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Connections between (positive) mean ergodic operators acting in Banach lattices and
properties of the underlying lattice itself are well understood (see the works of
Emel’yanov, Wolff and Zaharopol). For Fréchet lattices (or more general locally
convex solid Riesz spaces) there is virtually no information available. For a Fréchet
lattice E, it is shown here that (amongst other things) every power-bounded linear
operator on E is mean ergodic if and only if E is reflexive if and only if E is Dedekind
σ-complete and every positive power-bounded operator on E is mean ergodic if and
only if every positive power-bounded operator in the strong dual E′

β (no longer a
Fréchet lattice) is mean ergodic. An important technique is to develop criteria that
detect when E admits a (positively) complemented lattice copy of c0, �1 or �∞.

1. Introduction and statement of results

A continuous linear operator T in a Banach space E (or locally convex Hausdorff
space (LCHS)) is called mean ergodic if the limits

lim
n→∞

1
n

n∑
m=1

Tmx, x ∈ E, (1.1)

exist (in the topology of E). In 1931 Von Neumann proved that unitary operators in
Hilbert space are mean ergodic. Ever since, intensive research has been undertaken
concerning mean ergodic operators and their applications (for the period up to the
1980s see [13, ch. VIII, § 4], [18, ch. XVIII], [20, ch. 2] and the references therein).

It quickly became evident that there was an intimate connection between geomet-
ric properties of the underlying Banach space E and mean ergodic operators on E.

897
c© 2011 The Royal Society of Edinburgh



898 J. Bonet, B. de Pagter and W. J. Ricker

A continuous linear operator T in E (the space of all such operators is denoted by
L(E)) is called power bounded if supm�0 ‖Tm‖ < ∞. The space E itself is called
mean ergodic if, for every power bounded T ∈ L(E), the limits (1.1) exist. As a sam-
ple, Riesz (1938) showed that all Lp-spaces (1 < p < ∞) are mean ergodic. In 1938,
Lorch proved that all reflexive Banach spaces are mean ergodic. In the opposite
direction, in 2001. Fonf et al . [16] established (among other things) that a Banach
space E with a basis is reflexive if and only if E is mean ergodic. For Banach lattices,
the requirement of a basis can be omitted. Indeed, in 1986, Zaharopol showed that
if E is a Dedekind σ-complete Banach lattice, then E is reflexive if and only if every
positive power-bounded operator T ∈ L(E) is mean ergodic [30]. For an arbitrary
Banach lattice E, it was shown by Emel′yanov in 1997 [14] that E is reflexive if and
only if every regular power-bounded operator T ∈ L(E) is mean ergodic (regular
means that T is the difference of two positive operators). According to Emel′yanov
and Wolff [15], a Banach lattice has order continuous norm if and only if every
power-order-bounded operator on E is mean ergodic.

For an LCHS E, the definition of T ∈ L(E) being mean ergodic (i.e. via (1.1))
makes perfectly good sense, as does the notion of power boundedness, now meaning
that {Tm}m�0 is an equicontinuous subset of L(E). The first ‘mean ergodic result’
for (a special class of) power-bounded operators T on certain LCHSs E is due
to Altman [6]. The restriction on T that Altman imposed (a weak compactness
condition) was later removed by Yosida [28, ch. VIII]. In more recent times, most
of the Banach space results mentioned above that connect the geometric properties
of the underlying space E to the mean ergodicity of operators acting on E were
extended to the Fréchet space setting in [1] and to more general LCHSs E in [2,3,8].
We aim to extend the above results concerned with mean ergodic operators in
Banach lattices to the setting of Fréchet lattices. Classical examples of Fréchet
lattices to keep in mind include the sequence space ω = R

N and all Köthe echelon
spaces λp(A) for p ∈ {0} ∪ [1,∞], with A a Köthe matrix relative to some countable
index set (see, for example, [22]). We also mention �p+, 1 � p < ∞ [23] and Lp−,
1 < p < ∞ [9]. Further examples are Lp

loc(Ω) for 1 � p � ∞ with Ω ⊆ R
N open and

C(Ω), equipped with the topology of uniform convergence on compact subsets of
Ω. Finally, if m is any Fréchet space-valued vector measure, then the spaces Lp(m)
(respectively, Lp

w(m)) consisting of the pth power m-integrable (respectively, weakly
m-integrable) functions are Fréchet lattices [10,11,25].

So, let us formulate some of the main results. General references for the theory
of LCHSs are [19,22,26]. If ΓE is a system of continuous seminorms generating the
topology of an LCHS E, then the strong operator topology τs in L(E) is determined
by the seminorms

qx(S) = q(Sx), S ∈ L(E), (1.2)

for each x ∈ E and q ∈ ΓE (in which case we write Ls(E)). The uniform operator
topology τb in L(E) is defined via the seminorms

qB(S) = sup
x∈B

q(Sx), S ∈ L(X), (1.3)

for each q ∈ ΓE and bounded set B ⊆ E (in which case we write Lb(E)). If E is a
Banach space, then τb is the operator norm topology on L(E). A Fréchet space is
a complete, metrizable LCHS E, in which case ΓE may be taken to be countable.
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The topological dual space of an LCHS E is denoted by E′. The weak topology
induced on E by the pairing 〈E, E′〉 is written as σ(E, E′) and the strong topology
on E (respectively, E′) is denoted by β(E, E′) (respectively, β(E′, E)), in which
case we write Eβ (respectively, E′

β). Then, E′
β is called the strong dual of E and

E′′ = (E′
β)′

β is the strong bidual of E. If E = E′′ as vector spaces (respectively,
additionally topologically), then E is called semireflexive (respectively, reflexive).
For a Fréchet space E, the strong dual E′

β need not be metrizable but E′′ is again
a Fréchet space containing E as a closed subspace [22, corollary 25.10].

Relevant references for the theory of Riesz spaces (which will always be over R),
with � denoting the order, are [21,24,29]. For locally convex-solid (LC-solid) Riesz
spaces E we refer the reader to [4, 5, 17], for example. In this case, the seminorms
q ∈ ΓE can all be chosen to be Riesz seminorms, that is, q(x) � q(y) whenever
|x| � |y| in E [4, theorem 6.1]. As usual, a linear operator T ∈ L(E) is called
positive if Tx � 0 whenever x ∈ E+, where E+ = {x ∈ E : x � 0} is the positive
cone of E. A Riesz space E is said to be Dedekind (σ-)complete if every non-empty
(countable) subset of E that is order-bounded from above has a supremum. Typical
examples of Riesz spaces that fail to be Dedekind σ-complete are the sequence space
c and the space of continuous functions C([0, 1]).

An LC-solid Riesz space that is metrizable and complete is simply called a Fréchet
lattice [4, p. 111].

Theorem 1.1. If E is a Fréchet lattice, then the following assertions are equivalent:

(i) E is reflexive;

(ii) E is mean ergodic;

(iii) E is Dedekind σ-complete and every positive power-bounded operator on E is
mean ergodic.

(iv) Every positive, power-bounded operator on E′
β is mean ergodic.

The main tool needed to establish theorem 1.1 is of interest in its own right.
Two LC-solid Riesz spaces E and F are called Riesz homeomorphic if there exists
a Riesz homeomorphism J : E → F (that is, J is a linear lattice homomorphism
from E onto F , which is also a homeomorphism). If E contains a Riesz subspace
which is Riesz homeomorphic to F , then we say that E contains a lattice copy of
F . As usual, a closed Riesz subspace F of an LC-solid Riesz space E is said to be
(positively) complemented in E if F is the range of a linear continuous (positive)
projection.

The following result is crucial for establishing theorem 1.1.

Theorem 1.2. If E is a Dedekind σ-complete LC-solid Riesz space which is com-
plete and ℵ0-barrelled, then the following assertions are equivalent:

(i) E is not semireflexive;

(ii) E contains a lattice copy of either �∞, �1 or c0.
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The relevance of the Banach lattices c0, �1 and �∞ is that each one admits a
positive power-bounded operator which fails to be mean ergodic. Indeed, denoting
the elements in these sequence spaces by x = (x1, x2, . . . ), it can be verified that
the operators

T0 : x 
→ (x1, x1, x2, x3, . . . ), x ∈ c0,

T1 : x 
→ (0, x1, x2, x3, . . . ), x ∈ �1,

T∞ : x 
→ (x2, x3, x4, . . . ), x ∈ �∞

⎫⎪⎬
⎪⎭ (1.4)

on the spaces c0, �1 and �∞, respectively, have the stated properties.
Given a Riesz space E, a linear map T : E → E is called power-order bounded if,

for every x ∈ E+, there exists z ∈ E+ such that
∞⋃

m=0

Tm([−x, x]) ⊆ [−z, z],

where [−u, u] denotes the order interval {y ∈ E : − u � y � u}, for each u ∈ E+.
Order intervals in an LC-solid Riesz space E are always topologically bounded [4,
theorem 5.4]. Hence, if E is barrelled and T ∈ L(E) is power-order bounded, then
the uniform boundedness principle implies that T is power bounded [22, proposi-
tion 23.27].

Recall that an LC-solid Riesz space E has a (σ-)Lebesgue topology if, for every
decreasing (sequence) net xα ↓α 0, it follows that xα →α 0 with respect to the
given topology [4, p. 52]. For Banach lattices this notion corresponds to (σ-)order
continuity of the norm [24, ch. 2, § 4]. The extension of the above-mentioned result
of Emel′yanov and Wolff can now be formulated.

Theorem 1.3. For a Fréchet lattice E, the following assertions are equivalent:

(i) E has a Lebesgue topology;

(ii) every power-order-bounded operator on E is mean ergodic.

We mention that theorems 1.1–1.3 will actually be established in somewhat more
generality than the (more transparent) versions formulated above.

For a Banach space E with a basis it is known that E is uniformly mean ergodic
if and only if E is finite dimensional [16, corollary 3]. Here, an LCHS E is called
uniformly mean ergodic if every power-bounded operator T on E has the property
that its Cesàro means

T[n] =
1
n

n∑
m=1

Tm, n ∈ N, (1.5)

form a convergent sequence in Lb(E). For Banach lattices, the requirement of a
basis can be omitted.

Theorem 1.4. A Banach lattice E is uniformly mean ergodic if and only if E is
finite dimensional.

It is known that every Montel–Fréchet lattice (e.g. ω or λp(A), 1 � p � ∞, for
those Köthe matrices A such that λ1(A) is reflexive [22, theorem 27.9]) is necessarily
uniformly mean ergodic [1, proposition 2.8]. Our final result may be viewed as an
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analogue of theorem 1.4 for non-normable Fréchet lattices. We point out that every
Montel–Fréchet lattice is necessarily discrete [4, corollary 21.13].

Theorem 1.5. A Fréchet lattice E is Montel if and only if E is discrete and uni-
formly mean ergodic.

2. Some preliminary results

For a Riesz space E, we recall that the order dual E∼ is always a Dedekind complete
Riesz space [4, theorem 3.3]. A classical result of Riesz states that, in any Dedekind
complete Riesz space E, every band B is a projection band, that is, E = B ⊕ Bd

or, equivalently, there exists a linear projection P : E → E with range Im(P ) = B
and satisfying Px ∈ [0, x], x ∈ E+ [4, theorem 2.12], [24, theorem 1.2.9]. Such a
projection P is called a band projection in E (note that if E is an LC-solid Riesz
space, then every band projection P is continuous, because |Px| � |x| for x ∈ E).
Here, Bd = {x ∈ E : |x| ∧ |y| = 0 for all y ∈ B}.

If E is an LC-solid Riesz space, then E′
β is also an LC-solid Riesz space whose

topology is given by the family of Riesz seminorms

qB(x′) = sup
x∈B

|〈x, x′〉|, x′ ∈ E′
β , (2.1)

as B runs through the collection Bs of all bounded, solid subsets of E [4, pp. 59, 129].
Moreover, E′

β is an ideal in E∼ and so, in particular, E′
β is Dedekind complete [4,

theorem 5.7]. If E happens to be barrelled, then E′
β is a band in E∼ [4, theorem 6.4].

Consequently, E′
β is then topologically complete [4, theorem 19.13].

In order to prove our first proposition, we recall a result on extending linear
functionals [29, theorem 83.17].

Theorem 2.1. Let E be a Riesz space, let F ⊆ E be a Riesz subspace (i.e. vector
sublattice) and let θ : E → R be a sublinear functional which is absolute (i.e. θ(x) =
θ(|x|), x ∈ E) and monotone on E+ (i.e. θ(x) � θ(y) whenever 0 � x � y in E).
If ϕ : F → R is a positive linear functional satisfying |〈x, ϕ〉| � θ(x) for x ∈ F ,
then there exists a positive linear functional ψ : E → R such that ψ|F = ϕ and
|〈x, ψ〉| � θ(x) for x ∈ E.

As an immediate application, we present a result which is well known in the
Banach lattice setting [24, proposition 2.3.11].

Proposition 2.2. If F is a lattice copy of �1 in an LC-solid Riesz space E, then

(i) F is positively complemented in E and

(ii) E′
β contains a lattice copy of �∞.

Proof. (i) Let ‖ · ‖1 be a Riesz norm on F such that the topology of F induced by
E is given by ‖ · ‖1 and (F, ‖ · ‖1) is Riesz isometric to �1. In particular, there exists
a continuous Riesz seminorm r on E such that

‖x‖1 � r(x), x ∈ F.
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Let {vn}∞
n=1 ⊆ F correspond to the standard unit basis vectors of �1 (so that

‖vn‖1 = 1 for all n ∈ N).
For each x ∈ F , there exists a unique sequence {αn(x)}∞

n=1 ∈ �1 satisfying

x =
∞∑

n=1

αn(x)vn,

with the series convergent in (F, ‖ · ‖1). Note that x ∈ F+ if and only if αn(x) � 0
for all n ∈ N. Since |αn(x)| � ‖x‖1 � r(x) for x ∈ F , it is clear that αn ∈ (F ′)+

for all n ∈ N, where 〈x, αn〉 = αn(x), x ∈ F . Define the positive linear functional
y′
1 ∈ F ′ by setting

〈x, y′
1〉 =

∞∑
k=1

〈x, αk〉, x ∈ F,

in which case
|〈x, y′

1〉| � 〈|x|, y′
1〉 � r(|x|) = r(x), x ∈ F.

Evidently, 0 � αn � y′
1 for all n ∈ N. By theorem 2.1, applied to θ = r and ϕ = y′

1,
there exists 0 � x′

1 ∈ E∼ with x′
1|F = y′

1 such that |〈x, x′
1〉| � r(x), x ∈ E. In

particular, x′
1 ∈ (E′)+. Since, for each n ∈ N,

|〈x, αn〉| � 〈|x|, αn〉 � 〈|x|, y′
1〉 = 〈|x|, x′

1〉, x ∈ F,

it follows from theorem 2.1 that there exists 0 � z′
n ∈ E∼ with z′

n|F = αn such that
|〈x, z′

n〉| � 〈|x|, x′
1〉 for x ∈ E. In particular, z′

n ∈ (E′)+ and 0 � z′
n � x′

1 for all
n ∈ N. Let ϕn be the minimal positive extension of the restriction of z′

n to the
principal ideal Evn

generated by vn in E [29, theorems 83.7 and 83.8]. It follows
from 0 � ϕn � z′

n that ϕn ∈ (E′)+ and 0 � ϕn � x′
1 for all n. Since 〈vm, ϕn〉 = δn,m

for all n, m ∈ N, it is clear that ϕn|F = αn. Furthermore, since vn ∧ vm = 0, n �= m,
it can be verified [5, exercise 2.3] that ϕn ∧ ϕm = 0 in E′ whenever n �= m.

If x ∈ E, then
n∑

k=1

|〈x, ϕk〉| �
n∑

k=1

〈|x|, ϕk〉 =
〈

|x|,
n∨

k=1

ϕk

〉
� 〈|x|, x′

1〉

for all n ∈ N and so
∞∑

k=1

|〈x, ϕk〉| < ∞.

Consequently,
∞∑

n=1

‖〈x, ϕn〉vn‖1 =
∞∑

n=1

|〈x, ϕn〉| < ∞, x ∈ E.

Hence, the series

Px =
∞∑

n=1

〈x, ϕn〉vn, x ∈ E, (2.2)

converges in the complete space F . It is now clear that P is a positive projection
in E onto F .
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(ii) Using the notation introduced in the proof of (i), define the map

Φ0 : �+∞ → (E′)+

by setting

Φ0(λ) =
∞∨

n=1

λnϕn, 0 � λ = (λn) ∈ �+∞.

Since 0 � ϕn � x′
1 for all n and E′ is Dedekind complete, this map is well

defined and satisfies 0 � Φ0(λ) � ‖λ‖∞x′
1 for λ ∈ �+∞. Since {ϕn}∞

n=1 is a disjoint
system in (E′)+, it is clear that Φ0 is additive, positive homogeneous and that
Φ0(λ) ∧ Φ0(µ) = 0 whenever λ ∧ µ = 0 in �+∞. Therefore, Φ0 has a unique extension
to a Riesz homomorphism Φ : �∞ → E′ [4, theorem 1.17 and lemma 3.1]. We claim
that Φ is a linear homeomorphism from �∞ onto its range in E′

β . Indeed, if p is any
Riesz seminorm on E′, then

p(Φ(λ)) = p(Φ(|λ|)) � ‖λ‖∞p(x′
1), λ ∈ �∞.

On the other hand, if B is the convex solid hull in E of the bounded set {vn}∞
n=1,

then the continuous Riesz seminorm qB on E′
β , defined by (2.1), satisfies qB(ϕn) = 1

for all n ∈ N. If λ = (λn) ∈ �∞, then

|Φ(λ)| = Φ(|λ|) � |λn|ϕn,

and so qB(Φ(λ)) � |λn| for all n ∈ N. This implies that qB(Φ(λ)) � ‖λ‖∞, λ ∈ �∞,
and we may conclude that Φ is a linear homeomorphism. The proof is complete.

Remark 2.3.

(a) It can be verified that the adjoint P ′ ∈ L(E′
β) of the projection P in E defined

by (2.2) is a positive projection in E′
β onto the lattice copy Φ(�∞) of �∞ in

E′
β , as constructed in part (ii) of the proof above.

(b) Any lattice copy of �∞ in an LC-solid Riesz space E is positively comple-
mented. Indeed, suppose that F is a Riesz subspace of E and let J : �∞ → F
be a Riesz homeomorphism. For every continuous Riesz seminorm p on E,
there exists a constant Cp � 0 such that p(Jλ) � Cp‖λ‖∞ for λ ∈ �∞. There
also exists a continuous Riesz seminorm q on E such that ‖λ‖∞ � q(Jλ) for
λ ∈ �∞. For each n ∈ N, define the positive linear functional ϕn on F by
〈x, ϕn〉 = (J−1x)(n), x ∈ F , where (J−1x)(n) denotes the nth coordinate of
J−1x. Note that J−1x = (〈x, ϕn〉) and hence, J((〈x, ϕn〉)) = x for all x ∈ F .
Since

|〈x, ϕn〉| = |(J−1x)(n)| � ‖J−1x‖∞ � q(x), x ∈ F,

it follows from theorem 2.1 that, for each n ∈ N, there exists a positive linear
functional ψn on E such that ψn|F = ϕn and |〈x, ψn〉| � q(x), x ∈ E (and so
0 � ψn ∈ E′). It is clear that (〈x, ψn〉) ∈ �∞ for all x ∈ E. Defining the map
P : E → E via

Px = J((〈x, ψn〉)), x ∈ E,

it can be checked that P is a positive continuous projection in E onto F . This
proves the claim.
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Proposition 2.4. Suppose that E is a sequentially complete, LC-solid Riesz space,
with the property that countable, bounded subsets of E′

β are equicontinuous. If E′
β

contains a lattice copy of c0, then E contains a positively complemented lattice copy
of �1.

Remark 2.5.

(i) Every ℵ0-barrelled LCHS E has the property that countable, bounded subsets
of E′

β are equicontinuous [26, observation 8.2.2(a)]. All barrelled (hence, all
Fréchet) LCHSs are ℵ0-barrelled [26, observation 8.2.2(b)]; the same is true for
all complete (DF )-spaces [26, observation 8.2.2(c)], which include the strong
duals of Fréchet spaces.

(ii) For a Banach lattice E, proposition 2.4 occurs in [24, proposition 2.3.12].

Proof of proposition 2.4. The idea of the proof follows the lines of that of implica-
tion (iii)⇒ (i) in [24, proposition 2.3.12], with various modifications required due
to the new setting.

Let F be a lattice copy of c0 in E′
β and let {x′

n}∞
n=1 ⊆ F correspond to the

standard unit basis vectors of c0, in which case x′
n � 0, n ∈ N. Then {x′

n}∞
n=1 is

a bounded subset of E′
β which is not a null sequence. Hence, there exists a set

B ∈ Bs such that qB(x′
n) � 0 as n → ∞, with qB given by (2.1). So, by passing

to a subsequence if necessary, there exists δ > 0 such that qB(x′
n) � δ, n ∈ N. It

follows from (2.1) that there exists a sequence {xn}∞
n=1 ⊆ B satisfying

|〈xn, x′
n〉| � 1

2δ, n ∈ N. (2.3)

Since
|〈x, x′

n〉| � 〈|x|, x′
n〉, x ∈ E,

it is clear from (2.3) that 〈|xn|, x′
n〉 � 1

2δ for all n ∈ N, with {|xn|}∞
n=1 ⊆ B (as B

is solid). Accordingly, replacing xn by |xn|, we may assume that {xn}∞
n=1 ⊆ B+.

Moreover, since {x′
n}∞

n=1 and {xn}∞
n=1 are bounded in E′

β and E, respectively, there
exists a constant C > 0 such that 〈xn, x′

n〉 � C for all n ∈ N; that is,

1
2δ � 〈xn, x′

n〉 � C, n ∈ N.

By replacing xn with (4/δ)xn, B with (4/δ)B and C with (4/δ)C, we may assume
that the sequence {xn}∞

n=1 satisfies

2 � 〈xn, x′
n〉 � C, n ∈ N.

Since {xn}∞
n=1 is bounded, given any continuous Riesz seminorm p on E, we have

supn p(xn) < ∞ and hence,
∞∑

n=1

p(2−nxn) < ∞.

By the sequential completeness of E, it follows that there exists e ∈ E+ such that
∞∑

n=1

2−nxn = e,
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as a convergent series in E. Consequently, {xn}∞
n=1 is contained in the principal

ideal Ee generated by e in E. Applying [24, theorem 2.3.1] to the principal ideal
Ee and the sequences {xn}∞

n=1 and {x′
n|Ee}∞

n=1, and passing to a subsequence if
necessary, it follows that there exists a pairwise disjoint sequence {vn}∞

n=1 in E+

such that
0 � vn � xn and 〈vn, x′

n〉 � 1, n ∈ N. (2.4)

Since B is solid, it is clear that {vn}∞
n=1 ⊆ B+.

Define the countable set A ⊆ (E′)+ as

A =
{ n∑

j=1

x′
j : n ∈ N

}
.

Since A is bounded in F ∼= c0, it is also bounded in E′
β . By hypothesis, A is then

equicontinuous. Consequently, there exists a continuous Riesz seminorm p0 on E
such that

|〈x, x′〉| � p0(x), x ∈ E, x′ ∈ A. (2.5)

Fix a = (a1, . . . , an, 0, 0, . . . ) ∈ c00. The elements {vj}n
j=1 are pairwise disjoint and

so ∣∣∣∣
n∑

j=1

ajvj

∣∣∣∣ =
n∑

j=1

|aj |vj .

Since
n∑

j=1

x′
j ∈ A,

it follows from (2.5) and (2.4) that

p0

( n∑
j=1

ajvj

)
= p0

( n∑
j=1

|aj |vj

)

�
〈 n∑

j=1

|aj |vj ,

n∑
k=1

x′
k

〉

�
n∑

j=1

|aj |〈vj , x
′
j〉

�
n∑

j=1

|aj | = ‖a‖1.

This shows that

‖a‖1 � p0

( n∑
j=1

ajvj

)
. (2.6)

On the other hand, given any continuous Riesz seminorm p on E, we have

p

( n∑
j=1

ajvj

)
� Cp‖a‖1, (2.7)
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where Cp = supk∈N p(vk) < ∞, as {vk}∞
k=1 ⊆ B is bounded. Estimates (2.6) and

(2.7) suffice to conclude that the closed Riesz subspace generated by {vn}∞
n=1 is

Riesz homeomorphic to �1.
The conclusion now follows from proposition 2.2(i).

For a Banach space E, it is a classical result of Bessaga and Pelczynski that the
dual Banach space E′

β contains an isomorphic copy of the Banach space c0 if and
only if E contains a complemented copy of �1 [12, p. 48]. The extension of this
result to Fréchet spaces can be found in [7, lemma 10]. The following corollary,
which is an immediate consequence of proposition 2.2(ii) and proposition 2.4, may
be considered as a lattice version of these results.

Corollary 2.6. If E is a sequentially complete LC-solid Riesz space with the prop-
erty that countable, bounded subsets of E′

β are equicontinuous, then E′
β contains a

lattice copy of c0 if and only if E contains a (positively complemented) lattice copy
of �1.

Corollary 2.6 is known for Banach lattices; see [24, propositions 2.3.11 and 2.3.12].
The following simple fact will be required in what follows. Recall that the topol-

ogy in a locally solid Riesz space E is said to be pre-Lebesgue whenever every
increasing, order-bounded sequence in E+ is Cauchy [4, definition 8.1].

Lemma 2.7. Let E be an LC-solid Riesz space with a pre-Lebesgue topology. If
{x′

n}∞
n=1 is an equicontinuous, pairwise disjoint sequence in E′, then x′

n → 0 with
respect to σ(E′, E).

Proof. Since {x′
n}∞

n=1 is equicontinuous, there exists a continuous Riesz seminorm
r on E such that |〈x, x′

n〉| � r(x) for all x ∈ E and n ∈ N. Since

〈|x|, |x′
n|〉 = sup{|〈y, x′

n〉| : |y| � |x|},

the disjoint sequence {|x′
n|}∞

n=1 is also equicontinuous. Therefore, we may assume
without loss of generality that x′

n � 0 for all n.
Suppose that x′

n � 0 relative to σ(E′, E), i.e. there exists x ∈ E such that
〈x, x′

n〉 � 0 as n → ∞. Since |〈x, x′
n〉| � 〈|x|, x′

n〉, we may assume that x ∈ E+. By
passing to a subsequence if necessary, there exists δ > 0 such that 〈x, x′

n〉 � δ for
all n ∈ N. Since

sup
n∈N

〈x, x′
n〉 � r(x) < ∞,

it follows from [24, theorem 2.3.1] (applied in the principal ideal Ex) that, by passing
to a subsequence if necessary, there exist a pairwise disjoint sequence {vn}∞

n=1 in
[0, x] and ε > 0 such that 〈vn, x′

n〉 � ε for all n. The topology in E is pre-Lebesgue
and so vn → 0 in E [4, theorem 10.1]. In particular, r(vn) → 0 as n → ∞. Since
〈vn, x′

n〉 � r(vn), n ∈ N, this yields a contradiction. Therefore, we may conclude
that {x′

n}∞
n=1 is a null sequence relative to σ(E′, E).

Remark 2.8. Let E be an LC-solid Riesz space and suppose that F ⊆ E is a
lattice copy of c0. Let J : c0 → F be a Riesz homeomorphism. For every continuous
Riesz seminorm p on E there exists a constant Cp � 0 such that p(Jλ) � Cp‖λ‖∞
for λ ∈ c0. There also exists a continuous Riesz seminorm q on E such that ‖λ‖∞ �
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q(Jλ) for λ ∈ c0. For each n ∈ N, define the positive linear functional ϕn on F by
〈x, ϕn〉 = (J−1x)(n), x ∈ F . Since

|〈x, ϕn〉| = |(J−1x)(n)| � ‖J−1x‖∞ � q(x), x ∈ F,

it follows from theorem 2.1 that, for each n ∈ N, there exists a positive linear
functional ψn on E such that ψn|F = ϕn and |〈x, ψn〉| � q(x) for x ∈ E (and
so, 0 � ψn ∈ E′). If it is possible to choose the functionals ψn, n ∈ N, such that
〈x, ψn〉 → 0 as n → ∞ for all x ∈ E, then F is positively complemented in E.
Indeed, if this is the case, then the linear map P : E → E defined by

Px = J((〈x, ψn〉)), x ∈ E,

is easily verified to be a positive continuous projection onto F .

Corollary 2.9. If E is an LC-solid Riesz space with pre-Lebesgue topology, then
any lattice copy of c0 in E is positively complemented.

Proof. Suppose that F is a Riesz subspace of E for which there exists a Riesz
homeomorphism J : c0 → F . Let the vectors en ∈ F (n ∈ N) correspond to the unit
basis vectors in c0. Using the notation introduced in remark 2.8, let 0 � x′

n ∈ E′ be
the minimal positive extension of the restriction of ψn|Een

. The sequence {x′
n}∞

n=1
is pairwise disjoint and x′

n|F = ϕn for all n (cf. the proof of proposition 2.2(i)).
Since

|〈x, x′
n〉| � 〈|x|, x′

n〉 � 〈|x|, ψn〉 � q(x) for all x ∈ E, n ∈ N,

it follows that {x′
n}∞

n=1 is equicontinuous. Hence, lemma 2.7 applied to the sequence
{x′

n}∞
n=1 implies that (〈x, x′

n〉) ∈ c0 for all x ∈ E. As observed in remark 2.8, this
implies that the map P : E → E given by Px = J((〈x, x′

n〉)), x ∈ E, is a linear
positive continuous projection onto F .

3. Proofs of theorems 1.1 and 1.2

In this section we present the proofs of theorems 1.1 and 1.2. Actually, we will prove
the results in a more general setting (so that these results also apply to the duals
of Fréchet lattices).

For LC-solid Riesz spaces the following characterization of semireflexivity is rel-
evant (see [4, theorem 22.4]). It should be recalled that an LC-solid Riesz space E
has a Levi topology (or has the Levi property) if every upwards directed, topolog-
ically bounded system in E+ has a supremum in E+ [4, p. 61]. In this case, E is
necessarily Dedekind complete.

Proposition 3.1. If E is an LC-solid Riesz space, then E is semireflexive if and
only if the topology in E is both Lebesgue and Levi and the topology in E′

β is
Lebesgue.

Theorem 1.2 is a special case of the following result.
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Proposition 3.2. Suppose that E is an LC-solid Riesz space such that

(a) E is Dedekind σ-complete,

(b) E is topologically complete,

(c) countable bounded subsets of E′
β are equicontinuous.

The following statements are equivalent:

(i) E is not semireflexive;

(ii) E contains a positively complemented lattice copy of �∞, c0 or �1.

Proof. Only (i)⇒ (ii) requires a proof. Assuming that E is not semireflexive, propo-
sition 3.1 yields three possibilities:

(I) the topology of E is not Lebesgue;

(II) the topology of E is Lebesgue, but not Levi;

(III) the topology of E′
β is not Lebesgue.

In case (I) it follows from [4, theorem 10.3] that the topology of E is not pre-
Lebesgue. Since E is Dedekind σ-complete, it follows from [4, theorem 10.7] that E
contains a lattice copy of �∞, which is positively complemented by remark 2.3(b).

In case (II) it follows from [27, theorem 1] that E contains a lattice copy of c0.
Since the topology in E is Lebesgue (and hence, pre-Lebesgue [4, theorem 10.3]),
it follows from corollary 2.9 that this copy of c0 is positively complemented.

Finally, consider case (III). Since order intervals in E′
β are always topologically

complete [4, theorem 19.13], it follows that E′
β does not have the pre-Lebesgue

property (an inspection of the proof of [4, theorem 10.3] shows that topological
completeness of order intervals suffices). Since E′

β is Dedekind complete, it follows
from [4, theorem 10.7] that E′

β contains a lattice copy of �∞, and hence a lattice
copy of c0. Proposition 2.4 now implies that E contains a positively complemented
lattice copy of �1. The proof is complete.

Observe that, for cases (I) and (II) in the proof of proposition 3.2, condition (c)
on the space E is not required.

Before proving our next result, the following observations will be useful. A LCHS
E is semireflexive if and only if every bounded subset of E is relatively σ(E, E′)-
compact [22, proposition 23.18]. In particular, if E is semireflexive, then every
bounded sequence {xn}∞

n=1 in E has a σ(E, E′)-cluster point (that is, there exists
y ∈ E such that every σ(E, E′)-neighbourhood of y contains xn for infinitely many
values of n). If T ∈ L(E) is power bounded and x ∈ E, then it follows via an
argument analogous to that used in the proof of [20, ch. 2, theorem 1.1] (replacing
the norm by seminorms), that limn→∞ T[n]x exists in E if and only if the sequence
{T[n]x}∞

n=1 has a σ(E, E′)-cluster point in E (where T[n] is defined by (1.5)). Since
{Tn}∞

n=1 is equicontinuous, for each x ∈ E the set {T[n]x : n ∈ N} is bounded in E.
Consequently, if E is semireflexive, then, for all x ∈ E, the sequence {T[n]x}∞

n=1 has
a σ(E, E′)-cluster point in E and so, limn→∞ T[n]x exists in E. This establishes the
following result.
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Proposition 3.3. Every semireflexive LCHS is mean ergodic.

Remark 3.4.

(a) Proposition 3.3 improves proposition 2.3 of [2], where the assumptions on the
LCHS E are that it should be reflexive and have the property that relatively
σ(E, E′)-compact sets are relatively sequentially σ(E, E′)-compact (in which
case E is mean ergodic). Accordingly, several other results in [2], namely
proposition 2.4 and theorems 3.5 and 3.7, can also be extended by removing
the requirement that ‘relatively σ(E, E′)-compact sets are relatively sequen-
tially σ(E, E′)-compact’ and replacing the use of proposition 2.3 of [2] in their
proofs with proposition 3.3 above.

(b) Suppose that E is an LCHS and F is a closed complemented subspace of E
(that is, F is the range of a continuous projection P in E). Let T ∈ L(F ).
Considering TP as a continuous operator from E into itself, it is clear that
(TP )n = TnP and (TP )[n] = T[n]P for all n ∈ N. Evidently, the operator TP
is power bounded in E whenever T is power bounded in F . Moreover, if T
is not mean ergodic in F , then TP is not mean ergodic in E. Note that if
E is an LC-solid Riesz space and F is a Riesz subspace, then TP is positive
whenever both T and P are positive.

Proposition 3.5. Let E be an LC-solid Riesz space satisfying conditions (a)–(c)
of proposition 3.2. The following statements are equivalent:

(i) E is semireflexive;

(ii) E is mean ergodic;

(iii) every positive power-bounded linear operator in E is mean ergodic.

Proof. Implication (i)⇒ (ii) is proposition 3.3 and (ii)⇒ (iii) is trivial. To show that
(iii)⇒ (i), suppose that E is not semireflexive. It follows from proposition 3.2 that
E contains a positively complemented lattice copy F of �∞ or c0 or �1. As observed
earlier (see (1.4)), there then exists a positive power-bounded linear operator T in
F that is not mean ergodic. Via remark 3.4(b), this implies that E does not satisfy
statement (iii). The proof is complete.

To treat the case where the space E is not Dedekind σ-complete, the following
result will be required. In [1, theorem 1.6] it is shown that if a Fréchet space E
contains a copy of the Banach space c0, then E is not mean ergodic. The same
conclusion holds in any sequentially complete LCHS E [2, theorem 3.8]. The next
proposition exhibits a similar result for LC-solid Riesz spaces, without any sequen-
tial completeness requirement. The proof of this result uses some ideas from the
proof of [14, proposition 1].

Proposition 3.6. Suppose that E is an LC-solid Riesz space. If E contains a
lattice copy of c0, then there exists a regular power-bounded operator on E which is
not mean ergodic. In particular, E is not mean ergodic.
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Proof. Suppose that F is a lattice copy of c0 in E and let J : c0 → F be a Riesz
homeomorphism. Let the vectors {un}∞

n=1 ⊆ F correspond to the unit basis vectors
in c0, so that

J(λ) =
∞∑

n=1

λnun, λ = (λn) ∈ c0.

Since J is a linear homeomorphism, there exists a continuous Riesz seminorm q on
E such that

‖λ‖∞ � q(Jλ), λ ∈ c0. (3.1)

Moreover, for every continuous Riesz seminorm p on E there exists a constant
Cp � 0 such that

p(Jλ) � Cp‖λ‖∞, λ ∈ c0. (3.2)

For n ∈ N, define the linear functional 0 � ϕn ∈ F ′ by

〈x, ϕn〉 = (J−1x)(n), x ∈ F.

It follows from (3.1) that

|〈x, ϕn〉| � ‖J−1x‖∞ � q(x), x ∈ F,

and so theorem 2.1 implies that there exists 0 � ψn ∈ E∼ such that ψn|F = ϕn and
|〈x, ψn〉| � q(x) for x ∈ E (so, in particular, ψn ∈ E′). If 〈x, ψn〉 → 0 as n → ∞
for all x ∈ E, then F is positively complemented in E (see remark 2.8), in which
case it follows that there exists a positive power-bounded operator on E that is not
mean ergodic (see the proof of proposition 3.5). In this case we are done.

So, assume that there exists 0 < u ∈ E such that 〈u, ψn〉 � 0 as n → ∞. Fix
a sequence {αn}∞

n=1 in R satisfying 0 < αn < 1 for all n with αn → 0 as n → ∞.
Define the positive linear operator B1 : E → E by

B1x = J((αn〈x, ψn〉)) =
∞∑

n=1

αn〈x, ψn〉un, x ∈ E. (3.3)

Note that B1 is well defined since |〈x, ψn〉| � q(x) for all n ∈ N implies that
(αn〈x, ψn〉) ∈ c0 for all x ∈ E. If p is any continuous Riesz seminorm on E, then it
follows from (3.2) that

p(B1x) � Cp‖(αn〈x, ψn〉)‖∞ � Cp‖(〈x, ψn〉)‖∞ � Cpq(x), x ∈ E,

and so B1 is continuous. Define the regular operator T ∈ L(E) by T = I−B1. Using
(3.3) and the identities 〈un, ψk〉 = δkn for all k, n ∈ N, it follows that T k = I − Bk,
where

Bkx =
∞∑

n=1

β(k)
n 〈x, ψn〉un, x ∈ E, (3.4)

and β
(k)
n = 1 − (1 − αn)k for all k, n ∈ N. Observe that 0 � β

(k)
n ↑k 1 for all n and

that
0 � B1 � B2 � · · · . (3.5)
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Furthermore, if p is any continuous Riesz seminorm on E, then

p(T kx) � p(x) + p(Bkx)

� p(x) + Cp‖(β(k)
n 〈x, ψn〉)‖∞

� p(x) + Cp‖(〈x, ψn〉)‖∞

� p(x) + Cpq(x)

for all x ∈ E and k ∈ N. Hence, the operator T is power bounded. Defining
Sn = n−1(B1 + · · · + Bn), it is clear that

T[n] = I − Sn, n ∈ N,

and 0 � S1 � S2 � · · · . Hence, if x ∈ E, then limn→∞ T[n]x exists if and only if
limn→∞ Snx exists.

Suppose that 0 � x ∈ E is such that y = limn→∞ Snx exists (in which case
Snx ↑n y [4, theorem 5.6(iii)]). Using (3.5) and the fact that any increasing Cesàro
convergent sequence is itself convergent, it follows that Bnx → y as n → ∞ (and
so 0 � Bnx ↑n y). Observe that

y =
∞∨

k=1

Bkx =
∞∨

k=1

∞∨
n=1

β(k)
n 〈x, ψn〉un

=
∞∨

n=1

∞∨
k=1

β(k)
n 〈x, ψn〉un

=
∞∨

n=1

〈x, ψn〉un.

On the other hand, Bnx ∈ F+ for all n and so y ∈ F+. Thus, there exists λ = (λn) ∈
c+
0 such that y = Jλ =

∨∞
n=1 λnun, and so

∞∨
n=1

〈x, ψn〉un =
∞∨

n=1

λnun.

Since {un}∞
n=1 is a disjoint sequence, it follows that 〈x, ψn〉 = λn for all n, and

hence (〈x, ψn〉) ∈ c0.
We have thus shown that if 0 � x ∈ E is such that limn→∞ T[n]x exists, then

(〈x, ψn〉) ∈ c0. Since we assumed that there exists 0 < u ∈ E such that 〈u, ψn〉 � 0
as n → ∞, this shows that the regular power-bounded operator T is not mean
ergodic. The proof is complete.

As observed in [27, lemma 1], any sequentially complete LC-solid Riesz space
which is not Dedekind σ-complete contains a lattice copy of c0. Together with
proposition 3.6, this yields the following result.

Corollary 3.7. If E is a sequentially complete LC-solid Riesz space that is mean
ergodic, then E is Dedekind σ-complete.

In combination with propositions 3.3 and 3.5, we obtain the following conse-
quence.
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Corollary 3.8. If E is a topologically complete LC-solid Riesz space such that
countable bounded subsets of E′

β are equicontinuous, then the following statements
are equivalent:

(i) E is semireflexive;

(ii) E is mean ergodic;

(iii) E is Dedekind σ-complete and every positive power-bounded linear operator
in E is mean ergodic.

The proof of theorem 1.1 is now a simple consequence of the previous results.

Proof of theorem 1.1. Let E be a Fréchet lattice. The equivalence of statements
(i)–(iii) is a special case of corollary 3.8. The strong dual E′

β of E is a topologically
complete and Dedekind complete LC-solid Riesz space for which countable bounded
subsets of (E′

β)′
β are equicontinuous (see the discussion before theorem 2.1 and

remark 2.5(i)). Consequently, proposition 3.5 may be applied to E′
β and so (iv)

holds if and only if E′
β is semireflexive.

If E is reflexive, then E′
β is reflexive [22, corollary 25.11] and, hence, semireflexive.

Assume now that E′
β is semireflexive. Since E is a Fréchet space, its topology

coincides with the Mackey topology [19, p. 261, (4)]. Since E is complete, it follows
from [19, p. 303, (6)] that E is reflexive. This shows that statements (iv) and (i) of
theorem 1.1 are equivalent. The proof is complete.

Remark 3.9. Let E be a topologically complete LC-solid Riesz space. If E is mean
ergodic, then it follows from corollary 3.7 and the proof of proposition 3.2 that E
has both the Lebesgue and the Levi property. In particular, E is Dedekind complete.

4. Proof of theorem 1.3

Recall that a linear map T on a Riesz space E is called power-order bounded if, for
every x ∈ E+, there exists z ∈ E+ such that

∞⋃
n=0

Tn([−x, x]) ⊆ [−z, z]. (4.1)

Note that (4.1) is equivalent to saying that |Tny| � z for all n = 0, 1, . . . , whenever
|y| � x.

Proposition 4.1. If E is a complete barrelled LC-solid Riesz space, then the fol-
lowing statements are equivalent:

(i) the topology of E is Lebesgue;

(ii) every power-order-bounded operator on E is mean ergodic.

Proof. (i) ⇒ (ii) Let T be a power-order-bounded operator in E. As observed in § 1,
this implies that T is power bounded (as E is assumed to be barrelled). Given x ∈ E,
let z ∈ E+ satisfy (4.1) for |x|, which implies, in particular, that |Tnx| � z for all
n ∈ N. Consequently, |T[n]x| � z for all n ∈ N, that is, the sequence {T[n]x}∞

n=1
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is contained in the order interval [−z, z]. Since E is topologically complete and its
topology is Lebesgue, it follows that E is Dedekind complete [4, theorem 10.3].
Hence, by [4, theorem 22.1], the order interval [−z, z] is σ(E, E′)-compact and
so, the set {T[n]x : n ∈ N} is relatively σ(E, E′)-compact. Therefore, the sequence
{T[n]x}∞

n=1 has a σ(E, E′) cluster point in E, which implies that limn→∞ T[n]x exists
in E (see the discussion before proposition 3.3). Hence, T is mean ergodic.

(ii)⇒ (i) Suppose that the topology in E is not Lebesgue. Since E is complete, it
follows from [4, theorem 10.3] that the topology is not pre-Lebesgue. Therefore,
there exist 0 < u ∈ E and a disjoint sequence {un}∞

n=1 in [0, u] such that un � 0
as n → ∞ [4, theorem 10.1]. Hence, there exists a continuous Riesz seminorm r
on E such that r(un) � 0 as n → ∞. By passing to a subsequence, if necessary,
we may assume that r(un) � δ for all n and some δ > 0. Define the injective Riesz
homomorphism J0 : c00 → E by

J0λ =
n∑

k=1

λkuk, λ = (λ1, . . . , λn, 0, 0, . . . ) ∈ c00.

Since |J0λ| � ‖λ‖∞u, it follows that p(J0λ) � p(u)‖λ‖∞, λ ∈ c00, for all continu-
ous Riesz seminorms p on E. The inequalities |J0λ| � |λk|uk for all k imply that
r(J0λ) � δ‖λ‖∞. Since E is complete, it follows that J0 extends continuously to a
Riesz homeomorphism J from c0 onto a closed Riesz subspace F of E satisfying
p(Jλ) � p(u)‖λ‖∞, λ ∈ c0, for all continuous Riesz seminorms p on E. Moreover,
‖λ‖∞ � q(Jλ) for λ ∈ c0, where q = δ−1r. Consequently, we are in the situation of
proposition 3.6. Let {ψn}∞

n=1 be the sequence in (E′)+ as defined in the proof of
proposition 3.6 and observe that 〈u, ψn〉 � 〈un, ψn〉 = 1 for all n. Therefore, if we
define T = I − B1, where the positive linear operator B1 is given by (3.3), then T
is power bounded but not mean ergodic (see the proof of proposition 3.6).

We claim that T is power-order bounded. Recall that T k = I − Bk, k ∈ N, where
the positive operators Bk are given by (3.4). Let x ∈ E+ and y ∈ E satisfy |y| � x.
Using 0 � 〈x, ψn〉 � q(x) for all n, it follows easily that

|T ky| � |y| + |Bky| � x + Bkx � x + q(x)u, k ∈ N,

which establishes the claim. We have thus shown that if the topology of E is not
Lebesgue, then there exists a power-order-bounded operator on E which is not
mean ergodic. The proof is complete.

Since Fréchet lattices are complete barrelled LC-solid Riesz spaces, theorem 1.3
is a special case of proposition 4.1.

5. Uniform mean ergodicity

Recall that a power-bounded linear operator T ∈ L(E), with E an LCHS, is called
uniformly mean ergodic if the Cesàro means T[n], n ∈ N (as defined by (1.5)), are
convergent in L(E) with respect to the uniform operator topology τb (defined via
the seminorms qB in L(E) given by (1.3)). If E is an LC-solid Riesz space, then
the topology τb is generated by the seminorms qB , where q is a continuous Riesz
seminorm on E and B ∈ Bs.



914 J. Bonet, B. de Pagter and W. J. Ricker

In the following, we denote by Z(E) the centre of an LC-solid Riesz space E (see
[29, ch. 20] or [24, § 3.1]). The Boolean algebra P(E) of all band projections in E [21,
§ 30] coincides with the Boolean algebra of all idempotents in Z(E) (equivalently,
the Boolean algebra of all components of the identity operator I in Z(E)). If T ∈
Z(E), then, by definition, there exists 0 � λ ∈ R such that |Tx| � λ|x|, x ∈ E,
and so Z(E) ⊆ L(E). Furthermore, Z(E) is a commutative subalgebra of L(E) and
Z(E) is an f -algebra (see, for example, [24, § 3.1] or [29, § 140] for a definition). If q
is a continuous Riesz seminorm on E and B ∈ Bs, then qB is a Riesz seminorm on
Z(E). Indeed, if |S| � |T | in Z(E), then |Sx| = |S| |x| � |T | |x| = |Tx|, and hence
q(Sx) � q(Tx) for all x ∈ E, which implies that qB(S) � qB(T ). Consequently,
equipped with the topology τb, Z(E) is an LC-solid Riesz space. It should also be
observed that an operator T ∈ Z(E) is power bounded if and only if |T | � I.

Theorem 5.1. If E is a Dedekind σ-complete LC-solid Riesz space in which order
intervals are topologically complete, then the following statements are equivalent:

(i) every power bounded T ∈ Z(E) is uniformly mean ergodic;

(ii) every topologically bounded, disjoint sequence in E converges to zero;

(iii) every disjoint sequence of band projections in E converges to zero with respect
to τb;

(iv) P(E) is a τb-Bade complete Boolean algebra of projections, that is, P(E) is
a complete Boolean algebra and Pα ↑α P in P(E) implies that Pα →α P with
respect to τb.

Proof. (i) ⇒ (ii) Suppose that {un}∞
n=1 is a topologically bounded, disjoint sequence

in E+. Let Pn denote the band projection in E onto the principal band {un}dd

generated by un (recall that a Dedekind σ-complete Riesz space has the principal
projection property [21, § 25]) and observe that PmPn = 0 whenever m �= n. Fix a
sequence {αn}∞

n=1 in R satisfying 0 < αn < 1 for all n and αn ↑n 1. If x ∈ E+, then

0 �
N∑

n=1

αnPnx ↑N� x

and so

Tx =
∞∑

n=1

αnPnx = sup
N

N∑
n=1

αnPnx

exists in E (as E is Dedekind σ-complete). Consequently,

Tx =
∞∑

n=1

αnPnx, x ∈ E,

exists as an order-convergent series in E. Since 0 � T � I, it is clear that T ∈
Z(E) ⊆ L(E) and T is power bounded. It is easily verified that

T kx =
∞∑

n=1

αk
nPnx, x ∈ E, (5.1)
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for all k ∈ N. Note that 0 � T k ↓k. We claim that T kx ↓k 0 in E for all x ∈ E+.
Indeed, suppose that w ∈ E is such that 0 � w � T kx for all k ∈ N and some
x ∈ E+. It follows from (5.1) that 0 � Pnw � αk

nPnx for all k, n ∈ N, and so
Pnw = 0 for all n (as αk

n ↓k 0). This implies that w ∧ Pnx = 0 for all n, so w =
w ∧ Tx = 0, which proves the claim.

It is now easy to see that 0 � T[k]x ↓k 0 for all x ∈ E+. By hypothesis, there exists
S ∈ L(E) such that T[k] → S with respect to τb and so, in particular, T[k]x → Sx
for all x ∈ E+. Via [4, theorem 5.6(iii)], it follows that Sx = 0 for all x ∈ E+, and
hence S = 0. Consequently, T[k] → 0 with respect to τb. Since 0 � T k � T j , 1 �
j � k, it follows that 0 � T k � T[k], and so qB(T k) � qB(T[k]) for every continuous
Riesz seminorm q and every B ∈ Bs. Consequently, T k → 0 with respect to τb. This
implies, in particular, that limk→∞ supn p(T kun) = 0 for every continuous Riesz
seminorm p on E. Since T kun = αk

nun, it follows that

lim
k→∞

sup
n

αk
np(un) = 0.

Given k ∈ N, there exists Nk ∈ N such that αk
n � 1

2 for all n � Nk, and so

sup
n

αk
np(un) � 2−1 sup

n�Nk

p(un).

Therefore, p(un) → 0 as n → ∞, which shows that un → 0 as n → ∞ in E. If
{xn}∞

n=1 ⊆ E is any topologically bounded, disjoint sequence, then {|xn|}∞
n=1 has

the same properties and so |xn| → 0, which implies that xn → 0 as n → ∞.

(ii)⇒ (iii) Let {Pn}∞
n=1 be a disjoint sequence in P(E) and suppose that Pn � 0

with respect to τb. Then there exists a continuous Riesz seminorm q on E and
B ∈ Bs such that qB(Pn) � 0 as n → ∞ (with qB given by (1.3)). By passing
to a subsequence if necessary, we may assume that qB(Pn) � δ for all n ∈ N and
some δ > 0. Hence, for each n, there exists xn ∈ B such that q(Pnxn) � 1

2δ. Since
|Pnxn| = Pn|xn| � |xn|, the sequence {Pnxn}∞

n=1 is bounded and disjoint and so,
by hypothesis, Pnxn → 0 as n → ∞. This contradicts the fact that q(Pnxn) � 1

2δ
for all n. Hence, we may conclude that Pn → 0 with respect to τb.

(iii)⇒ (iv) First, observe that the topology in E is pre-Lebesgue. Indeed, suppose
that x ∈ E+ and that {xn}∞

n=1 is a disjoint sequence in [0, x]. Denoting by Pn the
band projection in E onto the principal band {xn}dd, it is clear that {Pn}∞

n=1 is a
disjoint sequence in P(E) and so, by hypothesis, Pn → 0 as n → ∞ with respect
to τb. Since 0 � xn = Pnxn � Pnx for all n, it is now clear that xn → 0 as n → ∞.
Hence, the topology of E is pre-Lebesgue. Since, by hypothesis, order intervals in E
are complete, this implies that E has the Lebesgue property and that E is Dedekind
complete (see [4, theorem 10.3] and its proof, where it is only required that order
intervals are complete). Consequently, P(E) is a complete Boolean algebra [21,
theorem 24.9(i) and theorem 30.6(ii)].

We shall show next that τb is a pre-Lebesgue topology on Z(E). Since I is a
strong order unit in Z(E), it suffices to show that any disjoint sequence {Tn}∞

n=1 in
[0, I] converges to zero with respect to τb. Denoting by Pn ∈ P(E) the component
of I in the principal band {Tn}dd, it follows that {Pn}∞

n=1 is a disjoint sequence
in P(E) satisfying 0 � Tn = TnPn � Pn for all n. By hypothesis, Pn → 0 and so
also Tn → 0 as n → ∞ with respect to τb. Hence, τb is a pre-Lebesgue topology
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on Z(E). Since order intervals in E are complete, it is easily verified that order
intervals in Z(E) are complete with respect to τb. Consequently, τb is a Lebesgue
topology on Z(E). In particular, if Pα ↑α P in P(E), then Pα →α P with respect
to τb. We may conclude that P(E) is τb-Bade complete.

(iv)⇒ (i) We start with the following simple observation. If T ∈ Z(E) satisfies
−I � T � αI for some α < 1, then T[k] → 0 as k → ∞ with respect to τb. Indeed,
I −T � (1−α)I and so (I − T )−1 exists in Z(E)+ [29, theorem 146.3]. This implies
that

T + T 2 + · · · + T k = (I − T )−1(T − T k+1),

and so
|T[k]| � (1/k)(I − T )−1(|T | + |T |k+1) � (2/k)(I − T )−1

for all k ∈ N. From this estimate it is clear that T[k] → 0 with respect to τb.
Let T ∈ Z(E) satisfy |T | � I and fix 0 < α < 1. Let P ∈ P(E) be the com-

ponent of I in the band {(I − T )+}d, in which case PT � P . On the other hand,
since (P − PT )+ = P (I − T )+ = 0, it follows that P � PT , and hence P = PT .
This implies, in particular, that PT[k] = P for all k ∈ N (as T and P commute).
Let Qα ∈ P(E) be the component of I in the band {(αI − T )+}dd. Note that
(αI − T )+ � (I − T )+, and so PQα = 0. Since

(αQα − QαT )− = Qα(αI − T )− = 0,

it follows that QαT � αQα and so −I � QαT � αI. The previous paragraph implies
that QαT[k] = (QαT )[k] → 0 as k → ∞ with respect to τb. Writing

T[k] − P = (I − P )T[k] = QαT[k] + (I − P − Qα)T[k],

it follows that

lim sup
k→∞

qB(T[k] − P ) � lim sup
k→∞

qB((I − P − Qα)T[k])

whenever q is a continuous Riesz seminorm on E and B ∈ Bs. Furthermore, |T | � I
yields |T[k]| � I, and hence |(I − P − Qα)T[k]| � I − P − Qα. So,

qB((I − P − Qα)T[k]) � qB(I − P − Qα) for all k.

Accordingly,
lim sup

k→∞
qB(T[k] − P ) � qB(I − P − Qα).

Now observe that I − P − Qα is the component of I in the band

{(αI − T )+}d ∩ {(I − T )+}dd.

Furthermore, if α ↑ 1, then

{(αI − T )+}dd ↑ {(I − T )+}dd,

and so

{(αI − T )+}d ↓ {(I − T )+}d.
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Consequently, I − P − Qα ↓ 0 as α ↑ 1. By the τb-Bade completeness of P(E), this
implies that qB(I − P − Qα) ↓ 0 as α ↑ 1, so we may conclude that

lim
k→∞

qB(T[k] − P ) = 0.

This shows that T[k] → P as k → ∞ with respect to τb. The proof is complete.

Remark 5.2. If E is an LC-solid Riesz space, then E′
β is always Dedekind complete

(see § 2) and order intervals in E′
β are topologically complete [4, theorem 19.13].

Consequently, theorem 5.1 may always be applied in E′
β .

An immediate consequence of the above theorem is the following result.

Corollary 5.3. If E is a topologically complete LC-solid Riesz space that is uni-
formly mean ergodic, then every topologically bounded, disjoint sequence in E con-
verges to zero.

Proof. Since E is mean ergodic in particular, it follows that E is Dedekind complete
(see remark 3.9), and so theorem 5.1 applies.

Theorem 1.4 follows immediately from corollary 5.3. Indeed, if, in a Banach lat-
tice, every norm-bounded, disjoint sequence converges to zero, then every disjoint
system in E must be finite. This implies that E is finite dimensional [21, theo-
rem 26.10].

It should be observed that any LCHS E in which bounded sets are relatively
compact is necessarily uniformly mean ergodic. Indeed, bounded subsets of E are,
in particular, relatively weakly compact, and so E is semireflexive. This implies that
E is mean ergodic (see proposition 3.3). Now, if T ∈ L(E) is power bounded, then
the sequence {T[k]}∞

k=1 is equicontinuous and convergent in Ls(E). Accordingly, the
sequence {T[k]}∞

k=1 also converges uniformly on all relatively compact subsets, and
hence on all bounded subsets of E, that is, in Lb(E). Therefore, E is uniformly
mean ergodic.

If E is a discrete and complete LC-solid Riesz space in which every bounded
disjoint sequence converges to zero, then it follows from [4, theorem 21.15] that
every bounded set in E is relatively compact. This observation, together with the
previous paragraph, corollary 5.3 and theorem 5.1, yields the following result.

Corollary 5.4. If E is a topologically complete, discrete, LC-solid Riesz space,
then the following statements are equivalent:

(i) E is Dedekind σ-complete and every power-bounded operator T ∈ Z(E) is
uniformly mean ergodic;

(ii) every topologically bounded, disjoint sequence in E converges to zero;

(iii) bounded subsets of E are relatively compact;

(iv) E is uniformly mean ergodic.

It should be observed that an LC-solid Riesz space E in which bounded sets are
relatively compact is necessarily discrete [4, corollary 21.13]. Therefore, theorem 1.5
is an immediate consequence of corollary 5.4. The next example shows that the
discreteness condition cannot be omitted in corollary 5.4.
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Example 5.5. Fix 1 < p � ∞ and define

Lp− =
⋂

1�q<p

Lq(0, 1),

where the interval (0, 1) is equipped with Lebesgue measure λ. Fixing a sequence
1 < p1 < p2 < · · · ↑ p, the Fréchet lattice topology in Lp− is generated by the se-
quence {‖ · ‖pk

}∞
k=1 of Riesz norms. Moreover, Lp− is reflexive. We claim that every

bounded, disjoint sequence in Lp− converges to zero. Indeed, let {un}∞
n=1 be a

disjoint sequence in Lp− such that supn ‖un‖pk
= Ck < ∞ for all k. Defining

An = {t ∈ (0, 1) : |un(t)| > 0},

it is clear that {An}∞
n=1 consists of pairwise disjoint sets and so λ(An) → 0 as

n → ∞. Given k ∈ N, it follows from Hölder’s inequality that

‖un‖pk
� ‖un‖pk+1λ(An)1/pk−1/pk+1 � Ckλ(An)1/pk−1/pk+1 , n ∈ N.

Hence, ‖un‖pk
→ 0 as n → ∞, which proves the claim. Consequently, the Dedekind

complete Fré chet lattice Lp− satisfies all (equivalent) statements of theorem 5.1
(and so, in particular, statements (i) and (ii) of corollary 5.4). It should be observed
that the centre Z(Lp−) may be identified with L∞(0, 1), acting on Lp− via mul-
tiplication. Evidently, Lp− is not discrete and hence (as is well known [9]) it is
not a Montel space (that is, Lp− does not satisfy condition (ii) of corollary 5.4).
According to [1, proposition 2.11], the space Lp− is not uniformly mean ergodic. We
point out that Lp− cannot contain any closed Riesz subspace that is lattice isomor-
phic to an infinite-dimensional Banach lattice X because all norm-bounded, disjoint
sequences in X would converge to zero. As noted after corollary 5.3, X would then
be finite dimensional. On the other hand, Lp− does have a closed subspace that is
topologically isomorphic to the Banach lattice �2 [1, lemma 2.10].

Whether or not every uniformly mean ergodic Fréchet lattice is actually discrete
(and hence, Montel) remains an interesting and open question.

We end this paper with two observations concerning LC-solid Riesz spaces in
which topologically bounded, disjoint sequences converge to zero.

Remark 5.6. Recall that a locally solid Riesz space E is called (sequentially) mono-
tone complete if every increasing Cauchy (sequence) net in E is convergent.

(a) If E is a monotone complete LC-solid Riesz space and all topologically bound-
ed, disjoint sequences in E converge to zero, then E is semireflexive. Indeed,
it follows from [4, theorem 21.8] that all bounded subsets of E are relatively
weakly compact and hence E is semireflexive.

(b) If E is a sequentially monotone complete LC-solid Riesz space, then the fol-
lowing two statements are equivalent:

(i) every topologically bounded, disjoint sequence in E converges to zero;

(ii) every equicontinuous, disjoint sequence in E′
β converges to zero.
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Indeed, this equivalence follows immediately from a result of Burkinshaw and
Dodds [4, theorem 21.7, equivalence of (i) and (ii)]. An inspection of the proof
of [4, theorem 21.7] shows that it actually suffices to assume that the space
E is sequentially monotone complete.
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26 P. Pérez Carreras and J. Bonet. Barrelled locally convex spaces (Amsterdam: North Hol-
land, 1987).

27 W. Wnuk. Locally solid Riesz spaces not containing c0. Bull. Polish Acad. Sci. Math. 36
(1988), 51–56.

28 K. Yosida. Functional analysis (Springer, 1965).
29 A. C. Zaanen. Riesz spaces II (Amsterdam: North Holland, 1983).
30 R. Zaharopol. Mean ergodicity of power bounded operators in countably order complete

Banach lattices. Math. Z. 192 (1986), 81–88.

(Issued 7 October 2011 )


