop of an OpenCL kernel for VL times, and rewrite the scalar computation

2We will use float and its vector data types across the chapter.

4

50 4. EVALUATING VECTOR DATA TYPE USAGE

Listing 4.1: scalar kernel

1 # define N 32
2
3 __kernel void native (const __global float * in , \
4 __global float * out){
5
6 int idx = get_global_id (0);
7 float val = 0.0;
8 for(int i=0; i<N; i++){
9 val += in[idx+i];

10 }
11 out[idx] = val;
12 }

into its vector form. Note that, with intra-vdt, we need to deal with the loop remainder
when the loop count is not a multiple of VL; it is the same for inter-vdt when the number
of work-items in the first dimension3 is not a multiple of VL.

4.1.3. CODE TRANSFORMATIONS
In this section, we describe the transformations to be made when using vector data
types. To make clear how both inter-vdt and intra-vdt work, we use a running exam-
ple, shown in Listing 4.1. The example calculates the sum of N input data elements and
stores the result.

APPLYING Inter-vdt
We use the following steps to translate an OpenCL kernel to its vectorized format by
merging work-items.

• Preserve the kernel function definition (function name, arguments and data types),
and control flow statements (e.g., if or for statements).

• Re-calculate the work-item index in the first dimension (i.e., times VL in the x di-
rection).

• Duplicate declarations and statements VL times.

We re-name variables with unique identifiers, still derived from the original name,
e.g., use a ‘name_counter’ scheme. The replication procedure starts with output
data. By analyzing the data dependence, we recursively build a statement tree,
in which each node is duplicated. Furthermore, we need to type-cast constant
numbers to a vector format as well.

• Duplicate the writing-back statements. Make sure that we write the results to the
right buffer.

• Replace the duplicated scalar data with vector data.

When the kernel calls a subroutine, we also need to provide a vectorized version of
the subroutine. When data accesses are contiguous, we use the built-in functions–

3Work-items are arranged in at most three dimensions and we merge work-items in the first dimension.

4.1. SOURCE-TO-SOURCE TRANSLATION

4

51

Listing 4.2: Inter-vdt: duplication

1 # define N 32
2 # define VL 2
3 __kernel void inter_1 (\
4 const __global float * in , \
5 __global float * out){
6
7 int idx = get_global_id (0) * VL;
8 float val_0 = 0.0;
9 float val_1 = 0.0;

10 for(int i=0; i<N; i++){
11 val_0 += in[idx+i+0];
12 val_1 += in[idx+i+1];
13 }
14 out[idx +0] = val_0 ;
15 out[idx +1] = val_1 ;
16 }

Listing 4.3: Inter-vdt: with VDT

1 # define N 32
2 # define VL 2
3 __kernel void inter_2 (\
4 const __global float * in , \
5 __global float * out){
6
7 int idx = get_global_id (0)*VL;
8 float2 val = (float2)0.0f;
9 for(int i=0; i<N; i++){

10 val += vload2 (0, &(in[idx+i]));
11 }
12
13 vstore2 (val , 0, &(out[idx]));
14 }
15
16 .

v stor en and vl oadn. When the memory accesses are scattered, we need to as-
semble/disassemble the individual data elements into/from a vector.

The vectorized form of the original kernel (Listing 4.1) is shown in Listing 4.3. To this
end, two neighbouring work-items are merged into one and the instance is duplicated
(Listing 4.2). Thereafter, the duplicated statements are replaced with vector data types
and the data access operations are replaced with vl oadn and v stor en (shown in List-
ing 4.3). Finally, we need to change the size of NDRange in the host program (not shown
here).

APPLYING Intra-vdt
Here we show the rules of translating an OpenCL kernel to its vectorized format using
loop unrolling.

• Preserve the kernel function definition (function name, arguments and data types).
Different from inter-vdt, the work-item index calculation should also be preserved.

• Unroll the for loop VL times (e.g., VL=2).

• Apply reduction for the calculation of the final result (e.g., a sum).

• Preserve the data writing part.

• Replace the scalar operations with vector operations.

When using intra-vdt, we do not need to make any changes on the host program.
The transformations of the scalar kernel (Listing 4.1) based on these rules are shown in
Listing 4.4 and Listing 4.5. By unrolling the loop twice, we get two copies of the loop.
Instead of changing the task granularity of a work-item, we explicitly unroll the inner
loop. In this way, we get two copies of partial results and we need to perform reduction
on them.

To summarize, inter-vdt can be applied to any OpenCL kernel code while intra-vdt
is only applicable to kernels with loops. Furthermore, inter-vdt requires a change in
the host program, i.e., to reduce the number of work-items by VL. The two approaches

4

52 4. EVALUATING VECTOR DATA TYPE USAGE

Listing 4.4: Intra-vdt: loop unrolling

1 # define N 32
2 # define VL 2
3 __kernel void intra_1 (\
4 const __global float * in , \
5 __global float * out){
6
7 int idx = get_global_id (0);
8 float val_0 = 0.0;
9 float val_1 = 0.0;

10 for(int i=0; i<N; i=i+VL){
11 val_0 += in[idx+i+0];
12 val_1 += in[idx+i+1];
13 }
14
15 out[idx] = val_0 + val_1 ;
16 }

Listing 4.5: Intra-vdt: with VDT

1 # define N 32
2 # define VL 2
3 __kernel void intra_2 (\
4 const __global float * in , \
5 __global float * out){
6
7 int idx = get_global_id (0);
8 float2 val = (float2) (0.0) ;
9

10 for(int i=0; i<N; i=i+VL){
11 val += vload2 (0 ,&(in[idx+i+0]));
12 }
13
14 out[idx] = val.x + val.y;
15 }
16 .

– inter-vdt and intra-vdt – are orthogonal, but not exclusive. In other words, they can
both be applied individually or together on the same kernel, with different performance
effects.

4.2. EXPERIMENTAL SETUP
In this section, we introduce the benchmarks and the devices used in the experiments.

4.2.1. SELECTED BENCHMARKS

To evaluate the performance effects of using VDTs, we use two types of benchmarks:
micro-benchmarks and macro-benchmarks. The micro-benchmarks includes flops
and bandwidth, which measure the computational capability and memory access ca-
pability of the devices, respectively. The macro-benchmarks include four typically used
kernels. The kernels and their datasets are listed in Table 4.1. Note that the datasets
have been selected to be much larger than the last-level cache of the devices (shown in
Table 4.2). For each benchmark, we start with a scalar version, and transform it into a
format using vector data types vecn (n ∈ {2,4,8,16}) with the approaches proposed in
Section 4.1. We run each benchmark 20 times and obtain the mean kernel execution
time (the reciprocal of performance). The normalized performance is the ratio between
the performance of the scalar version to that vector versions. Hence, when the number
is larger than 1, using VDTs is beneficial; otherwise, it leads to a performance loss.

Table 4.1: The selected benchmarks

Macro-benchmark Acronym Dataset
Matrix Multiplication MM 2048x2048
Image Convolution IC 8192x8192x16
Black Scholes BS 8192x8192
Successive Over-Relaxation SOR 8192x8192

4.3. VDT EXECUTION MODEL

4

53

4.2.2. PLATFORMS AND DEVICES
We have tested platforms and devices from different vendors as shown in Table 4.2. We
have selected Tesla K20 and Tesla C1060 from NVIDIA. The first one is based on the Ke-
pler architecture and has 2496 CUDA cores in total. For comparison, we use NVIDIA
C1060 that has no on-chip caches. From AMD we have selected Tahiti HD7970. The
Graphics Core Next (GCN) architecture in Tahiti is a significant change from the tradi-
tional VLIW design on old GPUs. Each of the 32 compute units contains a scalar unit
and 4 vector units. From Intel we have selected two processors: a multicore CPU (Sandy-
bridge) with dual hexa-cores and a co-processor Xeon Phi 5110P with 60 (512-bit) SIMD
cores.

Table 4.2: Platforms and Devices.

C1060 K20 Phi-5110P E5-2620 HD7970
Host Intel Core i7 920 Intel Xeon E5620 Intel Xeon E5-2620 Intel Xeon E5-2620 Intel Xeon E5620
Host OS UBUNTU v11.10 CentOS v6.2 CentOS v6.2 CentOS v6.2 CentOS v6.2
Device NVIDIA Tesla C1060 NVIDIA Tesla K20m Intel Xeon Phi 5110P Intel Xeon E5-2620 AMD HD7970
GCC v4.6.1 v4.4.6 v4.4.6 v4.4.6 v4.4.6
OpenCL CUDA v5.5 CUDA v5.5 Intel OCL SDK v3.0 Intel OCL SDK v3.0 AMD APP v2.9

4.3. VDT EXECUTION MODEL
To investigate VDT execution model(s) on a range of processors from different vendors,
we have designed two OpenCL microbenchmarks–bandwidth and flops. In bandwidth,
each work-item loads a unique data element from global memory, performs a mad (multiply-
and-add) operation, and stores the new value back to the global memory (shown in List-
ing 4.6). By using inter-vdt, we obtain a vectorized version of the code shown in List-
ing 4.7, where n is the vector length (n ∈ {2,4,8,16}). Different from bandwidth, flops
repeats the arithmetic instruction (Line 9) for 32000 times so that the computation dom-
inates the kernel execution time. We show the normalized performance in Figure 4.1.

Listing 4.6: The scalar version

1 __kernel void bandwidth (\
2 const __global float * in , \
3 __global float * out){
4
5 int idx = get_global_id (0);
6 float alpha = 3.0;
7 float beta = 0.98;
8 float v = in[idx];
9 v = alpha - beta * v;

10 out[idx] = v;
11 }

Listing 4.7: The vector version

1 __kernel void bandwidth (\
2 const __global float * in , \
3 __global float * out){
4
5 int idx = get_global_id (0)*n;
6 floatn alpha = 3.0;
7 floatn beta = 0.98;
8 floatn v = vloadn (0, &(in[idx]));
9 v = alpha - beta * v;

10 vstoren (v, 0, &(out[idx]);
11 }

4.3.1. EXECUTION MODEL ANALYSIS
According to the core organization, we divide processors into two groups: scalar-core
and vector-core. The former features with scalar cores, which can run independently

4

54 4. EVALUATING VECTOR DATA TYPE USAGE

 0.5

 1

 2

 4

 8

 16

 32

C1060
K20 HD7970

E5-2620
Phi-5110P

N
o

rm
a

liz
e

d
 F

lo
p

s

Devices

vec2
vec4
vec8

vec16
cav

(a) Flops

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

C1060
K20 HD7970

E5-2620
Phi-5110P

N
o

rm
a

li
z
e

d
 B

a
n

d
w

id
th

Devices

vec2

vec4

vec8

vec16

cav

(b) Bandwidth

Figure 4.1: Normalized performance with flops and bandwidth.

(but not necessarily simultaneously). C1060, K20 and HD7970 fall into this category.
Such cores on NVIDIA GPUs are also coined as SIMT cores [118]. In contrast, each core
of vector-core processors is a SIMD core, where the SIMD lanes run in a strict lock-step
manner. E5-2620 and Phi-5110P are examples of such processors.

For scalar-core processors, it is natural to run a work-item (or a thread) on a scalar
core (Figure 4.2a), and run a group of work-items on a group of scalar cores (an SMX on
NVIDIA GPUs or a vector unit on AMD GCN GPUs). When using VDTs in kernels, the
vector components are accessed one by one (in a loop style). Figure 4.2b shows each
vector has 4 components (V L = 4), and each work-item needs 4 iterations to access all
the components of the vector data. This serialization execution model introduces extra
overheads, as shown in Figure 4.1a. Using VDTs, the flops number is no better than that
of the scalar code on the scalar-core processors (C1060, K20, and HD7970). An exception
can be observed on K20: using vec2 or vec4 leads to slightly better performance.

Elements in a vector are guaranteed to be stored in contiguous storage locations.
Thus, D00 and D01 are stored contiguously in memory space, while D00 and D04 are
not (Figure 4.2a and 4.2b). When using VDTs on scalar-cores, each core in a CU will
gather a data component from its corresponding vector, leading to un-coalesced mem-
ory accesses. Figure 4.1b shows the bandwidth decreases over VL on C1060, K20, and
HD7970. To summarize, using VDTs on scalar-core processors often leads to a perfor-
mance decrease due to the serialization overheads and unfriendly memory access pat-
terns. Therefore, VDTs should not be used on the scalar-cores.

On vector-core processors, each core has a vector of lanes running in a lock-step
manner (4 lanes in Figure 4.2c and 4.2d). A work-item with scalar data can only utilize
a part of the lanes (shaded in Figure 4.2c) and leaves others unused. In this situation,
we need to use vector data types to fill up the processing lanes. As shown in Figure 4.2d,
we use vec4 so that all the lanes are occupied. Figure 4.1a shows that using vector data
types, the performance can be increased significantly on the vector-cores (E5-2620 and
Phi-5110P). In particular, the flops number increases over the vector length. Intuitively,
the maximum flops can be achieved with f loat8 (256 bits) on E5-2620. However, we ob-

4.3. VDT EXECUTION MODEL

4

55

(a) (b) (c) (d)

Figure 4.2: Execution model: (a) Scalar data on scalar cores, (b) Vector data on scalar cores, (c) Scalar data on
vector cores, and (d) Vector data on vector cores (C: Processing Cores, CU: Compute Unit, MEM: Memory, L:

Lane, D: Data element). Note that the dashed lines indicate how data elements are stored in MEM.

serve a further improvement when using f loat16. This is because, when using f loat16,
we have more independent instructions to fill the bubbles between two dependent in-
structions.

Our bandwidth tests on vector-cores show that there is no performance change by
using vector data types (Figure 4.1b). This is because both ways can utilize spatial data
locality. Therefore, using VDTs benefits the computation and the overall performance,
and it is mandatory to explicitly use VDTs for vector-core processors.

4.3.2. COMPILER-LEVEL ANALYSIS
Intel provides a compiler-aided vectorization (cav) module in its OpenCL implementa-
tion. This module packs several work-items and executes them with SIMD instructions.
The basic idea is to transform scalar data type operations on adjacent work-items into an
equivalent vector operation. This enables us to benefit from the vector units in vector-
core processors without writing explicit vector code. In this section, we compare the
performance of cav with that of explicitly using VDTs (and we further show the perfor-
mance effects of using cav on macro-benchmarks in Section 4.4).

From Figure 4.1a, we see that cav can achieve similar performance to that of explicit
vectorization (with f loat8) on E5-2620. On Phi-5110P, however, we observe that the
implicit vectorization module does a better job than the explicit vectorization. In partic-
ular, the cav module obtains almost 100% vectorization efficiency, while it is only around
60% by using VDTs. We believe this is due to the inefficient mapping of vector data to the
underlying hardware. Therefore, using compiler-aided vectorization is a good candidate
replacing the VDTs usage on the vector-core processors. At the time of writing (May
2014), AMD has not released a cav module. To fully exploit AMD processors of vector-
core style (e.g., AMD CPUs and AMD VLIW GPUs), explicit use of VDTs is still required.

4.3.3. LESSONS LEARNED
Based on the core features, programmers should decide to use vector data types at the
right time. NVIDIA GPUs (e.g., C1060 and K20) and the recently released AMD GPUs

4

56 4. EVALUATING VECTOR DATA TYPE USAGE

Figure 4.3: Architectures, compiler and VDTs (⊗ represents we do not need VDTs, while ⊕ means we need
explicitly use vector data types).

(e.g., HD7970) use scalar cores. It is natural to map work-items to the same number
of scalar cores. Therefore, using VDTs on OpenCL kernels is not mandatory on such
processors. On architectures with SIMD cores (e.g., E5-2620 and Phi-5110P), vectoriza-
tion is needed to fully utilize the SIMD lanes. The job can be done either automatically
by compilers (Section 4.3.2) or manually by programmers (e.g., using VDTs). When the
automated compiler-aided vectorizer fails (which can seen from compiling messages),
programmers need to manually use VDTs. This conclusion is summarized in Figure 4.3.

4.4. INTER-VDT PERFORMANCE IMPACT ON MACRO-BENCHMARKS
In this section, we discuss the performance effects of using inter-vdt on our target ker-
nels (Table 4.1). Based on the execution models and lessons learned in Section 4.3, we
further analyze the performance changes when using different vector data types.

We show the normalized performance of these kernels in Figure 4.4. The perfor-
mance effects of using VDTs vary over devices, applications and vector lengths. As in-
dicated in the performance models [167], the overall performance is determined by two
factors: computation and memory access. Thus, we will analyze the performance ef-
fects of using VDTs by looking into these two factors. Based on the execution models
described in Section 4.3, using VDTs will accelerate the computation part on the vector-
core processors, and should bring no changes on the scalar-core processors.

As for memory access, using VDTs changes memory access patterns (MAPs) and thus
might impact the memory bandwidth. Therefore, we give a detailed description of mem-
ory accesses before and after using VDTs for each kernel. Typically, we describe MAPs at
two levels: work-item level and work-group level [40, 42]. In Figure 4.5, each work-item
works on one element of the output data, and needs to read the corresponding elements
from the input data ((I) one row, (II) one column, (III) one block of elements, or multiple
elements in random formats, shown in Figure 4.5a). At the work-group level, neigh-
bouring work-items access the same or separate elements simultaneously, also showing
access patterns. When introducing inter-vdt, MAPs change, i.e., each work-item works
on VL elements of output data, and its input data is expanded, as shown in Figure 4.5b
(V L = 2).

In the following sections, we first analyze the changes in memory access patterns
with VDTs. To quantify the bandwidth changes before and after using VDTs, we develop
a benchmark for each memory access pattern. By comparing the trends of overall per-
formance with that of bandwidth numbers, we investigate how using VDTs affects per-

4.4. INTER-VDT PERFORMANCE IMPACT ON MACRO-BENCHMARKS

4

57

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

C1060
K20 HD7970

E5-2620
Phi-5110P

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

Devices

vec2

vec4

vec8

vec16

cav

(a) MM

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

C1060
K20 HD7970

E5-2620
Phi-5110P

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

Devices

vec2

vec4

vec8

vec16

cav

(b) IC

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

C1060
K20 HD7970

E5-2620
Phi-5110P

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

Devices

vec2

vec4

vec8

vec16

cav

(c) BS

 0.125

 0.25

 0.5

 1

 2

 4

C1060
K20 HD7970

E5-2620
Phi-5110P

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

Devices

vec2

vec4

vec8

vec16

cav

(d) SOR

Figure 4.4: Normalized performance for the macro-benchmarks: MM, IC, BS, and SOR.

formance.

(a) w/o VDT (b) w/ VDT

Figure 4.5: Mapping work-items to data. Circles represent a grid of work-items, squares represent
input/output data arrays. There are 64 (8x8) work-items altogether, and each work-item computes one

element from the output data. When using inter-vdt, each work-item works on two output elements.

4

58 4. EVALUATING VECTOR DATA TYPE USAGE

4.4.1. MATRIX MULTIPLICATION
MM (C = A ×B) has two input matrices and thus two memory access patterns: MAP
MMA and MAP MMB. For MAP MMA, each work-item accesses a whole row of elements
indexed by its row index4 (see Figure 4.6a). At the work-group level, neighbouring work-
items will access the same data element at a time. When using inter-vdt, the number of
work-items is reduced VL times (Figure 4.6b), and each work-item will access the same
element for VL times, leading to register data sharing. Therefore, we can achieve linear
bandwidth improvements on all the selected devices, as shown in Figure 4.7a.

For MAP MMB, each work-item loads a whole column of data elements indexed by
its column index (see Figure 4.6c). At the work-group level, neighbouring work-items
will access spatially close data elements at a time. When using inter-vdt, the number
of work-items is also reduced VL times (Figure 4.6d). Each work-item will access VL
columns of data elements, and the distance with its neighbouring work-items is VL,
rather than 1. This leads to un-coalesced memory accesses on C1060 and K20 and the
observed bandwidth decreases (shown in Figure 4.7b). However, the bandwidth shows
no changes with VDTs on HD7970. On E5-2620 and Phi-5110P, the bandwidth increases
with VL. Figure 4.6c shows each work-item accesses data elements in the column-major
manner while data is stored in the row-major manner. When requesting data from mem-
ory space, a cache-line of data elements are serviced. Typically, the cache-line size is 64
bytes, i.e., 16 single-precision data elements. Thus, using a longer vector can use more
data elements in a cache-line and brings us a larger memory bandwidth. To conclude
on Figure 4.7b, GPUs prefer V L = 1 while the vector-core processors perform better with
longer vectors.

As we can see from Figures 4.4a, 4.7a, and 4.7b, the overall performance shows sim-
ilar trends with the bandwidth of Matrix B. Thus, the overall performance of MM is lim-
ited by accessing this matrix.

4.4.2. IMAGE CONVOLUTION
The memory access pattern of Image Convolution is shown in Figure 4.8a. Each work-
item reads a block (2×2) of data elements from the input data. At the work-group level,
neighbouring work-items access spatially contiguous data elements. When using inter-
vdt, the data block used by a work-item is expanded (e.g., a 2×3 data block when V L = 2).
In this way, using inter-vdt enhances data sharing [172]. Further, the distance between
neighbouring work-items is VL, not 1.

In Figure 4.7c, we can see that the bandwidth decreases over VL due to the un-coalesced
memory access on C1060, K20, and HD7970. E5-2620 and Phi-5110P show similar trends:
the bandwidth is larger when using a wider vector. Thus, these two processors can ben-
efit from the data reuse enhancement from using inter-vdt. In particular, using f loat16
can achieve the largest bandwidth. Therefore, the optimal VL is not necessarily the ma-
chine vector length, because the performance gain is due to enhanced data sharing. We
can observe that the application presents similar trends between the overall execution
time and the bandwidth in Figure 4.4b and Figure 4.7c. Therefore, the performance of
Image Convolution is limited by the memory access.

4The row index of a work-item is its index in the second dimension and the column index of a work-item is its
index in the first dimension.

4.4. INTER-VDT PERFORMANCE IMPACT ON MACRO-BENCHMARKS

4

59

(a) MMA w/o vdt (b) MMA w/ vdt

(c) MMB w/o vdt (d) MMB w/ vdt

Figure 4.6: MAP MMA and MMB (VL=2)

4.4.3. BLACK SCHOLES

Figure 4.9a shows the memory access pattern presented in Black Scholes. We see that
each work-item reads one element from the input data, and writes the results back when
finishing computation. At the work-group level, neighbouring work-items access physi-
cally close elements (V L = 1) at a time. When using inter-vdt, each work-item will access
VL physically contiguous data elements (V L = 2 in Figure 4.9b); the distance between
neighbouring work-items becomes VL, i.e., non-coalesced memory accesses. This pat-
tern is the same as the one in bandwidth, and the results have already been seen in
Figure 4.1b.

The overall performance (Figure 4.4c) presents a totally different trend with that of
memory bandwidth (Figure 4.1b). This is because the overall performance of Black
Scholes is limited by computation, rather than memory accesses. Due to better uti-
lization of the SIMD units, we expect improved performance on vector-core processors
which can be confirmed in Figure 4.4c. However, due to the overhead of using VDTs, the
NVIDIA GPUs and the AMD GPU see a performance drop.

4.4.4. SOR
The memory access pattern of SOR is shown in Figure 4.10a. Each work-item will ac-
cess its four neighbours (left, right, top, bottom). Neighbouring work-items access spa-
tially close data elements at a time. When using VDTs, the data elements accessed by
one work-item become VL times as many as before (the 8 data elements shaded in Fig-
ure 4.10b for V L = 2). Again, the access distance between neighbouring work-items is
VL.

In Figure 4.7d, the performance shows a similar trend with the other kernels on
C1060, K20, and HD7970, i.e., the bandwidth decreases over VL. On the vector-core pro-

4

60 4. EVALUATING VECTOR DATA TYPE USAGE

 1

 2

 4

 8

 16

C1060
K20 HD7970

E5-2620
Phi-5110P

N
o

rm
a

li
z
e

d
 B

a
n

d
w

id
th

Devices

vec2

vec4

vec8

vec16

cav

(a) MMA Bandwidth.

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

C1060
K20 HD7970

E5-2620
Phi-5110P

N
o

rm
a

li
z
e

d
 B

a
n

d
w

id
th

Devices

vec2

vec4

vec8

vec16

cav

(b) MMB Bandwidth.

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

C1060
K20 HD7970

E5-2620
Phi-5110P

N
o

rm
a

li
z
e

d
 B

a
n

d
w

id
th

Devices

vec2

vec4

vec8

vec16

cav

(c) IC Bandwidth.

 0.125

 0.25

 0.5

 1

 2

 4

C1060
K20 HD7970

E5-2620
Phi-5110P

N
o

rm
a

li
z
e

d
 B

a
n

d
w

id
th

Devices

vec2

vec4

vec8

vec16

cav

(d) SOR Bandwidth.

Figure 4.7: Bandwidth comparison with VDTs.

(a) w/o VDT (b) w/ VDT

Figure 4.8: IC MAP changes (VL=2).

(a) w/o VDT (b) w/ VDT

Figure 4.9: BS MAP changes (VL=2)

4.4. INTER-VDT PERFORMANCE IMPACT ON MACRO-BENCHMARKS

4

61

(a) w/o VDT (b) w/ VDT

Figure 4.10: SOR MAP changes (VL=2)

cessors (E5-2620 and Phi-5110P), the bandwidth gain is smaller than that of IC, because
there is little data reuse with inter-vdt. The overall performance (Figure 4.4d) shows sim-
ilar performance trends with that of the bandwidth (Figure 4.7d). Therefore, the perfor-
mance of SOR is limited by memory accesses.

4.4.5. LESSONS LEARNED
To summarize, using inter-vdt leads to significant changes in the memory access pat-
terns, and thus impacts the bandwidth. These effects are represented in Table 4.3. Over-
all, we see that using VDTs indeed changes bandwidth which varies with processors and
MAPs. Specifically, all the selected devices can benefit from using inter-vdt on MAP
MMA, due to register data reuse. For the other MAPs, using inter-vdt brings a bandwidth
decrease on GPUs (C1060, K20, and HD7970), because of the un-coalesced memory ac-
cesses introduced by this vectorization. For MAP MMB and MAP IC, using larger vector
length on vector-core processors gives a larger bandwidth due to better cache utilization.
Furthermore, we have found that the optimal VL is not necessarily equal to the machine
vector length, but it depends on the memory access patterns. In other words, using the
machine vector length might produce a sub-optimal performance.

Table 4.3: Bandwidth changes from using VDTs
(↗: increase, ↘: decrease,�: similar, : the bandwidth change depends on the vector length).

MMA MMB IC BS SOR

scalar-core
C1060 ↗ ↘ ↘ ↘ ↘

K20 ↗ ↘ ↘ ↘
HD7970 ↗ � ↘ ↘ ↘

vector-core
E5-2620 ↗ ↗ ↗ �

Phi-5110P ↗ ↗ ↗ �

In Figure 4.4, we see that cav can achieve similar performance to that of explicitly us-
ing VDTs. This observation shows the compiler-aided vectorization is a good candidate
for explicit vectorization in terms of performance. Among the four kernels, only BS is
compute-bound. Its overall performance trend (Figure 4.4c) roughly matches the data
derived from the rules in Figure 4.3. Therefore, given an OpenCL kernel, we can analyze
its performance effects of using VDTs from memory access (Table 4.3) and computation
(Figure 4.3).

4

62 4. EVALUATING VECTOR DATA TYPE USAGE

4.5. INTRA-VDT PERFORMANCE IMPACT ON MACRO-BENCHMARKS
For kernels (MM and IC) with loops, we can use intra-vdt by unrolling the loops and then
using vector data types. According to the vector length, we need to unroll loops for VL
times (V L ∈ {2,4,8,16}). Figure 4.11 shows the normalized performance with VDTs on
MM and IC. Since the compiler-aided vectorization (cav) is different from intra-vdt, we
do not compare the results with cav. Instead, we only show the performance of different
vectorized versions.

 0.5

 1

 2

 4

C1060
K20 HD7970

E5-2620
Phi-5110P

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

Devices

vec2

vec4

vec8

vec16

(a) MM

 0.5

 1

 2

 4

 8

C1060
K20 HD7970

E5-2620
Phi-5110P

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

Devices

vec2

vec4

vec8

vec16

(b) IC

Figure 4.11: Normalized performance for the macro-benchmarks: MM and IC.

Scalar-core processors see a slight change in performance from using vector data
types (Figure 4.11). Specifically, using vector types on scalar-cores leads to an upto 20%
performance drop for MM, while the performance changes for IC vary over devices. More-
over, we see that the vectorized MM runs faster on Phi-5110P and the vectorized IC runs
faster on both E5-2620 and Phi-5110P. Different from inter-vdt, intra-vdt does not change
the memory access patterns. Thus, the bandwidth should be similar before and after us-
ing intra-vdt. The computation part is able to use the SIMD cores with intra-vdt. Thus,
the computation-intensive kernels will be accelerated.

4.6. PERFORMANCE PORTABILITY DISCUSSION
For the optimal performance of a kernel, we need a specialized VDT version and decide
(1) whether or not to use VDTs, and (2) to select a right V L. This will lead to a large
number of code variants, and inevitably challenges performance portability. To attempt
to achieve portable performance, we propose the following two solutions.

The first is to use parametric code when developing applications. This parametric
code can be obtained by using a vector template, and it is specialized into a code vari-
ant suitable for the target platform during compiling time. We do not have to specify the
template content until we know the details of the target platform. This solution has been
demonstrated in Listing 4.6 and Listing 4.7. We have used a vector template (floatn) in
the kernel code. Once we know the target architecture is Phi-5110P, for example, we spec-
ify floatn as float16 (note that the vector register on Phi-5110P is of 512-bits). In this

4.7. RELATED WORK

4

63

way, we can customize the kernel code based on the underlying architecture. However,
this solution needs manual manipulation of vectors.

Second, we recommend programmers to start by using scalar data types in OpenCL.
Then, for scalar-core processors, there should be no performance loss; for vector-core
processors, the compiler will attempt to pack the work-items so as to fully utilize the
SIMD cores. As programmers have already indicated parallelism by writing an explic-
itly parallel program (in OpenCL), it is easier for the compiler to perform vectorization
(i.e., mapping parallel tasks to SIMD hardware) than doing the traditional vectorization.
In case auto-vectorization fails, or when using AMD’s or ARM’s compilers, which cur-
rently have no implicit vectorization module, programmers should manually use vec-
tor data types. As soon as all OpenCL implementations will support auto-vectorization
(if ever), our evaluation needs to be performed for these versions as well. Once these
auto-vectorization modules become efficient enough, the vector data types will become
‘redundant’ and could be deprecated from the OpenCL specification. In a nutshell, this
solution relies on the cav module.

4.7. RELATED WORK
Using vector data types is a high-level vectorization approach that relies on compilers
to map the high-level vectors to the underlying hardware. In this section, we give a
brief overview of vectorization, and we discuss related work on auto-vectorization for
OpenCL, thread-coarsening, and memory access patterns.

Vectorization is a well-studied topic. With the advent of vector computers, there
has been an increased interest in making vector operations available. In [3], Allen and
Kennedy present a translator to transform programs from FORTRAN to FORTRAN 8x.
In [26], the authors describe a research project that automatically optimizes multime-
dia programs by exploring loop level parallelism for the SUN VIS instruction set. They
employ a two-phase source-to-source optimization strategy. Since the year of 2000,
multimedia extensions have been adopted by most major computer vendors such as
MMX/SSE/AVX for Intel processors, 3DNow! for AMD processors, VIS for SUN SPARC,
AltiVec/VSX for POWER, NEON for ARM. These processing units can be characterized as
SIMD processors operating on packed fixed-length vectors. Programmers can use in-line
assembly code, intrinsic functions, or library routines to exploit these extensions [131].
The individual vectorization issues such as addresses alignment, mixed data types, and
multiple scopes for extracting parallelism have been addressed in [38, 87, 170, 171]. Gen-
erating code for vector hardware heavily relies on target-specific manual optimizations,
which lack portability. This is a painful deficiency in view of the diversity and constantly
evolving nature of vector architectures. To this end, Dorit Nuzman et al. have presented
a cross-platform vectorizer [110, 111]. The goal is to auto-vectorize once and run ev-
erywhere. In [63], the authors have proposed a retargetable SIMD code optimization
framework that is integrated into an industrial retargetable C compiler.

Despite all these efforts, only a few loops from real applications can be successfully
vectorized [94]. Auto-SIMD compilers rarely work when applied to real codes, mainly
because compilers fail to recognize a parallel loop out of a sequential program [127]. As
a solution, using a new language such as CUDA or OpenCL is promising due to its ex-
plicit specification of parallelism. Using such a language saves the effort of looking for

4

64 4. EVALUATING VECTOR DATA TYPE USAGE

vectorization candidates. Several studies use compiler-aided vectorization for OpenCL
kernels. For example, the Intel’s OpenCL compiler has an implicit vectorization mod-
ule based on LLVM IR [69]. This module has a sequence of LLVM transformations and
analysis passes, and generates code for multiple Intel devices. In particular, it widens
a single element into a vector of elements using a ‘packetizer’. In [79], Karrenberg and
Hack present a language- and platform-independent code transformation that performs
whole-function vectorization for data parallel programs. The output code can utilize the
intra-core parallelism provided by the SIMD instruction set. However, developing a vec-
torizing module is not the main focus of this work. Instead, we aim to compare the per-
formance of implicit vectorization with that of explicit vectorization (i.e., using VDTs).
Therefore, we must evaluate the contribution of the automatic vectorization module
such as these discussed in [69, 79] for performance portability.

Thread-coarsening is an optimization technique that increases the per-thread task
granularity. In [92], Alberto Magni et al. evaluate the thread-coarsening effects across
a range of devices using a source-to-source OpenCL compiler based on LLVM. They
also use statistical regression to analyse and explain program performance in terms of
hardware-based performance counters. In [172], Yi Yang et al. use such a technique to
exploit data sharing between threads. This optimization technique is used in our work,
but it serves a different purpose, i.e., merging threads to use vector data types (inter-
vdt). In our case, the coarsening factors are the vector lengths provided by the OpenCL
specification.

Previous work on memory access patterns (MAPs) is also relevant to this work. MAPs
have been explored to maximize data locality for the traditional single-core processors.
The classical approaches are either based on array restructuring [90], or based on loop
transformation [168]. Recently, these approaches have been extended to support many-
core architectures [72], [25]. In our work, we analyze the MAP changes brought by using
vector data types to give an in-depth analysis of the performance effects with VDTs.

To summarize, OpenCL introduces vector data types so that programmers can ma-
nipulate vectors like intrinsics, but at a higher level. In this chapter, we investigate how
OpenCL and its VDTs deal with vectorization on different processors. To the best of our
knowledge, this is the first work that systematically studies the usage of vector data types
and vectorization in OpenCL.

4.8. SUMMARY
OpenCL has existed since late 2008. However, the usage of vector data types has not
been investigated in the context of performance and portability. In this work, we pro-
pose two orthogonal approaches to use vector data types (inter-vdt and intra-vdt) and
we apply them on scalar kernels (Q1). After getting the vectorized code, we first inves-
tigate the execution model of vector data types by using two micro-benchmarks (Q2).
Further, with macro-benchmarks, we analyze the performance changes that occur when
using vector data types, from the perspective of memory access patterns (Q3). We found
that (1) scalar-core processors run VDTs in a different and unexpected way than vector-
core processors, (2) using VDTs changes the memory access patterns and memory band-
width, (3) the performance effects depend on the compilers-aided vectorization (e.g., In-
tel compiler performs at least as good as explicitly using VDTs on Intel processors), and

4.8. SUMMARY

4

65

(4) inter-vdt brings a larger performance change than intra-vdt. Based on the lessons
learned, we discuss how to improve performance portability with two potential solu-
tions (Q4).

In the future, we would like to investigate cav modules systematically. In the long
run, we plan to implement a generic cav module on vector-cores.

5
QUANTIFYING THE PERFORMANCE

IMPACTS OF USING LOCAL

MEMORY

Modern multi/many-core processors like GPUs use programmer-managed scratch-pad
memories (SPM). We have introduced the advantages of using SPMs in Chapter 1. In
Chapter 3, we have seen that properly using memory hierarchy and in particular, local
memory can lead to a performance boost. In this chapter, we investigate the perfor-
mance impact of local memory usage systematically.

OpenCL [151], recognizes SPMs under the name of local memory in its conceptual
device architecture 1. Eager to be part of the development and deployment of the com-
mon programming model for many-cores, many vendors have implemented OpenCL
and local memory on top of their hardware and software stacks. For example, NVIDIA
maps local memory onto the on-chip SPM, while the cache-only processors 2 such as
the multicore CPUs map it to the off-chip memory [61].

Due to architectural disparities and, in particular, the differences in implementing
local memory, programmers often use the trial-and-error approach to enable local mem-
ory and evaluate its efficiency: taking a naive kernel, they translate the code into an
“optimized” version that uses local memory and then measure its impact. This is a time-
consuming process, as programmers have to address, in their OpenCL code, challenges
like (1) geometry mismatches, (2) work-items masking and binding switches, and (3)
inefficient local memory organization [44]. Similarly, for architectures where using lo-
cal memory is not recommended, programming effort is often spent on removing the

This chapter is based on our work published in the Proceedings of MuCoCoS 2013 [40] and in Scientific Pro-
gramming [42].
1NVIDIA uses the term ‘shared memory’, while AMD calls it ‘local data store’. In this chapter, we use the

OpenCL name ‘local memory’ [151].
2Cache-only processors have on-chip caches but no SPMs.

67

5

68 5. QUANTIFYING THE PERFORMANCE IMPACTS OF USING LOCAL MEMORY

code related to local memory for improved performance. We argue that solving these
problems requires a lot of effort to be spent on non-computational and non-functional
details of kernels, which hinders productivity. Therefore, we propose a solution to quan-
tify the performance impact of using local memory before implementing it. Our analyzer
will help sparing a lot of useless programming effort.

Despite common belief [4, 70, 118], the impact of local memory usage on perfor-
mance is not easy to determine. For example, data reuse is a commonly recognized
source of performance gains of using local memory [58, 71, 95, 134]. However, data reuse
and local memory are not always correlated: data reuse does not automatically lead to
a higher local memory efficiency (Section 5.1.1), nor does the lack of data reuse mean
lack of performance improvement (Section 5.1.2). Furthermore, in the case of CPUs, the
off-chip placement of the local memory makes programmers choose not to use it [70],
but properly using it can lead to performance improvement (Section 5.1.3).

In this chapter, we address the issue of performance unpredictability when using local
memory in a two-stage approach: quantification and composition. For quantification,
we develop a benchmark-based approach to quantify the performance impacts of using
local memory for 33 memory access patterns (MAPs) in isolation. For each MAP, we gen-
erate two types of benchmarks: with and without using local memory. We empirically
evaluate these benchmarks on typically used platforms, and record the achieved perfor-
mance in a performance database. In practice, we can obtain the performance benefits
of using local memory for a single MAP by querying the database. For composition, we
present a set of rules (empirically validated) to determine whether to use local memory
or not in the presence of multiple MAPs. The database plus the composing rules will
produce an indicator of whether to use local memory for a given application. We name
the approach, including the code generator and validator, Aristotle 3.

To summarize, we make the following contributions:

• We formalize the benchmark design space and develop a code generator which
helps applying our approach on any OpenCL-compliant platform.

• We evaluate the performance impacts of using local memory on a broad category
of processors and generate a comprehensive and representative database.

• We design and validate a set of composing rules to determine whether to use local
memory in the presence of multiple MAPs.

The chapter is organized as follows: We list three counter-intuitive observations of
using local memory in Section 5.1. Our approach is presented in Section 5.2. We extend
a mathematical model to describe memory access patterns and derive a set of MAPs in
Section 5.3. We explore the design space of using local memory and produce bench-
marks using a code generator in Section 5.4. We generate a performance database by
running the microbenchmarks on seven typically used platforms in Section 5.5. In Sec-
tion 5.6 and Section 5.7, we propose and validate a set of composing rules in the presence
of multiple MAPs. We present related work in Section 5.8 and we summarize our findings
in Section 5.9.

3Aristotle was named after the muppet Aristotle (a blind monster who can make sandwiches) in the American
TV series Sesame Street. Likewise, we have ELMO in Chapter 6 and Grover in Chapter 7.

5.1. THREE OBSERVATIONS AS MOTIVATION

5

69

5.1. THREE OBSERVATIONS AS MOTIVATION

Our work is based on the observation that local memory, although perceived as a guar-
antee of performance gain, does not always behave as such. In this section, we give a
more detailed analysis of three types of such behaviors/observations.

5.1.1. DATA REUSE 6= PERFORMANCE IMPROVEMENT

The occurrence of data reuse is a widely used criterion of moving data from global mem-
ory to local memory. However, this statement does not always hold. Table 5.1 shows
the memory bandwidth when running NBody [115] on NVIDIA GTX580. We see that
although the input data elements are shared by all the threads for NBody, using local
memory performs worse than not using it (by around 20%). The performance loss is
due to the fact that GTX580 has caches (L1 and L2) that make better use of data sharing
than the local memory. Specifically, local memory enables data sharing among work-
items within one work-group, while the L1 cache can identify the data sharing within
one work-group, and the L2 cache will enable global data sharing on the input data (i.e.,
among work-groups as well). Additionally, using local memory introduces extra over-
heads for data movement operations in and out of local memory. Therefore, the caches
may “cancel” the performance gains of using local memory.

Table 5.1: Memory bandwidth (GB/s) of NBody where the local memory is allocated dynamically (LMw/o
represents the naive kernel, and LMw/i represents the kernel using local memory. We use five datasets each

with a different matrix/input size).

64x64 128x128 256x256 512x512 1024x1024
LMw/o 613.50 636.43 646.06 616.42 589.95
LMw/i 512.44 495.28 516.04 518.61 520.64
Loss(%) 16.47 22.18 20.13 15.87 11.75

5.1.2. NO DATA REUSE 6= PERFORMANCE LOSS

Let us consider data movements between local memory and global memory. Suppose we
have N compute units and the bandwidth of local memory access is Wl . An application
requires D data elements to be moved when using global memory only (with a band-
width of Wg), and D

′
data elements to be moved from global memory to local memory

(with a bandwidth of W
′
g). We compute the time of data movement without (Tw/o) in

Equation 5.1 and with local memory (Tw/i) in Equation 5.2. We see that performance
improvement of using local memory comes from two factors: either the decrease of data
amount (D

′ < D), and/or the increase of global memory bandwidth (W
′
g > Wg). Thus,

considering data reuse as a must for local memory performance gain is incorrect and
will lead to missed opportunities for local memory usage. Taking a straightforward ap-
proach for a Matrix Transpose on GPUs for example, the implementation will violate the
coalescing constraints on the global memory access. Using local memory, we can ensure
coalescing for both input and output memory access, and thus improve the bandwidth.

5

70 5. QUANTIFYING THE PERFORMANCE IMPACTS OF USING LOCAL MEMORY

Tw/o = D

Wg
(5.1)

Tw/i =

D

Wl
+ D

′

W
′
g

N = 1

max
(D

Wl
, D

′

W
′
g

)= D
′

W
′
g

N > 1
(5.2)

5.1.3. LOCAL MEMORY USE ON CPUS 6= PERFORMANCE LOSS
At the moment of writing, local memory is allocated within the main memory space of
the CPUs (global memory in OpenCL). Thus, it is not recommended to use local memory
on CPUs [70]. However, we have found that this does not always hold. Table 5.2 shows
the memory bandwidth of a convolution kernel on Intel Xeon E5620 (a dual-socket 4-
core processor). We see that using local memory delivers better performance than not
using it (around 2× faster). Using local memory on CPUs introduces extra overheads, but
it also changes the usage of caches and allows compilers to do specific optimizations for
data placed by the users in local memory.

Table 5.2: Memory bandwidth (GB/s) of convolution with and without local memory for six datasets.

64x64 128x128 256x256 512x512 1024x1024 2048x2048
LMw/o 6.81 7.77 7.81 8.06 8.13 8.15
LMw/i 12.23 13.81 14.08 14.56 14.70 14.56
Speedup 1.80 1.78 1.80 1.80 1.81 1.79

To summarize, these three counter-intuitive observations show that using local mem-
ory makes it difficult to predict the performance gain, thus leading to performance un-
predictability. Further, our analysis indicates that the unpredictability results from the
diversity of architectures/processors and applications.

5.2. THE DESIGN OF ARISTOTLE
Based on all these observations (Section 5.1), we believe that a better understanding of
the cases when local memory is useful, and better quantifying its usefulness are equally
required. Thus, we propose a hybrid approach to tackle this issue: use MAP modelling to
generate microbenchmarks, and use traditional performance measurement to quantify
local memory usefulness.

Figure 5.1 shows the Aristotle framework. For all memory access patterns, we gener-
ate 2 benchmark kernels: one without local memory, and the other one with local mem-
ory. Then we evaluate the benchmarks on typically used many-core processors and gen-
erate a performance database. Given a kernel, we identify the MAPs embedded in it
and use the composing rules to generate a performing list of whether or not to use local
memory on each MAP.

Note that our benchmarks start with memory access patterns (MAPs), which we con-
sider to be models of the input kernels. Our goal is to evaluate the benchmarks empiri-
cally, giving accurate information on the benefit of using local memory. Thus, given an

5.3. MAP DESCRIPTION

5

71

Figure 5.1: Aristotle overview.

application MAP and a platform, a simple query in our database can show how using
local memory impacts the application performance. Furthermore, the memory access
patterns can be manually identified from input kernels [72], or automatically abstracted
during run-time [122], and are, for now, outside the scope of this work.

5.3. MAP DESCRIPTION
We express a MAP as a memory access sequence, which allows us to represent discrete
memory references and loops. Our approach is based on the notation in [72, 90]. We
make use of a similar notation, which enables us to study memory access patterns sys-
tematically. To keep the number of analyzed MAPs under control, we rewrite the for-
mulation such that we clearly separate the inter-thread and intra-thread parallelism.
Specifically, we assume a 2D thread configuration (tx , ty), for which we investigate the
resulting inter-thread access patterns, and five different intra-thread access patterns, to
match the most important MAPs found in real-life applications. Using these limitations,
we are able to fully analyze a set of MAPs that are intuitive and cover a large set of real-life
applications.

5.3.1. THE NOTATION

According to [72], a memory access sequence~s can be expressed as a combination of a
memory access matrix, M, an iteration vector,~i , and an offset vector,~o. The dependency
is presented in Equation 5.3. Note that this notation is applicable to loop nests of arbi-
trary depth, and depending on the mapping of these iterations onto the thread space,
the memory access matrix will cover both the inter- and intra-thread memory access
patterns.

~s = M~i +~o, (5.3)

5

72 5. QUANTIFYING THE PERFORMANCE IMPACTS OF USING LOCAL MEMORY

[
0 0
0 0

][
ty

tx

]
(01)

[
0 0
0 1

][
ty

tx

]
(02)

[
0 0
1 0

][
ty

tx

]
(03)

[
0 1
0 0

][
ty

tx

]
(04)[

1 0
0 0

][
ty

tx

]
(05)

[
0 0
1 1

][
ty

tx

]
(06)

[
0 1
0 1

][
ty

tx

]
(07)

[
1 0
0 1

][
ty

tx

]
(08)[

1 0
1 0

][
ty

tx

]
(09)

[
0 1
1 0

][
ty

tx

]
(10)

[
1 1
0 0

][
ty

tx

]
(11)

[
1 1
1 0

][
ty

tx

]
(12)[

1 1
0 1

][
ty

tx

]
(13)

[
1 0
1 1

][
ty

tx

]
(14)

[
0 1
1 1

][
ty

tx

]
(15)

[
1 1
1 1

][
ty

tx

]
(16)

Figure 5.2: eMAP cases (numbered 01 to 16).

~s =−−−−−→
eM AP +−−−−→

i M AP = M
−−→
t i d +−−−−→

i M AP , (5.4)

We have adapted this notation to express our specific range of MAPs - see Equa-
tion 5.4. In this new notation, we have clearly separated the inter-thread (~eM AP) and
intra-thread (~i M AP) components. Intuitively, eMAP generates a base access index for
each thread, while iMAP provides an offset which represents the distance from the base
address. We focus on 2D thread organization: M becomes a 2×2 mapping matrix of the
threads (~t i d) to the data. The ~i M AP component is a vector representation of the intra-
thread access pattern. We further rewrite Equation 5.4 to Equation 5.5, and we use this
form to exhaustively generate our benchmarks.

~s =
[

M00 M01

M10 M11

][
ty

tx

]
+

[
i M AP0

i M AP1

]
(5.5)

5.3.2. EMAP
When M00, M01, M10, M11 ∈ {0,1}, we generate 16 cases of eMAP (shown in Figure 5.2). As
we have mentioned, eMAP encodes the base index of the memory references for each
thread. For example, Figure 5.3 shows the base index of eMAP-14 for each thread. We
assume a 8×8 workgroup, and a dataset of (at least) 15×8; for simplicity, in this example,

we consider ~i M AP =
[

0
0

]
. In this case, consecutive work-items in the x dimension will

access contiguous data elements in the horizontal direction; consecutive work-items in
the y dimension will access the elements on the diagonal line. Thus, the base index of
each thread is located within the shaded area (Figure 5.3a).

When M00, M01, M10, M11 ∉ {0,1}, the eMAPs become more complex. When M00 = 2,
we see (Figure 5.3b) ‘gaps’ between rows due to the larger stride, compared with eMAP-
14. We can imagine that any non-unit stride will introduce such ‘gaps’. For now, our
work only considers [0,1] cases (Figure 5.2). We believe the extension to larger strides

5.3. MAP DESCRIPTION

5

73

(a) (b)

Figure 5.3: Base index example: (a) eMAP-14: the shaded elements are the ones accessed by the whole 8×8
workgroup; the arrows indicate (some of) the one-to-one relations between threads and data items; (b) the

base index in the data structure when M00 = 2 (only show the first four rows).

will not bring changes to our methodology. However, it will lead to cases very rarely seen
in real-life applications and a large increase in the experimentation time.

5.3.3. IMAP
iMAP captures the memory access patterns of a single thread, i.e., the way one thread
accesses data elements. We have identified five typical iMAPs from real-life applica-
tions [44]) - namely, Single, Row, Column, Block, and Neighbor - and briefly describe
them (Figure 5.4):

• Single (1): each thread accesses one data element indexed by its base index.

• Row (2): each thread references a row of data elements within the row indexed by
its base.

• Column (3): each thread accesses a column of data elements within the column
indexed by its base index.

• Block (4): each thread accesses a block of data elements within the block centered
at the base index and sized ((2Rx +1)× (2Ry +1)).

• Neighbor (5): each thread accesses the data elements lying at the base index and
its four (or more) neighbors.

Figure 5.4: iMAPs.

The iMAP representations are listed as follows, where W and H represent the width
and height of the input matrix, respectively; (Rx ,Ry) is the radius of a block.

5

74 5. QUANTIFYING THE PERFORMANCE IMPACTS OF USING LOCAL MEMORY

Si ng le : i M AP = {[
0
0

]}

Row : i M AP = {[
0
i

]
| 0 ≤ i <W, i ∈ N

}
Column : i M AP = {[

j
0

]
| 0 ≤ j < H , j ∈ N

}
Bl ock : i M AP = {[

j
i

]
| −Rx ≤ i ≤ Rx , i ∈ N ; −Ry ≤ j ≤ Ry , j ∈ N

}
Nei g hbor : i M AP = {[−1

0

]
,

[
0
−1

]
,

[
0
0

]
,

[
0
1

]
,

[
1
0

]}

5.3.4. MAP = EMAP+IMAP
Once eMAP and iMAP are specified, we get 80 (16×5) memory access patterns (MAPs),
and hence need to generate and evaluate 80 microbenchmarks. The name of each MAP
is a concatenation of the iMAP and eMAP numbers. For example, MAP-407 is a combi-
nation of iMAP-4 (Block) and eMAP-07. In the remainder of this chapter, we also group
MAPs by their iMAP name, having Single MAPs (the MAPs that have the “Single” iMAP),
and similarly Row MAPs, Column MAPs, Block MAPs and Neighbor MAPs.

When analyzing our 80 MAPs, we find that some combinations of eMAP and iMAP
are either underspecified (resulting in non-interesting cases) or overspecified (resulting
in contradictory definitions). Take for example MAP-101, in which each thread should
access one element (according to the iMAP), but due to the eMAP (01), all threads end up
accessing the same element (i.e., the (0,0) element from the dataset), an uninteresting
case - i.e., an underspecified MAP. MAP-206 is also underspecified: all threads end up
accessing the same row (i.e., row 0 from the dataset). On the other hand, MAP-216 is an
overspecified MAP, as the eMAP and iMAP specify contradictory rules for accessing the
same elements.

We generalize the classes of compatible eMAPs for each iMAP as follows:

• Single: M should have at least one ‘1’ per row.

• Row: M should have no ‘1’ on the bottom row, and at least one ‘1’ on the top row.

• Column: M should have no ‘1’ on the top row, and at least one ‘1’ on the bottom
row.

• Block: similar to (1).

• Neighbor: similar to (1).

After removing the under/overspecified MAPs, only 33 MAPs remain valid, and are
listed in Table 5.3. Note that we do not take the random memory access into account
since we assume that local memory is mainly suitable for applications with specific mem-
ory access patterns.

We note that this approach is, so far, application-agnostic. In other words, we at-
tempt to generate all possible MAPs for our representation and evaluate their local mem-
ory impacts. Thus, our database is generic and fully reusable by any application.

5.4. DESIGN SPACE EXPLORATION AND CODE GENERATION

5

75

Table 5.3: The memory access patterns (‘–’ represents an impossible MAP - either under or overspecified).

Single (1) Row (2) Column (3) Block (4) Neighbor (5)
01 – – – – –
02 – – 302 – –
03 – – 303 – –
04 – 204 – – –
05 – 205 – – –
06 – – 306 – –
07 107 – – 407 507
08 108 – – 408 508
09 109 – – 409 509
10 110 – – 410 510
11 – 211 – – –
12 112 – – 412 512
13 113 – – 413 513
14 114 – – 414 514
15 115 – – 415 515
16 116 – – 416 516

5.4. DESIGN SPACE EXPLORATION AND CODE GENERATION

5.4.1. EXPLORING DESIGN SPACE
When generating benchmarks (for a MAP) with local memory, we need to consider the
issues of local space allocation, local data staging, and local memory access.

LOCAL SPACE ALLOCATION

Regarding the size of local space, we propose two approaches: the min-approach and
the max-approach [40]. The min-approach allocates a right-sized space of local mem-
ory to hold the necessary data elements with none or very few wasted cells, while the
max-approach allocates a large enough space according to the shape of a work-group.
We demonstrate how these two approaches work for MAP-407 in Figure 5.5, where Rx =
Ry = 1 and thus each thread needs a 3× 3 data block. Using the min-approach con-
sumes less local memory (Figure 5.5b), and may enable more work-groups to be active.
Nevertheless, when using the min-approach, programmers need to perform work-item
binding and data element shuffling according to specific memory access patterns. By
comparison, the max-approach is easier for implementation (e.g., from a script). In this
work, we implement both the max-approach and the min-approach, and we compare
their performance in Section 5.5.3. Because we know the size of local space in advance,
we use the static allocation approach (i.e., allocating local memory in the kernel).

When using the max-approach, we calculate the size of local space as follows. Each
MAP has two parts– eMAP and iMAP, and the size of local space Range is determined by
these two factors. The eMAP part specifies the Base (the area outlined by the dashed-
line rectangle shown in Figure 5.5c) and the iMAP part specifies the Border. Suppose
the Base is of size w ×h, and w , h is calculated as follows (W Gx ×W Gy represents work-
group size):

5

76 5. QUANTIFYING THE PERFORMANCE IMPACTS OF USING LOCAL MEMORY

(a) (b) (c)

Figure 5.5: Two approaches to hold data elements using local memory for MAP-407: (a) data elements in
global memory space for a work-group of 8×8 (only the shaded cells need to be transferred into local

memory), (b) data elements in local memory space using the min-approach (occupying 50 local memory
cells), (c) data elements in local memory space using the max-approach (occupying 100 local memory cells).

w =
{

W Gx (M00 ⊕M01 = 1)
2×W Gx (M00 ∧M01 = 1)

h =
{

W Gy (M10 ⊕M11 = 1)
2×W Gy (M10 ∧M11 = 1)

We can then calculate the Range covered by a work-group as (w+2×Rx)×(h+2×Ry).
Furthermore, the use of the min-approach depends on the MAPs and thus it is a MAP-
dependent optimization.

LOCAL DATA STAGING

After allocating the required local memory, we need to stage data in the local space spec-
ified by the Range. Note that this process is independent of how data is used (to be men-
tioned in Section 5.4.1), which provides a large degree of freedom to optimize the data
staging process. In [44], we have proposed the FCTH (i.e., loading the base data first, and
then the border data) and TBT (i.e., reading data in a tile-by-tile fashion) to stage the local
data and shown that FCTH gives us a better performance. Hence, in this work, we use the
FCTH approach.

LOCAL DATA ACCESS

Compared with accessing the data in global space, the key issue of accessing local data
is the index space conversion. Specifically, we need to use the local thread index
instead of global thread index while keeping the logic of using global memory. In ad-
dition, to ensure that the work-items within a work-group efficiently reference the data
elements in local space, we need to avoid bank conflicts, i.e., to force the access require-
ments from multiple work-items of a work-group fall into different banks. By using data
padding, we remove bank-conflicts from the generated microbenchmarks.

5.4. DESIGN SPACE EXPLORATION AND CODE GENERATION

5

77

5.4.2. CODE GENERATOR
Our code generator consists of two templates: host code and kernel code. The engine of
the host code creates a driver that allocates/deallocates global space, initializes the data
space, transfers data between the host and the device and launches kernels. It also has
a module of time keeping and results validation. With regard to the kernel code, each
microbenchmark of using local memory includes three major steps: statically allocate
local memory space, load data elements into local memory, and use them. We found
that different iMAPs differ in their code generators. Thus, we have developed a different
code generating engine based on the iMAPs. Figure 5.6 shows the kernel template for the
Block iMAP.

Taking MAP-407 (Figure 5.5) for example, we show the three steps in detail.
Step I: Allocating local memory (@lm Alc)
We use the approaches mentioned in Section 5.4.1 to calculate the local size and

allocate the local space. For MAP-407 (shown in Figure 5.5), the min-approach and max-
approach need different amounts of local space. The local space size is calculated as
(W G +2×R)×(4×R +1) for the min-approach and (W G +2×R)2 for the max-approach,
where W G is the work-group size (W Gx =W Gy =W G), R is the radius of the block (Rx =
Ry = R). In Figure 5.5, W G = 8 and R = 1. Thus, the min-approach needs 50 cells, while
the max-approach needs 100 cells. We have implemented the max-approach in the code
generator and we use the min-approach as a post-optimization step.

Step II: Loading data into local memory (@lmLoad)
When moving data elements from global memory to local memory, multiple passes

1 __kernel void CG(@type in[], @type out [], \
2 int cdim , int rdim){
3 int tgx = get_global_id (0);
4 int tgy = get_global_id (1);
5 int tlx = get_local_id (0);
6 int tly = get_local_id (1);
7 int wgx = get_group_id (0);
8 int wgy = get_group_id (1);
9 @bxy // Get the base index of a group

10 @lmAlc // Step 1: allocte local memory space
11 @varDec
12 // Step 2: load data from GM to LM
13 @lmLoad
14 barrier ();
15 // Step 3: use the data elements in LM
16 @lmUse
17 barrier ();
18 // output
19 out[tgy*cdim+tgx] = @lmOut ;
20 return ;
21 }

Figure 5.6: A code template to generate kernels in OpenCL (@t y pe represents the used data type, @bx y
represents the base data index for each group which is MAP-dependent, @l m Alc is the name-holder for local

space allocation, @var Dec declares temporal variables, @lmLoad is the name-holder of loading data into
local memory and @lmUse is that of how to use it, and @lmOut is the final returned results).

5

78 5. QUANTIFYING THE PERFORMANCE IMPACTS OF USING LOCAL MEMORY

are needed with FCTH [44]. When using the max-approach, we bind one thread to one
data element in the central shaded area (outlined by dashed square in Figure 5.5c). There-
after, we load the border data into the local space. Nevertheless, loading data with the
min-approach is more complicated. Apart from thread masking, we have to deal with
data shuffling to put the data elements in the right places and thus it is MAP-dependent.

Step III: Accessing local memory (@l mUse)

Using data elements in local memory is straightforward. The key is to find the cor-
respondence between the global data index and its local data index. For MAP-407, each
thread needs a block of data elements around its thread index (the light-shaded elements
in Figure 5.5b and 5.5c). Besides, we need to re-shuffle the access index when using the
min-approach.

By using our code generator, we obtain 66 microbenchmarks (33 using local memory
and 33 using global memory only) 4. Our experience shows that the technical difficulty
of designing the code generator is dealing with the aforementioned three steps. Given
that the use of the min-approach and bank-conflict removal varies from MAP to MAP,
we implement them as manual transformations applied after the automatic code gener-
ation.

5.5. PERFORMANCE DATABASE

5.5.1. PERFORMANCE METRIC

We use memory bandwidth as our performance metric. Suppose we have W ×H threads,
and each needs N data elements of type data type (N is determined by iMAP). We run
each kernel and measure the kernel execution time T . Then we calculate the bandwidth
as W ×H ×N × si ze(t y pe)/T . We measure the memory bandwidth for cases without (b)
and with local memory (B), use b as the reference, and calculate the memory bandwidth
ratio (mbr = B/b). If mbr > 1, using local memory is beneficial in terms of memory
bandwidth; otherwise, using local memory leads to a performance loss.

5.5.2. EXPERIMENTAL SETUP

We have run and compared the benchmarks on seven platforms, whose configurations
are shown in Table 7.2. When measuring memory bandwidth, we used six data sets (W ×
H in Section 5.3.3): 128×128, 256×256, 512×512, 1024×1024, 2048×2048, 4096×4096.
For the Block MAPs, we set the radius to be 3 (Rx = Ry = 3) and we expect memory band-
width to increase with a larger radius. For each measurement, we run 21 iterations (the
first iteration as a warm-up run). To avoid data reuse between iterations and cache in-
terference, we flush caches between iterations. Furthermore, we believe that the choice
of work-group sizes has an impact on the memory bandwidth. In this work, we set it to
be 16×16.

4The code generator is available: https://github.com/haibo031031/aristotle

https://github.com/haibo031031/aristotle

5.5. PERFORMANCE DATABASE

5

79

Table 5.4: Details of the used platforms.

Platform I Platform II Platform III platform IV
Host Intel Core i7 920 Intel Xeon E5620 Intel Xeon E5620 Intel Xeon E5620
Host OS UBUNTU v11.10 CentOS v6.2 CentOS v6.2 CentOS v6.2
Device NVIDIA Tesla C1060 NVIDIA Tesla C2050 NVIDIA Tesla K20m AMD HD7970
GCC v4.6.1 v4.4.6 v4.4.6 v4.4.6
OpenCL CUDA v5.5 CUDA v5.5 CUDA v5.5 AMD APP v2.8

Platform V Platform VI Platform VII
Host Intel Xeon E5-2620 Intel Xeon E5-2620 Intel Xeon X5650
Host OS CentOS v6.2 CentOS v6.2 CentOS v6.2
Device Intel Xeon Phi 5110P Intel Xeon E5-2620 Intel Xeon X5650
GCC v4.4.6 v4.4.6 v4.4.6
OpenCL Intel OCL SDK v3.0 Intel OCL SDK v3.0 Intel OCL SDK v3.0

 0

 5

 10

 15

 20

 25

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

m
b
r

data sets

max min

(a) C1060

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

m
b
r

data sets

max min

(b) C2050

 0

 2

 4

 6

 8

 10

 12

 14

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

m
b
r

data sets

max min

(c) K20m

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

m
b
r

data sets

max min

(d) HD7970

 0

 0.5

 1

 1.5

 2

 2.5

 3

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

m
b
r

data sets

max min

(e) Phi-5110P

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

m
b
r

data sets

max min

(f) E5-2620

 0

 0.5

 1

 1.5

 2

 2.5

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

m
b
r

data sets

max min

(g) X5650

Figure 5.7: Performance comparison of the max/min approaches.

5.5.3. PERFORMANCE OPTIMIZATION CONSIDERATIONS

THE MAX-/MIN- APPROACHES

For MAP-407, we compare the mbr of the max and min approaches on the seven plat-
forms in Figure 5.7. We see that the min-approach is not always performing better than
the max-approach. In fact, the min-approach can achieve much better performance
on C1060 and X5650, and it performs slightly better on K20m (up to 15%). On C2050,
HD7970, and E5-2620, the performance of the min-approach is slightly worse. We also
note that the bandwidth suffers around a 40% loss with the min-approach on Xeon Phi.
Thus, the overall performance can be significantly influenced by the way of using local
memory. When predicting performance, we need to take the design choice into account.

REMOVING BANK-CONFLICTS

We manually use the padding approach to remove bank-conflicts. Taking MAP-204 as
an example, we show the performance impacts of removing bank-conflicts in Figure 5.8.
We see that removing bank-conflicts on the GPUs (i.e., C1060, C2050, K20m, HD7970)

5

80 5. QUANTIFYING THE PERFORMANCE IMPACTS OF USING LOCAL MEMORY

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

m
b
r

data sets

BCRw/o BCRw/i

(a) C1060

 0

 5

 10

 15

 20

 25

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

m
b
r

data sets

BCRw/o BCRw/i

(b) C2050

 0

 5

 10

 15

 20

 25

 30

 35

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

m
b
r

data sets

BCRw/o BCRw/i

(c) K20m

 0

 1

 2

 3

 4

 5

 6

 7

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

m
b
r

data sets

BCRw/o BCRw/i

(d) HD7970

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

m
b
r

data sets

BCRw/o BCRw/i

(e) Phi-5110P

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

m
b
r

data sets

BCRw/o BCRw/i

(f) E5-2620

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

m
b
r

data sets

BCRw/o BCRw/i

(g) X5650

Figure 5.8: Performance comparison before and after removing bank-conflicts.

significantly increases the memory bandwidth (up to 7×), while the ‘optimization’ leads
to a performance decrease on the cache-only processors (i.e., Xeon Phi, E5-2620, and
X5650). Thus, we conclude that this optimization is specific for processors with a SPM.

5.5.4. PERFORMANCE DATABASE

DATABASE RECORD

After running the microbenchmarks, we obtain a performance database indexed by three
items (platform, map, dataset) shown in Figure 5.9. Once the index is specified, a query
in the database will return a database record. Each record consists of the memory band-
width without local memory (b), the memory bandwidth with local memory (B), and
their ratio (mbr).

Figure 5.9: The database dimensions and its record.

OBSERVATIONS

We run each experiment 21 times, and calculate the average value and the standard
derivation value. For demonstration simplicity, we show the b and B (the average and the
standard derivation number) of the performance database (available online5): the hori-

5PDB: https://github.com/haibo031031/aristotle/tree/master/pdb.

https://github.com/haibo031031/aristotle/tree/master/pdb

5.5. PERFORMANCE DATABASE

5

81

zontal axis represents the six data sets and the vertical axis represents bandwidth. Over-
all, we found that the performance benefits of using local memory are heavily dependent
on the size of the data sets. In most cases, the bandwidth increases over datasets. Only
in a few cases (e.g., the Column MAPs on E5-2620 and X5650), the bandwidth without
local memory decreases over datasets. Besides, we make the following observations for
each platform:

C1060 The GPU differs from other processors in that it has a scratch-pad memory, but
no caches. We see that using local memory on C1060 can achieve a memory bandwidth
increase for most memory access patterns (29 out of 33 MAPs). When looking into the
microbenchmarks, we found that there are two factors leading to the bandwidth increase
- data reuse and changes in global memory access orders. As we have mentioned in Sec-
tion 5.1, data reuse is a common indicator of using local memory. Taking the Single
MAPs for example (see Table 5.3), we can reuse data for MAPs-(107, 116). Using local
memory can also change the memory access order and reduce the number of mem-
ory transactions (thus increase the off-chip memory bandwidth). For the Single MAPs,
memory access orders of MAPs-(107, 110, 112, 113, 115) are changed when using local
memory. For MAP-108, performance is lost (mbr < 1) because no data reuse or changes
in memory access order appear. The performance loss results from the overhead of using
local memory. Although data reuse exists in MAP-109, the data request from the off-chip
memory can be serviced in a broadcast manner, and thus using local memory brings
no bandwidth improvement. Furthermore, all the Row MAPs, Column MAPs, and Block
MAPs can benefit from data reuse, and some of them can even achieve a bandwidth in-
crease due to the common effort of both data reuse and memory access changes.

C2050 and K20m They have not only scratch-pad memories but also caches. Similar
to C1060, using local memory on C2050 and K20m is highly beneficial in most cases. On
C2050 and K20m, the bandwidths follow the same trends with that on C1060, but the
changes are less significant: the older cache-less C1060 benefits much more from local
memory than the newer C2050 and K20m. This happens because the caches will alter
the performance benefits of the explicit usage of local memory. In some cases, hard-
ware caches are able to make use of the inherent data locality in the MAP without using
scratch-pad memory (see MAPs-116, 508, and 514). In other cases, with more compli-
cated locality patterns, explicit usage of local memory remains beneficial on C2050 and
K20m (see MAPs-204, 303, 410, etc).

HD7970 The processor also has both scratch-pad memories and caches. For most
MAPs, the performance benefits are less significant and the bandwidth varies a lot over
the data sets, which significantly differs from that on NVIDIA GPUs. We believe this is
because HD7970 has a different cache architecture and implementation compared to
C2050 and K20m.

Phi-5110P, E5-2620 and X5650 These processors only have caches on-chip, and im-
plement OpenCL local memory on global memory, in an emulation mode. Thus, using
local memory is equivalent to using the cached off-chip global memory and introduces

5

82 5. QUANTIFYING THE PERFORMANCE IMPACTS OF USING LOCAL MEMORY

Figure 5.10: Performance factors and MAPs distribution.

extra overheads (compared with using global memory directly), which might slow down
the execution. However, we get better performance for some MAPs (e.g., Column MAPs)
by using local memory (see Table 7.4). This is due to better caching when using a smaller
memory space. We also note that the bandwidth varies more significantly between runs
on E5-2620 and X5650 than on Phi-5110P and GPUs. Another interesting observation is
that using local memory preserves bandwidth on MAPs like MAP-302 while the band-
width drops over datasets on E5-2620 and X5650. We conclude that data reuse is a must
to obtain a bandwidth increase by using local memory on cache-only processors.

PERFORMANCE FACTORS ANALYSIS

As we have shown, two factors contribute to the memory bandwidth improvement: data
reuse (Factor A) and access order changes (Factor B). We analyze the MAPs and identify
the factors for each MAP in Figure 5.10. We see that 11 MAPs present the potentials of
reusing data, while 4 MAPs can benefit from the changes in memory access orders due
to the usage of local memory. Typically, data access orders can be changed when load-
ing data from global space to local space. Besides, there are 16 out of the 33 MAPs that
can use both of them. Data reuse can be a benefit source for both caches and scratch-
pad memories, whereas access order changes does not necessarily lead to a bandwidth
increase.

ARCHITECTURE-DEPENDENT ANALYSIS

We roughly divide the selected processors into three groups: the SPM-only processors,
the SPM-Cache processors, and the Cache-only processors. The SPM-only processors
(e.g., C1060) have a scratch-pad memory, but have no on-chip caches. Using local mem-
ory on such processors can benefit from either data reuse (i.e., less off-chip data move-
ments) or higher effective off-chip bandwidth (shown in Section 5.1.2). For C2050, K20m,
and HD7970, they have both scratch-pad memories and caches. Using local memory can
give a higher bandwidth (than without it) when the MAPs are cache-unfriendly. Other-
wise, adopting local memory leads to a performance decease due to the overheads.

The cache-only processors (Phi-5110P, E5-2620 and X5650) do not have a on-chip
scratch-pad memory and local memory is allocated on the global space. However, using
local memory can change data layouts (i.e., access orders) and thus can be seen as a
‘software’ optimization technique. By using local memory, the data elements are first
loaded into the local space and then accessed within the local space. In this way, we may
avoid ‘unnecessary’ cache-line replacements and have a better utilization of caches.

5.5. PERFORMANCE DATABASE

5

83

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

128
256

512
1024

2048
4096

#
(c

a
c
h

e
 r

e
p

la
c
e

m
e

n
ts

)

data sets

w/o w/i

(a) L1 cache replacement.

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

128
256

512
1024

2048
4096

#
(c

a
c
h

e
 r

e
p

la
c
e

m
e

n
ts

)

data sets

w/o w/i

(b) L2 cache replacement.

Figure 5.11: The number of cache replacements for MAP-302.

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

128
256

512
1024

2048
4096

#
(c

a
c
h

e
 r

e
p

la
c
e

m
e

n
ts

)

data sets

w/o w/i

(a) L1 cache replacement.

 1e+06

 1e+07

 1e+08

 1e+09

128
256

512
1024

2048
4096

#
(c

a
c
h

e
 r

e
p

la
c
e

m
e

n
ts

)

data sets

w/o w/i

(b) L2 cache replacement.

Figure 5.12: The number of cache replacements for MAP-204.

We measure the number of cache-line (L1 and L2) replacements for MAP-302 and
MAP-204 on E5-2620 (Figure 5.11 and Figure 5.12). For MAP-302, we see that the num-
ber of cache replacements is larger without using local memory for both L1 cache and
L2 cache. Thus, using local memory on MAP-302 is beneficial on E5-2650 especially for
large datasets. However, for MAP-204, cache-lines are replaced less frequently when us-
ing local memory on the L1 cache while it occurs more often on the L2 cache. We see
that using local memory gives a smaller bandwidth for this MAP.

PERFORMANCE GAIN/LOSS DISTRIBUTION

We define that using local memory has a similar performance to that using global mem-
ory when |1.0−δ| ≤ mbr ≤ |1.0+δ|. Therefore, using local memory has a gain perfor-
mance when mbr > |1.0 + δ|, and using local memory has a loss performance when
mbr < |1.0−δ|. We show the overall performance gain/loss distribution in Table 7.4,
where δ = 0.05 (5%). We note that, in most cases on NVIDIA GPUs, using local mem-
ory gives us a bandwidth increase. Specifically, the number is around 90% on C1060,
and 80% on C2050 and K20m. Thus, using caches partially ‘cancels’ the benefits of us-
ing local memory. On AMD HD7970, over half of the MAPs have a similar performance

5

84 5. QUANTIFYING THE PERFORMANCE IMPACTS OF USING LOCAL MEMORY

Table 5.5: Performance gain/loss distribution (δ= 0.05).

C1060 C2050 K20m HD7970 Phi-5110P E5-2620 X5650

12
8

Gain 27(81%) 21(63%) 20(60%) 6(18%) 7(21%) 12(36%) 9(27%)
Loss 1(3%) 4(12%) 0(%) 5(15%) 16(48%) 17(51%) 17(51%)

Similar 5(15%) 8(24%) 13(39%) 22(66%) 10(30%) 4(12%) 7(21%)
25

6

Gain 29(87%) 25(75%) 26(78%) 13(39%) 7(21%) 9(27%) 9(27%)
Loss 2(6%) 5(15%) 4(12%) 3(9%) 20(60%) 22(66%) 20(60%)

Similar 2(6%) 3(9%) 3(9%) 17(51%) 6(18%) 2(6%) 4(12%)

51
2

Gain 29(87%) 26(78%) 26(78%) 13(39%) 8(24%) 7(21%) 11(33%)
Loss 3(9%) 6(18%) 6(18%) 3(9%) 18(54%) 20(60%) 21(63%)

Similar 1(3%) 1(3%) 1(3%) 17(51%) 7(21%) 6(18%) 1(3%)

10
24

Gain 29(87%) 26(78%) 26(78%) 14(42%) 16(48%) 8(24%) 11(33%)
Loss 4(12%) 6(18%) 6(18%) 1(3%) 14(42%) 24(72%) 19(57%)

Similar 0(%) 1(3%) 1(3%) 18(54%) 3(9%) 1(3%) 3(9%)

20
48

Gain 29(87%) 26(78%) 26(78%) 15(45%) 17(51%) 8(24%) 8(24%)
Loss 4(12%) 6(18%) 6(18%) 5(15%) 15(45%) 24(72%) 21(63%)

Similar 0(%) 1(3%) 1(3%) 13(39%) 1(3%) 1(3%) 4(12%)

40
96

Gain 29(87%) 26(78%) 26(78%) 16(48%) 16(48%) 9(27%) 12(36%)
Loss 4(12%) 6(18%) 6(18%) 5(15%) 15(45%) 22(66%) 20(60%)

Similar 0(%) 1(3%) 1(3%) 12(36%) 2(6%) 2(6%) 1(3%)

between with and without adopting local memory for the small datasets, while the num-
ber becomes smaller for the larger datasets and more MAPs can benefit from using local
memory. On the cache-only processors (Phi-5110P, E5-2620, X5650), using local mem-
ory leads to a performance decrease for around half of the MAPs for small datasets. For
large datasets, we note less MAPs on Phi-5110P but more MAPs on E5-2620 and X5650
that has a performance decrease by using local memory. This is mainly due to the fact
that they have a difference cache architectures (i.e., Xeon Phi has a distributed last-level
cache while the other processors have a unified one). We recommend using local mem-
ory for the better MAPs based on the guidelines mentioned in Section 5.4; for the cases
with little or no bandwidth increase (or even bandwidth decrease), using local memory
is not recommended due to the low ratio between performance gain and programming
effort.

5.6. COMPOSING MAP IMPACTS
We have quantified the performance impacts of using local memory for isolated MAPs
and a simple query in the database can tell us the performance benefits. However, a
real-world kernel often has multiple data structures (and memory access patterns). In
this section, we propose composition rules in the presence of multiple MAPs to give the
performing order of using local memory.

For a given MAP, let ⊕ represent that using local memory brings a ’positive’ perfor-
mance impact (positive MAP) and let ª represent that using local memory gives a ’neg-
ative’ performance impact (negative MAP). Assume we have two MAPs (two data struc-
tures in a kernel): MAP1 and MAP2, which can be the same pattern or two different pat-

5.6. COMPOSING MAP IMPACTS

5

85

terns. For each MAP, we have two choices: l– choose to use local memory, and g– choose
not to use local memory (thus using global memory). Then we can obtain four versions
of code for this kernel: (g,g), (g,l), (l,g), and (l,l). We need to pick the most efficient choice
among the four.

We use two metrics to evaluate the efficiency: performance and programming efforts,
of which performance is taken as our first priority. In this work, we consider an effort
of enabling local memory usage for a data structure as the unit of programming effort.
Ideally, we prefer an efficient solution with less programming effort. To compose MAP
impacts, we propose and analyze the following rules.

Rule 5.1: ª+ª→ (g , g).
Analysis. For either MAP1 or MAP2, using local memory leads to a performance loss.

When composing them, we cannot find any sources of a performance gain. Thus, we
choose not to use local memory for both of them.

Rule 5.2: ⊕+ª→ (l , g), ª+⊕→ (g , l).
Analysis. Suppose MAP1 can benefit from using local memory (⊕), while MAP2 suf-

fers a performance loss (ª). Since using local memory on MAP2 brings us no perfor-
mance gain, we choose not to use local memory on it. Next, let us consider MAP1. Fur-
ther suppose that we need D1 data elements for MAP1 and D2 data elements for MAP2,
and their bandwidths are W1 and W2, respectively. Let W be the overall bandwidth and
T represent the data transfer time. Thus, we can obtain

T = D1 +D2

W (W1,W2)

As we have analyzed, the performance gain of using local memory comes from two
factors: either the decrease of data amount (D), and/or the increase of global memory
bandwidth (W). Thus, we need to consider two cases:

Case 1: Using local memory on MAP1 decreases D1. In such a case, we need to move
less data from global memory (D), thus posing less contention for the shared resources
(e.g., channels and ports) and leaving more chances for MAP2 to transfer data. There-
fore, using local memory on MAP1 will improve the overall performance, i.e., φ(l , g) >
φ(g , g)6.

Case 2: Using local memory on MAP1 increases W1. In case of a under-utilized band-
width, we can better utilize shared resources (ports and channels) and thus have a better
performance. Once we reach the maximum achievable bandwidth, using local memory
further brings us no performance gain. In other words, using local memory on MAP1
can guarantee that φ(l , g) Êφ(g , g).

Therefore, we choose (l , g) in this case. Likewise, we choose (g , l) for the ª+⊕ com-
bination.

Rule 5.3: ⊕+⊕→ (?, l).
Analysis. As we infer from Rule 5.2, we can guarantee that φ(l , g) Ê φ(g , g). There-

after, we need to take a decision of enabling local memory on MAP2. We can see similar
performance benefits as shown in Rule 5.2. However, using local memory on MAP2 also
increases the amount of used local memory and thus may reach the maximum limit on

6φ(l , g) denotes the performance when using local memory on one MAP, while φ(g , g) denotes the perfor-
mance when we do not use local memory.

5

86 5. QUANTIFYING THE PERFORMANCE IMPACTS OF USING LOCAL MEMORY

the device. Therefore, we need to check whether there remains enough local space be-
forehand. If there is enough local space for MAP2, we will choose to perform allocation
for it.

Rule 5.4: ⊕+⊕+ ...+⊕︸ ︷︷ ︸
m

+�+�+ ...+�︸ ︷︷ ︸
n

→ (?, ?, ..., l︸ ︷︷ ︸
m

, g , g , ..., g︸ ︷︷ ︸
n

).

Analysis. Assume that, when using local memory, we divide the MAPs into two groups
based on the performance benefits: m MAPs can benefit from using local memory while
n MAPs suffers in performance. By iteratively using Rule 5.1, we choose not to use local
memory on these n negative MAPs. According to Rule 5.2, we use local memory on the
right-most MAP. Thereafter, it is unclear whether to use local memory or not based on
Rule 5.3. Thus, this rule is a derivation of Rule 5.1, 5.2, and 5.3.

Up to now, there remains one question: which positive MAP do we select first? Dif-
ferent MAPs may differ in performance benefits due to the MAP feature and its run-time
dataset. Suppose when using local memory on MAP1, the performance benefit is mbr1

and the dataset size is D1; when using local memory on MAP2, the performance benefits
is mbr2 and the dataset size is D2. Then we can calculate the performing order weight ω.
When using local memory, we will select the MAP with the largestω until we do not have
enough local space.

ω1 = D1

D1 +D2
×mbr 1

ω2 = D2

D1 +D2
×mbr 2

5.7. COMPOSING RULES VALIDATION

5.7.1. A MAP COMPOSER

To validate our composition rules, we compose MAPs based on the code generator men-
tioned in Section 5.4. When multiple MAPs are used in a kernel, we consider the use
of local memory in an incremental manner. In other words, the kernel template takes
multiple MAPs as input and we use local memory on them one by one. For 2 MAPs, we
have built a composer and show its structure in Figure 5.13 7. The composer generates
three code versions: (v0) without using local memory, (v1) a code version of using local
memory on MAP1, and (v2) a code version of using local memory on both MAP1 and
MAP2. Thus, when we have N MAPs (they can be the same or different), the composer
will generate N +1 versions of code.

We validate our proposed rules for each use of local memory. We take the test case as
a successful prediction when the results meet with those from the composing rules. We
calculate the prediction accuracy as the number of successful tests divided by the total
number of tests. We assume that a test fails when we observe one of the follows:

1. A positive MAP gives a performance degradation from using local memory.

2. A negative MAP gives a performance increase from using local memory.

7The composer is available: https://github.com/haibo031031/aristotle

https://github.com/haibo031031/aristotle

5.7. COMPOSING RULES VALIDATION

5

87

Figure 5.13: The Composer architecture.

5.7.2. RULE VALIDATION
We use 7 platforms and 6 datasets (see Section 5.5.2), and use 2 data structures which
are of the same MAP or 2 different MAPs 8. Note that we can guarantee there is suffi-
cient local space when considering 2 data structures. With 33 MAPs, we need to evaluate
2178 (33× 33× 2) test cases for each platform and dataset. Thus, we can evaluate the
performing order ω in an exhaustive manner.

Our validation results are shown in Table 5.6. We see that the rules holds with an ac-
curacy of around 90% on NVIDIA GPUs, while the number ranges from 55% to 75% on
the AMD GPU. On the cache-only processors (Xeon Phi, E5-2620), the prediction accu-
racy is up to 80%, while we note that the rules see a relatively low accuracy on X5650. We
believe this is because of the cache interferences between the data structures.

Table 5.6: Rule validation results.

128 256 512 1024 2048 4096
C1060 90% 95% 94% 93% 92% 93%
C2050 93% 94% 94% 93% 92% 91%
K20m 90% 91% 91% 90% 89% 88%
HD7970 55% 63% 69% 69% 75% 66%
Phi-5110P 74% 80% 81% 77% 79% 83%
E5-2620 61% 73% 78% 80% 81% 80%
X5650 65% 68% 72% 70% 73% 65%

5.7.3. USING ARISTOTLE
Given a kernel, users first need to abstract the MAP for each data structure. Depending
on the given platform and the MAP, we query the performance database. If it is benefi-
cial, we will perform code transformation to enable local memory on the input kernel.
Otherwise, we keep the original kernel code. When the given kernel has multiple MAPs,

8Running the validation experiments for 2 MAPs takes 2∼6 days per platform and we cannot afford to validate
more MAP composition.

5

88 5. QUANTIFYING THE PERFORMANCE IMPACTS OF USING LOCAL MEMORY

we need to calculate the performing order weight ω based on the isolated mbr . The
composing rules (in Section 5.6) provide users with a reference on how to compose mul-
tiple MAPs. For NVIDIA GPUs, the prediction accuracy is high, but it is relatively low on
the cache-only processors such as X5650. We recommend the use of local memory (as a
software optimization technique) for the MAPs that have a large bandwidth benefit (e.g.,
mbr > 1.5). For the MAPs that show smaller bandwidth benefits, using local memory is
not recommended.

5.8. RELATED WORK
In this section, we discuss prior work on benefits prediction and code transformation
of using local memory. In [58], the author presents a method of computing precisely
which memory cells are reused due to temporal locality. In [71], Issenin presents an
automated approach for analyzing the data reuse opportunities in a program, that allows
modification of the program to use scratch-memory. The approach can reduce energy
consumption and improve performance. However, they focus on enabling local memory
only when data reuse is available. Our study tackles a more generic problem.

Research on code transformer of enabling local memory is yet another interesting
topic. Baskaran et al. [13] develop an approach to effective automatic data management
for on-chip memories, including creation of buffers in on-chip memories for holding
the needed data elements, determination of array access functions, and generation of
code that moves data between slow off-chip memory and fast local memories. In [172],
Yang et al. propose a GPGPU compiler, which converts the un-coalesced accesses to
coalesced ones, and enhances the data reuse. Our work is orthogonal to this work, as our
solution is intended to estimate the performance gain of their approaches and dedicates
the necessity of using the code transformers.

A more generic related topic is auto-tuning. Generally, there are two types of auto-
tuning: empirical optimization [57, 91, 105, 109] and model-driven optimization [10, 64,
85, 178]. Although empirical optimization techniques give the optimal performance, it
generates a large number of parameterized code variants and the time cost of searching
for the best code variant makes it less attractive. In contrast, model-driven optimiza-
tions self-tune implementation-related parameters to obtain optimal performance. Us-
ing model-driven auto-tuning typically has an O(1) cost, since the parameters can be
derived from the analytical model. However, it may not give optimal performance, be-
cause analytical models are only simplified abstractions of architectures and/or appli-
cations. Our approach relates both: we use modelling to build our database, and use the
database to potentially prune the search space of empirical auto-tuners.

5.9. SUMMARY
Architecture diversity and application implementation differences make the performance
benefits of using local memory much less predictable than expected. In this work, we
presented a benchmark-based approach (Aristotle) to tackle this issue starting with the
memory access patterns (MAPs). For each such MAP, we generated benchmarks for a
naive version (without local memory) and an optimized one (using local memory). We
evaluated the microbenchmarks on the NVIDIA GPUs (C1060, C2050, K20m), AMD GPUs

5.9. SUMMARY

5

89

(HD7970), Intel Xeon CPUs (E5-2620 and X5650), and Intel Xeon Phi 5110P, and obtained
a performance database.

By analyzing the memory access patterns and the performance impacts of using local
memory, we have found that both data reuse and changes in access order may contribute
to the effective bandwidth increase. On the processors with both scratch-pad memories
and caches, the performance benefits of using local memory in OpenCL kernels are less
significant. Furthermore, using local memory on the cache-only processors (e.g., the tra-
ditional multicore CPUs) can be seen as a software optimization and might be efficient
by better utilizing caches.

This is the first extensive, systematic study of local memory impacts based on gen-
eralized MAPs. Not only can this work provide essential information for performance
prediction with database queries, but it can also give a performance indicator of local
memory usage. Further, we presented four rules to generate the performing order of us-
ing local memory when we have multiple data structures. Our results validated the use-
fulness of our composing rules on GPU architectures in particular. Meanwhile the pre-
diction accuracy is relatively low on the cache-only processors largely due to the cache
interference between multiple data structures. We believe that this issue is impossible
(or difficult at least) to fix because of the dynamic nature of cache interferences.

We note that for new emerging platforms (with OpenCL support), the database can
be easily extended: one can simply use the microbenchmarking and logging tools to
expand it. The performance database, together with the composing rules will give us an
indicator of whether or not to use local memory. Once given this information, we will
enable or disable local memory usage accordingly, which will be illustrated in Chapter 6
and Chapter 7.

6
ELMO: AN API TO ENABLE LOCAL

MEMORY USAGE

In this chapter, we propose an API to enable local memory usage. The API facilitates
code specialization when using local memory is profitable. We focus on the API design
requirements, its front-end and back-end. We also discuss its productivity and usability.

Because local memory is situated on-chip, it is much faster than the global memory.
Thus, a proper use of local memory often leads to higher memory bandwidth and thus
performance improvement. Nevertheless, using local memory is an error-prone and
time-consuming process. Programmers often have to manually address, in their code,
challenges like (1) geometry mismatch, (2) work-items masking and binding switches,
and (3) inefficient local memory organization (see Section 6.1). We argue that when solv-
ing these problems manually, programmers waste too much time on non-computational
and non-functional coding details, which hinders productivity and bloats the code.

Multiple approaches have been proposed to improve productivity while achieving
high performance for parallel architectures, which can be loosely classified into (i) new
languages (e.g., OptiML [24]), (ii) auto-parallelizing compilers (e.g., OpenACC [120], Mint [155]),
and (iii) libraries/APIs (e.g., Thrust [2]). In all these cases, programmers are isolated, in
one way or another, from the difficult implementation details related to the platform
architecture: they can focus on the functional parts of the application and leave these
non-functional elements to be solved by run-times, compilers, or libraries.

In this chapter, taking the third approach, we focus on the design and implementa-
tion of a high-level API targeting the efficient usage of local memory on modern many-
core processors. As the main difficulty of these operations is the complex and dynamic
nature of the binding between the threads (work-items) and the data elements in global
or local memory, we propose ELMO, a collection of easy-to-use APIs that (1) present a
friendly front-end to make these bindings/mappings transparent to users (see Section

This chapter is based on our work published in the Proceedings of PDP 2013 [44].

91

6

92 6. ELMO: AN API TO ENABLE LOCAL MEMORY USAGE

6.2), and (2) provide implementations and perform several optimizations to ensure the
efficiency of the local memory operations (see Section 6.3).

Summarizing, our contributions are as follows:

• We present three challenges of using local memory and thus summarize the ELMO
requirements.

• We illustrate the design of three APIs, and further provide GPU-based back-end
implementations for them (The source code is on-line available1).

• We evaluate ELMO’s performance against native kernels and hand-tuned kernels.

• We discuss the programmability and usability of ELMO, and its limitations.

Our results show that with ELMO the kernels can run by up to 3.7× faster over native
kernels and deliver matching performance with hand-tuned kernels on NVIDIA Quadro5000
(see Section 6.4). Using ELMO, programmers can focus solely on the functional side
of the application, which improves their productivity by enabling faster and less error-
prone coding (see Section 6.5). Furthermore, the back-end optimizations can be adapted
to novel architectures, providing better opportunities to improve the performance porta-
bility of ELMO code.

ELMO is targeting OpenCL-compliant platforms and kernels. Due to the cross-platform
capability of OpenCL, the APIs are applicable for any OpenCL-compliant devices with lo-
cal memory. However, since multi-core CPUs allocate local memory on global memory
space (not on-chip memory), we cannot ensure the performance benefits of using local
memory on them, and thus the back-end of ELMO is, for now, targeting GPUs. Therefore,
all the experiments and results included in this chapter relate to GPUs.

The remainder of this chapter is organized as follows: Section 6.1 illustrates the chal-
lenges of using local memory. Section 6.2 introduces the design of ELMO. Then the im-
plementations of the APIs are presented in Section 6.3. We evaluate the performance of
ELMO in Section 6.4, and discuss the usage of ELMO in Section 6.5. Finally, we give the
related work in Section 6.6, and conclude the work in Section 6.7.

6.1. ELMO REQUIREMENTS
In this section, we give a brief description of the basic operations that programmers need
to do when using local memory and explain the challenges behind them. Based on this,
we define our API’s requirements.

Local memory operations consist of two types: (1) data transfers between global
memory and local memory, and (2) data transfers between registers (or private mem-
ory) and local memory. In theory, any work-item of a work-group can access any data
element in local memory, and there is no data coherence guarantee. Thus, it becomes
difficult to manage this process especially when the number of work-items increases
from ‘multi’-scale to ‘many’-scale. The following are the challenging scenarios we have
identified when using these two types of basic operations.

1https://github.com/haibo031031/elmo

https://github.com/haibo031031/elmo

6.1. ELMO REQUIREMENTS

6

93

6.1.1. CHALLENGE I: GEOMETRY MISMATCH
When accessing data in the local memory and/or when bringing data to local mem-
ory, the simple cases of 1 : 1 or 1 : n work-items per data elements are easily solved:
each work-item will access exactly 1 or n data elements. However, many applications
(e.g., image convolution) also need halo d at a - i.e., the data elements neighboring the
central part (see Figure 6.1). This will often lead to a geometry mismatch between the
work-items used to bring the data and the data elements themselves. Thus, binding
work-items to data elements in an orderly fashion becomes difficult. And for multi-
dimensional data (2D or 3D), the binding between work-items and data elements will
make the situation worse.

(a) 1:1 mode (b) with halo data

Figure 6.1: Geometry mismatch for 4 work-items and: 4 data elements in the 1:1 mode, or 6 data elements in
the mismatch mode.

6.1.2. CHALLENGE II: WORK-ITEMS MASKING AND BINDING SWITCHES
For applications like reduction, multiple rounds are required to execute a single kernel,
and not every work-item has to remain active in each round. Thus, programmers need
to deactivate work-items that are not used in the next round (see Figure 6.2a and 6.2b)
to avoid unnecessary data updates. Furthermore, the bindings between work-items and
data elements change even in a single kernel. In Figure 6.2c, work-items t0 and t1 pro-
cess data elements d0 and d1 in one round, but switch to update d1 and d3 in the fol-
lowing round, respectively. This binding switch makes code even more complex.

6.1.3. CHALLENGE III: INEFFICIENT LOCAL MEMORY ORGANIZATION
Local memory often works as temporal storage or plays the role of registers. In such
cases, each work-item requires multiple data elements. The way that these elements are
stored in local memory can have a significant impact on performance. Figure 6.3 shows
two typical ways to organize the local memory space: Block and Cyclic. To avoid perfor-
mance penalties (e.g., due to bank conflicts), programmers need to choose a proper way
according to the access patterns of applications. Being aware of how data is organized
and how accesses are mapped to banks, programmers can avoid these penalties. How-
ever, understanding the banks scheme and mapping strategy of the local memory needs
a detailed code analysis, which is an error-prone and time-consuming process.

6

94 6. ELMO: AN API TO ENABLE LOCAL MEMORY USAGE

(a) Initial State (b) Mask t1 and t3 (c) Binding Switch

Figure 6.2: Work-items masking and binding switch for 4 work-items and 4 data elements. In the following
rounds, some work-items are deactivated in 6.2b. Figure 6.2c shows multiple bindings.

(a) Bl ock 〈d , w〉 (b) C ycl i c 〈w,d〉

Figure 6.3: Two ways to organize the local memory space for 4 work-items that each requires 2 data elements.
‘w’ and ‘d’ represent the work-item dimension and data dimension, respectively.

Summarizing the basic operations and challenges we presented above, we specify
four high-level components of our API and their functionalities (CP and CH are short for
‘Component’ and ‘Challenge’, respectively):

1. GM → LM Operations: this component has to cover the operations needed to
transparently load data from global memory to local memory (C P1 ∼C HI).

2. LM → Registers Operations: this component has to provide programmers with
simplified ways to address the move from local memory to registers (C P2 ∼C HI).

3. Communication Operations: this component has to enable the users to make use
of local memory as a synchronization and communication mechanism (C P3 ∼
C HI I).

4. Local Memory Management Operations: this component allows programmers to
efficiently organize and operate local memory when it works as temporal storage
or plays the role of the scarce registers (C P4 ∼C HI I I).

6.2. ELMO DESIGN

6

95

6.2. ELMO DESIGN
To satisfy the requirements (the four CPs) mentioned in Section 6.1, we design ELMO as a
middle layer between kernels and the basic operations for the local memory (see Figure
6.4). The basic idea is to keep the bindings between work-items and data elements trans-
parent to users via a high-level API. The ELMO APIs consist of: (1) Block-Write Random-
Read APIs (BWR), (2) APIs for Communications (COM), and (3) APIs for Local Memory
Management (LMM).

Figure 6.4: ELMO Stack Overview (BAS represents the basic operations of using local memory).

BWR, proposed to address C P1 and C P2, allows the data to be loaded from global
memory (into the local memory) in a block-wise way and used in arbitrary (or random)
patterns presented in kernels. This API includes two operations: writing data from global
memory into local memory (G2L), and reading data from local memory into registers
(L2R). For G2L, users only need to give simple information such as the global/local mem-
ory addresses and the radius (see the model in Section 6.3.1). After that, we enable the
index conversion from global space to local space in L2R. Thus, BWR makes the process
of moving data between local memory and global memory or registers transparent to the
users.

This API can be widely used in real-world applications. First, BWR can be used for
data sharing in applications where the data elements needed by one work-item overlap
with the ones needed by its neighbors. Image convolution is a typical example of such
an application. Second, the local memory can be used to explicitly convert a scattered
access pattern to a regular (coalesced) pattern for read/write from/to global memory [4].
Thus, BWR is built to achieve high memory bandwidth even when the original memory
access patterns are architecture-‘unfriendly’ (reversed or random memory access). Ma-
trix transpose and cross-based aggregation in stereo matching [177] are representative
examples of such applications.

COM, proposed to address C P3, encapsulates the complex communication and syn-
chronization procedures that include multiple rounds to update data elements, and thus
need work-item masking and binding switches. The encapsulation hides these confus-
ing coding details from users.

Currently, the API mainly includes aggregation operations, such as reduction, pre-
fix sum, and scan, but other communication operations like binomial reduction (of-
ten used in BinomialOption [6]) are to be added. The aggregation involves multiple
passes to read/write data elements from/into memory, possibly in the form of irregu-

6

96 6. ELMO: AN API TO ENABLE LOCAL MEMORY USAGE

lar accesses. Thus, it is expected that local memory performs better on aggregations
than global memory. Further, the aggregations usually require data communication (via
work-item masking and binding switches) between work-items, which means that the
registers cannot be used to replace local memory.

LMM, proposed to address C P4, aims to manage local memory space efficiently. The
LMM API differs from the COM API in that the work-items within the same work-group
process on their own space and do not have to communicate with each other via local
memory. Thus, efficiently organizing and operating the local memory space becomes
the main concern of LMM.

An example of a LMM operation is initialization, i.e., setting each element of a local
memory region to a certain value (e.g., when computing histograms, memory has to be
initialized to be zero). The operation should be straightforward, but programmers are
likely to ignore the avoidance of bank-conflicts during initialization. Thus, we delegate
this task to the LMM API to avoid the performance pitfall.

A different example of a LMM operation is relocation, needed to avoid the perfor-
mance hits of register spilling. Register spilling occurs because OpenCL compilers give
priority to allocating private memory for each work-item on register files (Figure 1), but
these are limited in size. When an instance of a kernel consumes too many registers,
register spilling occurs. The spilled data is usually transferred to global memory, which
increases memory traffic and instruction count. Thus, local memory plays back up of
registers via relocation.

To summarize, the front-end of ELMO comprises, by design, of three APIs that aim
to enable the easy use of local memory. The design is user-oriented, decoupling the pro-
grammability issues from the performance ones (left for the back-end implementation).

6.3. ELMO IMPLEMENTATION
In this section, we provide implementations for each API. Specifically, we compare differ-
ent implementations via micro-benchmarking, perform GPU-oriented optimizations,
and give our preference on different application constraints.

6.3.1. BWR
By design, BWR consists of two separate steps: (1) G2L, loading the required data from
global memory to local memory, (2) L2R, reading the data from the local memory when
performing computation.

G2L When performing computation, each work-item needs to load data elements
in the area of radius r , centered on its thread index (shown in Figure 6.5a). Note that
r can be different between the top, bottom, left, and right halo data. When r = 0, i.e.,
no halo data, we use the 1-to-1 mode (between work-items and data elements) to load
data, saturating the global memory bandwidth. However, when r > 0, the bandwidth
of global memory may not be saturated, if the geometry of the input data block is not
corresponding with that of a work-group. There are two ways we propose for this process
(also shown in Figure 6.5b, 6.5c): (1) reading data in a tile-by-tile fashion (TBT), or (2)
loading the central data first, and then the halo data (FCTH).

From Figure 6.6, we see that FCTH performs better than TBT when r ≤ 16. This is

6.3. ELMO IMPLEMENTATION

6

97

(a) G2L (b) TBT (c) FCTH

Figure 6.5: G2L Model: the work-group is 4×4, and the radius is 1. Thus, each work-item (e.g., work-item 00)
needs a 3×3 data block, and each work-group needs to load a 6×6 data block. When loading data into local
memory, TBT needs 4 passes, numbered with 1, 2, 3, and 4 (the area outlined by dashed-line squares is given
for illustrative purposes). FCTH first reads the central data, and then use 8 extra passes to load the halo data.

because TBT introduces extra branch overheads for a generic implementation. Further,
when the dimension (width/height) of the local data block is not a multiple of that of a
work-group (e.g., r = 9), TBT will lead to many more ‘small tiles’, wasting memory band-
width. Thus, we prefer selecting the FCTH implementation when the radius is smaller
than the dimension of a work-group, but we need to use TBT when this is not the case.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

G
2

L
 T

im
e

 (
m

s
)

S
p

e
e

d
u

p
 (

x
)

Radius

TBT FCTH SP

Figure 6.6: The data loading time from global memory to local memory and speedup (FCTH versus TBT). The
data is obtained when the work-group is 16×16, and the input data is 2048×2048.

L2R When performing computations using data elements in local memory, the key
issue is to determine the correspondence F between the index (Dg x , Dg y) of the data
elements in the global data space and the index (Dl x , Dl y) of the data elements in the
local data space within one work-group (shown in Equation 6.1).

F : (Dg x ,Dg y) → (Dl x ,Dl y) (6.1)

6

98 6. ELMO: AN API TO ENABLE LOCAL MEMORY USAGE

As we know,
Dg x = Tg x +δx , Dg y = Tg y +δy ,
Dl x = Tl x +σx , Dl y = Tl y +σy ,

σx = δx + r, σy = δy + r,
Tg x ∼ Tl x , Tg y ∼ Tl y .

(6.2)

From Equation 6.2, we can establish the correspondence F (δ and σ in the equations
are implementation and iteration dependent parameters; (Tl x , Tl y), (Tg x , Tg y) are the
local and global work-item index). When implementing the L2R API, we first make a
conversion of data index from the global space to the local space, and then use the data
in the local memory space.

6.3.2. COM
The implementation of the COM API is based on a generalization of [138], in which the
authors present a segmented scan algorithm and its CUDA implementation. It consists
of three steps: (1) intra-warp scan, (2) intra-block scan, and (3) global scan. We gener-
alize this segmented algorithm to all the aggregation algorithms in the COM API’s im-
plementations. Since the schedule units (warp from NVIDIA [117] and wavefront from
AMD [6]) differ in size/width across vendors, we start with intra-block operations, and
organize the algorithms as follows:

1. Loading the input array into local memory (some applications generate on-the-fly
data as input).

2. Performing aggregations at the work-group-level (within one work-group).

3. Performing global aggregation on the results from all the work-groups.

For the moment, the supported aggregation operations in ELMO are reduction, pre-
fix sum, and scan. As a proof of concept, we illustrate the reduction API and its imple-
mentation as follows:
Reduction needs to aggregate (sum, avg, max, min) the data to one final value. Each
invocation of the kernel reduces the input array block to a single value within one work-
group; it then writes this value to the output and reduces the partial results to a final
result, which is sent to the host [6]. The reduction of each work-group is done in multi-
ple passes. In the first pass, half of the work-items are active, and they update their values
in local memory by aggregating the other half. This continues as shown in Figure 6.7.

The above-mentioned reduction maps one work-item to one data element. In prac-
tice, each work-item can perform reductions on multiple data elements (i.e., granular-
ity coarsening). In Figure 6.8, we see that the granularity-aware implementation per-
forms poorly for very small granularity due to more overheads from work-item creation,
branches, and synchronization. The performance also decreases slightly when the gran-
ularity is too large because of less work-groups to hide latency. Therefore, we provide a
parameter granularity in the API, for performance tuning.

6.3.3. LMM
The back-end of LMM has to optimize the organization and management of the local
memory. The two operations - the memory initialization and relocation - are used to

6.3. ELMO IMPLEMENTATION

6

99

Figure 6.7: Reduction (sum): the circles represent work-items, the squares represent data elements in local
memory, and the long bars separate work-items into different work-groups (4 work-items in each

work-group).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 4 8 16 32 64 128

F
u

ll
R

e
d

u
c
ti
o

n
 T

im
e
 (

m
s
)

Granularity (data elements per work-item)

51200
102400

204800
409600

819200
1638400

Figure 6.8: Full reduction time for different data size (51200-1638400) and granularity.

show the types of optimizations needed for LMM, their complexity and performance
impacts.

Initialization Initializing the local memory is required when we perform statistics.
For example, calculating a histogram needs to reset all bi ns prior to the computation
itself. Initialization is independent of local memory organization (block or cyclic), i.e.,
there is no inherent binding between work-items and the local memory space. We com-
pare two typical approaches to initialize the local memory: row-major (RMI) and column-
major (CMI). For RMI, neighboring work-items perform the initialization on data ele-
ments in the same row, while CMI initializes the data elements in the column-major
order (by neighboring work-items).

Table 6.1 shows the performance comparison of these two approaches. We see that
RMI performs much better than CMI, with speedup ranging from 2.4× to 13.5×. This
happens because CMI forces all the accesses into one memory bank, leading to serializ-
ing the writing operations, while RMI can successfully avoid it. Thus, we choose to use
RMI in ELMO.

P2L Using this API, we can store the likely to-be-spilled variables to local memory,
rather than in private memory. The native kernels start with the cases that use private

6

100 6. ELMO: AN API TO ENABLE LOCAL MEMORY USAGE

Table 6.1: Performance comparison of CMI and RMI. The input data is one-dimensional, with 327680
work-items, and the work-group size is 32. N is the number of elements required by one work-item.

N 8 16 32 64 128 256
C M I (ms) 0.35 1.15 4.44 11.54 45.32 269.89
RM I (ms) 0.15 0.22 0.45 0.90 3.41 19.99
Speedup 2.40 5.12 9.85 12.81 13.27 13.50

memory in the form of an array or a variable. Where register spilling could occur, we
transform the usage of private memory to the usage of local memory (i.e., we relocate
the variables from the private to the local memory). A comparison of the two implemen-
tations is shown in Figure 6.9.

1 # define N 32
2 __kernel void kernel_pv (...) {
3 __private uint i, j;
4 __private type a;
5 __private type b;
6 ...
7 __private type c;
8 ...
9 __private type array [N];

10
11 // write data into array
12 array [i] = a;
13 // ...
14 // read data from array
15 b = array [j];
16 }

1 # define N 32
2 __kernel void kernel_lc (...) {
3 __private uint i, j;
4 __private type a;
5 __private type b;
6 // S: work - group size
7 __local type c[S];
8 ...
9 __local type array [N*S];

10
11 // write data into array
12 array [_clm_idx_p2l (i)] = a;
13 // ...
14 // read data from array
15 b = array [_clm_idx_p2l (j)];
16 }

Figure 6.9: Replace private memory with local memory. The left kernel shows the native implementation with
private variables, which are replaced with local variables in the right kernel.

The key issue to be solved here is index conversion from private space to local space.
Once the way of organizing the local memory is determined (in Figure 6.3), we convert
the index as follows:

Dl =
{

Tl ·N +Dp if Bl ock

Dp ·S +Tl if C ycl i c
(6.3)

where Dl , Dp , Tl represent local data index, private data index, and local index of a
work-item, respectively; N is the number of variables required by one work-item, and S
is the work-group size. When the spilled data is a variable, rather than an array (N = 1
and Dp = 0), these two approaches will be one and the same.

Currently, we only provide users with the index conversion APIs. Users remain re-
sponsible for detecting the potential cases of register spilling (e.g., from the verbose in-
formation returned by compilers), but with the help of this API, users can be in control
of the spilling and prevent expensive spills to global memory. For the future, an auto-
mated tool would be needed to detect the occurrence of register spilling, and relocate
the to-be-spilled variables to local memory.

6.4. EXPERIMENTAL EVALUATION

6

101

6.4. EXPERIMENTAL EVALUATION
In this section, we present our experiments with ELMO focusing on the performance
improvements it brings from two angles: (1) comparing the performance with native
kernels (i.e., kernels without local memory or using local memory improperly) to eval-
uate our implementations and optimizations in ELMO, (2) comparing the performance
with hand-tuned kernels further to see how ELMO performs and how far we can go in
terms of performance.

6.4.1. EXPERIMENTAL SETUP
All the experiments are performed on a NVIDIA Quadro5000 Fermi GPU. The card has
Compute Capability 2.0 and consists of 352 cores divided among 11 multiprocessors.
The number of 32-bit registers allocated to each multiprocessor is 32K, while the amount
of local memory available per multiprocessor is 48K. We compile all the program with the
OpenCL implementation from CUDA version 4.1 and GCC version 4.4.3.

Besides Reduction (RD) mentioned in Section 6.3.2, we have implemented five more
representative kernels in our experiments: Image Convolution (IC), Matrix Transpose
(MT), Cost Aggregation (CA), Histograms (HT), and Marching Cubes (MC) using ELMO.
Furthermore, we have applied ELMO to five applications from the AMD/NVIDIA SDKs,
and compare ELMO’s performance to that of hand-tuned code.

6.4.2. PERFORMANCE COMPARISON WITH NATIVE KERNELS
Image Convolution We implement the kernel in three different ways: (1) Native ker-
nel without local memory (N ati ve); (2) Optimized kernel using the BWR API in TBT
mode (OPTT BT); (3) Optimized kernel using the BWR API in FCTH mode (OPTFC T H).
In Figure 6.10, we see the performance for these three implementations. When r = 1,
the optimized kernels perform worse than the native kernel (by around 32% and 16%
for OPTT BT and OPTFC T H , respectively). This slowdown is due to the extra overhead
of accessing local memory and the branches introduced in ELMO. The gain from data
sharing in this application is offset by the overhead. Thereafter, the optimized kernels
can yield significant performance improvement compared to the native implementa-
tion, with speedups of 1.3×−2.8× for OPTT BT and 1.5×−3.1× for OPTFC T H .

Matrix Transpose Since r = 0 (i.e., no halo data), we use the FCTH approach from
ELMO for the optimized implementation. The results for different implementations and
multiple data sizes are shown in Figure 6.11. We see that using ELMO will improve per-
formance significantly, especially when the input data size is large. The native kernel
(without local memory) violates the coalescing access constraints either on reading or on
writing. While using ELMO, the coalesced access from global memory to local memory
is ensured and operating the local memory itself has no coalescing constraints. When
the input matrix size is small, the performance gap is minor, because the input data fits
the L1/L2 caches on Quadro5000.

For the Matrix Transpose, we use a 16×16 work-group, with a block of local mem-
ory space of the same size. When reading data elements from the local memory, bank-
conflicts will occur. We remove the bank-conflicts by padding data, i.e., changing the
row-size of the local memory (with an additional parameter in the BWR G2L API). Fig-
ure 6.11 shows the further performance improvement of the optimized kernel OPTBC R

6

102 6. ELMO: AN API TO ENABLE LOCAL MEMORY USAGE

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 0.5

 1

 1.5

 2

 2.5

 3

 3.5

C
o

n
v
o

lu
ti
o

n
 T

im
e
 (

m
s
)

S
p
e
e

d
u
p
 (

x
)

Radius of Filters (r)

Native
OPTTBT

OPTFCTH
SPTBT

SPFCTH

Figure 6.10: Execution time and speedup of IC for different radius and implementations. The input data size
is 2048×2048, and the r varies from 1 to 16.

 0

 20

 40

 60

 80

 100

 120

 140

 160

128
256

512
1024

2048
4096

8192
16384

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

T
ra

n
s
p

o
s
e

 T
im

e
 (

m
s
)

S
p

e
e

d
u

p
 (

x
)

Order of Matrix

Native
OPTFCTH

OPTBCR
SPFCTH

SPBCR

Figure 6.11: Execution time and speedup of MT for different input data.

without bank-conflicts.

Cost Aggregation is a necessary step in local-based stereo matching of computer vi-
sion [136]. Cross-based cost aggregation [178] is a typical approach, in which perform-
ing computation on each pixel depends on an adaptive area of data elements around it,
and the maximum radius is limited by a pre-defined L value. This leads to un-coalesced
global memory access with extremely low memory bandwidth. Thus, we use the BWR
API to load all the data elements within the area of radius L (more data elements than
needed).

We use the four data sets (cones, teddy, tsukuba, and venus) from Middlebury [136]
to evaluate the performance. The maximum limit L is 17, which is larger than the di-
mension of a work-group, meaning that we can only use the TBT approach. Figure 6.12
shows the execution time for the two implementations (N ati ve versus OPT). We see
that the optimized solver can achieve decent performance improvement, with speedup

6.4. EXPERIMENTAL EVALUATION

6

103

around 1.5×. Although we load more data elements than what we need in this situation,
we have achieved better performance using ELMO, due to the coalesced access from
global memory to local memory.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

cones teddy tsukuba venus
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

C
o

s
t

A
g

g
re

g
a

ti
o

n
 T

im
e
 (

m
s
)

S
p
e

e
d

u
p

 (
x
)

Data Sets

Native OPT SP

Figure 6.12: The execution time and speedup on four datasets.

Histograms Calculating a histogram requires both local memory initialization and
partial results summary. Figure 6.13 shows the results for the histogram implemented
using ELMO-LMM, comparing the execution time of all four combinations of RMI/CMI
initialization and block/cyclic organization. The optimization on initialization accounts
for more than that on partial results summary, with an average speedup 1.46× versus
1.31×. The combined optimizations can achieve a speedup of 1.27× to 2.96× compared
with the native implementation.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

8 16 32 64 128 256

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Number of Bins

Native
OPT1

OPT2
OPT3

Figure 6.13: Execution time of Histograms with different optimizations. The optimizations are the in the
{initialization + partial results summary} format: Native={CMI + Cyclic}, OPT1={RMI + Cyclic}, OPT2={CMI +

Block}, OPT3={RMI + Block}.

Marching Cubes is a computer graphics algorithm for extracting a polygonal mesh of
an isosurface from a three-dimensional scalar field. One of the five kernels implemented

6

104 6. ELMO: AN API TO ENABLE LOCAL MEMORY USAGE

in the NVIDIA SDK MC is called generateTriangles, which is used to calculate the flat
surface normal for each triangle [118]. In the kernel, we allocate 16 f loat4 data elements
for each work-item to find the vertices where the surface intersects the cube, i.e., each
work-item requires more than 64 registers, exceeding the capability of Quadro5000.

 4

 6

 8

 10

 12

 14

 16

8 16 24 32 40 48 56 64

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

S
p

e
e

d
u

p
 (

x
)

Maximum Number of Registers

PV LM SP

Figure 6.14: Execution time and speedup of MC with maximum register limits.

We use ELMO’s P2L API and compare two implementations: PV - allocate all the vari-
ables directly on private space, and LM - allocate the array variable on local memory.
The execution time for generateTriangles when limiting the maximum number of regis-
ters per work-item is shown in Figure 6.14, for an input grid of 32×32×32. The increase
in number of registers limits results in performance improvement, especially from 16
through 24 to 32. Comparing to the register-only implementation, using local memory
can significantly improve the performance (up to 2× faster). This is because the com-
piler spills data to the global memory space for the register-only implementation, which
can be avoided by using ELMO.

6.4.3. PERFORMANCE COMPARISON WITH HAND-TUNED KERNELS
To compare the performance with that of hand-tuned kernels, we select five representa-
tive equivalent kernels (i.e., kernels with the same algorithms) from AMD/NVIDIA SDKs,
and apply ELMO to them. The results are shown in Table 6.2 (For CA, we cannot find a
comparison reference from SDKs).

Table 6.2: Performance comparison with hand-tuned kernels.

Applications EQ. Kernels SDKs DataSize Speedup
BoxFilter IC NVIDIA 1024x1024 1.24
Transpose MT NVIDIA 2048x2048 0.97
– CA – – –
MatVecMul RD NVIDIA 1100x100000 0.77
Histograms HT AMD 2048x2048 2.63
MarchingCubes MC NVIDIA 32x32x32 1.04

6.5. DISCUSSION

6

105

From Table 6.2, we observe that the performance varies for different kernels. As for
BoxFilter and Histograms, using ELMO performs 1.24× and 2.63× faster than the hand-
crafted kernels. When looking into the hand-tuned code of BoxFilter, we notice that
it uses an extended work-group (while we use the TBT approach of the ELMO BWR):
the boundary work-items only participate in loading data from global memory to local
memory, and remain idle for the other time-slices. The performance improvement of
Histograms comes from the efficient initialization, i.e., the usage of RMI rather than CMI,
enabled by ELMO.

For MatVecMul, however, ELMO performs 23% worse than the hand-tuned kernel.
This is because the hand-tuned kernel uses warp-specific optimizations when perform-
ing reduction, which does not require any synchronization between two consecutive
reduction passes. For the moment, we ignore these vendor-specific optimizations for
portability on multiple and future platforms. Finally, we see that ELMO can achieve
comparable performance with the hand-tuned versions of MarchingCubes and Trans-
pose.

6.5. DISCUSSION

In this section, we discuss the productivity and usability of ELMO. We also discuss the
situations when ELMO is not suitable.

6.5.1. PRODUCTIVITY

To estimate the productivity to be gained by using ELMO, we assume that a typical user
will use one API call instead of a number of lines of code (LOC) with the same functional-
ity. Given that our back-end is an optimized, yet generic implementation of the API, it is
fair to assume that an average programmer will use 75% ∼ 100% of the lines of code from
ELMO’s back-end, for a custom-made implementation of the same functionality. There-
fore, for each ELMO API call, the code is shorter, on average, by 22 ∼ 30 lines (see APIs
and LOC in Table 6.3). This means that using ELMO can not only simplify code writing,
but avoid code bloating from non-computation related elements.

Table 6.3: Overview of ELMO and its LOC.

Category APIs LOC Implementation
_clm_wr i te_tbt 38 G2L in TBT

BWR _clm_wr i te_ f cth 81 G2L in FCTH
_clm_r ead 7 L2R
_clm_r educti on 21 Reduction

COM _clm_pr e f i xsum 40 PrefixSum
_clm_scan 45 Scan

LMM _clm_i d x_p2l 5 P2L
_clm_i ni t 13 Initialization

6

106 6. ELMO: AN API TO ENABLE LOCAL MEMORY USAGE

6.5.2. USABILITY

To get an idea of the usability potential of ELMO, we have investigated the AMD/NVIDIA
SDK applications. In total, we have found 30 applications that use local memory. Out of
these, 20 can be covered by ELMO (see Table 6.4). For the remaining applications, the
patterns of data transformations and communications are application-specific. Thus,
future work is to investigate how to abstract these operations to more generic local mem-
ory access patterns and include them in ELMO.

Table 6.4: Applications covered (already and not-yet) by ELMO.

APIs Applications
BWR BoxFilter, ConvolutionSeparable, FDTD3d, Matrix-

Mul, MedianFilter, NBody, Particles, RecursiveG-
aussian, SobelFilter, MatrixTranspose, LUDecom-
position, QuasiRandomSequence

COM HiddenMarkovModel, MatrixVecMul, Reduction,
ScanLargeArrays, PrefixSum

LMM Histogram, MarchingCubes, URNG
Not-yet DCT8x8, DXTCompression, RadixSort, SortingNet-

works, Tridiagonal, AESEncryptDecrypt, Binomi-
alOption, DwtHaar1D, FFT, GaussianNoise

From a user-perspective, ELMO requires programmers to identify the APIs to be used
based on their application. We aim to improve both the detection of the patterns and the
choice for the right APIs in the near future, hoping these advances will allow ELMO to be
a starting point for (semi-) automated tools for enabling the smart use of local memory.

6.5.3. LIMITATIONS

In practice, not all 〈application, architecture〉-pairs can benefit from using ELMO. For
example, when performing the NBody simulation on NVIDIA Quadro5000 (with L1/L2
caches besides local memory), each body will read the states of all the others, leading
to full data sharing [4]. Table 6.5 shows the execution time when simulating different
number of bodies. We see the slight performance degradation when using ELMO (by
around 10%). This slowdown is due to the fact that caches (L1 and L2) make better use
of data sharing than the local memory. Specifically, local memory enables data shar-
ing among work-items within one work-group, while the L1 cache can identify the data
sharing within one work-group, and the L2 cache will enable data sharing globally on
the input data. Additionally, using ELMO introduces extra overheads for data movement
operations in and out of local memory. In this situation, one should disable the usage of
ELMO for not sacrificing any performance.

Finally, we note that (at the time of writing), OpenCL for Multicore CPUs will map lo-
cal memory onto global memory. All memory objects are cached by the hardware and ex-
plicitly using local memory for caching will most likely add unnecessary overheads [70].
Thus, more research is required in implementing a CPU-friendly back-end. Until then,
ELMO is recommended for architectures equipped with a separate, fast local memory.

6.6. RELATED WORK

6

107

Table 6.5: The execution time (in ms) of NBody with different bodies.

#Bodi es 10240 20480 40960 81920 163840 327680
N ati ve 1.74 6.75 25.32 98.42 389.76 1585.24
ELMO 1.93 7.23 28.67 108.88 437.57 1762.64

Sl owdown 1.11 1.07 1.13 1.11 1.12 1.11

6.6. RELATED WORK
In this section, we discuss prior work on tools, compilers, and optimization techniques
of using local memory. Baskaran et al. [13] develop an approach to effective automatic
data management for on-chip memories, including creation of buffers in on-chip mem-
ories for holding the needed data elements, determination of array access functions, and
generation of code that moves data between slow off-chip memory and fast local mem-
ories. In [172], Yang et al. propose a GPGPU compiler, which converts the un-coalesced
accesses to coalesced ones, and enhances the data reuse. Because of our analysis of the
challenges of using local memory, we present broader and more generic uses of local
memory, besides their proposed data reuse and data layout changing.

In [15], Bauer et al. present CudaDMA, an extensible API for efficiently managing
data transfers between the on-chip and off-chip memory of NVIDIA GPUs. The driving
force of CudaDMA is to emulate the use of asynchronous hardware DMA engines for
GPUs at a software level. However, there is no DMA hardware on GPUs, which makes
the asynchronous approach less fascinating. Further, the CudaDMA uses two classes
of warps: DMA warps and Compute warps, taking charge of data movement and com-
putation, respectively. This warp-specialization implementation introduces code bloat,
as we can see in the paper. In contrast, we build our ELMO based on multiple models
and keep the native way of using local memory, allowing our APIs to be easy-to-use and
user-friendly.

ELMO also relates to skeleton programming libraries such as Thrust [73], SkePU [39],
and SkeCL [146]. Thrust is a parallel algorithms library with high-level interface greatly
that enhances programmer productivity while enabling performance portability between
GPUs and multicore CPUs. SkePU provides a simple and unified interface for speci-
fying data-parallel computations with the help of skeletons on GPUs using CUDA and
OpenCL. The interface is also general enough to support other architectures, and SkePU
implements both a sequential CPU and a parallel OpenMP backend, and supports multi-
GPU systems. Similar ideas have been addressed by SkeCL. In contrast, ELMO is a pro-
gramming API oriented to local memory usage.

Research on local memory optimization techniques is yet another interesting related
topic. For example, in [103], Moazeni et al. present a memory reuse technique to mini-
mize the use of local memory space. This is to address the concern that an incremental
increase in the usage of local memory per thread can result in a substantial decrease in
performance. In [132], Ren et al. propose a framework for automatically tuning applica-
tions to machines with software-managed memory hierarchies. Such techniques could
be used to further optimize ELMO’s back-ends.

Overall, our related work survey shows that (1) ELMO’s design is novel and could

6

108 6. ELMO: AN API TO ENABLE LOCAL MEMORY USAGE

provide users an alternative way of using local memory in OpenCL, and (2) the back-end
can be further extended with more complex, yet fairly portable optimizations.

6.7. SUMMARY
On multiprocessors with explicitly managed memory hierarchies, programmers have
the responsibility of moving data in and out of the local memory for high performance.
This task can be complex and error-prone even for programming experts. Thus, we pro-
pose the ELMO API to improve productivity while preserving high performance. Ad-
dressing the challenges of (1) geometry mismatch, (2) work-items masking and binding
switches, and (3) inefficient local memory organization, the API presents a user-friendly
interface and covers diverse using scenarios.

Our experimental results show that ELMO can improve performance by up to 3.7×
on NVIDIA Quadro5000. Even when compared with hand-tuned code for using local
memory, ELMO can deliver matching performance and does not hinder other types of
hand-tuning. Besides, ELMO enables us to write 22 ∼ 30 less lines of code per kernel,
which will significantly improve productivity.

7
GROVER: REVERSE-ENGINEERING

LOCAL MEMORY USAGE

For a kernel with local memory, it is necessary to remove local memory usage when we
detect that using it leads to a performance degradation. In this chapter, we present a
compiling pass to remove the usage of local memory automatically. We show our ap-
proach, its implementation, and experimental results.

When implementing applications, OpenCL programmers typically make explicit use
of local memory in the attempt to gain performance, especially when programming
GPUs. However, the architectural diversity of the underlying platforms makes the per-
formance impacts of using local memory unpredictable [40, 44]: enabling local mem-
ory usage for the same application can lead to performance improvements for (some)
GPUs and performance losses for other GPUs and/or (some) CPUs (Section 7.1). In this
work, we propose an empirical solution to address this unpredictability: by disabling the
use of local memory for OpenCL kernels, programmers can make a direct performance
comparison between the two versions of a kernel (with and without local memory), and
choose the best performing version for a given platform.

However, disabling the local memory usage requires in-depth code analysis for sys-
tematic address translation between the global and local memory spaces. Such a “re-
verse engineering” process is always error-prone and time-consuming, and it is espe-
cially difficult when kernels are very complex and/or designed by a third party. Instead,
an automated tool is desirable to facilitate these changes. Moreover, by embedding such
a tool in a compiler, the choice between kernels with and without local memory can
easily become a performance auto-tuning step, and can enable code specialization for
performance portability [141].

To this end, we propose Grover, a method to automatically disable local memory
in OpenCL kernels, and implement it as a compiler pass. The key challenge for Grover

This chapter is based on our work published in the Proceedings of ICPP 2014 [41].

109

7

110 7. GROVER: REVERSE-ENGINEERING LOCAL MEMORY USAGE

is to create a correspondence between the accesses from the local and global memory
spaces. We show how we built this correspondence (Section 7.2) and how it can be used
in the LLVM compiling framework as an optimization pass (Section 7.3). We evaluate
our approach on 11 applications (Section 7.4) and show that Grover is able to transform
all of them. Moreover, we obtain interesting performance numbers on three different
platforms: by disabling local memory, 36% of the test cases show performance improve-
ment, while 27% of them suffer a performance loss (Section 7.5). Overall, we conclude
that Grover is a first auto-tuning prototype that can transparently alleviate performance
losses due to ineffective, platform-unfriendly usage of local memory.

Most previous work [13, 58, 76, 84, 128, 154, 160, 162] focuses on enabling SPMs
or local memory. However, we believe that in the context of performance portability
over diverse processors and their different local memory implementations, “reversing”
local memory usage becomes as important as enabling it. To the best of our knowl-
edge, our work is the first study on disabling the use of local memory in OpenCL kernels.
Although we focus on OpenCL in this chapter, our approach is similarly applicable to
CUDA and shared memory, which can show performance losses for different genera-
tions of GPUs [40]. To summarize, the contributions of our work are as follows:

• We propose a formal approach to determine the correspondence between global
and local memory spaces for a given OpenCL kernel.

• We present and demonstrate an empirical approach to detect the usage of local
memory in an OpenCL kernel.

• We describe Grover, a method for disabling the use of local memory in OpenCL
kernels, and its implementation as a compiler pass based on LLVM.

• We empirically prove the usability of Grover as a performance auto-tuning tool on
a set of 33 test-cases (11 applications on 3 different platforms).

The rest of the chapter is organized as follows: We motivate our work in Section 7.1.
At the core of the chapter, we present our method in Section 7.2 and implement it in
Section 7.3. We give the experimental setup in Section 7.4 and our performance results
in Section 7.5. In Section 7.6, we list the related work. Finally, we summarize this chapter
in Section 7.7.

7.1. MOTIVATION
In this section, we present the challenges of disabling local memory. We show that dis-
abling local memory usage in OpenCL kernels can lead to unexpected improved perfor-
mance, a conclusion that further motivates our work.

7.1.1. DISABLING LOCAL MEMORY USAGE
Applications written in OpenCL are functionally portable: the same application runs
correctly on different hardware platforms. However, the optimization strategies differ
over platforms. For example, GPU programming guides recommend enabling the use
of local memory as a performance booster [115], while CPU programming guides argue

7.1. MOTIVATION

7

111

1 __kernel void
2 MatTrans (const __global float * in , \
3 __global float * out , int W, int H){
4
5 __local float lm[S][S];
6 lm[ly][lx]= in [(wx*S+ly)*W+(wy*S+lx)];
7
8 barrier (CLK_LOCAL_MEM_FENCE);
9

10 float val = lm[lx][ly];
11 out[gy * H + gx] = val;
12 }

(a) Original code.

1 __kernel void
2 MatTrans (const __global float * in , \
3 __global float * out , int W, int H){
4
5 // __local float lm[S][S];
6 // lm[ly][lx]= in [(wx*S+ly)*W+(wy*S+lx)];
7
8 // barrier (CLK_LOCAL_MEM_FENCE);
9

10 float val = in [(wx*S+lx)*W+(wy*S+ly)];
11 out[gy * H + gx] = val;
12 }

(b) Remove local memory.

Figure 7.1: Removing local memory usage on Matrix Transpose. (l x, l y) is the local work-item index, (w x, w y)
is the work-group index, (g x, g y) is the global work-item index, (W, H) is the global data size, (S,S) is the local

data size.

for avoiding it [70]. Thus, migrating GPU-optimized code to CPUs might require some
degree of code specialization [141], especially when the performance penalties are sig-
nificant.

Disabling local memory usage is such a code specialization, which requires program-
mers to analyze kernel code, locate the candidate data structures that are placed and ac-
cessed in local memory, perform address translation between the local and global mem-
ory spaces, and remove redundant instructions. Doing the reversing work manually can
be error-prone and time-consuming, which is particularly true in a complicated pro-
gram context.

7.1.2. PERFORMANCE IMPACT

To illustrate how significant the performance impact of disabling local memory is on dif-
ferent platforms, we use two benchmarks from the NVIDIA SDK: MT– Matrix Transpose
and MM– Matrix Multiplication. We compare their performance on 6 platforms (in-
cluding GPUs, CPUs, and an Intel Xeon Phi described in Section 7.4.3).

In the original MT code (Figure 7.1a, line 6), local memory is used to stage data (i.e.,
cache it in). To disable local memory usage, we identify the candidate data structure
(Figure 7.1a, line 5), manually substitute the local memory access with its corresponding
global memory access (Figure 7.1b, line 10) and remove the redundant instructions (Fig-
ure 7.1b, lines 5-8), including data structure declarations and barriers. For MM, which
calculates C (i , j) = A(i ,k)×B(k, j), we manually remove the local memory usage for ma-
trix A, while keeping it enabled for matrix B.

The performance impacts of these transformations, for both MT and MM, are pre-
sented in Figure 7.2. For MT, removing the local memory usage leads to performance
losses on GPUs (Fermi, Kepler, and Tahiti), but improves performance for the cache-
only processors (SNB, Nehalem, and MIC). The performance increase is up to 1.3× on
SNB and 1.6× on Nehalem. For MM, by disabling local memory, we achieve a better per-
formance on Tahiti, SNB (1.6×), and MIC, but we lose performance on the other three
processors.

These results show that removing local memory usage can lead to (significant) per-
formance improvement, but the cases when improvements appear are not as predictable
as expected (i.e., the rule “local memory for GPUs, no local memory for CPUs” does not

7

112 7. GROVER: REVERSE-ENGINEERING LOCAL MEMORY USAGE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Ferm
i

Kepler

Tahiti

SN
B

N
ehalem

M
IC

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

(a) Matrix Transpose

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Ferm
i

Kepler

Tahiti

SN
B

N
ehalem

M
IC

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

(b) Matrix Multiplication

Figure 7.2: The performance impacts of removing local memory on two applications (the normalized
performance is ratio of the performance without local memory to that with local memory).

always hold). Therefore, we argue that, performance-wise, disabling local memory us-
age becomes a significant optimization for OpenCL kernels, especially in the context of
inter-platform portability. In the remainder of this chapter, we show how this optimiza-
tion can be applied automatically.

7.2. GROVER: SYSTEMATICALLY DISABLING LOCAL MEMORY

USAGE
In this section, we present our method of disabling local memory usage, and give a brief
proof for it. We finally demonstrate our method on a practical example.

7.2.1. OVERVIEW
By understanding how local memory is used - i.e., the typical patterns that appear in
OpenCL kernels, we can systematically reverse the process, step-by-step. In this chap-
ter, we focus on the most common use-case, when local memory is used as a software-
controlled cache. Specifically, this pattern has two stages of interest (seen in Figure 7.3):
data storage and data usage. In the storage stage, data is loaded from global memory
(global load operation, GL) and stored into a data structure in local memory (local store
operation, LS), as shown in Figure 7.1a, line 6. The usage stage refers to computation
performed on/with the data stored in local memory (local load operation, LL), as shown
Figure 7.1a, line 10. A synchronization (by local barrier) is required between these stages
(Figure 7.1a, line 8).

When disabling local memory, we need to determine which data element in the global
space (x ′, y ′, z ′) corresponds to a given data element in the local space (x, y, z) (Figure 7.3).
Hence, the challenge is to determine a correspondence function between the global
space and the local space.

TERMINOLOGY

For readability purposes, we define a brief list of important terms commonly used in this
chapter.

7.2. GROVER: SYSTEMATICALLY DISABLING LOCAL MEMORY USAGE

7

113

Figure 7.3: A common pattern for using local memory. The figure is simplified to only present the
two stages of interest for Grover and the main operations that affect the translation.

Thread Index OpenCL defines an N-dimensional thread (or work-item) index space
(N ≤ 3). Each work-item in this space has a unique local thread index (l x, l y, l z), a
global thread index (g x, g y, g z), and a work-group index (w x, w y, w z). Note that a global
thread index can be calculated from the local thread index and the work-group index.

Data Index In OpenCL, data buffers are collection of data elements, each identified by
a data index. Data elements stored in the local memory space are qualified by __l ocal ,
and will be further called local data elements, indexed by a local index (x, y, z). Simi-
larly, data elements stored in global memory space are qualified by __g l obal , and will
be called global data elements (indexed by a global data index, (x ′, y ′, z ′)). Our goal is
to find a systematic correspondence between the global (memory) space and the local
(memory) space, such that we can determine the global data index corresponding to a
given local memory access.

Typically, each thread works on data elements in a region determined by its thread
index. Hence, a data index is a function of a thread index: a local data index is a function
of a local thread index (l x, l y, l z), while the global data index is a function of both the
local thread index (l x, l y, l z) and the work-group index (w x, w y, w z).

7.2.2. THE METHOD BEHIND GROVER
Before disabling local memory, we need to select all the candidate data structures by
analyzing the kernel code. We assume for now these candidates are known (the details
on determining them are mentioned in Section 7.3.1), and we focus on determining the
global data index with the following steps.

S1. Analyze the local memory accesses (LS and LL) and determine the local data
index for both store and load operations. Here we represent the LS data index as (x, y, z)
and the LL data index as (xLL , yLL , zLL). Given that local data index is a function of local
thread index, we obtain Equation 7.1.

x = f (l x, l y, l z)
y = g (l x, l y, l z)
z = h(l x, l y, l z)

(7.1)

7

114 7. GROVER: REVERSE-ENGINEERING LOCAL MEMORY USAGE

where we assume f , g , and h are linear functions of l x, l y , and l z. Thus, we further
substitute these functions in Equation 7.1 to obtain Equation 7.2.

x = a0 · l x +b0 · l y + c0 · l z +d0

y = a1 · l x +b1 · l y + c1 · l z +d1

z = a2 · l x +b2 · l y + c2 · l z +d2

(7.2)

where ai , bi , ci , and di (i ∈ {0,1,2}) are constants for a local memory usage. Similarly,
we can represent the LL data index xLL , yLL , and zLL as a function of local thread index.
However, we consider them to be constants here, and seek to determine the global data
index for the local data index (xLL , yLL , zLL).

S2. Create a linear system and solve it for (l x, l y, l z). From the previous step, we
can establish a system of linear equations in Equation 7.3, where l x, l y , and l z are the
unknowns and ai , bi , ci , and di (i ∈ {0,1,2}) are the coefficients, and xLL , yLL , zLL are the
constant terms of the system. By solving the system, we obtain the solution (lx, ly, lz).

a0 · l x +b0 · l y + c0 · l z +d0 = xLL

a1 · l x +b1 · l y + c1 · l z +d1 = yLL

a2 · l x +b2 · l y + c2 · l z +d2 = zLL

(7.3)

We note that the global data index is reversible if the system has a single unique so-
lution. Consequently, when the system does not have a unique solution, Grover will not
be able to cancel the use of the local memory for that particular case.

S3. Analyze the GL operation to determine G , a function of the the work-group index
and the local thread index: (x ′, y ′, z ′) =G((w x, w y, w z), (l x, l y, l z)).

S4. Substitute the solution of the system in G to find the new global index. G((w x, w y, w z), (lx, ly, lz))
is then the global data index corresponding to the local data index (xLL , yLL , zLL).

Proof. By analyzing the process of loading data elements from the global space to the
local space, we establish a correspondence G (G is determined for a memory access).

(x, y, z) →G(x, y, z). (7.4)

With Equation 7.1 and the global data index expression (in S3), we derive Equa-
tion 7.5 from Equation 7.4.

(f (l x, l y, l z), g (l x, l y, l z),h(l x, l y, l z))

→G((w x, w y, w z), (l x, l y, l z)).
(7.5)

Given a local data index (xLL , yLL , zLL), we obtain

(xLL , yLL , zLL) →G((w x, w y, w z), (lx, ly, lz)),

where the work-group part (w x, w y, w z) stays the same for the threads within a work-
group and (lx, ly, lz) is the solution to Equation 7.3. Therefore, G((w x, w y, w z), (lx, ly, lz))
is the global data index of the local data index (xLL , yLL , zLL). ä

7.3. GROVER IMPLEMENTATION

7

115

7.2.3. AN EXAMPLE: MATRIX TRANSPOSE

To illustrate how Grover’s method works, we discuss the Matrix Transpose example (see
Figure 7.1a). Furthermore, to bridge to the implementation phase (Section 7.3), we in-
troduce index expression trees (Figure 7.4 and Figure 7.5) as a notation for data indexes.
In an expression tree, the leaves are operands, such as constants or variable names, and
the internal nodes contain operators, such as additions (+) and multiplications (∗). By
applying the operator to the operands, we evaluate an index expression tree and obtain
the data index.

S1. By analyzing the code in Figure 7.1a, we abstract the LS data index as (l x, l y) and
the LL data index as (l y, l x). Accordingly, their expression trees are shown in Figure 7.4.
Note that S is the width of the allocated local data space.

S2. We know that,

LS :

{
x = l x
y = l y

, LL :

{
xLL = l y

yLL = l x
,

where we underline the LL data index (constant terms of Equation 7.3) to differentiate
it from the LS data index (unknowns of Equation 7.3). We then create a system of linear
equations as, {

l x = l y

l y = l x

It is straightforward to get the solution of this system, i.e., (lx, ly) = (l y , l x).
S3. By analyzing the code in Figure 7.1a, we obtain that the GL data index is ((w y, w x), (l x, l y))

and its index expression tree is shown in Figure 7.5a. We note that, due to a more compli-
cated index composition (work-group index and local thread index), the index tree has
more levels than the local index tree (see Figure 7.4).

S4. We update the global data index with the solution (l y , l x) and obtain ((w y, w x), (l y , l x)),
which is the new global load index shown in Figure 7.5b.

(a) Local store. (b) Local load.

Figure 7.4: Local access data index in expression tree.

7.3. GROVER IMPLEMENTATION
Ideally, Grover transforms any OpenCL kernel that uses local memory into a version
without local memory usage. To achieve this goal, we need to create the new global

7

116 7. GROVER: REVERSE-ENGINEERING LOCAL MEMORY USAGE

(a) Global load. (b) New global load.

Figure 7.5: Global load data index in expression tree.

load instruction nGL, and its index-related instructions. Therefore, we implement the
reversing algorithm (in Section 7.2.2) in the following six steps:

1. Selecting the reversing candidates (Section 7.3.1).

2. Building the index expression trees (Section 7.3.2).

3. Determining the data index (Section 7.3.3).

4. Creating and solving the linear system (Section 7.3.4).

5. Duplicating the new load instruction (Section 7.3.5).

6. Updating the new expression tree (Section 7.3.6).

7.3.1. SELECTING CANDIDATES
Before removing local memory usage, we need to select the candidate data structures
and detect the three operations: GL, LS, and LL. To do so, we first investigate all the GL
operations in the kernel and check whether their paired store operations are LS opera-
tions. Next, we locate all LL operations that use the same data structures as the identified
LS operations.

We note that there are applications - such as image convolution, for example -
where multiple passes are required to load data from global memory to local memory.
This means that the detection phase will identify more (GL, LS) pairs. However, using any
of the pairs leads to the same correspondence between the global and the local space.
Hence, we can choose any one of these pairs.

7.3.2. BUILDING THE INDEX EXPRESSION TREES
To enable the transformations mentioned in Section 7.2.2, we use the index expression
tree to represent a data index, as introduced in Section 7.2.3. Figure 7.6 shows the tree
node data structure, which has four fields: (1) the value field, (2) the state field, (3) the
pointers to its children nodes, and (4) the pointer to its parent node. The value field
can be an instruction, a built-in function, a constant number, or an argument. The state
field is designed for a special requirement: to mark whether the current node needs to

7.3. GROVER IMPLEMENTATION

7

117

Figure 7.6: Tree node structure (ExprNode).

update the data index. To facilitate tree traversing, the structure also contains pointers
to its children nodes and its parent node.

The index expression tree for a memory access is built recursively. The internal nodes
of an index tree can have one child like a type cast instruction, or two children like an ad-
dition instruction. Thus, an index expression tree can have one (or two) sub-tree(s). The
recursive algorithm stops when the value is one of the follows: (1) a call instruction, (2)
a constant number, (3) a function argument, or (4) a phi node. In this way, we can build
the index expression trees GLTree, LSTree, and LLTree for GL, LS, and LL, respectively.

7.3.3. DETERMINING THE DATA INDEX
To create the linear equations (in S2 of Section 7.2.2), we need to specify the data index of
LS and LL from their index expression trees LSTree and LLTree. In this chapter, we use a
pattern (Figure 7.7a, a 2D example) to identify the data index: when traversing an index
tree top-down, we first find the ‘+’ node (a node with an addition instruction), which
splits the high dimension (H) and the low dimension (L). The high dimension is further
identified by the ‘∗’ node (a node with a multiply instruction). Note that it can also be a
shift-left operation instead of a ‘∗’ operation. When it comes to a 3D example, we use a
similar way to determine the LS data index (x, y, z) and the LL data index (xLL , yLL , zLL).

In real-world cases, the pattern can be more complicated as shown in Figure 7.7b,
where L1 is a loop-dependent term while the others are independent of the loop. There-
fore, the L1 term lies at the second-level of the tree, to avoid computing the loop-independent
terms repeatedly. However, the ‘+ → ∗’ pattern (in Figure 7.7a) remains the same. We
consider the ‘+→+→∗’ pattern as a derived one and use a special case to handle it. In
this way, we get the low dimension of the data index as L1+L2 (see Figure 7.7b).

7.3.4. CREATING AND SOLVING THE LINEAR SYSTEM
Based on the data index of LS and LL obtained in the previous step, we can create a
system of linear equations, each of which has a left-hand-side (LHS) term and a right-
hand-side (RHS) term. To obtain (l x, l y, l z) from the system, we need to simplify the LHS
term. At the same time, complementary operations are required on the RHS term.

Figure 7.8 shows an example of how we simplify the LHS terms. The LHS term is
(l y + r) and the RHS term is (l x + i). By subtracting r from both sides, we can obtain l y
on the LHS and get the RHS expression tree ((l x + i)− r) (Figure 7.8b). Similarly, other

7

118 7. GROVER: REVERSE-ENGINEERING LOCAL MEMORY USAGE

(a) Data index pattern. (b) A derived pattern.

Figure 7.7: Data index patterns.

(a) Initial form. (b) Final form.

Figure 7.8: Simplifying the left-hand-size terms.

complementary operations are equally required for a more complicated linear system.

7.3.5. DUPLICATING THE NEW LOAD INSTRUCTIONS
Creating a new global load instruction (nGL) includes creating the load instruction itself
and the instructions for the calculation of its index-related instructions. We need to pre-
pare these two parts when replacing the LL instruction. Since the original global load
operations (GL) might be used somewhere else in the code (other than the one used by
the local store), it is not safe to re-use and update GLTree. Hence, we need to duplicate
GL (as nGL) and its index-related instructions.

To do so, two sub-steps are required: (1) update the state of each tree node, and (2)
create the index-related instructions. First, we mark the nodes that need instruction
duplication in GLTree. To this end, we locate the l x, l y , and l z which are the nodes to be
replaced. From there, all the nodes preceding these nodes are marked as to be updated.
We backtrack the tree until we reach the root node. We reuse the sub-expressions that are
shared by the GL instruction and the nGL instruction when it is not required to update
the node.

With the updated expression tree, we duplicate the instructions and insert them be-
fore the LL instruction. When inserting instructions into the kernel, special care on the
expression construction order is needed. Here we use the post-order DFS approach to
traverse the tree and create the required instructions (Algorithm 1). Note that we need to
set the use-and-value relationship between instructions. In this way, we can create the
nGL and its index calculation instructions, while keeping the GL instruction.

7.3. GROVER IMPLEMENTATION

7

119

Algorithm 1: Duplicating instructions algorithm.

input : A pointer to the current node node
input : A position to insert the instruction pos
output : A pointer to the newly created value v
duplicateInst(node, pos)
begin

v ← getValue(node);
if i sC al l Inst (v) or i sConst (v) or i s Ar g s(v) or i sPH I (v) then

if node.st ate then
ol d Inst ← getInst(v);
new Inst ← cloneInst(oldInst);
insertInst(newInst, pos);
r etur n new Inst ;

r etur n v ;

else
nC hi l dr en ← getNumOfChildren(node);
if nC hi l dr en == 1 then

chi l d ← getChild(node, 0);
vL ← duplicateInst(child, pos);
if node.st ate then

ol d Inst ← getInst(v);
new Inst ← cloneInst(oldInst);
insertInst(newInst, pos);
setOperand(newInst, vL);
r etur n new Inst ;

r etur n v ;

if nC hi l dr en == 2 then
lC hi ld ← getChild(node, 0);
rC hi l d ← getChild(node, 1);
vL ← duplicateInst(lChild, pos);
vR ← duplicateInst(rChild, pos);
if node.st ate then

ol d Inst ← getInst(v);
new Inst ← cloneInst(oldInst);
insertInst(newInst, pos);
setOperand(newInst, vL);
setOperand(newInst, vR);
r etur n new Inst ;

r etur n v ;

7.3.6. UPDATING THE NEW EXPRESSION TREE

Once we have introduced the nGL instruction, a new index expression tree nGLTree is
built with the method mentioned in Section 7.3.2. Thereafter, starting with the root node
of nGLTree, we locate the l x, l y , and l z nodes and substitute them with the solution

7

120 7. GROVER: REVERSE-ENGINEERING LOCAL MEMORY USAGE

(lx, ly, lz) obtained in Section 7.3.4. Note that type casting instructions might be required
when performing the substitution. Finally, all the uses of the LL instruction are replaced
with the nGL instruction.

7.4. EXPERIMENTAL SETUP
This section discusses how we incorporate our compiler pass with vendors’ run-time,
the benchmarks, and the devices used in the experiments.

7.4.1. INCORPORATING GROVER

To allow Grover to be fully automated, we have implemented it in the LLVM/Clang (v3.2)
compiling framework. The pipeline is shown in Figure 8.2. Taking OpenCL C kernels,
the LLVM front-end (Clang) transforms them into the SPIR [59] format (LLVM IR format).
Thereafter, Grover analyses the SPIR code and removes local memory usage (when de-
tecting any). Our framework then exports the SPIR kernels into vendor-specific run-time
such as Intel SDK for OpenCL Applications 2013.

Figure 7.9: Incorporating our grover.

7.4.2. SELECTED BENCHMARKS

For evaluating Grover, we selected 11 applications from the AMD SDK, the NVIDIA SDK,
the Rodinia benchmarking suite and the Parboil suite. The applications and the datasets
we used in the experiments are listed in Table 7.1. All these applications are making
use of local memory in their original versions that fit the pattern mentioned in Sec-
tion 7.2. We use Grover to disable local memory usage and compare the performance
of the kernels (the average of the kernel execution time over 20 runs) before and after
Grover. The oclMatriMul application is a special case: the SDK uses local memory on
two data structures (Matrix A and Matrix B). We remove them one by one, obtaining
three versions of the code: NVD-MM-A (removing local memory for Matrix A), NVD-MM-B
(removing local memory for Matrix B), and NVD-MM-AB (removing both).

Finally, we note that although the choice of the work-group size has a significant
impact on the benchmark performance [139], selecting the optimal work-group size is
beyond the scope of this work (i.e., we focus on the local memory disabling, not on opti-
mizing the overall performance of either of the kernel versions). Therefore, all the exper-
iments use the default work-group size settings, as specified in the original benchmarks.

7.4. EXPERIMENTAL SETUP

7

121

Table 7.1: OpenCL benchmarks.

Benchmark Source ID DataSet
StringSearch AMD SDK AMD-SS StringSearch_Input.txt

MatrixTranspose AMD SDK AMD-MT 10240x10240

RecursiveGaussian AMD SDK AMD-RG RecursiveGaussian_Input.bmp

MatrixMultiplication AMD SDK AMD-MM 2048x2048x2048

oclTranspose NVIDIA SDK NVD-MT 10240x10240

oclMatrixMul NVIDIA SDK NVD-MM-A A(800 x 1600), B(800 x 800)

oclMatrixMul NVIDIA SDK NVD-MM-B A(800 x 1600), B(800 x 800)

oclMatrixMul NVIDIA SDK NVD-MM-AB A(800 x 1600), B(800 x 800)

oclNbody NVIDIA SDK NVD-NBody 163840

stencil Parboil PAB-ST small

streamcluster Rodinia ROD-SC (10 20 256 65536 65536 1000)

Table 7.2: The platforms used for our experiments. The GPU devices do not support SPIR, and were only used
when manual kernel transformations were applied (Section 7.1)

.

Name Fermi Kepler Tahiti
Host Intel Xeon E5620 Intel Xeon E5620 Intel Xeon E5620
Host OS CentOS v6.2 CentOS v6.2 CentOS v6.2
Device NVIDIA Tesla C2050 NVIDIA Tesla K20m AMD HD7970
GCC v4.4.6 v4.4.6 v4.4.6
OpenCL CUDA v5.5 CUDA v5.5 AMD APP v2.8
SPIR No support No support No support
Name SNB Nehalem MIC
Host Intel Xeon E5-2620 Intel Xeon X5650 Intel Xeon E5-2620
Host OS CentOS v6.2 CentOS v6.2 CentOS v6.2
Device Intel Xeon E5-2620 Intel Xeon X5650 Intel Xeon Phi 5110P
GCC v4.4.6 v4.4.6 v4.4.6
OpenCL Intel OCL SDK v3.2.1 Intel OCL SDK v3.2.1 Intel OCL SDK v3.2.1
SPIR ver 1.2 ver 1.2 ver 1.2

7.4.3. PLATFORMS AND DEVICES

At the moment of writing 1, only Intel has released an OpenCL implementation sup-
porting SPIR [59]. NVIDIA and AMD have no SPIR support yet. Thus, we have run and
compared the benchmarks on three devices from Intel (Nehalem, SNB, and MIC), whose
configurations are shown in Table 7.2. While this selection of devices might lead to a
certain bias in the performance gain/loss ratio after using Grover (as CPUs are likely to
benefit more from disabling local memory [70] than GPUs), it does not challenge the
correctness of this proof-of-concept: the kernels Grover builds will be portable and thus
execute correctly on any devices that support SPIR.

1February, 2014.

7

122 7. GROVER: REVERSE-ENGINEERING LOCAL MEMORY USAGE

7.5. PERFORMANCE EVALUATION AND DISCUSSION
In this section, we first use Grover to test whether we can disable local memory usage for
each benchmark. We also evaluate the performance impact of this transformation and
discuss the method limitations.

7.5.1. CALCULATING THE NEW DATA INDEX
Table 7.3 shows the data index of nGL for each benchmark. We first abstract the index
of GL, LS, and LL. With the approach proposed in Section 7.2.2, we calculate the data
index of nGL. For AMD-SS, NVD-NBody, and ROD-SC, the work-group index is zero. This
is because all the work-items share the same data block. For example, the pattern string
in AMD-SS is shared by all the work-items. Note that wx, wy, wz, lx, ly, lz represent the
work-group and work-item indexes; all the other symbols are application specific. After
the transformation, each benchmark still runs correctly, proving the correctness of the
changes.

Table 7.3: Determining the data index of nGL.

ID GL LS LL nGL
AMD-SS ((0, 0, 0), (lx, 0, 0)) (lx, 0, 0) (i, 0, 0) ((0, 0, 0), (i, 0, 0))
AMD-MT ((wx, wy, 0), (lx, ly, 0)) (lx, ly, 0) (lx, ly, 0) ((wy, wx, 0), (lx, ly, 0))
NVD-MT ((wx, wy, 0), (lx, ly, 0)) (lx, ly, 0) (ly, lx, 0) ((wx, wy, 0), (ly, lx, 0))
AMD-RG ((wx, wy, 0), (lx, ly, 0)) (lx, ly, 0) (lx, ly, 0) ((wx, wy, 0), (lx, ly, 0))
AMD-MM ((wx, wy, 0), (lx+i*S, ly, 0)) (lx, ly, 0) (j, ly, 0) ((wx, wy, 0), (j+i*S, ly, 0))
NVD-MM-A (lx+a, ly, 0) (lx, ly, 0) (k, ly, 0) (k+a, ly, 0)
NVD-MM-B (lx+b, ly, 0) (lx, ly, 0) (lx, k, 0) (lx+b, k, 0)
NVD-MM-AB – – – –
NVD-NBody ((0, 0, 0), (i+lx, 0, 0)) (lx, 0) (_i, 0) ((0, 0, 0), (i+_i, 0, 0))
PAB-ST ((wx, wy, 0), (lx, ly, k)) (lx, ly, 0) (lx, ly, 0) ((wx, wy, 0), (lx, ly, k))
ROD-SC ((0, 0, 0), (x, lx, 0)) (lx, 0, 0) (i, 0, 0) ((0, 0, 0), (x, i, 0))

7.5.2. RESULTS SUMMARY
The performance results on SNB, Nehalem, and MIC are shown in Figure 7.10. The base-
line performance is obtained when using local memory. The normalized performance
(np) is the ratio of the performance without local memory to that with local memory.
When this ratio is close to 1 (within 5%), the two versions of the kernel have similar
performance. For ratios below 1, Grover’s pass leads to performance losses, while for
ratios larger than 1 we speak about performance improvement.

We show the overall performance gain/loss distribution for a similarity threshold of
5% in Table 7.4. In total, for our 33 test-cases, 36% benefit from disabling local memory,
while 27% show performance loss.

7.5.3. PERFORMANCE ANALYSIS
We further analyze the performance results on SNB, Nehalem, and MIC, as shown in
Figure 7.10. We observe that disabling local memory leads to varied performance results.
On SNB, we observe speedups of 1.67×, 1.12×, 1.18×, 1.07×, 1.16× for NVD-MT, AMD-RG,

7.5. PERFORMANCE EVALUATION AND DISCUSSION

7

123

Table 7.4: Performance gain/loss distribution

SNB Nehalem MIC Total (%)
Gain 6 4 2 12 (36%)
Loss 2 4 3 9 (27%)
Similar 3 3 6 12 (36%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

AM
D
-SS

AM
D
-M

T

N
VD

-M
T

AM
D
-R

G

AM
D
-M

M

N
VD

-M
M

-A

N
VD

-M
M

-B

N
VD

-M
M

-AB

N
VD

-N
Body

PAB-ST

R
O
D
-SC

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

(a) On SNB

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

AM
D
-SS

AM
D
-M

T

N
VD

-M
T

AM
D
-R

G

AM
D
-M

M

N
VD

-M
M

-A

N
VD

-M
M

-B

N
VD

-M
M

-AB

N
VD

-N
Body

PAB-ST

R
O
D
-SC

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

(b) On Nehalem

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

AM
D
-SS

AM
D
-M

T

N
VD

-M
T

AM
D
-R

G

AM
D
-M

M

N
VD

-M
M

-A

N
VD

-M
M

-B

N
VD

-M
M

-AB

N
VD

-N
Body

PAB-ST

R
O
D
-SC

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

(c) On MIC

Figure 7.10: Normalized performance on three devices.

NVD-MM-A, NVD-MM-AB, PAB-ST, respectively. The kernel performance drops by 44% for
AMD-MM, 19% for NVD-MM-B and 5% for NVD-NBody. For AMD-SS, AMD-MT, and AMD-RG,
the performance is only marginally affected.

We noticed a significant performance increase for NVD-MT on SNB. To ensure all
global reads and writes are coalesced, NVD-MT uses local memory to stage data on GPUs.
On CPUs, however, the coalescing rules are not necessary. Further, the work-items within
a work-group are usually mapped onto a hardware thread [61], which is a kind of tiling
and implicitly enables data locality. The reason for the performance increase is the same
for AMD-RG. For AMD-MT, removing local memory brings little gain due to the explicit us-
age of vector data types (i.e., each work-item works on 4×4 matrix elements).

For NVD-MM-A, SNB shows performance improvement. When analyzing the memory
access of Matrix A, we noticed that each work-item needs a row of data elements from
it. On GPUs, this generates a large amount of data reuse among the work-items of the
same work-group. When it comes to CPUs, this data reuse is implicitly exploited by the
on-chip caches. That is, the data elements (in the form of cache-lines) loaded by a work-
item can be reused by its neighboring work-items. In this way, using local memory itself
becomes an extra overhead, compared with only using the caches. Therefore, removing
local memory gives a performance increase. The explanations stay the same for PAB-ST.

We noticed a performance drop on AMD-MM and NVD-MM-B by removing local memory
usage. We found that the application uses local memory on the column-wise accessed
matrix. For such a case, using local memory changes the data layout, and ensures that
data elements are reused before they are kicked out of caches. Meanwhile, AMD-MM uses
data in a row-major manner, but it exploits vector data types, which changes the memory
access pattern to be column-major. Thus, removing local memory is also detrimental to
AMD-MM’s performance.

By removing local memory, we see a performance drop on NVD-NBody on SNB, but a

7

124 7. GROVER: REVERSE-ENGINEERING LOCAL MEMORY USAGE

slight speedup on Nehalem and MIC. This happens because in NVD-NBody, each work-
item needs to access all the input data elements (bodies). Thus, the work-items within
a work-group will access the same element simultaneously. The pattern should be iden-
tified by caches and therefore we expect that removing local memory should give a per-
formance increase (the reasons behind the performance loss on SNB are under inves-
tigation). A similar observation can be made about ROD-SC: performance increases on
SNB, but decreases on Nehalem and MIC. We expect removing local memory to lead to
a performance boost, due to all work-items sharing a small array of 16 data elements,
stored far from each other (not in a cacheline). When using local memory, these ele-
ments are gathered and stored contiguously in the local space. Thus, this case resembles
NVD-MM-B, which gives a better cache utilization by using local memory.

In general, Nehalem and SNB show similar performance trends when we disable
local memory (Figure 7.10b), with the exception of the number for NVD-MM-AB. MIC
behaves significantly different: we observe that most applications have similar perfor-
mance with and without using local memory; only minor differences can be observed
for NVD-MM-A/B/AB. This is mainly because MIC has a different cache hierarchy: a dis-
tributed last-level cache, compared with a unified one on Nehalem and SNB. This ar-
chitectural difference minimizes the performance gaps between with and without local
memory.

Overall, disabling local memory still leads to unpredictable performance outcomes
on cache-only processors from different generations. Thus, the empirical exploration of
Grover remains the ideal approach for choosing the best performing version of a kernel
for a given platform.

7.5.4. LIMITATIONS

Grover can successfully remove local memory usage, but it has its limitations. Being built
based on a common use-case (i.e., a local memory usage pattern), the tool is applicable
for all kernels fitting this use-case. For other use-cases - e.g., when local memory is used
as temporal storage for repeated read/write operations - the analysis must be adjusted.
However, in our experience, such applications (e.g., reductions), typically benefit from
using local memory [44] on any platform.

Furthermore, using local memory often leads to implementing tiling, and the result-
ing code may have a different algorithm (code skeleton) than its original (sequential)
form. Grover transforms the code into a version without local memory, but not to its
original form. Such a case can be seen with our tests with NVD-NBody, which achieves a
better performance with the original form.

7.6. RELATED WORK
We list here several directions of past research that are related to this work: address
translation, enabling local memory, special compiling of GPU code for CPUs, and special
compiler passes for performance improvement.

Address translation between a large (global) space and a small (local) space is an old
research topic in operating systems and computer architecture. For example, address
translation between virtual and physical memory requires a mapping stored in a page

7.6. RELATED WORK

7

125

table, where each entry includes flags and a frame number [149]. Similarly, to find a line
in a cache, both the slot bits and tag bits are used to correlate the global address and local
cache address [62]. In our work, this correspondence needs is neither fixed, nor static: it
needs to be investigated and built for any kernel.

Enabling local memory has been studied extensively for the SPMs on GPUs. Most
studies focus on identifying data reuse (e.g., using a polyhedral model) [13, 58, 84, 160,
162] and exploit it by enabling local memory. Alternatively, in [128], the authors present
a fully automated C-to-FPGA framework, including an end-to-end solution for on-chip
buffer optimization that automatically detects and implements the available date reuse
in a loop nest. However, all such studies focus on data access patterns and its exploita-
tion, while we focus on code analysis for disabling local memory.

Several API-based approaches have also been proposed to enable local memory. In [15],
the authors present CudaDMA, an extensible API for efficiently managing data trans-
fers between the on-chip and off-chip memories of GPUs. In [44], the authors present a
user-friendly API, ELMO, based on identifying patterns of local memory usage. We got
inspired by the idea of local memory usage patterns in these papers, but our approach is
fully automated for a given local memory usage pattern.

Compiling GPU kernels for CPU architectures is another old challenge. For ex-
ample, MCUDA [148] is a source-to-source translator from CUDA for GPU architec-
tures to multi-threaded C for multi-core CPU architectures. It serializes the work of a
thread block within a single CPU thread and parallelizes the work of the kernel at thread
block granularity. In [61], the authors present Twine Peaks, a software platform for het-
erogeneous computing that executes code originally targeted for GPUs efficiently on
CPUs as well. In particular, the system maximizes the utilization of functional units in
the CPUs by exploiting the data locality and data parallelism exposed by the GPGPU
model through computation kernels. Neither of these systems addresses explicitly the
local/shared memory issue, opting instead for generic transformations of the code.

Compiling passes for improving OpenCL’s performance are being increasingly pop-
ular in search of performance portability. In [173], Yang et al. propose a source-to-source
translator (based on the Cetus compiler framework) to address two major challenges:
effective utilization of GPU memory hierarchies and judicious management of paral-
lelism. In [79], Ralf Karrenberg and Sebastian Hack present a language- and platform-
independent code transformation that vectorizes a function given by an arbitrary control
flow graph in SSA form. They present a data-flow analysis that determines which code
regions have constraints for vectorization concerning alignment and consecutiveness.
In [92], Alberto Magni et al. consider thread-coarsening of OpenCL kernels and evalu-
ate its effects across a range of devices based on LLVM. In this context, our approach is
unique in finding a pass that has not been yet explored: the disabling of local memory.

To summarize, ours is the first study focused on automatically disabling the usage
of local memory in OpenCL kernels through a compiler pass. While we were inspired
by previous studies on compiler passes for OpenCL code optimization and/or special-
ization, address translation research, and local memory enabling, our simple and func-
tional approach is novel in goal, method, and implementation.

7

126 7. GROVER: REVERSE-ENGINEERING LOCAL MEMORY USAGE

7.7. SUMMARY
While functional portability is ensured by the OpenCL platform model and the efforts
of the hardware vendors to properly support it, performance portability remains a chal-
lenging task. Thus, several platform-specific optimizations have to be enabled or dis-
abled when porting kernels from one device to another. One example of such an opti-
mization is the use of local memory, rendered unpredictable by the diversity of hardware
platforms and OpenCL mappings.

In this chapter, we have shown evidence that using local memory can lead to sig-
nificant performance penalties for many devices - both GPU and CPU platforms. Thus,
we proposed an approach for reverse-engineering OpenCL kernels with local memory.
Specifically, we designed and implemented Grover, a method for automatically remov-
ing local memory usage from OpenCL kernels in search for these performance improve-
ments. Grover is implemented as a compiler pass, which enables programmers to auto-
tune the use of local memory (i.e., on/off) to obtain the best performing version of a
kernel for a given platform.

We have validated Grover on a set of 11 applications, showing that the local mem-
ory usage has been correctly canceled. For more than a third of the 33 test-cases (11
applications on 3 different platforms), we observed performance improvements. Thus,
Grover can be used for exploiting potential performance improvements due to removing
local memory usage in OpenCL kernels. We believe Grover proves that the performance
portability of OpenCL codes can be improved by automated code specialization.

8
SESAME: TOWARDS A PORTABLE

PROGRAMMING FRAMEWORK

To achieve high performance across platforms, we have proposed in previous chap-
ters code specialization techniques for vectorization and local memory usage. We have
shown that performance can be largely preserved by enabling platform-specific opti-
mizations with a unified programming model. In this chapter, we propose a generic
framework to improve the performance portability of parallel applications beyond be-
yond vectorization and local memory usage, and sketch the design of such a generic
framework.

8.1. A REALISTIC SCENARIO
It is often the case that poor cross-platform performance of parallel applications is due to
non-portable optimizations. Typically, a domain expert writes code with a unified pro-
gramming model, performs some optimizations as recommended in the “Best Practice
Book”, and obtains decent performance on a specific platform. However, when running
in another context, this application might lead to disappointing performance.

In previous chapters, we have shown how OpenCL is suffering from non-portable
optimizations. However, this also happens in other programming models. For exam-
ple, working with OpenMP, a traditional shared memory programming model [29], we
observed similar results on Intel MIC: using loop tiling leads a much better utilization
on a traditional multi-core CPU than on MIC. Using additional pragmas, OpenMP has
been extended to support programming on many-core processors (like Intel MIC), and
legacy code parallelized in OpenMP can now run on the many-core processors with mi-
nor modifications. For example, we ported BT-MZ (the multi-zone version of the Block
Tri-diagonal solver in the NAS Parallel Benchmark [74]) written in OpenMP onto Intel
MIC. The obtained performance, illustrated in Figure 8.1, peaks at around 30 GFLOPS.
Besides BT-MZ’s irregular memory accesses, the low performance (3% of the peak) is

This chapter is based on our work published in the Proceedings of CCGrid 2013 [46].

127

8

128 8. SESAME: TOWARDS A PORTABLE PROGRAMMING FRAMEWORK

 1
 2

 3
 4

 5
 6

 7
 8

 10
 20

 30
 40

 50
 60

 0

 10

 20

 30

 40

G
F

L
O

P
S

 30

 20

 10

it ot

G
F

L
O

P
S

Figure 8.1: FLOPS obtained from BT-MZ when varying the number of outer threads (ot) and inner threads (it).

due to the architecture disparities with the traditional CPUs on cache hierarchies and
processing core inter-connection.

To achieve high performance on multiple platforms, programmers have to customize
their code (to be platform-specific), and, in the worse case, generate one variant per
target platform. This process becomes unmanageable by hand when the kernels are
complicated or/and multiple optimizations are required simultaneously. The previous
chapters have proven that such code specialization can be solved in a systematic way
on vectorization and local memory usage, by adapting standard and user-customized
optimizations to platforms (semi-)automatically. Going a step further, we extend our
approach into a generic programming framework called Sesame.

8.2. THE FRAMEWORK
Figure 8.2 shows the Sesame framework. Taking platform-agnostic code as input, Sesame per-
forms code transformations and generates specialized kernels according the underlying
platform(s). The Sesame framework consists of four components: (1) a feature identifier,
(2) an impact predictor, (3) a transformer, and (4) an auto-tuner.

The feature identifier finds the architectural features that are sensitive to application
performance, and generates corresponding optimization techniques into the optimiza-

Figure 8.2: Sesame: a framework for many-core processors.

8.3. SESAME INPUTS

8

129

tion pool. In previous chapters, we regard local memory and vector cores as two key fea-
tures. Accordingly, whether or not to use local memory/vectorization is regarded as an
optimization in this optimization pool. The impact predictor analyzes the input kernel
and checks which optimization (from the optimization pool) is efficient. The predictor
can provide essential information on whether we need to enable or disable an optimiza-
tion. Once we know that it is beneficial to enable/disable an optimization, a transformer
applies the optimization by generating or adapting existing code to a parameterized ver-
sion. The number and types of these parameters depends on the optimization and the
existing code – for example, local memory usage can be parameterized with an ON/OFF
switch (that is, enable or disable its usage), while vectorization might require a vector
length. The parameterized code makes up the Sesame optimization space for a given
application. Using an auto-tuner, we can find (near-)optimal solutions within this opti-
mization space for a given target many-core processor.

When implementing Sesame, we continue to use OpenCL. Up to now, we have im-
plemented three modules in Sesame: S2S Vectorizer, ELMO, and Grover. Our Sesame
framework is scalable and it can integrate more modules when new architectural fea-
tures and optimizations are identified from emerging platforms.

Different from prior work (see Section 8.5), Sesame brings four new ideas:

• It allows domain experts to use an existing, standardized programming model
(namely, OpenCL), also allowing existing (legacy) code to be easily processed.

• It estimates the performance impact of key architectural features on given kernels
and platforms.

• It transforms platform-agnostic kernels into platform-specific kernels.

• It obtains the right mix of optimizations for a given kernel by auto-tuning.

8.3. SESAME INPUTS
In this section, we describe the Sesame inputs: input kernels and platform models. Im-
plicitly, these are the factors that define the applicability of Sesame.

8.3.1. INPUT KERNELS

From the users’ perspective, a unified programming model ensures functional portabil-
ity. With this unified model, users (domain experts) implement their applications and
then try some “optimizations” on their kernels. Our Sesame framework will transform
the kernels into platform-specific kernels.

The goal of Sesame is to add as many optimizations as possible, from a predefined,
as complete as possible set (an optimization pool) – for example, vectorization, usage of
local memory, memory access patterns, and granularity increase/decrease. The impact
predictor checks whether an optimization (new one or existing one) would pay off. If
it can make a decision, it will say YES or NO: for new optimizations, it will or will not
implement it, and for existing optimizations, it will keep or remove them.

8

130 8. SESAME: TOWARDS A PORTABLE PROGRAMMING FRAMEWORK

(a) MM-II: w/ VPU (b) MM-II: w/ LM (c) MM-II: w/ Cache

Figure 8.3: Sesame models.

8.3.2. PLATFORM MODELS

There are two platform models relating to Sesame: a front-end model for users, and
multiple back-end models with specific architectural features for Sesame. For example,
when users select OpenCL as their programming model, the OpenCL model will be the
front-end model. On the other hand, a Sesame model relates to an architecture feature
and an optimization from the optimization pool. Due to the diversity of many-core ar-
chitectures, we give a set of Sesame models with the architectural properties that are
significant to the overall performance. Examples of such key features are VPUs (vec-
tor processing units), on-chip programmer-managed local memory, and user-oblivious
caches, and are shown in Figure 8.3. These back-end models are exposed to Sesame
developers, but hidden to users.

We identify these features from studying the state-of-the-art many-core processors.
For example, Intel MIC uses wider vectors, and thus VPU plays a key role in the over-
all performance. These key features can be either read from specifications, or extracted
from (micro-)benchmarking (see Appendix A). Each target platform may have multiple
performance-relevant features, and Sesame should be extended to perform the corre-
sponding code transformations based on these key features.

8.4. SESAME IMPLEMENTATION

Up to now, we have implemented multiple modules in Sesame. The current status is
summarized as follows.

8.4.1. VECTORIZATION

Currently, there are multiple many-core architectures that use SIMD cores. For these
architectures, vectorization is a mandatory optimization: disabling it leads to poor re-
source utilization. In Chapter 4, we evaluate the performance impacts of explicitly us-
ing vector data types. We found that using vector types is still required on vector-core
processors in the absence of an implicit vectorizer. Therefore, we propose a source-
to-source translator that starts from a generic (scalar) kernel and applies step-by-step
transformations to obtain a vectorized one. Currently, the translation is systematic, but
performed by hand. We plan to implement it in a compiling pass and make it an auto-
matic vectorization tool.

8.5. RELATED WORK

8

131

8.4.2. LOCAL MEMORY USAGE

The usage of local memory is another optimization already implemented in the Sesame
framework. Specifically, we provide an impact predictor, an API to enable local memory
usage, and a compiling pass to disable local memory usage.

AN IMPACT PREDICTOR

The ultimate solution for local memory usage is to use automated code transforma-
tion, typically in the form of a compiler pass. This code translation consists of two
steps: (1) predict the performance benefits of using local memory, and then (2) per-
form code translation. In Chapter 5, we have focused on addressing the issue of un-
predictability of performance benefits from using local memory. Thus, we developed a
microbenchmark-based approach to quantify the performance impacts of using local
memory. We designed and evaluated the benchmarks on typically used platforms, and
store the results into a performance database. Based on this database, we have devel-
oped a query-based impact predictor (Aristotle) to indicate the performance gain/loss of
using local memory.

ELMO
For the second step, i.e., code transformation, we have designed and implemented a
high-level API targeting the efficient usage of local memory on modern many-core pro-
cessors (Chapter 6). Specifically, we propose ELMO, a collection of easy-to-use APIs that
(1) present a friendly front-end to make the bindings/mappings transparent to users,
and (2) provide implementations and perform several optimizations to ensure the effi-
ciency of the local memory operations. By using ELMO, users provide the impact pre-
dictor and the auto-tuner with already parameterized code, much easier to analyze and
further optimize or remove the usage of local memory in a given input kernel.

GROVER

When using local memory is detected to have a negative performance impact, we need
to disable local memory usage. In Chapter 7, we provide a compiling pass to automati-
cally reverse-engineer the use of local memory. From the cases that the impact predictor
(Aristotle) is able to analyze, Grover is able to remove 36%; all these cases are the ones
when the performance of the new code (without local memory usage) on the new target
platform is improved by Sesame.

8.5. RELATED WORK
The clash between productivity/portability and performance is not new in the multi-
/many-core world. In fact, multiple approaches have been proposed to improve produc-
tivity while achieving high performance for many-core processors, which can be loosely
classified into (i) new languages (e.g., OptiML [24]), (ii) auto-parallelizing compilers (e.g.,
OpenACC [120]), and (iii) libraries/APIs (e.g., Thrust [2]). In all these cases, programmers
are isolated, in one way or another, from the difficult implementation details related to
the platform architecture: they can focus on the functional parts of the application and
leave these non-functional elements to be solved by run-times, compilers, or libraries.

8

132 8. SESAME: TOWARDS A PORTABLE PROGRAMMING FRAMEWORK

Several FP7 projects have been focusing on this programming challenge. PEPPHER 1

is a 3-year European FP7 project (2010-2012) that aims to provide a unified framework
for programming and optimizing applications for heterogeneous many-core processors
to enable performance portability. In particular, PEPPHER provides a composition tool
that adapts applications written in PEPPHER component model to the runtime system [31].
At the low level, PEPPHER uses StarPU which is a task programming library for hybrid
architectures [9]. With StarPU, programmers can concentrate on algorithmic concerns,
rather than handling low-level issues. The ENCORE project 2 is another FP7 project
that addresses such a challenge. In particular, ENCORE uses a programming model,
called OmpSs [37], for multi-cores and many-cores for increased portability and scala-
bility, while preserving high performance for real-world applications. With ENCORE, we
can significantly reduce the number of lines of code required to adapt an application for
multi-cores, and thus need less development time.

8.6. SUMMARY
In this chapter, we introduced our vision for a generic framework to extend our work,
aiming to perform architecture-specific optimizations (beyond vectorization and using
local memory) and ultimately improve performance portability. Our observation is that
performance portability is hindered by platform-specific optimizations, which can be ei-
ther implicit or explicit, and difficult for end-users to generalize. Therefore, our Sesame
framework aims to support any kernels and apply or remove a set of parameterized opti-
mizations, when suitable. By auto-tuning these parameterized kernels, we automatically
obtain platform-specific kernels that perform well across platforms (see Appendix B).

We have implemented three modules in the framework: S2S Vectorizer, ELMO, and
Grover, which have proven the feasibility of our approach. Once a new architectural
feature and its optimization is identified (by feature identifier), a new module (including
an impact predictor, a transformer, and an auto-tuner) is considered to be extended into
the framework.

1http://www.peppher.eu/
2http://www.encore-project.eu/

http://www.peppher.eu/
http://www.encore-project.eu/

9
CONCLUSIONS AND FUTURE WORK

Multi-cores and many-cores have become pervasive in computing machines. At the
same time, their architectural diversity poses a challenge for users to efficiently exploit
their hardware potential. As more and more applications demand acceleration, an in-
creasing number of programming experts are needed to sustain this development. Their
task is to implement and optimize applications for given platforms; implicitly, they are
expected to find the best match of the architecture with the software, which in turn
requires significant manual labor in application design, implementation, and tuning.
Leveraging a unified programming model enables functional portability, but, because of
the diversity, it cannot guarantee high performance across platforms. Therefore, pro-
gramming tools and models that also deal with optimizations and tuning as uniformly
as possible are required.

This thesis has given evidence that this problem can be addressed successfully: we
have investigated the enabling/disabling techniques for platform-specific optimizations
with a unified programming model. We have selected OpenCL as our research vehicle,
and identified that each platform has a specific optimization space for a given kernel.
Taking two concrete examples, we have proposed solutions on how to hide the architec-
tural disparities with a unified programming model.

In this chapter, we present the main conclusions of our work, discuss answers to
our main research questions. Further, we sketch future directions of research that can
continue and improve our work.

9.1. CONCLUSIONS
Our research has led to the following major conclusions:

1. Unified programming models - OpenCL being a good example - can achieve sim-
ilar performance with native ones (RQ1). The diversity of multi-/many-core pro-
cessors and programming models requires a unified programming model to save
development cost. As an instance of unified programming standards, OpenCL
stands out for its cross-platform ability. Our experimental results have shown

133

9

134 9. CONCLUSIONS AND FUTURE WORK

that OpenCL can largely guarantee code portability on various computing devices.
With regard to performance, we have shown that OpenCL can achieve comparable
performance with CUDA (the native programming model on NVIDIA GPUs). For
synthetic benchmarks, OpenCL and CUDA have similar performance. However,
we have observed some performance gaps between OpenCL and CUDA when us-
ing real-world applications. We have found that such performance gaps can be
reduced by systematically changing code from programming models, kernel opti-
mizations, and compilers.

2. The optimization space for each application can be explored systematically, but
the results are platform- and application-specific (RQ2). To achieve high per-
formance, we need to apply optimization techniques on a given kernel. We have
shown that such optimization techniques can significantly improve the overall
performance on a computer vision case study (i.e., stereo matching). In addition,
we have shown that the recommended optimization techniques are not transfer-
able: they can be implemented in the unified programming model, but their im-
pact on performance can vary widely. This variation is a consequence of both the
platforms having different architectural features, and the kernels having different
patterns of computation and memory accesses.

3. Providing vector types in a unified programming model such as OpenCL can
lead to unexpected performance penalties (RQ3). By using a low-level program-
ming model such OpenCL, programmers can already specify parallelism explic-
itly. We have shown that further vectorizing OpenCL kernels (i.e., using vector
data types) often leads to a performance increase on vector-core processors (e.g.,
CPUs), but shows a performance drop on scalar-core processors (e.g., GPUs). This
is a case where performance portability is compromised by construction. Assum-
ing compilers can autovectorize scalar, fine-grained parallel code for vector-core
architectures, the presence of vector types in a unified model such as OpenCL is
concluded to be redundant.

4. Despite common belief, the benefits of enabling the use of local memory are not
as predictable as expected (RQ4a). We have found that the performance impact
of local memory usage is very unpredictable. This is because (1) applications differ
in memory access patterns, and (2) platforms differ in memory hierarchies. There-
fore, we have proposed a query-based approach to determine whether this impact
is positive or negative.

5. A specialized high-level API can be added to a unified programming model to
enable the usage of specific features in a portable manner. Specifically, we show
how the usage of local memory benefits from such a specialized API (RQ4b). En-
abling the usage of local memory requires non-trivial transformations of the code.
Specifically, users have to deal with challenges related to loading and storing lo-
cal memory data. We have found that these challenges can be easily avoided by
providing a high-level API that keeps the bindings between work-items and data
elements transparent to users. With the help of the API, productivity can be im-
proved. In addition, such an API improves the performance portability of the ap-

9.2. FUTURE RESEARCH DIRECTIONS

9

135

plication, due to the platform-tuned back-end. The main challenge in providing
such an API is to insure its completeness.

6. To enable users to explore the full optimization space of an application, tech-
niques that are not suitable for given platforms should be automatically reversed.
Specifically, the usage of local memory can be disabled at compile time (RQ4c).
Using local memory can lead to significant performance penalties for several de-
vices. Automatically removing the usage of local memory is therefore desirable in
such cases. We have found that for typical cases of local memory usage, a compiler
pass can reverse this optimization. Such a tool makes the process of disabling lo-
cal memory usage transparent to users, and completely free them from such non-
functional operations.

9.2. FUTURE RESEARCH DIRECTIONS
Our work so far has proved that several application optimizations can be automatically
enabled or reversed with little effort from the user. However, in order to generalize
this approach to a user-friendly exploration of the optimization space of an application,
there are still many gaps to fill. We list several promising research directions towards this
goal.

1. Auto-tuning architecture-specific parameters. This thesis proves that we can
(semi-)automatically enable/disable optimizations. Further research can be done
to auto-tune these optimizations (i.e., selecting a right tuning value). For example,
what is the proper local memory size for a given application, a platform, and an
input dataset. This tuning approach can either be empirical or model-based or
both.

2. Auto-vectorizer for explicitly parallelized kernels. Low-level programming mod-
els can already specify parallelism in kernels. To hide the architectural differences
(scalar cores vs. vector cores) and achieve portable performance, an implicit vec-
torizer is desirable. We have shown that the existing implicit vectorizer such as the
one in Intel compiler is performing well on vector-core architectures. Likewise, an
auto-SIMD module is desired for other vector-core processors. In this way, users
do not have to manually vectorize applications any more.

3. Automated abstraction of memory access patterns. Our performance database
starts with memory access patterns. However, the process of abstracting memory
access patterns relies on users, i.e., they have to manually extract patterns from
the given application. This becomes difficult especially when the target kernels are
complicated. Therefore, an automated (on-line) tool is desirable. The approaches
based on polyhedral model might be taken as a starting point [108].

4. Extending ELMO. ELMO’s front-end still needs extensions to cover more access
patterns from real-world applications. Its back-end should be improved to sup-
port even more (classes of) platforms, which requires additional research into the
performance tuning of these platforms. As a further step, it is interesting to put

136 9. CONCLUSIONS AND FUTURE WORK

each API of ELMO into a compiling pass that can automatically enable local mem-
ory usage.

5. Extending Grover. Further investigation can be done on Grover’s impact on other
types of devices (e.g., GPUs). Using Grover, it is also interesting to model the per-
formance benefits/losses due to local memory usage on CPUs. Furthermore, in-
corporating Grover into a high-level auto-tuning framework for OpenCL kernels
could allow code specialization to be autotuned for different classes of platforms.

6. Designing new architectures with configurable memories. Our performance database
indicates that SPMs perform better on some applications, while caches perform
better on others. Future architecture designs should keep both memories, and al-
low (re-)configuration of the hierarchy according to the application needs. This re-
quires more research into application patterns and classes, which should be used
to tune architectural design towards more flexible memory configurations.

7. Identifying more performance-changing architectural features. We have con-
sidered vectorization and local memory usage as concrete case studies. Investigat-
ing the simplification, auto-tuning, and cancellation of other high-impact performance-
changing optimization techniques offers more research opportunities. As an ex-
ample, we could investigate how the non-uniform caches impact the performance
on Intel’s MIC. Note that the architectural features are not limited to a single fea-
ture like local memory, but can be a combination of several features.

8. Defining the optimal ordering of the optimizations. A challenging research di-
rection is the ordering of a given set of optimizations for a given application. Ide-
ally, this should be based on a platform-specific model, but the complex intercon-
nections between some optimization techniques (e.g., enabling the usage of local
memory can constrain automated vectorization) might prevent such an elegant
solution. Instead, empirical and learning-based approaches can be used.

9. A complete implementation of the Sesame framework. Once all the issues have
been addressed, further efforts are required to incorporate them into the Sesame
framework, which then would allow to systematically address platform-specific
optimizations and ultimately achieve portable performance.

A
TEST-DRIVING INTEL XEON PHI

In this appendix, we perform an empirical study on Intel Xeon Phi at two levels: the
micro-benchmark level, and the real-world application level. At the microbenchmark-
ing level, we show the high performance of five components of the architecture, focusing
on their maximum achieved performance and the prerequisites to achieve it. At the ap-
plication level, we show our porting experience on a medical imaging application. This
appendix shows how to obtain key architectural features, required by our Sesame frame-
work (Chapter 8), for a given processor.

Intel Xeon Phi (Phi) is the newest high-throughput architecture targeted at high per-
formance computing (HPC). Without a doubt, Phi will be part of the very next generation
of supercomputers that will challenge TOP5001. To achieve its theoretical high perfor-
mance (around 1 TFlop), Intel Xeon Phi [68] uses around 60 cores and 30 MB of on-chip
caches, and relies on traditional many-core features like vector units or SIMD/SIMT, high
throughput, and high bandwidth [89]. It adds to that some "unconventional" features,
such as the overall L2 cache coherency and the ring interconnect, all for the sake of per-
formance and usability.

By taking Phi as a black-box with over 200 hardware threads, we ran Leukocyte Track-
ing (a medical imaging application [130]) on it. We found that (1) the sequential appli-
cation (a single thread) on Phi runs about 5× slower than the same sequential execution
on a "traditional" multi-core processor, and (2) that the Phi version scales only up to
40 threads (Figure A.13, more details in Section A.4). To explain this (observed) perfor-
mance behavior, as well as to eventually improve it, we require a deeper understanding
of the architecture and its parameters.

Moreover, previous experiences with massively parallel high performance platforms
such as NVIDIA GPUs or the Cell/B.E. showed that a trade-off between performance and

This appendix is based on our work published in the Proceedings of ICPE 2014 [43].
1In June 2013, two Xeon Phi supercomputers - TIANHE-2 from NUDT and STAMPEDE from TACC - were ranked

first and sixth in TOP500: http://www.top500.org.

137

http://www.top500.org.

A

138 A. TEST-DRIVING INTEL XEON PHI

ease-of-use is necessary: "simple" programming often leads to disappointing perfor-
mance [137, 159]. Therefore, given Phi’s promise of breaking this pattern, this work fo-
cuses on a test drive of the platform: we have conducted a two-stage empirical study of
the Xeon Phi, stressing its high-performance features both in isolation (aiming to quan-
tify their maximum achievable performance), and in the real-life case-study (aiming to
understand its regular performance).

To this end, we have implemented and used dedicated microbenchmarks - gathered
in a suite called MIC-Meter 2 - to measure the performance of four key architectural fea-
tures of Xeon Phi: the processing cores, the memory hierarchies, the ring interconnect,
and the PCIe connection. Following these experiments "in isolation", we propose a con-
ceptual model of the processor that facilitates the performance analysis and optimiza-
tion of the real-life case-study.

Such a thorough evaluation can benefit two different classes of Phi users: the experts,
who are interested in in-depth architectural knowledge, and the production users, inter-
ested in simple and effective ways to use processors. For expert users - like most high
performance computing (HPC) programmers and compiler developers are - knowing
the requirements for density and placement of threads per cores, the optimal utilization
of the core interconnections, or the difference in latency between the different types
of memories on chip are non-trivial details that, when properly exploited, can lead to
significant performance gains. For production users, a simplified view of the Xeon Phi
machine is mandatory to help exploring different parallelism strategies. Such a model is
simplified view of the machine, including the most important functionality and perfor-
mance constraints.

The main contributions of our work are as follows:

• We present our hands-on experience achieved while microbenchmarking the Xeon
Phi (Section A.2). This experience also leads to interesting numerical results for the
capabilities of Phi’s cores, memories, interconnects (i.e., the ring and the PCIe).

• We synthesize four essential platform-centric performance guidelines, aimed at
easing the development and tuning of applications for the Xeon Phi (Section A.3).

• We propose a conceptual model of Phi (SCAT), which strips off the performance
irrelevant architectural details, presenting the programmers with a simple,
functionality-based view of the machine (Section A.3).

• Using a case study (leukocyte tracking), we analyze the application and optimize
it, discussing the lessons to be learned from this experience (Section A.4).

The remainder of this appendix is organized as follows: Section A.1 presents the back-
ground and our approach to benchmark the Xeon Phi. In Section A.2, we benchmark the
Xeon Phi from different perspectives. In Section A.3, we summarize our observations
and show a machine model for the Xeon Phi. In Section A.4, we show our hands-on ex-
perience on a case study in medical imaging. We present the related work in Section A.5
and summarize this appendix in Section A.6.

2https://github.com/haibo031031/mic-meter

https://github.com/haibo031031/mic-meter

A.1. BENCHMARKING INTEL XEON PHI

A

139

A.1. BENCHMARKING INTEL XEON PHI

In this section, we introduce Intel Xeon Phi - with its novel features and typical program-
ming models, and we present our benchmarking methodology.

A.1.1. THE ARCHITECTURE

Intel Xeon Phi has over 50 cores (the version used in this work belongs to the 5100 series
and has 60 cores) connected by a high-performance on-die bidirectional interconnect
(shown in Figure A.1). In addition to these cores, there are 16 memory channels (sup-
ported by memory controllers) delivering up to 5.0 GT/s [66]. When working as an ac-
celerator, Phi can be connected to a host (i.e., a device that manages it) through a PCI
Express (PCIe) system interface - similar to GPU-like accelerators. Different from GPUs,
a dedicated embedded Linux µOS (version: 2.6.38.8) runs on the platform.

Each core contains a 512-bit wide vector unit (VPU) with vector register files (32 reg-
isters per thread context). Each core has a 32KB L1 data cache, a 32KB L1 instruction
cache, and a core-private 512KB unified L2 cache. In total, a 60-core machine has a total
of 30MB of L2 cache on the die. The L2 caches are kept fully coherent by the hardware,
using DTDs (distributed tag directories), which are referenced after an L2 cache miss.
Note that the tag directory is not centralized, but split up into 64 DTDs, each getting an
equal portion of the address space and being responsible for maintaining it globally co-
herent. Another special feature of Xeon Phi is the fast bidirectional ring interconnect. All
connected entities use the ring for communication purposes, using special controllers
called ring stops to insert requests and receive responses on the ring.

Figure A.1: The Intel Xeon Phi Architecture.

The novelties of the Xeon Phi architecture relate to five components : (1) the vector
processing cores, (2) the on-chip memory, (3) the off-chip memory, (4) the ring inter-
connect, and (5) the PCIe connection. As these are the features that differ, in one way
or another, from a typical CPU - vectors are wider, there are many more cores, cache co-
herency and shared memory are provided with low penalty for 60 or more cores, and a
ring interconnect holds tens of agents that can interchange messages/packets concur-
rently -, we focus our benchmarking efforts on these features.

A

140 A. TEST-DRIVING INTEL XEON PHI

Figure A.2: The MIC-Meter Overview.

A.1.2. PROGRAMMING
In terms of usability, there are two ways an application can use Intel Xeon Phi: (1) in of-
fload mode - the main application is running on the host, and it only offloads selected
(highly parallel, computationally intensive) work to the coprocessor, or (2) in native
mode - the application runs independently, on the Xeon Phi only, and can communi-
cate with the main processor or other coprocessors [67] through the system bus. In this
work, we benchmark Xeon Phi in both modes.

Finally, to program applications on Xeon Phi, users need to capture both function-
ality and parallelism. Being an x86 SMP-on-a-chip architecture, Xeon Phi offers the full
capability to use the same tools, programming languages, and programming models as a
regular Intel Xeon processor. Specifically, tools like Pthreads [34], OpenMP [18], Intel Cilk
Plus [17], and OpenCL [147] are readily available. Given the large number of cores on the
platform, a dedicated MPI version is also available. In this work, all the experiments we
present are programmed using C/intrinsics/assembly with OpenMP/Pthreads; we also
use Intel’s icc compiler (V13.1.1.163).

A.1.3. MIC-METER
We show our MIC-Meter in Figure A.2. The goal of our benchmarking is two-fold: to
show how the special capabilities of Xeon Phi can and should be measured, to quantify
the performance of this novel many-core architecture, and eventually to identify the im-
pacting factors. To this end, we choose a microbenchmarking approach: we measure
each capability in isolation, under variable loads, and we quantify its performance in
terms of both latency-oriented and throughput-oriented metrics.

Simply put, latency is the time required to perform an operation and produce a result.
As latency measurement focuses on a single action from its beginning to its end, one
needs to isolate the operation to be measured and use a highly accurate, non-intrusive
timing method. Alternatively, we can measure a long enough sequence of operations
with an accurate timer, and estimate latency per operation by dividing the measured
time by the number of operations. In this work, latency measurements are done with
a single thread (for individual operations) or two threads (for transfer operations) with
Pthreads. All latency benchmarks are written in C (with inline assembly).

Throughput is the number of (a type of) operations executed in a given unit of time.
As higher throughput means better performance, microbenchmarking focuses on mea-
suring the maximum achievable throughput for different operations, under different
loads; typically, the benchmarked throughput values are slightly lower than the theo-
retical ones. Thus, to measure maximum throughput, the main challenge is to build
the workload such that the resource that is being evaluated is fully utilized. For example,

A.2. EMPIRICAL EVALUATION

A

141

when measuring computational throughput, enough threads should be used to fully uti-
lize the cores, while when measuring memory bandwidth, the workload needs to have
sufficient threads to generate enough memory requests. For all the throughput measure-
ments in this paper, our multi-threaded workloads are written in C and OpenMP.

We note that the similarities between Phi and a regular multi-core CPU allow us to
adapt existing CPU benchmarks to the requirements of Xeon Phi. In most cases, we use
such "refurbished" solutions, that prove to serve our purposes.

A.2. EMPIRICAL EVALUATION
In the following sections, we present in detail the MIC-Meter and the results for each of
the components: (1) the vector processing cores, (2) the on-chip and off-chip memory,
(3) the ring interconnect, and (4) the PCIe connection.

A.2.1. VECTOR PROCESSING CORES
We evaluate the vector processing cores in terms of both instruction latency and through-
put. For latency, we use a method similar to those proposed by Agner Fog [52] and Tor-
bjorn Granlund [55]: we measure instruction latency by running a (long enough) se-
quence of dependent instructions (i.e., a list of instructions that, being dependent on
each other, are forced to be executed sequentially - an instruction stream).

The same papers propose a similar approach to measure throughput in terms of in-
structions per cycle (IPC). However, we argue that a measurement that uses all processing
cores together, and not in isolation, is more realistic for programmers. Thus, we develop
a flops microbenchmark to explore the factors for reaching the theoretical maximum
throughput on Xeon Phi (Section A.2.1).

VECTOR INSTRUCTION LATENCY

Xeon Phi introduces 177 vector instructions [65]. We roughly divide these instructions
into five classes 3: mask instructions, arithmetic (logic) instructions, conversion instruc-
tions, permutation instructions, and extended mathematical instructions.

The benchmark for measuring the latency of vector instructions is measuring the
execution time of a sequence of 100 vector operations using the same format: zmm1 =
op(zmm1, zmm2), where zmm1 and zmm2 represent two vectors and op is the instruc-
tion being measured. By making zmm1 be both a source operand and the destination
operand, we ensure the instruction dependency - i.e., the current operation will depend
on the result of the previous one.

For special classes of instructions - such as the conversion instructions vcvtps2pd
and vcvtpd2ps - we have to measure the latency of the conversion pair (zmm2 = op12(zmm1);
zmm1 = op21(zmm2)) in order to guarantee the dependency between contiguous in-
structions (i.e., it is not possible to write the result of the conversion in the same source
operand, due to type incompatibility). Similarly, we measure the latency of extended
mathematical instructions such as vexp223ps and vlog2ps in pairs, to avoid overflow
(e.g., when using 100 successive exp()’s).

3Note that we choose not to measure the latency of memory access instructions because the latency results
are highly dependent on the data location(s).

A

142 A. TEST-DRIVING INTEL XEON PHI

The interesting results for vector instruction latency are presented in Table A.1. With
these latency numbers, we know how many threads or instruction streams we need to
hide the latency on one processing core.

Table A.1: The vector instruction latency (in cycles).

Instruction Category Latency
kand, kor,
knot, kxor

mask instructions 2

vaddpd, vfmadd213pd,
vmulpd, vsubpd

arithmetic instructions 4

vcvtdq2pd, vcvtfxpntdq2ps,
vcvtfxpntps2dq, vcvtps2pd

convert instructions 5

vpermd, vpermf32x4 permutation instructions 6
vexp223ps, vlog2ps,
vrcp23ps, vrsqrt23ps

extended
mathematical instructions

6

VECTOR INSTRUCTION THROUGHPUT

The Xeon Phi 5100 has 60 cores working at 1.05 GHz, and each core can process 8 double-
precision data elements at a time, with maximum 2 operations (multiply-add or mad)
per cycle in each lane (i.e., a vector element). Therefore, the theoretical instruction
throughput is 1008 GFlops (approximately 1 TFlop). But is this 1 TFlop performance
actually achievable? To measure the instruction throughput, we run 1, 2, 4 threads on a
core (60, 120, and 240 threads in total). During measurement, each thread performs one
or two instruction streams for a fixed number of iterations: bi+1 = bi op a, where i repre-
sents the iteration, a is a constant, and b serves as an operand and the destination. The
loop was fully unrolled to avoid branch overheads. The microbenchmark is vectorized
using explicit intrinsics, to ensure a 100% vector usage.

The results are shown in Figure A.3. We note that the peak instruction throughput
- i.e., one vector instruction per cycle (1TFlops in total) - can be achieved when us-
ing 240 threads and the multiply-add instruction. As expected, the mad throughput is
twice larger than the mul throughput. Further, two more observations can be added.
First, when using 60 threads (one thread per core), the instruction throughput is low
compared with the cases when using 120 or 240 threads. This is due to the fact that it
is not possible to issue instructions from the same thread context in back-to-back cy-
cles [66]. Thus, programmers need to run at least two threads on each core to be able to
fully utilize the hardware resources. Second, when a thread is using only one instruction
stream, we have to use 4 threads per core (240 threads in total) to achieve the peak in-
struction throughput. This is because the latency of an arithmetic instruction is 4 cycles
(Table A.1), and we need no less than four threads to totally hide this latency (i.e., fill the
pipeline bubbles [62]). To comply, programmers need to either use 4 threads per core or
have more independent instruction streams.

To summarize, for a given instruction mix (mul or mad), the achievable instruction
throughput depends not only on the number of cores and threads, but also on the issue
width (i.e., the number of independent instruction streams). We also benchmarked the

A.2. EMPIRICAL EVALUATION

A

143

 0

 200

 400

 600

 800

 1000

mul1 mul2 mad1 mad2
G

F
lo

p
s

instruction mix

60 120 240

Figure A.3: Arithmetic throughput using different numbers of threads (60, 120, 240), different instruction
mixes (mul versus mad), and issue widths (using one and two independent instruction streams).

EMU (extended math unit) and see [50] for more details.

A.2.2. MEMORY LATENCY
Available benchmarks, such as BenchIT [150] and lmbench [96] use pointer-chasing to
measure the on-chip and off-chip memory access latency. This approach has the ad-
vantage of not only determining the latency itself, but also exposing the differences be-
tween consecutive layers of a memory hierarchy (i.e., different layers of caches and main
memory will have significantly different latencies). Thus, we use a similar approach to
measure the latency for an Xeon Phi core (i.e., the latency for accessing local caches and
main memory - see Section A.2.2).

When more than two cores communicate, measuring latency is complicated. For
this, Daniel Molka et al. proposed an approach to quantify cache-coherency effects [104].
In our work, we adapt this approach to Xeon Phi using the correct memory fences and
cache flushing instructions 4.

ACCESS LATENCY ON A SINGLE CORE

To reveal the local access latency, we use a pointer-chasing benchmark similar to those
used by BenchIT and lmbench. Essentially, the application traverses an array A of size
S by running k = A[k] in a fully unrolled loop. The array is initialized with a str i de,
i.e., A[k] = (k + str i de)%S. By measuring the execution time of the traversal, we can
easily obtain an estimate of the average execution time for one iteration. This time is
dominated by the latency of the memory access. The traversal is done in one thread and
utilizes only one core. Therefore, the memory properties obtained here are local and
belong to one core.

The results are shown in Figure A.4. We see that the Xeon Phi has two levels of data
caches (L1 and L2). The L1 data cache is 32KB, while the L2 data caches should be smaller
than 512KB. Furthermore, the accessing latency of L1 and L2 data caches is around 2.87
ns (3 cycles) and 22.98 ns (24 cycles), respectively. With a stride of 64 bytes, Xeon Phi
takes 287.51 ∼ 291.18 ns (302 ∼ 306 cycles) to finish a data access in the main memory

4Since Xeon Phi has no mfence or clflush, we need to change the benchmark by searching and replacing
them with equivalent instructions.

A

144 A. TEST-DRIVING INTEL XEON PHI

 2

 4

 8

 16

 32

 64

 128

 256

 512

8B 16B
32B

64B
128B

256B
512B

1KB
2KB

4KB
8KB

16KB

32KB

64KB

128KB

256KB

512KB

1M
B

a
c
c
e
s
s
 l
a
te

n
c
y
 (

n
s
)

stride

32KB
64KB

128KB
256KB

512KB
1024KB

2048KB
4096KB

Figure A.4: Average memory latency when changing strides and datasets. The x-axis is logarithmic and it
represents the pointer chasing stride.

(when the dataset is larger than 512KB). We note that when traversing the array in a larger
stride (e.g., 4KB), the latency of accessing data in off-chip memory is slightly larger. This
is because the contiguous memory accesses fall into different pages. Furthermore, we
can observe (from the upper trend) that threads operate the data in a batch manner, i.e.,
a 64-byte cache-line. Information about cache associativity can also be seen in Figure A.4
(see [144] for the calculation approach).

REMOTE CACHE LATENCY

We have illustrated our measurements and results for memory latency on a single core
in Section A.2.2. In this section, we focus on measuring remote cache latency. For these
measurements, we use an approach based on that proposed for a traditional multi-core
processor by Daniel Molka [104]. Our setup is built as follows: prior to the measurement,
the to-be-transferred cache-lines are placed in different locations (cores) and in a certain
coherency state (modified, exclusive, or shared). In each measurement, we use two
threads (T0, T1), with T0 pinned to Core 0 and T1 pinned on another core (Core X). The
latency measurement always runs on Core 0, transferring a predefined number of cache
lines from Core X to Core 0.

Figure A.5 shows our results for remote cache accesses latency on Xeon Phi. In Fig-
ure A.5a, we see that when the cache line is in modified state, the overall latency of
remote access averages around 250 cycles, which is much larger than the local cache
access latency (by an order of magnitude) but still smaller than the off-chip memory ac-
cess latency (by 17%). By getting the median value of all the input data sets (up to 128
KB), we get the overall remote latency shown in Figure A.5b. We note no relationship
between the remote access latency and the cache-line states, except that accessing re-
mote shared cachelines takes a few less cycles. This is because in whichever state a
cacheline is, when a core accesses it, a transfer is needed from a remote core (different
from a traditional multi-core CPU with cores sharing the last-level cache). Furthermore,
Xeon Phi adopts the MOESI cache coherence protocol [66] to share a cacheline before
writing it back, and thus Figure A.5b shows no penalty of writing data back. In [50], our
experiments have shown that there is a relation between the latency and the core dis-
tances on an older version of the Xeon Phi (namely, 31S1P), but this effect seems to have
disappeared on the newer Xeon Phi 5110.

A.2. EMPIRICAL EVALUATION

A

145

 230

 235

 240

 245

 250

 255

 260

1
6

0
0

0

1
7

4
0

2

1
8

9
2

8

2
0

5
8

7

2
2

3
9

1

2
4

3
5

4

2
6

4
8

8

2
8

8
1

0

3
1

3
3

5

3
4

0
8

1

3
7

0
6

9

4
0

3
1

8

4
3

8
5

1

4
7

6
9

5

5
1

8
7

5

5
6

4
2

2

6
1

3
6

7

6
6

7
4

6

7
2

5
9

6

7
8

9
5

9

8
5

8
8

0

9
3

4
0

7

1
0

1
5

9
4

1
1

0
4

9
8

1
2

0
1

8
3

1
3

0
7

1
7

a
c
c
e

s
s
 l
a

te
n

c
y
 (

c
y
c
le

s
)

array size (Bytes)

D+1
D+2

D+4
D+8

D+16
D+32

D-16
D-8

D-4
D-2

(a) Modified

 230

 235

 240

 245

 250

 255

 260

C
ore1

C
ore2

C
ore4

C
ore8

C
ore16

C
ore32

C
ore44

C
ore52

C
ore56

C
ore58

a
c
c
e

s
s
 l
a

te
n

c
y
 (

c
y
c
le

)

cacheline position

modified exclusive shared

(b) Overall

Figure A.5: Read latencies of Core 0 accessing the cache lines on Core 1 (D+1), Core 2 (D+2), Core 4 (D+4),
Core 8 (D+8), Core 16 (D+16), Core 32 (D+32), Core 44 (D-16), Core 52 (D-8), Core 56 (D-4),and Core 58 (D-2).

A.2.3. MEMORY BANDWIDTH
McCalpin’s stream benchmark [75] includes a memory bandwidth benchmark and presents
results for a large number of high-end systems. However, his solution is based on a com-
bination of both read and write operations. In this work, we want to separate reads and
writes so as to quantify the impacting factors. In BenchIT, Daniel Molka et al. presents
a solution to measure bandwidth in a similar way with that of latency measurement
(see Section A.2.2). His microbenchmark requires compiler optimizations to be dis-
abled (i.e., the code should be compiled with the -O0 option), thus disabling the soft-
ware prefetching on Xeon Phi. As a result, this measurement will underestimate band-
width. In this section, we present our own OpenMP implementation of a memory band-
width microbenchmark, considering hardware/software prefetching, streaming stores,
ECC effects and off-chip/on-chip differences.

OFF-CHIP MEMORY BANDWIDTH

The Xeon Phi used in this work has 16 memory channels, each 32-bits wide. At up to
5.0 GT/s transfer speed 5, it provides a theoretical bandwidth of 320 GB/s. But is this
theoretical bandwidth really achievable in real cases? To answer this question, we use
separate benchmarks to measure the memory bandwidth for both read and write op-
erations. The read benchmark reads data from an array A (b = b + A[k]). The write
benchmark writes a constant value into an array A (A[k] = C). Note that A needs to be
large enough (e.g., 1 GB) such that it cannot fit in the on-chip memory. To avoid the im-
pact of "cold" TLBs, we start with two "warm-up" iterations of the benchmarks, before
we measure a third one. We use different numbers of running threads - from 1 to 240.

Our results are shown in Figure A.6 (HWP+SWP) (we plot the median value of ten
runs of the benchmarks). Overall, we see that the maximum bandwidth for both read
and write is far below the theoretical peak of 320 GB/s. Moreover, both the read and
write memory bandwidth increases over the number of threads - which happens be-
cause when using more threads, we can generate more requests to memory controllers,

5GT/s stands for Giga Transfers per second.

A

146 A. TEST-DRIVING INTEL XEON PHI

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 4 8 16 24 32 40 48 60 120 180 240

G
B

/s

#threads

NONE
SWP-only
HWP-only

HWP+SWP

(a) read

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 4 8 16 24 32 40 48 60 120 180 240

G
B

/s

#threads

NONE
SWP-only
HWP-only

HWP+SWP
HWP+SWP+SS

(b) write

Figure A.6: Read and write memory bandwidth.

thus making the interconnect and memory channels busier. Thus, if aiming to achieve
high memory bandwidth, programmers need to launch enough threads to saturate the
interconnect and the memory channels. Figure A.6a shows that the read bandwidth
peaks at 164 GB/s, achievable with using 60 threads or more (pinning at least one thread
to a core). However, we can obtain the maximum write bandwidth (76 GB/s, as seen
in Figure A.6b) only when using 240 threads. In general, the write bandwidth is around
half of the read bandwidth. This happens because Xeon Phi implements a write-allocate
cache policy and the original content has to be loaded into caches before we overwrite
it completely. To avoid the memory bandwidth waste, programmer can use streaming
stores 6 on Xeon Phi [66]. We see that using streaming store instructions speeds-up write
operations up to 1.7 times (Figure A.6b:HWP+SWP+SS), with memory write bandwidth
now peaking at 120 GB/s. Thus, programmers must consider using streaming stores to
optimize the memory bandwidth.

Prefetch Effects: Xeon Phi supports both hardware prefetching (HWP) and software
prefetching (SWP). The L2 cache has a streaming hardware prefetcher that can selec-
tively prefetch code, read, and RFO (Read-For-Ownership) cachelines into the L2 cache [66].
Figure A.6 shows the memory bandwidth of four different configurations: no prefetch-
ing, HWP or SWP only, or both. When disabling both HWP and SWP, the memory band-
width is low (45 GB/s for reading and 33 GB/s for writing). With only SWP, we already
achieve similar memory bandwidth to that achieved when enabling both of them. This
similarity indicates that the hardware prefetcher will not kick in when software prefetch-
ing performs well. Furthermore, enabling only HWP delivers about half of the bandwidth
achieved when enabling only SWP (the bandwidth is roughly 1.9× smaller, on average).

To further evaluate the efficiency of prefetching on Xeon Phi, we use the Stanza Triad
(STriad) [33] benchmark with a single thread. STriad works by performing a DAXPY
(Triad) inner loop for a length L stanza, then jumps over k elements, and continues with
the next L elements, until reaching the end of the array. We set the total array size to 128
MB, and set k to 2048 double-precision words. For each stanza, we ran the experiment 10
times, with the L2 cache flushed each time, and we calculate median value of the 10 runs

6Streaming stores do not require a prior cache line read for ownership (RFO) but write to memory ”directly”.

A.2. EMPIRICAL EVALUATION

A

147

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

G
B

/s

stanza length L (in double-precision words)

Xeon Phi
Xeon

Figure A.7: Performance of STriad on the Xeon Phi (the x-axis is in log scale and the results on Xeon are
normalized to those on Xeon Phi).

to get the memory bandwidth for each stanza length. Figure A.7 shows the results of the
STriad experiments on both Xeon Phi and a regular Xeon processor (Intel Xeon E5-2620).
We see an increase in memory bandwidth over stanza length L, and we note it eventu-
ally approaches a peak of 4.7 GB/s (note that this is achieved per core). Further, we see
the transition point (from the bandwidth-increasing state to the bandwidth-stable state)
appears earlier on Xeon than on Xeon Phi. Therefore, we conclude that non-contiguous
access to memory is detrimental to memory bandwidth efficiency, with Xeon Phi show-
ing more restrictions on the stanza length when prefetching data than the regular Xeons.
To comply, programmers have to create the longest possible stanzas of contiguous mem-
ory accesses, improving prefetching and memory bandwidth.

ECC Effects: The Xeon Phi coprocessor supports ECC (Error Correction Code) to
avoid software errors caused by naturally occurring radiation. Enabling ECC adds relia-
bility, but it also introduces extra overhead to check for errors. We examined the band-
width differences with and without disabling ECC. With ECC disabled, we noticed a 20%
to 27% bandwidth increase [50]. Note that all the experiments in this work are performed
with ECC enabled. Furthermore, the new µOS kernel on Phi adds support of the trans-
parent huge pages (THP) functionality, which is enabled by default and often improves
application performance without any code or environmental changes.

AGGREGATED ON-CHIP MEMORY BANDWIDTH

The available on-chip memory bandwidth is always essential in performance tuning and
analysis. So, how large is the on-chip memory bandwidth that can be achieved? To
answer this question, we measure the cache bandwidth on a single core 7 and calculate
the aggregated cache bandwidth by multiplying it with the number of cores. We first
use a set of vmovapd instructions to measure the native read or write bandwidth. Our
results show that the L1 access (read or write) throughput is 64 bytes per cycle. Thus,
the aggregated L1 bandwidth is 4032 GB/s for read or write. Then we measure the
maximum achieved bandwidth from programmers’ point of view for scale1 (O[i] = a ×
A[i]), scale2 (O[i] = a ×O[i]), saxpy1 (O[i] = a × A[i]+B [i]), and saxpy2 (O[i] = a ×
7Note that we choose not to measure the inter-core communication bandwidth because we assume that

cache-line transfers occur rather scattered, and not in a large volume. Thus, the measurement of inter-core
(remote) access latency is of greater use.

A

148 A. TEST-DRIVING INTEL XEON PHI

A[i]+O[i]) operations. To avoid overheads from the high-level code, we use intrinsics in
the kernel code. We also disable the software prefetching due to the fact that the data is
located in caches after warming up.

The results are shown in Figure A.8. We see that the maximum achieved bandwidth
on a core is 73 GB/s, 96 GB/s, 52 GB/s, 69 GB/s for scale1, scale2, saxpy1, saxpy2,
respectively. The bandwidth of scale2 and saxpy2 is 1.3× larger (than scale1 and
saxpy1, respectively) because the data cache allows a read/write cache-line replace-
ment to happen in a single cycle 8. The L1 bandwidth on a single core could be larger
when further unrolling the loops or better scheduling instructions for each dataset. The
aforementioned numbers are achieved by unrolling the loops 16 times without changing
the assembly code.

Furthermore, it is difficult to exactly measure the L2 bandwidth due to the presence
of the L1 cache. The bandwidth depends on the memory access patterns. Specifically,
when we use a L2-friendly memory access pattern, the compiler will identify the stream
pattern and prefetch data to the L1 cache in time. By this, we will get a much larger band-
width due to the common efforts of L1 and L2. On the other hand, an unfriendly memory
access will experience many L1 misses and result in cache thrashing. Our benchmarking
results are obtained when disabling the software prefetching. When using 4 threads on a
core, we notice a bandwidth of 11 GB/s, 20 GB/s, 10 GB/s, 16 GB/s for scale1, scale2,
saxpy1, saxpy2, respectively (Figure A.8).

A.2.4. RING INTERCONNECT
On Xeon Phi, the cores and memory controllers are interconnected in a bi-directional
ring. When multiple threads are requesting data simultaneously, shared components
like the ring stop or DTDs can become performance bottlenecks. In order to check this
hypothesis, and its eventual performance impact, we use thread affinity to fix threads
on cores, and we run the bandwidth microbenchmarks to quantify potential bandwidth
changes (in GB/s) for different thread-to-core mapping scenarios.

CORE/THREAD DISTRIBUTION

First, we measure the read memory bandwidth by distributing threads onto separate
cores in three different patterns: (1) compact - the cores are located close to each other,
(2) scattered - the cores are evenly distributed around the ring, and (3) random - the
core IDs are selected randomly with no repeats. The bandwidths are measured using
2, 4, 8, and 16 cores and the results are presented in Figure A.9a. We see that the three
approaches achieve very similar memory bandwidths. Thus, the cores around the ring
are symmetric on Xeon Phi, and the distance between has practically no impact on the
achieved bandwidth.

Second, as each Xeon Phi core supports up to four hardware threads, we investigate
whether there is any impact on bandwidth if the threads are all gathered on the same
core (thus, less interconnect traffic) or distributed among different cores. Figure A.9b
shows that when the threads run on the same core, the bandwidth stabilizes at 4.7 GB/s.
We also note that running threads on separate cores results in a linear bandwidth in-
crease with the number of threads. We conclude that when multiple threads on the same

8http://software.intel.com/en-us/articles/intel-xeon-phi-core-micro-architecture

http://software.intel.com/en-us/articles/intel-xeon-phi-core-micro-architecture

A.2. EMPIRICAL EVALUATION

A

149

 0

 20

 40

 60

 80

 100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
B

/s

array size per thread (KB)

1T
2T
3T
4T

(a) scale1 bandwidth.

 0

 20

 40

 60

 80

 100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
B

/s

array size per thread (KB)

1T
2T
3T
4T

(b) scale2 bandwidth.

 0

 10

 20

 30

 40

 50

 60

 70

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
B

/s

array size per thread (KB)

1T
2T
3T
4T

(c) saxpy1 bandwidth.

 0

 10

 20

 30

 40

 50

 60

 70

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
B

/s

array size per thread (KB)

1T
2T
3T
4T

(d) saxpy2 bandwidth.

Figure A.8: Cache bandwidth on a single core.

 0

 10

 20

 30

 40

 50

 60

 70

2 4 8 16

G
B

/s

#cores

compact scatter random

(a) Core Distribution

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 2 3 4

G
B

/s

#threads

same separate

(b) Thread Distribution

Figure A.9: Core and thread distribution effects (we use the read kernel and the array size is 1 GB).

core request data simultaneously, they will compete for the shared hardware resources
(e.g., the ring stops), thus serializing the requests. On the bright side, the threads located
on the same core share cache data and have faster data accesses (see Section A.2.2).

A

150 A. TEST-DRIVING INTEL XEON PHI

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 2 4 8 16 24 32 40 48 60 120 180 240

G
B

/s

#threads

128MB

256MB

512MB

1024MB

Figure A.10: The memory bandwidth when the threads read the same memory space.

 0

 1

 2

 3

 4

 5

 6

 7

4KB
8KB

16KB

32KB

64KB

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

128M
B

256M
B

512M
B

tr
a
n
s
fe

r
b
a
n
d
w

id
th

 (
G

B
/s

)

data size

Quartiles

(a) Host =⇒ Phi

 0

 1

 2

 3

 4

 5

 6

 7

4KB
8KB

16KB

32KB

64KB

128KB

256KB

512KB

1M
B

2M
B

4M
B

8M
B

16M
B

32M
B

64M
B

128M
B

256M
B

512M
B

tr
a
n
s
fe

r
b
a
n
d
w

id
th

 (
G

B
/s

)

data size

Quartiles

(b) Phi =⇒ Host

Figure A.11: Achieved data transfer bandwidth (over PCIe) between a host and an Xeon Phi.

ACCESSING SHARED-DATA

Section A.2.4 focuses on the achieved bandwidth when threads access separate mem-
ory spaces. In this section we investigate what is the bandwidth when different threads
access the same memory space simultaneously? We expect that the bandwidth would
resemble that obtained by a single thread, assuming the memory requests are served
by broadcasting. Figure A.10 presents the measured bandwidth, showing that the read
bandwidth decreases over the number of threads until 24 (or 16). Thereafter, the band-
width is constant around 1.5-2.0 GB/s (i.e., one third of the single thread bandwidth).
When using more threads than cores, the bandwidth drops even further. This behavior
is different from the linear increase trend (shown in Figure A.9a) seen when accessing
separate memory spaces. We assume the bottleneck lies in the simultaneous access to
the DTDs. Therefore, for bandwidth gain, applications should strive to keep threads ac-
cessing different parts/cachelines of the shared memory space (for as much as possible),
to avoid the effects of contention at the interconnect level.

A.2.5. PCIE DATA TRANSFER

When used as a coprocessor, Xeon Phi is connected via PCIe to a host (e.g., a traditional
CPU). When offloading computation to the Xeon Phi, the tasks and the related data need

A.3. SCAT: AN XEON PHI MODEL

A

151

to be transferred back and forth between the two processors. As seen for GPUs [164],
these transfers can be expensive in terms of overall application performance. Thus, we
have designed a benchmark to measure the data transfer bandwidth. To do so, we use the
offload pragma (specifying in and out for the transfer direction) to transfer datasets of
different sizes from host to Xeon Phi and back. The transferred data is allocated with a
4KB alignment, for optimal DMA performance [66].

The achieved bandwidth between host and Xeon Phi is presented in Figure A.11 (we
report the results over 1000 times). We note that the bandwidth increases with data
size, and it is relatively stable for different runs, for both directions. However, for data
transfers larger than 32 MB, the Phi to host bandwidth shows a large variation, with the
median bandwidth value decreasing sharply (up to 6 times!). The reasons for this large
variance are still under investigation.

A.3. SCAT: AN XEON PHI MODEL
We compare our results with the information provided by the Intel Software Develop-
ment Guide (SDG) in Table A.2. We note that we did improve on the content of the of-
ficial data: instruction latency data, local and non-local memory access bandwidth and
latency data, an interconnect study, and a PCIe offload evaluation. We also have the
following key observations, which lead to optimization guidelines.

High Throughput: Xeon Phi is indeed a high-throughput platform. The peak instruc-
tion throughput is achievable, but it depends on the following factors: (1) the number
of threads and threads/core occupancy, (2) the utilization of the 512-bit vectors, (3) the
issuing width (i.e., the number of independent instruction streams), (4) the instruction
mix. Furthermore, using single-precision data leads to better performance for math-

Table A.2: A comparison with the data in SDG (‘N/A’ stands for "not available" in SDG).

Metric SDG Measured
VPU

Latency general statement cycles/instruction
Throughput 1008 GFlops 1008 GFlops

EMU evaluation general statement quantified
L1 Cache (32KB)

Latency (local) 1 cycle 3 cycles
bandwidth (local) N/A R=64B/c;W=64B/c

L2 Cache (<512KB)
Latency (local) 11 cycles 24 cycles

Bandwidth (local) N/A quantified
Latency (remote) N/A 250 cycles

Off-chip memory
Latency N/A 302 cycles

Bandwidth 320 GB/s R=164GB/s;W=76GB/s
Prefetching general statement quantified
ECC factor general statement quantified

Interconnections
Ring Traffic Contention N/A ring stops, DTDs
PCI Express Bandwidth N/A up to 7 GB/s

A

152 A. TEST-DRIVING INTEL XEON PHI

Figure A.12: The SCAT model of Intel Xeon Phi.

intensive kernels (than using a double-precision version).
Memory Selection: Accessing the local L1 cache is 8 times faster than accessing the

local L2 cache, which is again an order of magnitude faster than accessing the remote
caches or the off-chip memory. However, the difference between a remote cache access
and an off-chip memory access is relatively small (17%). Furthermore, the remote access
latency does not depend on the cache-line state.

Efficient Memory Access: Data is read and written from/to the off-chip memory in
cache lines (64 bytes). The maximum achievable bandwidth is 164 GB/s for read oper-
ations and 76 GB/s for write operations - a lot lower than the theoretical peak of 320
GB/s. With streaming store instructions, the write bandwidth can increase up to
1.7 times. Further, programmers need many threads (at least 60 - one per core) to is-
sue enough memory requests to saturate the ring interconnect and the memory chan-
nels. The hardware and software prefetching can improve bandwidth; their efficiency
increases with the length of the stanzas of contiguous memory accesses. Finally, dis-
abling ECC leads to an average of 20% increase in bandwidth.

Ring Interconnect: All cores can be seen as symmetrical peers, and the distance be-
tween cores has little impact on performance. However, memory requests from threads
running on the same core are serialized, provided that the bandwidth reaches 4.7 GB/s.
Furthermore, when threads (on different cores) are accessing the same data, the simul-
taneous access to the DTD leads to a bandwidth loss.

Overall, we believe our results are complementary to the SDG, and, being backed up
by more practical guidelines, be of added value for programmers using this platform.

SCAT Model: Based on the numbers and the observations, we attempt to build a sim-
ple view of the Xeon Phi, providing production users with a platform model for reasoning
about parallel algorithm design and performance optimization. Figure A.12 shows the
machine model for Xeon Phi. The machine has 60 symmetrical cores, each of which con-
tains 1/2(/3/4) vector threads working on 8 double-precision or 16 single-precision data
elements in a lock-step manner. Family threads (threads suited in the same core) dif-
fer from remote threads (threads suited in another core) in that they share and com-
pete local resources. Furthermore, compared with accessing local caches, remote caches

A.4. LEUKOCYTE TRACKING

A

153

and off-chip memory are slow (see the numbers in Table A.2). We summarize the model
as SCAT (symmetric cores and asymmetric threads).

This machine model limits itself to those architectural details that are important for
performance. For example, programmers do not have to keep the ring interconnect in
mind because the cores perform symmetrically. On the other hand, the threads on the
same core share and compete the shared resources, putting up asymmetry and impelling
us to take care of thread affinity. Therefore, this platform model captures the key
performance features of the processor, ensuring good performance with relatively low
programming effort (i.e., using high-level programming tools).

A.4. LEUKOCYTE TRACKING
In this section, we focus on our case-study application, Leukocyte Tracking. Specifically,
we aim to evaluate the gap(s) between the achieved performance of the application and
the performance indicated by the microbenchmarks.

Leukocyte Tracking is a medical imaging application which detects and tracks rolling
leukocytes (white blood cells) in vivo video microscopy of blood vessels. The velocity
of rolling leukocytes provides important information about the inflammation process,
which aids biomedical researchers in the development of anti-inflammatory medica-
tions [130].

In the application, cells are detected in the first video frame and then tracked through
subsequent frames [130]. Tracking accounts for around 90% of the total execution time
and thus we focus on this procedure. Tracking is accomplished by first computing, in the
area surrounding each cell, a Motion Gradient Vector Flow (MGVF) matrix. The MGVF is
a gradient field biased in the direction of blood flow, and it is computed using an iterative
Jacobian solution procedure. After computing the MGVF, an active contour is used once
again to refine the shape and determine the new location of each cell. Unfortunately,
leukocyte tracking is computationally expensive, requiring more than four and a half
hours to process one minute of video. Boyer et al. have translated the tracking algorithm
from Matlab to C and OpenMP [19].

A.4.1. PERFORMANCE ANALYSIS

Without any code changes, we compile and run the kernel on both Phi and SNB (Intel
Xeon E5-2620, a dual 6-core processor with hyper-threading disabled), and show their
performance in Figure A.13. We see that, on SNB, the execution time decreases when
increasing the number of threads. On Phi, the execution time decreases when the num-
ber of threads is less than 40. Using more than 40 threads brings no further performance
gain. Overall, we note that the performance on Phi (with 40 threads) is 2× worse than
that on SNB (with 12 threads), while the sequential execution of the same application
(i.e., running on a single thread) on Xeon Phi is 5× slower than on SNB.

To further understand these results, we analyze the overall performance by taking
both parallelism and per-thread performance into account, and focus on two aspects: (1)
the single-thread performance and (2) scalability. The analysis includes the interactions
between kernel characteristics and processor features.

Single thread: When tracking a leukocyte, we use 18 data structures/matrix (1 input

A

154 A. TEST-DRIVING INTEL XEON PHI

 16

 32

 64

 128

 256

 512

 1024

1 2 4 6 8 1
0

1
2

1
6

2
4

3
2

4
0

4
8

5
6

6
0

1
2

0
1

8
0

2
4

0

 2

 4

 8

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

S
lo

w
d

o
w

n
 (

x
)

#threads

240T
12T

Slowdown

Figure A.13: The initial performance results of Leukocyte Tracking on an Xeon Phi processor (240 threads) and
an Xeon processor (12 threads).

sub-image, 1 motion gradient vector field, 8 neighbours to store intensity differences,
and 8 neighbours to store the heaviside value). For the given input dataset, each matrix
has 41×81 elements (in double-precision). In total, tracking a leukocyte needs 467 KB
(18×41×81×8), which is smaller than the size of a local L2 cache (Figure A.12 and Ta-
ble A.2). Thus, the iterative Jacobian solver will work intensively on tracking a leukocyte
with data located on-chip, and the tracking speed is not limited by the memory access.

As for computation without vectorization, a thread on Phi (working at 1.05 GHz and
issuing an instruction every two cycles, see Section A.2.1) runs 4× slower than one on
SNB (working at 2.0 GHz and issuing instructions every cycle). With vectorization, the
difference is lowered to roughly 2×. In our practical experience, the single thread per-
formance on Phi is around 5× worse than that on SNB, an indication that vectorization
is not applied on both platforms. Indeed, the compiler reports an auto-vectorization
failure (consequently, only 12.5% of the SIMD lanes are used).

Scalability: Figure A.13 shows that the performance on Phi varies little when using
over 40 threads. Through code analysis, we observed that parallelization is performed
over the number of leukocytes. As the number of leukocytes from the input datasets is
36, increasing the number of threads to more than 36 brings no performance gain. In
other words, the kernel parallelism does not match Phi’s massive hardware parallelism
(36 << 240, see Figure A.12). On the other hand, SNB has only has 12 threads, showing
much better scalability. To fully utilize the hardware resources on Phi, we must increase
the paralellism of the application.

A.4.2. PERFORMANCE OPTIMIZATION

VECTORIZING THE KERNEL

When tracking a leukocyte, the kernel loops over a fixed-sized portion of a frame (a sub-
image with 41×81 pixels). A typical loop is shown in Figure A.14 (m = 41, n = 81). As
we have mentioned, the compiler fails to vectorize this code due to the assumption
of data dependency (the original code uses pointers to pointers and dereferencing

A.4. LEUKOCYTE TRACKING

A

155

1 input : MAT* z, double v, double e
2 output : MAT* H
3 double one_over_pi = 1.0 / PI;
4 double one_over_e = 1.0 / e;
5 for (i = 0; i < m; i++) {
6 for (j = 0; j < n; j++) {
7 double z_val = m_get_val (z, i, j)*v;
8 double H_val = one_over_pi * \
9 atan(z_val * one_over_e) +0.5;

10 m_set_val (H, i, j, H_val);
11 }
12 }

Figure A.14: The Heaviside step function.

the data structure is too complex for the compiler to automate).
We note that enabling vectorization for these cases requires an intervention from the

programmer. The typical approach for manual vectorization is to add low-level intrinsics
in the high-level C code, thus specifically instructing the compiler to use the vector units.

We identify three main factors that make code vectorization for leukocyte tracking
cumbersome. First, data alignment: when vectorizing the code, data accesses should
start with an address aligned at 64 bytes (512 bits). This must be ensured with spe-
cific memory allocation (i.e., dedicated APIs). Second, the non-unit-strided memory
access: when the 8 elements in a vector are non-contiguous, the offset for each ele-
ment must be specified. This occurs when calculating the gradient in the tracking kernel.
Third, and final, vectorizing a loop requires special care when the number of iterations is
not a multiple of the vector length. Thus, we also need to deal with the remainder of the
inner-loop (i.e., because n%8 6= 0). Therefore, we use two loops in the tracking kernel:
a vector loop (for the bulk of the computation), and a scalar loop (used to deal with the
loop remainder).

Fixing all these problems (and thus manually vectorizing this code using intrinsics)
takes an expert programmer two days. Moreover, the kernel code doubles in size (from
∼200 lines to ∼400 lines). Correspondingly, the tracking time per frame decreases to
8.5s from 31s (∼4× faster) on Phi. The remaining optimization space is roughly 2×. The
limiting factor is that the kernel uses trigonometric operations, which can be further
optimized by using EMU (Section A.2.1 and [50]).

CHANGING PARALLELISM

As we have mentioned, the parallelism of leukocyte tracking is limited by the number
of leukocytes (36 in the given data set). For the traditional multi-core processors, this
number is still larger than that of the hardware threads. But on a Phi with 240 hardware
threads, running the tracking kernel with 36 parallel threads can never fully utilize the
platform.

We attempt to improve on this situation by increasing parallelism. Thus, we spawn
a second-level parallelism over the outer loop of the sub-image in Figure A.14. Next,
we need to tune the dimensions of the two parallel levels by specifying the number of
first-level threads (F LT) and the number of second-level threads (SLT). We select these

A

156 A. TEST-DRIVING INTEL XEON PHI

 1

 2

 4

 8

 16 1
 2

 4
 8

 16
 32

 0
 2
 4
 6
 8

 10

T
ra

c
k
in

g
 t

im
e

 (
s
)

 8
 6
 4
 2

SLT FLT

T
ra

c
k
in

g
 t

im
e

 (
s
)

Figure A.15: The selection of F LT and SLT .

two numbers from those that satisfy the following constraints: (1) F LT ×SLT ≤ 240, (2)
F LT ≤ 36, (3) SLT ≤ 41. We autotune the kernel using F LS ∈ {1,2,3,4,6,9,12,18,36} and
SLT ∈ {1,2,3,4,5,6,7,8,9,10, 11,12,13,14,15,16} 9. Figure A.15 shows the tracking time
per frame for different combinations. We see that the best performance achieved by Phi
is around 0.1s per frame when F LT = 4 and SLT = 8, indicating that using more threads
does not mean a faster tracking (4×8 < 240). According to the SCAT model (Figure A.12),
it is of no use binding multiple threads to the same core due to little data reuse.

OVERALL PERFORMANCE

We compare the execution time of tracking leukocytes per frame on Phi against the ones
achieved by SNB (using a higher clock and better performing cores, but a lot less paral-
lelism), and on an NVIDIA Kepler GPU (K20m, a GPU with a similar peak performance
and more massive parallelism, programmed in CUDA implementation 10). The compar-
ison is illustrated in Table A.3. We notice that Xeon Phi is 6× faster than SNB, while it
is around 40% slower than K20. Admittedly, optimizing the tracking kernel on SNB (by
hand-tuning for enabling vectorization) can lead to a performance increase (a maximum
4×, most likely, with SNB-specific intrinsics). K20 performs better than Phi due to the
more efficient reduction implemented in the GPU shared memory [19]. Specifically, at
the second level of parallelism, we use multiple threads that are bound to separate cores
on Phi, while the CUDA implementation runs the same amount of work on a block (and a
multi-processor). Thus, when performing reduction, the shared (reduction-)variable on
Phi has to be transferred back and forth at the second-level cache. As we have measured,
the remote cache access is as slow as accessing the off-chip memory (Figure A.12 and
Table A.2). With CUDA on K20, this reduction happens in shared memory, with much
higher performance. The final code of leukocyte tracking for Phi is publicly available 11.

A.4.3. DISCUSSION
One of the important selling points of Phi is the continuity of programming models from
the traditional multi-core processors - the OpenMP and MPI models and codes are func-

9SLT can be as large as 41, but our results show a large SLT is not necessary due to the limited per-thread work.
10We change the original Rodinia to a double-precision version for a fair comparison.
11https://github.com/haibo031031/mic-apps

https://github.com/haibo031031/mic-apps

A.4. LEUKOCYTE TRACKING

A

157

Table A.3: Tracking time per frame (in seconds). ’VEC’ represents ’vectorization’; ’FMT/SMT’ is ’to use the
first-level/second-level multi-threading’, respectively. The optimizations are incrementally added.

1T +VEC +FMT +SMT Overall
Phi 31 8.5 0.7 0.1 0.1

SNB 6 – 0.6 – 0.6
K20 – – – – 0.06

tionally compatible. Ideally, programmers should obtain high performance without a
lot of investment in programming model learning (e.g., OpenCL), tuning and hacking
low-level code (e.g., assembly code with pthreads). Effectively, the expectation is that
re-compiling the code with the -mmic option will do. Our experience leads to a different
conclusion: porting legacy code or developing new code still needs a lot of developer
interventions.

Note 1. Using intrinsics indeed brings us a significant performance gain, but it ex-
poses low-level implementation details to users, conflicting with the principles of en-
capsulation and high-level programming. It also requires code specialized for Phi, which
will further fail to run the on traditional multi-core processors. This deviates from the
original design goal of Phi, i.e., to keep using traditional programming models. A possi-
ble solution is to provide a high-level vector template/library/model (e.g., ispc 12). The
template can present users with the required operations (e.g., multiply and reduction).
When implementing the template, we translate the operations into their equivalent in-
trinsics specialized to a platform. Thus, we can keep code portable while not hindering
performance.

Note 2. Xeon Phi truly needs massive parallelism to fully use the hardware threads.
This observation makes a significant difference between SNB and Phi. SNB has a dozen
of hardware threads, while Phi has over a two hundred. Only those applications with
abundant parallelism can fully utilize the machine. When lacking parallelism, applica-
tions can either look for finer grain parallelism (atypical for OpenMP, but useful when
available), or find a way to load multiple (independent) tasks on the platform. However,
note that the number of required threads depends on applications and their run-time
contexts.

Note 3. On Xeon Phi, using OpenMP can perform global reduction on the globally
shared caches, but this proves to be less efficient than expected (apparently due to fre-
quent memory transfers). When using CUDA/OpenCL on GPUs, an efficient reduction
can be performed in shared memory (or local memory in OpenCL) at the block (or work-
group in OpenCL) level. Further, our experience shows that the leukocyte tracking maps
more naturally to the GPU architecture: mapping a leukocyte to a multi-processor. While
on Phi, we need to map a leukocyte to multiple processing cores. Thus, we believe that a
multiprocessor on GPUs is equivalent to multiple processing cores on Phi, at least in the
context of leukocyte tracking.

To summarize, we conclude that (1) although it often destroys portability, manual
vectorization is mandatory for exploiting Phi’s performance; a high-level library can be

12http://ispc.github.io/

http://ispc.github.io/

A

158 A. TEST-DRIVING INTEL XEON PHI

used to hide the platform-dependent details, but vectorization must be enabled as much
as possible, and (2) massive parallelism is needed on Phi to fully use the hardware. In a
nutshell, merely relying on compilers with traditional programming models to achieve
high performance on Phi is still far from reality.

A.5. RELATED WORK
In this section, we survey and briefly discuss the work related to our (micro)benchmarking
approach. We focus mainly on existing CPU and GPU benchmarking methods, as there
are no other comprehensive studies of Xeon Phi - yet.

In [144], the authors develop a high-level program to evaluate the cache and TLB for
any machine. Part of our work is based on their approaches (targeting uni-core proces-
sors, though). Multiple studies are also performed on multi-core CPUs. In [126], the
authors report performance numbers from three multi-core processors , including not
only execution time and throughput, but also a detailed analysis on the memory hier-
archy performance and on the performance scalability between single and dual cores.
Daniel Molka et al. [104] revealed many fundamental details of the Intel Nehalem us-
ing benchmarks for latency and bandwidth between different locations in the memory
subsystem. We use similar approaches for the access latency of remote caches.

For GPUs, Volkov et al. [164] presented detailed benchmarking of the GPU memory
system that reveals sizes and latencies of caches and TLB. Later, Wong et al. [169] pre-
sented an analysis of the NVIDIA GT200 GPU and their measurement techniques. They
used a set of micro-benchmarks to reveal architectural details of the processing cores
and the memory hierarchies. Their results revealed the presence of some undocumented
hardware structures. While these microbenchmarks are in CUDA and targeted NVIDIA
GPUs, Thoman et al. [152] develop a set of OpenCL benchmarks targeting a large variety
of platforms. They include code designed to determine parameters unique to OpenCL,
like the dynamic branching penalties prevalent on GPUs. They also demonstrate how
their results can be used to guide algorithm design and optimization

Garea et al. [129] developed an intuitive performance model for cache-coherent ar-
chitectures and demonstrated its use on Intel Xeon Phi. Their model is based on latency
measurements, which match well with our latency results. In addition to the cache ac-
cess latency, we have shown how we benchmark the instruction throughput, the mem-
ory bandwidth at different levels, and the interconnect performance.

A.6. SUMMARY
Given its performance promises, Intel Xeon Phi is very likely to become popular for both
low-end high performance computing applications (smaller scale scientific applications
like Leukocyte Tracking), and the next generation of supercomputers. In this work, we
presented our hands-on experience with this processor - in both the "lab" and using a
real application - and discussed several key insights into the performance of this new
many-core processor. By using a set of self-designed microbenchmarks, we charac-
terized the major components of this architecture - cores, memory, and interconnec-
tions - summarizing them into four machine-centric observations (potential optimiza-
tion guidelines). We also made a first attempt to provide a simple machine view (SCAT)

A.6. SUMMARY

A

159

to facilitate application design and performance tuning on the Xeon Phi.
In general, our benchmarking results are consistent with Xeon Phi’s published data.

However, the data we have added through this benchmarking effort allowed us to expose
more accurately the expected key performance factors for the Xeon Phi. We have shown
that the platform is able to deliver its performance promises in terms of computation,
but programmers will need to find the right parallelization strategy to fill 240 hardware
threads with compute-intensive tasks, while finding the right balance between data par-
titioning and coherent memory requests to achieve sufficient memory bandwidth. Thus,
we believe the number of applications that can easily use Xeon Phi’s potential in their
existing, naive form is, for now, very limited. And for high performance, our and oth-
ers’ experience shows that programmers need to take a lot of efforts on parallelization,
analysis, and optimization.

B
AUTO-TUNING CLUSTERING DATA

STREAMS

In this appendix, we show our hands-on experience of porting a Clustering Data Streams
(in Rodinia benchmark suite) from CUDA to OpenCL, and present our memory-centric
optimization strategies for it on NVIDIA GPUs and AMD GPUs. Furthermore, we present
a model to auto-tune this application. This appendix shows an instance of the auto-
tuning module in the Sesame framework (Chapter 8). This appendix serves as yet an-
other case study on how the optimization space depends on platforms (e.g., using pinned
memory has different performance impacts on two GPUs).

The objective of Clustering Data Streams (CDS) is, given a sequence of points, to
construct a good clustering of the stream, using a small amount of memory and time. A
data stream is a massive, continuous and rapid sequence of data elements [93]. Typically,
these data elements can be read only once or a small number of times. Each reading of
the sequence is called a linear scan or a pass. This data stream model is widely applied
when modelling customer click streams, telephone records, multimedia data, financial
transactions, and so on.

As a useful and ubiquitous tool in data analysis, clustering is the problem of finding
a partition of a data set so that, under some definition of “similarity”, similar items are in
the same group of the partition, while different items are in different groups. Clustering
Data Streams studies clustering in the data stream context. In [60], the authors provide
a clear overview of CDS and its algorithm.

Data Streams are usually far too large to fit in the main memory. Therefore, memory
usage becomes an important limiting factor for CDS algorithms. When it comes to GPU
platforms, the data transfer between the host and the device should be reduced as much
as possible; otherwise, it will become an additional bottleneck.

Several solutions have been proposed for this application. In this work, we start from
the SC algorithm in Rodinia [1], and focus on optimizing its memory usage. Specifically,

This appendix is based on our work published in the Proceedings of CSE 2011 [48].

161

B

162 B. AUTO-TUNING CLUSTERING DATA STREAMS

we propose a rake-based memory-efficient solution to CDS. Our rake-based optimiza-
tion was inspired by ‘Loop Raking’ (see [176] for a detailed description), which is exten-
sively used nowadays in GPU applications and labeled as ‘multi-output’ strategy [163].
The basic idea is to let each work-item work on multiple data elements. Then the ques-
tion becomes: how many such elements should be assigned to one work-item, namely
the rake-size? As the rake-size has a significant effect on performance, it is difficult to
maximize performance for all problem sizes by setting one fixed value. To address this
issue, we also present an auto-tuning solution to select the optimal rake-size per plat-
form and problem-size.

To allow for a portable solution and easy auto-tuning, we propose an OpenCL im-
plementation of CDS. Although OpenCL cannot mask significant differences in the ar-
chitectures, it does guarantee portability and correctness. Therefore, it is much easier
for developers to start with a correctly functioning OpenCL program tuned for one ar-
chitecture and produce a correctly functioning program optimized for another architec-
ture [147].

To summarize, we make the following contributions: (1) We provide an OpenCL im-
plementation of the SC benchmark from Rodinia, which enables the program to run on
various OpenCL-compliant platforms. (2) We apply several optimizations to get better
performance, including a rake-based optimization to use memory more efficiently. (3)
We propose a model-driven auto-tuning method to maximize the CDS performance.

The rest of the work is organized as follows: Our optimizations and their performance
impacts are explained in Section B.1. We propose a simple model to auto-tune perfor-
mance of CDS in Section B.2, where experimental results are also shown. Section B.3
presents related work in CDS and auto-tuning on GPUs. Finally, we summarize the work
in Section B.4.

B.1. HAND-OPTIMIZING CDS IN OPENCL
In [93], the authors discussed five different algorithms for CDS: divide and conquer, dou-
bling, statistical grid-based, STREAM and CluStream. The algorithm used in our work is
based on STREAM, a single-pass, constant factor approximation algorithm that was de-
veloped based on the k-median problem. The algorithm divides the entire data stream
into pieces of m data points. For each piece, STREAM clusters the piece’s points into
k clusters/groups by using LOC ALSE ARC H algorithm: it summarizes information of
each piece by maintaining only the information regarding the piece centers (as inter-
mediate centers) and their weights, and then discards the other points. After seeing the
entire data stream, it will cluster all the intermediate centers into k final centers. The call
graph of the implementation is shown in Figure B.1.

In order to speedup LOC ALSRE AC H , the authors relaxed the number of centers
(larger than k) in the intermediate steps, and achieved exactly k centers in the final step
[60]. During this process, they use a g ai n function to judge whether it is worth opening
a facility: given a preliminary solution, the function computes how much cost can be
saved by opening a new center; for every new point, it weighs the cost of making it a
new center and reassigning some of the existing points to it against the savings caused
by minimizing the distance between two points x and y for all points.

The original CUDA version parallelized the g ai n function [1]. In the following sub-

B.1. HAND-OPTIMIZING CDS IN OPENCL

B

163

Figure B.1: The call graph of the STREAM-based implementation. The dashed arrows represent that the callee
functions will be invoked for multiple times in the order of left-to-right.

sections, we propose several optimizations based on the CUDA implementation. For
the majority of the paper, we will use the OpenCL terms (for example, work-item, and
work-group, etc.) for illustration, so please refer to [151] for more details about OpenCL.

B.1.1. A MEMORY-EFFICIENT SOLUTION

The key requirement of CDS is to make real-time data processing using limited memory.
Therefore, a memory-efficient solution plays an important role in this application. In
order to save memory, we present a rake-based solution, inspired by [176] and [163].
As is illustrated in Figure B.2, the idea of our rake-based solution is to let each work-item
process several nonconsecutive elements. Neighboring work-items (i.e. work-items with
consecutive numbering) work on consecutive elements in a similar manner to how tines
work in a rake. The original implementation can be seen as using only one rake.

Figure B.2: Our rake-based solution when there are 4 rakes.The upper part shows that the original
implementation has only one rake, while the lower part shows there are several (e.g. 4 rakes here) rakes to

take charge of the whole task. The short arrows represent work-items on GPU; When using four rakes, we only
have to allocate 1/4 of the memory usage of the original implementation, thus reducing both the memory

allocation and data transfer.

In order to store ‘cost’ states, the existing many-core solution has to allocate K max
(the maximum number of centers) elements for each work-item. By contrast, our rake-

B

164 B. AUTO-TUNING CLUSTERING DATA STREAMS

based solution processes the whole problem domain piece by piece and enables the re-
usage of device memory (shown in Figure B.2), with at least two advantages: (1) it saves a
lot of memory space, and (2) it can finish the whole task by transferring less data between
the host and the device (i.e. it is also faster).

SAVED MEMORY SPACE

Let R represent the number of rakes, and S represent the memory amount allocated to
store the ‘cost’ state in the original solution. When using R rakes (R = 4 in Figure B.2),
our optimized implementation only needs to allocate 1/R memory used by the original
one to store the ‘cost’ state. Therefore, the saved memory amount ∆S can be calculated
using Equation B.1.

∆S(R) = S × (1− 1

R
) (B.1)

SAVED TIME

The data transferring time can be calculated according to Equation B.2.

Td at a(R) = L+ Sd at a(R)

BW
(B.2)

where L represents latency, including overhead to startup kernels, to prepare data, etc,
Sd at a represents the amount of data to be transferred (here Sd at a = S in Equation B.1),
and BW stands for the bandwidth of transferring data between devices and the host.

Then we can derive the saved time ∆Td at a as follows:

∆Td at a(R1,R2) = Sd at a(R1)

BW (R1)
− Sd at a(R2)

BW (R2)
(B.3)

where R1, R2 stand for two different rake-sizes. In this Equation, BW changes with rake-
size R, and they are different when R = R1 and R = R2. Additionally, L is independent of
rake-size R. Thus there is no L component in Equation B.3.

To summarize, when increasing R, we can save both memory space and data trans-
ferring time. However, when R becomes too large, there will be less work-groups in each
rake, which means there will not be enough work-groups to hide latency, thus leading
to poorer performance. Therefore, we have to take the variation of R into account for
maximizing performance.

B.1.2. FURTHER OPTIMIZATIONS

USING LOOP-UNROLLING

To maximize performance, we should reduce the number of dynamic instructions. One
of the effective ways to do so is loop unrolling [106]. In CDS, the kernel program will
calculate the distance to the candidate point x. When the dimension of points is high,
loop-unrolling becomes necessary.

USING PINNED MEMORY

CDS will frequently copy data between the host and the device. Therefore, it is impor-
tant to ensure a high bandwidth of data copying; otherwise, it will become a bottleneck.

B.1. HAND-OPTIMIZING CDS IN OPENCL

B

165

Pinned memory is an important way to improve the bandwidth between devices and the
host, which is illustrated in Table B.1. As can be seen from the Table, the bandwidth can
be boosted by up to 25% when using pinned memory on GTX480; there are no signifi-
cant changes on HD5870 (H2D: the peak data transferring bandwidth from the host to
the device; D2H: the peak data transferring bandwidth from the device to the host).

Table B.1: Peak Bandwidth with/without Pinned Memory: MB/s

H2D D2H
w w/o w w/o

HD5870 1385.6 1381.3 1455.3 1464.6
GTX480 5646.2 5176.2 6107.1 4901.4

B.1.3. EXPERIMENTAL RESULTS
We measure the performance of the CDS implementations, and we use the execution
time (in seconds) as the comparison metric. The execution time refers to the sum of
the kernel execution time (KE), and data transferring time from the device to the host
(D2H), because the other components of the run-time are the same before and after our
optimizations.

TESTBED SPECIFICATIONS

We have selected GTX480 from NVIDIA and HD5870 from AMD as our testbeds. Their
specifications are shown in Table B.2 (MIW stands for Memory Interface Width).

Table B.2: Specifications of the Selected GPUs Testbeds

GTX480 HD5870

Architecture Fermi Cypress

#Compute Unit 60 20

#Cores 480 320

#Processing Elements 480 1600

Core Clock(MHz) 1401 850

Memory Clock(MHz) 1848 1200

MIW(bits) 384 256

Memory Capacity(GB) 1.5 1

PERFORMANCE COMPARISON OF DIFFERENT OPTIMIZATIONS

We make a performance comparison of different optimizations on GTX480 and on HD5870.
The results are shown in Figure B.3 (the execution time is normalized as speedup rela-
tive to the native version). We can see that the version with all the optimizations enabled
can achieve 2.1x speedup on GTX480, while the speedup is only around 1.4x on HD5870.
Moreover, the loop-unrolling and pinned-memory techniques have little effect on the
whole performance, especially on HD5870.

B

166 B. AUTO-TUNING CLUSTERING DATA STREAMS

 0

 0.5

 1

 1.5

 2

 2.5

 3

GTX480 HD5870

S
p

e
e

d
u

p

Native
+LU
+PM

+Rake
+All

Figure B.3: Performance comparison of different optimizations. Native: the original version in OpenCL; +LU:
the native implementation with loop-unrolling optimization; +PM: the native implementation with

pinned-memory optimization; +Rake: the native implementation with rake-based optimization; +All: the
native implementation with all the optimizations mentioned above.

PERFORMANCE COMPARISON WITH THE ORIGINAL IMPLEMENTATION

We compare the original implementation (in CUDA) with our fully optimized implemen-
tation (in OpenCL) on GTX480. Figure B.4 shows that our fully optimized version can
perform 1.4x to 3.3x faster than the original one; the performance gain is higher when
the problem size is larger.

 0

 1

 2

 3

 4

 5

 6

 7

 8

102400 204800 307200 409600 512000 614400

E
x
e

c
u

ti
o

n
 T

im
e

 [
s
]

Problem Size

original
optimized

Figure B.4: Performance comparison between the original implementation and our optimized
implementation (the problem size in CDS represents the number of points processed in each pass.)

B.2. AUTO-TUNING
In the previous section we proposed a rake-based solution to boost performance in both
memory consumption and execution time. In this section, we detail the trade-off in

B.2. AUTO-TUNING

B

167

Table B.3: Hardware-related Parameters: descriptions and values

Parameter Descriptions GTX480
WIw ar p Number of work-items per warp 32
WImp Maximum number of work-items per multiprocessor 1536
MWmp Maximum number of warps per multiprocessor 48
WGmp Maximum number of work-groups per multiprocessor 8
Regmp Number of 32-bit registers per multiprocessor 32K
LMmp Maximum amount of local memory per multiprocessor 48K
MP the number of multiprocessors 15

Table B.4: Application-related Parameters: descriptions and values

Parameter Descriptions CDS
WIapp the total number of work-items in the application 409600
DIM the dimension of points 16
BS the size of work groups used in the application 512
Regwi the number of registers per work-item 23
LMw g the amount of local memory used per work-group 64B

choosing a proper R when it comes to different platforms and problem sizes, by present-
ing a simple model.

Let Ttot al represent the total execution time, Td at a represent the time taken to trans-
fer data (illustrated in Equation B.2), and Tker nel represent the time taken to execute
kernel functions. Therefore, we get the target function:

Ttot al (R) = Td at a(R)+Tker nel (R) (B.4)

Our goal is to minimize Ttot al , thus getting optimal performance. First of all, we draw
qualitative curves to describe how Td at a and Tker nel change with R. These are illustrated
in Figure B.5.

Figure B.5: Qualitative curves to show how Td at a and Tker nel change with R: when a < b.

When R increases, Td at a will decrease due to transferring less data from the device
to the host. After reaching point A (R = a), Td at a is mainly determined by L according to

B

168 B. AUTO-TUNING CLUSTERING DATA STREAMS

Equation B.2. Therefore, Td at a will remain almost stable after point A. At the same time,
when R increases, Tker nel will remain the same because of enough work-groups on each
compute unit. After point B, there are very few work-groups to hide latency, thus leading
to decreasing performance. We can get the total time Ttot al curve by adding together
the two curves shown in Figure B.5. Since we do not know whether a > b or a < b, these
two cases are discussed separately. Note that, for the simplicity of explanations, we use
some CUDA terms (for example, warps, multiprocessor, etc.) as supplements to OpenCL
terms in the following discussion.

B.2.1. CASE: WHEN a < b
When a < b, the optimal R ∈ [a,b]. Moreover, when R increases from a to b, Td at a will
decline slightly due to transferring less data. Therefore, we choose R = b for the optimal
performance, and the problem becomes how to determine b.

R = b is the transition point from where there are enough active warps to where there
are not. Similar to the method of calculating occupanc y in CUDA [118], we can com-
pute the maximum number of active warps (MW) per multiprocessor using the infor-
mation of the CDS application and the platform. The hardware-related parameters and
application-related parameters are described in Table B.3 and Table B.4, respectively.

MW can be calculated in the following four steps:

WORK-ITEM LIMIT

MW limited by work-item specifications can be calculated as follows:

MWwi =
min(W Imp ,W Gmp ×BS)

W Iw ar p
(B.5)

REGISTER LIMIT

MW limited by register resources can be calculated as follows:

MWr eg =
⌊

Regmp

Regwi ×W Iw ar p

⌋
(B.6)

LOCAL MEMORY LIMIT

MW limited by local memory can be calculated as follows:

MWlm =
⌊

LMmp

LMw g
× BS

W Iw ar p

⌋
(B.7)

PUT THEM TOGETHER

MW = min(MWmp , MWwi , MWr eg , MWlm) (B.8)

Then we can calculate b using Equation B.9:

b =
⌈

W Iapp

MP ×MW ×M Iw ar p

⌉
(B.9)

Given the device (GTX480) and the application case (when the problem size is 409600),
we can calculate MW = 32 using Equation B.8, and b = 27 using Equation B.9. Finally,
the experimental results show that the R = 28 (R ≈ b).

B.2. AUTO-TUNING

B

169

B.2.2. CASE: WHEN a > b
When a > b, it is unclear how the total time Ttot al will change from b to a (denoted by a
question mark illustrated in Figure B.6), but it is still use that the optimal R ∈ [b, a]. We
first estimate a, calculate b using the same method as the one mentioned in the previous
subsection, and then use an empirical search to get the optimal R.

Figure B.6: Qualitative curves to show how Td at a and Tker nel change with R: when a > b

Table B.5: The R Comparison between Predicted and Exhaustive

51200 102400 204800 307200 409600 512000 614400 716800 921600 1024000
exhaustive 8 8 16 20 28 34 40 48 60 68
predicted 8 7 14 20 27 34 40 47 60 67

ESTIMATING A

We make an estimation to a as follows:

Sd at a(R)/BW

L
×100% ≤ δ (B.10)

where the variables are the same with those in Equation B.2, and δ is an empirical thresh-
old. Sd at a can be calculated as follows:

Sd at a(R) = 4× (K +1)×W Iapp

R
(B.11)

where K represents the number of centers, W Iapp represents the number of work-items,
and each element consumes 4 Bytes. In order to estimate a, L is also needed. L is mainly
determined by startup time (l) of buffer-related commands, which can be measured by
a synthetic benchmark developed by ourselves. Then we can calculate L as follows:

L = l ×n (B.12)

where n is the total number of invocations of buffer-related commands (i.e. the device-
to-host buffer commands) in a certain experiment.

B

170 B. AUTO-TUNING CLUSTERING DATA STREAMS

Now we can calculate R using Equations B.10, B.11, and B.12:

R ≥ 4× (K +1)×W Iapp

δ× l ×n ×BW
(B.13)

and from a = mi n(R) we can derive a.

EMPIRICAL SEARCH

When R ∈ [b, a], we can use a simple search to obtain the optimal R. Essentially, this
means that we use an exhaustive method to find the optimal R along the interval [b, a].

Let us take the problem size of 51200 as an example. The parameters are measured/listed:
K = 20, W Iapp = 51200, δ = 1%, l = 4.5×10−5s, n = 895, and BW = BWPC Ie /6 = 1GB/s
(note that when processing the case when a > b, we let BW = BWPC Ie /6 as a good ap-
proximation. However, in practice BW is dependent on the amount of data to be trans-
ferred). Using Equation B.13, we can derive R ≥ 10.7 (a = 11). We can also calculate
b = 4. Obviously, a > b, and we use the empirical search in the interval [4,11] to find the
optimal R = 8.

B.2.3. EXPERIMENTAL RESULTS
We first compare the results of the exhaustive search and our analytical model using ten
different problem sizes between 51200 and 1024000. The results are shown in Table B.5.
As can be seen from the Table, the predicted R is always very close to that obtained by
exhaustive search.

Furthermore, we observe that when R is small the D2H time decreases sharply with
the increase of R; after the transition point, it decreases slightly when increasing R, as
shown in Figure B.7a. This means that the a < b case is more likely to occur, especially
for large problem sizes. In turn, this means that the empirical search will only be used
in a few cases; for the rest of the cases, our model-based tuning is able to determine the
correct R directly.

In practice, Tker nel tends to present a sawtooth behavior, rather than being stable
before point B. This is illustrated in Figure B.7b. These sawteeth appear because of load
imbalance (i.e. tasks or work-groups cannot be evenly distributed among multiproces-
sors). However, this does not conflict with our model. That is because we can always
obtain similar kernel execution time at the valley points when there are enough work-
groups on each multiprocessor. Before point B, we will have enough work-groups, and
thus different selections of valley points will not affect the performance.

B.3. RELATED WORK
In this section, we first present related work in CDS, and then make a short overview of
auto-tuning approaches on GPUs.

B.3.1. CLUSTERING DATA STREAMS ON GPUS
Feng Cao et. al proposed a set of algorithms for scalable clustering using graphics pro-
cessors based on k-means [23]. They introduce two strategies to retrieve data from GPUs,
taking into account low bus bandwidth, which has similar motivations to ours. They

B.3. RELATED WORK

B

171

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120 140 160 180 200

D
a

ta
 T

ra
n

s
fe

rr
in

g
 T

im
e

 [
s
]

R

51200
102400
204800
307200
409600
512000
614400
716800
921600

1024000

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

K
e

rn
e

l
E

x
e

c
u

ti
o

n
 T

im
e

 [
s
]

R

51200
102400
204800
307200
409600
512000
614400
716800
921600

1024000

(b)

Figure B.7: (a) Experimental curves of showing how the data transferring time changing with R; in the
experiments we use 10 different problem sizes. (b) Experimental curves of showing how the kernel execution

time changing with R; in the experiments we use 10 different problem sizes.

also extend their GPU-based approach to CDS, but we found too few details in the pa-
per. Moreover, all their implementations use the old graphic terms (i.e. they use shader-
programming), rather than the modern programming models.

Shuai Che et. al ported the CDS benchmark in the Parsec Benchmark Suite devel-
oped by Princeton University to CUDA and OpenMP [1, 16]. Our work is based on their
CUDA implementation found in Rodinia Benchmark Suite [1]. However, we have further
adapted the solution to OpenCL, optimized it, and enabled auto-tuning (see Section III
and Section IV for more details).

B.3.2. AUTO-TUNING ON GPUS
Automatic performance tuning, or auto-tuning in short, is a technique that has been
used intensively to automatically obtain optimal parameters. There are generally two
types of approaches for doing auto-tuning: model-driven optimization and empirical
optimization [91].

Model-driven optimizations self-tune implementation-related parameters to obtain
optimal performance. Parameters such as the block size and the amount of unrolling
are determined by analytical models [27, 35]. The model-driven approaches usually
work with the help of performance prediction by modelling underlying architectures
[10, 64, 85, 178]. In contrast to model-driven optimization, empirical optimization tech-
niques generate a large number of parameterized code variants for a given algorithm
and run these variants on a given platform to discover the one that gives the best perfor-
mance [57, 91, 105, 109].

Model-driven optimizations typically have an O(1) cost, since the parameters can be
derived from the analytical model. However, model-driven optimization may not give
optimal performance, because analytical models are only simplified abstractions of the
underlying processor architectures. In comparison, the time cost of searching for the
best code variant, which is usually proportional to the number of variants generated
and evaluated, makes empirical optimization less attractive.

B

172 B. AUTO-TUNING CLUSTERING DATA STREAMS

As a result, it is interesting to combine these two approaches, and gives a hybrid
approach that uses the model-driven approach in the first stage to limit the search space
for the second stage of empirical search. Our work applies this hybrid approach: we first
build a simple model to determine the optimal parameter (rake-size). When the model
can not calibrate the procedure precisely, we also use empirical search. To the best of
our knowledge, this work is the first auto-tuned CDS solution for multiple many-core
platforms.

B.4. SUMMARY
In this appendix, we have optimized CDS on GPUs. To address the key requirement
of CDS- namely, efficient memory usage, we have proposed a rake-based optimization,
where R (the number of rakes) is used to boost performance in both memory consump-
tion and execution time. We have found that some optimizations (e.g. pinned memory)
are platform/architecture dependent.

In addition, we have developed a simple model to determine the optimal R, address-
ing the issue that the optimal R is not fixed when problem sizes or architectures are dif-
ferent. Our experimental results show that we correctly identify the optimal R for multi-
ple problem sizes.

BIBLIOGRAPHY

[1] Rodinia: A benchmark suite for heterogeneous computing. IEEE, October 2009.

[2] GPU Computing Gems Emerald Edition (Applications of GPU Computing Series). Morgan
Kaufmann, 1 edition, February 2011.

[3] Randy Allen and Ken Kennedy. Automatic translation of FORTRAN programs to vector form.
ACM Transactions on Programming Languages and Systems (TOPLAS), 9(4):491–542, Octo-
ber 1987.

[4] AMD Inc. AMD Accelerated Parallel Processing (APP) SDK. http://developer.amd.com/
gpu/amdappsdk/pages/default.aspx, February 2011.

[5] AMD Inc. Porting CUDA Applications to OpenCL. http://developer.amd.com/zones/
OpenCLZone/programming/pages/portingcudatoopencl.aspx, February 2011.

[6] AMD Inc. AMD Accelerated Parallel Processing - OpenCL, May 2012.

[7] Ronan Amorim, Gundolf Haase, Manfred Liebmann, and Rodrigo Weber dos Santos. Com-
paring CUDA and OpenGL implementations for a jacobi iteration. pages 22–32, June 2009.

[8] Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph J. Gebis, Parry Husbands, Kurt
Keutzer, David A. Patterson, William L. Plishker, John Shalf, Samuel W. Williams, and Kather-
ine A. Yelick. The landscape of parallel computing research: a view from berkeley. Technical
Report UCB/EECS-2006-183, Electrical Engineering and Computer Sciences, University of
California at Berkeley, December 2006.

[9] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre A. Wacrenier. StarPU: A
unified platform for task scheduling on heterogeneous multicore architectures. Concurr.
Comput. : Pract. Exper., 23(2):187–198, February 2011.

[10] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D. Gropp, and Wen mei. An
adaptive performance modeling tool for GPU architectures. In PPoPP ’10: Proceedings of the
15th ACM SIGPLAN symposium on Principles and practice of parallel programming, pages
105–114, New York, NY, USA, 2010. ACM.

[11] Rajeshwari Banakar, Stefan Steinke, Bo-sik Lee, M. Balakrishnan, and Peter Marwedel.
Scratchpad memory: A design alternative for cache on-chip memory in embedded systems.
In In Tenth International Symposium on Hardware/Software Codesign (CODES), Estes Park,
pages 73–78, 2002.

[12] F. Barahona. On the computational complexity of ising spin glass models. Journal of Physics
A: Mathematical and General, 15(10):3241+, January 1999.

[13] Muthu M. Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, J. Ramanujam, Atanas
Rountev, and P. Sadayappan. Automatic data movement and computation mapping for
multi-level parallel architectures with explicitly managed memories. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’08, pages 1–10, New York, NY, USA, 2008. ACM.

173

http://developer.amd.com/gpu/amdappsdk/pages/default.aspx
http://developer.amd.com/gpu/amdappsdk/pages/default.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/portingcudatoopencl.aspx
http://developer.amd.com/zones/OpenCLZone/programming/pages/portingcudatoopencl.aspx

174 BIBLIOGRAPHY

[14] Muthu M. Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, J. Ramanujam, Atanas
Rountev, and P. Sadayappan. A compiler framework for optimization of affine loop nests
for gpgpus. In Proceedings of the 22nd annual international conference on Supercomputing,
ICS ’08, pages 225–234, New York, NY, USA, 2008. ACM.

[15] Michael Bauer, Henry Cook, and Brucek Khailany. CudaDMA: optimizing GPU memory
bandwidth via warp specialization. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’11, New York, NY, USA, 2011.
ACM.

[16] Christian Bienia, Sanjeev Kumar, Jaswinder P. Singh, and Kai Li. The PARSEC benchmark
suite: characterization and architectural implications. In Proceedings of the 17th interna-
tional conference on Parallel architectures and compilation techniques, PACT ’08, pages 72–
81, New York, NY, USA, 2008. ACM.

[17] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H.
Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime system. SIGPLAN Not.,
30(8):207–216, August 1995.

[18] OpenMP Architecture Review Board. OpenMP application program interface (version 4.0).
Technical report, July 2013.

[19] Michael Boyer, David Tarjan, Scott T. Acton, and Kevin Skadron. Accelerating leukocyte
tracking using CUDA: A case study in leveraging manycore coprocessors. In Proceedings
of the 2009 IEEE International Symposium on Parallel&Distributed Processing, IPDPS ’09,
pages 1–12, Washington, DC, USA, May 2009. IEEE Computer Society.

[20] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max- flow algo-
rithms for energy minimization in vision. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 26(9):1124–1137, September 2004.

[21] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 23(11):1222–1239, Novem-
ber 2001.

[22] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguade, and J. Labarta. Productive
programming of GPU clusters with OmpSs. In Parallel & Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International, pages 557–568. IEEE, May 2012.

[23] Feng Cao, Anthony Tung, and Aoying Zhou. Scalable clustering using graphics processors. In
Jeffrey Yu, Masaru Kitsuregawa, and Hong Leong, editors, Advances in Web-Age Information
Management, volume 4016 of Lecture Notes in Computer Science, chapter 32, pages 372–384.
Springer Berlin / Heidelberg, Berlin, Heidelberg, 2006.

[24] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Anand R. Atreya, and
Kunle Olukotun. A domain-specific approach to heterogeneous parallelism. In Proceedings
of the 16th ACM symposium on Principles and practice of parallel programming, PPoPP ’11,
pages 35–46, New York, NY, USA, 2011. ACM.

[25] Shuai Che, Jeremy Sheaffer, and Kevin Skadron. Dymaxion: Optimizing memory access
patterns for heterogeneous systems. In International Conference for High Performance Com-
puting, Networking, Storage and Analysis(SC’11), November 2011.

BIBLIOGRAPHY 175

[26] Gerald Cheong and Monica S. Lam. An optimizer for multimedia instruction sets. In The
Second SUIF Compiler Workshop. Stanford University, August 1997.

[27] Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-driven autotuning of sparse matrix-
vector multiply on GPUs. In Proceedings of the 15th ACM SIGPLAN symposium on Principles
and practice of parallel programming(PPoPP ’10), volume 45 of PPoPP ’10, pages 115–126,
New York, NY, USA, January 2010. ACM.

[28] D. Scharstein and R. Szeliski. Middlebury Stereo Datasets. http://vision.middlebury.
edu/stereo/, February 2012.

[29] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory program-
ming. Computational Science & Engineering, IEEE, 5(1):46–55, January 1998.

[30] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C. Roth, Kyle
Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The scalable heterogeneous computing
(SHOC) benchmark suite. In Proceedings of the 3rd Workshop on General-Purpose Com-
putation on Graphics Processing Units, GPGPU ’10, pages 63–74, New York, NY, USA, 2010.
ACM.

[31] U. Dastgeer, Lu Li, and C. Kessler. The PEPPHER composition tool: Performance-Aware
dynamic composition of applications for GPU-based systems. In High Performance Com-
puting, Networking, Storage and Analysis (SCC), 2012 SC Companion:, pages 711–720. IEEE,
November 2012.

[32] Usman Dastgeer and Christoph Kessler. A performance-portable generic component for
2d convolution computations on gpu-based systems. Proc. MULTIPROG-2012 Workshop at
HiPEAC-2012, Paris, pages 1–12, 2012.

[33] Kaushik Datta, Shoaib Kamil, Samuel Williams, Leonid Oliker, John Shalf, and Katherine
Yelick. Optimization and performance modeling of stencil computations on modern mi-
croprocessors. SIAM Rev., 51(1):129–159, February 2009.

[34] David. Programming with POSIX Threads. Addison-Wesley Professional, May 1997.

[35] A. Davidson, Yao Zhang, and J. D. Owens. An auto-tuned method for solving large tridiago-
nal systems on the GPU. In Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE
International, pages 956–965. IEEE, May 2011.

[36] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and Jack Don-
garra. From CUDA to OpenCL: Towards a performance-portable solution for multi-platform
GPU programming. Technical report, Department of Computer Science, UTK, Knoxville
Tennessee, September 2010.

[37] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Martinell, Xavier Mar-
torell, and Judit Planas. OmpSs: A PROPOSAL FOR PROGRAMMING HETEROGENEOUS
MULTI-CORE ARCHITECTURES. Parallel Process. Lett., 21(02):173–193, June 2011.

[38] Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien. Vectorization for SIMD architec-
tures with alignment constraints. In Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation, volume 39 of PLDI ’04, pages 82–93,
New York, NY, USA, May 2004. ACM.

http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/

176 BIBLIOGRAPHY

[39] Johan Enmyren and Christoph W. Kessler. SkePU: A multi-backend skeleton programming
library for multi-GPU systems. In Proceedings of the Fourth International Workshop on High-
level Parallel Programming and Applications, HLPP ’10, pages 5–14, New York, NY, USA,
2010. ACM.

[40] Jianbin Fang, H. Sips, and A. L. Varbanescu. Quantifying the performance impacts of using
local memory for many-core processors. In Multi-/Many-core Computing Systems (MuCo-
CoS), 2013 IEEE 6th International Workshop on, pages 1–10. IEEE, 2013.

[41] Jianbin Fang, Henk Sips, Pekka Jaaskelainen, and Ana L. Varbanescu. Grover: Looking for
performance improvement by disabling local memory usage in OpenCL kernels. In Pro-
ceedings of the 43rd International Conference on Parallel Processing (ICPP’14), September
2014.

[42] Jianbin Fang, Henk Sips, and Ana L. Varbanescu. Aristotle: A performance impact indica-
tor for the OpenCL kernels using local memory. Scientific Programming, 22(Number 3 /
2014):239–257, June 2014.

[43] Jianbin Fang, Henk Sips, LiLun Zhang, Chuanfu Xu, Yonggang Che, and Ana L. Varbanescu.
Test-driving intel xeon phi. In Proceedings of the 5th ACM/SPEC International Conference on
Performance Engineering, ICPE ’14, pages 137–148, New York, NY, USA, 2014. ACM.

[44] Jianbin Fang, A. L. Varbanescu, Jie Shen, and H. Sips. ELMO: A User-Friendly API to en-
able local memory in OpenCL kernels. In Parallel, Distributed and Network-Based Process-
ing (PDP), 2013 21st Euromicro International Conference on, pages 375–383. IEEE, February
2013.

[45] Jianbin Fang, A. L. Varbanescu, Jie Shen, H. Sips, G. Saygili, and L. van der Maaten. Ac-
celerating cost aggregation for Real-Time stereo matching. In Parallel and Distributed Sys-
tems (ICPADS), 2012 IEEE 18th International Conference on, pages 472–481. IEEE, December
2012.

[46] Jianbin Fang, A. L. Varbanescu, and H. Sips. Sesame: A User-Transparent optimizing frame-
work for Many-Core processors. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th
IEEE/ACM International Symposium on, pages 70–73. IEEE, May 2013.

[47] Jianbin Fang, Ana L. Varbanescu, Xiangke Liao, and Henk Sips. Evaluating vector data type
usage in OpenCL kernels. Concurrency and Computation: Practice and Experience, (ac-
cepted).

[48] Jianbin Fang, Ana L. Varbanescu, and Henk Sips. An auto-tuning solution to data streams
clustering in OpenCL. In 2011 14th IEEE International Conference on Computational Science
and Engineering, volume 0, pages 587–594, Los Alamitos, CA, USA, August 2011. IEEE.

[49] Jianbin Fang, Ana L. Varbanescu, and Henk Sips. A comprehensive performance com-
parison of CUDA and OpenCL. In 2011 International Conference on Parallel Processing
(ICPP’11), pages 216–225. IEEE, September 2011.

[50] Jianbin Fang, Ana L. Varbanescu, Henk Sips, LiLun Zhang, Yonggang Che, and Chuanfu Xu.
Benchmarking intel xeon phi to guide kernel design. Technical Report PDS-2013-005, Delft
University of Technology, April 2013.

BIBLIOGRAPHY 177

[51] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief propagation for early vision. In
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE
Computer Society Conference on, volume 1, pages I–261–I–268 Vol.1. IEEE, June 2004.

[52] Agner Fog. Lists of instruction latencies, throughputs and micro-operation reakdowns for
intel, AMD and VIA CPUs. Technical report, Copenhagen University, February 2012.

[53] Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson, Jim Hardwick, Scott Mor-
ton, Everett Phillips, Yao Zhang, and Vasily Volkov. Parallel computing experiences with
CUDA. IEEE Micro, 28:13–27, July 2008.

[54] Minglun Gong, Ruigang Yang, Liang Wang, and Mingwei Gong. A performance study on
different cost aggregation approaches used in Real-Time stereo matching. 75(2):283–296,
2007.

[55] Torbjorn Granlund. Instruction latencies and throughput for AMD and intel x86 processors.
Technical report, KTH, February 2012.

[56] Scott G. Gray and John Cavazos. Optimizing and auto-tuning belief propagation on the GPU.
In Proceedings of the 23rd international conference on Languages and compilers for parallel
computing, LCPC’10, pages 121–135, Berlin, Heidelberg, 2011. Springer-Verlag.

[57] Dominik Grewe and Anton Lokhmotov. Automatically generating and tuning GPU code for
sparse matrix-vector multiplication from a high-level representation. In Proceedings of the
Fourth Workshop on General Purpose Processing on Graphics Processing Units(GPGPU2011),
GPGPU-4, New York, NY, USA, March 2011. ACM.

[58] Armin Größlinger. Precise management of scratchpad memories for localising array ac-
cesses in scientific codes. In Oege Moor and MichaelI Schwartzbach, editors, Compiler
Construction, volume 5501 of Lecture Notes in Computer Science, chapter 17, pages 236–250.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[59] "The Khronos Group". "spir: The standard portable intermediate representation for device
programs". http://www.khronos.org/spir, January 2013.

[60] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams:
Theory and practice. IEEE Trans. on Knowl. and Data Eng., 15(3):515–528, May 2003.

[61] Jayanth Gummaraju, Laurent Morichetti, Michael Houston, Ben Sander, Benedict R. Gaster,
and Bixia Zheng. Twin peaks: A software platform for heterogeneous computing on general-
purpose and graphics processors. In Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’10, pages 205–216, New York, NY,
USA, 2010. ACM.

[62] John Hennessy, John L. Hennessy, David Goldberg, and David A. Patterson. Computer Ar-
chitecture: A Quantitative Approach. Morgan Kaufmann Publishers, 1st edition.

[63] Manuel Hohenauer, Felix Engel, Rainer Leupers, Gerd Ascheid, and Heinrich Meyr. A SIMD
optimization framework for retargetable compilers. ACM Trans. Archit. Code Optim., 6(1):1–
27, April 2009.

http://www.khronos.org/spir

178 BIBLIOGRAPHY

[64] Sunpyo Hong and Hyesoon Kim. An analytical model for a GPU architecture with memory-
level and thread-level parallelism awareness. In ISCA ’09: Proceedings of the 36th annual in-
ternational symposium on Computer architecture, pages 152–163, New York, NY, USA, 2009.
ACM.

[65] Intel. Intel Xeon Phi Coprocessor InstructionSet Architecture Reference Manual, September
2012.

[66] Intel. Intel Xeon Phi Coprocessor System Software Development Guide, November 2012.

[67] Intel. An Overview of Programming for IntelXeon processorsand Intel Xeon Phi coprocessors,
October 2012.

[68] Intel. Intel Xeon Phi Coprocessor. http://software.intel.com/mic-developer, April
2013.

[69] Intel Inc. Intel OpenCL Implicit Vectorization Module.

[70] Intel Inc. Intel OpenCL Optimization Guide, April 2012.

[71] Ilya Issenin, Erik Brockmeyer, Miguel Miranda, and Nikil Dutt. DRDU: A data reuse analysis
technique for efficient scratch-pad memory management. ACM Trans. Des. Autom. Electron.
Syst., 12(2), April 2007.

[72] Byunghyun Jang, D. Schaa, P. Mistry, and D. Kaeli. Exploiting memory access patterns to
improve memory performance in Data-Parallel architectures. IEEE Transactions on Parallel
and Distributed Systems, 22(1):105–118, January 2011.

[73] Jared Hoberock and Nathan Bell. Thrust. http://thrust.github.io/, May 2009.

[74] H. Jin and R. F. Van der Wijngaart. Performance characteristics of the multi-zone NAS paral-
lel benchmarks. In Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th
International, pages 6+. IEEE, April 2004.

[75] John D. McCalpin. STREAM: Sustainable Memory Bandwidth With High Performance Com-
puters, April 2013.

[76] M. Kandemir and A. Choudhary. Compiler-directed scratch pad memory hierarchy design
and management. In Proceedings of the 39th Annual Design Automation Conference, DAC
’02, pages 628–633, New York, NY, USA, 2002. ACM.

[77] Kamran Karimi, Neil G. Dickson, and Firas Hamze. A performance comparison of CUDA
and OpenCL. May 2010.

[78] Karl Rupp. CPU, GPU and MIC Hardware Character-
istics over Time. http://www.karlrupp.net/2013/06/
cpu-gpu-and-mic-hardware-characteristics-over-time/, May 2014.

[79] Ralf Karrenberg and Sebastian Hack. Whole-function vectorization. In Proceedings of the 9th
Annual IEEE/ACM International Symposium on Code Generation and Optimization, CGO
’11, pages 141–150, Washington, DC, USA, 2011. IEEE Computer Society.

[80] Khronos Group. OpenGL Shading Language. http://www.opengl.org/documentation/
glsl/, February 2011.

http://software.intel.com/mic-developer
http://thrust.github.io/
http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
http://www.opengl.org/documentation/glsl/
http://www.opengl.org/documentation/glsl/

BIBLIOGRAPHY 179

[81] Khronos Group. SYCL. https://www.khronos.org/opencl/sycl, May 2014.

[82] David Kirk and Wen-Mei Hwu. Programming Massively Parallel Processors: A Hands-on
Approach. Morgan Kaufmann, February 2010.

[83] Kazuhiko Komatsu, Katsuto Sato, Yusuke Arai, Kentaro Koyama, Hiroyuki Takizawa, and Hi-
roaki Kobayashi. Evaluating performance and portability of opencl programs. In The Fifth
International Workshop on Automatic Performance Tuning, June 2010.

[84] Athanasios Konstantinidis, Paul H. J. Kelly, J. Ramanujam, and P. Sadayappan. Parametric
GPU code generation for affine loop programs. In The 26th International Workshop on Lan-
guages and Compilers for Parallel Computing, September 2013.

[85] Kishore Kothapalli, Rishabh Mukherjee, M. Suhail Rehman, Suryakant Patidar, P. J.
Narayanan, and Kannan Srinathan. A performance prediction model for the CUDA GPGPU
platform. In Proceedings of 2009 International Conference on High Performance Computing
(HiPC), pages 463–472, December 2009.

[86] Samuel Larsen and Saman Amarasinghe. Exploiting superword level parallelism with mul-
timedia instruction sets. In Proceedings of the ACM SIGPLAN 2000 conference on Program-
ming language design and implementation (PLDI’00), volume 35 of PLDI ’00, pages 145–156,
New York, NY, USA, May 2000. ACM.

[87] Samuel Larsen, Emmett Witchel, and Saman P. Amarasinghe. Increasing and detecting
memory address congruence. In Proceedings of the 2002 International Conference on Paral-
lel Architectures and Compilation Techniques, PACT ’02, pages 18–29, Washington, DC, USA,
2002. IEEE Computer Society.

[88] Joo H. Lee, K. Patel, N. Nigania, Hyojong Kim, and Hyesoon Kim. OpenCL performance
evaluation on modern multi core CPUs. In Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International, pages 1177–1185. IEEE,
May 2013.

[89] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D.
Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund,
Ronak Singhal, and Pradeep Dubey. Debunking the 100X GPU vs. CPU myth: An evaluation
of throughput computing on CPU and GPU. SIGARCH Comput. Archit. News, 38(3):451–460,
June 2010.

[90] Shun-tak Leung and John Zahorjan. Optimizing data locality by array restructuring. Tech-
nical Report TR 95-09-01, University of Washington, 1995.

[91] Yinan Li, Jack Dongarra, and Stanimire Tomov. A note on auto-tuning GEMM for GPUs. In
Proceedings of the 9th International Conference on Computational Science: Part I, volume
5544 of ICCS ’09, pages 884–892, Berlin, Heidelberg, 2009. Springer-Verlag.

[92] Alberto Magni, Christophe Dubach, and Michael F. P. O’Boyle. A large-scale cross-
architecture evaluation of thread-coarsening. In Proceedings of SC13: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, SC ’13, New York,
NY, USA, 2013. ACM.

[93] Alireza R. Mahdiraji. Clustering data stream: A survey of algorithms. International Journal
of Knowledge-Based and Intelligent Engineering Systems, 13(2):39–44, January 2009.

https://www.khronos.org/opencl/sycl

180 BIBLIOGRAPHY

[94] S. Maleki, Yaoqing Gao, M. J. Garzaran, T. Wong, and D. A. Padua. An evaluation of vectoriz-
ing compilers. In Parallel Architectures and Compilation Techniques (PACT), 2011 Interna-
tional Conference on, pages 372–382. IEEE, October 2011.

[95] Andrea Marongiu and Luca Benini. An OpenMP compiler for efficient use of distributed
scratchpad memory in MPSoCs. IEEE Trans. Comput., 61(2):222–236, February 2012.

[96] Larry McVoy and Carl Staelin. lmbench: portable tools for performance analysis. In Pro-
ceedings of the 1996 annual conference on USENIX Annual Technical Conference, ATEC ’96,
page 23, Berkeley, CA, USA, 1996. USENIX Association.

[97] Xing Mei, Xun Sun, Mingcai Zhou, Shaohui Jiao, Haitao Wang, and Xiaopeng Zhang. On
building an accurate stereo matching system on graphics hardware. In Computer Vision
Workshops (ICCV Workshops), 2011 IEEE International Conference on, pages 467–474. IEEE,
November 2011.

[98] S. Meister, B. Jähne, and D. Kondermann. An outdoor stereo camera system for the genera-
tion of Real-World benchmark datasets. Optical Engineering, 2011.

[99] Microsoft. AMP C++. http://msdn.microsoft.com/en-us/library/hh265136.aspx,
May 2014.

[100] Microsoft. DirectCompute. https://developer.nvidia.com/directcompute/, May
2014.

[101] Microsoft Inc. Reference for HLSL. http://msdn.microsoft.com/en-us/library/
bb509635(v=VS.85).aspx, February 2011.

[102] Dongbo Min, Jiangbo Lu, and M. N. Do. A revisit to cost aggregation in stereo matching:
How far can we reduce its computational redundancy? In Computer Vision (ICCV), 2011
IEEE International Conference on, pages 1567–1574. IEEE, November 2011.

[103] Maryam Moazeni, Alex Bui, and Majid Sarrafzadeh. A memory optimization technique for
software-managed scratchpad memory in GPUs. In 2009 IEEE 7th Symposium on Applica-
tion Specific Processors, pages 43–49. IEEE, July 2009.

[104] Daniel Molka, Daniel Hackenberg, Robert Schöne, and Matthias S. Müller. Memory per-
formance and cache coherency effects on an intel nehalem multiprocessor system. In 18th
International Conference on Parallel Architectures and Compilation Techniques, 2009. PACT
’09., pages 261–270. IEEE, September 2009.

[105] Alexander Monakov, Anton Lokhmotov, and Arutyun Avetisyan. Automatically tuning sparse
Matrix-Vector multiplication for GPU architectures high performance embedded architec-
tures and compilers. In Yale N. Patt, Pierfrancesco Foglia, Evelyn Duesterwald, Paolo Fara-
boschi, and Xavier Martorell, editors, Proceedings of the 5th International Conferences on
High Performance Embedded Architectures and Compilers(HiPEAC 2010), volume 5952 of
Lecture Notes in Computer Science, pages 111–125, Berlin, Heidelberg, 2010. Springer Berlin
/ Heidelberg.

[106] Giridhar S. Murthy, Mahesh Ravishankar, Muthu M. Baskaran, and P. Sadayappan. Optimal
loop unrolling for GPGPU programs. In 2010 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS), pages 1–11. IEEE, April 2010.

http://msdn.microsoft.com/en-us/library/hh265136.aspx
https://developer.nvidia.com/directcompute/
http://msdn.microsoft.com/en-us/library/bb509635(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb509635(v=VS.85).aspx

BIBLIOGRAPHY 181

[107] John Nickolls and William J. Dally. The GPU computing era. Micro, IEEE, 30(2):56–69, March
2010.

[108] Cedric Nugteren, Pieter Custers, and Henk Corporaal. Algorithmic species: A classification
of affine loop nests for parallel programming. ACM Trans. Archit. Code Optim., 9(4), January
2013.

[109] Akira Nukada and Satoshi Matsuoka. Auto-tuning 3-D FFT library for CUDA GPUs. In Pro-
ceedings of the Conference on High Performance Computing Networking, Storage and Analy-
sis, SC ’09, New York, NY, USA, November 2009. ACM.

[110] D. Nuzman and R. Henderson. Multi-platform auto-vectorization. In International Sympo-
sium on Code Generation and Optimization (CGO 2006), CGO ’06, pages 11 pp.–294, Wash-
ington, DC, USA, March 2006. IEEE.

[111] Dorit Nuzman, Sergei Dyshel, Erven Rohou, Ira Rosen, Kevin Williams, David Yuste, Albert
Cohen, and Ayal Zaks. Vapor SIMD: Auto-vectorize once, run everywhere. In Proceedings of
the 9th Annual IEEE/ACM International Symposium on Code Generation and Optimization,
CGO ’11, pages 151–160, Washington, DC, USA, 2011. IEEE Computer Society.

[112] NVIDIA Inc. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi, 2009.

[113] NVIDIA Inc. OpenCL Best Practices Guide, May 2010.

[114] NVIDIA Inc. PTX: Parallel Thread Execution ISA Version 2.2, October 2010.

[115] NVIDIA Inc. CUDA Toolkit 3.2. http://developer.nvidia.com/object/cuda_3_2_
downloads.html, February 2011.

[116] NVIDIA Inc. NVIDIA Cg Toolkit. http://developer.nvidia.com/page/cg_main.html,
February 2011.

[117] NVIDIA Inc. NVIDIA CUDA C Programming Guide Version 4.1, 2011.

[118] NVIDIA Inc. NVIDIA OpenCL C Programming Guide, June 2011.

[119] OpenACC Group. OpenACC. http://www.openacc-standard.org/, May 2014.

[120] OpenACC Members. The OpenACC Application Programming Interface V1.0, November
2011.

[121] OpenMP Group. OpenMP. http://openmp.org/wp/, May 2014.

[122] S. Arash Ostadzadeh, Roel J. Meeuws, Carlo Galuzzi, and Koen Bertels. QUAD: a memory ac-
cess pattern analyser. In Proceedings of the 6th international conference on Reconfigurable
Computing: architectures, Tools and Applications, ARC’10, pages 269–281, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[123] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J. Purcell. A
survey of General-Purpose computation on graphics hardware. Computer Graphics Forum,
26(1):80–113, March 2007.

[124] John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and James C.
Phillips. GPU computing. Proceedings of the IEEE, 96(5):879–899, May 2008.

http://developer.nvidia.com/object/cuda_3_2_downloads.html
http://developer.nvidia.com/object/cuda_3_2_downloads.html
http://developer.nvidia.com/page/cg_main.html
http://www.openacc-standard.org/
http://openmp.org/wp/

182 BIBLIOGRAPHY

[125] Deepak M. Panickal. Exploring the optimization space of Multi-Core architectures with
OpenCL benchmarks. Master’s thesis, University of Edinburgh, 2011.

[126] Lu Peng, Jih-Kwon Peir, Tribuvan K. Prakash, Carl Staelin, Yen-Kuang Chen, and David Kop-
pelman. Memory hierarchy performance measurement of commercial dual-core desktop
processors. Journal of Systems Architecture, 54(8):816–828, August 2008.

[127] Peng Wu. The myth of auto-SIMD. http://pengwu.wordpress.com/2014/01/02/
the-myth-of-auto-simd, 2014.

[128] Louis N. Pouchet, Peng Zhang, P. Sadayappan, and Jason Cong. Polyhedral-based data reuse
optimization for configurable computing. In Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’13, pages 29–38, New York, NY, USA,
2013. ACM.

[129] Sabela Ramos and Torsten Hoefler. Modeling communication in cache-coherent SMP sys-
tems: A case-study with xeon phi. In Proceedings of the 22Nd International Symposium on
High-performance Parallel and Distributed Computing, HPDC ’13, pages 97–108, New York,
NY, USA, 2013. ACM.

[130] N. Ray and S. T. Acton. Motion gradient vector flow: an external force for tracking rolling
leukocytes with shape and size constrained active contours. Medical Imaging, IEEE Trans-
actions on, 23(12):1466–1478, December 2004.

[131] G. Ren, Peng Wu, and D. Padua. An empirical study on the vectorization of multimedia
applications for multimedia extensions. In Parallel and Distributed Processing Symposium,
2005. Proceedings. 19th IEEE International, page 89b. IEEE, April 2005.

[132] Manman Ren, Ji Y. Park, Mike Houston, Alex Aiken, and William J. Dally. A tuning frame-
work for software-managed memory hierarchies. In Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, PACT ’08, pages 280–291,
New York, NY, USA, 2008. ACM.

[133] Christian Richardt, Douglas Orr, Ian Davies, Antonio Criminisi, and NeilA Dodgson. Real-
Time spatiotemporal stereo matching using the Dual-Cross-bilateral grid. In Kostas Dani-
ilidis, Petros Maragos, and Nikos Paragios, editors, Computer Vision – ECCV 2010, volume
6313 of Lecture Notes in Computer Science, pages 510–523. Springer Berlin Heidelberg, 2010.

[134] Selma Saidi, Pranav Tendulkar, Thierry Lepley, and Oded Maler. Optimizing explicit data
transfers for data parallel applications on the cell architecture. ACM Trans. Archit. Code
Optim., 8(4), January 2012.

[135] Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient sorting algorithms
for manycore GPUs. In Proceedings of the 2009 IEEE International Symposium on Paral-
lel&Distributed Processing, pages 1–10, Washington, DC, USA, 2009. IEEE Computer Society.

[136] D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms. In Stereo and Multi-Baseline Vision, 2001. (SMBV 2001).
Proceedings. IEEE Workshop on, pages 131–140. IEEE, 2001.

[137] Alessio Sclocco, Ana L. Varbanescu, Jan D. Mol, and Rob van Nieuwpoort. Radio astronomy
beam forming on Many-Core architectures. In IPDPS, pages 1105–1116. IEEE Computer
Society, 2012.

http://pengwu.wordpress.com/2014/01/02/the-myth-of-auto-simd
http://pengwu.wordpress.com/2014/01/02/the-myth-of-auto-simd

BIBLIOGRAPHY 183

[138] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan primitives for
gpu computing. In Graphics Hardware 2007. ACM, August 2007.

[139] Sangmin Seo, Jun Lee, Gangwon Jo, and Jaejin Lee. Automatic OpenCL work-group size se-
lection for multicore CPUs. In Proceedings of the 22Nd International Conference on Parallel
Architectures and Compilation Techniques, PACT ’13, pages 387–398, Piscataway, NJ, USA,
2013. IEEE Press.

[140] Jie Shen, Jianbin Fang, H. Sips, and A. L. Varbanescu. Performance gaps between OpenMP
and OpenCL for multi-core CPUs. In Parallel Processing Workshops (ICPPW), 2012 41st In-
ternational Conference on, pages 116–125. IEEE, 2012.

[141] Jie Shen, Jianbin Fang, H. Sips, and A. L. Varbanescu. Performance traps in OpenCL for
CPUs. In Parallel, Distributed and Network-Based Processing (PDP), 2013 21st Euromicro
International Conference on, pages 38–45. IEEE, February 2013.

[142] Jie Shen, Jianbin Fang, Henk Sips, and Ana L. Varbanescu. An application-centric evaluation
of OpenCL on multi-core CPUs. Parallel Computing, 39(12):834–850, December 2013.

[143] Jaewook Shin, Mary Hall, and Jacqueline Chame. Superword-Level parallelism in the pres-
ence of control flow. In Proceedings of the International Symposium on Code Generation and
Optimization, CGO ’05, pages 165–175, Washington, DC, USA, 2005. IEEE Computer Society.

[144] Alan J. Smith and Rafael H. Saavedra. Measuring cache and TLB performance and their
effect on benchmark runtimes. IEEE Trans. Comput., 44(10):1223–1235, October 1995.

[145] N. Sreraman and R. Govindarajan. A vectorizing compiler for multimedia extensions. Inter-
national Journal of Parallel Programming, 28(4):363–400, August 2000.

[146] M. Steuwer, P. Kegel, and S. Gorlatch. SkelCL - a portable skeleton library for High-Level GPU
programming. In Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),
2011 IEEE International Symposium on, pages 1176–1182. IEEE, May 2011.

[147] John E. Stone, David Gohara, and Guochun Shi. OpenCL: A parallel programming standard
for heterogeneous computing systems. Computing in Science & Engineering, 12(3):66–73,
May 2010.

[148] John A. Stratton, Sam S. Stone, and Wen Mei. Languages and compilers for parallel com-
puting. In José N. Amaral, editor, Languages and Compilers for Parallel Computing, volume
5335 of Lecture Notes in Computer Science, chapter MCUDA: An Efficient Implementation of
CUDA Kernels for Multi-core CPUs, pages 16–30. Springer-Verlag, Berlin, Heidelberg, 2008.

[149] Andrew S. Tanenbaum. Modern Operating Systems (3rd Edition). Prentice Hall, 3 edition,
December 2007.

[150] Technical University of Dresden. BenchIT: Performance Measurement for Scientific Appli-
cations, August 2013.

[151] The Khronos OpenCL Working Group. OpenCL - The open standard for parallel program-
ming of heterogeneous systems. http://www.khronos.org/opencl/, February 2011.

[152] Peter Thoman, Klaus Kofler, Heiko Studt, John Thomson, and Thomas Fahringer. Automatic
OpenCL device characterization: Guiding optimized kernel design. In Emmanuel Jeannot,
Raymond Namyst, and Jean Roman, editors, Euro-Par 2011 Parallel Processing, volume 6853
of Lecture Notes in Computer Science, pages 438–452. Springer Berlin Heidelberg, 2011.

http://www.khronos.org/opencl/

184 BIBLIOGRAPHY

[153] Ryoji Tsuchiyama, Takashi Nakamura, Takuro Iizuka, Akihiro Asahara, and Satoshi Miki. The
OpenCL Programming Book. Fixstars Corporation, March 2010.

[154] Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua. Dynamic allocation for
scratch-pad memory using compile-time decisions. ACM Trans. Embed. Comput. Syst.,
5(2):472–511, May 2006.

[155] Didem Unat, Xing Cai, and Scott B. Baden. Mint: realizing CUDA performance in 3D stencil
methods with annotated c. In Proceedings of the international conference on Supercomput-
ing, ICS ’11, pages 214–224, New York, NY, USA, 2011. ACM.

[156] András Vajda. Programming Many-Core Chips. Springer, 2011 edition, June 2011.

[157] Rob van Nieuwpoort and John Romein. Correlating radio astronomy signals with Many-
Core hardware. International Journal of Parallel Programming, 39(1):88–114, February 2011.

[158] Ben Van Werkhoven, Jason Maassen, Henri E. Bal, and Frank J. Seinstra. Optimizing con-
volution operations on GPUs using adaptive tiling. Future Gener. Comput. Syst., 30:14–26,
January 2014.

[159] Ana L. Varbanescu, Alexander S. van Amesfoort, Tim Cornwell, Ger van Diepen, Rob van
Nieuwpoort, Bruce G. Elmegreen, and Henk J. Sips. Building high-resolution sky images
using the Cell/B.e. Scientific Programming, 17(1-2):113–134, 2009.

[160] Nicolas Vasilache, Muthu Baskaran, Benoit Meister, and Richard Lethin. Memory reuse opti-
mizations in the R-Stream compiler. In Proceedings of the 6th Workshop on General Purpose
Processor Using Graphics Processing Units, GPGPU-6, pages 42–53, New York, NY, USA, 2013.
ACM.

[161] Tzvetomir I. Vassilev. Comparison of several parallel API for cloth modelling on modern
GPUs. In Proceedings of the 11th International Conference on Computer Systems and Tech-
nologies and Workshop for PhD Students in Computing on International Conference on Com-
puter Systems and Technologies, CompSysTech ’10, pages 131–136, New York, NY, USA, 2010.
ACM.

[162] Sven Verdoolaege, Juan C. Juega, Albert Cohen, José I. Gómez, Christian Tenllado, and
Francky Catthoor. Polyhedral parallel code generation for CUDA. ACM Trans. Archit. Code
Optim., 9(4), January 2013.

[163] Vasily Volkov. Use registers and multiple outputs per thread on GPU. International Work-
shop on Parallel Matrix Algorithms and Applications, July 2010.

[164] Vasily Volkov and James W. Demmel. Benchmarking GPUs to tune dense linear algebra. In
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages 1–11, Pis-
cataway, NJ, USA, 2008. IEEE Press.

[165] Liang Wang, Miao Liao, Minglun Gong, Ruigang Yang, and David Nister. High-Quality Real-
Time stereo using adaptive cost aggregation and dynamic programming. In Proceedings of
the Third International Symposium on 3D Data Processing, Visualization, and Transmission
(3DPVT’06), 3DPVT ’06, pages 798–805, Washington, DC, USA, 2006. IEEE Computer Society.

[166] Rick Weber, Akila Gothandaraman, Robert J. Hinde, and Gregory D. Peterson. Comparing
hardware accelerators in scientific applications: A case study. IEEE Transactions on Parallel
and Distributed Systems, 22(1):58–68, January 2011.

BIBLIOGRAPHY 185

[167] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual
performance model for multicore architectures. Commun. ACM, 52(4):65–76, April 2009.

[168] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. SIGPLAN Not.,
26(6):30–44, May 1991.

[169] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and Andreas
Moshovos. Demystifying GPU microarchitecture through microbenchmarking. In 2010
IEEE International Symposium on Performance Analysis of Systems & Software (ISPASS),
pages 235–246. IEEE, March 2010.

[170] Peng Wu, A. E. Eichenberger, and A. Wang. Efficient SIMD code generation for runtime
alignment and length conversion. In Code Generation and Optimization, 2005. CGO 2005.
International Symposium on, pages 153–164. IEEE, March 2005.

[171] Peng Wu, Alexandre E. Eichenberger, Amy Wang, and Peng Zhao. An integrated simdization
framework using virtual vectors. In Proceedings of the 19th Annual International Conference
on Supercomputing, ICS ’05, pages 169–178, New York, NY, USA, 2005. ACM.

[172] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. A GPGPU compiler for memory opti-
mization and parallelism management. In Proceedings of the 2010 ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’10, pages 86–97, New York,
NY, USA, 2010. ACM.

[173] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. A GPGPU compiler for memory opti-
mization and parallelism management. SIGPLAN Not., 45(6):86–97, June 2010.

[174] Kuk-Jin Yoon and In-So Kweon. Locally adaptive support-weight approach for visual cor-
respondence search. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 2, pages 924–931 vol. 2. IEEE, June 2005.

[175] Wei Yu, Tsuhan Chen, F. Franchetti, and J. C. Hoe. High performance stereo vision designed
for massively data parallel platforms. IEEE Transactions on Circuits and Systems for Video
Technology, 20(11):1509–1519, November 2010.

[176] Marco Zagha and Guy E. Blelloch. Radix sort for vector multiprocessors. In Proceedings
of the 1991 ACM/IEEE conference on Supercomputing, Supercomputing ’91, pages 712–721,
New York, NY, USA, 1991. ACM.

[177] Ke Zhang, Jiangbo Lu, and G. Lafruit. Cross-Based local stereo matching using orthog-
onal integral images. Circuits and Systems for Video Technology, IEEE Transactions on,
19(7):1073–1079, July 2009.

[178] Yao Zhang and J. D. Owens. A quantitative performance analysis model for GPU architec-
tures. In High Performance Computer Architecture (HPCA), 2011 IEEE 17th International
Symposium on, pages 382–393. IEEE, February 2011.

SUMMARY

The architecture diversity of many-core processors - with their different types of cores,
and memory hierarchies - makes the old model of reprogramming every application for
every platform infeasible. Therefore, inter-platform portability has become a desirable
feature of programming models. While functional portability is ensured by standards
and compilers (e.g., OpenCL), to achieve high performance across platforms remains a
much more challenging task.

In this thesis, we have investigated the enabling/disabling techniques for platform-
specific optimizations with a unified programming model. We have selected OpenCL
as our research vehicle, and identified that each platform has a specific optimization
space for a given kernel. Taking two concrete examples, we have proposed solutions
on how to (semi-) automatically tackle platform-specific optimizations with a unified
programming model.

We use a case study (in computer vision) to illustrate optimization’s dependency on
platform. To deal with the difference in processing cores, we propose two approaches
to vectorize scalar kernels (i.e., explicitly using vector data types), and reveal the vector-
ization needs with explicitly parallel programs. To deal with the difference in memory
hierarchy, we first present a method to quantify the performance impact of using local
memory starting from the memory access patterns. This work produces a performance
database, which serves as an indicator of whether using local memory is beneficial. Once
this indication is given, we propose a portable solution to simplify programming with lo-
cal memory. Specifically, we present an easy-to-use API (ELMO) to enable local memory
usage and a compiling pass (Grover) to automatically disable the local memory usage for
applications where local memory is natively used.

Much like vectorization and local memory usage, other architectural features require
performance portable approaches. Therefore, we present our vision for a portable pro-
gramming framework, called SESAME, which expands to architectural features beyond
SIMD units and local memory.

This thesis has given evidence that this problem can be addressed successfully. We
conclude that tools such as SESAME help improving the state-of-the-art of existing pro-
gramming models (like OpenCL, in our case) and ease the task of programmers when
dealing with different many-core architectures. This work serves an essential step to-
wards portable performance by systematically exploring the optimization space.

187

SAMENVATTING

De diversiteit aan architecturen van many-core processoren, zijnde verschillende typen
cores en geheugen hiërarchieën, maakt het oude ontwikkelingsmodel van parallelle ap-
plicaties waarbij elke applicatie voor elk platform wordt geherprogrammeerd ondoen-
lijk. Inter-platform portabiliteit, zowel van functionaliteit als performance, is daarom
een zeer gewenste eigenschap voor programmeermodellen. Echter, ondanks dat stan-
daarden en compilers (zoals OpenCL) zorgen voor portabiliteit van de functionaliteit,
blijft het behalen van goede performance voor alle platformen een zeer uitdagende taak.

In dit proefschrif is onderzoek gedaan naar technieken voor het aan- en uitzetten
van platform specifieke optimalisatietechnieken, gebruik makend van een uniform pro-
grammeermodel (in dit proefschrift is dat OpenCL). Geconstateerd wordt dat elk plat-
form een specifieke optimalisatie ruimte biedt voor een gegeven applicatie kernel. Met
behulp van twee concrete voorbeelden worden oplossingen voorgesteld voor het (semi-
)automatisch realiseren van platform specifieke optimalisaties.

Een case study (uit het gebied van de computer vision) wordt gebruikt om de plat-
form afhankelijkheid van optimalisaties te illustreren. Om te kunnen omgaan met de
verschillen tussen processing cores, worden twee methodes voorgesteld om scalar ker-
nels te vectoriseren (oftewel expliciet gebruik maken van vector data typen) en wordt de
noodzaak aangetoond van het vectoriseren voor expliciet parallelle programma’s. Om
te kunnen omgaan met de verschillen in geheugen hiërarchie wordt eerst een methode
gepresenteerd om de invloed van het gebruik van lokaal geheugen op de prestaties te
kwantificeren, beginnend bij geheugen toegangspatronen. Hieruit wordt een prestatie
database gegenereerd, die als indicator gebruikt kan worden om te beslissen of het ge-
bruik van lokaal geheugen al dan niet zorgt voor verbetering van de performance. Met
behulp van deze indicator stellen we een overdraagbare oplossing voor om het program-
meren met lokaal geheugen te vereenvoudigen. Meer specifiek is een gemakkelijk te ge-
bruiken API (ELMO) ontworpen, die het gebruik van lokaal geheugen mogelijk maakt
en een compiler toevoeging (Grover) die automatisch het gebruik van lokaal geheugen
uitzet voor applicaties waar lokaal geheugen al van nature inzit.

Net als voor vectorisatie en lokaal geheugen gebruik, zijn er andere architecturele ei-
genschappen die een dergelijke prestatie overdraagbare aanpak vereisen. Daartoe wordt
een overdraagbaar programmeer framework, geheten SESAME, gepresenteerd, dat ver-
der gaat dan architecturele eigenschappen als SIMD eenheden en lokaal geheugen.

Dit proefschrift laat zien dat het probleem van performance portabiliteit succesvol
aangepakt kan worden. Tools zoals SESAME helpen met het verbeteren van de state-of-
the-art van bestaande programmeermodellen (zoals OpenCL in ons geval) en maken de
taak van programmeurs makkelijker als zij met verschillende many-core architecturen
moeten werken. Dit is een essentiële stap naar het realiseren van overdraagbare presta-
ties middels een systematische verkenning van de optimalisatie ruimte.

189

CURRICULUM VITÆ

Jianbin Fang was born in Qingdao, China, October 11th, 1984. He grew up and received
his nine-year compulsory education in a small but quiet village in Qingdao. Now he
still loves this village and spends a couple of weeks there every year. Upon completing
the secondary education, he attended the National College Entrance Examination (a.k.a.
Gaokao) and enrolled at the Central South University (CSU) in Changsha, 2003. For the
first time, he lives around 2,000 kilometres far away from home. There, he received his
BSc in computer science in 2007. Due to his excellent academic performance in CSU
(%2), he managed to start his master program in National University of Defense Tech-
nology (NUDT) without entrance examination in 2007. There, he focused on simulating
computer architectures using parallel approaches, and developed different algorithms
to speed-up the simulation process. At the end of 2009, he earned his MSc, and his mas-
ter thesis, entitled “On optimizing the trace-driven parallel simulations”, was selected
as Outstanding Thesis of Hunan province. After he was granted a four-year funding by
China Scholarship Council (CSC) in 2010, he joined Parallel and Distributed Systems
group at Delft University of Technology to pursue a PhD in computer science. His PhD
track was focused on parallel programming on multi-/many-cores. During his PhD, he
gained experience on the Tianhe-2 supercomputer through two internships: one was
in NUDT, Changsha, China, and the other was with Guangzhou Supercompuer Center,
Guangzhou, China. He also worked as TA for IN4049 (Introduction to High Performance
Computing) at TU Delft.

List of Publications

• [J] J. Fang, A. L. Varbanescu, X. Liao, and H. Sips, "Evaluating vector data type usage in
OpenCL kernels," Concurrency and Computation: Practice and Experience (accepted).

• [J] J. Fang, H. Sips, and A. L. Varbanescu, "Aristotle: A Performance Impact Indicator for the
OpenCL Kernels Using Local Memory". Scientific Programming 22:239-257.

• [C] J. Fang, H. Sips, P. Jaaskelainen, and A. L. Varbanescu, "Grover: Looking for performance
improvement by disabling local memory usage in OpenCL kernels," in Proceedings of the
43rd International Conference on Parallel Processing (ICPP’14), Minneapolis, USA.

• [C] J. Fang, H. Sips, L. Zhang, C. Xu, Y. Che, and A. L. Varbanescu, "Test-driving intel xeon
phi," in Proceedings of the 5th ACM/SPEC International Conference on Performance Engi-
neering, ser. ICPE ’14. New York, NY, USA: ACM, 2014, pp. 137-148. (Best Paper Award in
Industry/Experience Track)

• [C] J. Fang, A. L. Varbanescu, B. Imbernon, J. M. Cecilia, and H. Perez-Sanchez, "Parallel
computation of Non-Bonded Interactions in drug discovery: Nvidia GPUs vs. intel xeon
phi," in Proceedings of the 2nd International Work-Conference on Bioinformatics and Biomed-
ical Engineering (IWBBIO’2014), Apr. 2014, pp. 579-588.

191

192 CURRICULUM VITÆ

• [C] J. Fang, H. Sips, and A. L. Varbanescu, "Quantifying the performance impacts of using
local memory for many-core processors," in Multi-/Many-core Computing Systems (Mu-
CoCoS), 2013 IEEE 6th International Workshop on. IEEE, 2013, pp. 1-10.

• [C] J. Fang, A. L. Varbanescu, and H. Sips, "Sesame: A User-Transparent optimizing frame-
work for Many-Core processors," in Cluster, Cloud and Grid Computing (CCGrid), 2013 13th
IEEE/ACM International Symposium on. IEEE, May 2013, pp. 70-73.

• [C] J. Fang, A. L. Varbanescu, J. Shen, and H. Sips, "ELMO: A User-Friendly API to enable
local memory in OpenCL kernels," in Parallel, Distributed and Network-Based Processing
(PDP), 2013 21st Euromicro International Conference on. IEEE, Feb. 2013, pp. 375-383.

• [C] J. Fang, A. L. Varbanescu, J. Shen, H. Sips, G. Saygili, and L. van der Maaten, "Acceler-
ating cost aggregation for Real-Time stereo matching," in Parallel and Distributed Systems
(ICPADS), 2012 IEEE 18th International Conference on. IEEE, Dec. 2012, pp. 472-481.

• [C] J. Fang, A. L. Varbanescu, and H. Sips, "A comprehensive performance comparison of
CUDA and OpenCL," in 2011 International Conference on Parallel Processing (ICPP’11).
IEEE, Sep. 2011, pp. 216-225.

• [C] J. Fang, A. L. Varbanescu, and H. Sips, "An auto-tuning solution to data streams clus-
tering in OpenCL," in 2011 14th IEEE International Conference on Computational Science
and Engineering, vol. 0. Los Alamitos, CA, USA: IEEE, Aug. 2011, pp. 587-594.

Co-Authored Publications

• [J] C. Xu, X. Deng, L. Zhang, J. Fang, G. Wang, Y. Jiang, W. Cao, Y. Che, Y. Wang, Z. Wang, W.
Liu, and X. Cheng, "Collaborating CPU and GPU for large-scale high-order CFD simulations
with complex grids on the TianHe-1A supercomputer," Journal of Computational Physics,
Aug. 2014.

• [C] C. Xu, L. Zhang, X. Deng, J. Fang, G. Wang, W. Cao, Y. Che, Y. Wang, W. Liu, "Balancing
CPU-GPU Collaborative High-order CFD Simulations on the TianHe-1A Supercomputer",
in Proceedings of the 28th IEEE International Parallel & Distributed Processing Symposium
(IPDPS’14), PHOENIX (Arizona), USA.

• [C] C. Xu, X. Deng, L. Zhang, Y. Jiang, W. Cao, J. Fang, Y. Che, Y. Wang, and W. Liu, "Paral-
lelizing a High-Order CFD software for 3D, multi-block, structural grids on the TianHe-1A
supercomputer," in Supercomputing, ser. Lecture Notes in Computer Science, J. Kunkel, T.
Ludwig, and H. Meuer, Eds. Springer Berlin Heidelberg, 2013, vol. 7905, pp. 26-39.

• [J] J. Shen, J. Fang, H. Sips, and A. L. Varbanescu, "An application-centric evaluation of
OpenCL on multi-core CPUs," Parallel Computing, vol. 39, no. 12, pp. 834-850, Dec. 2013.

• [C] J. Shen, J. Fang, H. Sips, and A. L. Varbanescu, "Performance traps in OpenCL for CPUs,"
in Parallel, Distributed and Network-Based Processing (PDP), 2013 21st Euromicro Interna-
tional Conference on. IEEE, Feb. 2013, pp. 38-45.

• [C] J. Shen, J. Fang, H. Sips, and A. L. Varbanescu, "Performance gaps between OpenMP
and OpenCL for multi-core CPUs," in Parallel Processing Workshops (ICPPW), 2012 41st
International Conference on. IEEE, 2012, pp. 116-125.

	Introduction
	Multi-/Many-Core Processors
	Processing Cores
	Memory Hierarchy and Local Memory
	Programming Models
	Portability and Performance
	Research Questions
	Thesis Contributions
	Thesis Outline

	OpenCL Against CUDA
	Similarities of CUDA and OpenCL
	Methodology and Experimental Setup
	Unifying Performance Metrics
	Selected Benchmarks
	Experimental Testbeds

	Performance Comparison and Analysis
	Comparing Peak Performance
	Performance Comparison of Real-world Applications
	A Fair Comparison

	A Brief Evaluation of OpenCL's Portability
	Related Work
	Summary

	Exploring Optimization Space: A Case Study
	A First Trial
	Algorithms and the Representation
	Aggregation Strategies
	A Template for Cost Aggregation Kernels

	Implementations and Optimizations
	OpenCL Implementations
	Optimization Steps for CA on GPUs

	Overall Performance
	Accuracy
	Speed on the Quadro5000
	Speed on the Low-end GPU
	Putting it all together

	Supplementary Results on a Multi-core CPU
	Mapping Work-items to Data
	Using Local Memory
	Unrolling Loops
	Increasing Data Parallelism

	Related Work
	Summary

	Evaluating Vector Data Type Usage
	Source-to-Source Translation
	OpenCL and VDT
	Using Vector Data Types
	Code Transformations

	Experimental Setup
	Selected Benchmarks
	Platforms and Devices

	VDT Execution Model
	Execution Model Analysis
	Compiler-level Analysis
	Lessons Learned

	Inter-vdt Performance Impact on Macro-Benchmarks
	Matrix Multiplication
	Image Convolution
	Black Scholes
	SOR
	Lessons Learned

	Intra-vdt Performance Impact on Macro-Benchmarks
	Performance Portability Discussion
	Related Work
	Summary

	Quantifying the Performance Impacts of Using Local Memory
	Three Observations as Motivation
	Data Reuse = Performance Improvement
	No Data Reuse = Performance Loss
	Local Memory Use on CPUs = Performance Loss

	The Design of Aristotle
	MAP Description
	The Notation
	eMAP
	iMAP
	MAP = eMAP+iMAP

	Design Space Exploration and Code Generation
	Exploring Design Space
	Code Generator

	Performance Database
	Performance Metric
	Experimental Setup
	Performance Optimization Considerations
	Performance Database

	Composing MAP Impacts
	Composing Rules Validation
	A MAP Composer
	Rule Validation
	Using Aristotle

	Related Work
	Summary

	ELMO: An API to Enable Local Memory Usage
	ELMO Requirements
	Challenge I: Geometry Mismatch
	Challenge II: Work-items Masking and Binding Switches
	Challenge III: Inefficient Local Memory Organization

	ELMO Design
	ELMO Implementation
	BWR
	COM
	LMM

	Experimental Evaluation
	Experimental Setup
	Performance Comparison with Native Kernels
	Performance Comparison with Hand-tuned Kernels

	Discussion
	Productivity
	Usability
	Limitations

	Related Work
	Summary

	Grover: Reverse-Engineering Local Memory Usage
	Motivation
	Disabling Local Memory Usage
	Performance Impact

	Grover: Systematically Disabling Local Memory Usage
	Overview
	The Method behind Grover
	An Example: Matrix Transpose

	Grover Implementation
	Selecting Candidates
	Building the Index Expression Trees
	Determining the Data Index
	Creating and Solving the Linear System
	Duplicating the New Load Instructions
	Updating the New Expression Tree

	Experimental Setup
	Incorporating Grover
	Selected Benchmarks
	Platforms and Devices

	Performance Evaluation and Discussion
	Calculating the New Data Index
	Results Summary
	Performance Analysis
	Limitations

	Related Work
	Summary

	Sesame: Towards a Portable Programming Framework
	A Realistic Scenario
	The Framework
	Sesame Inputs
	Input Kernels
	Platform Models

	Sesame Implementation
	Vectorization
	Local Memory Usage

	Related Work
	Summary

	Conclusions and Future Work
	Conclusions
	Future Research Directions

	Test-Driving Intel Xeon Phi
	Benchmarking Intel Xeon Phi
	The Architecture
	Programming
	MIC-Meter

	Empirical Evaluation
	Vector Processing Cores
	Memory Latency
	Memory Bandwidth
	Ring Interconnect
	PCIe Data Transfer

	SCAT: An Xeon Phi Model
	Leukocyte Tracking
	Performance Analysis
	Performance Optimization
	Discussion

	Related Work
	Summary

	Auto-tuning Clustering Data Streams
	Hand-optimizing CDS in OpenCL
	A Memory-efficient Solution
	Further Optimizations
	Experimental Results

	Auto-tuning
	Case: when a<b
	Case: when a>b
	Experimental Results

	Related Work
	Clustering Data Streams on GPUs
	Auto-tuning on GPUs

	Summary

	Bibliography
	Summary
	Samenvatting
	Curriculum Vitæ

