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Representations for the Marchenko method for imperfectly sampled data
Kees Wapenaar and Johno van IJsseldijk, Delft University of Technology

Summary
The Marchenko method is based on two integral representa-
tions for focusing functions and Green’s functions. In practice
the integrals are replaced by finite summations. This works
well for regularly sampled data, but the quality of the results
degrade in case of imperfect sampling. We reformulate the
integral representations into summation representations which
properly account for imperfectly sampled data and we illus-
trate these representations with numerical examples. We in-
dicate how these representations may be used to modify the
Marchenko method to account for imperfect sampling.

Introduction
The Marchenko method has been introduced as a data-driven
approach to deal with internal multiples in seismic imaging
(Broggini and Snieder, 2012; Wapenaar et al., 2014b; Ravasi
et al., 2016; Staring et al., 2018; Pereira et al., 2018) and for
monitoring and forecasting the wave field of induced seismic
sources (Van der Neut et al., 2017; Brackenhoff et al., 2019).
Central in the Marchenko method are two integral representa-
tions, which formulate mutual relations between the reflection
response at the surface, focusing functions and Green’s func-
tions with virtual sources and/or receivers in the subsurface.
Given the reflection data at the surface and an initial estimate
of the focusing functions, these integral representations can be
solved for the focusing functions and Green’s functions, which
can subsequently be used for imaging and monitoring.

The aforementioned representations consist of integrals along
sources and/or receivers at the surface from minus infinity to
plus infinity. In practice these representations are discretized
and truncated prior to solving them. This works well for reg-
ularly sampled data on a large enough grid and obeying the
Nyquist criterion. Most authors that use the Marchenko method
tacitly assume that these conditions are fulfilled. Staring and
Wapenaar (2019) numerically evaluate the effects of missing
near offsets, limited crossline aperture and undersampling in
the crossline direction on the 3D Marchenko method.

The aim of this paper is to reformulate the integral represen-
tations underlying the Marchenko method in terms of discrete
finite summations, such that they account for imperfectly sam-
pled data. This problem is akin to reformulating the represen-
tations underlying seismic interferometry for irregular source
distributions. For seismic interferometry the approach is as fol-
lows. The classical correlation integral representation (Wape-
naar and Fokkema, 2006) is replaced by a convolution inte-
gral representation, which is subsequently inverted by multidi-
mensional deconvolution (Wapenaar and van der Neut, 2010).
The point-spread function plays a central role in this approach
(Van der Neut and Wapenaar, 2015). Here we introduce a vari-
ant of this approach, leading to summation representations for
the Marchenko method, including point-spread functions. We
illustrate these representations with numerical examples. This
is the first step towards modifying the Marchenko method for

imperfectly sampled data. The second step, resolving the sum-
mation representations, is subject of ongoing research.

Integral representations
We start with flux-normalised acoustic representations, which
read in the space-time (x, t) domain (Wapenaar et al., 2014a)

G−,+(xR,xA, t)+ f−1 (xR,xA, t) = (1)∫
∂D0

R(xR,x, t)∗ f+1 (x,xA, t)dx,

G−,−(xR,xA, t)+ f+1 (xR,xA,−t) = (2)∫
∂D0

R(xR,x, t)∗ f−1 (x,xA,−t)dx.

The asterisks (∗) denote temporal convolution. ∂D0 denotes
the acquisition surface, which is considered to be reflection
free (this corresponds to the situation after surface-related mul-
tiple elimination). R(xR,x, t) is the reflection response of the
inhomogeneous medium below ∂D0, with x and xR at ∂D0.
The focusing functions f+1 (x,xA, t) and f−1 (x,xA, t) are de-
fined in a truncated medium, which is identical to the actual
medium between ∂D0 and ∂DA and reflection free below ∂DA.
Here ∂DA is a horizontal surface below ∂D0. It is chosen such
that it contains the focal point xA of the focusing function. The
focusing function f+1 (x,xA, t) is shaped such that, when emit-
ted from ∂D0 into the truncated medium, it focuses at xA. The
function f−1 (x,xA, t) is the reflection response of the truncated
medium to f+1 (x,xA, t). G−,+(xR,xA, t) and G−,−(xR,xA, t)
are the upgoing parts of the Green’s functions at xR, in re-
sponse to sources for downgoing (+) and upgoing (−) waves,
respectively, at xA. These Green’s functions are defined in the
actual medium. For further details we refer to the aforemen-
tioned papers about the Marchenko method.

We illustrate equations (1) and (2) with a 2D numerical exam-
ple. We consider a horizontally layered medium, with ∂D0 at
x3 = 0 m, three interfaces at 450, 850 and 1100 m, propagation
velocities of 1000, 2000, 2250 and 3000 m/s, and mass den-
sities with the same numerical values as the velocities (but in
kg/m3). The focal point is defined as xA = (0,1000) m. We nu-
merically model the reflection response at ∂D0 and convolve it
with a Ricker wavelet with a central frequency of 25 Hz. Also
the focusing functions are numerically modeled (since in this
paper we want to evaluate representations instead of the perfor-
mance of the Marchenko method). We evaluate the integrals
in the right-hand sides of equations (1) and (2), using regular
sampling (∆x = 5 m, nr. of samples is 1001). The results are
shown in Figures 1(a) and (b), respectively.

In practice, the right-hand sides of equations (1) and (2) are
approximated by∑

i

R(xR,x(i), t)∗ f+1 (x(i),xA, t)∗S(t), (3)

∑
i

R(xR,x(i), t)∗ f−1 (x(i),xA,−t)∗S(t), (4)
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Figure 1: Evaluation of the integrals in equations (1) and (2),
for fixed xA at ∂DA and variable xR along ∂D0. The red
dashed lines separate the recovered focusing functions from
the Green’s functions at the left-hand sides of these equations
(except for the first event below the red line in (b), which be-
longs to the focusing function and the Green’s function).

with x(i) at ∂D0 and S(t) the source wavelet. Assuming x(i)
is imperfectly sampled (irregular sampling, spatial aliasing,
missing small offsets, finite aperture, etc.), these approxima-
tions have an effect on the recovered focusing functions and
Green’s functions. We illustrate this with a numerical example,
for the situation of irregular source sampling. Figure 2 shows
an irregular distribution of sample points x(i) along ∂D0 (aver-
age ∆x = 10 m, nr. of samples is 501). We evaluate equations
(3) and (4), using the same numerically modeled reflection re-
sponse and focusing functions as in the previous example. The
results are shown in Figures 3(a) and (b), respectively. Com-
paring this with Figure 1 reveals the effects of the imperfect
sampling. In the following we quantify this effect.

-2500 -1875 -1250 -625 0 625 1250 1875 2500
Distance [m]

Figure 2: Irregular distribution of x(i) along ∂D0. The black
bars denote the positions of the samples.

a)	

b)	

Figure 3: Evaluation of the irregular summations in equations
(3) and (4), for fixed xA at ∂DA and variable xR along ∂D0.

Point-spread functions
We discuss some properties of the focusing functions and in-
troduce point-spread functions. These will be used in the next
section to transform the integral representations of equations
(1) and (2) into summation representations.

The focusing function f+1 is defined as the inverse of the trans-
mission response T between ∂D0 and ∂DA (Wapenaar et al.,
2014a). This is quantified as follows

δ (x′H,A−xH,A)δ (t) =
∫

∂D0

T (x′A,x, t)∗ f+1 (x,xA, t)dx, (5)

with x′A and xA at ∂DA, and x′H,A and xH,A denoting the hor-
izontal coordinates of x′A and xA, respectively. An alternative
way to quantify this relation is

δ (xH−x′H)δ (t) =
∫

∂DA

f+1 (x,xA, t)∗T (xA,x′, t)dxA, (6)

with x and x′ at ∂D0. To keep the focusing function stable,
evanescent waves are excluded. This implies that the inte-
gral in equation (5) or (6) yields a band-limited approximation
of the delta function in the left-hand side. This is illustrated
in Figure 4, which is obtained by evaluating the integral in
equation (5) numerically, using regular sampling (∆x = 5 m,
nr. of samples is 1001). Note that the sifting property of the
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a)	

b)	

Figure 4: (a) Evaluation of the integral in equation (5). (b)
Cross-section of the Fourier transform of (a) for the central
frequency component (25 Hz). This is a spatially band-limited
delta function. The width of the main lobe is 150 m.

delta function, h(xH) =
∫

δ (xH− x′H)h(x
′
H)dx′H, is also valid

for a spatially band-limited delta function, assuming h(xH) is
also spatially band-limited (which is the case when evanescent
waves are excluded). We use this property in the next section.
In a similar way we define a quantity Y as the inverse of the
time-reversal of f−1 , as follows

δ (x′H,A−xH,A)δ (t) =
∫

∂D0

Y (x′A,x, t)∗ f−1 (x,xA,−t)dx, (7)

or

δ (xH−x′H)δ (t) =
∫

∂DA

f−1 (x,xA,−t)∗Y (xA,x′, t)dxA. (8)

Note that this inverse may be unstable (since f−1 (x,xA, t) is a
reflection response), so it should be handled with care.

For the case of imperfect sampling, the discretised band-limited
versions of equations (5) and (7) read

Γ
+(x′A,xA, t) =

∑
i

T (x′A,x
(i), t)∗ f+1 (x(i),xA, t)∗S(t) (9)

and

Γ
−(x′A,xA, t) =

∑
i

Y (x′A,x
(i), t)∗ f−1 (x(i),xA,−t)∗S(t), (10)

with x′A and xA at ∂DA. Γ+(x′A,xA, t) and Γ−(x′A,xA, t) are
point-spread functions, which quantify the imperfection of the
sampling and the band-limitation, see Figure 5.

Summation representations
We use the point-spread functions introduced in the previous
section to transform the integral representations of equations
(1) and (2) into summation representations. We start by apply-
ing the operation∫

∂DA

{·}∗Γ
+(x′A,xA, t)dx′A (11)

to both sides of equation (1) (with xA replaced by x′A). Next, by
substituting equation (9) in the right-hand side, interchanging
the order of summation over x(i) and integration along ∂DA,

a)	

b)	

�+(x0
A,xA, t)

��(x0
A,xA, t)

Figure 5: Evaluation of the irregular summations in equations
(9) and (10). These point-spread functions quantify the imper-
fection of the sampling.

substituting equation (6) (with xA, x′ and x′H replaced by x′A,

x(i) and x(i)H ) and using the sifting property of the delta function
for the integral along ∂D0, this gives

“G−,+(xR,xA, t)+ “f−1 (xR,xA, t) = (12)∑
i

R(xR,x(i), t)∗ f+1 (x(i),xA, t)∗S(t),

with

“G−,+(xR,xA, t) = (13)∫
∂DA

G−,+(xR,x′A, t)∗Γ
+(x′A,xA, t)dx′A,

“f−1 (xR,xA, t) = (14)∫
∂DA

f−1 (xR,x′A, t)∗Γ
+(x′A,xA, t)dx′A.

Note that the right-hand side of equation (12) is identical to
the summation in equation (3), which we introduced as the
practical implementation of the integral in equation (1). Equa-
tion (12) shows that this summation representation leads to a
modified Green’s function “G−,+(xR,xA, t) and a modified fo-
cusing function “f−1 (xR,xA, t). These modified functions are
specified in equations (13) and (14). According to equation
(13), the point-spread function causes a smearing of the source
of the Green’s function around its source point xA. Similarly,
equation (14) quantifies the smearing of the focus around the
focal point xA of the focusing function. We evaluate equations
(13) and (14) numerically and add the results together, see Fig-
ure 6(a). This figure, which represents the left-hand side of
equation (12), is nearly identical to Figure 3(a), which repre-
sents the right-hand side of equation (12). Subtraction of these
results (not shown) gives a residual, with amplitudes smaller
than 0.34% of the maximum of Figure 3(a).

Next, we apply the operation∫
∂DA

{·}∗Γ
−(x′A,xA, t)dx′A (15)

to both sides of equation (2). In a similar way as above we
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a)	

b)	

Figure 6: (a) Evaluation of equations (13) and (14) and adding
the results together, giving “G−,+(xR,xA, t)+ “f−1 (xR,xA, t). (b)
Evaluation of equations (17) and (18) and adding the results
together, giving “G−,−(xR,xA, t)+ “f+1 (xR,xA,−t).

obtain

“G−,−(xR,xA, t)+ “f+1 (xR,xA,−t) = (16)∑
i

R(xR,x(i), t)∗ f−1 (x(i),xA,−t)∗S(t),

with

“G−,−(xR,xA, t) = (17)∫
∂DA

G−,−(xR,x′A, t)∗Γ
−(x′A,xA, t)dx′A,

“f+1 (xR,xA,−t) = (18)∫
∂DA

f+1 (xR,x′A,−t)∗Γ
−(x′A,xA, t)dx′A.

The right-hand side of equation (16) is identical to the sum-
mation in equation (4). It gives a modified Green’s function
“G−,−(xR,xA, t) and focusing function “f+1 (xR,xA,−t), which
are specified in equations (17) and (18). The sum of the numer-
ical evaluation of these equations is shown in Figure 6(b). This
figure, which represents the left-hand side of equation (16), is
nearly identical to Figure 3(b), which represents the right-hand
side of equation (16). Subtraction of these results (not shown)

a)	

b)	

�+
0 (x0

A,xA, t)

��
0 (x0

A,xA, t)

Figure 7: Initial estimates of the point-spread functions, ob-
tained from the direct arrivals of f+1 , f−1 , T and Y .

gives a residual, with amplitudes smaller than 3.31% of the
maximum of Figure 3(b).

Towards a modified Marchenko method
The summation representations of equations (12) and (16), with
the modified Green’s functions and focusing functions defined
in equations (13), (14), (17) and (18), form the basis for a mod-
ification of the Marchenko method, which accounts for the ef-
fects of imperfect sampling. We envisage an iterative scheme,
similar to the current Marchenko method, where in each iter-
ation a multi-dimensional deconvolution for the point-spread
functions is inserted (between the evaluation of the summa-
tion and the application of the time window). This requires
an initial estimate of the point-spread functions. To this end
we propose to replace the functions f+1 , f−1 , T and Y in equa-
tions (9) and (10) by their direct arrivals. For f−1 and Y further
investigation is needed how to define the direct arrivals in gen-
eral. For the current example this approach leads to reasonable
initial estimates of the point-spread functions in Figure 5, see
Figure 7.

Conclusions
We have derived summation representations as an alternative
for the integral representations which underlie the Marchenko
method. These summation representations account for the ef-
fects of imperfect sampling. The Green’s functions and fo-
cusing functions expressed by these representations are dis-
torted by point-spread functions. The summation represen-
tations form the basis for a modification of the Marchenko
method, which accounts for the effects of imperfect sampling.
This modified Marchenko method is subject of ongoing re-
search.
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