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Abstract 

With an increasing the share of photovoltaic and wind in 

the generation mix, the power supply reduces its CO2 

emission and becomes more weather dependent. Their 

volatile power output asks for a compensation by backup 

technologies. Gas turbines and other backup 

technologies need to handle diverse incidents of scarcity 

ranging from single peaks of uncovered load to longer 

scarcity periods. The analysis of two contrary weather 

years by the agent-based model AMIRIS shows the range 

of the scarcity incidents and determines the cost recovery 

of back technologies depending on weather conditions 

and the availability of batteries. Batteries can mitigate the 

scarcity only to some extent due to their technical 

limitations. At the same time, they diminish the 

investment basis for capital intense backup technologies. 

The emergence of batteries leads to a four times lower 

margin of the backup capacity. Mild weather conditions 

with a high renewables output divide the margin in half 

compared to extreme weather conditions. Despite the 

volatile backup energy request and income basis for the 

different scenarios, a similar level of backup capacity 

needs to be installed to cover the constantly high 

maximum scarcity peak. As investments are unlikely 

considering the lacking cost recovery and volatile revenue 

streams, additional revenue streams are needed to 

guarantee a sufficient level of secured capacity for 

maintaining the security of supply.  
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1. Introduction 

Motivation 

With a share of at least 80 percent of renewable energy 

sources on the electricity consumption in 2050 (BMWi, 

2016), the German electricity production reduces its CO2 

emissions and becomes more sustainable. At the same 

time, the challenge of ensuring the security of supply 

reaches another level with a more weather dependent 

generation mix.  

Especially winter days with fog, still air and a high power 

demand (the so-called Dunkelflaute) are a stress test for 

the new power system. For instance, on the 24. January 

2017 the overall electricity demand of 83 gigawatts (GW) 

could be only covered by max. 3 GW renewables (Agora, 

2018). Nowadays, shortcomings like this are bridged by 

conventional power plants and cross-border imports. As 

the increasing share of photovoltaic and wind energy 

replaces conventional power plants in the market, 

technologies which are specially implemented for the 

scarcity moments (the so-called backup technologies) are 

needed to maintain the security of supply. 

The cost recovery determines the likeness of investments 

in backup capacity. As last dispatched power plant, 

backup technologies need scarcity prices to cover their 

fixed cost. In a renewable dominated power system, the 

frequency of scarcity prices depends mainly on the energy 

supply by weather-dependent renewables and the 

availability of short-term flexibility providers. The impact 

of the weather conditions and the short-term flexibility 

provision on the cost recovery is analyzed for the case of 

two contrary extreme weather years and batteries. The 

required backup capacity to cover the scarcity in a 

renewable dominated energy system and its income is 

determined with the help of the agent-based model 

AMIRIS. The model and its scenarios are explained in the 

chapters 2 and 3. The results are presented, tested with a 

sensitivity analysis and discussed in chapter 4, 5 and 6.   

Literature Review 

The weather does not only differ from month to month 

but from year to year. The increasing weather 

dependence forces backup technologies to readjust their 

business case to a time span of several years and a high 

level of uncertainty. The weather-dependent backup 

request is a subject of several publications.  

(Becker, 2018; Fraunhofer IEE, 2018; Huneke, Perez 

Linkenheil, & Niggemeier, 2017) demonstrate the 

correlation of weather and renewable output. Whereas 

(Becker, 2018) focuses in the coincidence of the energy 

output for different renewable technologies, (Fraunhofer 

IEE, 2018; Huneke et al., 2017) set the renewables in 

context of a future energy system and presented the 

resulting scarcity moments.  



(Becker, 2018) highlights that the yearly occurrence of a 

consecutive renewable energy shortage over two days 

can be reduced from 23 times to two times by the switch 

from a sole supply by onshore wind energy to a mix of 

onshore, offshore and photovoltaic.  

(Huneke et al., 2017) identifies the weather year 2016 as 

the mildest and 2006 as the most extreme one. Two 

weeks at the end of January show the highest scarcity. 

With a generation mix of 69 percent renewables, the 

average residual load of these weeks is 72.8 GW for the 

weather year 2006. The uncovered load of this period 

ranges from 4.47 TWh for 2016 to 22.88 TWh for 2006. 

(Fraunhofer IEE, 2018) ranks the weather year 2007 as the 

mildest and 2010 as the most extreme one. Similar to 

(Huneke et al., 2017), the last three weeks of January are 

the stress test for the energy system. The different input 

parameters and indicators for the output impede a 

comparison of the results. A high degree of sectoral 

coupling and a generation mix with 95 percent 

renewables result in a maximum gap between demand 

and supply of 30 GW for the weather year 2010. The 

uncovered load ranges from 1 TWh for 2007 to 3.9 TWh 

for 2010. 

(Fraunhofer IEE, 2018) shows that different forms of 

flexibility help to reduce the backup capacity need to low 

level. The emergence of batteries plays a special role in 

this context. The literature differentiates  

between two main use cases. They can be either used to 

minimize the system cost (Sioshansi, Denholm, Jenkin, & 

Weiss, 2009; Zapf, 2017) or maximize the profit of its 

owner (Conejero, Díaz, & Gomez, 2018; He et al., 2016; 

Majidi, Nojavan, & Zare, 2017; Simshauser, 2018). The 

latter is based on an arbitrary strategy for which the 

battery is modeled as a monopoly of short-term 

flexibility. The more realistic case of interdependent 

arbitrary strategies in a competitive environment for 

storages is more difficult to model and requires elements 

of game theory (Wang, Ai, Tan, Yan, & Shuting, 2015).  

The publications indicate a range of backup requests and 

different ways of utilizing batteries but do not merge this 

information into the changing cost recovery conditions of 

backup technologies. By using 2007 and 2010 as the two 

contrary extreme weather years like (Fraunhofer IEE, 

2018) and a profit-maximizing monopolistic battery 

operator, the cost recovery is analyzed in the following.  

2. Methodology 

Different parameters of demand and supply with a high 

temporal resolution need to be merged to evaluate the 

scarcity incidents which shall be addressed by the backup 

capacity. This is done with the help of an energy dispatch 

model. The main model methodology aims the be a 

simulation to represent the conditions of an insufficient 

level of secured capacity. At the same time, single 

elements like the usage of the storage shall be optimized. 

Both requirements are addressed by the modular 

structure of the agent-based model AMIRIS by the 

German Aerospace Centre (DLR).  

As illustrated in figure 1, AMIRIS represents the actors 

which are interacting according to their coordination 

mechanisms in a techno-economic regime. Constraints or 

incentives from the regulatory framework guide their 

decisions.  

Within the simulation of AMIRIS, some actors are entitled 

to optimize themselves by making decisions (see figure 2). 

For instance, the storage adapts its bidding based on 

Figure 1: Conceptual approach by AMIRIS, source: (Deissenroth et al., 2017) 



information about the future dispatch to maximize its 

profit. It capitalizes on the price spread by charging during 

low prices and discharging during high prices. The level of 

foresight can be defined as one configuration variable of 

the storage (Schimeczek, Deissenroth, Fleischer, & Reeg, 

2018).  

The installed capacity of the generation mix is determined 

exogenously. It is derived from common literature and 

evaluations by the linear optimization model ReMix by 

DLR, which use the same database. 

The actors are differentiated by their technology. Every 

generator is linked to one trader. For the controllable 

generators, the trader creates the bid for the energy 

exchange based on the installed capacity, the variable 

cost, the availability and the technical efficiency. This 

information is provided by the generation agents. The 

installed capacity is divided by a predefined block size for 

every technology. The capacity of every block determines 

the quantity of the bids. As different technical efficiencies 

for one technology exist, a range of efficiencies is given, 

which is equally spread among the blocks.  

For the fluctuating generators, no variable costs are 

assigned. The linked trader bases its bids on the installed 

capacity and the generation pattern determined by the 

technology specific and weather dependent time series. 

The renewable generators are assigned to a technology 

specific and fixed market premium. The bids by 

renewables only deviate from the generation pattern, if 

the trader foresees a market price which cannot be 

compensated by the market premium and initiates the 

curtailment of the photovoltaic or wind plants 

(Deissenroth, Klein, Nienhaus, & Reeg, 2017). 

The kind of actors without the scope of decision making 

are the negative minute reserve, the system operator, the 

energy exchange, the total load and the regulatory 

framework which determines the market premium for 

the renewables. The load is defined by the pattern of the 

hourly time series and the yearly consumption. The 

energy exchange creates the merit order based on the 

bids by the traders, dispatches it with the demand and 

determines the price for every hour of the year. If the 

supply can cover the demand, the bid of the last 

dispatched power plant determines the price. If not, a 

scarcity price at the level of the price cap is used. The 

negative minute reserve and the system operator are not 

considered in this investigation.  

The model is verified and validated by (Klein, 2018; Pelka, 

2018; Schimeczek et al., 2018). 

Figure 2: The AMIRIS model, source: (Deissenroth et al., 2017) 



3. Scenarios 

Three scenarios aim to be simulated to test the impact of 

the weather and the batteries. The reference scenario 

consists of the extreme weather year with little 

renewable output and a certain level of batteries. The two 

alternative scenarios enable a comparison with the mild 

weather year and the same level of batteries (“scenario 

mild weather”) or no batteries and the same weather 

conditions like in the reference scenario (“scenario no 

batteries”).  

The impact on the cost recovery is examined by a two-

stage procedure. First, the scarcity incidents which the 

backup technology and partly the battery aim to cover are 

analyzed. Hereby, the different character of scarcity is 

documented with the help of three indicators. Those are 

the maximum scarcity peak, the uncovered load over the 

entire year and the uncovered load during the longest 

scarcity period. The maximum scarcity peak indicates the 

needed backup capacity and the yearly uncovered load 

the requested backup energy. The uncovered load of the 

longest scarcity period stresses the potential of batteries 

to bridge scarcity.  

In the second stage, a gas turbine is implemented as 

backup technology. The income derived from the 

simulation is matched with their total cost for the 

installed capacity and the requested backup energy. The 

costs are based on (Buttler, Hentschel, Kahlert, & 

Angerer, 2015; Cebulla, 2017; Pfluger et al., 2017). 

The underlying data is used from (Cebulla, 2017) who 

created a renewable dominated energy system with a 

range of different storage technologies. Two 

modifications of the scenario with a high CO2 price of 75 

EUR/t are made. First of all, the renewable share in the 

simulation aims to be similar to the renewable target of 

the German government for 2040 (BMWi, 2015). To raise 

the share of 61 percent by (Cebulla, 2017) to 66 percent 

of the yearly consumption, 20 GW installed capacity for 

wind onshore are added. By this update, the installed 

capacity for wind onshore shows the same level as in the 

long-term forecast of the Federal Ministry for Economic 

Affairs and Energy (Pfluger et al., 2017).  

The second modification is about the creation of 

investment restraints. In the scenario by (Cebulla, 2017), 

sufficient investments in generation and storage are 

made to cover the demand for every hour of the year. This 

includes also investments in storage technologies with an 

uncertain business case like power-to-hydrogen and 

compressed air storages. Assuming investment restraints 

for these technologies due to an uncertain cost recovery, 

only 15 GW li-ion batteries are considered. A limited 

foresight of one day is assumed for the battery operator. 

The remaining 23 GW storage capacity is excluded as a 

capacity gap.  

The level of the capacity gap and foresight for the battery 

storage are likely to influence the simulation outcome 

significantly. Their impact is tested in a sensitivity 

analysis.    

4. Results 

Scarcity Incidents addressed by Backup Capacity 

With 26 GW, the maximum uncovered load peak remains 

on a similar level for all scenarios. It implies that the 

combination of supply and demand can always lead to 

one hour in which the demand is high, the residual load 

low and the storage not available regardless of the 

weather year and the level of short-term storage.  

In contrast, the weather conditions and level of short-

term storage influence the amount of missing energy. The 

storage is able to divide the yearly missing energy in half. 

One fifth less missing energy per year needs to be covered 

in the case of the mild weather year compared to the 

extreme one. 

Looking at the frequency of scarcity peaks per year, the 

weather year 2010 shows 36 percent more peaks in the 

category 10 to 20 GW. The correlation between scarcity 

peaks and longer scarcity periods reinforces the severity 

of scarcity for the weather year 2010. 35 percent (2010) 

and 25 percent (2007) of the extreme peaks can be found 

in a scarcity period longer than 20 hours (see figure 3 and 

4).  

 

Figure 3: Correlation of hours with uncovered load peaks and 
consecutive hours of the uncovered load for 2007 



 

Figure 4: Correlation hours with uncovered load peaks and 
consecutive hours of the uncovered load for 2010 

The severity of the scarcity become more explicit for the 

investigation of the longest scarcity period of each year. 

The most extreme period can be found in the reference 

scenario lasting for almost three days. The missing energy 

is ca. three times higher for the extreme weather year 

than for the mild one. This leads to a condensed 

accumulation of scarcity moments which cannot be 

addressed by the battery solely.  Due to the limited 

eligible moments to charge, the contribution of the 

battery to cover the missing energy is ca. one-tenth less 

than at the observation of the entire year.  

In conclusion, the observation of the extreme scarcity 

moments within one year makes explicit that those 

cannot be covered solely by batteries. The maximum 

scarcity peak asks for the similar level of installed backup 

capacity for all scenarios but under a greatly changing 

request for energy for the rest of the year depending on 

the weather conditions and batteries.   

Cost Recovery of Gas Turbines 

Considering the maximum scarcity peak, a technology 

typical non-availability rate and technical efficiency, 

additional gas turbine capacity is implemented to bridge 

the scarcity. The income and total cost are merged for the 

entire installed capacity of the technology.   

The decrease of missing energy in the case of more 

storage or milder weather presented in the first step gives 

already an indication for the lower full load hours of the 

backup technology and its reduced margin. The 

evaluation of the second stop demonstrates that the 

backup technology is not able to cover its total cost in any 

scenario. Although the level of missing money is 

dependent on the exogenously determined generation 

mix and therefore susceptible, it needs to be considered 

that the backup technologies do not even recover their 

cost under extreme scarcity conditions.  

The implementation of the storage provokes a more than 

three times lower margin for the backup technology. Also, 

the milder weather leads to a decrease of the margin by 

83.5 percent. The second step makes explicit that the cost 

recovery is not only insufficient, but also a subject of great 

uncertainty depending on the weather conditions and 

available short-term flexibility.  

5. Sensitivity Analysis  

It can be presumed that the level of the capacity gap 

influences the scarcity and that longer foresight and 

thereby more information about the future dispatch 

support the storage to maximize its profit and to weaken 

the cost recovery of the backup technology. Both 

assumptions are tested by the sensitivity analysis.  

A longer foresight of one week leads to an 11 percent 

higher income for the battery. By knowing with a longer 

foresight when attractive hours are about to come, it is 

able to use more positive extreme prices. Thereby, it 

decreases the uncovered load per year by 20 percent. 

It is noticeable that the longer foresight increases the 

number of used high prices but does not have the same 

effect on the low prices (see figure 5). It gives the 

impression that within the foresight period no more high 

prices exist which could be addressed by additional stored 

energy. The eligibility of the sequence of prices for the 

frequent charging and discharging of a battery needs to 

be evaluated further.  

 

Figure 5: Distribution of prices for storage utilization with different 
foresights 

The situation is different for the extreme situation. As the 

battery already reached its technical limits with the 

shorter foresight, the foresight of one week does not add 

a real value. The maximum scarcity peak remains at the 

same level and the uncovered load of the longest scarcity 

period decreases by 1 percent.   



The optimized bidding with the help of the longer 

foresight decreases the margin of the backup technology 

by 25 percent. Consequently, a longer foresight does not 

support a more system friendly usage of battery beyond 

a certain level due to its technical limitations, but it 

weakens the security of supply indirectly by lowering the 

margin of the backup technologies.  

By halving the capacity gap, the additional capacity is 

directly translated into a reduction of the maximum 

scarcity peak. This effect can be endorsed for the other 

hours of scarcity. The uncovered load per year only 

accounts for 6 percent of the previous value. For the 

longest scarcity period, it is 12 percent. The level of the 

capacity gap is a sensitive parameter for the analysis. 

Especially the frequent scarcity in hours with a little 

missing capacity could be covered easily.  

6. Discussion 

The presented scarcity incidents depend on the 

implemented generation mix and especially the missing 

secured capacity. The generation mix is determined 

exogenously in AMIRIS. The self-determined level of 

investment restraints is susceptible. More or less 

excluded investments would lead to a different level of 

scarcity. Alternatively, an optimization model could 

determine an optimized generation mix according to an 

optimization objective (e.g. minimize system costs) and 

consider constraints. This approach neglects the 

investment decisions and possible investment restraints 

by actors on the micro level.  Missing investments are a 

key underlying assumption of the research questions. 

Therefore, a model which enables the simulation of 

restrained investment and scarcity is selected. The impact 

of fewer investment restraints is tested as a sensitivity.  

(Deissenroth et al., 2017) discusses the gap between 

optimal and real market outcomes. Simulations and 

optimizations have advantages and drawbacks as 

methodology. The modular structure of agent-based 

models allows combining both. For this investigation, only 

the storage agent is empowered to make decisions to 

maximize its profit. More agents which are enabled to 

make decisions according to their optimization objective 

(e.g. investment decisions to maximize their profit) would 

lead to a more realistic outcome. 

Furthermore, the presented scarcity indicators identify 

the most apparent scarcity moments but do not provide 

a comprehensive picture of the scarcity. Simplified 

indicators have the dilemma that they either focus on a 

single moment and neglect following scarcity issues or 

aggregate scarcity over a longer period and dilute the 

magnitude of the single events. For instance, the changes 

between the reference scenario and the alternative ones 

are more extreme for the uncovered load of the longest 

scarcity period than for the uncovered load over the 

whole year. The longer duration involves more moments 

without scarcity and dilutes the effect. An analysis of the 

sequences of scarcity periods and the duration between 

them would complement the understanding about 

scarcity.  

The simulated participation of short-term storages on the 

wholesale market is a mixed blessing for the security of 

supply. On the one hand, they contribute to cover the 

load and level off extreme prices. On the other hand, they 

diminish the investment basis of backup technologies and 

make investment more unlikely. Three distinctions need 

to be made assessing the transferability of the simulation 

results on the real impact of batteries on the security of 

supply. 

First of all, the ownership and operation of batteries are 

likely to be spread over a heterogeneous set of actors in 

the future. A competitive environment of storages will be 

created in real life. In contrast to that, the storage is 

modeled as a monopoly of flexibility in most literature 

and in AMIRIS. It optimizes its arbitrary strategy without 

the need of considering the bids by other flexibility 

providers, which use an arbitrary strategy as well (He et 

al., 2016; Majidi et al., 2017). The core issue of 

representing a competitive environment for storages is 

the condensation of several independent arbitrary 

strategies. A game theoretical approach needs to be used 

(Wang et al., 2015). The main drawback of this 

monopolistic representation of the storage is that it 

maximizes its profit in some hours by restraining the 

stored energy to keep the market price on a high level. In 

a competitive environment, the bidding of the exact 

amount of energy to use the high price without lowering 

them is unlikely. As the price is likely to be lowered 

anyway, the storages create profit by selling their stored 

power instead of holding the price artificially high. 

Therefore, scarcity moments tend to occur less frequently 



and with a lower magnitude in a competitive 

environment than in the simulation.  

Second, it is demonstrated by the simulation that a higher 

foresight lead to a higher profit for the storage. The 

realistic level of foresight is debatable. Most publications 

(e.g. (Sioshansi et al., 2009)) indicate a range of outcomes 

with different foresights. With more available data and 

better forecasts over time, the foresight will improve. 

Additionally, no forecasting errors impacted the foresight 

in the simulation. The implementation of randomized 

forecasting errors would make the simulation more 

realistic. 

Third, it is assumed that the availability of the storage is 

not limited within the scope of their technical 

possibilities. In the course of sectoral coupling, flexibility 

shall be provided by applications whose main use case is 

not the trading of energy on the wholesale market. Those 

are, for instance, electrical heaters or electric cars. Their 

limited availability would reduce the contribution to the 

security of supply. The temporal coincidence of their non-

availability and scarcity moments is a subject of further 

research.  

Furthermore, the chosen generation mix with its missing 

secured capacity results in a high level of scarcity in the 

first experiment. In the second one, it gives the backup 

technology a dominant market position in the hours, 

which are scarcity hours in the first experiment. Due to 

their configuration in AMIRIS, the gas turbines keep 

bidding their marginal costs, which results in a lacking 

cost recovery. The missing exercise of market power is 

considered as unrealistic in this case.  

The acceptance of an extensive exercise of the market 

power is an unrealistic extreme case as well. The gas 

turbines would increase their bids to cover their costs and 

exploit their dominant position as shown in the markup 

analysis. As other market players (e.g. battery storage) 

aim to capitalize on the higher prices as well, a reciprocal 

effect that a higher bid leads to a lower awarded quantity 

is observed. This observed market dynamic is bounded by 

the limited available energy in this simulation setup. A 

lower level of missing secured capacity would decrease 

the dominance of the backup technologies and show how 

the price increase would be limited by other market 

players. An appropriate level of missing capacity for this 

simulation setup needs to be determined by a sensitivity 

analysis before the simulation. A more realistic 

representation of the market power by the backup 

technology and the resulting cost recovery is subject to 

further simulations.  

All in all, the skepticism about the price signals of the EoM 

to incite investment into capital intense backup 

technologies is reinforced by the analysis. Therefore, 

interventions to stimulate investments and maintain the 

security of supply need to be taken into consideration. 

It is a fundamental decision whether the market or the 

regulator is the most capable party to decide on backup 

investments and handle the investment risk. A sound 

judgment is needed to decide on the degree of 

intervention by the regulator and to design a suitable 

intervention.  

Conclusion  

By increasing the share of photovoltaic and wind on the 

generation mix, the energy supply becomes more 

weather dependent. To maintain the security of supply, 

the volatile power output by the renewables needs to be 

compensated by other sources. These flexibility options 

need to handle diverse incidents of scarcity ranging from 

single peaks of uncovered load to longer scarcity periods. 

In the reference scenario, the maximum peak occurs in a 

period of almost three days of scarcity. These scarcity 

incidents cannot be covered by short-term flexibility 

solely. The extreme peaks and the long duration of 

uncovered load are asking for additional investment in 

backup technologies.   

The maximum scarcity peak sets the benchmark for the 

dimension of backup capacity. The combination of similar 

maximum peaks for every scenario and the divergent 

levels of requested energy by the backup technologies are 

already a negative indicator of its cost recovery. This is 

proven by the simulation with the backup technology. 

Even though the input parameters create an unrealistic 

extreme case of scarcity, the backup technology cannot 

recover its total cost. 8.5 percent of the hours per year 

show scarcity prices of 3 000 EUR/MWh. It is unlikely that 

a regulator would expose the consumers to such a great 

scarcity without intervening. 



Referring to the scenario with the highest likeness of cost 

recovery, the one without storage and extreme weather, 

the implementation of short-term storage lowers the 

margin four times and additionally, mild weather 

conditions lower it two times further. It becomes clear 

that not only the lacking cost recovery restrains 

investment into backup capacity but also the risk 

connected to the volatile level of deficit. The pricing of the 

provision of backup capacity by capacity mechanism 

lowers these risks and contributes to the maintenance of 

security of supply. 
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