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a b s t r a c t

Offshore wind power is an important renewable energy source and plays an essential role in optimizing
the energy structure worldwide. Simultaneously, offshore wind turbine (OWT) selection is a complicated
process since it concerning various variables and optimization scenarios. In this paper, a novel fuzzy
Bayesian network-based model for multiple-attribute decision-making (MADM) is proposed. First of all, a
three-layer decision-making framework for OWT selection is established through systematically combing
previous studies, expert knowledge, and the principal component analysis (PCA) results by treating the
wind turbine parameters, wind turbine economy, wind turbine reliability, and navigation safety as the
attributes, and the corresponding 11 influencing factors are identified and quantified. Moreover, a
triangular fuzzy number is introduced to fuzzify each influencing factor, and the belief degree for
different linguistic variables corresponding to the specific influencing factor is employed in the fuzzy IF-
THEN rule system. Then, the belief rule base is transformed into the Bayesian network as the conditional
probability tables (CPTs), which can directly express the influence relationship of various factors and
realize the integration of various influence factors to obtain the optimal scheme. Finally, the proposed
model is validated by taking a case study in busy waterways in the Eastern China Sea as an example. This
research provides an intuitive, feasible, and practical way for OWT selection.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Energy is an inexhaustible impetus for all countries’ economic
development and an essential cornerstone for human survival and
progress. However, the current energy and environmental prob-
lems are becoming increasingly severe, and traditional oil and other
resources are gradually depleted. Thus, people are beginning to
n Systems Research Center
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look for alternative energy and paying more and more attention to
renewable energy, especially wind energy. As shown in Fig. 1(a), for
some time, wind energy has been the fastest growing renewable
energy sourceworldwide [1], andmany countries takewind energy
as an essential option to improve their energy structure and miti-
gate climate change, and promote energy saving and emission
reduction. For the statistics shown in Fig. 1(b), renewable energy
(including biofuels but excluding hydro) posted a record increase in
consumption in energy terms (2805.5 TWh), and this was the
largest increment for any source of energy in 2019. In addition,
wind provided the enormous contribution to renewables growth
(1429.6 TWh, accounting for 50.96% of the renewable energy and
5.29% of the global energy) followed closely by solar (724.1 TWh)
[2].
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Fig. 1. (a) Wind energy generation by region for both onshore and offshore wind sources [6]. (b) The statistic of the global energy distribution by energy type in 2019. Data source:
BP [2]. Note: The energy generation is measured in terawatt-hours (TWh) per year.

Table 1
Top ten largest operational offshore wind farms worldwide [4].

No. Name Country Capacity (MW) Number of turbines Commissioned

1 Hornsea 1

United Kingdom

1218 174 2019

2 East Anglia ONE

United Kingdom

714 102 2020

3 Walney Extension

United Kingdom

659 87 2018

4 London Array

United Kingdom

630 175 2013

5 Gemini Wind Farm

Netherlands

600 150 2017

6 Beatrice

United Kingdom

588 84 2019

7 Gode Wind

Germany

582 97 2017

8 Gwynt y Môr

United Kingdom

576 160 2015

9 Race Bank

United Kingdom

573 91 2018

10 Greater Gabbard

United Kingdom

504 140 2012
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Offshore wind power is an important renewable energy source.
Its development plays a vital role in promoting the technological
progress of the entire wind power industry and can play a role in
continuously optimizing the national energy structure. Compared
with onshore wind power, offshore wind power, as a new energy
source, has the advantages of wide applicable space, low noise and
light visual intrusion, and abundant wind energy resources [3].
Global offshore wind power maintains a strong growth trend. In
terms of regions, Europe is still the global leader in the offshore
wind power industry, and countries such as the United Kingdom,
Germany, Denmark, Sweden, Belgium, and the Netherlands are
developing rapidly [2,4]. Table 1 lists the top ten largest operational
offshore wind farms with at least 200 MW nameplate capacities
worldwide.

The research for offshore wind power began in the early 1990s.
In recent years, offshore wind power technology has become
increasingly mature and has started to be applied on an extensive
scale development [1]. According to the “Offshore Wind Outlook
2019” report released by the International Energy Agency (IEA),
898
since 2010, offshore wind power has grown at an annual rate of
about 30%. At the same time, the single-unit capacity of offshore
wind turbine (OWT)will increase from3MW in 2010 to 15e20MW
in 2030 (predicted value), and the turbine height will also develop
from 90 m to 230e250 m [5].

In the past few years, the idea of large-scale utilize of wind
power has received widespread attention, mainly in four research
areas [7]. The first area is mainly focused on the sensors and
instrumentation applied for wind measurements [8]. The second
area is concerned with the evaluation and assessment of wind
energy potential for a specific region and the applications of wind
energy [9]. The third area is the design and characterization of wind
turbines [10]. The fourth area deals with the development and
design of wind farm [11]. In addition, an optimal, practical, and
efficient wind farm design depends on various design constraints
and objectives. It is related to several influencing factors/aspects
such as the wind farm layout, site selection, and wind turbine se-
lection. Each of these aspects could be regarded as a comprehensive
and complex optimization and decision-making issue [12,13].
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With the improvement of OWT technology, wind turbines are
gradually developing to the tendency of a large scale. Large wind
turbines can make better use of wind energy, but the difficulty of
construction andmaintenance will also increase accordingly. At the
same time, the problem of whether different types of wind turbines
can adapt to the navigation environment of its nearby waters is also
a crucial issue that needs to be concerned. Therefore, the wind
turbine selection for the wind farm has widely attracted the
attention of academia. Specifically, Lee, Hung, Kang and Pearn [14]
proposed a multi-criteria decision-making method for OWT se-
lection, taking four aspects of wind turbine characteristics, eco-
nomic factors, environmental impact, and technical level for
comprehensive evaluation. Rehman and Khan [13] developed a
decision turbine selection strategy based on a fuzzy decision-
making approach and indicated that the important criteria such
as the turbine’s power rating, turbine height, and impeller diameter
need to be considered. Paul and Rather [15] presented a new
method that considers economy, reliability, resilience, and envi-
ronmental aspects to select a suitable wind turbine for a wind farm
site. Zhao, Su, Zhao and Yin [16] utilized the two-parameterWeibull
distribution approach to assessing wind power resource for various
islands in the South China Sea into to give an optimal scheme for
wind turbine selection. Pantaleo, Pellerano, Ruggiero and Trovato
[17] and Stockton [18] carried out the study on turbine selection
from an economic point of view. They indicated that the selection
and installation of wind turbines, and the construction of ancillary
electrical equipment, etc., and in terms of the entire life cycle of a
wind farm, it will eventually return to the problem of economic
feasibility. Additionally, the wake effect is an important influencing
factor for the OWT positioning choice for wind farm area, the same
type of OWT could result in various wind farm layout optimization
schemes with specific optimization model, and the optimization
problem, especially focusing on the influence of wake effect, is a
comprehensive and complicated research topic [11,15,19e21].
Moreover, in some studies for wind farm site selection, factors
affecting the OWT selection are taken into consideration as well
[22,23].

Multiple-attribute decision-making (MADM) is commonly used
in economics, military, and engineering technology [23]. Also, in
the research area of offshorewind farms [24,25]. The OWTselection
problem can be defined as a complex MADM which has attracted
substantial attention for the academia and stakeholders. The
problem could be solved by using the automated decision-making
techniques-computational intelligence techniques, due to compu-
tational intelligence techniques that could conduct this kind of
problems systematically and efficiently [11,26], and replace the
human-based decision making which is sometimes prone to inef-
ficient and somewhat wrong decisions [13]. A variety of computa-
tional intelligence based MADM techniques, for instance, fuzzy
logic [27], weighted aggregation [28], and Pareto ranking [29], have
been utilized by researchers in different sub-domains for wind
farm design.

Moreover, due to the complexity and uncertainty of decision
problems, the problems of MADM are always combined with the
characteristic of uncertain and fuzzy matters [30], so fuzziness is an
important factor involved in the real-world decision-making
problems [31]. Fuzzy logic is commonly used to conduct un-
certainties caused by the scarcity of data and could describe both
the quantitative and qualitative influencing factors effectively
[22,23]. Nevertheless, it also may lose some useful information
when describing the relationship between input variables and
output variables due to the utilization of the traditional IF-THEN
rules with a 100% belief degree [32]. However, this is unrealistic in
practice because the problem often has uncertainty. Thus, various
belief degrees that can represent the output variables preciselymay
899
be more suitable for OWT selection. In addition, Bayesian network
(BN) is the most commonly used approach for risk analysis due to
its flexible and intuitive structure and the ability to express the
quantitative relationships from the perspective of probabilistic
[33]; BN can indicate uncertainty relationship between conse-
quences and causes for an event/problem [34,35] and solve the
problem of difficulty in describing the output variables accurately
as well as intuitively represent the development process. Further-
more, it can describe the relationship between various influencing
factors of OWT selection. Thus, the decision-making process for
OWT selection can be converted to a MADM framework utilizing
BN. In addition, after obtaining the belief rule base, its results can be
converted into conditional probability tables (CPTs); thereby a
complete BN structure can be established. Thus, using the BN, the
reasoning process for overall assessment and evaluation for each
wind turbine candidate’s final performance can be conducted.

The overviewed literature indicates that some studies have been
conducted on the selection of OWT. Still, most of them only
considered from a specific aspect and utilized the qualitative
assessment on the criteria. Moreover, research on the selection of
OWT in the busy waterway, especially against comprehensively
consider the influences of wind turbine parameters, economy,
reliability, and navigation safety, are still scanty. Therefore, this
study focus on the problem of wind turbine selection, established a
novel fuzzy Bayesian network-based multiple-attribute decision-
making (MADM) model. First of all, a three-layer decision-making
framework for OWT selection is established by systematically
combing previous studies, expert knowledge as well as the results
of the principal component analysis (PCA) by treating the wind
turbine parameters, wind turbine economy, wind turbine reli-
ability, and navigation safety as the attributes, and the corre-
sponding 11 influencing factors are identified and quantified.
Secondly, considering the lack of quantitative data or description on
the main influencing factors when conducting selecting OWT se-
lection, and some data are ambiguous, a triangular fuzzy number is
introduced to fuzzify each influencing factor. At the same time,
considering that the traditional IF-THEN rule is difficult to describe
the output variable accurately, the belief degree for different lin-
guistic variables corresponding to the specific influencing factor is
employed into the fuzzy IF-THEN rule system. Then, we transform
the belief rule base into the Bayesian network as the CPTs, which
can directly express the influence relationship of various factors
and realize the integration of various influence factors, so as to
obtain the optimal scheme for OWT selection. Finally, the proposed
model is validated by taking a case study in busy waterways in
China as an example. This research is of great significance to the
OWT selection and the construction of wind farms.

The remainder of this paper is structured as follows. First, a
fuzzy Bayesian network-based decision-making model for OWT
selection by considering the wind turbine parameters, economy,
reliability, and navigation safety is proposed in Section 2. Second,
an application to a case of China is conducted to verify the devel-
oped model in Section 3. Third, Section 4 details our experiment
results, and the discussions for the results are presented. Finally,
the conclusions are drawn in Section 5.

2. Proposed novel fuzzy Bayesian network-based decision-
making model for offshore wind turbine selection

Offshore wind turbine selection is a complicated process. The
contribution and innovation of the proposed model are mainly
threefold: a) A novel feasible and applicable three-layer MADM
framework for OWT selection BN model, including the influencing
factor layer, the decision-making criterion layer, and the target
layer for OWT selection, is designed; b) The model



Fig. 2. A generic decision-making framework for offshore wind turbine selection.
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comprehensively employed the essential influencing factors under
complicated busy waterways, in aspects of the wind turbine pa-
rameters, wind turbine economy, wind turbine reliability, and
navigation safety; c) The proposed model and framework are not
only concerned with a standard BN model; it comprehensively
combined the principal component analysis, fuzzy logic, experts
knowledge, and belief rule theory with traditional BN. A detailed
description of the proposed model and the material which be uti-
lized in this study are presented in this section.
900
2.1. Establish a three-step decision-making framework for offshore
wind turbine

The selection of offshore wind turbine is influenced by several
factors; in a fuzzy Bayesian network-based MADM approach is
developed in this paper. In order to select the best suitable OWT by
comprehensively consider the influencing factors, a generic three-
step decision-making framework is established as follows (Fig. 2).

First, the influencing factors and attitudes are identified and



Fig. 3. Proposed three-layer decision-making framework for offshore wind turbine selection.
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recognized from previous studies and expert knowledge, then
analyzed and determined by utilizing the principal component
analysis; thus, a three-layer hierarchical decision-making frame-
work for the selection of OWT, including the influencing factor
layer, decision attribute/criterion layer, and target layer (overall
performance of the candidate plans of OWT selection), is developed
(Fig. 3). Then, the influencing factors are fuzzified by establishing
the evaluation criteria and utilizing fuzzy logic theory.

Second, the extended IF-THEN rules are introduced to precisely
describe the relationships between influencing factors and decision
attributes, and these rules are transformed to conditional proba-
bility tables (CPTs) for Bayesian Network, while the graphical
structure is derived by using the three-layer decision-making
framework.

Third, combined with the expert knowledge and fuzzy logic
theory, the best suitable candidate OWT is selected by multiplying
the utility values with the associated probability for the linguistic
terms after comprehensive comparative analysis.
Table 2
Explanation for the identified influencing factors for offshore wind turbine selection.

Influencing factors Explanation

Market share [36,37] The market share represents the market’s recognition and
Number of turbines [14] The number of turbines affects the difficulty of constructi
Turbine height [13] The height of the turbine is closely related to the wind sp
Impeller diameter [38] The wind power of OWT is proportional to the square of
Wake effect loss [39,40] The actual power generation needs to deduct the influenc
Annual average wind speed

[22]
An important factor in describing the wind resources

Wind power density
[41,42]

An essential factor in describing the wind resources. It is t

Annual energy production
[43,44]

The total amount of electrical energy thewind farm produc
evaluation

Safe wind speed [38] The higher the safe wind speed, the longer the wind turb
Safety level [16] The higher the safety level, the better the reliability of the
Rated wind speed [38] The wind power of the OWT is proportional to the cube o
Turbine spacing [22,23] Influence the installation and maintenance of wind turbin

maintenance ship)
Distance from bridge

[22,23]
It is an important factor for site selection of offshore wind

Distance from fairway
[22,23]

It is an important factor for site selection of offshore wind
to turbine by ships in channels
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2.2. Identify influencing factors to develop a hierarchical decision-
making framework for offshore wind turbine selection

The offshore wind turbine selection problem is complex since it
concerning various variables and optimization scenarios. In this
situation, it is impractical to develop a model containing all the
relevant influencing factors directly. In this case, to make a
comprehensive and overall analysis of the candidate OWT, themain
influencing factors of the OWT selection should be recognized and
identified from previous studies/reports/expert knowledge in the
decision-making problems [33].

Existing research on OWT selection mainly include 11 influ-
encing factors such as market share, number of turbines, turbine
height, and impeller diameter, etc. The reasons for the selection of
various influencing factors are explained and shown in Table 2.

After identifying the influencing factors of OWT selection, to
facilitate the decision-making process, it is necessary to define the
parent criteria of the influencing factors for wind turbine selection.
preference for a specific type of OWT
on/installation and maintenance of wind turbine
eed and ultimately affects the power generation of the wind turbine
the impeller diameter
e of the wake effect loss

he mean annual power available per square meter of the swept area of a turbine

es over a year. It is an important factor for site selection andwind turbine economy

ine can work, and it is relatively more harmless for the turbine
wind turbine
f the wind speed
e and the safety of the ships navigating in this area (including the safety of

farm, influence the safety of the ships navigating in this area

farm, influence the safety of the ships navigating in this area, also to avoid damage
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According to the characteristics of the influencing factors, they are
classified into four attributes of wind turbine parameters (market
share number of turbines), wind turbine economy (turbine height,
impeller diameter, wake effect loss, annual average wind speed,
wind power density, annual energy production), wind turbine
reliability (safe wind speed, safety level, rated wind speed), and
navigation safety (turbine spacing, distance from bridge, distance
from fairway).

Principal component analysis (PCA) is a mathematical method
used to reduce the dimensionality of data; simultaneously, most of
the characteristics of the variation in the data are retained [45]. In
addition, PCA has also proved to be a feasible method to recognize
the influential variables and an efficient way to identify the re-
lationships among various variables [46]. The basic equations for
the calculation of principal components are described as follows:

Assume there are m samples and each sample has n variables/
indicators; the sample dataset could be expressed as a matrix:

X¼

2
664
x11 x12 / x1n
x21 x22 / x2n
« « 1 «
xm1 xm2 / xmn

3
775 (1)

To eliminate the dimension and order of magnitude of the data
in the principal component analysis, it is usually necessary to
standardize the original data, convert it into dimensionless data,
thus standardize the matrix.

x0ij ¼
xij � xjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
xj
�q (2)

xj ¼
1
m

Xm
i¼1

xij (3)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
xj
�q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m� 1

Xm
i¼1

�
xij � xj

�2
vuut (4)

where xj is the average value and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxjÞ

q
is the standard deviation

of the j-th variables (i ¼ 1,2,3, …,m; j ¼ 1,2,3, …,n).
Then the correlation matrix R ¼ ðrjkÞn�n could be built, the

correlation coefficient for variables j and k, i.e., the elements of the
correlation matrix, could be obtained as:
rjk ¼
1

m� 1

Xm
i¼1

x0ijx
0
ik ¼

1
m� 1

Xm
i¼1

��
xij � xj

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
�
xj
�q 	��

xik � xk

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxkÞ

p 	
¼

Pm
i¼1

�
xij � xj

��
xik � xk

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

�
xij � xj

�2 Pm
i¼1

�
xik � xk

�2
s (5)
where i ¼ 1,2,3, …,m; j ¼ 1,2,3, …,n; k ¼ 1,2,3, …,n. The initial ei-
genvalues ðl1; l2;/; lnÞ are obtained based on the characteristic
equation jR�lEj ¼ 0 (E is the identity matrix) and the corre-

sponding eigenvectors m!k ¼ ðuk1;uk2;/;uknÞT , ðk¼ 1;2;3;/;nÞ
are derived from R m!k ¼ l m!k, and m!k should satisfy the condition

m!k
T
m!k ¼ 1. Thus, the k-th principal component (k ¼ 1,2,3, …,n)

could be represented as:
902
Fk ¼uk1x
0
1 þuk2x

0
2 þ/þuknx

0
n

¼ uk1

0
@ x1 � x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðx1Þ
p

1
Aþuk2

0
@ x2 � x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðx2Þ
p

1
Aþ/þukn

 
xn � xnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxnÞ

p
!

(6)

The principal components are required to explain and represent
the original data’s variation characteristics as much as possible. The
number of principal components determined for representing the
original influencing factors dataset of OWT selection could be
computed by

ACR¼
0
@Xp

j¼1

lj

,Xn
k¼1

lk

!
� 100% (7)

Where j ¼ 1,2,3, …,p; k ¼ 1,2,3, …,n, and p ðp� nÞ is the recognized
number of principal components. Generally, the accumulative
contribution ratio (ACR) is more than 80% [47].

In this paper, to reduce the subjectivity of identifying the
influencing factors and simplify model calculations, instead of us-
ing all the original influencing factors of the wind turbine economy
attribute, the PCA is employed to better address the choice of the
influencing factors. First, the identified six influencing factors
(variables) for the six plans (samples) are standardized based on
Eqs. (2)e(4) (Tables A1 and A2), then the correlation coefficient
matrix of the variables is obtained through Eq. (5) (Table A3). It can
be seen that there are several significant correlations among vari-
ables (i.e., the six influencing factors of wind turbine economy). For
instance, there is a high positive correlation among turbine height,
annual average wind speed, and wind power density; the impeller
diameter is highly negatively correlated with wake effect loss; the
annual energy production is highly positively correlated with wake
effect loss, etc. Moreover, the PCA results are shown in Table A4; the
results indicate that about 72.11% of the total variation could be
explained by the first principal component and about 96.79% by the
first two principal components. In other words, about 96.79% of the
total variance (i.e., ACR) in the six considered variables can be
condensed into two new variables (i.e., two new principal com-
ponents). Table A5 presents the essential variables for the first two
principal components. The component loading values represent the
correlations between the principal components and the original
variables; the greater the absolute value of the load value is, the
stronger the correlation happens [48]. Thus, the first principal
component could be defined and represented by turbine height,
impeller diameter, wake effect loss, annual average wind speed,
and wind power density. In addition, the second principal
component could be mainly characterized by annual energy pro-
duction and wake effect loss.

Overall, considering the high positive correlation among turbine
height, annual average wind speed, and wind power density, their
influencing characteristics for the proposed model are similar.
Thus, the most important variable, turbine height, with the biggest
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component loading value, is identified in our case. In addition,
considering the high percentage of the first principal component
(72.11%), and the low contribution of annual energy production in
the first principal component (Table A5), as well as the high positive
correlation between annual energy production and wake effect loss
(Table A3), the annual energy production is not included in our
model. Thus, the turbine height, impeller diameter, wake effect loss
are identified and recognized as themain influencing factors for the
attribute wind turbine economy.

Therefore, combined with the previous studies/reports/expert
knowledge as well as the principal component analysis for specific
influencing factors for OWT selection, a hierarchical three-layer
decision-making framework for OWT selection is established, as
shown in Fig. 3. Note that the different items included in the de-
cision criterion layer or influencing factor layer can be adjusted
according to different scenarios and actual situation in practical
applications.

2.3. Fuzzify the input and output variables for offshore wind turbine

Fuzzy logic is always used to conduct inaccurate and uncertain
data [49]. A membership function assigns a value between 0 and 1
to each element of the discourse. The assigned value (i.e., degree of
membership) determines the degree to which a given element
belongs to the fuzzy set, noted that any fuzzy set could be uniquely
determined by its membership [50].

Fuzzy numbers are a case of fuzzy set, and the most widely
utilized fuzzy numbers are triangular and trapezoidal fuzzy
numbers [51]. Besides, due to the computational simplicity of the
triangular fuzzy numbers, it has the advantage of processing
imprecise information [52]. Moreover, in the practical applications
of quantitative evaluation, fuzzy membership functions are always
Fig. 4. Triangular membership functions.

Table 3
Fuzzify the identified influencing factors.

Input variables Bad Moder

Market share (%) Low (0,0,10) Moder
Number of turbines Many (80,70,60) Norma
Turbine height (m) Low (90,80,70) Moder
Impeller diameter (m) Short (90,110,130) Moder
Wake effect loss (%) Very High (17,15,13) Norma
Safe wind speed (m/s) Low (30,40,50) Moder
Safety level / IEC I
Difference from rated wind speed (m/s) Large (9,7,5) Norma
Turbine spacing (km) Close (0.3,0.6, 0.9) Moder
Distance from bridge (NM) Close (0,0.5,1) Moder
Distance from fairway (NM) Close (0,0.5,1) Moder
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used to convert the linguistic estimations/terms into fuzzy
numbers. Therefore, triangular membership functions will be uti-
lized in this paper. The triangular membership functions are
defined as follows (Eq. (8) and Fig. 4):

f ðxÞ¼

8>><
>>:

0;
ðx� aÞ=ðb� aÞ;
ðc� xÞ=ðc� aÞ;
0;

x< a
a � x � b
b � x � c
x> c

(8)

The input variables and output variables should be fuzzified
before to facilitate the process of MADM. For the input variables,
quantitative and qualitative influencing factors are fuzzified by
utilizing different methods. Among them, the safety level is a
qualitative influencing factor; it has two certain options: IEC I and
IEC S, thus the safety level is directly described and defined by
linguistic variables (moderate for IEC I, and good for IEC S). More-
over, for the other influencing factors, they are all quantitative
influencing factors; therefore, the triangle membership function,
which is commonly utilized in previous studies [36,53], is applied
to fuzzify the quantitative influencing factors.

Considering the number of language variables will affect the
accuracy of the description of influencing factors: too many lan-
guage variables will significantly increase the number of inference
rules, while too few language variables will result in increasing the
difficulty to accurately describe and distinguish the degree of in-
fluence of influencing factors [37]. Note that more than three lin-
guistic variables should be utilized to obtain comprehensive results.
At the same time, less than seven linguistic variables should
generally be applied, as this will make it difficult for decision-
makers to distinguish the differences of multiple linguistic vari-
ables [54]. Thus, four linguistic terms, which are “Bad”, “Moderate”,
“Good” and “Very Good”, are introduced in this paper. The criteria
for the input variables’ fuzzification are derived based on the spe-
cific conditions and relevant regulations. Fuzzification for these
factors is detailed as follows, and the fuzzification results are shown
in Table 3.

In addition, for the output variables, which are wind turbine
parameters, wind turbine economy, wind turbine reliability, and
navigation safety, are all fuzzified by applying the standard trian-
gular fuzzy numbers (the meanings of each linguistic variable’s
meanings are similar with the description from Godaliyadde,
Phylip-Jones, Yang, Batako, Wang and Godaliyadde [55], as shown
in Fig. 5).
2.4. Establish inference rules for offshore wind turbine selection

After fuzzification of the influencing factors for the OWT, the
results need to be converted to the decision criterion layer. In this
process, specific reasoning IF-THEN rules need to be used to
ate Good Very Good

ate (0,10,30) High (10,30,60) Very High (30,60,100)
l (70,60,50) Less (60,50,40) Very Less (50,40,30)
ate (100,90,80) High (110,100,90) Very High (120,110,100)
ate (110,130,150) Long (130,150,170) Very Long (150,170,190)
l (15,13,11) Low (13,11,9) Very Low (11,9,7)
ate (40,50,60) High (50,60,70) Very High (60,70,80)

IEC S /
l (7,5,3) Small (5,3,1) Very Small (3,1,0)
ate (0.6,0.9,1.2) Far (0.9,1.2,1.5) Very Far (1.2,1.5,1.8)
ate (0.5,1,1.5) Far (1,1.5,2) Very Far (1.5,2,5)
ate (0.5,1,1.5) Far (1,1.5,2) Very Far (1.5,2,5)



Fig. 5. Standard triangular fuzzy numbers for fuzzification.
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establish a connection between the input variables (i.e., the 11
influencing factors) and output variables (the corresponding attri-
butes of the decision criterion layer, i.e., wind turbine parameters,
wind turbine economy, wind turbine reliability, and navigation
safety). In traditional IF-THEN rules, influencing factors are always
used as input variables, and decision criteria are used as output
variables, and a 100% belief degree is adapted to describe the re-
sults. A traditional IF-THEN rule is defined as follows [32]:

Rk : IF Ak
1J1 and Ak

2J2 …Ak
nJn THEN

n

bik;Bi

�o
(9)

where Rk is the k-th (k¼ 1,2,…,K) reasoning rule, Ak
nJn

represents the

linguistic variables corresponding to the n-th (n ¼ 1,2, …,N) input
variable (i.e., the specific influencing factor) utilized in the k-th rule.
Bi means the linguistic variables corresponding to the output var-

iables (i.e., the corresponding attributes), bik is the belief degree
assigned to Bi, which corresponding to the consequent of the
output variables for the input of Ak

nJn
.

Take the wind turbine parameter attribute as an example; the
IF-THEN reasoning rule could be expressed as follows:

R1: IF the market share is “Low” and the number of turbines is
“Many”, THEN thewind turbine parameter is (1, Bad), (0, Moderate),
(0, Good), (0, Very Good).

It can be seen from the above IF-THEN rule that the results are
described with 100% belief degree. Nevertheless, in practice, an
event/situation usually does not have 100% certainty but is always
combined with complexity/uncertainty. The classical fuzzy IF-THEN
rule is commonly utilized in the marine safety and security
research domain [22,32]. Therefore, in this paper, we employ
various belief degrees for different linguistic variables corre-
sponding to the specific influencing factor into the fuzzy IF-THEN
rule system [40]. Thus, the traditional IF-THEN scheme is extended
into a more specific and realistic scheme. Note that N is the number
of input variables; it can be seen from Fig. 3 that N is equal to 2 or 3.
Since four linguistic variables are used for all influencing factors,

thus Jn (n ¼ 1,2,3,4), Bi (i ¼ 1,2,3,4), and bikði ¼ 1;2;3;4Þ. The pro-
posed generic IF-THEN scheme, combined with a belief structure, is
established as follows:

Rk : IF Ak
1J1 and Ak

2J2 …Ak
nJn THENn


b1k ;B1
�
;


b2k ;B2

�
;


b3k ;B3

�
;


b4k ;B4

�o (10)

where the meaning of each parameter is the same as Eq. (9).
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Thus, the above case of the description for the wind turbine
parameter, which with the extended IF-THEN rule combined with
belief degree, could be rewritten as follows:

R1: IF the market share is “Low” and the number of turbines is
“Many”, THEN the wind turbine parameter is (0.9, Bad), (0.1, Mod-
erate), (0, Good), (0, Very Good).

The belief rule base can accurately reflect the link between the
input variables (i.e., influencing factors) and output variables (i.e.,
the decision-making/corresponding attributes of the decision cri-
terion layer with probabilistic uncertainty). Through introducing
this IF-THEN schemewith belief structure, the specific IF-THEN rules
could be developed to establish the fuzzy reasoning rule base. Note
that there are two input variables, and each with four linguistic
terms, so 16 (24 ¼ 16) rules could be established to facilitate the
process of belief reasoning. The belief rule base for the attributes of
wind turbine economy (34 ¼ 81 rules), wind turbine reliability
(34 ¼ 81 rules), and navigation safety (34 ¼ 81 rules) could also be
established in the same way. According to this reasoning rule, the
established belief rule base for the wind turbine parameter is
shown in Table 4 (for the sake of space, only the rules for the wind
turbine parameter are given).

2.5. Conduct Bayesian network-based rule reasoning

Bayesian network (BN) is an inference approach expressed by a
directed acyclic graph (DAG) [56], which indicates the uncertainty
relationship between consequences and causes for an event/prob-
lem [34]. BN is mainly composed of nodes, directed arc and, con-
ditional probability tables (CPTs) [57]; nodes represent the random
variables, directed arcs represent the conditional dependencies
between nodes, and CPTs represent the transition logic from parent
nodes to child nodes [58]. The parent node acts as an independent
variable with a prior probability distribution, while the child node
acts as an independent variable with a conditional probability
distribution under the condition of the corresponding parent node
[57].

The joint probability distribution (JPD), which determines the
conditional dependencies between different variables, could be
specified by the CPTs for the nodes [59]. In a BN, suppose Pa(Ai) as
the parent set of variables Ai, the CPTs of Ai is represented by P(Ai|
Pa(Ai)), then the P(U) (JPD) of a set of variables U ¼ A (A1, A2, A3, …,
An) could be described as Eq. (11) [33,56].

PðUÞ¼
Yn
i¼1

PðAijPaðAiÞÞ (11)



Table 4
Belief rule base for offshore wind turbine parameters.

Rule No. Input variables Output variables (Wind turbine parameters)

Market share Number of turbines Bad Moderate Good Very Good

1 Low Many 0.90 0.10 0 0
2 Low Normal 0.80 0.20 0 0
3 Low Less 0.20 0.40 0.30 0.10
4 Low Very Less 0.10 0.10 0.50 0.30
5 Moderate Many 0.20 0.40 0.30 0.10
6 Moderate Normal 0.10 0.10 0.50 0.30
7 Moderate Less 0 0.40 0.50 0
8 Moderate Very Less 0 0.30 0.30 0.40
9 High Many 0 0.40 0.40 0.20
10 High Normal 0 0.30 0.50 0.20
11 High Less 0 0.30 0.40 0.30
12 High Very Less 0 0.20 0.20 0.60
13 Very High Many 0 0.30 0.50 0.20
14 Very High Normal 0 0.20 0.50 0.30
15 Very High Less 0 0.20 0.20 0.60
16 Very High Very Less 0 0 0.20 0.80
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A feature of BN is that it can perform two-way reasoning (either
from the causes to the consequences or from consequences to the
causes). When a new evidence E is provided to any variable,
accordingly, the prior probabilities of all other variables are upda-
ted in the BNmodel [33,60]. The posterior probabilities of variables
can be calculated as Eq. (12).

PðUjEÞ¼ PðU; EÞ
PðEÞ ¼ PðU; EÞP

UPðU; EÞ
(12)

The decision-making framework for OWT selection in Fig. 3 can
be converted to a three-layer decision-making framework utilizing
BN, as shown in Fig. 6. In addition, after obtaining the belief rule
base, its results can be converted into CPTs, thereby establishing a
complete BN structure. Thus, by using the BN, the reasoning pro-
cess can be conducted.
Fig. 6. Bayesian network’s graphical relations
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2.6. Make a final decision by utilizing utility value and expert
knowledge

X ¼ fx1; x2;…; xtgðt� 2Þ is defined as a set of candidate turbines
for offshore wind farms. Y ¼ ðy1; y2;…; ysÞðs� 2Þ is defined as a set
of attributes. LetHn ¼ fH1;H2;H3;H4g be the linguistic terms to
describe the performance of the candidate turbines,
Pn ¼ ðP1; P2; P3; P4Þ are the probability values after integration of
the influencing factors (probability value can be obtained from the
evaluation result of Bayesian network). Define Ui as the overall
performance on the i-th candidate turbine; this can be written as
Eq. (13).

Ui ¼
X4
n¼1

PiVi (13)
hips for offshore wind turbine selection.



Table 5
Triangular fuzzy numbers of different linguistic terms.

Experts Weights(bi) Triangular fuzzy numbers of different linguistic terms

Very Bad (VB) Bad (B) Moderate (M) Good (G) Very Good (VG)

A 0.30 (0, 0, 0.30) (0, 0.30, 0.50) (0.30, 0.50, 0.80) (0.50, 0.80, 1) (0.80, 1, 1)
B 0.20 (0, 0, 0.20) (0.10, 0.25, 0.45) (0.25, 0.45, 0.60) (0.40, 0.60,0.80) (0.85, 1, 1)
C 0.20 (0, 0, 0.25) (0.10, 0.30, 0.40) (0.30, 0.45, 0.65) (0.50, 0.80, 0.90) (0.90, 1, 1)
D 0.30 (0, 0, 0.25) (0.20, 0.35, 0.50) (0.30, 0.50, 0.60) (0.55, 0.75, 0.90) (0.85, 1, 1)
Total 1 (0, 0, 0.26) (0.10, 0.31, 0.47) (0.29, 0.48, 0.67) (0.50, 0.75, 0.91) (0.85, 1, 1)

J. Xue, T.L. Yip, B. Wu et al. Renewable Energy 172 (2021) 897e917
where Vi is the utility value for the i-th linguistic term, and they are
predefined values. It can be seen that the greater the value Ui is, the
better performance of the candidate turbine is.
2.6.1. Fuzzy membership functions of linguistic terms establishing
In many cases, the experts’ expertise and information are always

uncertain or vague. However, fussy sets can be applied with a
mathematical tool combined with the linguistic terms in the
analysis of reliability for the real-world problem [61,62], and it is
better to employ fuzzy numbers to reflect human’s real thoughts
and in decision-making [63]. Thus, we use fuzzy numbers of the
domain experts and consider the relative importance weights of
different experts to optimize our proposed model. In order to
derive a reasonable result of the proposed model, four domain
experts are invited to make judgments on these linguistic terms.
The backgrounds are detailed as follows:

� Expert A: A technical manager for wind turbine design and
installation from a wind farm company.

� Expert B: An experienced chief officer with more than ten years
of sailing experience.

� Expert C: A professor engaged in safety research for more than
15 years with specific reference to maritime traffic planning.

� Expert D: A staff in charge of safety management of the wind
farm project from Shanghai Maritime Safety Administration.

Linguistic terms can be represented to the triangular fuzzy
number and can be expressed from the knowledge of domain ex-
perts on the basis of the Delphi method [30,64]. Supposing that
there have n experts, the i-th expert is assigned with the relative
weight bi (i¼ 1,…,m), satisfying

Pm
i¼1bi ¼ 1 and bi > 0 (i¼ 1,…,m).

The linguistic term (according to the experts’ judgment) for the
specific variable is xi ¼ ðai;bi;ciÞ; thus, the triangular fuzzy number
A ¼ ða; b; cÞ corresponding to the fuzzy linguistic term for the var-
iable could be defined as Eqs. (14)e(16).
Fig. 7. Triangular membership functio
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a¼
Xn
i¼1

biai (14)

b¼
Xn
i¼1

bibi (15)

c¼
Xn
i¼1

bici (16)

This study represents the utility value using four linguistic
terms: Bad (B), Moderate (M), Good (G), Very Good (VG). For
standard triangular fuzzy numbers, each linguistic term is assigned
in the same separation distance, for instance, the midpoint (i.e., b)
in triangular fuzzy number A for each linguistic term Very Bad (VB),
Bad (B), Moderate (M), Good (G), Very Good (VG) is 0, 0.25, 0.5, 0.75,
1, respectively [22,65]. However, in this paper, we comprehensively
take the different evaluation criteria of each expert for each lin-
guistic term into consideration, determine the triangular fuzzy
number of different linguistic terms according to the knowledge of
the domain experts, and employ the weight for each expert. Then
Eqs. (14)e(16) are utilized to calculate the final triangular fuzzy
numbers corresponding to different language terms (Table 5), thus
representing the fuzzy membership function for the linguistic term
more reasonably (Fig. 7).
2.6.2. Defuzzification for linguistic terms of the domain experts
The linguistic terms from domain experts need to be converted

into crisp values before utilizing the utility value for further priority
ranking and comparison. The transformation process is called
defuzzification. Defuzzification can be conducted in different ways,
such as the center of gravity (COG), max criterion, and mean of
maximum (MOM)methods [66]. Among them, the center of gravity
(COG) method (also named center of area (COA)) is the most widely
ns for different linguistic terms.



Table 6
The crisp number of different linguistic terms.

Name The triangular fuzzy number and crisp number of different linguistic terms

Linguistic term Very Bad (VB) Bad (B) Moderate (M) Good (G) Very Good (VG)

Fuzzy number (0, 0, 0.26) (0.10, 0.31, 0.47) (0.29, 0.48, 0.67) (0.50, 0.75, 0.91) (0.85, 1, 1)
Crisp number 0.09 0.29 0.48 0.72 0.95
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used technique proposed by Sugeno [67] as it considers the total
output distribution and is more accurate [68].

The linguistic terms from the judgments of each domain expert
can be defuzzified according to the proposed fuzzy membership
function in Section 2.6.1, and the crisp number could be defined as
follows:

AðXÞ¼

ð
X

xmAðxÞdx
ð
X

mAðxÞdx
(17)

Where A(X) represents the crisp value, x denotes the output vari-
able, and mAðxÞ is the triangular membership function for linguistic
terms from domain experts (Fig. 7). Specifically, the defuzzification
for a triangular fuzzy number on the basis of Eq. (18) could be
calculated as follows:

AðXÞ¼

ðb
a
x
x� a
b� a

dxþ
ðc
b
x
c� x
c� b

dxðb
a

x� a
b� a

dxþ
ðc
b

c� x
c� b

dx

¼ 1
3
ðaþ bþ cÞ (18)

Then, the crisp number for different domain experts’ linguistic
terms could be expressed in Table 6.
Fig. 8. An alternative construction plan fo
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3. Case study for the offshore wind turbine selection

3.1. Scenario description of offshore wind turbine selection

The wind farm project of the corporation of China General Nu-
clear Power Group (CGN) is located in the waters near the Donghai
Bridge in the Eastern China Sea. Offshorewind farm sites 5# and 6#
are selected and placed on both sides of the 5000 t navigation hole
of the Donghai Bridge (shown in Fig. 8). In addition, the wind farm
should meet the planned installed capacity of at least 282,000 KW.
Through investigations, the options of 4 MW (including wind tur-
bine generatorsWTG-1 andWTG-2 two options, inwhich the wake
effect loss, rated wind speed, etc. have specific differences), 4.5 MW
(WTG-3), 5.5 MW (WTG-4), 6 MW (WTG-5), and 6.45 MW (WTG-
6) are selected. Due to the different powers of various turbines, to
ensure the required installed capacity, thus, the number of turbines
will be different in the specific offshore wind farm, which will also
result in different spacing between different turbines.

As shown in Fig. 8, the offshore wind turbine candidate WTG-5
plan to build 47 wind turbines with a distance of 1.05 km between
different wind turbines, a distance of 0.62 NM from the 5000 t
navigation hole of the Donghai Bridge, and 0.68 NM from the
Donghai Bridge. In addition, the turbine height of the 6 MW wind
turbine is 110 m, and the impeller diameter is 172 m. According to
the calculation result from theWind Atlas Analysis and Application
ProgramWAsP10.0 software, the wake effect loss is 11.30%, the safe
wind speed is 70 m/s, the safety level is IEC S, and the rated wind
speed difference is 4.5 m/s.
r the 6 MW offshore wind turbines.
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Moreover, the parameter values of the influencing factors for the
other five schemes are shown in Table 7. It can be seen from Table 7
that there are individual differences in the values of the influencing
factors under each OWT candidate. It should be noted that the
values are defined from different sources. The market share is
derived through the statistics of installed capacity in recent years.
Besides, the turbine height, impeller diameter, safe wind speed,
safety level, and rated wind speed difference are obtained through
turbine parameters. The number of turbines and the turbine
spacing are estimated by the wind farm company utilizing associ-
ated parameters based on the field of water area and installed ca-
pacity, etc. In addition, the wake effect loss is calculated by
WAsP10.0 software, and the distance from the bridge and fairway
are measured on the nautical chart.
3.2. Obtain the fuzzified value of the influencing factors for offshore
wind turbine

By using the established fuzzy evaluation criteria for influencing
factors of wind turbine selection in Table 3, the influencing factors
under different OWT candidates in Table 7 are fuzzified, and the
results are shown in Table 8. Specifically, take the market share of
offshorewind turbine candidateWTG-1 for example, as the value is
55%, it belongs to High with a degree of 0.89, which can be calcu-
lated by utilizing the fuzzy evaluation criteria shown in Table 3, and
the result is (60-55)/(60-30) ¼ 0.17. In addition, the degree for it
belongs to Very High is (55-30)/(60-30) ¼ 0.83. Thus, the market
Table 7
Detailed information of the identified influencing factors for offshore wind turbine gene

Input variables WTG-1 WTG-2

Market share (%) 55 55
Number of turbines 71 71
Turbine height (m) 100 100
Impeller diameter (m) 146 140
Wake effect loss (%) 15.90 14.99
Safe wind speed (m/s) 70 70
Safety level IEC S IEC I
Difference from rated wind speed (m/s) 7 5
Turbine spacing (km) 0.6 0.6
Distance from bridge (NM) 0.43 0.50
Distance from fairway (NM) 0.50 0.50

Table 8
Fuzzified values of the identified influencing factors for various offshore wind turbine se

Input variables WTG-1 WTG-2

Market share (%) (High,0.17;
Very High,0.83)

(High,0.17;
Very High,0.83)

Number of turbines (Many,0.90;
Normal,0.10)

(Many,0.90;
Normal,0.10)

Turbine height (m) (High,1.00) (High,1.00)

Impeller diameter (m) (Long,0.80;
Moderate,0.20)

(Long,0.50;
Moderate,0.50)

Wake effect loss (%) (High,0.55;
Normal,0.45)

(High,1.00)

Safe wind speed (m/s) (Very High,1.00) (Very High,1.00)

Safety level (Good,1.00) (Moderate,1.00)
Difference from rated wind speed (m/s) (Large,1.00) (Normal,1.00)

Turbine spacing (km) (Close,1.00) (Close,1.00)

Distance from bridge (NM) (Close,1.00) (Close,1.00)

Distance from fairway (NM) (Close,1.00) (Close,1.00)
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share of OWT candidate WTG-1 can be represented as (High, 0.17;
Very High, 0.83). Similarly, the fuzzification results of the other
influencing factors for different OWT candidates could also be
calculated and shown in Table 8.

As shown in Table 8, these six solutions for OWT selection have
corresponding advantages and disadvantages. Among them,
candidate WTG-1 has advantages in three aspects: market share,
safe wind speed, and safety level. In addition, candidateWTG-2 has
advantages in market share and safe wind speed. Moreover,
candidate WTG-3 has advantages in safe wind speed and safety
level. Besides, candidate WTG-4 has three advantages, such as safe
wind speed, safety level, and rated wind speed difference. Also,
candidate WTG-5 has advantages in four respects: turbine height,
impeller diameter, safe wind speed, and safety level. What’s more,
candidate WTG-6 has advantages in terms of the number of tur-
bines, wake effect loss, safety level, turbine spacing, distance from
bridge, and distance from fairway. Although these six solutions for
OWT candidates have advantages in different influencing factors,
however, the importance of each influencing factor is different.
Therefore, it is necessary to analyze and integrate these influencing
factors further to obtain the optimal solution for OWT selection.
4. Results and discussion

The Bayesian network analysis involves amounts of calculations,
especially when the Bayesian network is complicated and contains
a lot of nodes and directed arcs. In the present paper, the
rators.

WTG-3 WTG-4 WTG-5 WTG-6

7 3 0 0
63 51 47 44
95 100 110 106
148 158 172 168
13.65 13.20 11.30 10.98
70 70 70 52.5
IEC S IEC S IEC S IEC S
2.8 2.1 4.5 3.2
0.6 0.9 1.05 1.25
0.64 0.65 0.68 0.81
0.50 0.50 0.62 0.65

lection schemes.

WTG-3 WTG-4 WTG-5 WTG-6

(Low,0.30;
Moderate,0.70)

(Low,0.70;
Moderate,0.30)

(Low,1.00) (Low,1.00)

(Normal,0.70;
Less,0.30)

(Normal,0.10;
Less,0.90)

(Less,0.70;
Very Less,0.30)

(Less,0.40;
Very Less,0.60)

(Moderate,0.50;
High,0.50)

(High,1.00) (Very High,1.00) (High,0.40;
Very High,0.60)

(Long,0.90;
Moderate,0.10)

(Long,0.60;
Very Long,0.40)

(Very Long,1.00) (Long,0.10;
Very Long,0.90)

(High,0.325;
Normal,0.675)

(High,0.10;
Normal,0.90)

(Normal,0.15;
Low,0.85)

(Low,0.99;
Very Low,0.01)

(Very High,1.00) (Very High,1.00) (Very High,1.00) (Moderate,0.75;
High,0.25)

(Good,1.00) (Good,1.00) (Good,1.00) (Good,1.00)
(Small,0.90;
Very Small,0.10)

(Small,0.05;
Very Small,0.95)

(Normal,0.50;
Small,0.50)

(Normal,0.10;
Small,0.90)

(Close,1.00) (Moderate
,1.00)

(Moderate,0.50;
Far,0.50)

(Far,0.83;
Very Far,0.17)

(Close,0.72;
Moderate,0.28)

(Close,0.70;
Moderate,0.30)

(Close,0.64;
Moderate,0.36)

(Close,0.38;
Moderate,0.62)

(Close,1.00) (Close,1.00) (Close,0.76;
Moderate,0.24)

(Close,0.70;
Moderate,0.30)



Fig. 9. Evaluation results of candidate plan WTG-1.
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professional andwidely used Bayesian networkmodelling software
GeNIe, especially in the safety and reliability research domain
[69e72], is utilized to calculate the evaluation results of each
candidate plan based on above mentioned four perspectives of
wind turbine parameters, wind turbine economy, wind turbine
reliability, and navigation safety from the proposed three-layer
decision-making framework for offshore wind turbine selection.

Fig. 9 demonstrates the evaluation results of candidate plan
WTG-1. Section 3.2 details the process and criteria for the fuzzifi-
cation of the 11 influencing factors of each candidate plan in Table 7.
Then, the fuzzification results of the 11 influencing factors for wind
turbine generator WTG-1 shown in Table 8 are input into the
software GeNIe. For instance, based on the data of wind turbine
parameters for OWT candidate WTG-1: market share (High, 0.17;
Very High, 0.83) and the number of turbines (Many, 0.90; Normal,
Table 9
Evaluation results for the four decision attributes of each offshore wind turbine candida

Candidate turbine Wind turbine parameters Wind turbine

WTG-1 (0.00,0.31,0.48,0.21) (0.15,0.30,0.54
WTG-2 (0.00,0.31,0.48,0.21) (0.26,0.27,0.46
WTG-3 (0.24,0.41,0.28,0.08) (0.10,0.45,0.45
WTG-4 (0.19,0.39,0.33,0.09) (0.02,0.33,0.53
WTG-5 (0.17,0.31,0.36,0.16) (0.00,0.03,0.31
WTG-6 (0.14,0.22,0.42,0.22) (0.00,0.00,0.50
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0.10). The Bayesian network reasoning results for the decision
attribute value of wind turbine parameters are calculated and
presented as (Moderate, 0.31; Good, 0.48; Very Good, 0.21). Simi-
larly, the decision attribute values of other three levels of attributes
could be represented as wind turbine economy (Bad, 0.15; Mod-
erate, 0.30; Good, 0.54), wind turbine reliability (Bad, 0.10; Mod-
erate, 0.40; Good, 0.25; Very Good, 0.25), and navigation safety
(Bad, 0.97; Moderate, 0.03) (Table 9). Then the comprehensive
Bayesian network reasoning results considering the comprehensive
influences of 11 factors in terms of wind turbine parameters, wind
turbine economy, wind turbine reliability, and navigation safety for
the final evaluation value of candidate plan WTG-1 could be pre-
sented as (Bad, 0.30; Moderate, 0.26; Good, 0.32; Very Good, 0.11)
(Table 10). Note that the result is not listed above if the probability
of the specific linguistic terms is zero and the sum of the
te.

economy Wind turbine reliability Navigation safety

,0.00) (0.10,0.40,0.25,0.25) (0.97,0.03,0.00,0.00)
,0.00) (0.00,0.50,0.25,0.25) (0.97,0.03,0.00,0.00)
,0.00) (0.00,0.00,0.64,0.36) (0.91,0.09,0.00,0.00)
,0.13) (0.00,0.00,0.35,0.65) (0.57,0.43,0.00,0.00)
,0.66) (0.00,0.17,0.51,0.33) (0.44,0.43,0.13,0.00)
,0.50) (0.00,0.28,0.71,0.00) (0.34,0.38,0.25,0.04)



Table 10
Overall performance and ranking for offshore wind turbine candidates.

Candidate turbine Evaluation value Overall performance (“Bad” as 0.35) Ranking Overall performance (proposed method) Ranking

WTG-1 (0.30,0.26,0.32,0.11) 0.630 6 0.547 6
WTG-2 (0.30,0.28,0.31,0.11) 0.633 5 0.549 5
WTG-3 (0.31,0.24,0.34,0.11) 0.640 4 0.554 4
WTG-4 (0.19,0.29,0.30,0.22) 0.701 3 0.619 3
WTG-5 (0.15,0.23,0.33,0.29) 0.750 2 0.667 1
WTG-6 (0.12,0.22,0.47,0.19) 0.753 1 0.659 2

Fig. 10. Evaluation results of candidate plan WTG-2.
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probabilities for various linguistic terms is one, and the differences
of the actual sum results of Table 9 are due to the number is
rounded to two significant figures.

Fig. 10 shows the evaluation process for candidate plan WTG-2.
Obviously, the fuzzification results of input variables of market
share, number of turbines, turbine spacing, distance from bridge,
distance from fairway, are the same as the results of plan WTG-1
(Table 8). Thus, the Bayesian network reasoning results for the
decision attribute values of wind turbine parameters and naviga-
tion safety are the same as WTG-1. However, though the fuzzifi-
cation results of turbine height and safewind speed is thewith plan
WTG-1, the fuzzification results of impeller diameter (Moderate,
0.50; Long, 0.50), wake effect loss (High, 1.00), safety level (Mod-
erate,1.00) (moderate for IEC I, and good for IEC S, as shown in
Tables 3 and 8), and rated wind speed difference (Normal,1.00) are
910
different from plan WTG-1. Therefore, the BN reasoning results for
the wind turbine economy (Bad, 0.26; Moderate, 0.27; Good, 0.46)
and wind turbine reliability (Moderate, 0.50; Good, 0.25; Very
Good, 0.25) are changed. Accordingly, the final evaluation result of
plan WTG-2 becomes to (Bad, 0.30; Moderate, 0.28; Good, 0.31;
Very Good, 0.11).

As shown in Fig. 11, compared with the fuzzification results of
various input variables of candidate planWTG-1, since only the safe
wind speed, safety level, turbine spacing, and distance from fairway
are not changed. Thereby, the Bayesian network reasoning results
for the four decision attribute values of wind turbine parameters
(Bad, 0.24; Moderate, 0.41; Good, 0.28; Very Good, 0.80), wind
turbine economy (Bad, 0.10; Moderate, 0.45; Good, 0.45), wind
turbine reliability (Good, 0.64; Very Good, 0.36), and navigation
safety (Bad, 0.91; Moderate, 0.09) are all changed, which also led to



Fig. 11. Evaluation results of candidate plan WTG-3.
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the different output for the final evaluation result of plan WTG-3
(Bad, 0.31; Moderate, 0.24; Good, 0.34; Very Good, 0.11).

Fig. 12 illustrates the evaluation results of candidate plan WTG-
4. Similarly, there are only four input variables of turbine height,
safe wind speed, safety level, and distance from fairway are the
samewithWTG-1, and the other seven fuzzification results of input
variables are all different. Therefore, the wind turbine parameters
(Bad, 0.19; Moderate, 0.39; Good, 0.33; Very Good, 0.09), wind
turbine economy(Bad, 0.02; Moderate, 0.33; Good, 0.53; Very Good,
0.13), wind turbine reliability (Good, 0.35; Very Good, 0.65), and
navigation safety (Bad, 0.57; Moderate, 0.43) are all changed,
Accordingly, the final evaluation result of plan WTG-4 becomes to
(Bad, 0.19; Moderate, 0.29; Good, 0.30; Very Good, 0.22).

From Fig. 13, we can see that, compared with candidate plan
WTG-1, the two input variables of safe wind speed and safety level
are the same as planWTG-1, and the other nine fuzzification results
of input variables are all different: market share (Low, 1.00), num-
ber of turbines (Less, 0.70; Very Less, 0.30), turbine height (Very
High, 1.00), impeller diameter (Very Long, 1.00), wake effect loss
(Normal, 0.15; Low, 0.85), rated wind speed difference (Normal,
0.50; Small, 0.50), turbine spacing (Moderate, 0.50; Far, 0.50), dis-
tance from bridge (Close, 0.64; Moderate, 0.36), and distance from
fairway (Close, 0.76; Moderate, 0.24) are all different with plan
WTG-1 (Table 8), resulting in the Bayesian network reasoning re-
sults for the four decision attribute values of wind turbine param-
eters (Bad, 0.17; Moderate, 0.31; Good, 0.36; Very Good, 0.16), wind
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turbine economy (Moderate, 0.03; Good, 0.31; Very Good, 0.66),
wind turbine reliability (Moderate, 0.17; Good, 0.51; Very Good,
0.33), and navigation safety (Bad, 0.44; Moderate, 0.43; Good, 0.13)
are all changed. Therefore, the final output of the evaluation result
of planWTG-5 is (Bad, 0.15; Moderate, 0.23; Good, 0.33; Very Good,
0.29).

Fig. 14 presents the fuzzification results of various input vari-
ables of candidate plan WTG-6. Since only the safety level is the
same as the plan WTG-1, which leads to the Bayesian network
reasoning results for the four decision attribute values of wind
turbine parameters (Bad, 0.14; Moderate, 0.22; Good, 0.42; Very
Good, 0.22), wind turbine economy (Good, 0.50; Very Good, 0.50),
wind turbine reliability (Moderate, 0.28; Good, 0.71), and naviga-
tion safety (Bad, 0.34; Moderate, 0.38; Good, 0.25; Very Good, 0.04)
are all changed. Thus, the output is also different for the final
evaluation result of plan WTG-6 (Bad, 0.12; Moderate, 0.22; Good,
0.47; Very Good, 0.19).

Therefore, by employing the BN model, the values of the deci-
sion attributes can be obtained (shown in Table 9). It can be seen
from Table 9 that among the six wind turbine candidates, WTG-6
has the best wind turbine parameters, WTG-5 has the best wind
turbine economy, WTG-4 has the best wind turbine reliability, and
WTG-6 has the best navigation safety.

To select the optimal wind turbine selection solution, this paper
defines the utility value “Bad” as 0.35，“Moderate” as
0.55，“Good” as 0.85，“Very Good” as 1.00 from previous studies



Fig. 12. Evaluation results of candidate plan WTG-4.
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[57], we can get the overall performance by utilizing the utility
value calculation Eq. (13), then the ranking results can be obtained.
For further comparative analysis, we utilized the method proposed
in Section 2.6; the crisp number of different linguistic terms based
on the domain experts’ knowledge is employed. For instance, the
overall performance value based on the utility value from previous
studies is 0.30*0.35 þ 0.26*0.55 þ 0.32*0.85 þ 0.11*1.00 ¼ 0.630,
and the overall performance value utilizing the proposedmethod is
0.30*0.29 þ 0.26*0.48 þ 0.32*0.72 þ 0.11*0.95 ¼ 0.547. The overall
performance and ranking results for each candidate turbine are
shown in Table 10 and Fig. 15.

As can be seen from Table 10 and Fig. 15, the ranking results for
the proposed wind turbine selection model are slightly different
from those calculated by the utility values commonly used in
various traditional engineering fields. The main differences are
concentrated in the two kinds of wind turbine candidates: WTG-5
and WTG-6. This is also consistent with the actual situation. From
Table 8, we can see that the wind turbine candidate WTG-6 has
advantages in six aspects, while the WTG-5 has advantages in only
four aspects, and the two candidates both have their advantages
and disadvantages. Therefore, the specific situation needs to be
further analyzed in detail.

From a practical point of view, due to the relatively small power
of the wind turbine candidates of WTG-1, WTG-2, and WTG-3, the
number of turbines required is relatively large, the distance
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between the turbines is relatively small, and the wake effect loss is
relatively large, although there are certain advantages in terms of
market share, but inferior in terms of wind turbine economy and
navigation safety. Therefore, these three wind turbine candidates
are not the best solution for this wind farm construction. The
candidate WTG-4 is similar to the first three candidates and is the
best in terms of the rated wind speed difference, but on the whole,
it still has certain disadvantages compared to the candidateWTG-5.
The candidate WTG-6 has advantages in many aspects, but the safe
wind speed is lower than the other five wind turbine candidates.
Considering the influence of tropical cyclones in the East China Sea,
the reliability of the turbine needs to be fully considered. In addi-
tion, the candidate WTG-5 is more economical. Therefore, on the
whole, the candidate WTG-5 is taken as the final optimal wind
turbine selection scheme.

Based on the results calculated by the model proposed in this
paper, after a comprehensive evaluation, the utility value for the
candidateWTG-6 is still lower than that of WTG-5. Thus, this paper
chooses the candidate WTG-5 as the best OWT selection scheme.
This result is consistent with the actual evaluation workshop for
OWT selection in the wind farm project of CGN, which shows that
the proposed OWT selection model can obtain a reasonable result.
This also illustrates the importance of various influencing factors
when conducting OWT selection.



Fig. 13. Evaluation results of candidate plan WTG-5.
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5. Conclusions

This paper proposes a novel offshore wind turbine (OWT) se-
lection model based on fuzzy Bayesian networks and expert
domain knowledge. In addition, a three-layer decision-making
framework for OWT selection, including the influencing factor
layer, the decision-making criterion layer, and the target layer for
OWT selection, is established, and principal component analysis
(PCA) is employed to reduce the subjectivity of decision variables’
selection and address the choice of the influencing factors for the
attribute wind turbine economy. Moreover, each influencing fac-
tor’s qualitative and quantitative characteristics and the fuzziness
and uncertainty of the data are taken into consideration, and fuzzy
logic is introduced to fuzzify the data. At the same time, considering
that traditional fuzzy logic uses a 100% belief degree to describe
output variables when performing rule inference, it is difficult to
accurately describe the difference of various influencing factors,
which may affect the final decision-making result. Therefore, this
paper employs various belief degrees for different linguistic vari-
ables corresponding to the specific influencing factor into the fuzzy
IF-THEN rule system, and finally transform the belief rule base into
the Bayesian network as the CPTs. On the one hand, this method
can solve the problem of difficulty in describing the output vari-
ables accurately. On the other hand, it can intuitively describe the
relationship between various influencing factors. The application
results show that the model has good accuracy and applicability.

Offshore wind turbine selection is a complicated process. It is
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necessary to comprehensively consider the influences of wind
turbine parameters, wind turbine economy, wind turbine reli-
ability, and navigation safety. If the stakeholders concluded an
inappropriate selection, it may cause maritime accidents or make it
challenging to utilize wind energy fully. This paper systematically
sorts out the main influencing factors for OWT selection, which can
provide a useful reference for the selection of OWT. At the same
time, the use of the fuzzy Bayesian network can solve the uncertain
problem of OWT selection caused by ambiguity. In addition, the
conversion between fuzzy logic and Bayesian network can be
realized by introducing the improved IF-THEN rule, thus to intui-
tively display the output results. The comparison analysis between
the proposed model calculation results and the actual wind turbine
selection scheme shows that this model can accurately realize the
purpose of OWT selection.

Nevertheless, this study still has some limitations which need to
be considered and adapted in a specific application scenario. First,
the fuzzy criteria for various influencing factors are obtained from
previous studies and existing experience of OWT selection. When
applying it to other situations/scenarios, more data sources need to
be explored and investigated to identify and determine the fuzzy
criteria. Second, in practical applications, some expert judgment
data are applied in our model, which requires experts to be familiar
with wind turbine parameters, the coverage range of the candidate
sites, output of wind-power characteristics, and the surrounding
water environment, etc. So experts need to be carefully selected.
Third, though the proposed three-layer decision-making



Fig. 14. Evaluation results of candidate plan WTG-6.

Fig. 15. Overall performance of the cited and proposed utility value for various offshore wind turbines.
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framework and fuzzy Bayesian network-based MADM model for
OWT selection are feasible and practical, some specific influencing
factors corresponding to various decision criteria should be
914
adjusted and updated according to the application scenario when
applying the proposed method.
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Table A1
The data of each influencing factor of wind turbine economy.

Plan Turbine height
(m)

Impeller diameter
(m)

Wake effect loss
(%)

WTG-1 100 146 15.90
WTG-2 100 140 14.99
WTG-3 95 148 13.65
WTG-4 100 158 13.20
WTG-5 110 172 11.30
WTG-6 106 168 10.98
Average 101.83 155.33 13.34
Standard Deviation 5.31 12.82 1.96

Table A2
Standardization results of each influencing factor of wind turbine economy.

Plan Turbine height Impeller diameter Wake effect loss Annu

WTG-1 �0.345 �0.345 �1.288 �0.34
WTG-2 �0.728 �1.196 �0.572 0.208
WTG-3 1.311 0.845 0.160 �0.07
WTG-4 �0.241 �0.241 �1.483 �0.24
WTG-5 �0.209 �0.209 �1.529 �0.20
WTG-6 1.655 0.171 �0.699 �0.34

Table A3
Correlation coefficient matrix between the variables of wind turbine economy.

Turbine height Impeller diameter Wake effect loss

Turbine height 1.000 0.821 �0.695
Impeller diameter 0.821 1.000 �0.923
Wake effect �0.695 �0.923 1.000
Annual average wind speed 0.991 0.777 �0.634
Wind power density 0.987 0.760 �0.610
Annual energy production 0.018 �0.345 0.648

Table A4
Contribution ratio and accumulative contribution ratio (ACR) of each component varianc

Component Initial eigenvalues

Total % of Vari

1 4.326 72.107
2 1.481 24.682
3 0.174 2.902
4 0.018 0.304
5 0.000 0.006
6 1.641E-16 2.735E-1
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Appendix A
Annual average wind
speed (m/s)

Wind power density
(W/m2)

Annual energy production
(*104 kWh)

8.03 507.80 136130.9
8.03 507.80 129900.0
7.97 495.65 126250.2
8.03 507.80 127738.5
8.11 522.60 130947.5
8.08 516.68 124129.4
8.04 509.72 129182.75
0.05 9.20 4198.28

al average wind speed Wind power density Annual energy production

5 1.539 0.785
1.300 0.988

0 �1.041 �1.205
1 1.414 0.793
9 1.400 0.756
4 0.420 �1.204

Annual average wind speed Wind power density Annual energy production

0.991 0.987 0.018
0.777 0.760 �0.345
�0.634 �0.610 0.648
1.000 0.999 0.064
0.999 1.000 0.087

0.064 0.087 1.000
e.

ance (contribution ratio) Cumulative variance (ACR), %

72.107
96.789
99.690
99.994
100.000

5 100.000



Table A5
Principal component loading matrix for various variables (influencing factors of the
wind turbine economy attribute).

Name Component loading matrix

Component 1 Component 2

Turbine height 0.463 0.204
Impeller diameter 0.447 �0.177
Wake effect �0.410 0.419
Annual average wind speed 0.453 0.253
Wind power density 0.448 0.274
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